|
--- |
|
annotations_creators: |
|
- machine-generated |
|
language: |
|
- ar |
|
- es |
|
- fr |
|
- de |
|
- hi |
|
- it |
|
- ja |
|
- nl |
|
- pt |
|
language_creators: |
|
- found |
|
license_details: https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/blob/main/LICENSE.md |
|
multilinguality: |
|
- multilingual |
|
- translation |
|
pretty_name: xtr-wiki_qa |
|
size_categories: |
|
- 100K<n<1M |
|
source_datasets: |
|
- extended|wiki_qa |
|
tags: |
|
- as2 |
|
- answer sentence selection |
|
- text retrieval |
|
- question answering |
|
task_categories: |
|
- question-answering |
|
- text-retrieval |
|
task_ids: |
|
- open-domain-qa |
|
license: cdla-permissive-2.0 |
|
--- |
|
|
|
|
|
# Xtr-WikiQA |
|
|
|
## Table of Contents |
|
- [Dataset Card Creation Guide](#dataset-card-creation-guide) |
|
- [Table of Contents](#table-of-contents) |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Source Data](#source-data) |
|
- [Additional Information](#additional-information) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [Amazon Science](https://www.amazon.science/publications/cross-lingual-knowledge-distillation-for-answer-sentence-selection-in-low-resource-languages) |
|
- **Paper:** [Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages](https://aclanthology.org/2023.findings-acl.885/) |
|
- **Point of Contact:** [Yoshitomo Matsubara]([email protected]) |
|
|
|
### Dataset Summary |
|
|
|
***Xtr-WikiQA*** is an Answer Sentence Selection (AS2) dataset in 9 non-English languages, proposed in our paper accepted at ACL 2023 (Findings): [**Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages**](https://aclanthology.org/2023.findings-acl.885/). |
|
This dataset is based on an English AS2 dataset, WikiQA ([Original](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0), [Hugging Face](https://huggingface.co/datasets/wiki_qa)). |
|
For translations, we used [Amazon Translate](https://aws.amazon.com/translate/). |
|
|
|
### Languages |
|
|
|
- Arabic (ar) |
|
- Spanish (es) |
|
- French (fr) |
|
- German (de) |
|
- Hindi (hi) |
|
- Italian (it) |
|
- Japanese (ja) |
|
- Dutch (nl) |
|
- Portuguese (pt) |
|
|
|
File location: [`tsv/`](https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/tree/main/tsv) |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
This is an example instance from the Arabic training split of Xtr-WikiQA dataset. |
|
|
|
``` |
|
{ |
|
"QuestionID": "Q1", |
|
"Question": "ููู ุชุชุดูู ุงููููู ุงูุฌููุฏูุฉุ", |
|
"DocumentID": "D1", |
|
"DocumentTitle": "ููู ุฌููุฏู", |
|
"SentenceID": "D1-0", |
|
"Sentence": "ููู ุฌููุฏู ู
ุบู
ูุฑ ุฌุฒุฆููุง ุนูู ููุฑ ุจูุฑูุชู ู
ูุฑููู ุงูุฌููุฏู.", |
|
"Label": 0 |
|
} |
|
``` |
|
|
|
All the translated instances in tsv files are listed in the same order of the original (native) instances in the WikiQA dataset. |
|
|
|
For example, the 2nd instance in [`tsv/ar-train.tsv`](https://huggingface.co/datasets/AmazonScience/xtr-wiki_qa/blob/main/tsv/ar-train.tsv) (Arabic-translated from English) |
|
corresponds to the 2nd instance in [`WikiQA-train.tsv`](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0) (English). |
|
|
|
### Data Fields |
|
|
|
Each instance (a QA pair) consists of the following fields: |
|
|
|
- `QuestionID`: Question ID (str) |
|
- `Question`: Question to be answered (str) |
|
- `DocumentID`: Document ID (str) |
|
- `DocumentTitle`: Document title (str) |
|
- `SentenceID`: Answer sentence in the document (str) |
|
- `Sentence`: Answer sentence in the document (str) |
|
- `Label`: Label that indicates the answer sentence correctly answers the question (int, 1: correct, 0: incorrect) |
|
|
|
|
|
### Data Splits |
|
|
|
| | | **#Questions** | | | | **#Sentences** | | |
|
|-------------------|------------:|---------------:|---------:|---|----------:|---------------:|---------:| |
|
| | **train** | **dev** | **test** | | **train** | **dev** | **test** | |
|
| **Each language** | 873 | 126 | 243 | | 8,671 | 1,130 | 2,351 | |
|
|
|
See [our paper](#citation-information) for more details about the statistics of the datasets. |
|
|
|
|
|
## Dataset Creation |
|
|
|
### Source Data |
|
|
|
The source of Xtr-WikiQA dataset is [WikiQA](https://msropendata.com/datasets/21032bb1-88bd-4656-9570-3172ae1757f0). |
|
|
|
|
|
## Additional Information |
|
|
|
### Licensing Information |
|
|
|
[CDLA-Permissive-2.0](LICENSE.md) |
|
|
|
### Citation Information |
|
|
|
```bibtex |
|
@inproceedings{gupta2023cross-lingual, |
|
title={{Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages}}, |
|
author={Gupta, Shivanshu and Matsubara, Yoshitomo and Chadha, Ankit and Moschitti, Alessandro}, |
|
booktitle={Findings of the Association for Computational Linguistics: ACL 2023}, |
|
pages={14078--14092}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
|
|
### Contributions |
|
|
|
- [Shivanshu Gupta](https://huggingface.co/shivanshu) |
|
- [Yoshitomo Matsubara](https://huggingface.co/yoshitomo-matsubara) |
|
- Ankit Chadha |
|
- Alessandro Moschitti |