text
stringlengths 2
1.42k
| label
int64 0
1
|
---|---|
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) fixed point theorem; mirror symmetry
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational polynomials; parametrize a cubic surface Sederberg, T W; Snively, J, Parametrization of cubic algebraic surfaces, 299-2, (1987), New York
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) regular local ring; dimension two; blow up C. Favre and M. Jonsson, \textit{Valuations and multiplier ideals}, J. Amer. Math. Soc. 18(2005), no. 3, 655--684.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hugh Thomas, Cycle-level intersection theory for toric varieties, Canad. J. Math. 56 (2004), no. 5, 1094 -- 1120.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) fundamental group; holomorphic sections; Riemann surface; Riemann-Roch number; Riemann-Roch theorem; Verlinde formula
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Fano varieties; non-constant morphisms; Mukai-Umemura threefold Iliev, A., Schuhmann, C.: Tangent scrolls in prime Fano threefolds. Kodai Math. J. 23, 411--431 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Kodaira energy; polarized threefolds; spectrum conjecture Kollár, J.: Singularities of pairs. In: Algebraic Geometry, Santa Cruz 1995, Proc. Symp. Pure Math, vol. 62, pp. 221-287. Amer. Math. Soc., Providence (1997)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hilbert-Kunz multiplicity; F-signature; Watanabe-Yoshida conjecture Celikbas, O.; Dao, H.; Huneke, C.; Zhang, Y., Bounds on the Hilbert-Kunz multiplicity, Nagoya Math. J., 205, 149-165, (2012)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) 2-stacks; equivariant descent; Morita equivalence of Lie groupoids; bundle gerbes; 2-vector bundles Nikolaus, T.; Schweigert, C., Equivariance in higher geometry, Adv. Math., 226, 3367-3408, (2011)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) uniform position lemma; curves embedded in projective space; degree; genus S. Diaz and A.V. Geramita,Points in Projective Space in Very Uniform Position, Rend. Sem. Mat. Univers. Politecn. Torino Vol. 49, 2(1991)--ACGA 1990, 267--280
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Gromov-Witten invariant; enumerative
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hasse invariants; Eisenstein series; Coleman-Mazur eigencurve; overconvergent modular eigenforms of finite slope DOI: 10.2140/ant.2008.2.209
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brauer-Manin obstruction; Hasse principle; strong approximation; integral points; Azumaya algebra; Bunyakovsky-Schinzel conjecture F. Gundlach, Integral Brauer-Manin obstructions for sums of two squares and a power, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 599-618.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) systems of curves; algebraic differential equations
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) projective variety; nef and big (ample) line bundle; (quasi-)polarized variety; \(i\)th \(\Delta\)-genus
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hilbert schemes; elliptic genera W. Wang and J. Zhou, ''Orbifold Hodge Numbers of Wreath Product Orbifolds,'' J. Geom. Phys. 38, 152--169 (2001).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Calabi-Yau threefold; fundamental group; mirror symmetry
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curves with complex multiplication; curves of genus 2; Jacobians; product surfaces; abelian variety; Humbert invariant; binary and ternary quadratic forms; idoneal numbers; mass formula Kani, E., Jacobians isomorphic to a product of two elliptic curves and ternary quadratic forms, J. Number Theory, 139, 138-174, (2014)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Looijenga pairs; rational surfaces; moduli; Torelli theorem Mark Gross, Paul Hacking, and Seán Keel, Moduli of surfaces with an anti-canonical cycle, arXiv:1211.6367 [math.AG], 2012.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) decidability of separation problem of semialgebraic sets; algorithm Acquistapace, F.; Andradas, C.; Broglia, F.: Separation of semialgebraic sets. J. amer. Math. soc. 12, No. 3, 703-728 (1999)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hilbert function; fat points; infinitesimal neighborhood
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) conductor overring; pseudo-valuation domain; PVD
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Langlands conjecture; irreducible representations; split reductive p-adic group; Iwahori subgroup; Hecke algebra; affine Weyl group; Borel subgroups Ginzburg V.A.: Proof of the Deligne-Langlands conjecture. Soviet. Math. Dokl. 35(2), 304--308 (1987)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) prime characteristic; invariant theory; polynomials invariant under the group action; factorization of rings of invariants; Shephard-Todd theorem D.J. Benson, \textit{Polynomial Invariants of Finite Groups, London Mathematical Society Lecture Notes Series}, vol. 190 (Cambridge University Press, Cambridge, 1993)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic groups; adjoint groups; R-equivalence; nondyadic local fields; function fields of curves; algebras with involution; Hermitian forms; Rost invariant R. Preeti and A. Soman, Adjoint groups over \Bbb Q_{\?}(\?) and R-equivalence, J. Pure Appl. Algebra 219 (2015), no. 9, 4254 -- 4264.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) idempotent kernel functor; local cohomology Bueso, 1.L., Torrecillas, B. and Verschoren, A. 1989. ''Local cohomology and localization''.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic cycles; standard conjecture; Chow group
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compact Riemann surface; generic vector bundle; moduli space of semi- stable vector bundles Beauville, Arnaud and Narasimhan, M. S. and Ramanan, S., Spectral curves and the generalised theta divisor, Journal für die Reine und Angewandte Mathematik. [Crelle's Journal], 398, 169-179, (1989)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) separation of variables; the Clebsch top Marikhin, V.G. and Sokolov, V. V., Transformation of a Pair of Commuting Hamiltonians Quadratic in Momenta to a Canonical Form and on a Partial Real Separation of Variables for the Clebsch Top, Regul. Chaotic Dyn., 2010, vol. 15, no. 6, pp. 652--658.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finite ground field; stacks; shtukas; Lang isogeny
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) extremal contraction; threefold; extremal curve germ; terminal singularity; sheaf Mori, S.; Prokhorov, Yu. G., Threefold extremal contractions of type (IIA). I, Изв. РАН. Сер. матем., 80, 5, 77-102, (2016)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Picard group; normal surface
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) trigonal curve; Maroni invariant; Weierstrass point; gap-sequence; ramification Brundu, M; Sacchiero, G, On the varieties parametrizing trigonal curves with assigned Weierstrass points, Commun. Algebra, 26, 3291-3312, (1998)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) A. Behtash, G.V. Dunne, T. Schäfer, T. Sulejmanpasic and M. Ünsal, \textit{Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence}, arXiv:1510.03435 [INSPIRE].
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) category of Hodge structures; polylogarithm; motivic cohomology; absolute cohomology; regulators; cyclotomic elements Huber, A.; Wildeshaus, J., Correction to the paper: 'classical motivic polylogarithm according to Beilinson and deligne', Doc. Math., 3, 297-299, (1998)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptically fibered Calabi-Yau three-folds; del Pezzo surfaces; Hirzebruch surfaces; non-perturbative vacua Donagi, R.; Lukas, A.; Ovrut, BA; Waldram, D., Holomorphic vector bundles and nonperturbative vacua in M-theory, JHEP, 06, 034, (1999)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) textbook (algebraic geometry); schemes and morphisms; prevarieties; quasi-coherent sheaves; vector bundles; divisors; algebraic curves; determinantal varieties; singularities Görtz, U., Wedhorn, T.: Algebraic Geometry I. Vieweg+Teubner, Wiesbaden (2010)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) obituary; Pierre Dolbeault
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equivariant Oka principle; complex Lie groups Kutzschebauch, F.; Lárusson, F.; Schwarz, G. W., An equivariant parametric Oka principle for bundles of homogeneous spaces, Math. Ann., 370, 1-2, 819-839, (2018)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian varieties; group action H.Lange, S.Recillas, Poincar\'{}e's reducibility theorem with G-action. Bol. Soc. Mat. Mexicana (3) 10 (2004), no. 1, 4348.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) function field of positive characteristic; arithmetic fundamental group; Galois representation; automorphic representation G. Böckle and C. Khare, Finiteness results for mod \(l\) Galois representations over function fields,
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chow ring; Beauville-Bogomolov class; Beauville's Fourier decomposition; cohomological Fourier transform M. Shen and C. Vial, The Fourier transform for certain hyperKähler fourfolds, Mem. Amer. Math. Soc. 240 (2016).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polynomial map; residue Yuzhakov, A. P., On the computation of the complete sum of residues relative to a polynomial mapping in C n .Soviet Math. Dokl., 29 (1984), 321--324.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Makar-Limanov invariant; automorphisms of varieties; classification of varieties Bandman, On C-fibrations over projective curves, Michigan Math. J. 56 (3) pp 669-- (2008)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) mirror symmetry; Calabi-Yau manifolds; string theories; variation of Hodge structures; holomorphic anomaly equations Kontsevich, M.: Mirror symmetry in dimension 3. Astérisque 237, 275-293 (1996)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) reducible principally polarized abelian varieties; automorphism; positive characteristic
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic curve; rational points; elliptic modular surface O. Lecacheux, \textit{Rang de courbes elliptiques avec groupe de torsion non trivial}, J. Théor. Nombres Bordeaux 15 (2003), 231-247.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) locally symmetric varieties; compactifications; modular forms; \(K3\) surfaces Loo E. Looijenga, \emph Compactifications defined by arrangements II: locally symmetric varieties of type IV. Duke Math. J. \textbf 119 (2003), no. 3, 527--588 (see also arXiv:math/0201218).
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Bernstein-Sato ideal; specialization complex; relative holonomic modules
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) stable and canonical bases; Leclerc-Thibon involution; Hilbert schemes
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Langlands program; spectral problem; oper; differential operator
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Hasse-Schmidt derivation; integrable derivation; differential operator; substitution map
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebroid space curves; Moh's examples; Gröbner bases; minimal free resolution
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ample vector bundle; adjunction; sectional genus Hironobu Ishihara, Some adjunction properties of ample vector bundles, Canad. Math. Bull. 44 (2001), no. 4, 452 -- 458.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equations and systems with constant coefficients; Hilbert schemes
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) determinantal varieties; minimal submanifolds; singular value decomposition; symmetric matrices with repeated eigenvalues
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) modification map; holomorphic mapping; image of projective algebraic space Horst, C.: Über bilder projektiv-algebraischer räume, J. reine angew. Math. 324, 136-140 (1981)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Euclidean distance degree; Fermat hypersurface; optimization 10.1016/j.jsc.2016.07.006
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) automorphism groups of \(K3\) surfaces; \(K3\) surfaces; lattice theory; singular \(K3\) surfaces
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Poisson algebras; Calabi-Yau algebras
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) subvariety of general type; generic complete intersection; desingularization; geometric genus Ein L.: Subvarieties of generic complete intersections. II. Math. Ann. 289, 465--471 (1991)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) annihilation of Selmer groups; adjoint representation; modular forms of weight 2
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Lie group; adjoint variety; degeneration; Grassmannian; Calabi-Yau threefold; \(K3\) surface of genus 10
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brill-Noether curve; divisor; covering of curves; base point free pencil
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) inverse Galois problem; canonical form; linear automorphisms; monomial automorphisms; fields of rational functions; survey Hajja, M.: Linear and monomial automorphisms of fields of rational functions: some elementary issues, Algebra and number theory (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) L-functions; Arithmetic; Symposium; Proceedings; Durham (UK) J. Coates and M. J. Taylor, \(L\)-functions and Arithmetic , London Math. Soc. Lecture Note Ser., vol. 153, Cambridge Univ. Press, Cambridge, 1991, Proceedings of the Durham Symposium.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic curve; Riemann surface; Teichmüller spaces; degenerate curves; fundamental group
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) prehomogeneous vector space; orbital decomposition Kimura, T.; Kasai, S.: The orbital decomposition of some prehomogeneous vector spaces. Adv. stud. Pure math. 6, 437-480 (1985)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Teissier-Plücker formula; projective varieties with isolated singularities; Buchsbaum-Rim multiplicity Steven L. Kleiman, A generalized Teissier-Plücker formula, Classification of algebraic varieties, Contemporary Mathematics 162, American Mathematical Society, 1992, p. 249-260
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) semi-ample divisor; linear system; Hilbert polynomial; Riemann-Roch inequalities T. Matsusaka, A note and a correction to Riemann-Roch type inequalities, Amer. J. Math. 106 (1984), no. 6, 1265-1268.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) finiteness of fundamental groups of open rational surfaces; fiber of morphism Gurjar, R.V., Zhang, D.-Q.: On the fundamental groups of some open rational surfaces. Math. Ann. 306, 15--30 (1996)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Picard numbers; Lefschetz numbers; \(M\)-surfaces; real projective surface; algebraic cycles; equivariant cohomology group
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) null-cones of representations; reductive groups; connected reductive linear algebraic groups; rational representations; diagonal actions; nilpotent elements; numbers of irreducible components; algorithms
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric variety; singularities; fans
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Igusa function; moduli space; Eisenstein series; abelian surfaces Bröker, R.; Lauter, K.: Evaluating igusa functions. Math. comp. 83, 2977-2999 (2014)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) functions with given singularities; Riemann-Roch Theorem
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Seshadri constants; Lelong numbers; Nagata conjecture Eckl, T.: Lower bounds for Seshadri constants, Math. nachr. 281, No. 8, 1119-1128 (2008)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) isolated complex hypersurface singularities; multiplicity; topological equivalence
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) blow up; \((-1)\)-curves; degeneration technique Laface, A.; Ugaglia, L.: Quasi-homogeneous linear systems on P2 with base points of multiplicity 5
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Determinants; algebra; geometry; discussion of an equation of second degree; homogeneous coordinates; analytic criteria; plane sections of \(2^{\text{nd}}\) order surfaces; invariants of quadratic forms; plane curves of third order
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) degeneracy locus; Buchsbaum subvarieties of codimension 2; moduli spaces of K3 surfaces; unirational three-folds [C] Chang M.C.: Classification of Buchsbaum subvarieties of codimension 2 in projective space. J. reine angew. Math.401, 101--112 (1989)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Demazure, M.; Gabriel, P., Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, (Avec un Appendice ıt Corps de Classeslocal par Michiel Hazewinkel, (1970), Masson & Cie, North-Holland Publishing Co.: Masson & Cie, North-Holland Publishing Co. Paris, Amsterdam), xxvi+700 pp
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) F-theory; string compactifications DOI: 10.1002/prop.201200032
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chern classes; moduli stack; stable curves; tautological ring Bini, G., Chern classes of the moduli stack of curves, Math. res. lett., 12, 5-6, 759-766, (2005)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) isolated singularities; homotopy theory of arrangements of hyperplanes; K(\(\pi \) ,1)-space Michael Falk and Richard Randell, On the homotopy theory of arrangements, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101 -- 124.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) perverse sheaves; hyperplane arrangements; Cousin complexes
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(k\)-ampleness; projective manifold; vanishing theorems Jiang Zhi: On the restriction of holomorphic forms. Manuscripta Math. 124, 2--173182 (2007)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Shimura variety; unitary group; parahoric subgroup; local model Kudla, S., Rapoport, M.: Special cycles on the \(\Gamma _0(p^n)\)-moduli curve (unpublished)
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) free loop space; fixed point formula; quotients of formal groups; Riemann-Roch; equivariant Thom isomorphism; prospectra Matthew Ando and Jack Morava, A renormalized Riemann-Roch formula and the Thom isomorphism for the free loop space, Topology, geometry, and algebra: interactions and new directions (Stanford, CA, 1999) Contemp. Math., vol. 279, Amer. Math. Soc., Providence, RI, 2001, pp. 11 -- 36.
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) arithmetic differential operators; intermediate extensions; crystalline distributions
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) number of singularities; hypersurface
| 0 |
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) computer arithmetic; elliptic curve cryptography; left-to-right recoding; minimal weight representations; redundant representations; signed radix-\(r\) representations Muir J.: A simple left-to-right algorithm for minimal weight signed radix-r representations. IEEE Trans. Inform. Theory 53, 1234--1241 (2007)
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.