text
stringlengths
0
601k
let is_prime (n: int) : bool = if n <= 1 then domain () else (let rec find (x: int) : bool = if x * x > n then true else (match (n mod x) with | 0 -> false | _ -> find (x+1) ) in find 2 ) ;;
let rec fib_aux (n: int) (a: int) (b: int) : int = if n > 1 then fib_aux (n - 1) (a + b) a else a ;; let fib_tl (n: int): int = if n == 1 || n == 0 then 1 else fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ ->(float_of_int n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let rec checkZero x y = match y with | 1 -> true | _ -> (x mod y <> 0) && checkZero x (y-1) in match n with | 0 | 1 -> false | _ -> checkZero n (n-1) ;;
let rec fib_aux n a b = if n = 0 then a+b else fib_aux (n-1) b (a+b) let fib_tl n = if n = 0 then 1 else fib_aux (n-1) 0 1;;
let rec fact (n: int): float = let rec helper (n: float) (result: float) = if n <= 0. then result else helper (n -. 1.) (result *. n) in let x = float_of_int(n) in helper x 1.;;
let binomial (n: int) (k: int) = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in let res = float_of_int(dx * dx + dy * dy) in sqrt (res) ;;
let is_prime n = let rec helper n x = if x == 1 then true else if n mod x == 0 then false else helper (n) (x - 1) in let x = float_of_int(n) in let y = sqrt(x) in let z = ceil(y) in let a = int_of_float(z) in if n <= 0 then domain () else if n == 1 then false else if n == 2 then true else helper n a;;
let rec fib_aux n a b = if n == 0 then b else fib_aux (n - 1) (b) (b + a) let fib_tl n = if n < 0 then domain () else fib_aux n 0 1;;
let rec fact (n: int): float = let rec helper (n: float) (result: float) = if n <= 0. then result else helper (n -. 1.) (result *. n) in let x = float_of_int(n) in helper x 1.;;
let binomial (n: int) (k: int) = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in let res = float_of_int(dx * dx + dy * dy) in sqrt (res) ;;
let is_prime n = let rec helper n x = if x == 1 then true else if n mod x == 0 then false else helper (n) (x - 1) in let x = float_of_int(n) in let y = sqrt(x) in let z = ceil(y) in let a = int_of_float(z) in if n <= 0 then domain () else if n == 1 then false else if n == 2 then true else helper n a;;
let rec fib_aux n a b = if n == 0 then b else fib_aux (n - 1) (b) (b + a) let fib_tl n = if n < 0 then domain () else fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact (n-1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else ( let rec helper (e) (currFactor: int) = if (float_of_int currFactor) > sqrt(float_of_int e) then true else if((e mod currFactor) = 0) then false else helper e (currFactor+1) in helper n 2 );;
let rec fib_aux n a b = if n <= 1 then a+b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact (n-1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else ( let rec helper (e) (currFactor: int) = if (float_of_int currFactor) > sqrt(float_of_int e) then true else if((e mod currFactor) = 0) then false else helper e (currFactor+1) in helper n 2 );;
let rec fib_aux n a b = if n <= 1 then a+b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. (fact (n-1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else ( let rec helper (e) (currFactor: int) = if (float_of_int currFactor) > sqrt(float_of_int e) then true else if((e mod currFactor) = 0) then false else helper e (currFactor+1) in helper n 2 );;
let rec fib_aux n a b = if n <= 1 then a+b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n : int) : bool = let rec has_no_divisor x n = if x >= n then true else (if x * x <= n && n mod x = 0 then false else has_no_divisor (x+1) n) in if n <= 1 then domain () else has_no_divisor 2 n ;;
let rec fib_aux (n : int) (a : int) (b : int) : int = if n <= 0 then b else fib_aux (n-1) (b) (b + a) ;; let fib_tl (n : int) : int = fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else (if k > n then domain () else fact (n) /. (fact (k) *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int ((dx * dx) + (dy * dy)));;
let is_prime n = let rec prime n x = match n with | 2 -> true | _ -> if n mod x = 0 then false else if x * x <= n then let x' = x + 1 in prime (n) (x') else true in if n <= 1 then domain () else prime n 2;;
let rec fib_aux n a b = if n = 0 then a else let n' = n - 1 in fib_aux (n') (b) (a+b) let fib_tl n = if n < 0 then domain () else fib_aux n 1 1;;
let rec fact (n: int): float = if n = 0 then 1. else float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else fact(n) /. (fact (k) *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx : float = float_of_int(x1 - x2) in let dy : float = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = match n with | 0 | 1 -> false | _ -> let rec loop i p = if i * i > p then true else if p mod i = 0 then false else loop (i + 1) p in loop 2 n ;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = fib_aux (n) (1) (1);;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n >= k && k >=0 then (fact n) /. (fact k *. fact (n - k)) else domain();;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int(dx*dx + dy*dy)) ;;
let is_prime n : bool = if n <= 1 then domain () else let rec check_Divisors x : bool = (n mod x != 0 && check_Divisors (x+1)) || x * x > n in check_Divisors 2;;
let rec fib_aux n a b = match n with | 0 -> a | _ -> fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
exception NotImplemented let domain () = failwith "REMINDER: You should not be writing tests for undefined values." let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 || k > n then domain () else fact n /. (fact k *. fact (n - k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = let rec aux x n = if x * x > n then true else if n mod x = 0 then false else aux (x + 1) n in if n <= 1 then domain () else if n = 2 then true else if n mod 2 = 0 then false else aux 2 n ;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) ;; let fib_tl n = if n < 0 then domain () else fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k > n then domain () else fact(n) /. (fact(k) *. fact(n - k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 and dy = y2 - y1 in sqrt(float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n > 1 then let x = (n-1) in let rec divide n x = if x > 1 then match n mod x with | 0 -> false | _ -> divide n (x-1) else true in divide n x else domain() ;;
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a+b) ;; let fib_tl n = if n >= 0 then let a = 0 in let b = 1 in fib_aux (n+1) a b else domain () ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt ( float_of_int (dx * dx + dy * dy) ) ;; let rec rec_prime_chk n x = if x * x > n then true else( if (n mod x == 0) then false else true && rec_prime_chk n (x+1) );;
let is_prime n = if n <= 1 then domain() else let x = 2 in rec_prime_chk n x;;
let rec fib_aux n a b = if n==0 then a else ( if n==1 then b else fib_aux (n-1) b (a+b) ) let fib_tl n = fib_aux n 1 1;;
let fact (n: int): float = if n < 0 then domain() else let rec f n acc = if n = 0 then acc else f (n-1) ( float_of_int n *. acc) in f n 1.;;
let binomial (n: int) (k: int) = if n < 0 || k < 0 || k > n then domain() else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain() else let rec prime_rec n i = if i = n then true else if (n mod i) = 0 then false else prime_rec n (i+1) in prime_rec n 2;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let fact n = let rec f acc n = if n = 0 then acc else f (acc *. float_of_int n) (n - 1) in f 1. n ;;
let binomial (n: int) (k: int) = if n = 0 then 1. else if k = 0 then 1. else if k = n then 1. else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy));;
let is_prime n = let rec check n k = if n <= 1 then domain () else if n == 2 || k * k > n then true else if n mod k == 0 then false else check n (k+1) in check n 2;;
let rec fib_aux n a b = if n < 0 then domain () else if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = if n < 0 then domain () else ( if n = 0 then 1. else float_of_int n *. fact (n - 1) ) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else ( if k = n then 1. else fact n /. (fact k *. fact (n - k)) ) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = abs (x1 - x2) in let dy = abs (y1 - y2) in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else ( let rec find_factors x y = if x = y then true else ( if (x mod y) = 0 then false else find_factors x (y + 1) ) in find_factors n 2 ) ;;
let rec fib_aux n a b = if n < 0 then domain () else ( if n = 0 then a else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else ( if n = 0 then 1. else float_of_int n *. fact (n - 1) ) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else ( if k = n then 1. else fact n /. (fact k *. fact (n - k)) ) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else ( let rec find_factors x y = if x = y then true else ( if (x mod y) = 0 then false else find_factors x (y + 1) ) in find_factors n 2 ) ;;
let rec fib_aux n a b = if n < 0 then domain () else ( if n = 0 then a else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else ( if n = 0 then 1. else float_of_int n *. fact (n - 1) ) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else ( if k = n then 1. else fact n /. (fact k *. fact (n - k)) ) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else ( let rec find_factors x y = if x = y then true else ( if (x mod y) = 0 then false else find_factors x (y + 1) ) in find_factors n 2 ) ;;
let rec fib_aux n a b = if n < 0 then domain () else ( if n = 0 then a else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else ( if n = 0 then 1. else float_of_int n *. fact (n - 1) ) ;;
let binomial (n: int) (k: int) = if k < 0 then domain () else ( if n < k then domain () else fact n /. (fact k *. fact (n - k)) ) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int ((dx * dx) + (dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else ( let rec find_factors x y = if x = y then true else ( if (x mod y) = 0 then false else find_factors x (y + 1) ) in find_factors n 2 ) ;;
let rec fib_aux n a b = if n < 0 then domain () else ( if n = 0 then a else fib_aux (n - 1) b (a + b) ) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with 0 | 1 -> 1. | _ -> float n *. (fact (n - 1)) ;;
let binomial (n: int) (k: int): float = if n < 0 then domain () else (if k > n then domain () else (if k < 0 then domain() else fact n /. (fact k *. fact (n - k)) ));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ((float) (dx * dx + dy * dy) ) ;;