text
stringlengths
0
601k
let rec fib_aux (n: int) (a: int) (b: int) = if n = 0 then a else if n = 1 then b else fib_aux (n-1) (b) (a+b) ;; let fib_tl n = fib_aux (n+1) 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float(n) *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. ((fact k) *. (fact (n - k))));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float(dx * dx + dy * dy)) ;;
let is_prime (n: int) : bool = if (n <= 1) then domain() else let is_factor (x: int) : bool = let q = n / x in (q * x) = n in let rec check_factors(x: int) : bool = if (x * x > n) then true else (if is_factor(x) then false else check_factors(x + 1)) in check_factors(2);;
let rec fib_aux n a b = if (n <= 0) then a + b else fib_aux (n - 1) b (a + b) let fib_tl n = if (n < 2) then 1 else fib_aux (n - 2) 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = abs(x1 - x2) in let dy = abs(y1 - y2) in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n < 2 then domain () else let rec helper (x:int): bool= if (x*x <= n) then if(n mod x =0) then false else helper(x+1) else true in helper(2);;
let rec fib_aux n a b = if n=0 then a else if n=1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
exception NotImplemented let domain () = failwith "REMINDER: You should not be writing tests for undefined values." let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int ( n ) *. (fact (n-1));;
let binomial (n: int) (k: int) = if (n < 0 || k < 0) then domain() else (fact(n)) /. ((fact(k)) *. (fact(n-k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)) ;; let rec largestFactor (f :int) (n:int) = if (n mod f == 0) then f else (largestFactor (f-1) (n)) ;;
let is_prime n = if(n<=1) then raise NotImplemented else (largestFactor (int_of_float(sqrt(float_of_int(n)))) (n) )== 1 ;;
let rec fib_aux n a b = if n==0 then a else if n==1 then b else fib_aux (n-1) b (a+b) let fib_tl n : int = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < k then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in let newFloat = float_of_int (dx * dx + dy * dy) in sqrt newFloat ;;
let is_prime n = let rec prime (x: int) = if n mod x != 0 && (x * x) > n then true else if n mod x = 0 && n != x then false else prime (x + 1) in if n <= 1 then domain () else prime 2 ;;
let rec fib_aux n a b = if n = 0 then b else fib_aux (n-1) b (a+b) let fib_tl n = if n = 0 then 1 else if n = 1 then 1 else fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx) +. float_of_int (dy * dy)) ;;
let is_prime n = let rec prime n x = if x * x > n then true else (if n mod x = 0 then false else prime n (x+1)) in if n <= 1 then domain () else prime n 2;;
let rec fib_aux n a b = if n = 0 || n = 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let fact (n: int): float = if n < 0 then domain () else( let rec helper n (result:float): float = if n <= 1 then result else helper (n-1) (float_of_int n *. result) in helper n 1.0);;
let binomial (n: int) (k: int): float = if n < 0 || k > n then domain () else (if k = n then 1.0 else fact n /. (fact k *. fact (n - k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in (sqrt (float_of_int(dx * dx + dy * dy))) ;;
let is_prime n: bool = if n <= 1 then domain () else (let rec helper n factor: bool = if factor = 1 then true else (if n mod factor = 0 then false else helper n (factor - 1)) in helper n (n/2));;
let rec fib_aux n a b = if n = 0 then a else (if n = 1 then b else fib_aux (n - 1) b (a + b)) ;; let fib_tl n = if n < 0 then domain () else (if n = 0 || n = 1 then 1 else fib_aux (n - 2) 2 3) ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact(n) /. (fact(k) *. fact(n - k)) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int((dx * dx + dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else let rec helper n x = if x < n then if (n / x * x)=n then false else helper n (x+1) else true in helper n 2 ;;
let rec fib_aux n a b = if n<=0 then b else fib_aux(n - 1) (b) (a + b) let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = if n=0 then 1. else float_of_int(n) *. fact(n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact(n) /. (fact(k) *. fact(n - k)) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int((dx * dx + dy * dy))) ;;
let is_prime n = if n <= 1 then domain () else let rec helper n x = if x < n then if (n / x * x)=n then false else helper n (x+1) else true in helper n 2 ;;
let rec fib_aux n a b = if n<=0 then b else fib_aux (n - 1) (b) (a + b) let fib_tl n = fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x1 -. float_of_int x2 in let dy = float_of_int y1 -. float_of_int y2 in sqrt ((dx *. dx) +. (dy *. dy)) ;;
let is_prime (n: int): bool = if n <= 1 then domain() else if n = 2 then true else let rec is_factor (n: int) (x: int) : bool = if n mod x = 0 then false else if (x * x) < n then is_factor n (x + 1) else true in is_factor n 2 ;;
let rec fib_aux n a b = if n = 0 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n-1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int x1 -. float_of_int x2 in let dy = float_of_int y1 -. float_of_int y2 in sqrt ((dx *. dx) +. (dy *. dy)) ;;
let is_prime n = if n <= 1 then domain() else if n = 2 then true else let rec is_factor (n: int) (x: int) : bool = if n mod x = 0 then false else if (x * x) < n then is_factor n (x + 1) else true in is_factor n 2 ;;
let rec fib_aux n a b = if n = 0 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 0 1;;
let fact (n: int): float = let rec helper (n: int) (prod: float): float = match n with | 0 -> prod | _ -> helper (n - 1) (float_of_int(n) *. prod) in helper n 1.;;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else (fact n) /. ((fact k) *. fact (n - k)) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let rec helper (n: int) (current: int) = if current * current > n then true else if n mod current = 0 then false else helper n (current + 1) in helper n 2; ;;
let rec fib_aux n a b = match n with | 0 -> a | _ -> fib_aux (n - 1) b (a + b) ;; let fib_tl n = fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact (n) /. (fact (k) *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int dx *. float_of_int dx +. float_of_int dy *. float_of_int dy) ;;
let is_prime n = if n <= 1 then domain() else let rec helper x n = if (n != x && n mod x = 0) then false else (if x * x > n then true else helper (x+1) n) in helper 2 n;;
let rec fib_aux n a b = if n <= 1 then b else fib_aux (n-1) b (a+b) let fib_tl n = fib_aux n 1 1;;
let fact (n: int): float = let rec recu n sum = if n <= 0 then sum else recu (n-1) (sum *. float_of_int n) in recu n 1. ;;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k = n then 1. else (fact n) /. ((fact k) *. (fact (n-k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime (n:int): bool = if n <= 1 then false else if n = 2 then true else let rec helper (n:int) (k:int) = if k = n then true else if n mod k=0 then false else helper n (k+1) in helper n 2;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n-1) b (b+a) let fib_tl n = fib_aux n 1 1;;
let rec factorial (n:float): float = if n>0. then n *. factorial (n -. 1.) else 1. ;; let fact (n:int) : float = factorial (float_of_int n);;
let binomial (n: int) (k: int) = if n < 0 then domain () else if k = n then 1. else fact n /. (fact k *. (fact (n-k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let a = x2 - x1 in let b = y2 - y1 in sqrt (float_of_int(a*a + b*b)) ;; let rec divide (n:int) (x:int) : int = if (x*x) > n then -1 else if (n/x) * x = n then -2 else divide n (x+1) ;;
let is_prime (n:int) : bool = if n<=1 then domain() else divide n 2 = -1 ;; let pi = 3.14159265358979312;;
let rec fib_aux n a b = if (n<=1) then b+a else (fib_aux (n-1) b (a+b)) ;; let fib_tl n = if n<0 then domain() else fib_aux n 0 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int(n) *. (fact (n-1)));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n-k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = let rec calculator n x = if n mod x == 0 then false else (if (x+1)*(x+1) <= n then calculator n (x+1) else true) in if n <= 1 then domain() else (n == 2) || (calculator n 2) ;;
let rec fib_aux n a b = if n=0 then a else if n=1 then b else fib_aux (n-1) b (a+b) ;; let fib_tl n = fib_aux n 1 1 ;;
let rec factorial (n: float): float = match n with | 0. -> 1. | _ -> n *. factorial (n -. 1.);; let fact (n: int): float = match n with | 0 -> 1. | _ -> float n *. factorial (float (n - 1));;
let binomial (n: int) (k: int): float = if n >= 0 && k <= n && k>=0 then fact n /. (fact k *. fact (n - k)) else domain () ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let square d = d * d in sqrt(float(square(abs(x2 - x1))) +. float(square(abs(y2-y1))));;
let is_prime n = if n >1 then let a = (int_of_float (sqrt(float n))) in let rec modzero a n = match a with | 1 -> true | _ -> match n mod a with | 0 -> false | _ -> modzero (a - 1) n in modzero a n else domain () ;;
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) ;; let fib_tl n = if n < 0 then domain() else fib_aux n 1 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int(n) *. fact (n - 1);;
let binomial (n: int) (k: int): float = if n < 0 then domain() else (if k > n then domain () else fact n /. (fact k *. fact (n-k))) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in let square = float_of_int((dx * dx) + (dy * dy)) in sqrt square;;
let is_prime n = if n <= 1 then domain() else let rec divis (n: int) (x:int) = if x*x <= n then if n mod x == 0 then false else divis n (x+1) else true in divis n 2;;
let rec fib_aux n a b = if n <= 0 then b else fib_aux (n-1) b (a+b);; let fib_tl n = fib_aux n 0 1;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1) ;;
let binomial (n: int) (k: int): float = if (n < 0 || k < 0 || k > n) then domain () else fact n /. (fact k *. fact (n - k)) ;;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; let rec is_prime_helper (n: int) (k: int): bool = if k = 1 then true else (if n mod k = 0 then false else is_prime_helper n (k - 1)) ;;
let is_prime (n: int): bool = match n with | 0 | 1 -> domain () | 2 -> true | _ -> is_prime_helper n (n - 1) ;;
let rec fib_aux n a b = if n = 0 then a + b else fib_aux (n - 1) (a + b) a ;; let fib_tl n = if n < 0 then domain () else match n with | 0 | 1 -> 1 | _ -> fib_aux (n - 2) 1 1 ;;
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> (float_of_int n *. (fact(n - 1)));;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k >= n then 1. else fact n /. (fact k *. fact (n - k)) );;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx * dx + dy * dy)) ;;
let is_prime n = if n <= 1 then domain() else let rec help n x = if (x * x > n) then true else (if ( n mod x = 0) then false else help n (x+1)) in help n 2 ;;
let rec fib_aux n a b = if( n = 0) then b else (if (n = 1) then a+b else fib_aux (n-1) b (a+b)) let fib_tl n = if (n < 0 ) then domain () else fib_aux n 0 1 ;;
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);;
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));;
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy= y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;;
let is_prime n : bool = if n < 0 then domain () else match n with | 0 -> domain () | 1 -> domain () | 2 -> true | _ -> let rec primeRec n i : bool = match (n mod i = 0),((i * i) > n) with | _,true -> true | true,_ -> false |_ -> primeRec n (i + 1) in primeRec n 2;;