text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Simpson moduli spaces; coherent sheaves; vector bundles on curves; singular sheaves O. Iena, A global description of the fine Simpson moduli space of \(1\)-dimensional sheaves supported on plane quartics, arXiv:1607.01319, 2016.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chern-Simons theory G. Bonelli, K. Maruyoshi and A. Tanzini, \textit{Quantum Hitchin Systems via {\(\beta\)}-deformed Matrix Models}, arXiv:1104.4016 [INSPIRE].
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) contact homology; good toric contact manifold; symplectic cones; symplectic reduction; Conley-Zehnder index; Reeb orbit M. Abreu, L. Macarini, Contact homology of good toric contact manifolds. Compos. Math. 148, 304--334 (2012)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) vector bundle; moduli space; generalized theta function; Gromov-Witten invariant Christian Pauly, La dualité étrange [d'après P. Belkale, A. Marian et D. Oprea], Astérisque 326 (2009), Exp. No. 994, ix, 363 -- 377 (2010) (French, with French summary). Séminaire Bourbaki. Vol. 2007/2008.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) torus action; toric variety; toric Chow quotient; toric Hilbert scheme O.V. Chuvashova, N.A. Pechenkin, Quotients of an affine variety by an action of a torus. February 2012. ArXiv e-prints arXiv:1202.5760.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(p\)-adic group; representation spaces; Bruhat-Tits building
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chen-Ruan cohomology; Hilbert schemes; crepant resolution conjecture; symmetric product
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gaussian maps; binary curves; Prym-canonical curves
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite fields; \((\mathbb F_q,\mathbb F_p)\)-polynomial; algebraic curves; rational points
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) affine Springer fibers; Vinberg semigroup; adjoint quotient Bouthier, A., Dimension des fibres de Springer affines pour LES groupes, Transform. Groups, 20, 615-663, (2015)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) singularities of maps; critical points of functions; monodromy; discriminants; stability; normal forms; mixed Hodge structure; characteristic classes Arnol'd, V. I.; Vasil'ev, V. A.; Goryunov, V. V.; Lyashko, O. V.: Singularities local and global theory in dynamical systems. Enc. math. Sc. 6 (1991)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) inverse scattering; Lax representation; Hitchin system Talalaev, Dmitry V., Quantum spectral curve method, Geometry and Quantization, Trav. Math., 19, 203-271, (2011), University Luxembourg, Luxembourg
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Enriques surfaces; hyperkähler manifold; Hilbert scheme; bielliptic surface Oguiso, K.; Schröer, S., Enriques manifolds, J. Reine Angew. Math., 661, 215-235, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational surface; basic representation; bundle
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric variety; Chow variety; geometric invariant theory; actions of algebraic groups; Chow quotient M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, ''Quotients of toric varieties,'' Math. Ann., vol. 290, iss. 4, pp. 643-655, 1991.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tropical geometry; elliptic curves Len, Y., Ranganathan, D.: Enumerative geometry of elliptic curves on toric surfaces. Israel J. Math. (\textbf{To appear})
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) mapping from a real algebraic set; semialgebraic set K. Kurdyka,Injective endomorphisms of real algebraic sets are surjective, Math. Ann.313 (1999) 69--82.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Steiner quartic; complex plane; homology planes; algebraic automorphisms T. tom Dieck,Symmetric homology planes, Math. Ann.286 (1990), 143--152.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hypersurface; Chern numbers
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) comparison of topologies; algebraic subgroup; Hausdorff topology; Zariski topology Winkelmann, J. : On Discrete Zariski Dense Subgroups of Algebraic Groups . Math. Nachr. 186, 285-302 ( 1997 ) MR 98d:20052 | Zbl 0897.14015
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) derived category; coherent sheaves; meager complexes; Hermitian vector bundles; Bott-Chern classes; multiplicative genera [10] Burgos~Gil (J.~I.), Freixas~i Montplet (G.), and Liţcanu (R.).-- Hermitian structures on the derived category of coherent sheaves, J. Math. Pures Appl. (9) 97 (2012), no.~5, 424-459. &MR~29 | &Zbl~1248.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Legrand, François Specialization results and ramification conditions Israel J. Math.214 (2016) 621--650 Math Reviews MR3544696
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) truncated polynomial algebras; de Rham-Witt complex; Verschiebung; nil groups Hesselholt, Lars; Madsen, Ib, On the \(K\)-theory of nilpotent endomorphisms.Homotopy methods in algebraic topology, Boulder, CO, 1999, Contemp. Math. 271, 127-140, (2001), Amer. Math. Soc., Providence, RI
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) set-theoretic complete intersections; monomial curves
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Valentino Tosatti, ''Nakamaye's theorem on complex manifolds'', , to appear in \(Proc. Symp. Pure Math.\), 2016
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) admissible cohomology; space curve; Rao function; Rao module [H3]\textsc{R. Hartshorne},\textit{Questions of Connectedness of the Hilbert Scheme of Curves in}\textbf{P}\^{}\{3\} preprint.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Poisson algebras; quadratic algebras; Leonard pairs; generalized eigenvalue problems
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) symmetric functions; \(k\)-Schur functions; affine Schubert calculus; dual graded graphs
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Schubert varieties; spherical varieties; proper permutations
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) conic-line arrangements; nodes; tacnodes; freeness; nearly freeness
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polyhedral product; moment-angle complex; cohomology; arrangements; stable splitting; simplicial wedge; Davis-Januszkiewicz space; Golodness; monomial ideal ring
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) integral Zariski decomposition; \(K3\) surface; Picard number 2
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Arrondo, E., \textit{line congruences of low order}, Milan J. Math., 70, 223-243, (2002)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) addition theorem for theta functions of Jacobian varieties; trilinear functional equations Бухштабер, В. М.; Кричевер, И. М., Интегрируемые уравнения, теоремы сложения и проблема римана--шоттки, УМН, 61, 1-367, 25-84, (2006)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) pluripotential theory; non-Archimedean Monge-Ampère equation; test ideals
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) plane quartic curves; Dixmier-Ohno invariants; stable reduction; reduction type
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) locally Nash groups; classification
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quasipositive link; \( \mathbb{C}\)-boundary; Thom conjecture
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves; modular forms; \(p\)-adic cohomology; zeta function; elliptic surfaces
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) degeneration of Riemann surfaces; topological monodromy; pseudo-periodic homeomorphism
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) expository article; balanced incomplete block designs; finite projective geometry
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) topological complexity; fundamental group
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) congruence of lines; Grassmannian; fundamental curve Arrondo, E., M. Bertolini and C. Turrini: Classi cation of smooth congruences with a fundamental curve. Projective Geometry with applications. Number 166 in LN. Marcel Dekker, 1994
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) indefinite binary quadratic forms; conics; elliptic curves
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric variety; equivariant sheaf; filtration; Cox presentation; minimal resolution Perling M, Graded rings and equivariant sheaves on toric varieties, Math. Nachr. 263 (2004) 181--197
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kronecker series; \(L\)-functions of symmetric powers of elliptic curves; Beilinson's conjecture; motivic cohomology groups; Bloch-Beilinson regulator; de Rham cohomology Mestre, J. -F.; Schappacher, N.: Séries de Kronecker et fonctions L des puissances symétriques de courbes elliptiques sur Q. Progr. math. 89, 209-245 (1991)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Séminaire; Théorie des nombres; Paris (France)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) characteristic \(p\); gap sequence; base point free linear subseries
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(p\)-adic differential operators; local indices; Swan conductor Matsuda, S. : '' Local indices of p-adic differential equations corresponding to Artin-Schreier-Witt covering '', Preprint 1993, Tokyo.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian scheme; \(p\)-adic field; Frobenius; derivatives; differential algebra Buium A.: Differential characters and characteristic polynomial of Frobenius. J. Reine Angew. Math. 485, 209--219 (1997)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polynomial map; genus 2 surface
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) variation of Hodge structures; limit of Hodge structures; nilpotent orbit; log geometry; log Riemann-Hilbert correspondence Kazuya Kato, Toshiharu Matsubara, and Chikara Nakayama, Log \?^{\infty }-functions and degenerations of Hodge structures, Algebraic geometry 2000, Azumino (Hotaka), Adv. Stud. Pure Math., vol. 36, Math. Soc. Japan, Tokyo, 2002, pp. 269 -- 320.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brody curves; singular direction; \(T\)-direction; positive energy
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) geometric Frobenius map; \(L\)-function; moment \(L\)-functions Fu L., Wan D.: Moment L-functions, partial L-functions and partial exponential sums. Math. Ann. 328, 193--228 (2004)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian varieties over arithmetic ground fields; moduli of abelian varities; Dieudonné modules
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) postulation; secant line; maximal rank
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) generic Torelli; hypersurfaces; period map
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polar curve; isolated singularity; complete intersection; Milnor lattice; parabolic; hyperbolic W. Ebeling, ''The monodromy groups of isolated singularities of complete intersection,''Lect. Notes Math.,1923 (1987).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) domain of periods; Torelli theorem; Kählerian K 3 surfaces; Hodge isometry; marked K 3 surface A. Beauville, Préliminaires sur les périodes des surfaces K3 , Astérisque 126 (1985), 91-97.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real curve; real theta characteristic; automorphism Biswas, I., Gadgil, S.: Real theta characteristics and automorphisms of a real curve. (2007) (Preprint)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Borel localization formula; push-forward; Gysin map; equivariant Pedroza, A.; Tu, LW, On the localization formula in equivariant cohomology, Topology Appl., 154, 1493-1501, (2007)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) textbooks; elliptic curves; modular curves; Riemann surfaces; complex tori; modular forms; zeta and \(L\)-functions; Fermat's last theorem; modularity theorem; Serre's conjectures J. Milne, \textit{Elliptic Curves}, BookSurge Publishers (2006).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) DOI: 10.1016/j.jpaa.2006.05.005
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) third moment of Kloosterman sums; number of rational points on smooth projective surfaces
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Betti number; Morse theory; fewnomial Bihan, F; Sottile, F, Betti number bounds for fewnomial hypersurfaces via stratified Morse theory, Proc. Am. Math. Soc., 137, 2825-2833, (2009)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) symmetric Toeplitz matrices; inverse eigenvalue problem; prescribed spectrum Friedland, SIAM Journal on Matrix Analysis and Applications 13 pp 1142-- (1992)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ring of invariants; codimension; defect N. L. Gordeev, ?Complexity of algebras of invariants of finite groups,? Dokl. Akad. Nauk SSSR,292, No. 3, 528?531 (1987).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kapustin A and Orlov D 2003 Vertex algebras, mirror symmetry, and D-branes: the case of complex tori \textit{Commun. Math. Phys.}233 79--136
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chern-Schwartz-MacPherson class; homogeneous space; Schubert variety; Demazure-Lusztig operator 10.1112/S0010437X16007685
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hodge theory; projective manifolds; mixed Hodge structures Mark Andrea de Cataldo, The Hodge theory of projective manifolds, Imperial College Press, London, 2007.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli spaces of algebraic curves; Betti numbers; dessins d'enfants Dunin-Barkowski, P.; Popolitov, A.; Shabat, G.; Sleptsov, A., On the homology of certain smooth covers of moduli spaces of algebraic curves, Differential Geom. Appl., 40, 86-102, (2015)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hopf algebra; Artin-Schreier DGA \(F_{p}\)-completion
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(j\)-multiplicity; \(\epsilon\)-multiplicity Jeffries, J.; Montaño, J.; Varbaro, M., Multiplicities of classical varieties, Proc. Lond. Math. Soc. (3), 110, 1033-1055, (2015)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli space of five lines; projection; quintic Del Pezzo surface
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Milnor number; Newton non-degenerate; jump Walewska J., The second jump of Milnor numbers, Demonstratio Math., 2010, 43(2), 361--374
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic Gaudin two-puncture model; finite-gap solutions; matrix Davey-Stewartson equation; theta functions; Hitchin system; algebraic-geometric symplectic form; inverse spectral sproblem
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Fano manifold Debarre, O., Kuznetsov, A.: Gushel-Mukai varieties: classification and birationalities, arXiv preprint arXiv:1510.05448 (2015)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Blekherman, G.; Iliman, S.; Kubitzke, M.: Dimensional differences between faces of the cones of nonnegative polynomials and sums of squares
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) del Pezzo surfaces; special Lagrangian fibrations; Strominger-Yau-Zaslow conjectures; affine structure; Floer-theoretical gluing method
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compact Riemann surface; generalized Brill-Noether number; Yang-Mills-Higgs functional; existence of stable vector bundles
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) focal locus; normal variety; degeneracy Fabrizio Catanese & Cecilia Trifogli, ``Focal loci of algebraic varieties. I'', Commun. Algebra28 (2000) no. 12, p. 6017-6057
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quiver representations; moduli spaces; Brauer groups; tautological bundles; quadrics
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) morphism of vector bundles; degeneracy locus; connectedness of the zero locus TU (L.) . - The Connectedness of Symmetric and Skew-Symmetric Degeneracy Loci : Even Ranks , Trans. Amer. Math. Soc., t. 313, 1989 , p. 381-392. MR 89i:14043 | Zbl 0689.14024
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moment angle complexes; toric space; higher derived functors; complement of coordinate subspace arrangement Allen, D.; La Luz, J.: The determination of certain higher derived functors of moment angle complexes. Topol. proc. 49 (2016)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Rees algebra; self-linked ideal; Cohen-Macaulayness; Gorensteinness; polynomial rings
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hasse-Weil-Serre bound; zeta function of curves over finite fields; rational points K. Lauter, Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields, Institut de Mathématiques de Luminy, preprint, 1999, pp. 99--29.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sections; elliptic surfaces
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Sperner property; weak order; Schubert polynomial; Macdonald identity
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) generalized pair; canonical bundle formula; subadjunction
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(K3\) surfaces; modular forms on symmetric domains
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Waldschmidt constant; Demailly's conjecture; Chudnovsky's conjecture; Nagata-Iarrobino conjecture
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grothendieck point residue mappings; local cohomology
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) birational transformations; degree growth
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) fat points; star configuration points; Hilbert functions
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.