Datasets:
metadata
dataset_info:
- config_name: default
features:
- name: utterance
dtype: string
- name: label
sequence: int64
splits:
- name: oos
num_bytes: 7584422.595703874
num_examples: 10088
- name: train
num_bytes: 26416704
num_examples: 20856
download_size: 18117453
dataset_size: 34001126.59570387
- config_name: intents
features:
- name: id
dtype: int64
- name: name
dtype: string
- name: tags
sequence: 'null'
- name: regexp_full_match
sequence: 'null'
- name: regexp_partial_match
sequence: 'null'
- name: description
dtype: 'null'
splits:
- name: intents
num_bytes: 1924
num_examples: 65
download_size: 3851
dataset_size: 1924
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: oos
path: data/oos-*
- config_name: intents
data_files:
- split: intents
path: intents/intents-*
task_categories:
- text-classification
language:
- en
reuters
This is a text classification dataset. It is intended for machine learning research and experimentation.
This dataset is obtained via formatting another publicly available data to be compatible with our AutoIntent Library.
Usage
It is intended to be used with our AutoIntent Library:
from autointent import Dataset
reuters = Dataset.from_datasets("AutoIntent/reuters")
Source
This dataset is taken from ucirvine/reuters21578
and formatted with our AutoIntent Library:
from collections import defaultdict
from datasets import load_dataset
from autointent import Dataset
# load original data
reuters = load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True)
# remove low-resource classes
counter = defaultdict(int)
for batch in reuters["train"].iter(batch_size=16):
for labels in batch["topics"]:
for lab in labels:
counter[lab] += 1
names_to_remove = [name for name, cnt in counter.items() if cnt < 10]
intent_names = sorted(set(name for intents in reuters["train"]["topics"] for name in intents))
for n in names_to_remove:
intent_names.remove(n)
name_to_id = {name: i for i, name in enumerate(intent_names)}
# extract only texts and labels
def transform(example: dict):
return {
"utterance": example["text"],
"label": [name_to_id[intent_name] for intent_name in example["topics"] if intent_name not in names_to_remove],
}
multilabel_reuters = reuters["train"].map(transform, remove_columns=reuters["train"].features.keys())
# if any out-of-scope samples
res = multilabel_reuters.to_list()
for sample in res:
if len(sample["label"]) == 0:
sample.pop("label")
# format
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)]
reuters_converted = Dataset.from_dict({"intents": intents, "train": res})