text
stringlengths
2
1.42k
label
int64
0
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stable curves of non compact type; limits of Weierstrass points on reducible curves Coppens, Limit Weierstrass schemes on stable curves with 2 irreducible components, Atti Accad. Naz. Lincei 9 pp 205-- (2001)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rigidity; infinitesimal deformations of a two-dimensional cusp singularity [Be 1] K. Behnke. Infinitesimal deformations of cusp singularities. Math. Ann. 265, 407--422, 1983
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperbolic fibre space; higher dimensional analogue of Mordell's conjecture for curves; hyperbolic manifolds; algebraic families of hyperbolic varieties; Mordell's conjecture over function fields Noguchi, J.Hyperbolic fiber spaces and Mordell's conjecture over function fields, Publ. Research Institute Math. Sciences Kyoto University21, No. 1 (1985), 27--46.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) basic semi-algebraic set; quadratic functions; sign conditions; quadratic-ring equivalent Lombardi, H.; Mnev, N.; Roy, M. -F.: The positivstellensatz and small deduction rules for systems of inequalities. Math. nachr. 181, 245-259 (1996)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Itoyama, H.; Oota, T.; Yoshioka, R., 2\textit{D-}4\textit{D connection between q-Virasoro/W block at root of unity limit and instanton partition function on ALE space}, Nucl. Phys., B 877, 506, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Cohen-Macaulay modules; Sklyanin algebra; graded module; Hilbert series; Gelfand-Kirillov dimension Levasseur, Thierry; Smith, S. Paul, Modules over the \(4\)-dimensional Sklyanin algebra, Bull. Soc. Math. France, 121, 1, 35-90, (1993)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) diagonal equations; cyclotomic classes; cyclotomic numbers; number of points on finite diagonal curves; finite fields
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) surface singularity; deformation; modality; pluri-genus; Milnor number; Tjurina number Okuma T. The second pluri-genus of surface singularities. Compos Math, 1998, 110: 263--276
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Spec; depth; Cohen-Macaulay local ring
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) intersection theory; finite fields; cohomological methods
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) key distribution; secure communication; ad hoc networks; privacy; graph theory; block designs; Steiner systems; combinatorics Y. Desmedt, N. Duif, H. van Tilborg, and H. Wang, ''Bounds and constructions for key distribution schemes,'' Adv. Math. Commun., vol. 3, no. 3, pp. 273--293, Aug. 2009.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Generalized complex geometry; T-duality; Courant reduction; D-brane G.R. Cavalcanti and M. Gualtieri, \textit{Generalized complex geometry and T-duality}, arXiv:1106.1747 [INSPIRE].
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quotient of complex surface under the action of automorphism group; Enriques surfaces Mukai, [Mukai and Namikawa 84] S.; Namikawa, Y., Automorphisms of Enriques surfaces which act trivially on the cohomology groups., \textit{Invent. Math.}, 77, 383-397, (1984)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Tate pairing; robust codes; fault-tolerant
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polyhedron
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) canonical model of compact Kähler manifolds; canonical ring; effective divisor; log-terminal singularity Nakayama, N.: The singularities of the canonical model of complex K?hler manifolds. Math. Ann.280, 509-512 (1988)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli space of semistable rank 2 bundles; complete surface; Chern class Hulek, Sur l'espace de modules des faisceaux stables de rang 2, de classes Chern (0,3) sur P2, Ann. Inst. Fourier 39 pp 251-- (1989)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) confinement; duality in gauge field theories; solitons monopoles and instantons Chatterjee, C.; Lahiri, A., Flux dualization in broken SU(2), JHEP, 02, 033, (2010)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Knizhnik-Zamolodchikov equations; Hitchin connection; conformal blocks; non-abelian theta functions [3] Prakash Belkale, &Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras&#xJ. Math. Pures Appl. (9)98 (2012) no. 4, p.~367Article | &MR~29 | &Zbl~1277.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Rodier, F.; Sboui, A., LES arrangements minimaux et maximaux d'hyperplans dans \(\mathbb{P}^n(\mathbb{F}_q)\), C. R. math. acad. sci. Paris, 344, 287-290, (2007)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) divisor of a rational normal scroll; minimal free resolution; arithmetically Cohen-Macaulay E. Park, On syzygies of divisors on rational normal scrolls, Math. Nachr. 287 (2014), no. 11-12, 1383--1393.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Y. Hu, A compactification of open varieties, Trans. Amer. Math. Soc. 355 (2003), 4737--4753. JSTOR:
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Real structures; real Campedelli surfaces; deformation type; DIF=DEF problem Kulikov, Vi.k S.; Kharlamov, V. M., Surfaces with DIF\(###\)DEF real structures, Izv. Ross. Akad. Nauk, Ser. Mat., 70, 135-174, (2006)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) varieties over a finite fields; zeta functions; bielliptic surfaces; albanese mapping; elliptic curves; étale cohomology; Frobenius morphism; isogeny class Рыбаков, С. Ю., Дзета-функции биэллиптических поверхностей над конечными полями, Матем. заметки, 83, 2, 273-285, (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) formal deformation; singular deformation; Lie algebra
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) D-brane; F-theory; superpotential; mirror symmetry; Calabi-Yau manifold; Ooguri-Vafa invariant
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gorenstein defect category; triangular matrix algebra; recollement; Gorenstein algebra
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) categorification; quantum group; quantum \(sl(n)\); iterated flag variety; 2-representation; 2-category Khovanov, M.; Lauda, A., A categorification of quantum \(\mathfrak{sl}_n\), Quantum Topol., 1, 1, 1-92, (2010)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) dimer models; superconformal field theories; bipartite graphs; quivers with relations; McKay quivers; moduli spaces; representations of quivers; crepant resolutions; quotient singularities A. Ishii and K. Ueda, \textit{On moduli spaces of quiver representations associated with dimer models}, arXiv:0710.1898.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) formal principle; exceptional divisor; algebraic versal deformations Popescu, D.; Roczen, M.: Algebraization of deformations of exceptional couples. Rev. roumaine 33, No. 3, 251-260 (1988)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) harmonic spinors; index Kotschick, D.: Non-trivial harmonic spinors on generic algebraic surfaces. Proc. amer. Math. soc. 124, No. 8, 2315-2318 (1996)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) linear derivations; Lie algebra; formal differential operators; tensor algebra; Gelfand-Kirillov dimension; symmetric algebra; smooth affine variety; global differential operators S. P. Smith, Gel\(^{\prime}\)fand-Kirillov dimension of rings of formal differential operators on affine varieties, Proc. Amer. Math. Soc. 90 (1984), no. 1, 1 -- 8.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) higher genus curves; visualisation; Brauer-Manin obstruction; Shafarevich-Tate group A. Arnth-Jensen , E.V. Flynn , Supplement to: Non-trivial \(\Sha\) in the Jacobian of an infinite family of curves of genus 2 . Available at: http://people.maths.ox.ac.uk/flynn/genus2/af/artlong.pdf [2] N. Bruin , E.V. Flynn , Exhibiting Sha[2] on Hyperelliptic Jacobians . J. Number Theory 118 ( 2006 ), 266 - 291 . MR 2225283 | Zbl 1118.14035
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bogomolov property; elliptic curve; Weil height; Néron-Tate height
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian Galois extensions; relative Brauer groups; cyclic extensions; indecomposable division algebras of prime exponent; central simple algebras; Brauer class; rational function fields
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) graded rings; noncommutative geometry D. Rogalski and J. J. Zhang, Canonical maps to twisted rings, Mathematische Zeitschrift 259 (2008), 433--455.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) commutative algebra; integral domains; valuations; Hahn field; minimal ring extension; maximal subalgebra; algebraically closed field; birational geometry; spectrum of a ring
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) homotopy \(K\)-theory; noetherian schem; Krull dimension Kerz, Moritz; Strunk, Florian, On the vanishing of negative homotopy \(K\)-theory, J. Pure Appl. Algebra, 221, 7, 1641-1644, (2017)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) F. Zerbini, \textit{Single-valued multiple zeta values in genus 1 superstring amplitudes}, arXiv:1512.05689 [INSPIRE].
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian surfaces; nef cone; elliptic curves; volume functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ramified covering of Dedekind schemes; second Stiefel-Whitney class Hélène Esnault, Bruno Kahn, and Eckart Viehweg, Coverings with odd ramification and Stiefel-Whitney classes, J. Reine Angew. Math. 441 (1993), 145 -- 188.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) efficient software implementation; cryptographic engineering; elliptic curve cryptography; finite field arithmetic Aranha, D. F.; Dahab, R.; López, J.; Oliveira, L. B., Efficient implementation of elliptic curve cryptography in wireless sensors, Adv. Math. Commun., 4, 2, 169-187, (2010)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polarized K3 surfaces; reflexive pairs; Fourier-Mukai transformation; coarse moduli space Bartocci, C.; Bruzzo, U.; Hernández~Ruipérez, D., Moduli of reflexive \(K 3\) surfaces, (Complex analysis and geometry (Trento, 1995), Pitman res. notes math. ser., vol. 366, (1997), Longman, Harlow), 60-68
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) semistable degenerate orthogonal bundles; semistable symplectic bundles; vector bundles on curve; ramified covering; moduli spaces; quadratic forms; symplectic forms Bhosle U, Degenerate symplectic and orthogonal bundles on \(\mathbb{P}\)1,Math. Ann. 267 (1984) 347--364
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Halle, LH; Nicaise, J, The Néron component series of an abelian variety, Math. Ann., 348, 749-778, (2010)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kuniba, Atsuo and Sergeev, Sergey, Tetrahedron equation and quantum {\(R\)} matrices for spin representations of {\(B^{(1)}_n\)}, {\(D^{(1)}_n\)} and {\(D^{(2)}_{n+1}\)}, Communications in Mathematical Physics, 324, 3, 695-713, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) homeomorphism type; complete intersection; Pontryagin classes; Euler characteristic
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) complex projective algebraic variety; cycle; divisor; monodromy representation Gennaro, V; Franco, D, Monodromy of a family of hypersurfaces, Ann. Sci. Éc. Norm. Supér. 4e Série, 42, 517-529, (2009)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) F-form; moduli space of pointed stable curves; rationality; twisted form of moduli spaces.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Ihara representation; mod \(l\) Milnor invariants; dilogarithmic mod \(l\) Heisenberg coverings; triple power residue symbols
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) passport of a snake
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compact Riemann surfaces; vector bundles; ruled manifold; extension; fundamental group; representation; moduli
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) V. S. Moldavskiĭ, Moduli of elliptic curves and rotation numbers of diffeomorphisms of the circle, Funct. Anal. Appl., 35, 234, (2001)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hypercohomology; truncated twisted holomorphic de Rham complex; Leray-Hirsch theorem; Künneth theorem; Poincaré-Serre duality theorem; blowup formula
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) containment problem; linear minimal free resolution; resurgence; symbolic power
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) flag varieties; secant varieties; identifiability
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hodge number; complete intersection; nodal threefold; Calabi-Yau; defect
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gaussent, S.: The fibre of the Bott-Samelson resolution. Indag. Math. N. S. \textbf{12}(4), 453-468 (2001)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Witt vectors; de Rham-Witt complex; perfectoid rings
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli space of flat bundles; irregular singularities; de Rham cohomology
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) (symmetric) Kronecker coefficients; non saturation; geometric complexity theory; orbit closure of the determinant
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) complete intersection; Hadamard product; star configuration; Gorenstein
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) loops; algebraic groups; non-associative algebras; cogroups; coloops; formal diffeomorphisms
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Algebraic geometry; Proceedings; Conference; Berlin
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) cusp singularities; Rational singularities; plurigenera; normal singularities
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta; sigma; tau functions; Jacobi variety; integrable; dispersionless Previato, E.: Sigma function and dispersionless hierarchies. In: XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., vol. 1307, pp.~140-156. Am. Inst. Phys., Melville, New York (2010)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(K3\) surfaces; elliptic surfaces; Shioda-Inose structures Koike, K, Elliptic \(K3\) surfaces admitting a shioda-inose structure, Comment. Math. Univ. St. Pauli, 61, 77-86, (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chern classes; local complete intersection; isolated singularity
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bore holes; Quadratic surfaces
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Diophantine approximation; curves over finite fields; Vojta's conjecture Corvaja, P.; Zannier, U., Greatest common divisors of \(u - 1\), \(v - 1\) in positive characteristic and rational points on curves over finite fields, J. Eur. Math. Soc., 15, 1927-1942, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) 3-descent; elliptic curve; \(L\)-series; Birch--Swinnerton-Dyer conjecture; integral bases; ray class fields
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(K\)-group; semi-abelian varieties; product of curves over a finite field B. Kahn, Nullité de certains groupes attachés aux variétés semi-abéliennes sur un corps fini; application, C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 13, 1039--1042.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) curve; variety; genus; singularity; dimension; rational function; tangent space; surface; birational equivalence Reid, M.: Undergraduate algebraic geometry. London mathematical society student texts (1988)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic function field; strongly normal; weakly normal; movable singularity
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) higher Abel-Jacobi maps
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Néron-Severi group; Hilbert scheme; universal curve; Picard group
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sigma functions; Schur functions; \(C_{r,s}\) curve, Riemann singularity theorem Matsutani, S.; Previato, E., Jacobi inversion on strata of the Jacobian of the \(C_{rs}\) curve \(y^r=f(x)\) II, J. Math. Soc. Jpn., 66, 647-692, (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) H. P. McKean,Geometry of KdV (3): Determinants and unimodular isospectral flows, Comm. Pure Appl. Math.45 (1992), 389--415.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) canonical degeneration; principally polarized abelian varieties; theta divisor V. Alexeev and I. Nakamura, ''On Mumford's construction of degenerating abelian varieties,'' Tohoku Math. J., vol. 51, iss. 3, pp. 399-420, 1999.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) nearby cycle; étale cohomology; formal geometry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) effective divisor class; almost excellent effective divisors; linear systems of plane curves B. Harbourne, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc., 289 (1985), no. 1, 213--226.Zbl 0609.14004 MR 0779061
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(\mathbb{Q}\)-Gorenstein local rings; \(\mathbb{Q}\)-divisor; log terminal singularities Takagi , S. , Watanabe , K.I. ( 2004 ). When does the subadditivity theorem for multiplier ideals hold?Trans. Amer. Math. Soc.356(10):3951--3961 (electronic) .
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Elliptic curves; Galois representations; modular curves Fernández, J., Lario, J.-C. and Rio, A.: On twists of the modular curves \(X(p)\). Bull. London Math. Soc. 37 (2005), no. 3, 342-350.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) mapping class group; outer Galois representation; hyperbolic curve Iijima, Yu, Galois action on mapping class groups, Hiroshima Math. J., 45, 2, 207-230, (2015)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Avanzi, R., Cesena, E.: Trace Zero Varieties over Fields of Characteristic 2 for Cryptographic Applications. In: Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007. LNCS, vol.~4665, Springer, Heidelberg (2007)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) bitangent; dual of projective varieties; characteristic 2; ordinary varieties; rank of a projective variety Ballico E.: On the dual of projective varieties. Canad. Math. Bull. 34, 433--439 (1991)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Jacobians; Zeta functions; Hasse-Witt invariant
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bruinier, J. H.; Yang, T. H., \textit{CM-values of Hilbert modular functions}, Invent. Math., 163, 229-288, (2006)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stable curve; moduli space; Clifford theorem; Picard scheme; Brill-Noether Caporaso L.: Brill-Noether theory of binary curves. Math. Res. Lett. 17(2), 243--262 (2010)
0