text
stringlengths
2
1.42k
label
int64
0
1
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tropical varieties; convexity; amoebas Nisse, M., Sottile, F.: Higher convexity for complements of tropical varieties. arXiv:1411.7363
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational points; geometric quadratic Chabauty; Poincaré torsor; biextension
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) cyclic covering of a hyperelliptic curve; isogenous to the product of two Jacobians
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(A_\infty\)-algebra; transfer; quasi-isomorphism; weak equivalence
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) MMP; minimal model program; rational curves; Kähler manifolds; relative adjoint classes; subadjunction
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) triple product \(p\)-adic \(L\)-functions; elliptic Stark conjecture; modular forms
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) polytopes; Euler-Maclaurin summation; sum-integral interpolator; lattice point enumeration; toric variety; Todd class
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) weakly spherical homogeneous space; Eisenstein series; zeta functions; prehomogeneous vector spaces F. SATO, Eisenstein series on Spin0\GL6, Preprint, 1995
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) holomorphic foliation; local invariants; index; variation; global invariants; holonomy Khanedani, B.; Suwa, T., First variations of holomorphic forms and some applications, Hokkaido Math. J., 26, 323-335, (1997)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperkähler manifolds; Lagrangian fibration; cycle spaces; deformation of pairs Greb, D.; Lehn, C.; Rollenske, S., \textit{Lagrangian fibrations of hyperkähler manifolds, on a question of Beauville}, Ann. Sci. Éc. Norm. Supér. (4), 46, 375-403, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) vector bundles; degeneracy loci; algebraic classes; Hodge classes SPANDAW (J.) . - Noether-Lefschetz Theorems for Degeneracy Loci . - Habilitationsschrift, Hannover, 2000 .
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) numerical character; degree; maximal genus for space curves; postulation Ballico, E., Ellia, P.: A program for space curves. Rend. Semin. Mat. Torino 25-42 (1986 special issue)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) determinantal representations of real elliptic cubics V. VINNIKOV, \textit{Self-adjoint determinantal representations of real irreducible cubics}, Operator Theory: Advances and Applications, 19 (1986), 415--442.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(p\)-adic \(L\)-functions; elliptic curves; rational points; cyclotomic characters; interpolation; projective limit of the group of global units; \(p\)-adic height Perrin-Riou, Bernadette, Fonctions \(L\) \(p\)-adiques d'une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble), 0373-0956, 43, 4, 945-995, (1993)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real algebraic curves; number of connected components
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Néron-Severi group; Artin invariant; minimal resolutions; supersingular weighted Delsarte K3 surfaces
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real space curves; real nodes; Castelnuovo bound; JFM 48.0687.01; JFM 48.0729.02
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) J. Haegeman, M. Mariën, T. J. Osborne, and F. Verstraete, \textit{Geometry of matrix product states: Metric, parallel transport and curvature}, J. Math. Phys., 55 (2014).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) intermediate Jacobian; principally polarized Jacobian; moduli space V. Balaji, Intermediate Jacobian of some moduli spaces of vector bundles on curves , Amer. J. Math. 112 (1990), no. 4, 611-629. JSTOR:
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) addition formula for Weierstrass e-functions; elliptic functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compactifications for the relative Jacobian; Poincaré sheaf; étale base change; theta functions; family of reduced curves Busonero, S.: Compactified Picard schemes and Abel maps for singular curves, PhD thesis, Sapienza Università di Roma (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hypersurface singularities; invariants of singularities; analytic families; Buchsbaum-Rim multiplicities; equisingularity; Jacobian module Terence Gaffney & Steven L. Kleiman, ``Specialization of integral dependence for modules'', Invent. Math.137 (1999) no. 3, p. 541-574
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) cristalline cohomology; De Rham-Witt complex; elliptic fibrations Lang, W.E.: A short proof of Castelnuovo's criterion of rationality. Trans. Am. Math. Soc.264, 579-582 (1981)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real curve; linear pencil; real gonality; separating gonality; Teichmüller space; special type
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) compact Riemann surfaces; hyperelliptic surfaces; Jacobian; Schottky problem; succesive minima B. Muetzel, On the second successive minimum of the Jacobian of a Riemann surface, arXiv:1008.2233
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) integrable systems; Korteweg-de Vries; elliptic functions; abelian functions Bennequin, D., Hommage à Jean-Louis Verdier: au jardin des systèmes intégrables, inIntegrable Systems: The Verdier Memorial Conference (Luminy, 1991), pp. 1--36. Birkhäuser, Boston, MA, 1993.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli; geometric genus; minimal surface of general type; irregularity; Castelnuovo's bound I. Reider, Bounds on the number of moduli for irregular surfaces of general type, Manus. Math. 60, No. 2 (1988), 647-667.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Moduli space; Riemann surface; Fuchsian group; strata of Riemann surfaces Costa, A. F., Izquierdo, M.: Equisymmetric strata of the singular locus of the moduli space of Riemann surfaces of genus 4. In: Geometry of Riemann surfaces, London Math. Soc. Lecture Note Ser., 368, Cambridge Univ. Press, Cambridge, 2010, 120--138
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Littlewood-Richardson rule; Specht modules; Grassmannian
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperdeterminant; singular locus; cusp type singularities; node type singularities; projectively dual variety; Segre embedding DOI: 10.5802/aif.1526
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equivariant homology; arc symmetric sets; motivic integration; blow-Nash equivalence Fichou, G.: Equivariant virtual Betti numbers. Ann. de l'Inst. Fourier \textbf{58}(1), 1-27 (2008)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) E. Freitag and R.S. Manni, \textit{On Siegel three folds with a projective Calabi-Yau model}, arXiv:1103.2040.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) toric varieties; double cover; Gaussian map Duflot, J., Peters, P.: Gaussian maps for double covers of toric surfaces. Rocky Mt. J. Math. 42(5), 1471--1520 (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Tsen's theorem; complete Fano intersections; Fano variety; rationally connected
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elementary functions; differential fields; algebraic curve; divisor; algorithmic integration in finite terms; algorithms; transcendental functions; algebraic functions
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brauer group of rational function field over complex field
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) elliptic surface; specialization; infinite order; positive rank Jabara, E.: Rational points on some elliptic surfaces, Acta arith. 153, No. 1, 93-108 (2012)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) ideal sheaf; Fourier-Mukai; divisor; abelian surface; Hilbert scheme; stable sheaf
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abelian surface; isogeny; binary quadratic form S. Ma, Decompositions of an Abelian surface and quadratic forms, Ann. Inst. Fourier (Grenoble) 61 (2011), 717-743.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Beccari, G.; Massaza, C.: Separating sequences of 0-dimensional schemes, Matematiche 61, 37-68 (2006)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Arakelov theory; motivic cohomology; stable homotopy category Holmstrom, A.; Scholbach, J., Arakelov motivic cohomology I, J. Algebraic Geom., 719-754, (2015)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) syzygies; vanishing theorems P. Vermeire, Some results on secant varieties leading to a geometric flip construction,Compositio Math. 125 (2001), 263--285.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Brauer groups; maximal orders; Azumaya algebras; regular Noetherian integral schemes; smooth complex affine varieties Antieau, B.; Williams, B.: On the non-existence of Azumaya maximal orders. Invent. math. 197, No. 1, 47-56 (2014)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) arithmetic zeta functions; foliated space; \(L\)-functions of number fields
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic stacks; algebraic K-theory; derived category A. Krishna, Perfect complexes on Deligne-Mumford stacks and applications, J. K-Theory 4 (2009), no. 3, 559-603.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) B.R. Greene, C.I. Lazaroiu, M. Raugas, D-branes on non-abelian threefold quotient singularities, hep-th/9811201.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) algebraic geometry codes; Grassmann codes; Lagrangian-Grassmannian [1] J. Carrillo-Pacheco and F. Zaldivar, On Lagrangian-Grassmannian Codes, Designs, Codes and Cryptography 60 (2011) 291-268.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) higher discriminants; multiplicity of the discriminant of a line bundle; Chern classes; cotangent bundle; Segre classes of the jacobian scheme P. Aluffi and F. Cukierman, Manuscripta Math., 78, 245--258 (1993); M. Chardin, J. Pure Appl. Algebra, 101, 129--138 (1995); L. Ducos, J. Pure Appl. Algebra, 145, 149--163 (2000); L. Busé and C. D'Andrea, C. R. Math. Acad. Sci. Paris, 338, 287--290 (2004); C. D' Andrea, T. Krick, and A. Szanto, J. Algebra, 302, 16--36 (2006); arXiv:math/0501281v3 (2005).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) moduli of abelian varieties; universal abelian variety; slope; nodal conic bundle G. Farkas, A. Verra, The universal abelian variety over A 5. Ann. Sci. Ecole Norm. Sup. 49, 521--542 (2016)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperelliptic curves; Jacobian varieties; rational points
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tetragonal curves; Prym varieties; two-sheeted covering; Torelli theorem
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) connected, reductive algebraic group; algebraic variety; moment map; cotangent bundle; finite cristallographic reflection group; little Weyl group; symmetric space; unipotent subgroup; stabilizer; action F. Knop, ''Weylgruppe und Momentabbildung,'' Invent. Math. 99(1), 1--23 (1990).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Grothendieck group; quotient singularity J. Herzog, E. Marcos and R. Waldi, On the Grothendieck group of a quotient singularity defined by a finite abelian group,J. Algebra 149 (1992), 122--138
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) open complex algebraic surfaces; Suslin's zeroth homology; \(A_1\)-equivalent zero cycles
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Elliptic functions; transformation theory
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Newton polytope; coercivity; global invertibility; real Jacobian conjecture; circuit number
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Tate conjecture; motive; endomorphisms; Tate modules
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Chern classes; curvilinear reflexive sheaves G. Bolondi, Reflexive Sheaves with semi-natural cohomology and lowc 2,Boll. U.M.I.,7, 1B (1987) 765--777.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non-isolated hyperplane singularities; topology of the Milnor fibre; homotopy type of the Milnor fibre
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) selmer group; abelian variety Tadashi Ochiai and Fabien Trihan, On the Selmer groups of abelian varieties over function fields of characteristic \?>0, Math. Proc. Cambridge Philos. Soc. 146 (2009), no. 1, 23 -- 43.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) real analytic germ; blow-analytic; arc lifting property; equisingularity Toshizumi Fukui and Laurentiu Paunescu, On blow-analytic equivalence, Arc spaces and additive invariants in real algebraic and analytic geometry, Panor. Synthèses, vol. 24, Soc. Math. France, Paris, 2007, pp. 87 -- 125 (English, with English and French summaries).
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sigma models; soliton surfaces; integrable systems; Weierstrass formula for immersion
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) non-commutative resolutions; geometric invariant theory; semi-orthogonal decomposition
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) global monodromy fibration; family of polynomials; Lê-Ramanujam [25]T. S. Pha.m, Invariance of the global monodromies in families of nondegenerate polynomials in two variables, Kodai Math. J. 33 (2010), 294--309.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) enumerative geometry; toric surfaces; Gromov-Witten theory; Severi degrees; node polynomials
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) cryptography; elliptic curves; finite field; finite ring
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) \(\ell\)-adic cohomology; perverse sheaves; decomposition theorem; independence of \(\ell\); perverse compatible system
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) mixed Frobenius structure; quantum cohomology; local mirror symmetry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) quartic surface; Hilbert symbol
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) tropical geometry; quartic curves; bitangent lines; Jacobians; moduli of curves
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational curves
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) absolute Galois group; function field; anabelian geometry Szamuely, T., Groupes de Galois de corps de type fini (d'après pop), Astérisque, 294, 403-431, (2004)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) rational points; hyperelliptic curves; Frobenius class
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) multilinear algebra; tensor calculus; computational aspects of algebraic; algebraic geometry
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) arithmetic dynamics; arboreal Galois representations; iterated Galois groups
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) S. Fiedler-Le Touzé and S. Yu. Orevkov, A flexible affine \?-sextic which is algebraically unrealizable, J. Algebraic Geom. 11 (2002), no. 2, 293 -- 310.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) sandpile groups; critical groups; Jacobians of graphs
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) SUSY quantum mechanics; mirror image potentials; isospectrality; enantiomers
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) abundance; termination of MMP; lc pairs; MMP with scaling
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) affine group schemes; proalgebraic groups; Tannakian categories; representation theory
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) hyperbolic curve; group of biholomorphic automorphisms; fundamental group Shabat, GB, Local reconstruction of complex algebraic surfaces from universal coverings, Funktsional. Anal. i Prilozhen., 17, 90-91, (1983)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) space curve on a smooth cubic surface; maximal rank curves; extremal curves; Hilbert function DOI: 10.1007/BF01762395
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) classification of Fano-Enriques threefolds Conte, A.: On the nature and the classification of Fano-Enriques threefolds. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univ., Ramat Gan, 1996, 159-163.
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Frobenius manifolds; cohomological field theory; commutativity equation; Losev-Manin compactification; Givental's group action; Kadomtsev-Petviashvili hierarchy Shadrin, S., Zvonkine, D.: A group action on Losev--Manin cohomological field theories. arXiv:0909.0800v1, 1--21
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) Konopelchenko, B.; Martí nez Alonso, L.; Medina, E., Spectral curves in gauge/string dualities: integrability, singular sectors and regularization, J. Phys. A: Math. Theor., 46, (2013)
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) equivariant compactification; symmetric varieties; character sheaves; finite groups of Lie type
0
Lopes M.M., Pardini R.: Triple canonical surfaces of minimal degree. Int. J. Math. 11(4), 553--578 (2000) holomorphic vector bundle; Stein manifold; quasi-affine variety
0