text
stringlengths
2
1.42k
label
int64
0
1
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces homological mirror symmetry; marked polarized \(K3\) surfaces; Mukai lattice; Fourier-Mukai transforms Hosono, Shinobu and Lian, Bong H. and Oguiso, Keiji and Yau, Shing-Tung, Autoequivalences of derived category of a {\(K3\)} surface and monodromy transformations, Journal of Algebraic Geometry, 13, 3, 513-545, (2004)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized \(K3\) surfaces; Tate's conjecture for \(K3\) surfaces; finitely generated fields of odd characteristic; Kuga-Satake abelian varieties Madapusi Pera, K., \textit{the Tate conjecture for K3 surfaces in odd characteristic}, Invent. Math., 201, 625-668, (2015)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces graded algebras; global dimension; homogeneous coordinate rings of projective surfaces; Artin-Schelter regular algebras; skew polynomial rings; elliptic algebras D. R. Stephenson, ''Artin-Shelter regular algebras of global dimension three,'' J. Algebra, 183, No. 1, 55--73 (1996).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Frobenius (theorem); (foliated) (log) canonical singularities; algorithmic resolution; graphic neighbourhood; ample (vector) bundle; Frobenius (map); bend and break; P-adic; rationally connected; cone of curves F. Bogomolov and M. McQuillan, Rational curves on foliated varieties, preprint (2001), .
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces supersingular elliptic curve; standard divisor; Galois covering; principally polarized supersingular abelian surfaces; definite quaternion algebra; number of automorphisms of abelian surfaces T.KATSURAand F.OORT,\textit{Families of supersingular abelian surfaces}, Compositio Math. 62 (1987), no. 2, 107--167.MR898731
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rationality of moduli space; rationality of the quotient space of the space of pencils of binary forms; rationality of the moduli space for polarized K3 surfaces Shepherd-Barron, N.I.: The rationality of some moduli spaces of plane curves. Compos. Math. 67, 51--88 (1988)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces characterization of the Grassmann manifold; cohomology ring; positive line bundle A. Babakhanian and H. Hironaka, On the complex Grassmann manifold,Illinois J. Math 33 (1989), 170--179.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic group; projective linear group; rational surfaces; birational classification; canonical dimension Colliot-Thélène, J. -L.; Karpenko, N. A.; Merkurjev, A. S.: Rational surfaces and canonical dimension of pgl6, Algebra i analiz 19, No. 5, 159-178 (2007)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vector bundle; ample divisor; projective variety
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle; strange duality conjecture; moduli spaces of semistable sheaves Y. Yuan, Determinant line bundles on moduli spaces of pure sheaves on rational surfaces and Strange Duality , preprint, [math.AG]. 1005.3201v2
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quasi-polarized varieties; adjoint line bundles; effectiveness
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Koppelman formulas; Grassmannian; holomorphic line bundle; vanishing theorem Götmark, E; Samuelsson, H; Seppänen, H, Koppelman formulas on Grassmannians, J. Reine Angew. Math., 640, 101-115, (2010)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces secant varieties; expected dimension of Grassmannians of secant varieties; Veronese surfaces L. Chiantini and M. Coppens: ''Grassmannians of secant varieties'', Forum Math., Vol. 13, (2001), pp. 615--628.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fano manifold; normal projective connection; deformation of a map; scheme; higher direct image sheaf; ample bundle; Chern class; rational curves Ye, Y.-G.: On Fano manifolds with normal projective connections.Int. J. Math. 5 (1994), 265-271.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces dimension of Hilbert scheme; dimension of moduli space of instantons; space curves; instanton bundle; Noether-Lefschetz locus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized variety; Seshadri constant; hypersurfaces; ampleness; bigness; ample curve; big curve
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces number of rational points; uniformity conjecture; Kodaira dimension of fiber products; Lang conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces tilting object; cluster tilting object; weighted projective line; vector bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle; stable vector bundles on curves
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Hilbert modular forms; symmetric Hilbert modular variety of general; type; Kodaira dimension S. Tsuyumine, ``On the Kodaira dimensions of Hilbert modular varieties'', Invent. Math.80 (1985) no. 2, p. 269-281
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space; instanton bundles; Chern class; tangent dimension; obstructions; symplectic bundle [O-T]Ottaviani, G., andTrautmann, G.,The tangent space at a special symplectic instanton bundle on \(\mathbb{P}\) 2n+1, Manuscr. Math.,85 (1994), 97--107.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized rational surfaces; exceptional lines; Hirzebruch surface
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces tangent bundle; hyperplane line bundle; Gauss map; Grassmannian; Chern classes; Chern numbers of complete intersections
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces degeneration of surfaces; classification of the degenerations; minus one theorem; degenerations of Kodaira surfaces
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces differential Horace lemma; prescribed singularities; Picard group; cohomology groups of line bundles; plane curves; geometric genus Mignon, T., Courbes lisses sur les surfaces rationnelles génériques: Un lemme d'Horace différentiel, Ann. Inst. Fourier (Grenoble), 50, 6, 1709-1744, (2000)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Riemann surfaces; \texttt{Maple}; multiplicity; delta invariant; branching number; genus; monodromy; homology; period matrices; Abel maps Bernard Deconinck and Matthew S. Patterson, Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package ''algcurves'', Computational approach to Riemann surfaces, Lecture Notes in Math., vol. 2013, Springer, Heidelberg, 2011, pp. 67 -- 123.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces 3-gonal curves; adjoint line bundle; hyperplane sections; adjunction Fania M.L. (1990). Trigonal hyperplane sections of projective surfaces. Manuscr. Math. 68: 17--34
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces finite-dimensional vector space; irreducible representations; unitary group; holomorphic line bundle; flags; Hilbert space; manifold of flags; quantum field theory; integrable systems A. G. Helminck and G. F. Helminck, \(H_k\)-fixed distributionvectors for representations related to \(\mathfrak p\)-adic symmetric varieties, To appear.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces reality questions concerning algebraic Riemann surfaces of arbitrary genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces log terminal surfaces with ample canonical divisor
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Schur function; vanishing theorem; tensor powers of an ample vector bundle Laytimi F., Nahm W.: On a vanishing problem of Demailly. Int. Math. Res. Not. 47, 2877--2889 (2005)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces F-theory/heterotic string duality; Jacobian elliptic fibrations on \(K3\) surfaces; Kummer surfaces of genus-two curves Malmendier, A. and Shaska, T., The {S}atake sextic in {F}-theory, Journal of Geometry and Physics, 120, 290-305, (2017)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(k\)-gonal curves, gonality, projective normality, normally generated line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kobayashi hyperbolicity; ample cotangent bundle; Debarre conjecture; Kobayashi conjecture; Diverio-Trapani conjecture
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces property \(N_p\); line bundle on complex torus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces complex abstract Wiener space; strictly positive selfadjoint operator; exterior product bundle; \(L^ 2\)-sections; \(\overline{\partial}\)- cohomology group; space of harmonic \((p,q)\)-forms; de Rham-Hodge- Kodaira's decomposition T. Nishimura, ''Exterior product bundle over complex abstract Wiener space,''Osaka J. Math.,29, No. 2, 233--245 (1992).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of rank 2 semi-stable parabolic vector bundles; Picard group; Cartier divisors; determinant line bundle; theta functions; Jacobian Christian Pauly, Fibrés paraboliques de rang 2 et fonctions thêta généralisées, Math. Z. 228 (1998), no. 1, 31 -- 50 (French).
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Line bundle; Brill-Noether theory; moduli space of curves; stable maps; moduli space of stable maps
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces families; isotriviality; moduli; minimal model program; special varieties; Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; birational geometry [7] Paolo Cascini, &Subsheaves of the cotangent bundle&#xCent. Eur. J. Math.4 (2006) no. 2, p.~209-224 (electroArticle | &MR~22 | &Zbl~1108.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(C\)-projective spaces; ampleness; Kodaira surfaces; hyperelliptic surfaces; Fano manifold Yang, Xiaokui, Big vector bundles and complex manifolds with semi-positive tangent bundles, Math. Ann., 367, 1-2, 251-282, (2017)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces surfaces of general type; irregularity; effective divisor
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces smooth projective variety; ample vector bundle; Mori theory; locally adjunction theory of vector bundles Andreatta, M. , Ballico, E. and Wiśniewski, J. : Vector bundles and adjunction , Int. J. Math. 3 (1992) 331-340.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces multiple line; Hilbert scheme; embedding dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fano manifolds; ample vector bundle; extremal rays PETERNELL (T.) . - Ample vector bundles on Fano manifolds , Int. J. Math., t. 2, n^\circ 3, 1991 , p. 311-322. MR 92c:14038 | Zbl 0744.14009
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic surfaces; elliptic curves over function fields; generators of Mordell-Weil group; Kodaira-Néron model; number of minimal sections; specialization homomorphisms
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces representation of fundamental group; Kähler manifolds; Shafarevich variety; Kodaira dimension Zuo, K, Kodaira dimension and Chern hyperbolicity of the Shafarevich maps for representations of \(\pi _1\) of compact kahler manifolds, J. Reine Angew. Math., 472, 139-156, (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces log terminal singularities; good contraction; pullback of a line bundle Andreatta M.: Some remarks on the study of good contractions. Manuscripta Math. 87, 359--367 (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rank 2 vector bundle; fine moduli spaces; stability of indecomposable weakly uniform bundle; uniform vector bundle on smooth quadric; Chern class; line bundle E. Ballico -P. E. Newstead,Uniform bundles on quadric surfaces and some related varieties, J. London Math. Soc.,31 (1985), pp. 211--223.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces metrized line bundle; height functions
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces positivity of a nef line bundle; Seshadri constant Ein, Lawrence; Lazarsfeld, Robert, Seshadri constants on smooth surfaces, Astérisque, 218, 177-186, (1993)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Jacobian conjecture; homology planes; automorphism; Kodaira dimension R. V. Gurjar and M. Miyanishi, On the Jacobian conjecture for \?-homology planes, J. Reine Angew. Math. 516 (1999), 115 -- 132.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized 3-fold; irregularity Y. Fukuma, On polarized \(3\)-folds \((X,L)\) with \(g(L)=q(X)+1\) and \(h^{0}(L)\geq 4\), Ark. Mat. 35 (1997), 299--311.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces positive vector bundle; characterization of projective n-space; homotopy groups; ample vector bundles; branched covering Lazarsfeld, R.: Some applications of the theory of positive vector bundles. (Lect. Notes Math., vol. 1092, pp. 29--61). Berlin Heidelberg New York: Springer 1984
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces vector bundle; splitting of a vector bundle; line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quotients of polydisc; vanishing theorem; Poincaré metric; hermitian vector bundle; Bochner-Kodaira formula
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces K3 surfaces; threefolds with trivial canonical bundle; string theory Friedman, R.: On threefolds with trivial canonical bundle. In: Complex Geometry and Lie Theory, volume 53 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 1991, 103--134
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces trisecant lines of surfaces; finite field; no trisecant line Ballico E., Cossidente A.: Surfaces in \$\$\{\(\backslash\)mathbb \{P\}\^5\}\$\$ which do not admit trisecants. Rocky Mountain J. Math. 29, 77--91 (1999)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces homotopy type; Eilenberg-MacLane space; open algebraic surface; logarithmic Kodaira dimension; Stein space
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces fundamental group; projective variety; line bundle; ball quotient Napier, Terrence; Ramachandran, Mohan, The \(L^2 \overline{\partial }\)-method, weak Lefschetz theorems, and the topology of Kähler manifolds, J. Am. Math. Soc., 11, 375-396, (1998)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Normal surface singularity; pencil genus; pencil of curves; weakly Kodaira singularity T. Tomaru, On some classes of weakly Kodaira singularities, In: Singularités Franco-Japonaises, Sémin. Congr., 10 , Soc. Math. France, 2005, pp.,323-340.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Diophantine equations; affine space; projective space; rational points; finite fields; projective varieties; conics; quadrics; Nullstellensatz; cubic surfaces; \(p\)-adic numbers; Hasse principle; Diophantine dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces spanned vector bundles; sectional genus
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces numerically effective adjoint system; ample vector bundle; divisor Zhang, A theorem on the adjoint system for vector bundles, Manuscr. Math. 70 (2) pp 189-- (1991)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic curves; elliptic functions; Riemann surfaces of genus one Edwards, H.M.: A normal form for elliptic curves. Bulletin of the American Mathematical Society~44, 393--422 (2007), http://www.ams.org/bull/2007-44-03/S0273-0979-07-01153-6/home.html (Cited in {\S}2.2)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces framed sheaf; coframed sheaf; framed vecotr bundle; simple sheaf; cohomologically flat in dimension zero; cohomologically flat morphism; vortex equation; Seiberg-Witten equations; deformation theory
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces classification of irregular surfaces of general type; nonbirational bicanonical map; classification of minimal surfaces; geometric genus F. Catanese, C. Ciliberto, M. Mendes Lopes, On the classification of irregular surfaces of general type with nonbirational bicanonical map. \textit{Trans. Amer. Math. Soc.}\textbf{350} (1998), 275-308. MR1422597 Zbl 0889.14019
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces hyperbolic manifold; ball quotient; Kodaira dimension; toroidal compactification
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal surfaces and constant mean curvature surfaces in \(S^3\); Lawson minimal sufrace of genus 2; compact minimal surface of higher genus DOI: 10.1007/s00208-014-1044-4
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces numerically effective divisor; quasi nef line bundle; plurigenera; canonical bundle; minimal model conjecture; log-terminal singularities N. Nakayama , The lower semicontinuity of the plurigenera of complex varieties , In: '' Algebraic Geometry '', Sendai , Adv. Studies in Pure Math. 10 , Kinokuniya - North-Holland , 1987 , 551 - 590 . MR 946250 | Zbl 0649.14003
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of stable complex curves; slope conjecture; boundary divisors; Hodge line bundle; effective divisor Tan, S.-L.: On the slopes of the moduli spaces of curves. Int. J. Math. 9, 119--127 (1998)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fano threefold; Fano variety; anticanonical linear system; line bundle; ampleness; very ampleness; spannedness; higher order embeddings Mauro C. Beltrametti, Sandra Di Rocco, and Andrew J. Sommese, On higher order embeddings of Fano threefolds by the anticanonical linear system, J. Math. Sci. Univ. Tokyo 5 (1998), no. 1, 75 -- 97.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; Iiitaka conjecture; algebraic fiber space; Albanese morphism; adjoint ideal Chen, Jungkai Alfred; Hacon, Christopher D., Kodaira dimension of irregular varieties, Invent. Math., 0020-9910, 186, 3, 481\textendash 500 pp., (2011)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces holomorphic symplectic variety; universal family; Kodaira dimension; modular form; Borcherds product
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces base point free linear system; divisor; geometric genus; irregularity; minimial surface of general type P. FRANCIA, On the base points of the bicanonical system, Problems in the theory of surfaces and their classification (Cortona, 1988), pp. 141-150, Sympos. Math., XXXII, Academic Press, London, 1991. Zbl0828.14023 MR1273376
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces compact Riemann surfaces; automorphism groups; genus spectra; gap sequences; split metacyclic groups Weaver, A, Genus spectra for split metacyclic groups, Glasg. Math. J., 43, 209-218, (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces gonality; birationally \(k\)-very ample; linear systems; secant spaces; Enriques surfaces; higher order embeddings Knutsen, On secant spaces to Enriques surfaces, Bull. Belg. Math. Soc. Simon Stevin 16 pp 907-- (2009)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces logarithmic one forms; Kodaira dimension; holomorphic sections
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Chern class; Hodge bundle; moduli spaces of principally polarized abelian varieties; moduli space of curves with a level two structure; theta characteristic; Weierstrass points Hain, R; Reed, D, Geometric proofs of some results of Morita, J. Algebraic Geom., 10, 199-217, (2001)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira vanishing; log del Pezzo surfaces; Kawamata log terminal singularities; positive characteristic
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle Lanteri A., Maeda H.: Ample vector bundles with section vanishing on projective spaces or quadrics. Int. J. Math. 6(4), 587--600 (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized varieties; projective bundles; scrolls; sectional invariants Y. Fukuma, Sectional invariants of scrolls over a smooth projective variety, Rend. Sem. Mat. Univ. Padova, 121 (2009), 93-119.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic curve; Kodaira-Spencer map; projective plane bundle; families of projective plane bundles
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces push-forward; degeneracy locus; ample vector bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces tensor power of ample vector bundle; vanishing theorem Demailly J-P, Vanishing theorems for tensor powers of an ample vector bundle, Invent. Math. 91(1) (1988) 203--220
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective space; quadric cone; tangent sheaf; ample vector bundle; log-terminal singularities
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(Q\)-homology planes; cyclic branch covers; logarithmic Kodaira dimension
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces stable curves; determinant of cohomology line bundle; section ring; conformal blocks
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; minimal models; semiample canonical sheaf of a canonical model; birational classification
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fano surfaces; curves of genus 2 X. Roulleau, ``Genus 2 curve configurations on Fano surfaces'', Comment. Math. Univ. St. Pauli 59 (2010), no. 1, 51-64.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces enumerative invariants; curves of arbitrary genus; toric surfaces; Gromov-Witten invariants G. Mikhalkin, Counting curves via lattice paths in polygons. \textit{C. R. Math. Acad. Sci. Paris}\textbf{336} (2003), 629-634. MR1988122 Zbl 1027.14026
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces semistable points; line bundle; Coxeter element; Schubert varieties Kannan, S. S.; Pattanayak, S. K., Torus quotients of homogeneous spaces-minimal dimensional Schubert varieties admitting semi-stable points, \textit{Proc. Indian Acad. Sci. (Math. Sci.)}, 119, 4, 469-485, (2009)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces spin-quantization; compact Hamiltonian \(K\)-manifolds; Kostant-Souriau line bundle Paradan, P.-E., Spin-quantization commutes with reduction, J. Symplectic Geom., 10, 389-422, (2012)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space; Brill-Noether locus; K3 surface; determinant line bundle Mukai, S., Curves and \textit{K}3 surfaces of genus eleven, Moduli of Vector Bundles, Lect. Notes Pure Appl. Math., 179, 189-197, (1996)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces k-gonal curves; Clifford index; linear series; line bundle \textsc{E. Ballico}, On the Clifford index of algebraic curves, Proc. Am. Math. Soc. \textbf{97} (1986), 217-218.
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle on algebraic curve; projective normality of line bundles; \(H^0\)-lemma Tan X J. On H 0-lemma and projective normality of line bundles on algebraic curves. AMS/IP Stud Adv Math, 24(5): 246--254 (1997)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension; varieties of Kodaira dimension zero; minimal model theory
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces surface of general type; syzygies; line bundle
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal model program for 3-folds; extremal rays; Del Pezzo surfaces; Fano 3-folds; flops in dimension 4; table for the extremal rays for Fano 3-folds; Dynkin diagrams of the Weyl groups Matsuki K.: Weyl groups and birational transformations among minimal models. Mem. Amer. Math. Soc. 116, 1--133 (1995)
0
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces degeneration of linear series on smooth curves; moduli space; Schubert calculus; Kodaira dimension; Weierstrass points D. Eisenbud, J. Harris, Limit linear series: basic theory. \textit{Invent. Math.}\textbf{85} (1986), 337-371.
0