text
stringlengths 0
601k
|
---|
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) in let dy = (y2 - y1) in sqrt(float_of_int(dx * dx + dy * dy)) ;; let rec check_division (n: int) (x: int) : bool= if x=n then true else if( n mod x =0) then false else check_division(n) (x+1);; let rec is_prime (n:int) : bool = if n <=1 then domain() else check_division(n) (2) ;; |
let rec fib_aux n a b = if(n=0) then a else if (n=1) then b else fib_aux(n-1) (b) (a+b) let fib_tl n = fib_aux(n) (1) (1);; |
let rec fact (n : int) : float = match n with | 0 -> 1. | _ -> float_of_int(n) *. (fact (n - 1));; fact(5);; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k > n then domain () else fact (n) /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2 - x1) in (let dy = float_of_int(y2 - y1) in (sqrt (dx *. dx +. dy *. dy)));; |
let is_prime ( n : int ) : bool = if n<=1 then domain() else let x = 2 in let rec checkForDiv x n = if x * x <= n then match (n mod x) with | 0 -> false | _ -> checkForDiv (x+1) n else true in checkForDiv x n ;; |
let rec fib_aux n a b = if 0 < n then let c = a + b in fib_aux (n-1) b c else b let fib_tl n = if n < 0 then domain() else fib_aux n 0 1;;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n-1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n < k then domain () else fact (n) /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n : bool = if n <= 1 then domain() else let rec divider x : bool = if (x * x > n) then true else if (n mod x = 0) then false else divider (x + 1) in divider (2) ;; |
let rec fib_aux n a b : int = if n = 0 then a else if n = 1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = if (n < 0) then domain() else fib_aux (n+1) 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ( float_of_int (dx * dx) +. float_of_int (dy * dy) ) ;; |
let is_prime n = let rec is_divisible n k = match k with | 1 -> true | _ -> if (float_of_int n /. float_of_int k) = float_of_int (n /k) then false else is_divisible n (k-1) in if n <=1 then domain () else is_divisible n (int_of_float (sqrt (float_of_int n))) ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x1 -. float_of_int x2 in let dy = float_of_int y1 -. float_of_int y2 in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = let rec helper x = if n = 2 || x * x > n then true else if n mod x = 0 then false else helper(x + 1) in if n <= 1 then domain() else helper 2 ;; |
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n - 1) (b) (a + b) ;; let fib_tl n = fib_aux n 0 1 ;; |
let fact (n: int) : float = let rec factorial (n: float) (acc: float) : float = match n with | 0. -> acc | _ -> factorial (n -. 1.) (acc *. n) in factorial (float_of_int n) 1.;; |
let binomial (n: int) (k: int) = if (n < 0 || k < 0 || k > n) then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = ((float_of_int x1) -. (float_of_int x2)) in let dy = ((float_of_int y1) -. (float_of_int y2)) in sqrt (dx *. dx +. dy *. dy);; |
let is_prime (n: int): bool = if n <= 1 then domain () else let rec verif_div (n: int) (d: int): bool = if d = 1 then true else if n mod d = 0 then false else verif_div n (d - 1) in verif_div n (n / 2);; |
let rec fib_aux n a b = if n = 2 then a + b else fib_aux (n-1) b (a+b) let fib_tl n = if n < 0 then domain () else match n with | 0 | 1 -> 1 | _ -> fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> ((float_of_int(n)) *. (fact(n - 1)));; |
let binomial (n: int) (k: int) = if k < 0 then domain () else if k > n then domain () else ((fact (n)) /. ((fact (k)) *. ((fact (n - k)))));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx) + (dy * dy))) ;; |
let is_prime n = if n<=1 then domain() else true;; |
let rec fib_aux n a b = raise NotImplemented let fib_tl n = raise NotImplemented;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) in let dy = (y2-y1) in sqrt (float_of_int((dx * dx) + (dy * dy)));; |
let is_prime n = if n <= 1 then domain() else let rec helper x= x * x > n || (n mod x <> 0 && helper (x+1)) in n >= 2 && helper 2 ;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a + b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n)/.( (fact k) *. (fact (n - k)) ) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx) + (dy * dy))) ;; let rec prime_helper (n: int) (i: int) : bool = if i * i > n then true else if (n mod i = 0) then false else prime_helper n (i+1) ;; |
let is_prime n = if n <= 1 then domain () else prime_helper n 2 ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = if n < 0 then raise NotImplemented else (if n = 0 then 1.0 else (float_of_int n) *. fact(n - 1)) ;; |
let binomial (n: int) (k: int) = if n < 0 then raise NotImplemented else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx + dy * dy))) ;; |
let is_prime n = if n <= 1 then raise NotImplemented else let i = (n / 2) in let rec helper x i = match i with 1 -> true | _ -> match x mod i with 0 -> false | _ -> helper x (i - 1) in helper n i ;; |
let rec fib_aux n a b = if n < 0 then raise NotImplemented else( if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) ) let fib_tl n = if n < 0 then raise NotImplemented else fib_aux n 1 1;; |
let rec fact (n: int): float = if n < 0 then raise NotImplemented else (if n = 0 then 1.0 else (float_of_int n) *. fact(n - 1)) ;; |
let binomial (n: int) (k: int) = if n < 0 then raise NotImplemented else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx + dy * dy))) ;; |
let is_prime n = if n <= 1 then raise NotImplemented else let i = (n / 2) in let rec helper x i = match i with 1 -> true | _ -> match x mod i with 0 -> false | _ -> helper x (i - 1) in helper n i ;; |
let rec fib_aux n a b = if n < 0 then raise NotImplemented else( if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = if n < 0 then raise NotImplemented else fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | 1 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else (if k = n then 1. else (fact n) /. (fact k *. fact (n - k)) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime (n: int) : bool = if (n <= 1) then domain() else if n = 2 then true else (let rec prime_r a b = if b = 1 then true else if (a mod b) = 0 then false else prime_r a (b-1) in prime_r n (n-1)) ;; |
let rec fib_aux n a b = if n=0 then a else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = let rec helper (k: int) (total: float) = if k = 0 then total else helper (k - 1) (float_of_int(k) *. total) in helper n 1. ;; |
let binomial (n: int) (k: int) = if n < 0 then domain() else if k > n then domain() else (fact n) /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <= 1 then domain() else let rec find_prime x = if (x * x) <= n && n mod x = 0 then false else if (x * x > n) then true else find_prime (x + 1) in find_prime 2;; |
let rec fib_aux n a b = if n = 0 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1)) ;; |
let binomial (n: int) (k: int): float = if n < 0 then domain () else (if k > n || k < 0 then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime (n: int): bool = if n <= 1 then domain() else ( let rec is_not_divisible (n: int)(d: int): bool = match d with | 1 -> true | _ -> ( match n mod d with | 0 -> false | _ -> is_not_divisible n (d-1) ) in is_not_divisible n (n-1) ) ;; |
let rec fib_aux n a b = match n with |0 -> a |1 -> b |_ -> fib_aux (n - 1) b (b + a) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float) n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ((float) dx *. (float) dx +. (float) dy *. (float) dy) ;; |
let is_prime n = if(n <= 1) then domain() else let rec no_divisors (x:int) : bool = x*x > n || (n mod x != 0 && no_divisors(x+1)) in no_divisors 2;; |
let rec fib_aux n a b = let x = a + b in if n = 0 then 1 else if n = 1 then x else fib_aux (n-1) b x let fib_tl n = if n >= 0 then fib_aux n 0 1 else domain ();; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain() else if n < k then domain() else fact n /. ((fact k) *. (fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in let dy = float_of_int (y1 - y2) in sqrt ((dx *. dx) +. (dy *. dy)) ;; |
let is_prime n = if n <= 1 then domain() else let rec helper num div = if div = 1 then true else if num mod div = 0 then false else helper num (div - 1) in helper n (n/2);; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float) n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ((float) dx *. (float) dx +. (float) dy *. (float) dy) ;; |
let is_prime (n: int): bool = if n <= 1 then domain() else ( let rec check_prime (x: int): bool = if x * x > n then true else if n mod x = 0 then false else check_prime(x + 1) in check_prime(2) );; |
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x1 -. float_of_int x2 in let dy = float_of_int y1 -. float_of_int y2 in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime (n: int) : bool = if n <= 0 then false else ( match n with |1 -> false |2 -> true |_ -> let rec test_prime (x:int) = if x*x > n then true else if n mod x == 0 then false else test_prime (x+1) in test_prime 2 ) ;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) (b) (a+b) ;; let fib_tl n = fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float(x1 - x2) in let dy = float(y1 - y2) in sqrt(dx *. dx +. dy *. dy) ;; |
let is_prime (x:int) : bool = match x with | 0 -> domain () | 1 -> domain () | _ -> let n = (x - 1) in let rec modcheck n x = if (n > 1) then match x mod n with 0 -> false | _ -> modcheck (n - 1) x else true in modcheck n x;; |
let rec fib_aux n a b = if n = 0 then a else if n =1 then b else fib_aux(n-1)(b)(a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact (k) *. (fact (n-k) )) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n : bool = if n < 2 then domain() else ( let rec checkPrime a: bool= a * a > n || n mod a != 0 && checkPrime (a+1) in checkPrime 2 );; |
let rec fib_aux n a b = if n < 0 then domain() else if n = 0 then b else fib_aux (n-1) b (a + b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact (k) *. (fact (n-k) )) );; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.