text
stringlengths
0
601k
let rec fib_aux n a b = match n with | 0 -> a | n -> fib_aux (n-1) b (a + b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = if n < 0 then domain () else if n = 0 then 1. else fact (n-1) *. float_of_int(n);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(abs(x1 - x2)) in let dy = float_of_int(abs(y1 - y2)) in sqrt ((dx *. dx) +. (dy *. dy));;
let is_prime n = match n with | 0 | 1 -> domain() | _ -> let x = 2 in let rec square x = if (x*x) <=n then match n mod x with | 0 -> false | _ -> square (x+1) else true in square x;;
let rec fib_aux n a b = if n = 0 then 1 else if n = 1 then 1 else if n < 0 then domain() else let a = fib_aux (n-2) a b in let b = fib_aux (n-1) a b in fib_aux (n-2) a b + fib_aux (n-1) a b let fib_tl n = let a = 0 in let b = 0 in fib_aux n a b;;
let rec fact (n: int): float = if n < 0 then domain () else if n = 0 then 1. else fact (n-1) *. float_of_int(n);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(abs(x1 - x2)) in let dy = float_of_int(abs(y1 - y2)) in sqrt ((dx *. dx) +. (dy *. dy));;
let is_prime n = match n with | 0 | 1 -> domain() | _ -> let x = 2 in let rec square x = if (x*x) <=n then match n mod x with | 0 -> false | _ -> square (x+1) else true in square x;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let fact (n: int): float = let rec helper n (res: float) = if n <= 1 then res else helper (n-1) (res *. float_of_int n) in helper n 1. ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in (let dy = float_of_int (y1 - y2) in sqrt ((dx ** 2.) +. (dy ** 2.))) ;;
let is_prime (n: int): bool = if n <= 1 then domain () else let rec helper (c: int): bool = if c * c > n then true else if n mod c == 0 then false else helper (c + 1) in helper 2 ;;
let rec fib_aux n a b = if n == 0 then b else fib_aux (n - 1) b (a + b) let fib_tl n = match n with | 0 -> 1 | 1 -> 1 | _ -> fib_aux (n - 1) 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else if k<0 then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy) ) ;;
let is_prime (n: int) : bool = let rec helper (n: int) (x: int) : bool = if n <= 1 then domain () else if x*x > n then true else if n mod x =0 then false else helper (n) (x+1) in helper n 2 ;;
let rec fib_aux n a b = if n=0 then a else if n=1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. fact (n - 1);;
let binomial (n: int) (k: int) = if (n < 0 || k > n) then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float ((dx * dx) + (dy * dy))) ;;
let is_prime n = let rec prime x y = if y = 1 then true else if x mod y = 0 then false else prime x (y - 1) in match n with | 2 -> true | 3 -> true | n -> prime n (n - 1);;
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | n -> fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; let rec is_divisible x n = if x = 0 then raise NotImplemented else if n - x = x then true else if (n - x) < x || (x=1) then false else is_divisible x (n - x) ;; let rec checking a n = if a * a > n then true else if is_divisible a n then false else checking (a + 1) n ;;
let is_prime n = if n <= 1 then raise NotImplemented else (n = 2) || (checking 1 n) ;;
let rec fib_aux n a b = if n < 0 then raise NotImplemented else if n = 0 || n = 1 then b else fib_aux (n - 1) b (a+b) ;; let fib_tl n = if (n < 0) then raise NotImplemented else fib_aux n 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int((dx * dx + dy * dy))) ;;
let is_prime (n: int): bool = if n > 1 then let n = abs n in let rec divides (m: int) = (m * m > n) || (n mod m != 0 && divides (m + 1)) in n > 1 && divides 2 else domain() ;;
let rec fib_aux (n:int) (a:int) (b:int) : int = if n = 0 then a else if n = 1 then b else fib_aux (n-1)(b)(a+b) ;; let fib_tl (n:int) : int = if n < 0 then domain () else (if n = 0 then 1 else if n = 1 then 1 else fib_aux n 1 1 ) ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int((dx * dx + dy * dy))) ;;
let is_prime (n: int): bool = if n > 1 then let n = abs n in let rec divides (m: int) = (m * m > n) || (n mod m != 0 && divides (m + 1)) in n > 1 && divides 2 else domain() ;;
let rec fib_aux (n:int) (a:int) (b:int) : int = if n = 0 then a else if n = 1 then b else fib_aux (n-1)(b)(a+b) ;; let fib_tl (n:int) : int = if n < 0 then domain () else (if n = 0 then 1 else if n = 1 then 1 else fib_aux n 1 1 ) ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt(float_of_int((dx * dx + dy * dy))) ;;
let is_prime (n: int): bool = if n > 1 then let n = abs n in let rec divides (m: int) = (m * m > n) || (n mod m != 0 && divides (m + 1)) in n > 1 && divides 2 else domain() ;;
let rec fib_aux (n:int) (a:int) (b:int) : int = if n = 0 then a else if n = 1 then b else fib_aux (n-1)(b)(a+b) ;; let fib_tl (n:int) : int = if n < 0 then domain () else (if n = 0 then 1 else if n = 1 then 1 else fib_aux n 1 1 ) ;;
let rec fact (n: int): float = match n with 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x2 - x1) in let dy = float_of_int(y2 - y1) in sqrt (dx *. dx +. dy *. dy) ;;
let is_prime n = match n with 0 -> domain () | 1 -> domain () | _ -> let x = 2 in let rec checkPrime n x = if (x * x > n) then true else match n mod x with 0 -> false | _ -> checkPrime n (x+1) in checkPrime n x;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux(n)(1)(1);;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact (n-1) ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = 0 && n = 0 then 1. else ( if k = n then domain () else fact n /. (fact k *. fact (n - k)) ) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy) ; ) ;;
let is_prime n = let rec check_prime i n = if (i * i) > n then true else (if (n mod i) == 0 then false else check_prime (i+1) n) in if n <= 1 then domain() else check_prime 2 n ;;
let rec fib_aux n a b = if n = 0 then b else fib_aux (n-1) b (b+a) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain () else( let rec is_factor n x = if x * x <= n then ( if n mod x == 0 then false else( is_factor n (x + 1) ) ) else true in is_factor n 2 );;
let rec fib_aux n a b = if n = 0 then b else ( fib_aux (n - 1) b (a + b) ) let fib_tl n = if n <= 1 then 1 else( fib_aux n 0 1 );;
let rec fact (n: int) : float = if n < 0 then domain () else if n = 0 then 1. else float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if k < 0 || k > n then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx) +. float_of_int (dy * dy));;
let is_prime (n: int) = if n < 2 then domain () else let rec helper_is_prime (n: int) (i: int) = if i * i > n then true else if n mod i = 0 then false else helper_is_prime n (i + 1) in helper_is_prime n 2 ;;
let rec fib_aux n a b = match n with | 0 -> b | 1 -> b | _ -> if n < 0 then domain () else fib_aux (n - 1) b (a + b);; let fib_tl n = fib_aux n 1 1 ;;
let rec fact (n: int): float = if n = 0 then 1. else (float_of_int(n) *. fact(n-1));;
let binomial (n: int) (k: int) : float = if n < 0 then domain () else ( if k > n then domain () else (fact(n) /. (fact(k) *. fact(n - k))));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x2 - x1) * (x2 - x1) in let dy = (y2 - y1) * (y2 - y1) in sqrt(float_of_int(dx + dy)) let rec divides (n: int) (x :int) : bool = if n mod x = 0 then false else ( if x*x > n then true else (divides(n)(x + 1)));;
let is_prime (n: int) : bool = if n <= 1 then domain () else ((n = 2) || (divides(n)(2)));;
let rec fib_aux n a b = if n = 0 then a else ( if n = 1 then b else (fib_aux(n - 1)(b)(a+b))) let fib_tl n = fib_aux(n)(1)(1);;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime (n:int) : bool = if n <= 0 then domain () else match n with |1 -> false |_ -> let x = n-1 in let rec divide x n = match x with | 1 -> true | _ -> match n mod x with | 0 -> false | _ -> divide(x-1) n in divide x n ;;
let rec fib_aux n a b = match n with | 1 -> a | _ -> fib_aux (n-1) (b) (a+b) ;; let fib_tl n = if n < 0 then domain () else fib_aux (n+1) 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 || k < 0 then domain() else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let rec div_helper (n : int) (k : int) : bool = if n == k then true else if (n mod k) == 0 then false else div_helper n (k+1) in div_helper n 2 ;;
let rec fib_aux n a b = if n == 2 then a + b else fib_aux (n-1) b (a + b) let fib_tl n = if n < 0 then domain() else if n == 0 then 1 else if n == 1 then 1 else fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int(n) *. (fact(n - 1)));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact (n) /. ((fact (k)) *. (fact (n - k)))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int((dx * dx) + (dy * dy))) ;;
let is_prime n = if n < 2 then raise NotImplemented else if n = 2 || n = 3 then true else( let rec noDiv (m : int) : bool = m * m > n || (n mod m != 0 && noDiv (m + 1)) in n >= 2 && noDiv 2) ;;
let rec fib_aux n a b = if n > 0 then fib_aux (n-1) (b) (a+b) else b ;; let fib_tl n = fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy));;
let is_prime n = let rec prime n k = if n <= 1 then domain () else if n = 2 then true else if n mod k = 0 then false else if (k * k) > n then true else prime n (k + 1) in prime n 2;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1 );;
let binomial (n: int) (k: int) = if n < 0 then domain () else (fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime (n: int): bool = if n <= 1 then domain () else let x = n in let y = int_of_float(sqrt(float_of_int(x))) in let rec primality_test x y : bool = if y = 1 then true else x mod y > 0 && primality_test x (y-1) in primality_test n y;;
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = let a = 1 in let b = 1 in fib_aux n a b;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n) *. (fact (n - 1));;
let binomial (n: int) (k: int) = if n <0 then domain () else fact n /. ((fact k) *. (fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n = let rec notDivisor d = d * d > n || ( notDivisor (d+1) && n mod d <> 0) in n <> 1 && notDivisor 2;;