text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Riemann surfaces with boundary; moduli space; KdV equations A. Buryak, \textit{Equivalence of the open KdV and the open Virasoro equations for the moduli space of Riemann surfaces with boundary}, arXiv:1409.3888 [INSPIRE].
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Sarkisov program; Mori fiber space Hacon, C. D.; Mckernan, J., \textit{the sarkisov program}, J. Algebraic Geom., 22, 389-405, (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) principal bundles; moduli
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves; GLV-GLS method; scalar multiplication; twisted Edwards curve; side-channel protection; multicore computation Longa, P., Sica, F., Smith, B.: Four-dimensional Gallant-Lambert-Vanstone scalar multiplication. In: Asiacrypt 2012, pp. 718--739 (2012). Citations in this document: {\S}1.1
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic cycle; iterated integral; hypergeometric function
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) cohomology groups of an analytic line bundle over a complex torus
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) AdS/CfT; non-planar diagrams; dilatation operator Kimura, Y., Non-planar operator mixing by Brauer representations, Nucl. Phys., B 875, 790, (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) phylogenetics; configuration spaces; associahedron; tree spaces S. Devadoss and J. Morava, \textit{Navigation in tree spaces}, Adv. Appl. Math., 67 (2015), pp. 75--95.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic fibrations; \(K3\) surfaces; lattices; symplectic automorphisms Garbagnati A and Sarti A 2009 Elliptic fibrations and symplectic automorphisms on K3 surfaces \textit{Commun. Algebra}37 3601--31
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hypersurfaces; arithmetically Cohen-Macaulay bundles Tripathi, A., Splitting of low-rank ACM bundles on hypersurfaces of high dimension, Commun. Algebra, 44, 3, 1011-1017, (2016)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Naor-Reingold pseudo-random function; linear complexity; elliptic curves Cruz, M.; Gómez, D.; Sadornil, D., On the linear complexity of the Naor-Reingold sequence with elliptic curves, Finite Fields Appl., 16, 329-333, (2010)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(K3\) surface; non-symplectic automorphism Shingo Taki, Classification of non-symplectic automorphisms of order 3 on \?3 surfaces, Math. Nachr. 284 (2011), no. 1, 124 -- 135.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hochster's theta invariant; isolated hypersurface singularity; Hodge-Riemann bilinear relations; Tor-rigidity; Chern character; étale cohomology; singular cohomology; Hilbert series Moore, W. F.; Piepmeyer, G.; Spiroff, S.; Walker, M. E., \textit{hochster's theta invariant and the Hodge-Riemann bilinear relations}, Adv. Math., 226, 1692-1714, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Artin stacks; geometric invariant theory; moduli spaces J. Alper, Good moduli spaces for Artin stacks, preprint (2008), .
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) uniform distribution subgroup; Brauer group Greenfield, G. R.; Mollin, R. A.: The uniform distribution group of a commutative ring. J. algebra 108, 179-187 (1987)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) dual family of submanifolds; integral geometry; admissible double fibration; covering map A. B. Goncharov, Admissible families of \(k\)-dimensional submanifolds , Dokl. Akad. SSSR 300 (1988), no. 3, 535-539.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) A. O. Smirnov, ''The elliptic solutions of integrable nonlinear equations,'' Mat. Zametki [Math. Notes], 46 (1989), no. 5, 100--102.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) monomial ideal; toric algebra; Hilbert scheme; local cohomology; multigraded polynomial rings E. Miller and B. Sturmfels, \textit{Combinatorial commutative algebra}, Graduate Texts in Mathematics volume 227, Springer, Germany (2005).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperplane arrangements; minimality; local system cohomology Yoshinaga, M., Minimality of hyperplane arrangements and basis of local system cohomology, (Singularities in geometry and topology, IRMA lect. math. theor. phys., vol. 20, (2012), Eur. Math. Soc. Zürich), 345-362
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) supersingular abelian varieties; Shimura varieties; orthogonal groups
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) noncommutative algebraic geometry; spectrum of an abelian category; localizations; canonical topologies A. L. Rosenberg, Noncommutative local algebra, Geometric and Functional Analysis 4 (1994), 545--585.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Picard-Lefschetz theory; \(\mathbb{C}^\ast\)-action; Fukaya category; Floer cohomology; symplectic manifold P. Seidel, Picard-Lefschetz theory and dilating \(\mathbb{C}^{*}\)-actions, J. Topol. 8 (2015), no. 4, 1167--1201.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Thom-Sebastiani Theorem; Künneth formula; nearby cycle; vanishing topos; convolution Illusie, L.: Around the Thom-Sebastiani theorem, with an appendix by Weizhe Zheng. Manuscr. Math. (2016). 10.1007/s00229-016-0852-0
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) nonnormal singularities; simultaneous normalisation; small modifications
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) root number; fibers of elliptic surfaces E. Manduchi. Root Numbers of fibers of elliptic surfaces. Compositio Math., 99(1) (1995), 33--58.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) symplectic groups; invariant subfield Chu, H.: Supplementary note on ''rational invariants of certain orthogonal and unitary groups''. Bull. London math. Soc. 29, 37-42 (1997)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Noether-Lefschetz theorem; nontrivial complete intersection curves contained in a general hypersurface; Hilbert schemes; Hilbert functions Szabó, E.: Complete intersection subvarieties of general hypersurfaces, Pacific J. Math. 175, No. 1, 271-294 (1996)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) formally real field; regularly r-closed fields; pseudo-real closed fields; ordered fields; existentially closed; axiomatizable; irreducible variety; PRC-field Basarab, Serban A.: Definite functions on algebraic varieties over ordered fields. Rev. roumaine math. Pures appl. 29, 527-535 (1984)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real algebraic variety; reductive group; positive polynomial functions; quotient variety; Borel measure; moment problems J. Cimpric, S. Kuhlmann, and C. Scheiderer, \textit{Sums of squares and moment problems in equivariant situations}, Trans. Amer. Math. Soc., 361 (2009), pp. 735--765.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) very ampleness; spannedness; embedding; abelian surfaces; ample line bundle; effective divisor Terakawa, H., The \textit{k}-very ampleness and \textit{k}-spannedness on polarized abelian surfaces, Math. Nachr., 195, 1, 237-250, (1998)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) DOI: 10.1016/j.crma.2006.11.033
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Higgs bundle; principal bundle; Morse flow Biswas I., Wilkin G.: Morse theory for the space of Higgs G-bundles. Geom. Dedicata 149, 189--203 (2010)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Lech problem; \(L\)-algebras; local rings
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Drinfeld modules; local shtukas; complex multiplication; Artin \(L\)-series
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves; scalar multiplication; point arithmetic; double-base number system
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Riemann-Hurwitz formula; virtual tangent bundle; homology theory; generalized monoidal transformation; stratified pseudomanifold; signature; Chern-Schwartz-MacPherson class; homology L-class; cohomology signature class; blowing-up process
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic divisibility sequences; elliptic nets; division polynomial; Edwards curves
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) local field; categorical characterization
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non-commutative crepant resolutions; Hibi rings; class groups
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Łojasiewicz exponent near the fibre; Puiseux expansion at infinity Vui H.H., Duc N.H.: On the Łojasiewicz exponent near the fibre of polynomial mappings. Ann. Polon. Math. 94, 43--52 (2008)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) F-theory; M-theory
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) isolated hypersurface singularity; Lie algebra; moduli algebra
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ordinary K3 surfaces; finite fields
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Jordan property; automorphisms of projective varieties
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kähler-Einstein metrics; birational geometry; b-stability; Chow invariant Donaldson, S. K.: b-Stability and blow-ups. Proc. Edinb. Math. Soc. (2) \textbf{57}(1), 125-137 (2014)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) analytic stack; higher stack; Grauert's theorem; analytification; GAGA; rigid analytic geometry; Berkovich space; infinity category M. Porta and T.\ Y. Yu, Higher analytic stacks and GAGA theorems, preprint (2014), .
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli of stable vector bundles; elliptic surface; singularities; obstruction; Kodaira dimension
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Jacobian conjecture; Hadamard's theorem; global inversion theorem Balreira, E., Foliations and global inversion, Comment. Math. Helv., 85, 73-93, (2010)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic geometry textbook; algebraic variety; cohomology; plane curves; local theory
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Berkovich space; polydisc; tame ramification; graded commutative algebra Ducros, A., Toute forme modérément ramifiée d'un polydisque ouvert est triviale, Math. Z., 273, 331-353, (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grothendieck ring; motivic zeta function Larsen, M.; Lunts, V. A., \textit{motivic measures and stable birational geometry}, Mosc. Math. J., 3, 85-95, (2003)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) DOI: 10.4171/RSMUP/121-10
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) connection; relative moduli spaces; vanishing curvature; fundamental group of the Riemann surface Ramadas, T. R.: Faltings construction of the K -- Z connection. Comm. math. Phys. 196, 133-143 (1998)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) lines, grids; Hilbert function Guida M., Orecchia F.: Algebraic properties of grids of projective lines. J. Pure Appl. Algebra 208, 603--615 (2007)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) perfectoid space; Galois group; nondiscrete valuation; perfectoid \(K\)-algebra; rational subset
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) main conjecture; universal elements; local constants; twist operators; \(\mathbb{Z}_p\)-module
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) regular sequence; monomial conjecture; local ring; Koszul homology; modules of generalized fractions; determinantal map; poor M-sequences; local cohomology; Lichtenbaum-Hartshorne theorem O'Carroll L, Generalized fractions, determinantal maps, and top cohomology modules, J. Pure Appl. Algebra 32(1) (1984) 59--70
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) invariant theory Vinberg, È.~B., On invariants of a set of matrices, J. Lie Theory, 6, 2, 249-269, (1996)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kummer surfaces; resolving singularities of the quotient of a complex torus by a finite abelian group; Euler numbers; toroidal desingularization; string J. Halverson, C. Long and B. Sung, \textit{Algorithmic universality in F-theory compactifications}, \textit{Phys. Rev.}\textbf{D 96} (2017) 126006 [arXiv:1706.02299] [INSPIRE].
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Jacobian conjecture; content of polynomial; flat polynomial endomorphism
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) arithmetic intersection theory; Deligne-Mumford stacks H. Gillet, ''Arithmetic intersection theory on Deligne-Mumford stacks,'' in Motives and Algebraic Cycles, Providence, RI: Amer. Math. Soc., 2009, vol. 56, pp. 93-109.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Penrose twistor theory; Hopf bundle; homogeneous bundle; duality; Penrose transform; twistor transform
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli space; principally polarized abelian variety; crystalline cohomology; canonical lifting; Jacobian of an ordinary curve Dwork, B.; Ogus, A., \textit{canonical liftings of Jacobians}, Compositio Math., 58, 111-131, (1986)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) symplectic volume; moduli space Bennett, J., Cochran, D., Safnuk, B., Woskoff, K.: Topological recursion for symplectic volumes of moduli spaces of curves. Mich. Math. J. \textbf{61}(2), 331-358 (2012). arXiv:1010.1747
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) modular equation; complex multiplication
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real polynomial solving; intrinsic complexity; singularities; polar and bipolar varieties; degree of varieties B. Bank, M. Giusti, J. Heintz, L. Lehmann, and L. M. Pardo, \textit{Algorithms of intrinsic complexity for point searching in compact real singular hypersurfaces}, Found. Comput. Math. \textbf{12} (2012), no. 1, 75-122.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) decomposition attack; hyperelliptic curve; discrete logarithm problem; Weil descent attack Nagao, K-i; Hanrot, G. (ed.); Morain, F. (ed.); Thomé, E. (ed.), Decomposition attack for the Jacobian of a hyperelliptic curve over an extension field, 285-300, (2010), Heidelberg
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Conics; Coordinate Systems
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Amram, M; Teicher, M, Fundamental groups of some special quadric arrangements, Rev. Mat. Comput., 19, 259-276, (2006)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Pollard rho method; elliptic curve discrete logarithm; point halving; random walk Zhang F., Wang P.: Speeding up elliptic curve discrete logarithm computations with point halving. Des. Codes Cryptogr. \textbf{67}(2), 197-208 (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) projection
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) character sheaves; intersection cohomology; Fourier-Deligne transform Lusztig, G., Character sheaves and generalizations, (Etingof, P.; Retakh, V.; Singer, I., The Unity of Mathematics: In Honor of the Ninetieth Birthday of IM Gelfand, (2006), Birkhäuser), 443-455
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) philosophy of mathematics; history of mathematics (20th century); category theory; homological algebra; algebraic topology; algebraic geometry; foundations of mathematics Krömer, R. (2007). \textit{Tool and object: A history and philosophy of category theory}. Basel: Birkhäuser.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) AdS-CFT correspondence; Bethe ansatz Beccaria, M.; Levkovich-Maslyuk, F.; Macorini, G., On wrapping corrections to GKP-like operators, JHEP, 03, 001, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) fibration; slope; relative irregularity; Clifford index; linear stability M. Á. Barja and L. Stoppino, Linear stability of projected canonical curves with applications to the slope of fibred surfaces, J. Math. Soc. Japan 60 (2008), no. 1, 171-192.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) unitary cobordism; toric varieties; blow-ups; convex polytopes
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) plane sextics; torus type; fundamental groups; trigonal curve DOI: 10.2969/jmsj/06141131
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quantum dilogarithm; quantization; cluster varieties A.B. Goncharov, The pentagon relation for the quantum dilogarithm and quantized \( M_{0,5}\)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebro-geometric codes; rational points; Serre bound Kawakita, MQ, Certain sextics with many rational points, Adv. Math. Commun., 11, 289-292, (2017)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Deser, A., Lie algebroids, non-associative structures and non-geometric fluxes, Fortsch. Phys., 61, 1056, (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) holomorphic equivariant torsion; Riemann-Roch theorem; Arakelov geometry; equivariant Quillen metric; index theorem J.M. Bismut, S. Goette, Torsions analytiques eAquivariantes holomorphes, C. R. Acad. Sci. Paris 329 (I) (1999), 203-210.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Galois representations; semi-stable pseudodeformation rings; Hodge-Tate weights
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Conic section; points
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Siegel modular variety; subvariety; general type S. Tsuyumine: Multi-tensors of differential forms on the Siegel modular variety and on its subvarieties (preprint, 1985).
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.