|
--- |
|
dataset_info: |
|
- config_name: default |
|
features: |
|
- name: utterance |
|
dtype: string |
|
- name: label |
|
sequence: int64 |
|
splits: |
|
- name: oos |
|
num_bytes: 7584422.595703874 |
|
num_examples: 10088 |
|
- name: train |
|
num_bytes: 26416704 |
|
num_examples: 20856 |
|
download_size: 18117453 |
|
dataset_size: 34001126.59570387 |
|
- config_name: intents |
|
features: |
|
- name: id |
|
dtype: int64 |
|
- name: name |
|
dtype: string |
|
- name: tags |
|
sequence: 'null' |
|
- name: regexp_full_match |
|
sequence: 'null' |
|
- name: regexp_partial_match |
|
sequence: 'null' |
|
- name: description |
|
dtype: 'null' |
|
splits: |
|
- name: intents |
|
num_bytes: 1924 |
|
num_examples: 65 |
|
download_size: 3851 |
|
dataset_size: 1924 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: oos |
|
path: data/oos-* |
|
- config_name: intents |
|
data_files: |
|
- split: intents |
|
path: intents/intents-* |
|
task_categories: |
|
- text-classification |
|
language: |
|
- en |
|
--- |
|
|
|
# reuters |
|
|
|
This is a text classification dataset. It is intended for machine learning research and experimentation. |
|
|
|
This dataset is obtained via formatting another publicly available data to be compatible with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html). |
|
|
|
## Usage |
|
|
|
It is intended to be used with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from autointent import Dataset |
|
|
|
reuters = Dataset.from_datasets("AutoIntent/reuters") |
|
``` |
|
|
|
## Source |
|
|
|
This dataset is taken from `ucirvine/reuters21578` and formatted with our [AutoIntent Library](https://deeppavlov.github.io/AutoIntent/index.html): |
|
|
|
```python |
|
from collections import defaultdict |
|
from datasets import load_dataset |
|
from autointent import Dataset |
|
|
|
# load original data |
|
reuters = load_dataset("ucirvine/reuters21578", "ModHayes", trust_remote_code=True) |
|
|
|
# remove low-resource classes |
|
counter = defaultdict(int) |
|
for batch in reuters["train"].iter(batch_size=16): |
|
for labels in batch["topics"]: |
|
for lab in labels: |
|
counter[lab] += 1 |
|
names_to_remove = [name for name, cnt in counter.items() if cnt < 10] |
|
|
|
intent_names = sorted(set(name for intents in reuters["train"]["topics"] for name in intents)) |
|
for n in names_to_remove: |
|
intent_names.remove(n) |
|
name_to_id = {name: i for i, name in enumerate(intent_names)} |
|
|
|
# extract only texts and labels |
|
def transform(example: dict): |
|
return { |
|
"utterance": example["text"], |
|
"label": [name_to_id[intent_name] for intent_name in example["topics"] if intent_name not in names_to_remove], |
|
} |
|
multilabel_reuters = reuters["train"].map(transform, remove_columns=reuters["train"].features.keys()) |
|
|
|
# if any out-of-scope samples |
|
res = multilabel_reuters.to_list() |
|
for sample in res: |
|
if len(sample["label"]) == 0: |
|
sample.pop("label") |
|
|
|
# format |
|
intents = [{"id": i, "name": name} for i, name in enumerate(intent_names)] |
|
reuters_converted = Dataset.from_dict({"intents": intents, "train": res}) |
|
``` |
|
|