text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraicity of surface; elliptic surface; logarithmic transformation; Kodaira dimension
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) geometry of surfaces; tangential singularities; swallowtail; parabolic curve; flecnodal curve; cusp of Gauss; godron; wave front; Legendrian singularities R. Uribe-Vargas, ''A Projective Invariant for Swallowtails and Godrons, and Global Theorems on the Flecnodal Curve,'' Moscow Math. J. 6, 731--768 (2006).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) A. Logan, ''The Kodaira dimension of moduli spaces of curves with marked points,'' Amer. J. Math., vol. 125, iss. 1, pp. 105-138, 2003.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Fermat curve; p-adic integration; torsion points on the jacobian; torsion packet Robert F. Coleman, Torsion points on Fermat curves, Compositio Math. 58 (1986), no. 2, 191 -- 208.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Arakelov geometry; conductor and discriminant; arithmetic Noether's formula
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) section conjecture; rational points; anabelian geometry; Shapiro's lemma Stix, J.: Trading degree for dimension in the section conjecture: the non-abelian Shapiro lemma. Math. J. Okayama Univ. 52, 29--43 (2010)Zbl 1190.14028 MR 2589844
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) multiple \(q\)-zeta value; \(q\)-deformation; Hilbert scheme; CW/DT correspondence Okounkov, A, Hilbert schemes and multiple \(q\)-zeta values, Funct. Anal. Appl., 48, 138-144, (2014)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Algebraic curves; polars; tangents and double tangents
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) automorphisms of varieties of general type; Fourier-Mukai transforms
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(p\)-divisible group; deformation space; Newton polygons
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic supergroup; super Hopf algebra; super; superscheme; super quotient scheme; K-functor; geometric superspace; Yetter-Drinfeld moduled; supermodule; supercomodule; bozonization A. N. Grishkov and A. N. Zubkov, ''Solvable, reductive and quasireductive supergroups,'' submitted to \textit{J. Alg.}; see arXiv: math.RT/1302.5648.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Séminaire; Analyse
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) modular curves; classification of Hilbert modular surfaces Bassendowski, D.: Klassifikation Hilbertscher Modulflächen zur symmetrischen Hurwitz-Maass-Erweiterung. Dissertation, Bonn, 1984
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rationally connected varieties, rational points Graber, T.: Rational Curves and Rational Points. International Congress of Mathematicians, vol. II, pp. 603--611. Eur. Math. Soc., Zürich (2006)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Rietsch, K., Closure relations for totally nonnegative cells in \(G/P\), Math. Res. Lett., 13, 5-6, 775-786, (2006)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) 10.1007/s00222-015-0595-7
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Breske, S.; Labs, O.; van Straten, D., Real line arrangements and surfaces with many real nodes, (Jüttler, B.; Piene, R., Geometric Modeling and Algebraic Geometry, (2008), Springer Berlin), 47-54
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) positive definite; discriminant; hyperderminant; characteristic polynomial; positive semi-definite; Hankel matrices
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) smooth separated schemes; relative tangent sheaves; cohomology sheaves; continuous Hochschild cochains; injective resolutions; Hochschild complexes; derived categories Amnon Yekutieli, Decomposition of the Hochschild complex of a scheme in arbitrary characteristic, Canad. J. Math. 54 (2002), no. 4, 866 -- 896. Amnon Yekutieli, The continuous Hochschild cochain complex of a scheme, Canad. J. Math. 54 (2002), no. 6, 1319 -- 1337.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sign determination; linear solving; complexity Perrucci, D, Linear solving for sign determination, Theor. Comput. Sci., 412, 4715-4720, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) automorphism; hyperelliptic curve; order : characteristic polynomial
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) projective hypersurfaces; weighted homogeneous singularities; syzygies; Koszul relations A. Dimca and G. Sticlaru, Syzygies of Jacobian ideals and weighted homogeneous singularities, J. Symbolic Comput. 74 (2016), 627-634.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stacks; moduli spaces; families of algebraic varieties; fibrations; degenerations; Shafarevich conjecture; deformation theory; Kodaira-Spencer maps S. J. Kovács, ''Subvarieties of moduli stacks of canonically polarized varieties: generalizations of Shafarevich's conjecture,'' in Algebraic Geometry-Seattle 2005. Part 2, Providence, RI: Amer. Math. Soc., 2009, vol. 80, pp. 685-709.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) geometric invariant theory; Kähler metrics; Kähler Ricci flows Phong D. and Sturm J., Lectures on stability and constant scalar curvature, Current developments in mathematics 2007, International Press, Somerville (2009), 101-176.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) convex optimization; sensitivity analysis; partial smoothness; identifiable surface; active sets; generic; second-order sufficient conditions; semialgebraic J. Bolte, A. Daniilidis, and A. S. Lewis, \textit{Generic optimality conditions for semialgebraic convex programs}, Math. Oper. Res., 36 (2011), pp. 55--70, .
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quadratic space; conic bundle surface; resolution of singularities; orders in quaternion algebras
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) desarguesian plane; elliptic cubic curve; Hasse-Weil bounds Keedwell A.D.: Simple constructions for elliptic cubic curves with specified small numbers of points. Eur. J. Comb. \textbf{9}, 463-481 (1988).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quiver representations; finite representation type; infinite representation type; quiver varieties; Hall algebras
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational points of algebraic curves; theorem of Mordell-Weil; effectivity; Diophantine approximation [9] J. Cassels, \(Mordell's finite basis theorem revisited\). Math. Proc. of the Cambridge Phil. Soc. 100 (1986), 31-41. &MR 8 | &Zbl 0601.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non-commutative geometry; space-time symmetries
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) plane algebraic curve; singular point
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) analytic superspaces; GAGA; Chow's lemma; families of compact super Riemann surfaces Rabin, J. M.; Topiwala, P.: Super Riemann surfaces are algebraic curves. (1988)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equations defining a subscheme; polynomial algebra; minimal system of homogeneous generators Dario Portelli and Walter Spangher, On the equations which are needed to define a closed subscheme of the projective space, J. Pure Appl. Algebra 98 (1995), no. 1, 83 -- 93.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) generators for algebra of invariants; set of invariants; finite field D. R Richman, On vector invariants over finite fields, Adv. in Math. 81 (1990), 30--65.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) nef tangent bundles; 3-folds; Fano manifold Campana, F. , Peternell, Th. : On the second exterior power of tangent bundles of 3-folds , Comp. Math 83 (1992), 329-346.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) resolution of singularities; equisingularity class; algebroid plane curve
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) smoothable; secant varieties; finite Gorenstein scheme; cactus variety; Veronese reembedding; Hilbert scheme Buczyński, J.; Jelisiejew, J., Finite schemes and secant varieties over arbitrary characteristic, Differential Geom. Appl., 55, 13-67, (2017)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Wronskian section; Weierstrass point; Wronskian bundles
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real algebraic curves; combinatorial patchworking; Ragsdale conjecture; number of ovals Itenberg, I.: On the number of even ovals of a nonsingular curve of even degree in \({\mathbb{R}}P^2\) . In: Topology, Ergodic Theory, Real Algebraic Geometry. Amer. Math. Soc. Transl. Ser. 2, vol. 202, pp. 121--129. Amer. Math. Soc., Providence (2001)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stable reduction; Mumford curve
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chiu-Chu Melissa Liu, Kefeng Liu, and Jian Zhou, On a proof of a conjecture of Mariño-Vafa on Hodge integrals, Math. Res. Lett. 11 (2004), no. 2-3, 259 -- 272.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) calibration; comass; area-minimizing surfaces Dadok, J.; Harvey, R., Calibrations on \({\mathbb{R}}^6\), Duke Math. J., 4, 1231-1243, (1983)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) set theoretic complete intersection curves; monoidal surfaces of degree 4
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quiver Grassmannians; cellular decomposition; property (S); cluster algebras
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) period domain; reductive group; isocrystal; étale cohomology
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Pál, A, Solvable points on projective algebraic curves, Can. J. Math., 56, 612-637, (2004)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian variety; inseparability; fixed points; Artin-Mazur zeta function; recurrence sequence; natural boundary
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ample subvarieties; ample vector bundles; extension theorem; Mori theory; Fano
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) framed bundle; moduli space; automorphism group; Higgs bundle
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) line-geometry; quadratic line complex; integral quadratic form; orbifold; automorph; commensurability class; projective equivalence; rational equivalence; Conway's excesses
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polyhedral filtration; Newton polyhedron; standard base; maximal contact Boris Youssin, Newton polyhedra of ideals, Mem. Amer. Math. Soc. 87 (1990), no. 433, i -- vi, 75 -- 99.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \({\mathcal D}\)-modules; logarithmic geometry; duality; perverse t-structure
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equidistribution; ergodic theory; Duke's theorem
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Casimir effects; orbifold; randall-sundrum; Lorentz-violating field; stabilization Obousy, R.; Cleaver, G.: Radius destabilization in five dimensional orbifolds due to an enhanced Casimir effect
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) genus 3 curves; plane quartics; moduli; families; enumeration; finite fields
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) decidability; Hilbert's Tenth Problem; uncomputably large integral points on algebraic curves; diophantine prefix; polynomials; height bounds; geometry of complex surfaces and 3-folds J.M. Rojas, Uncomputably large integral points on algebraic plane curves?, Theoret. Comput. Sci., 235 (this Vol.) (2000) 145--162.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chow group; Jacobians; theta characteristic Esnault, H.: Some elementary theorems about divisibility of 0-cycles on abelian varieties defined over finite fields, Int. math. Res. not., No. 19, 929-935 (2004)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Zariski multiplicty problem; Gau-Lipman theorem; Ephraim-Trotman theorem
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) spherical varieties
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) numerical semigroup; symmetric semigroup; almost symmetric semigroup; generic lattice ideal
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hodge structure; limit mixed Hodge structure; hyperkähler manifold
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) intersections of concentric ellipsoids; links of pencils of quadrics; real moment-angle manifolds.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compactness theorem; universal closure; quasivariety; algebraic structure A. Myasnikov and N. Romanovskiy, ''Universal theories for rigid soluble groups,'' \textit{Algebra and Logic}, \textbf{50}, No. 6, 539-552 (2011).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli space of curves of genus \(g\); Hodge integrals; Virasoro constraint; loop equation
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Coxeter groups; cocycles; Hecke category
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(K3\) surfaces; Hilbert modular orbifolds; period maps; period differential equations; toric varieties A. Nagano, Period differential equations for the families of \(K3\) surfaces with two parameters derived from the reflexive polytopes , Kyushu J. Math. 66 (2012), 193-244.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) presentation; fundamental group; real conic-line arrangement. M. Amram, D. Garber and M. Teicher, On the fundamental group of the complement of two tangent conics and an arbitrary number of tangent lines, arXive:math/0612346v2.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) existence of minimizers; Fermat theorem; Frank-Wolfe theorem; Fritz John optimality conditions; Karush-Kuhn-Tucker optimality conditions; Mangasarian-Fromovitz constraint qualification; Newton polyhedron; polynomial programming
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) computation of homology; real algebraic surface Fortuna, E., Gianni, P., Parenti, P., Traverso, C.: Algorithms to compute the topology of orientable real algebraic surfaces. J. Symbolic Comput. 36(3--4), 343--364 (2003)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) characteristic \(p\); Hasse-Witt matrix; Kummer extensions; Kummer coverings; \(p\)-rank; curves carrying non-classical vector bundles
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ruled set; projective Galois space; quadric Venezia, A.: On a characterization of the set of lines which either belong to or are tangent to a non-singular quadric in \(PG(3,q)\), q odd. Rend. semin. Mat. brescia 7, 617-623 (1984)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) grade-restriction windows; VGIT; dg-schemes; derived categories
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) singular \(K3\) surface; modular form; complex multiplication Elkies, N. D.; Schütt, M., Modular forms and K3 surfaces, Adv. Math., 240, 106-131, (2013)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) reflection groups; invariant theory; generalized exponents; Coxeter groups; fake degrees; hyperplane arrangements; derivations
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) operads; superpositions; moduli spaces; stacks
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polynomial automorphisms; coordinates; Gröbner bases Drensky, V.; Yu, J. -T.: Automorphisms and coordinates of polynomial algebras. Contemp. math. 264, 179-206 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) geometric Goppa codes; minimum distance; Weierstrass semigroups Min T.: Online database for optimal parameters of \( (t,m,s) \)-nets, \( (t,s) \)-sequences, orthogonal arrays, and linear codes. http://mint.sbg.ac.at (2017). Accessed 10 Jan 2017.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) o-minimal; definable maps; singular sets
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) minimal rational curve; variety of minimal rational tangents; analytic continuation Mok, N.: Recognizing certain rational homogeneous manifolds of Picard number 1 from their varieties of minimal rational tangents. In: \textit{Third International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 42, pt. 1, vol. 2, A. Math. Soc., Providence, RI}, pp. 41-61 (2008)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) invariance of genus
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(2^{\text{nd}}\) order curves; \(2^{\text{nd}}\) order surfaces
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) surfaces of fourth and fifth degree; singularities
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) face ring; Stanley-Reisner ring; Buchsbaum ring; ring with finite local cohomology; FLC Miller, E.; Novik, I.; Swartz, E., Face rings of simplicial complexes with singularities, \textit{Math. Ann.}, 351, 857-875, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Shimada, Ichiro; Takahashi, Nobuyoshi: Primitivity of sublattices generated by classes of curves on an algebraic surface, Comment. math. Univ. st. Pauli 59, No. 2, 77-95 (2010)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) coverings; linear series; morphism of degree 2 of smooth curves Del Centina, A. : '' Remarks on curves admitting an involution of genus \succcurleq 1 and some applications '', Boll. U.M.I. (6) 4-B(1985) 671-683.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) surface; torse; elliptic function
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brauer-Long group; dimodule algebras; etale cohomology; Brauer group F.R. DeMeyer and T. Ford, Computing the Brauer-Long group of \(\mathbf Z/2\) dimodule algebras , Pure Algebra 54 (1988), 197-208.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hilbert polynomial; grids; complete intersections; conductor
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bertini's theorem; singularity locus; smooth reflexive sheaves; degeneracy loci of homomorphisms
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) theta functions; bounded symmetric domains; imaginary quadratic number fields; rings of integers; lattices; modular forms K. Matsumoto: Algebraic relations among some theta functions on the bounded symmetric domain of type \(I_r,r\) , Kyushu J. Math. 60 (2006), 63--77.
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.