text
stringlengths 0
601k
|
---|
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <= 1 then domain() else let rec is_not_divisible n x = if x * x > n then true else match (n mod x) with | 0 -> false | _ -> is_not_divisible n (x + 1) in is_not_divisible n 2 ;; let pi = 4. *. atan 1.;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if k < 0 || k > n then domain () else let fact_division a b = let rec fact_division' a b n = if n == b then 1. else (float) n *. fact_division' a b (n - 1) in fact_division' a b n in (fact_division n k) /. (fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ((float) (dx * dx + dy * dy)) ;; |
let is_prime n = if (n <= 1) then domain() else let base = sqrt((float) n) in let rec check_prime (tester: int) = if (tester == 1) then true else if (n mod tester) == 0 then false else check_prime (tester - 1) in check_prime( int_of_float base ) ;; |
let rec fib_aux n a b = match n with | 0 -> b | _ -> fib_aux (n - 1) b (a + b) ;; let fib_tl n = if n < 0 then domain () else fib_aux n 0 1 ;; |
let rec fact (n: int): float = if n = 0 then 1. else float_of_int(n) *. fact(n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n : bool = if n <= 1 then domain () else let rec check x : bool = if x * x > n then true else n mod x != 0 && check(x+1) in check 2 ;; |
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain () else if n == 0 then 1 else fib_aux (n-1) 1 1 ;; |
let rec fact (n: int): float = if n = 0 then 1. else float_of_int(n) *. fact(n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n : bool = if n <= 1 then domain () else let rec check x : bool = if x * x > n then true else n mod x != 0 && check(x+1) in check 2 ;; |
let rec fib_aux n a b = if n == 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain () else if n == 0 then 1 else fib_aux (n-1) 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;; |
let is_prime n = let rec prime_func (n : int) (d : int) : bool = d = 1 || ((n mod d != 0) && prime_func n (d-1)) in if n <= 1 then domain () else prime_func n (n-1) ;; |
let rec fib_aux (n: int) (a: int) (b: int): int = if n = 0 then a else fib_aux (n - 1) b (a + b) ;; let fib_tl n = if n < 0 then domain () else fib_aux n 1 1;; |
type distance = int type length = int type huffman_elements = Literal of char | Repeat of length * distance type blocks = | Uncompressed of string | FixedHuffman of huffman_elements list | DynamicHuffman type block_final = Continues | Last type compression_method = Deflate type window_size = int type dict_present = bool type compression_level = Fastest | Fast | Default | Maximum type zlib_header = { compression_method : compression_method; window_size : int; compression_level : compression_level; fdict : bool; fcheck : int; checksum : int } let tab = [|0x0; 0x8; 0x4; 0xc; 0x2; 0xa; 0x6; 0xe; 0x1; 0x9; 0x5; 0xd; 0x3; 0xb; 0x7; 0xf|] let reverse_bits byte = let lookup = Array.get tab in ((lookup (byte land 0xf)) lsl 4) lor lookup (byte lsr 4) let reverse_string_bits s = String.map (fun x -> Char.chr @@ reverse_bits @@ Char.code x) s let align_to_next_byte bits = let _, offset, _ = bits in let byte_offset = offset mod 8 in if byte_offset = 0 then bits else BS.drop (8 - byte_offset) bits let compression_level = function | 0 -> Fastest | 1 -> Fast | 2 -> Default | 3 -> Maximum | _ -> failwith "Invalid compression level" let parse_zlib_header bits = bitmatch bits with | { cinfo : 4; cm : 4; flevel : 2; fdict : 1; fcheck : 5 } -> bitmatch bits with | {checksum : 16} -> if cm <> 8 then failwith "Invalid compression method" else { compression_method = Deflate; window_size = int_of_float @@ 2. ** (float_of_int cinfo +. 8.); compression_level = compression_level flevel; fdict = fdict; fcheck = fcheck; checksum = checksum } let final_block = function | true -> Last | _ -> Continues let length_code = function | 257 -> (0, 3) | 258 -> (0, 4) | 259 -> (0, 5) | 260 -> (0, 6) | 261 -> (0, 7) | 262 -> (0, 8) | 263 -> (0, 9) | 264 -> (0, 10) | 265 -> (1, 11) | 266 -> (1, 13) | 267 -> (1, 15) | 268 -> (1, 17) | 269 -> (2, 19) | 270 -> (2, 23) | 271 -> (2, 27) | 272 -> (2, 31) | 273 -> (3, 35) | 274 -> (3, 43) | 275 -> (3, 51) | 276 -> (3, 59) | 277 -> (4, 67) | 278 -> (4, 83) | 279 -> (4, 99) | 280 -> (4, 115) | 281 -> (5, 131) | 282 -> (5, 163) | 283 -> (5, 195) | 284 -> (5, 227) | 285 -> (0, 258) | _ -> failwith "Invalid length code" let distance_code = function | 0 -> (0, 1) | 1 -> (0, 2) | 2 -> (0, 3) | 3 -> (0, 4) | 4 -> (1, 5) | 5 -> (1, 7) | 6 -> (2, 9) | 7 -> (2, 13) | 8 -> (3, 17) | 9 -> (3, 25) | 10 -> (4, 33) | 11 -> (4, 49) | 12 -> (5, 65) | 13 -> (5, 97) | 14 -> (6, 129) | 15 -> (6, 193) | 16 -> (7, 257) | 17 -> (7, 385) | 18 -> (8, 513) | 19 -> (8, 769) | 20 -> (9, 1025) | 21 -> (9, 1537) | 22 -> (10, 2049) | 23 -> (10, 3073) | 24 -> (11, 4097) | 25 -> (11, 6145) | 26 -> (12, 8193) | 27 -> (12, 12289) | 28 -> (13, 16385) | 29 -> (13, 24577) | _ -> failwith "Invalid distance code" let read_reversed width num = let rec reconstruct shifts num acc = match shifts with | 0 -> acc | n -> let bit = num land 0x1 in let acc = (bit lsl (n-1)) lor acc in reconstruct (n-1) (num lsr 1) acc in reconstruct width num 0 let rec decode_huffman bits = bitmatch bits with | { element : 7; rest : -1 : bitstring } when element = 0 -> ([], rest) | { element : 7; rest : -1 : bitstring } when element > 0 && element <= 23 -> let extra_bits, length_start = length_code @@ element + 256 in let length, rest = bitmatch rest with | { length : extra_bits; rest : -1 : bitstring } -> let length = read_reversed extra_bits (Int64.to_int length) in (length + length_start, rest) in let distance, rest = bitmatch rest with | { distance : 5; rest : -1 : bitstring } -> let extra_bits, distance_start = distance_code distance in bitmatch rest with | { distance : extra_bits; rest : -1 : bitstring } ->;; |
let rec fac n = if n = 0 then 1 else n * fac(n-1) let r = Random.int 100 in if r = 50 then r else (printf('again/n'); lucky()) let rec fact (n: int): float = match n with | 0 -> 1. | _ -> n * factorial n 8 - 1;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then domain () else fact k /. (fact n *. fact (k - n))) let a = 10 let add x y = x + y let sumofsquare x y = let sqx = x * x in let sqy = y * y in sqx + sqy ] ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in return sqrt (dx * dx + dx * dy) ;; let isEven n = match n mod 2 with 0 -> true | 1 -> false ];; |
let is_prime n = mod 2 raise NotImplemented let isEven n = if n mod 2 = 0 then true else false ] ;; |
let rec fib_aux n a b = snoopy raise NotImplemented let fib_tl n =approx raise NotImplemented;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x2 - x1) in let dy = float_of_int (y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <1 then domain () else let rec helper xvalue n = if xvalue < n then if (xvalue*xvalue <= n) && (xvalue != n) then let rec helper2 xvalue2 n = if (n mod xvalue2) = 0 then false else helper (xvalue2+1) n in helper2 (xvalue) n else helper (xvalue+1) n else true in helper 2 n ;; |
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = if n >= 0 then fib_aux n 0 1 else domain ();; |
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int(n) *. fact(n - 1);; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k > n then domain () else fact(n) /. (fact(k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int((dx * dx + dy * dy))) ;; |
let is_prime n : bool = if n <= 1 then domain () else(if n <=3 then true else( let rec helper (i : int) : bool = if i * i > n then true else (if n mod i == 0 then false else helper(i + 1) ) in helper(2) ) ) ;; |
let rec fib_aux n a b : int = if n == 0 then a else (if n == 1 then b else fib_aux (n-1) b (a+b) ) let fib_tl n = if n<0 then domain () else(if n<=1 then 1 else fib_aux n 1 1 );; |
let rec fact (n: int) : float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; let rec prime (n: int) (x: int) : bool = if x * x > n then true else (if (n mod x) = 0 then false else prime n (x + 1)) exception Domain;; |
let is_prime n = if n <= 1 then domain () else prime n 2;; |
let rec fib_aux n a b = if n = 1 then b else fib_aux (n-1) b (b + a) let fib_tl n = if (n = 1) || (n = 0) then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = if n = 0 then 1.0 else (float_of_int n) *. fact(n-1) ;; |
let binomial (n:int) (k:int) : float = if n < 0 then domain () else (if k > n then domain () else ( let fn = fact(n) in let fk = fact(k) in let fnk = fact(n-k) in fn /. (fk *. fnk) ) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int((dx * dx) + (dy * dy))) ;; let rec check_prime (n : int) (i : int) : bool = if n = 2 then true else if n mod i = 0 then false else if i * i > n then true else check_prime(n)(i+1) ;; |
let is_prime n = if n <= 1 then domain () else check_prime(n)(2) ;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux(n-1)(b)(a+b) ;; let fib_tl n = let a = 1 in let b = 1 in fib_aux(n)(a)(b) ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n-1) ;; |
let binomial (n: int) (k: int) = if n < k then domain () else (if k < 0 then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x2 - x1) in let dy = float_of_int (y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = let rec tr_prime x = if n < x * x then true else if n mod x = 0 then false else tr_prime (x+1) in if n <= 1 then domain () else tr_prime 2 ;; |
let rec fib_aux n a b = if n < 2 then b else fib_aux (n-1) b (a + b) ;; let fib_tl n = if n < 0 then domain () else match n with | 0 -> 1 | 1 -> 1 | _ -> fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact(n-1);; |
let binomial (n: int) (k: int) : float = if k < 0 then raise NotImplemented; if n < 0 then raise NotImplemented else (if k > n then domain () else (fact n /. fact k) /. (fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt((dx *. dx) +. (dy *. dy));; |
let is_prime (n : int) : bool = let rec divisions a b = if (b == 1) then true else divisions a (b-1) && (a mod b != 0) in if ((n == 0) || (n==1)) then false else divisions n (n/2);; |
let rec fib_aux n a b = if (n == 2) then a + b else fib_aux (n-1) b (b+a) let fib_tl n = match n with |0 | 1 -> 1 |_ -> fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in let sumProd = dx * dx + dy * dy in let fVal = float_of_int sumProd in sqrt fVal ;; |
let is_prime (n: int) : bool = let rec helper n result = match n with | 1 -> domain () | 2 -> true | _ -> if result = 2 then n mod result != 0 else if n mod result != 0 then helper n (result-1) else false in helper n (n-1);; |
let rec fib_aux n a b : int = let temp = a in let a = b in let b = b + temp in let n = (n-1) in if n <= 0 then a else fib_aux n a b;; let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k = n then 1. else (fact (n)) /. ((fact (k) *. fact (n - k))));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx) +. float_of_int(dy * dy));; |
let is_prime (n: int) : bool = let rec prime n x = if x*x <= n then if (n mod x = 0) then false else prime n (x+1) else true in if n < 2 then domain() else prime n 2;; |
let rec fib_aux (n: int) (a: int) (b: int) : int = match n with | 1 -> b | _ -> fib_aux (n-1) b (b+a) let fib_tl (n: int) : int = match n with | 0 -> 1 | 1 -> 1 | _ -> fib_aux n 1 1;; |
let rec fact (n : int) : float = match n with | 0 -> 1. | n -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx) +. float_of_int (dy * dy)) ;; |
let is_prime n = let rec divider x = x * x > n || (n mod x != 0 && divider (x + 1)) in if n < 2 then domain () else divider 2;; |
let rec fib_aux n a b = if n = 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1));; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime (n:int) : bool = if n<=1 then raise NotImplemented else let rec helper n x : bool = if (x*x > n) then true else if (x<>n || x<>1) && n mod x <>0 then helper n (x+1) else if x=1 then helper n (x+1) else not ((x<>1) && (x<>n)) in helper n 1;; |
let rec fib_aux n a b = if n=0 then a else fib_aux (n-1) (b) (a+b);; let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1.0 | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain() else (fact n) /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n = if n<=1 then domain () else( let rec test i = if i*i>n then true else if n mod i = 0 then false else test (i+1) in test 2) ;; |
let rec fib_aux n a b = if n<=1 then a else fib_aux (n-1) (a+b) (a) let fib_tl n = if n<0 then domain() else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1.0 | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain() else (fact n) /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n = if n<=1 then domain () else( let rec test i = if i*i>n then true else if n mod i = 0 then false else test (i+1) in test 2) ;; |
let rec fib_aux n a b = if n<=1 then a else fib_aux (n-1) (a+b) (a) let fib_tl n = if n<0 then domain() else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int): float = if (n < 0) || (k < 0) || (n < k) then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2) -. float_of_int(x1) in let dy = float_of_int(y2) -. float_of_int(y1) in sqrt (dx *. dx +. dy *. dy);; |
let rec fib_aux n a b = if n = 0 then 1 else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = if (n < 0) then domain () else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n || k < 0 then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = let rec remainder x y = match y with | 1 -> true | _ -> (x mod y <> 0) && remainder x (y-1) in match n with | 0 -> false | 1 -> false | _ -> remainder n (n-1) ;; |
let rec fib_aux n a b = raise NotImplemented let fib_tl n = raise NotImplemented;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.