text
stringlengths
2
1.42k
label
int64
0
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) minimal model; reduction map; abundance Yoshinori Gongyo & Brian Lehmann, ``Reduction maps and minimal model theory'', Compos. Math.149 (2013) no. 2, p. 295-308
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Mumford-Tate conjecture; abelian varieties; Shimura varieties Vasiu, A., \textit{some cases of the Mumford-Tate conjecture and Shimura varieties}, Indiana Univ. Math. J., 57, 1-75, (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Pfaffian quadratic singularity; theta-divisor of the Prym variety; singularities with tangent cone; Mumford singularities V. Kanev,Quadratic singularities of the Pfaffian theta divisor of a Prym variety, Math. Notes of the Ac. of Sc. of the USSR,31 (1982), 301--305.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite groups; finite simple groups; applications of simple groups; Brauer groups; Riemann surfaces; polynomials; function fields Guralnick, Robert, Applications of the classification of finite simple groups.Proceedings of the International Congress of Mathematicians---Seoul 2014. Vol. II, 163-177, (2014), Kyung Moon Sa, Seoul
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational points; rationally connected varieties Colliot-Thélène, J.-L., Arithmetic Geometry (CIME 2007), Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences, 1-44, (2011), Springer LNM
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Campesato, JB, An inverse mapping theorem for blow-Nash maps on singular spaces, Nagoya Math. J., 223, 162-194, (2016)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Shimura curves; QM type abelian surfaces; Picard modular forms; hypergeometric functions; false elliptic curves; complex multiplication
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grossberg-Karshon twisted cubes; character formulae; pattern avoidance
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Euler characteristic; Riemann-Roch theorem; Chern class; Galois cover; \(K\)-group; adeles; tame symbol T. Chinburg, G. Pappas and M.\ J. Taylor, Higher adeles and nonabelian Riemann-Roch, preprint (2014), .
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) valuation ring; weakly unramified extension; separable field extension; flat algebra; flat morphism
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) germs of holomorphic functions; Poincaré series
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hypersurfaces Arrondo E., Sendra J., Sendra J.R.: Parametric generalized offsets to hypersurfaces. J. Symbolic Comput. 23, 267--285 (1997)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Calabi-Yau threefolds; Donaldson-Thomas theory; vanishing cycle sheaf
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) automorphism group; Galois point; icosahedral group; plane curve
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Erdös-Ulam problem; integral distances; rational distances
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) odd sections; even sections; ample symmetric line bundle; abelian surface; Kummer surface Bauer, Th., Projective Images of Kummer Surfaces, Math. Ann., 1994, vol. 299, pp. 155--170.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic stability; abelian category of coherent sheaves; Gieseker stability Rudakov A., Stability for an abelian category, J. Algebra, 1997, 197(1), 231--245
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) discrete valuation ring; stable reductions of curves; rigid analysis Bosch, S.; Lütkebohmert, W., Stable reduction and uniformization of abelian varieties I, Math. Ann., 270, 349-379, (1985)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Birational transformations; nilpotent groups \beginbarticle \bauthor\binitsJ. \bsnmDéserti, \batitleSur les sous-groupes nilpotents du groupe de Cremona, \bjtitleBull. Braz. Math. Soc. (N.S.) \bvolume38 (\byear2007), no. \bissue3, page 377-\blpage388. \endbarticle \OrigBibText \beginbarticle \bauthor\binitsJ. \bsnmDéserti, \batitleSur les sous-groupes nilpotents du groupe de Cremona, \bjtitleBull. Braz. Math. Soc. (N.S.) \bvolume38 (\byear2007), no. \bissue3, page 377-\blpage388. \endbarticle \endOrigBibText \bptokstructpyb \endbibitem
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chow motives; noncommutative motives; Kimura and Schur finiteness; motivic measures; motivic zeta functions G. Tabuada, Chow motives versus noncommutative motives, J. Noncommut. Geom. 7 (2013), no. 3, 767-786.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) asymptotic invariants of linear series; Newton-Okounkov bodies; ampleness and nefness of line bundles; moving Seshadri constants; jet separation Küronya, A.; Lozovanu, V., Infinitesimal Newton-Okounkov bodies and jet separation, (2015)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non commutative algebraic geometry; surface; blow up; graded algebras of Gelfand-Kirillov dimension three; Abelian categories; Rees algebra; pseudo-compact rings; completion functors; derived categories; Del Pezzo surfaces; quantum version of projective three space M. Van~den Bergh, \emph{Blowing up of non-commutative smooth surfaces}, Mem. Amer. Math. Soc. \textbf{154} (2001), no.~734, x+140. \MR{1846352 (2002k:16057)}
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Lichtenbaum-Quillen conjecture; K-theory with coefficients; Atiyah- Hirzebruch spectral sequence; values of zeta-functions R. Thomason, The Lichtenbaum-Quillen conjecture for K/l[{\(\beta\)}-1], Proc. 1981 Conference at Univ. Western Ontario, to appear.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grassmannian
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic function field; Hasse-Witt invariants; Deuring-Shafarevich formula; Galois group; maximal unramified p-extension; p-profinite completion
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Karoubi-Villamayor K-functor; Bloch's formula; Chow group
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic transformation groups; classification of normal imbeddings of spherical homogeneous spaces Pauer, Franz: Normale einbettungen von sphärischen homogenen räumen, DMV-semin. 13, 145-155 (1989)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Integrable hydrodynamic type system; hydrodynamic reductions; pseudopotential A. V. Odesskii, ''A family of (2+1)-dimensional hydrodynamic type systems possessing pseudopotential,'' Selecta Math. (to appear); arXiv:0704.3577v3 [math.AP] (2007).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Baldassarri, F.: Radius of convergence of \(p\)-adic connections and the Berkovich ramification locus. Math. Ann. 10.1007/s00208-012-0866-1
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) normalization algorithm; radical ideal; implementation; normalization of the plane cuspical curve W. Decker, G.-M. Greuel, T. de Jong, G. Pfister, The normalization: a new algorithm, implementation and comparisons, in: Computational Methods for Representation of Groups and Algebra (Essen, 1997), Birkhaüser, Basel, 1999, pp. 177--185.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) subanalytic set; \(D\)-semianalytic set; affinoid variety; resolution of singularities
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) supergeometry; AdS/CFT correspondence; representations of Lie superalgebras; twistor theory; scattering amplitudes
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tautological rings; moduli spaces of curves; Chow motives; twisted commutative algebras
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gao S., Shokrollahi M.: Computing roots of polynomials over function fields of curves. In: Coding Theory and Cryptography: From Enigma and Geheimschreiber to Quantum Theory. Springer, Berlin, pp. 214--228 (2000).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric geometry; Fano varieties; weak Fano varieties; building sets; nested sets; graph associahedra; reflexive polytopes; graph cubeahedra; root systems
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Demazure models; fan; action of the Galois group; complete variety over a nonclosed field
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) lower bounds; barriers; partial derivatives; flattenings
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) deformation; space curve; postulation; Hilbert scheme; moduli of curves; maximal rank conjecture E. Ballico and Ph. Ellia, Beyond the maximal rank conjecture for curves in \(\mathbf P^3\) , in Space curves , Lecture Notes in Math., vol. 1266, Springer-Verlag, Berlin, 1987, pp. 1-23.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) modular curve; Atkin-Lehner involution; bielliptic curve; quadratic points
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brill-Noether theory of vector bundles; Lazarsfeld-Mukai bundle
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) phaseless rank; equimodular matrices; amoebas; semidefinite rank; polytopes
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gawedzki, K., Suszek, R.R., Waldorf, K.: Bundle gerbes for orientifold sigma models. Adv. Theor. Math. Phys. \textbf{15}, 621-688 (2011). [arXiv:0809.5125] [math-ph]
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real algebraic geometry; real algebraic varieties; complexification; Smith's theory; Galois-Maximal varieties; algebraic cycles; real algebraic models; algebraic curves; algebraic surfaces; topology of algebraic varieties; regular maps; rational maps; singularities; algebraic approximation; Comessatti theorem; Rokhlin theorem; Nash conjecture; Hilbert's XVI problem; Cremona group; real fake planes
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) minimal model program; flips; Fano varieties; canonical ring
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) intersection homology; Deligne sheaf; Verdier duality; Poincaré duality; blown-up cohomology
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Harder-Narasimhan filtrations; quasi-Tannakian categories
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Zariski's multiplicity conjecture; topological V-equivalent; topologically equisingular; Le number; aligned singularities Eyral C., IMPAN Lecture Notes 3, in: Topics in Equisingularity Theory (2016)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Tate conjecture; abelian and abeloid varieties; \(p\)-adic fields and \(p\)-adic uniformisation; \(p\)-adic Hodge theory; filtered \((\varphi, N)\)-module; totally degenerate reduction
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gorensteinness of ring of invariants of a linearly reductive group; canonical module; excellent action; determinantal rings Hochster M., The Canonical module of a ring of invariants
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) level structures on non-constant abelian varieties; degenerate fibers; Chern class; currents Noguchi, J.: Moduli space of abelian varieties with level structure over function fields. Internat. J. Math. 2 (1991), 183--194.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) dressing kernels; wave functions; spectral asymptotics Carroll, R.,Inverse Scattering and Applications, Contemp. Math. Vol. 122, Amer. Math. Soc., Providence, RI, 1991, pp. 23-28;NEEDS' 90, Springer-Verlag, New York, 1991, pp. 2-5.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) complex manifold; singular meromorphic foliation
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(\phi \)-module; strict ring; Dieudonné-Manin theorem; Harder-Narasimhan filtration
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic functions; space curves; quaternary quadratic forms
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Blanco, R, Desingularization of binomial varieties in arbitrary characteristic. part II: combinatorial desingularization algorithm, Q. J. Math., 63, 771-794, (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) line bundle over projective toric variety
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) irregular surfaces; classification of hyperelliptic surfaces C. Ciliberto, M. de Franchis and the theory of hyperelliptic surfaces, Studies in the history of modern mathematics, III, Rend. Circ. Mat. Palermo (2)(Suppl. 55) (1998) 45-73.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polygon; algebraic curve; algebraic dependence
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) amoeba; coamoeba; tropical geometry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) vector bundles; compact Riemann surfaces
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chipalkatti, J. V., Invariant equations defining coincident root loci, Arch. Math., 83, 5, 422-428, (2004)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) log abundance theorem; semilog canonical surfaces; Kodaira dimension Abramovich, D.; Fong, L.-Y.; Kollár, J.; McKernan, J., Semi log canonical surfaces, Flips and abundance for algebraic threefolds, Astérisque, 211, 139-154, (2002), MR1225842
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Weyl algebra; Gröbner basis; \(b\)-function; D-module Oaku, T.: Algorithms for b-functions, induced systems and algebraic local cohomology of D-modules. Proc. Japan acad. 72, 173-178 (1996)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic families; fundamental groups; de Rham cohomology; stacks; moduli spaces
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Cohen-Macaulay space; analytic spectrum; homological codimension; meromorphic function; normalization sheaf; Weierstrass algebra; local complex analysis; coherent analytic sheaves [28] R. Remmert, Local theory of complex spaces, Several complex variables, VII, Encyclopaedia Math. Sci. 74, Springer, Berlin, 1994, p. 7-96 &MR 13 | &Zbl 0808.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Shafarevich complexes; noncommutative complete intersections; homology algebras E. S. Golod, ''Homologies of the Shafarevich complex and noncommutative complete intersections,'' Fund. Prikl. Mat., 5, No. 1, 85--95 (1999).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic geometric codes; minimum distance; bounds on codes; order bound; algebraic curve Beelen P.: The order bound for general algebraic geometric codes. Finite Fields Appl. 13(3), 665--680 (2007)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Algebraic functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) swung surfaces; revolution surfaces; real and complex surfaces; rational parametrization; ultraquadrics Andradas, Carlos; Recio, Tomás; Sendra, J. Rafael; Tabera, Luis-Felipe; Villarino, Carlos: Reparametrizing swung surfaces over the reals, Appl. algebra eng. Commun. comput. 25, No. 1-2, 39-65 (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) monads; stable bundles; hypersurfaces; three-folds 10.1007/s00574-007-0067-9
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) arithmetic function; number of factorizations of an integer; group of rational points; elliptic curves
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non-archimedean valuation; Mumford curve; branched cover of the projective line van der Put, M.; Voskuil, H. H., Discontinuous subgroups of \(\operatorname{PGL}_2(K)\), J. Algebra, 271, 234-280, (2004)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) affine curves; irregular value J. Gwozdziewicz and A. Ploski, On the singularities at infinity of plane algebraic curves, Rocky Mountain J. Math. 32 (2002), 139--148.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) index; bordism; manifold; Thom's isomorphism; resolving singularities; submanifolds; signature; characteristic classes 19.D.~Sullivan, René Thom's work on geometric homology and bordism. Bull. Am. Math. Soc. 41, 341-350 (2004)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) twisted homogeneous coordinate ring; torsion modules M. Artin and M. Van den Bergh, ''Twisted homogeneous coordinate rings,''J. Algebra,133, No. 2, 249--271 (1990).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(A\)-infinity algebras; Ext-algebras; Koszul dualities; projective complete intersections; derived categories; free resolutions; differential graded algebras; Clifford algebras; coherent sheaves Baranovsky, V.: BGG correspondence for projective complete intersections. Int. Math. Res. Not. \textbf{2005}(45), 2759-2774
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) orbifold; flop; Ruan cohomology Chen, B., Li, A., Zhang, Q., et al.: Singular symplectic flops and Ruan cohomology. Topology, 48, 1--22 (2009)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic groups; anisotropic groups; projective spaces; simple connected groups; Zariski topology; maximal torus; root system; group schemes B. Weisfeiler, ''On abstract homomorphisms of anisotropic algebraic groups over real-closed fields,'' J. Algebra,60, No. 2, 485--519 (1979).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) duality pairing; higher Chow groups; complete intersections
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) affine Grassmannian; Langlands dual group; Toda lattice Bezrukavnikov, R.; Finkelberg, M., \textit{equivariant Satake category and Kostant-Whittaker reduction}, Mosc. Math. J., 8, 39-72, (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) multiplihedron; associahedron; nodal disk; metric tree; moment polytope; moduli spaces of stable quilted discs; colored metric ribbon trees; stable scaled marked curves S. Ma'u, C. Woodward, \textit{Geometric realizations of the multiplihedra}, Compos. Math. \textbf{146} (2010), no. 4, 1002-1028.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic or analytic subset of the manifold of all lines in complex n-space; line complexes; decomposition of admissible line complexes; critical points; Grassmannians; subsets of Grassmann bundles as differential equations K. Maius, The structure of admissible line complexes in \(\mathbbCP^n\) , Trans. Mosc. Math. Soc. 39 (1981), 195-226.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic curves; special linear series; Brill-Noether theory
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sums of units; theorem of Picard-Borel; rational points; Hilbert's irreducibility theorem; finiteness of number of holomorphic mappings; quasiprojective spaces; de Franchis theorem
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian varieties; Tate modules Zarhin Yu.G., Homomorphisms of abelian varieties over geometric fields of finite characteristic, J. Inst. Math. Jussieu, 2013, 12(2), 225--236
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Noether-Lefschetz locus; algebraic cycle
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) variation of Hodge structures; vanishing theorem
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Zorich-Kontsevich conjecture; Lyapunov exponents of the Teichüeller flow on the moduli space; compact Riemann surface Avila, A., Viana, M.: Dynamics in the moduli space of abelian differentials. Port. Math., 62, 531--547 (2005)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) fibre product of Noetherian rings; prime ideals of a fibre product of rings; Noetherian schemes DOI: 10.1017/S0305004100062794
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) A. Surroca. \textit{Sur l'effectivité du théorème de Siegel et la conjecture abc}. J. Number Theory, \textbf{124} (2007), 267-290.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) DOI: 10.1088/0305-4470/39/45/027
0