text
stringlengths 0
601k
|
---|
let is_prime n : bool = if n < 2 then domain() else ( let rec checkPrime x: bool= x * x > n || n mod x != 0 && checkPrime (x+1) in checkPrime 2 );; |
let rec fib_aux n a b = if n < 0 then domain() else if n = 0 then b else fib_aux (n-1) b (a + b) let fib_tl n = fib_aux n 0 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact(n-1);; |
let binomial (n: int) (k: int) = if n < 0 || k < 0 || k > n then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1 - x2) in let dy = float_of_int(y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = if n <= 1 then domain() else let rec prime_checker divisor = if divisor = 1 then true else if n = divisor then true else if n mod divisor = 0 then false else prime_checker (divisor - 1) in prime_checker (n / 2) ;; |
let rec fib_aux n a b = if n <= 1 then a else fib_aux (n - 1) (a + b) (a) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact(n-1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n = k then 1. else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx) *. float_of_int(dx) +. float_of_int(dy) *. float_of_int(dy)) ;; |
let is_prime n = if n <=1 then domain () else ( let value = int_of_float(floor(sqrt (float_of_int(n)))) in (let rec helper value = if n = 2 || n = 3 then true else if value = 1 then true else if (n mod value) = 0 then false else helper (value - 1 ) in helper value ) ) ;; |
let rec fib_aux n a b = let value = a + b in if n=0 then a else let value2=a in fib_aux (n-1) value value2 ;; let fib_tl n = fib_aux n 1 0 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int (n) *. fact(n-1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if n = k then 1. else fact n /. (fact k *. fact (n - k))) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int(dx) *. float_of_int(dx) +. float_of_int(dy) *. float_of_int(dy)) ;; |
let is_prime n = if n <=1 then domain () else ( let value = int_of_float(floor(sqrt (float_of_int(n)))) in (let rec helper value = if n = 2 || n = 3 then true else if value = 1 then true else if (n mod value) = 0 then false else helper (value - 1 ) in helper value ) ) ;; |
let rec fib_aux n a b = let value = a + b in if n=0 then a else let value2=a in fib_aux (n-1) value value2 ;; let fib_tl n = fib_aux n 1 0 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact k *. fact (n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime (n: int) = if n < 2 then domain () else ( let x = sqrt(float_of_int n) in let rec loop (m: int): bool = if (m> int_of_float x) then true else (if (n mod m = 0) then false else loop (m+1)) in loop 2 ) ;; |
let rec fib_aux n a b = let m = a+b in if n =1 then b else fib_aux (n-1) b m ;; let fib_tl n = if n <2 then 1 else fib_aux n 1 1 ;; |
let rec fact (n: int): float = if n < 0 then domain () else match n with | 0 -> 1. | _ -> (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else (fact n) /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt ((float_of_int dx *. float_of_int dx) +. (float_of_int dy *. float_of_int dy)) ;; |
let is_prime n = if n <= 1 then domain() else (let rec notDivisibleBy (x : int) : bool = if x * x > n then true else (n mod x != 0 && notDivisibleBy (x + 1)) in notDivisibleBy 2);; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (b + a) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact(n) /. ((fact(k)) *. fact(n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1) -. float_of_int(x2) in let dy = float_of_int(y1) -. float_of_int(y2) in (sqrt (dx *. dx +. dy *. dy)) ;; let maxFactorForNaive (bigNum : int) : int = int_of_float(sqrt(float_of_int(bigNum))) let rec dividesN ((possPrime , factor): (int * int)): bool = if factor = 1 then false else match possPrime mod factor with | 0 -> true | _ -> dividesN(possPrime, factor-1);; |
let is_prime n = if n <= 1 then domain() else match dividesN(n, maxFactorForNaive(n)) with | true -> false | _ -> true;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a + b) let fib_tl n = if n < 0 then domain() else if n < 2 then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = if n < 0 then domain() else match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact(n) /. ((fact(k)) *. fact(n-k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int(x1) -. float_of_int(x2) in let dy = float_of_int(y1) -. float_of_int(y2) in (sqrt (dx *. dx +. dy *. dy)) ;; let maxFactorForNaive (bigNum : int) : int = int_of_float(sqrt(float_of_int(bigNum))) let rec dividesN ((possPrime , factor): (int * int)): bool = if factor = 1 then false else match possPrime mod factor with | 0 -> true | _ -> dividesN(possPrime, factor-1);; |
let is_prime n = if n <= 1 then domain() else match dividesN(n, maxFactorForNaive(n)) with | true -> false | _ -> true;; |
let rec fib_aux n a b = match n with | 0 -> a | 1 -> b | _ -> fib_aux (n-1) b (a + b) let fib_tl n = if n < 0 then domain() else if n < 2 then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else (let rec check x d = match d with | 1 -> true | _ -> (x mod d <> 0) && check x (d-1) in match n with | 0 | 1 -> false | _ -> check n (n-1));; |
let rec fib_aux n a b = if n<=1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else (let rec check x d = match d with | 1 -> true | _ -> (x mod d <> 0) && check x (d-1) in match n with | 0 | 1 -> false | _ -> check n (n-1));; |
let rec fib_aux n a b = if n<=1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int n *. (fact (n - 1));; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k = n then 1. else fact n /. (fact (k) *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt(float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else (let rec check x d = if d*d > x then true else if x mod d = 0 then false else check x (d+1) in check n 2);; |
let rec fib_aux n a b = if n<=1 then b else fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | n -> float_of_int n *. fact (n - 1);; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else let rec helper n x = if (x * x) > n then true else if n mod x = 0 then false else helper n (x+1) in helper n 2;; |
let rec fib_aux n a b = if n = 0 then a else (fib_aux (n-1) b (a+b)) let fib_tl n = if n < 0 then domain () else fib_aux n 1 1;; |
let domain () = failwith "domain" let fact (n : int): float = if n < 0 then domain () else let rec fact (n : int) (acc : float): float = match n with | 0 -> acc | _ -> fact (n - 1) ((float_of_int n) *. acc) in fact n 1.;; |
let binomial (n: int) (k: int) = if k >= 0 && n >= k then fact n /. (fact k *. fact (n - k)) else domain ();; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in let dy = float_of_int (y1 - y2) in sqrt (dx *. dx +. dx *. dy);; |
let is_prime n = if n <= 1 then raise NotImplemented else let rec f n x = if x * x > n then true else if (n mod x) = 0 then false else f n (x + 1) in f n 2;; |
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) b (a + b) let fib_tl n = if n < 0 then domain () else fib_aux n 1 1;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float(n) *. ( fact (n-1) ) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float (dx * dx + dy * dy)) ;; |
let is_prime (n: int): bool = if n <= 1 then domain () else not (let rec is_divisor x = x * x <= n && (n mod x == 0 || is_divisor (x + 1)) in is_divisor 2);; |
let rec fib_aux n a b = match n with | 0 | 1 -> a | _ -> fib_aux (n-1) (a+b) a ;; let fib_tl n = if n<0 then domain() else fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float(n) *. ( fact (n-1) ) ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k > n then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float (dx * dx + dy * dy)) ;; |
let is_prime (n: int): bool = if n <= 1 then domain () else not (let rec is_divisor x = x * x <= n && (n mod x == 0 || is_divisor (x + 1)) in is_divisor 2);; |
let rec fib_aux n a b = match n with | 0 | 1 -> a | _ -> fib_aux (n-1) (a+b) a ;; let fib_tl n = if n<0 then domain() else fib_aux n 1 1 ;; |
let rec fact (n: int): float = match n with | 0 -> 1. | _ -> float_of_int(n) *. fact (n - 1);; |
let binomial (n: int) (k: int): float = if n < 0 then domain () else (if k = n then if k=0 then if n=0 then 1. else fact k /. (fact n *. fact (n - k)) else domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = float_of_int (x1 - x2) in let dy = float_of_int( y1 - y2) in sqrt (dx *. dx +. dy *. dy) ;; |
let is_prime n = let rec helper a b = if a <= 1 then domain() else if a=b then true else if b*b <= a then if a mod b = 0 then false else helper (a) (b+1) else true in helper n 2;; |
let rec fib_aux n a b = if n=0 then a else fib_aux (n-1) b (a+b) let fib_tl n = if n<0 then domain() else if n=0 then 1 else if n=1 then 1 else fib_aux n 1 1;; |
let rec fact (n: int): float = if n = 0 then 1. else (float_of_int n) *. fact (n - 1);; |
let binomial (n: int) (k: int): float = if n < 0 then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x2 - x1 in let dy = y2 - y1 in sqrt (float_of_int (dx * dx + dy * dy)); ;; |
let is_prime (n: int) : bool = if n <= 1 then domain () else let rec prime_recursion (x: int) (acc: bool) : bool = if x * x > n then acc else let a = n / x in let b = a * x in if b = n then false else prime_recursion (x + 1) (true) in prime_recursion 2 true;; |
let rec fib_aux n a b = if n = 0 then a else if n = 1 then b else fib_aux (n - 1) b (a + b) let fib_tl n = fib_aux n 1 1;; |
let rec fact (n: int): float = let rec help (result: float) (n: int) = let x = float_of_int(n) in if x = 0. then result else help (result *. x) (n - 1) in help 1. n;; |
let binomial (n: int) (k: int) = if n < 0 && k > n then domain () else fact n /. (fact k *. fact (n - k));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = (x1 - x2) in let dy = (y1 - y2) in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime n = if n <= 1 then domain () else let rec help2 n (x:int) = if x == 1 then true else if n mod x == 0 then false else help2 n (x-1) in help2 n (n-1);; |
let rec fib_aux n a b = if n = 0 then a else fib_aux (n - 1) (a+b) a let fib_tl n = if n < 0 then domain() else fib_aux n 1 0;; |
let fact n= let rec factorial n = match n with | 0 -> 1.0 | n-> float_of_int(n) *. factorial (n-1) in factorial n ;; |
let binomial (n: int) (k: int) = if n < 0 then domain () else (if k < 0 then domain () else fact n /. (fact k *. fact (n - k)));; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int(dx * dx + dy * dy)) ;; |
let is_prime (n:int):bool = let rec checker n m = if n<=1 then domain () else if (m*m<=n) then begin if (n mod m = 0) then false else checker (n) (m+1); end else true; in checker (n) (2) ;; |
let rec fib_aux n a b = match n with | 0 -> b | 1 -> b | n -> fib_aux (n-1) (b) (a+b) let fib_tl n = fib_aux n 1 1;; |
let my_tests = [ (4, 24.); (0, 0.); (1, 1.) ] ;; let rec fact (n: int) : float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
let is_prime (n: int) : bool = if n <= 1 then domain () else (let rec find (x: int) : bool = if x * x > n then true else (match (n mod x) with | 0 -> false | _ -> find (x+1) ) in find 2 ) ;; |
let rec fib_aux (n: int) (a: int) (b: int) : int = if n > 1 then fib_aux (n - 1) (a + b) a else a ;; let fib_tl (n: int): int = if n == 1 || n == 0 then 1 else fib_aux n 1 1 ;; |
let my_tests = [ (4, 24.); (0, 0.); (1, 1.); (5, 120.); (8, 40320.); (10,3628800.) ] ;; let rec fact (n: int) : float = match n with | 0 -> 1. | _ -> float_of_int n *. fact (n - 1) ;; |
let binomial (n: int) (k: int) : float = if n < 0 then domain () else fact n /. (fact k *. fact (n - k)) ;; |
let distance ((x1, y1): (int * int)) ((x2, y2): (int * int)) : float = let dx = x1 - x2 in let dy = y1 - y2 in sqrt (float_of_int (dx * dx + dy * dy)) ;; |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.