text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Castelnuovo-Mumford regularity; Cohen-Macaulay curves; arithmetic genus; Cohen-Macaulay surfaces S. Kwak, Generic projections, the equations defining projective varieties and Castelnuovo regularity, Math. Z. 234(3), 413--434 (2000).
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces homology \(\mathbb{Q}\)-planes; lines; Kodaira dimension; Makar-Limanov invariant T. Kishimoto and H. Kojima, Affine lines on \(\mathbb Q\) -homology planes with logarithmic Kodaira dimension \(-\infty,\) Transform. Groups 11 (2006), 659--672.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Picard modular surfaces; Shimura varieties; Fuchsian systems of partial differential equations; polarized abelian threefolds; polarized abelian variety; complex multiplication; number of cusps of a Picard surface; class number; CM fields B. Gordon, Canonical models of Picard modular surfaces, The zeta functions of Picard modular surfaces, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1992), 1-29.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces reductive algebraic group; strong linkage principle; simple module; composition factor; cohomology module; line bundle; Borel subgroup; Frobenius kernel; very strong linkage principle Doty, S, The strong linkage principle, Amer. J. Math., 111, 135-141, (1989)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Prym variety; Jacobian; Schottky problem; Riemann surfaces; theta divisor; period matrix; Heisenberg group; principally polarized abelian variety B. van Geemen, The Schottky problem and second order theta functions, in Workshop on Abelian Varieties and Theta Functions (Morelia, 1996), Aportaciones Matemáticas: Investigación 13 Sociedad Matematica Mexicana, México, 1998, pp. 41--84.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces KSBA compactification; moduli of surfaces; genus 4 curves
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces automorphism groups of compact Riemann surfaces; hyperelliptic surfaces; genus zero actions
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(p_g = q = 1, K^2 = 4\); genus 4; non-hyperelliptic Albanese fibration; Gieseker moduli space of minimal surfaces
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces curves with ample normal bundle; infinitesimal neighbourhood; Picard group; rationally connected varieties; quasi-lines
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces toric Fano varieties; line bundle; exceptional collection Efimov, A.: Maximal lengths of exceptional collections of line bundles. http://arxiv.org/PS\_cache/arxiv/pdf/1010/1010.3755v2.pdf (preprint)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces mori cone; ample cone; holomorphic symplectic varieties; \(K3\) surfaces Bayer, Arend; Hassett, Brendan; Tschinkel, Yuri, Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér. (4), 48, 4, 941-950, (2015)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces theta functions; Korteweg/de Vries equations; Riemann surfaces of infinite genus W. Müller, M. Schmidt, and R. Schrader, Theta functions for infinite period matrices , Internat. Math. Res. Notices (1996), no. 12, 565-587.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces central extensions of Lie algebras; conformal groups; Witt algebra; conformal field theories; central extensions of groups; two-dimensional conformal field theory; Virasoro algebra; conformal symmetries in dimension two; representation; Verma modules; Kac determinant; diffeomorphism group of the circle; bosonic string theory; Verlinde formula; fusion rule; dimension formula; spaces of generalized theta functions; moduli spaces of vector bundles; compact Riemann surfaces; bibliography Schottenloher, M.: A mathematical introduction to conformal field theory. (1997)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Fano 4-folds; line bundle over projective 3-space
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces binary forms; ternary forms; symmetrization; Rubik cube; line bundles; vector bundles; Jordan algebra; Hermitian hypercubes; moduli space; Selmer group; Mordell Weil group; prehomogeneous vector spaces; genus one curves; coregular spaces Bhargava, M.; Ho, W., Coregular spaces and genus one curves, Cambridge J. Math., 4, 1, 1-119, (2016)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Seshadri constant; ample line bundles; blow-up of the projective plane Xu G.: Ample line bundles on smooth surfaces. J. Reine Angew. Math. 469, 199--209 (1995)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces conic bundle surfaces; Henselian fields; quaternion algebras
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces uniruled algebraic variety; Seifert manifold; Klein surface; equivariant line bundle Johannes Huisman and Frédéric Mangolte, Every orientable Seifert 3-manifold is a real component of a uniruled algebraic variety, Topology 44 (2005), no. 1, 63 -- 71.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces actions of groups; linear algebra; topological groups; endomorphisms; Grassmannians; echelon matrices; groups preserving a bilinear form; quaternion fields; algebraic combinatorics; Lie groups; Platonic solids; topics from the projective plane; orthogonal groups; unitary groups; symplectic groups; Young tableaux; algebraic geometry; algebraic curves; surfaces configurations; special varieties; graphes; projective line; conics; representation theory; McKay correspondance Ph. Caldero, J. Germoni, \textit{Histoires Hédonistes de Groupes et de Géométries [Hedonistic Histories of Groups and Geometries].} Vol. 2, Calvage et Mounet, Paris, 2015.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces transitive faithful group of permutations; moduli space of genus \(g\) surfaces; monodromy groups R. Guralnick and M. Neubauer, Monodromy groups of branched coverings: the generic case, in Recent Developments in the Inverse Galois Problem (Seattle, Wa, 1993), Contemporary Mathematics 186, American Mathematical Society, Providence, RI, 1995, pp. 325--352.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces gonality; singular plane curve; Castelnuovo function; line bundle; Castelnuovo-Hilbert function; linear systems
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rank-2 vector bundles; ample determinant; polarized pairs; small second Chern class
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces toric Kähler manifold; line bundle; Bergman kernel 10.1007/s11005-016-0888-9
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line arrangement; elliptic modular surfaces; Inoue-Livné surfaces; Hirzebruch surfaces; surfaces of general type; torus embeddings
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Klein surfaces; genus; Riemann surfaces; NEC groups; alternating groups; Hurwitz groups; \(H^*\)-groups
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Teichmüller curves; Hilbert modular surfaces; primitive curves in genus two; Weierstrass form McMullen, Curtis T., Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., 16, 4, 857-885, (2003)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic geometry; canonically polarized surfaces; automorphisms; vector fields; moduli stack; characteristic \(p\)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces cotangent bundle; ampleness; surfaces of general type Roulleau, Xavier: L'application cotangente des surfaces de type général. Geom. dedicata 142, No. 1, 151-171 (2009)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces \(X\)-method; minimal model program; Kodaira vanishing; surfaces Hiromu Tanaka, ``The X-method for klt surfaces in positive characteristic'', J. Algebr. Geom.24 (2015) no. 4, p. 605-628
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces elliptic fiber spaces; Calabi-Yau varieties; genus-one fibrations; rational curves; augmented irregularity
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Teichmüller space; moduli space; line bundle; Weil-Petersson metric Obitsu, K., To, W.-K., Weng, L.: Deligne pairings over moduli spaces of punctured Riemann surfaces Arithmetic Geometry and Number Theory, Ser. Number Theory Appl., vol. 1, pp. 29--46. World Sci. Publ. Hackensack (2006)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces secant variety; Du Bois singularity; rational singularity; adjoint line bundle.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces determinant; Laplacian; Bergman metric; moduli space of compact genus two Riemann surfaces Klein C, Kokotov A and Korotkin D 2009 Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces \textit{Math. Z.}261 73--108
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces algebraic cohomology classes; Hodge classes; very ample vector bundle; Noether-Lefschetz type
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Banach bundle; holomorphic vector bundle; holomorphic vector bundle with infinite rank; semistable vector bundle; compact Riemann surfaces; smooth connected projective curve
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces non rationality of threefolds; standard bundle of Del Pezzo; surfaces; conic bundle Алексеев, В. А., Об условиях рациональности трехмерных многообразий с пучком поверхностей дель-пеццо степени, Матем. заметки, 41, 5, 724-730, (1987)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces symplectic manifold; brane quantization; prequantum line bundle; Fukaya category; SYZ fibration; \((B,B,B)\) branes; Chern-Simons gauge theory; Higgs \(G\)-bundles; Hitchin moduli; Verlinde formula Gukov, S., Quantization via mirror symmetry, Japan. J. Math., 6, 65, (2011)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces arithmetic surface; arithmetically nef hermitian line bundle C. Gasbarri,Hermitian vector bundles of rank two and adjoint systems on arithmetic surfaces, Topology38 (1999), 1161--1174.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces minimal surface; Euclidean space; Gauss map; holomorphic curve; line bundle; Gaussian image; Enneper's surface; Henneberg's surface; Platonic symmetries; algebraic curves DOI: 10.2748/tmj/1178224720
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Euler-Poincaré polynomial; canonical line bundle; Chern classes; Todd class; Bernoulli polynomials; Hirzebruch Riemann-Roch formula
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces complex algebraic curves; compact Riemann surfaces; group actions; automorphism groups; integration theory; divisors; Riemann-Roch theorem; Abel's theorem; line bundles R. Miranda, \textit{Algebraic Curves and Riemann Surfaces}, Graduate Studies in Mathematics, Vol. 5, American Mathematical Society, 1995.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces net of quadrics; genus 3 curve; scroll; rank two vector bundle; moduli space
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Picard groups; moduli spaces of curves; Abel-Jacobi mapping; family of abelian varieties; symmetric line bundle; polarization; Jacobian fibration; theta bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonical curve section; genus; Fano 3-folds; vector bundle; section of a homogeneous space S.~Mukai. Fano 3-folds. In {\em Complex projective geometry ({T}rieste, 1989/{B}ergen, 1989)}, volume 179 of {\em London Math. Soc. Lecture Note Ser.}, pages 255--263. Cambridge Univ. Press, Cambridge, 1992. Also \url{http://www.kurims.kyoto-u.ac.jp/~mukai/paper/Trieste.pdf}. zbl 0774.14037; MR1201387
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces irregularity; Albanese dimension; 3-fold of general type
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Appell-Humbert theorem; classification theorem for line bundles; hyperelliptic surface; elliptic bundle Aprodu, M., An Appel-Humbert theorem for hyperelliptic surfaces, J. Math. Kyoto Univ., 38, 101-121, (1998)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces four-manifolds; non-minimality of a surface; connected sum decompositions; Kodaira dimension; Donaldson polynomials; pure Hodge type Brussee, R.: On the (-1)-curve conjecture of Friedman and morgan. Invent. math. 114, 219 (1993)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces logarithmic canonical ring; semiample Zariski decomposition; Kodaira dimension; effective divisor T. Fujita: ''Fractionally logarithmic canonical rings of algebraic surfaces'',J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 30, (1984), pp. 685--696.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces spanned line bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces structure of line bundle over projective 3-space; Fano variety
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample and big line bundles; Okounkov body; branching laws
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces projective manifolds; ample line bundles; Fujita's conjecture; global generation
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces zero cycle; divisor; jet bundle; embeddings; spannedness of line bundle; Picard group Mauro Beltrametti and Andrew J. Sommese, On \?-spannedness for projective surfaces, Algebraic geometry (L'Aquila, 1988) Lecture Notes in Math., vol. 1417, Springer, Berlin, 1990, pp. 24 -- 51.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces birational geometry; ample cones; punctual Hilbert schemes of \(K3\) surfaces Hassett B., Tschinkel Yu., Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., 2009, 19(4), 1065--1080
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces curves on projective variety; plurigenera; Kodaira dimension; symmetric power
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Kodaira dimension
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces polarized manifold; sectional class; classical scroll
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces jet space; holomorphic section; line bundle; combinatorial identity; Riemann sphere; loop space
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Nakai-Moishezon theorem; arithmetic surface; discreteness of algebraic points on an algebraic curve; hermitian line bundle; canonical height S. Zhang, Positive line bundles on arithmetic surfaces, Ann. of Math. (2) 136 (1992), no. 3, 569-587.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces complex ball quotients; proportionality deviation; surfaces of general type; Miyaoka-Yau inequality; finite covers of the projective plane; branched along line arrangements Paula Tretkoff, \textit{Complex Ball Quotients and Line Arrangements in the Projective} \textit{Plane}. Princeton University Press, Princeton and Oxford 2016.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Moishezon threefold; Kodaira dimension; deformation I. Nakamura, Moishezon threefolds homeomorphic to \(\mathbf{P}^{3}\), J. Math. Soc. Japan 39 (1987), no. 3, 521-535.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Prym variety; Kodaira dimension; moduli space of curves Bruns, Gregor, \(\overline{\mathcal{R}}_{15}\) is of general type, Algebra Number Theory, 10, 9, 1949-1964, (2016)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces integrable Hamiltonian system; Clebsch top; Kummer surfaces; K3 surfaces; Jacobian; hyperelliptic curve of genus
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces form of higher degree; Kodaira dimension; higher degree composition formulae; finite orthogonal group; variety of general type
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Heisenberg level structure; linear action; Heisenberg group; global sections of a line bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample subschemes; partially positive line bundles J. Ottem, Ample subvarieties and \(q\)-ample divisors, Adv. Math. 229 (2012), 2868--2887.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces co-Higgs bundle; Higgs bundle; Hitchin fibration; projective line; stability; moduli space; Betti numbers Rayan, S., Co-Higgs bundles on \({\mathbb{P}}^1\), N. Y. J. Math., 19, 925-945, (2013)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces dimension 0; Albanese mappings of compact analytic threefolds; nonpositive Kodaira dimension Kollár, J., Mori, S.: Birational geometry of algebraic varieties. In: Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces curves on cubic surfaces; genus; degree index of completeness
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces negative line bundle; compact complex manifold; Schwarz-type symmetrization; Monge-Ampère energy; Moser-Trudinger inequality
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces genus 2-fibrations; surfaces of general type; bicanonical morphisms; deformations; finite morphisms; moduli
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Iitaka's conjecture; Kodaira dimension; positive characteristic; fibration
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces complexification; complex genus real algebraic surfaces; algebraic homology; entire rational maps Ozan, Y.: On entire rational maps of real surfaces, J. Korean Math. Soc. 39 (2002), 77-89.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces essential dimension; moduli stack; SL\(_n\) bundle; stable bundles A. Dhillon and N. Lemire, Upper bounds for the essential dimension of the moduli stack of SL{}_{n}-bundles over a curve, Transform. Groups 14 (2009), 747-770.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces CM line bundle; Fano varieties; K-moduli; K-stability; good moduli space
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces toric varieties; cone structure; resolution of singularities; fundamental groups; Euler characteristics; cohomology of line bundles; tangent bundle; Serre duality; Betti numbers; Chow groups; cohomology groups W. Fulton, \textit{Introduction to toric varieties}, Annals of Mathematics Studies, Princeton University Press, Princeton U.S.A. (1993).
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces hyperbolicity; projective varieties; ample line bundles; jet spaces
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Calabi-Yau manifolds; Kähler-Einstein manifolds; conical singularities; ample line bundles Hein, Hans-Joachim; Sun, Song, Calabi-Yau manifolds with isolated conical singularities, Publ. Math. Inst. Hautes Études Sci., 126, 73-130, (2017)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces canonical curves; Petri theorem; syzygies of the homogeneous ideal; line bundle Green M., Lazarsfeld R., A simple proof of Petri's theorem on canonical curves, In: Geometry Today, Rome, June 4--11, 1984, Progr. Math., 60, Birkhäuser, Boston, 129--142
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Nakayama's numerical Kodaira dimension
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces smooth projective surface; very ample divisor; moduli space of rank-two vector bundles; Chern classes; no Poincaré bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces sectional genus; \(\Delta \)-genus; Gorenstein rings; Hilbert series; Cohen Macaulay rings Akira Ooishi, \Delta -genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), no. 2, 361 -- 372.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces ample vector bundle; canonical bundle; adjoint bundles Maeda, H.: Nefness of adjoint bundles for ample vector bundles. Le Matematiche (Catania) 50, 73--82 (1995)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle on projective curve
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces lines on surfaces; Milnor numbers; ample divisor
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces semisimple simply connected algebraic group; maximal torus; Borel subgroup; cohomology groups; line bundle; Weyl group; generic dominant weights; irreducible socle; irreducible head; composition factors; generic socle series Stephen R. Doty and John B. Sullivan, On the structure of the higher cohomology modules of line bundles on \?/\?, J. Algebra 114 (1988), no. 2, 286 -- 332.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces rings of differential operators; genus; noncommutative surfaces; birational invariants
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces K-stability; CM-weight; polarization; determinant line bundle G. Tian, K-stability implies CM-stability, preprint, arxiv:1409.7836.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces quasi-tori; theta line bundle; Segal-Bargman transforms; Hermite polynomials
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces 4-manifold; complex line bundle; Seiberg-Witten invariants Cho, YS, Finite group action on spin\(^c\) bundles, Acta Math. Hung., 84, 97-114, (1999)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces nef line bundle Camacho, C., Movasati, H.: Neighborhoods of analytic varieties, Monografías del Instituto de Matemática y Ciencias Afines, 35. Instituto de Matemática y Ciencías Afines, IMCA, Lima; Pontificia Universidad Católica del Perú, Lima (2003)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces singular fibre; Picard group of surfaces; quasi-bundle fibration F. SERRANO, The Picard group of a quasi-bundle, Manuscripta Math., 73 (1991), pp. 63-82. Zbl0758.14006 MR1124311
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli stack; semistable sheaf; Donaldson determinant line bundle; strange duality; rational surface; quasi-bundle; infinitesimal deformation T. Abe, Deformations of rank \(2\) quasi-bundles and some strange dualities for rational surfaces , Duke Math. J. 155 (2010), 577-620.
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces schemes; Witt rings of Grassmann varieties; non-extended symmetric bilinear spaces; line bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces line bundle; projective variety; blow-up Nakamaye M.: Seshadri constants at very general points. Trans. Am. Math. Soc. 357(8), 3285--3297 (2005) (electronic)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces pseudo-holomorphic curve; equisingular curve; modular spaces; line arrangement; moduli space; genus; homology; almost complex manifold; pseudo-holomorphic line Barraud, J.-F., Courbes pseudo-holomorphes équisingulières en dimension 4, Bull. Soc. Math. France, 128, 179-206, (2000)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces semistable bundle; non-ample bundle
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces Albanese map; Kodaira dimension; birational transformations Hanamura M. (1990). The birational automorphism groups and the Albanese maps of varieties with Kodaira dimension zero. J. Reine Angew. Math. 411: 124--136
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces moduli space of principally polarized abelian varieties of dimension 5; unirationality; Prym map; Enriques surface A. Verra, A short proof of the unirationality of
\[
\mathcal{A}_{5}
\]
. Nederl. Akad. Wetensch. Indag. Math. 46 (3), 339--355 (1984)
| 0 |
\(k\)-very ample line bundle; sectional genus; irregularity; Kodaira dimension; polarized surfaces semi-simple, simply connected algebraic group; line bundle; dominant character; irreducible \(G\)-modules; good filtration Mathieu, Olivier, Filtrations of \(G\)-modules, Ann. Sci. École Norm. Sup. (4), 23, 4, 625-644, (1990)
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.