id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
5,100
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_get_table
def _get_table(name): """ Given a variable or table name, get a Table if it exists. Args: name: the name of the Table or a variable referencing the Table. Returns: The Table, if found. """ # If name is a variable referencing a table, use that. item = google.datalab.utils.commands.get_notebook_item(name) if isinstance(item, bigquery.Table): return item # Else treat this as a BQ table name and return the (cached) table if it exists. try: return _existing_table_cache[name] except KeyError: table = bigquery.Table(name) if table.exists(): _existing_table_cache[name] = table return table return None
python
def _get_table(name): """ Given a variable or table name, get a Table if it exists. Args: name: the name of the Table or a variable referencing the Table. Returns: The Table, if found. """ # If name is a variable referencing a table, use that. item = google.datalab.utils.commands.get_notebook_item(name) if isinstance(item, bigquery.Table): return item # Else treat this as a BQ table name and return the (cached) table if it exists. try: return _existing_table_cache[name] except KeyError: table = bigquery.Table(name) if table.exists(): _existing_table_cache[name] = table return table return None
[ "def", "_get_table", "(", "name", ")", ":", "# If name is a variable referencing a table, use that.", "item", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "get_notebook_item", "(", "name", ")", "if", "isinstance", "(", "item", ",", "bigquery", ".", "Table", ")", ":", "return", "item", "# Else treat this as a BQ table name and return the (cached) table if it exists.", "try", ":", "return", "_existing_table_cache", "[", "name", "]", "except", "KeyError", ":", "table", "=", "bigquery", ".", "Table", "(", "name", ")", "if", "table", ".", "exists", "(", ")", ":", "_existing_table_cache", "[", "name", "]", "=", "table", "return", "table", "return", "None" ]
Given a variable or table name, get a Table if it exists. Args: name: the name of the Table or a variable referencing the Table. Returns: The Table, if found.
[ "Given", "a", "variable", "or", "table", "name", "get", "a", "Table", "if", "it", "exists", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L622-L642
5,101
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_render_list
def _render_list(data): """ Helper to render a list of objects as an HTML list object. """ return IPython.core.display.HTML(google.datalab.utils.commands.HtmlBuilder.render_list(data))
python
def _render_list(data): """ Helper to render a list of objects as an HTML list object. """ return IPython.core.display.HTML(google.datalab.utils.commands.HtmlBuilder.render_list(data))
[ "def", "_render_list", "(", "data", ")", ":", "return", "IPython", ".", "core", ".", "display", ".", "HTML", "(", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "HtmlBuilder", ".", "render_list", "(", "data", ")", ")" ]
Helper to render a list of objects as an HTML list object.
[ "Helper", "to", "render", "a", "list", "of", "objects", "as", "an", "HTML", "list", "object", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L645-L647
5,102
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_dataset_line
def _dataset_line(args): """Implements the BigQuery dataset magic subcommand used to operate on datasets The supported syntax is: %bq datasets <command> <args> Commands: {list, create, delete} Args: args: the optional arguments following '%bq datasets command'. """ if args['command'] == 'list': filter_ = args['filter'] if args['filter'] else '*' context = google.datalab.Context.default() if args['project']: context = google.datalab.Context(args['project'], context.credentials) return _render_list([str(dataset) for dataset in bigquery.Datasets(context) if fnmatch.fnmatch(str(dataset), filter_)]) elif args['command'] == 'create': try: bigquery.Dataset(args['name']).create(friendly_name=args['friendly']) except Exception as e: print('Failed to create dataset %s: %s' % (args['name'], e)) elif args['command'] == 'delete': try: bigquery.Dataset(args['name']).delete() except Exception as e: print('Failed to delete dataset %s: %s' % (args['name'], e))
python
def _dataset_line(args): """Implements the BigQuery dataset magic subcommand used to operate on datasets The supported syntax is: %bq datasets <command> <args> Commands: {list, create, delete} Args: args: the optional arguments following '%bq datasets command'. """ if args['command'] == 'list': filter_ = args['filter'] if args['filter'] else '*' context = google.datalab.Context.default() if args['project']: context = google.datalab.Context(args['project'], context.credentials) return _render_list([str(dataset) for dataset in bigquery.Datasets(context) if fnmatch.fnmatch(str(dataset), filter_)]) elif args['command'] == 'create': try: bigquery.Dataset(args['name']).create(friendly_name=args['friendly']) except Exception as e: print('Failed to create dataset %s: %s' % (args['name'], e)) elif args['command'] == 'delete': try: bigquery.Dataset(args['name']).delete() except Exception as e: print('Failed to delete dataset %s: %s' % (args['name'], e))
[ "def", "_dataset_line", "(", "args", ")", ":", "if", "args", "[", "'command'", "]", "==", "'list'", ":", "filter_", "=", "args", "[", "'filter'", "]", "if", "args", "[", "'filter'", "]", "else", "'*'", "context", "=", "google", ".", "datalab", ".", "Context", ".", "default", "(", ")", "if", "args", "[", "'project'", "]", ":", "context", "=", "google", ".", "datalab", ".", "Context", "(", "args", "[", "'project'", "]", ",", "context", ".", "credentials", ")", "return", "_render_list", "(", "[", "str", "(", "dataset", ")", "for", "dataset", "in", "bigquery", ".", "Datasets", "(", "context", ")", "if", "fnmatch", ".", "fnmatch", "(", "str", "(", "dataset", ")", ",", "filter_", ")", "]", ")", "elif", "args", "[", "'command'", "]", "==", "'create'", ":", "try", ":", "bigquery", ".", "Dataset", "(", "args", "[", "'name'", "]", ")", ".", "create", "(", "friendly_name", "=", "args", "[", "'friendly'", "]", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Failed to create dataset %s: %s'", "%", "(", "args", "[", "'name'", "]", ",", "e", ")", ")", "elif", "args", "[", "'command'", "]", "==", "'delete'", ":", "try", ":", "bigquery", ".", "Dataset", "(", "args", "[", "'name'", "]", ")", ".", "delete", "(", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Failed to delete dataset %s: %s'", "%", "(", "args", "[", "'name'", "]", ",", "e", ")", ")" ]
Implements the BigQuery dataset magic subcommand used to operate on datasets The supported syntax is: %bq datasets <command> <args> Commands: {list, create, delete} Args: args: the optional arguments following '%bq datasets command'.
[ "Implements", "the", "BigQuery", "dataset", "magic", "subcommand", "used", "to", "operate", "on", "datasets" ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L650-L680
5,103
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_table_cell
def _table_cell(args, cell_body): """Implements the BigQuery table magic subcommand used to operate on tables The supported syntax is: %%bq tables <command> <args> Commands: {list, create, delete, describe, view} Args: args: the optional arguments following '%%bq tables command'. cell_body: optional contents of the cell interpreted as SQL, YAML or JSON. Returns: The HTML rendering for the table of datasets. """ if args['command'] == 'list': filter_ = args['filter'] if args['filter'] else '*' if args['dataset']: if args['project'] is None: datasets = [bigquery.Dataset(args['dataset'])] else: context = google.datalab.Context(args['project'], google.datalab.Context.default().credentials) datasets = [bigquery.Dataset(args['dataset'], context)] else: default_context = google.datalab.Context.default() context = google.datalab.Context(default_context.project_id, default_context.credentials) if args['project']: context.set_project_id(args['project']) datasets = bigquery.Datasets(context) tables = [] for dataset in datasets: tables.extend([table.full_name for table in dataset if fnmatch.fnmatch(table.full_name, filter_)]) return _render_list(tables) elif args['command'] == 'create': if cell_body is None: print('Failed to create %s: no schema specified' % args['name']) else: try: record = google.datalab.utils.commands.parse_config( cell_body, google.datalab.utils.commands.notebook_environment(), as_dict=False) jsonschema.validate(record, BigQuerySchema.TABLE_SCHEMA_SCHEMA) schema = bigquery.Schema(record['schema']) bigquery.Table(args['name']).create(schema=schema, overwrite=args['overwrite']) except Exception as e: print('Failed to create table %s: %s' % (args['name'], e)) elif args['command'] == 'describe': name = args['name'] table = _get_table(name) if not table: raise Exception('Could not find table %s' % name) html = _repr_html_table_schema(table.schema) return IPython.core.display.HTML(html) elif args['command'] == 'delete': try: bigquery.Table(args['name']).delete() except Exception as e: print('Failed to delete table %s: %s' % (args['name'], e)) elif args['command'] == 'view': name = args['name'] table = _get_table(name) if not table: raise Exception('Could not find table %s' % name) return table
python
def _table_cell(args, cell_body): """Implements the BigQuery table magic subcommand used to operate on tables The supported syntax is: %%bq tables <command> <args> Commands: {list, create, delete, describe, view} Args: args: the optional arguments following '%%bq tables command'. cell_body: optional contents of the cell interpreted as SQL, YAML or JSON. Returns: The HTML rendering for the table of datasets. """ if args['command'] == 'list': filter_ = args['filter'] if args['filter'] else '*' if args['dataset']: if args['project'] is None: datasets = [bigquery.Dataset(args['dataset'])] else: context = google.datalab.Context(args['project'], google.datalab.Context.default().credentials) datasets = [bigquery.Dataset(args['dataset'], context)] else: default_context = google.datalab.Context.default() context = google.datalab.Context(default_context.project_id, default_context.credentials) if args['project']: context.set_project_id(args['project']) datasets = bigquery.Datasets(context) tables = [] for dataset in datasets: tables.extend([table.full_name for table in dataset if fnmatch.fnmatch(table.full_name, filter_)]) return _render_list(tables) elif args['command'] == 'create': if cell_body is None: print('Failed to create %s: no schema specified' % args['name']) else: try: record = google.datalab.utils.commands.parse_config( cell_body, google.datalab.utils.commands.notebook_environment(), as_dict=False) jsonschema.validate(record, BigQuerySchema.TABLE_SCHEMA_SCHEMA) schema = bigquery.Schema(record['schema']) bigquery.Table(args['name']).create(schema=schema, overwrite=args['overwrite']) except Exception as e: print('Failed to create table %s: %s' % (args['name'], e)) elif args['command'] == 'describe': name = args['name'] table = _get_table(name) if not table: raise Exception('Could not find table %s' % name) html = _repr_html_table_schema(table.schema) return IPython.core.display.HTML(html) elif args['command'] == 'delete': try: bigquery.Table(args['name']).delete() except Exception as e: print('Failed to delete table %s: %s' % (args['name'], e)) elif args['command'] == 'view': name = args['name'] table = _get_table(name) if not table: raise Exception('Could not find table %s' % name) return table
[ "def", "_table_cell", "(", "args", ",", "cell_body", ")", ":", "if", "args", "[", "'command'", "]", "==", "'list'", ":", "filter_", "=", "args", "[", "'filter'", "]", "if", "args", "[", "'filter'", "]", "else", "'*'", "if", "args", "[", "'dataset'", "]", ":", "if", "args", "[", "'project'", "]", "is", "None", ":", "datasets", "=", "[", "bigquery", ".", "Dataset", "(", "args", "[", "'dataset'", "]", ")", "]", "else", ":", "context", "=", "google", ".", "datalab", ".", "Context", "(", "args", "[", "'project'", "]", ",", "google", ".", "datalab", ".", "Context", ".", "default", "(", ")", ".", "credentials", ")", "datasets", "=", "[", "bigquery", ".", "Dataset", "(", "args", "[", "'dataset'", "]", ",", "context", ")", "]", "else", ":", "default_context", "=", "google", ".", "datalab", ".", "Context", ".", "default", "(", ")", "context", "=", "google", ".", "datalab", ".", "Context", "(", "default_context", ".", "project_id", ",", "default_context", ".", "credentials", ")", "if", "args", "[", "'project'", "]", ":", "context", ".", "set_project_id", "(", "args", "[", "'project'", "]", ")", "datasets", "=", "bigquery", ".", "Datasets", "(", "context", ")", "tables", "=", "[", "]", "for", "dataset", "in", "datasets", ":", "tables", ".", "extend", "(", "[", "table", ".", "full_name", "for", "table", "in", "dataset", "if", "fnmatch", ".", "fnmatch", "(", "table", ".", "full_name", ",", "filter_", ")", "]", ")", "return", "_render_list", "(", "tables", ")", "elif", "args", "[", "'command'", "]", "==", "'create'", ":", "if", "cell_body", "is", "None", ":", "print", "(", "'Failed to create %s: no schema specified'", "%", "args", "[", "'name'", "]", ")", "else", ":", "try", ":", "record", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "parse_config", "(", "cell_body", ",", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "notebook_environment", "(", ")", ",", "as_dict", "=", "False", ")", "jsonschema", ".", "validate", "(", "record", ",", "BigQuerySchema", ".", "TABLE_SCHEMA_SCHEMA", ")", "schema", "=", "bigquery", ".", "Schema", "(", "record", "[", "'schema'", "]", ")", "bigquery", ".", "Table", "(", "args", "[", "'name'", "]", ")", ".", "create", "(", "schema", "=", "schema", ",", "overwrite", "=", "args", "[", "'overwrite'", "]", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Failed to create table %s: %s'", "%", "(", "args", "[", "'name'", "]", ",", "e", ")", ")", "elif", "args", "[", "'command'", "]", "==", "'describe'", ":", "name", "=", "args", "[", "'name'", "]", "table", "=", "_get_table", "(", "name", ")", "if", "not", "table", ":", "raise", "Exception", "(", "'Could not find table %s'", "%", "name", ")", "html", "=", "_repr_html_table_schema", "(", "table", ".", "schema", ")", "return", "IPython", ".", "core", ".", "display", ".", "HTML", "(", "html", ")", "elif", "args", "[", "'command'", "]", "==", "'delete'", ":", "try", ":", "bigquery", ".", "Table", "(", "args", "[", "'name'", "]", ")", ".", "delete", "(", ")", "except", "Exception", "as", "e", ":", "print", "(", "'Failed to delete table %s: %s'", "%", "(", "args", "[", "'name'", "]", ",", "e", ")", ")", "elif", "args", "[", "'command'", "]", "==", "'view'", ":", "name", "=", "args", "[", "'name'", "]", "table", "=", "_get_table", "(", "name", ")", "if", "not", "table", ":", "raise", "Exception", "(", "'Could not find table %s'", "%", "name", ")", "return", "table" ]
Implements the BigQuery table magic subcommand used to operate on tables The supported syntax is: %%bq tables <command> <args> Commands: {list, create, delete, describe, view} Args: args: the optional arguments following '%%bq tables command'. cell_body: optional contents of the cell interpreted as SQL, YAML or JSON. Returns: The HTML rendering for the table of datasets.
[ "Implements", "the", "BigQuery", "table", "magic", "subcommand", "used", "to", "operate", "on", "tables" ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L683-L754
5,104
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_extract_cell
def _extract_cell(args, cell_body): """Implements the BigQuery extract magic used to extract query or table data to GCS. The supported syntax is: %bq extract <args> Args: args: the arguments following '%bigquery extract'. """ env = google.datalab.utils.commands.notebook_environment() config = google.datalab.utils.commands.parse_config(cell_body, env, False) or {} parameters = config.get('parameters') if args['table']: table = google.datalab.bigquery.Query.resolve_parameters(args['table'], parameters) source = _get_table(table) if not source: raise Exception('Could not find table %s' % table) csv_delimiter = args['delimiter'] if args['format'] == 'csv' else None path = google.datalab.bigquery.Query.resolve_parameters(args['path'], parameters) job = source.extract(path, format=args['format'], csv_delimiter=csv_delimiter, csv_header=args['header'], compress=args['compress']) elif args['query'] or args['view']: source_name = args['view'] or args['query'] source = google.datalab.utils.commands.get_notebook_item(source_name) if not source: raise Exception('Could not find ' + ('view ' + args['view'] if args['view'] else 'query ' + args['query'])) query = source if args['query'] else bigquery.Query.from_view(source) query_params = get_query_parameters(args, cell_body) if args['query'] else None output_options = QueryOutput.file(path=args['path'], format=args['format'], csv_delimiter=args['delimiter'], csv_header=args['header'], compress=args['compress'], use_cache=not args['nocache']) context = google.datalab.utils._utils._construct_context_for_args(args) job = query.execute(output_options, context=context, query_params=query_params) else: raise Exception('A query, table, or view is needed to extract') if job.failed: raise Exception('Extract failed: %s' % str(job.fatal_error)) elif job.errors: raise Exception('Extract completed with errors: %s' % str(job.errors)) return job.result()
python
def _extract_cell(args, cell_body): """Implements the BigQuery extract magic used to extract query or table data to GCS. The supported syntax is: %bq extract <args> Args: args: the arguments following '%bigquery extract'. """ env = google.datalab.utils.commands.notebook_environment() config = google.datalab.utils.commands.parse_config(cell_body, env, False) or {} parameters = config.get('parameters') if args['table']: table = google.datalab.bigquery.Query.resolve_parameters(args['table'], parameters) source = _get_table(table) if not source: raise Exception('Could not find table %s' % table) csv_delimiter = args['delimiter'] if args['format'] == 'csv' else None path = google.datalab.bigquery.Query.resolve_parameters(args['path'], parameters) job = source.extract(path, format=args['format'], csv_delimiter=csv_delimiter, csv_header=args['header'], compress=args['compress']) elif args['query'] or args['view']: source_name = args['view'] or args['query'] source = google.datalab.utils.commands.get_notebook_item(source_name) if not source: raise Exception('Could not find ' + ('view ' + args['view'] if args['view'] else 'query ' + args['query'])) query = source if args['query'] else bigquery.Query.from_view(source) query_params = get_query_parameters(args, cell_body) if args['query'] else None output_options = QueryOutput.file(path=args['path'], format=args['format'], csv_delimiter=args['delimiter'], csv_header=args['header'], compress=args['compress'], use_cache=not args['nocache']) context = google.datalab.utils._utils._construct_context_for_args(args) job = query.execute(output_options, context=context, query_params=query_params) else: raise Exception('A query, table, or view is needed to extract') if job.failed: raise Exception('Extract failed: %s' % str(job.fatal_error)) elif job.errors: raise Exception('Extract completed with errors: %s' % str(job.errors)) return job.result()
[ "def", "_extract_cell", "(", "args", ",", "cell_body", ")", ":", "env", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "notebook_environment", "(", ")", "config", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "parse_config", "(", "cell_body", ",", "env", ",", "False", ")", "or", "{", "}", "parameters", "=", "config", ".", "get", "(", "'parameters'", ")", "if", "args", "[", "'table'", "]", ":", "table", "=", "google", ".", "datalab", ".", "bigquery", ".", "Query", ".", "resolve_parameters", "(", "args", "[", "'table'", "]", ",", "parameters", ")", "source", "=", "_get_table", "(", "table", ")", "if", "not", "source", ":", "raise", "Exception", "(", "'Could not find table %s'", "%", "table", ")", "csv_delimiter", "=", "args", "[", "'delimiter'", "]", "if", "args", "[", "'format'", "]", "==", "'csv'", "else", "None", "path", "=", "google", ".", "datalab", ".", "bigquery", ".", "Query", ".", "resolve_parameters", "(", "args", "[", "'path'", "]", ",", "parameters", ")", "job", "=", "source", ".", "extract", "(", "path", ",", "format", "=", "args", "[", "'format'", "]", ",", "csv_delimiter", "=", "csv_delimiter", ",", "csv_header", "=", "args", "[", "'header'", "]", ",", "compress", "=", "args", "[", "'compress'", "]", ")", "elif", "args", "[", "'query'", "]", "or", "args", "[", "'view'", "]", ":", "source_name", "=", "args", "[", "'view'", "]", "or", "args", "[", "'query'", "]", "source", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "get_notebook_item", "(", "source_name", ")", "if", "not", "source", ":", "raise", "Exception", "(", "'Could not find '", "+", "(", "'view '", "+", "args", "[", "'view'", "]", "if", "args", "[", "'view'", "]", "else", "'query '", "+", "args", "[", "'query'", "]", ")", ")", "query", "=", "source", "if", "args", "[", "'query'", "]", "else", "bigquery", ".", "Query", ".", "from_view", "(", "source", ")", "query_params", "=", "get_query_parameters", "(", "args", ",", "cell_body", ")", "if", "args", "[", "'query'", "]", "else", "None", "output_options", "=", "QueryOutput", ".", "file", "(", "path", "=", "args", "[", "'path'", "]", ",", "format", "=", "args", "[", "'format'", "]", ",", "csv_delimiter", "=", "args", "[", "'delimiter'", "]", ",", "csv_header", "=", "args", "[", "'header'", "]", ",", "compress", "=", "args", "[", "'compress'", "]", ",", "use_cache", "=", "not", "args", "[", "'nocache'", "]", ")", "context", "=", "google", ".", "datalab", ".", "utils", ".", "_utils", ".", "_construct_context_for_args", "(", "args", ")", "job", "=", "query", ".", "execute", "(", "output_options", ",", "context", "=", "context", ",", "query_params", "=", "query_params", ")", "else", ":", "raise", "Exception", "(", "'A query, table, or view is needed to extract'", ")", "if", "job", ".", "failed", ":", "raise", "Exception", "(", "'Extract failed: %s'", "%", "str", "(", "job", ".", "fatal_error", ")", ")", "elif", "job", ".", "errors", ":", "raise", "Exception", "(", "'Extract completed with errors: %s'", "%", "str", "(", "job", ".", "errors", ")", ")", "return", "job", ".", "result", "(", ")" ]
Implements the BigQuery extract magic used to extract query or table data to GCS. The supported syntax is: %bq extract <args> Args: args: the arguments following '%bigquery extract'.
[ "Implements", "the", "BigQuery", "extract", "magic", "used", "to", "extract", "query", "or", "table", "data", "to", "GCS", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L757-L802
5,105
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
bq
def bq(line, cell=None): """Implements the bq cell magic for ipython notebooks. The supported syntax is: %%bq <command> [<args>] <cell> or: %bq <command> [<args>] Use %bq --help for a list of commands, or %bq <command> --help for help on a specific command. """ return google.datalab.utils.commands.handle_magic_line(line, cell, _bigquery_parser)
python
def bq(line, cell=None): """Implements the bq cell magic for ipython notebooks. The supported syntax is: %%bq <command> [<args>] <cell> or: %bq <command> [<args>] Use %bq --help for a list of commands, or %bq <command> --help for help on a specific command. """ return google.datalab.utils.commands.handle_magic_line(line, cell, _bigquery_parser)
[ "def", "bq", "(", "line", ",", "cell", "=", "None", ")", ":", "return", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "handle_magic_line", "(", "line", ",", "cell", ",", "_bigquery_parser", ")" ]
Implements the bq cell magic for ipython notebooks. The supported syntax is: %%bq <command> [<args>] <cell> or: %bq <command> [<args>] Use %bq --help for a list of commands, or %bq <command> --help for help on a specific command.
[ "Implements", "the", "bq", "cell", "magic", "for", "ipython", "notebooks", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L1028-L1043
5,106
googledatalab/pydatalab
google/datalab/bigquery/commands/_bigquery.py
_table_viewer
def _table_viewer(table, rows_per_page=25, fields=None): """ Return a table viewer. This includes a static rendering of the first page of the table, that gets replaced by the charting code in environments where Javascript is executable and BQ is available. Args: table: the table to view. rows_per_page: how many rows to display at one time. fields: an array of field names to display; default is None which uses the full schema. Returns: A string containing the HTML for the table viewer. """ # TODO(gram): rework this to use google.datalab.utils.commands.chart_html if not table.exists(): raise Exception('Table %s does not exist' % table.full_name) if not table.is_listable(): return "Done" _HTML_TEMPLATE = u""" <div class="bqtv" id="{div_id}">{static_table}</div> <br />{meta_data}<br /> <script src="/static/components/requirejs/require.js"></script> <script> require.config({{ paths: {{ base: '/static/base', d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.13/d3', plotly: 'https://cdn.plot.ly/plotly-1.5.1.min.js?noext', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min' }}, map: {{ '*': {{ datalab: 'nbextensions/gcpdatalab' }} }}, shim: {{ plotly: {{ deps: ['d3', 'jquery'], exports: 'plotly' }} }} }}); require(['datalab/charting', 'datalab/element!{div_id}', 'base/js/events', 'datalab/style!/nbextensions/gcpdatalab/charting.css'], function(charts, dom, events) {{ charts.render('gcharts', dom, events, '{chart_style}', [], {data}, {{ pageSize: {rows_per_page}, cssClassNames: {{ tableRow: 'gchart-table-row', headerRow: 'gchart-table-headerrow', oddTableRow: 'gchart-table-oddrow', selectedTableRow: 'gchart-table-selectedrow', hoverTableRow: 'gchart-table-hoverrow', tableCell: 'gchart-table-cell', headerCell: 'gchart-table-headercell', rowNumberCell: 'gchart-table-rownumcell' }} }}, {{source_index: {source_index}, fields: '{fields}'}}, 0, {total_rows}); }} ); </script> """ if fields is None: fields = google.datalab.utils.commands.get_field_list(fields, table.schema) div_id = google.datalab.utils.commands.Html.next_id() meta_count = ('rows: %d' % table.length) if table.length >= 0 else '' meta_name = table.full_name if table.job is None else ('job: %s' % table.job.id) if table.job: if table.job.cache_hit: meta_cost = 'cached' else: bytes = bigquery._query_stats.QueryStats._size_formatter(table.job.bytes_processed) meta_cost = '%s processed' % bytes meta_time = 'time: %.1fs' % table.job.total_time else: meta_cost = '' meta_time = '' data, total_count = google.datalab.utils.commands.get_data(table, fields, first_row=0, count=rows_per_page) if total_count < 0: # The table doesn't have a length metadata property but may still be small if we fetched less # rows than we asked for. fetched_count = len(data['rows']) if fetched_count < rows_per_page: total_count = fetched_count chart = 'table' if 0 <= total_count <= rows_per_page else 'paged_table' meta_entries = [meta_count, meta_time, meta_cost, meta_name] meta_data = '(%s)' % (', '.join([entry for entry in meta_entries if len(entry)])) return _HTML_TEMPLATE.format(div_id=div_id, static_table=google.datalab.utils.commands.HtmlBuilder .render_chart_data(data), meta_data=meta_data, chart_style=chart, source_index=google.datalab.utils.commands .get_data_source_index(table.full_name), fields=','.join(fields), total_rows=total_count, rows_per_page=rows_per_page, data=json.dumps(data, cls=google.datalab.utils.JSONEncoder))
python
def _table_viewer(table, rows_per_page=25, fields=None): """ Return a table viewer. This includes a static rendering of the first page of the table, that gets replaced by the charting code in environments where Javascript is executable and BQ is available. Args: table: the table to view. rows_per_page: how many rows to display at one time. fields: an array of field names to display; default is None which uses the full schema. Returns: A string containing the HTML for the table viewer. """ # TODO(gram): rework this to use google.datalab.utils.commands.chart_html if not table.exists(): raise Exception('Table %s does not exist' % table.full_name) if not table.is_listable(): return "Done" _HTML_TEMPLATE = u""" <div class="bqtv" id="{div_id}">{static_table}</div> <br />{meta_data}<br /> <script src="/static/components/requirejs/require.js"></script> <script> require.config({{ paths: {{ base: '/static/base', d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.13/d3', plotly: 'https://cdn.plot.ly/plotly-1.5.1.min.js?noext', jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min' }}, map: {{ '*': {{ datalab: 'nbextensions/gcpdatalab' }} }}, shim: {{ plotly: {{ deps: ['d3', 'jquery'], exports: 'plotly' }} }} }}); require(['datalab/charting', 'datalab/element!{div_id}', 'base/js/events', 'datalab/style!/nbextensions/gcpdatalab/charting.css'], function(charts, dom, events) {{ charts.render('gcharts', dom, events, '{chart_style}', [], {data}, {{ pageSize: {rows_per_page}, cssClassNames: {{ tableRow: 'gchart-table-row', headerRow: 'gchart-table-headerrow', oddTableRow: 'gchart-table-oddrow', selectedTableRow: 'gchart-table-selectedrow', hoverTableRow: 'gchart-table-hoverrow', tableCell: 'gchart-table-cell', headerCell: 'gchart-table-headercell', rowNumberCell: 'gchart-table-rownumcell' }} }}, {{source_index: {source_index}, fields: '{fields}'}}, 0, {total_rows}); }} ); </script> """ if fields is None: fields = google.datalab.utils.commands.get_field_list(fields, table.schema) div_id = google.datalab.utils.commands.Html.next_id() meta_count = ('rows: %d' % table.length) if table.length >= 0 else '' meta_name = table.full_name if table.job is None else ('job: %s' % table.job.id) if table.job: if table.job.cache_hit: meta_cost = 'cached' else: bytes = bigquery._query_stats.QueryStats._size_formatter(table.job.bytes_processed) meta_cost = '%s processed' % bytes meta_time = 'time: %.1fs' % table.job.total_time else: meta_cost = '' meta_time = '' data, total_count = google.datalab.utils.commands.get_data(table, fields, first_row=0, count=rows_per_page) if total_count < 0: # The table doesn't have a length metadata property but may still be small if we fetched less # rows than we asked for. fetched_count = len(data['rows']) if fetched_count < rows_per_page: total_count = fetched_count chart = 'table' if 0 <= total_count <= rows_per_page else 'paged_table' meta_entries = [meta_count, meta_time, meta_cost, meta_name] meta_data = '(%s)' % (', '.join([entry for entry in meta_entries if len(entry)])) return _HTML_TEMPLATE.format(div_id=div_id, static_table=google.datalab.utils.commands.HtmlBuilder .render_chart_data(data), meta_data=meta_data, chart_style=chart, source_index=google.datalab.utils.commands .get_data_source_index(table.full_name), fields=','.join(fields), total_rows=total_count, rows_per_page=rows_per_page, data=json.dumps(data, cls=google.datalab.utils.JSONEncoder))
[ "def", "_table_viewer", "(", "table", ",", "rows_per_page", "=", "25", ",", "fields", "=", "None", ")", ":", "# TODO(gram): rework this to use google.datalab.utils.commands.chart_html", "if", "not", "table", ".", "exists", "(", ")", ":", "raise", "Exception", "(", "'Table %s does not exist'", "%", "table", ".", "full_name", ")", "if", "not", "table", ".", "is_listable", "(", ")", ":", "return", "\"Done\"", "_HTML_TEMPLATE", "=", "u\"\"\"\n <div class=\"bqtv\" id=\"{div_id}\">{static_table}</div>\n <br />{meta_data}<br />\n <script src=\"/static/components/requirejs/require.js\"></script>\n <script>\n require.config({{\n paths: {{\n base: '/static/base',\n d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.4.13/d3',\n plotly: 'https://cdn.plot.ly/plotly-1.5.1.min.js?noext',\n jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.0.0/jquery.min'\n }},\n map: {{\n '*': {{\n datalab: 'nbextensions/gcpdatalab'\n }}\n }},\n shim: {{\n plotly: {{\n deps: ['d3', 'jquery'],\n exports: 'plotly'\n }}\n }}\n }});\n\n require(['datalab/charting', 'datalab/element!{div_id}', 'base/js/events',\n 'datalab/style!/nbextensions/gcpdatalab/charting.css'],\n function(charts, dom, events) {{\n charts.render('gcharts', dom, events, '{chart_style}', [], {data},\n {{\n pageSize: {rows_per_page},\n cssClassNames: {{\n tableRow: 'gchart-table-row',\n headerRow: 'gchart-table-headerrow',\n oddTableRow: 'gchart-table-oddrow',\n selectedTableRow: 'gchart-table-selectedrow',\n hoverTableRow: 'gchart-table-hoverrow',\n tableCell: 'gchart-table-cell',\n headerCell: 'gchart-table-headercell',\n rowNumberCell: 'gchart-table-rownumcell'\n }}\n }},\n {{source_index: {source_index}, fields: '{fields}'}},\n 0,\n {total_rows});\n }}\n );\n </script>\n \"\"\"", "if", "fields", "is", "None", ":", "fields", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "get_field_list", "(", "fields", ",", "table", ".", "schema", ")", "div_id", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "Html", ".", "next_id", "(", ")", "meta_count", "=", "(", "'rows: %d'", "%", "table", ".", "length", ")", "if", "table", ".", "length", ">=", "0", "else", "''", "meta_name", "=", "table", ".", "full_name", "if", "table", ".", "job", "is", "None", "else", "(", "'job: %s'", "%", "table", ".", "job", ".", "id", ")", "if", "table", ".", "job", ":", "if", "table", ".", "job", ".", "cache_hit", ":", "meta_cost", "=", "'cached'", "else", ":", "bytes", "=", "bigquery", ".", "_query_stats", ".", "QueryStats", ".", "_size_formatter", "(", "table", ".", "job", ".", "bytes_processed", ")", "meta_cost", "=", "'%s processed'", "%", "bytes", "meta_time", "=", "'time: %.1fs'", "%", "table", ".", "job", ".", "total_time", "else", ":", "meta_cost", "=", "''", "meta_time", "=", "''", "data", ",", "total_count", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "get_data", "(", "table", ",", "fields", ",", "first_row", "=", "0", ",", "count", "=", "rows_per_page", ")", "if", "total_count", "<", "0", ":", "# The table doesn't have a length metadata property but may still be small if we fetched less", "# rows than we asked for.", "fetched_count", "=", "len", "(", "data", "[", "'rows'", "]", ")", "if", "fetched_count", "<", "rows_per_page", ":", "total_count", "=", "fetched_count", "chart", "=", "'table'", "if", "0", "<=", "total_count", "<=", "rows_per_page", "else", "'paged_table'", "meta_entries", "=", "[", "meta_count", ",", "meta_time", ",", "meta_cost", ",", "meta_name", "]", "meta_data", "=", "'(%s)'", "%", "(", "', '", ".", "join", "(", "[", "entry", "for", "entry", "in", "meta_entries", "if", "len", "(", "entry", ")", "]", ")", ")", "return", "_HTML_TEMPLATE", ".", "format", "(", "div_id", "=", "div_id", ",", "static_table", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "HtmlBuilder", ".", "render_chart_data", "(", "data", ")", ",", "meta_data", "=", "meta_data", ",", "chart_style", "=", "chart", ",", "source_index", "=", "google", ".", "datalab", ".", "utils", ".", "commands", ".", "get_data_source_index", "(", "table", ".", "full_name", ")", ",", "fields", "=", "','", ".", "join", "(", "fields", ")", ",", "total_rows", "=", "total_count", ",", "rows_per_page", "=", "rows_per_page", ",", "data", "=", "json", ".", "dumps", "(", "data", ",", "cls", "=", "google", ".", "datalab", ".", "utils", ".", "JSONEncoder", ")", ")" ]
Return a table viewer. This includes a static rendering of the first page of the table, that gets replaced by the charting code in environments where Javascript is executable and BQ is available. Args: table: the table to view. rows_per_page: how many rows to display at one time. fields: an array of field names to display; default is None which uses the full schema. Returns: A string containing the HTML for the table viewer.
[ "Return", "a", "table", "viewer", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/bigquery/commands/_bigquery.py#L1074-L1186
5,107
googledatalab/pydatalab
datalab/bigquery/_udf.py
UDF._build_js
def _build_js(inputs, outputs, name, implementation, support_code): """Creates a BigQuery SQL UDF javascript object. Args: inputs: a list of (name, type) tuples representing the schema of input. outputs: a list of (name, type) tuples representing the schema of the output. name: the name of the function implementation: a javascript function defining the UDF logic. support_code: additional javascript code that the function can use. """ # Construct a comma-separated list of input field names # For example, field1,field2,... input_fields = json.dumps([f[0] for f in inputs]) # Construct a json representation of the output schema # For example, [{'name':'field1','type':'string'},...] output_fields = [{'name': f[0], 'type': f[1]} for f in outputs] output_fields = json.dumps(output_fields, sort_keys=True) # Build the JS from the individual bits with proper escaping of the implementation if support_code is None: support_code = '' return ('{code}\n{name}={implementation};\nbigquery.defineFunction(\'{name}\', {inputs}, ' '{outputs}, {name});').format(code=support_code, name=name, implementation=implementation, inputs=str(input_fields), outputs=str(output_fields))
python
def _build_js(inputs, outputs, name, implementation, support_code): """Creates a BigQuery SQL UDF javascript object. Args: inputs: a list of (name, type) tuples representing the schema of input. outputs: a list of (name, type) tuples representing the schema of the output. name: the name of the function implementation: a javascript function defining the UDF logic. support_code: additional javascript code that the function can use. """ # Construct a comma-separated list of input field names # For example, field1,field2,... input_fields = json.dumps([f[0] for f in inputs]) # Construct a json representation of the output schema # For example, [{'name':'field1','type':'string'},...] output_fields = [{'name': f[0], 'type': f[1]} for f in outputs] output_fields = json.dumps(output_fields, sort_keys=True) # Build the JS from the individual bits with proper escaping of the implementation if support_code is None: support_code = '' return ('{code}\n{name}={implementation};\nbigquery.defineFunction(\'{name}\', {inputs}, ' '{outputs}, {name});').format(code=support_code, name=name, implementation=implementation, inputs=str(input_fields), outputs=str(output_fields))
[ "def", "_build_js", "(", "inputs", ",", "outputs", ",", "name", ",", "implementation", ",", "support_code", ")", ":", "# Construct a comma-separated list of input field names", "# For example, field1,field2,...", "input_fields", "=", "json", ".", "dumps", "(", "[", "f", "[", "0", "]", "for", "f", "in", "inputs", "]", ")", "# Construct a json representation of the output schema", "# For example, [{'name':'field1','type':'string'},...]", "output_fields", "=", "[", "{", "'name'", ":", "f", "[", "0", "]", ",", "'type'", ":", "f", "[", "1", "]", "}", "for", "f", "in", "outputs", "]", "output_fields", "=", "json", ".", "dumps", "(", "output_fields", ",", "sort_keys", "=", "True", ")", "# Build the JS from the individual bits with proper escaping of the implementation", "if", "support_code", "is", "None", ":", "support_code", "=", "''", "return", "(", "'{code}\\n{name}={implementation};\\nbigquery.defineFunction(\\'{name}\\', {inputs}, '", "'{outputs}, {name});'", ")", ".", "format", "(", "code", "=", "support_code", ",", "name", "=", "name", ",", "implementation", "=", "implementation", ",", "inputs", "=", "str", "(", "input_fields", ")", ",", "outputs", "=", "str", "(", "output_fields", ")", ")" ]
Creates a BigQuery SQL UDF javascript object. Args: inputs: a list of (name, type) tuples representing the schema of input. outputs: a list of (name, type) tuples representing the schema of the output. name: the name of the function implementation: a javascript function defining the UDF logic. support_code: additional javascript code that the function can use.
[ "Creates", "a", "BigQuery", "SQL", "UDF", "javascript", "object", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/datalab/bigquery/_udf.py#L59-L84
5,108
googledatalab/pydatalab
datalab/bigquery/_sampling.py
Sampling.sampling_query
def sampling_query(sql, fields=None, count=5, sampling=None): """Returns a sampling query for the SQL object. Args: sql: the SQL object to sample fields: an optional list of field names to retrieve. count: an optional count of rows to retrieve which is used if a specific sampling is not specified. sampling: an optional sampling strategy to apply to the table. Returns: A SQL query string for sampling the input sql. """ if sampling is None: sampling = Sampling.default(count=count, fields=fields) return sampling(sql)
python
def sampling_query(sql, fields=None, count=5, sampling=None): """Returns a sampling query for the SQL object. Args: sql: the SQL object to sample fields: an optional list of field names to retrieve. count: an optional count of rows to retrieve which is used if a specific sampling is not specified. sampling: an optional sampling strategy to apply to the table. Returns: A SQL query string for sampling the input sql. """ if sampling is None: sampling = Sampling.default(count=count, fields=fields) return sampling(sql)
[ "def", "sampling_query", "(", "sql", ",", "fields", "=", "None", ",", "count", "=", "5", ",", "sampling", "=", "None", ")", ":", "if", "sampling", "is", "None", ":", "sampling", "=", "Sampling", ".", "default", "(", "count", "=", "count", ",", "fields", "=", "fields", ")", "return", "sampling", "(", "sql", ")" ]
Returns a sampling query for the SQL object. Args: sql: the SQL object to sample fields: an optional list of field names to retrieve. count: an optional count of rows to retrieve which is used if a specific sampling is not specified. sampling: an optional sampling strategy to apply to the table. Returns: A SQL query string for sampling the input sql.
[ "Returns", "a", "sampling", "query", "for", "the", "SQL", "object", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/datalab/bigquery/_sampling.py#L74-L88
5,109
googledatalab/pydatalab
google/datalab/ml/_fasets.py
FacetsOverview._remove_nonascii
def _remove_nonascii(self, df): """Make copy and remove non-ascii characters from it.""" df_copy = df.copy(deep=True) for col in df_copy.columns: if (df_copy[col].dtype == np.dtype('O')): df_copy[col] = df[col].apply( lambda x: re.sub(r'[^\x00-\x7f]', r'', x) if isinstance(x, six.string_types) else x) return df_copy
python
def _remove_nonascii(self, df): """Make copy and remove non-ascii characters from it.""" df_copy = df.copy(deep=True) for col in df_copy.columns: if (df_copy[col].dtype == np.dtype('O')): df_copy[col] = df[col].apply( lambda x: re.sub(r'[^\x00-\x7f]', r'', x) if isinstance(x, six.string_types) else x) return df_copy
[ "def", "_remove_nonascii", "(", "self", ",", "df", ")", ":", "df_copy", "=", "df", ".", "copy", "(", "deep", "=", "True", ")", "for", "col", "in", "df_copy", ".", "columns", ":", "if", "(", "df_copy", "[", "col", "]", ".", "dtype", "==", "np", ".", "dtype", "(", "'O'", ")", ")", ":", "df_copy", "[", "col", "]", "=", "df", "[", "col", "]", ".", "apply", "(", "lambda", "x", ":", "re", ".", "sub", "(", "r'[^\\x00-\\x7f]'", ",", "r''", ",", "x", ")", "if", "isinstance", "(", "x", ",", "six", ".", "string_types", ")", "else", "x", ")", "return", "df_copy" ]
Make copy and remove non-ascii characters from it.
[ "Make", "copy", "and", "remove", "non", "-", "ascii", "characters", "from", "it", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/ml/_fasets.py#L27-L36
5,110
googledatalab/pydatalab
google/datalab/ml/_fasets.py
FacetsOverview.plot
def plot(self, data): """ Plots an overview in a list of dataframes Args: data: a dictionary with key the name, and value the dataframe. """ import IPython if not isinstance(data, dict) or not all(isinstance(v, pd.DataFrame) for v in data.values()): raise ValueError('Expect a dictionary where the values are all dataframes.') gfsg = GenericFeatureStatisticsGenerator() data = [{'name': k, 'table': self._remove_nonascii(v)} for k, v in six.iteritems(data)] data_proto = gfsg.ProtoFromDataFrames(data) protostr = base64.b64encode(data_proto.SerializeToString()).decode("utf-8") html_id = 'f' + datalab.utils.commands.Html.next_id() HTML_TEMPLATE = """<link rel="import" href="/nbextensions/gcpdatalab/extern/facets-jupyter.html" > <facets-overview id="{html_id}"></facets-overview> <script> document.querySelector("#{html_id}").protoInput = "{protostr}"; </script>""" html = HTML_TEMPLATE.format(html_id=html_id, protostr=protostr) return IPython.core.display.HTML(html)
python
def plot(self, data): """ Plots an overview in a list of dataframes Args: data: a dictionary with key the name, and value the dataframe. """ import IPython if not isinstance(data, dict) or not all(isinstance(v, pd.DataFrame) for v in data.values()): raise ValueError('Expect a dictionary where the values are all dataframes.') gfsg = GenericFeatureStatisticsGenerator() data = [{'name': k, 'table': self._remove_nonascii(v)} for k, v in six.iteritems(data)] data_proto = gfsg.ProtoFromDataFrames(data) protostr = base64.b64encode(data_proto.SerializeToString()).decode("utf-8") html_id = 'f' + datalab.utils.commands.Html.next_id() HTML_TEMPLATE = """<link rel="import" href="/nbextensions/gcpdatalab/extern/facets-jupyter.html" > <facets-overview id="{html_id}"></facets-overview> <script> document.querySelector("#{html_id}").protoInput = "{protostr}"; </script>""" html = HTML_TEMPLATE.format(html_id=html_id, protostr=protostr) return IPython.core.display.HTML(html)
[ "def", "plot", "(", "self", ",", "data", ")", ":", "import", "IPython", "if", "not", "isinstance", "(", "data", ",", "dict", ")", "or", "not", "all", "(", "isinstance", "(", "v", ",", "pd", ".", "DataFrame", ")", "for", "v", "in", "data", ".", "values", "(", ")", ")", ":", "raise", "ValueError", "(", "'Expect a dictionary where the values are all dataframes.'", ")", "gfsg", "=", "GenericFeatureStatisticsGenerator", "(", ")", "data", "=", "[", "{", "'name'", ":", "k", ",", "'table'", ":", "self", ".", "_remove_nonascii", "(", "v", ")", "}", "for", "k", ",", "v", "in", "six", ".", "iteritems", "(", "data", ")", "]", "data_proto", "=", "gfsg", ".", "ProtoFromDataFrames", "(", "data", ")", "protostr", "=", "base64", ".", "b64encode", "(", "data_proto", ".", "SerializeToString", "(", ")", ")", ".", "decode", "(", "\"utf-8\"", ")", "html_id", "=", "'f'", "+", "datalab", ".", "utils", ".", "commands", ".", "Html", ".", "next_id", "(", ")", "HTML_TEMPLATE", "=", "\"\"\"<link rel=\"import\" href=\"/nbextensions/gcpdatalab/extern/facets-jupyter.html\" >\n <facets-overview id=\"{html_id}\"></facets-overview>\n <script>\n document.querySelector(\"#{html_id}\").protoInput = \"{protostr}\";\n </script>\"\"\"", "html", "=", "HTML_TEMPLATE", ".", "format", "(", "html_id", "=", "html_id", ",", "protostr", "=", "protostr", ")", "return", "IPython", ".", "core", ".", "display", ".", "HTML", "(", "html", ")" ]
Plots an overview in a list of dataframes Args: data: a dictionary with key the name, and value the dataframe.
[ "Plots", "an", "overview", "in", "a", "list", "of", "dataframes" ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/ml/_fasets.py#L38-L62
5,111
googledatalab/pydatalab
google/datalab/ml/_fasets.py
FacetsDiveview.plot
def plot(self, data, height=1000, render_large_data=False): """ Plots a detail view of data. Args: data: a Pandas dataframe. height: the height of the output. """ import IPython if not isinstance(data, pd.DataFrame): raise ValueError('Expect a DataFrame.') if (len(data) > 10000 and not render_large_data): raise ValueError('Facets dive may not work well with more than 10000 rows. ' + 'Reduce data or set "render_large_data" to True.') jsonstr = data.to_json(orient='records') html_id = 'f' + datalab.utils.commands.Html.next_id() HTML_TEMPLATE = """ <link rel="import" href="/nbextensions/gcpdatalab/extern/facets-jupyter.html"> <facets-dive id="{html_id}" height="{height}"></facets-dive> <script> var data = {jsonstr}; document.querySelector("#{html_id}").data = data; </script>""" html = HTML_TEMPLATE.format(html_id=html_id, jsonstr=jsonstr, height=height) return IPython.core.display.HTML(html)
python
def plot(self, data, height=1000, render_large_data=False): """ Plots a detail view of data. Args: data: a Pandas dataframe. height: the height of the output. """ import IPython if not isinstance(data, pd.DataFrame): raise ValueError('Expect a DataFrame.') if (len(data) > 10000 and not render_large_data): raise ValueError('Facets dive may not work well with more than 10000 rows. ' + 'Reduce data or set "render_large_data" to True.') jsonstr = data.to_json(orient='records') html_id = 'f' + datalab.utils.commands.Html.next_id() HTML_TEMPLATE = """ <link rel="import" href="/nbextensions/gcpdatalab/extern/facets-jupyter.html"> <facets-dive id="{html_id}" height="{height}"></facets-dive> <script> var data = {jsonstr}; document.querySelector("#{html_id}").data = data; </script>""" html = HTML_TEMPLATE.format(html_id=html_id, jsonstr=jsonstr, height=height) return IPython.core.display.HTML(html)
[ "def", "plot", "(", "self", ",", "data", ",", "height", "=", "1000", ",", "render_large_data", "=", "False", ")", ":", "import", "IPython", "if", "not", "isinstance", "(", "data", ",", "pd", ".", "DataFrame", ")", ":", "raise", "ValueError", "(", "'Expect a DataFrame.'", ")", "if", "(", "len", "(", "data", ")", ">", "10000", "and", "not", "render_large_data", ")", ":", "raise", "ValueError", "(", "'Facets dive may not work well with more than 10000 rows. '", "+", "'Reduce data or set \"render_large_data\" to True.'", ")", "jsonstr", "=", "data", ".", "to_json", "(", "orient", "=", "'records'", ")", "html_id", "=", "'f'", "+", "datalab", ".", "utils", ".", "commands", ".", "Html", ".", "next_id", "(", ")", "HTML_TEMPLATE", "=", "\"\"\"\n <link rel=\"import\" href=\"/nbextensions/gcpdatalab/extern/facets-jupyter.html\">\n <facets-dive id=\"{html_id}\" height=\"{height}\"></facets-dive>\n <script>\n var data = {jsonstr};\n document.querySelector(\"#{html_id}\").data = data;\n </script>\"\"\"", "html", "=", "HTML_TEMPLATE", ".", "format", "(", "html_id", "=", "html_id", ",", "jsonstr", "=", "jsonstr", ",", "height", "=", "height", ")", "return", "IPython", ".", "core", ".", "display", ".", "HTML", "(", "html", ")" ]
Plots a detail view of data. Args: data: a Pandas dataframe. height: the height of the output.
[ "Plots", "a", "detail", "view", "of", "data", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/ml/_fasets.py#L68-L95
5,112
googledatalab/pydatalab
google/datalab/utils/facets/base_generic_feature_statistics_generator.py
BaseGenericFeatureStatisticsGenerator.DtypeToType
def DtypeToType(self, dtype): """Converts a Numpy dtype to the FeatureNameStatistics.Type proto enum.""" if dtype.char in np.typecodes['AllFloat']: return self.fs_proto.FLOAT elif (dtype.char in np.typecodes['AllInteger'] or dtype == np.bool or np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)): return self.fs_proto.INT else: return self.fs_proto.STRING
python
def DtypeToType(self, dtype): """Converts a Numpy dtype to the FeatureNameStatistics.Type proto enum.""" if dtype.char in np.typecodes['AllFloat']: return self.fs_proto.FLOAT elif (dtype.char in np.typecodes['AllInteger'] or dtype == np.bool or np.issubdtype(dtype, np.datetime64) or np.issubdtype(dtype, np.timedelta64)): return self.fs_proto.INT else: return self.fs_proto.STRING
[ "def", "DtypeToType", "(", "self", ",", "dtype", ")", ":", "if", "dtype", ".", "char", "in", "np", ".", "typecodes", "[", "'AllFloat'", "]", ":", "return", "self", ".", "fs_proto", ".", "FLOAT", "elif", "(", "dtype", ".", "char", "in", "np", ".", "typecodes", "[", "'AllInteger'", "]", "or", "dtype", "==", "np", ".", "bool", "or", "np", ".", "issubdtype", "(", "dtype", ",", "np", ".", "datetime64", ")", "or", "np", ".", "issubdtype", "(", "dtype", ",", "np", ".", "timedelta64", ")", ")", ":", "return", "self", ".", "fs_proto", ".", "INT", "else", ":", "return", "self", ".", "fs_proto", ".", "STRING" ]
Converts a Numpy dtype to the FeatureNameStatistics.Type proto enum.
[ "Converts", "a", "Numpy", "dtype", "to", "the", "FeatureNameStatistics", ".", "Type", "proto", "enum", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/utils/facets/base_generic_feature_statistics_generator.py#L58-L67
5,113
googledatalab/pydatalab
google/datalab/utils/facets/base_generic_feature_statistics_generator.py
BaseGenericFeatureStatisticsGenerator.NdarrayToEntry
def NdarrayToEntry(self, x): """Converts an ndarray to the Entry format.""" row_counts = [] for row in x: try: rc = np.count_nonzero(~np.isnan(row)) if rc != 0: row_counts.append(rc) except TypeError: try: row_counts.append(row.size) except AttributeError: row_counts.append(1) data_type = self.DtypeToType(x.dtype) converter = self.DtypeToNumberConverter(x.dtype) flattened = x.ravel() orig_size = len(flattened) # Remove all None and nan values and count how many were removed. flattened = flattened[flattened != np.array(None)] if converter: flattened = converter(flattened) if data_type == self.fs_proto.STRING: flattened_temp = [] for x in flattened: try: if str(x) != 'nan': flattened_temp.append(x) except UnicodeEncodeError: if x.encode('utf-8') != 'nan': flattened_temp.append(x) flattened = flattened_temp else: flattened = flattened[~np.isnan(flattened)].tolist() missing = orig_size - len(flattened) return { 'vals': flattened, 'counts': row_counts, 'missing': missing, 'type': data_type }
python
def NdarrayToEntry(self, x): """Converts an ndarray to the Entry format.""" row_counts = [] for row in x: try: rc = np.count_nonzero(~np.isnan(row)) if rc != 0: row_counts.append(rc) except TypeError: try: row_counts.append(row.size) except AttributeError: row_counts.append(1) data_type = self.DtypeToType(x.dtype) converter = self.DtypeToNumberConverter(x.dtype) flattened = x.ravel() orig_size = len(flattened) # Remove all None and nan values and count how many were removed. flattened = flattened[flattened != np.array(None)] if converter: flattened = converter(flattened) if data_type == self.fs_proto.STRING: flattened_temp = [] for x in flattened: try: if str(x) != 'nan': flattened_temp.append(x) except UnicodeEncodeError: if x.encode('utf-8') != 'nan': flattened_temp.append(x) flattened = flattened_temp else: flattened = flattened[~np.isnan(flattened)].tolist() missing = orig_size - len(flattened) return { 'vals': flattened, 'counts': row_counts, 'missing': missing, 'type': data_type }
[ "def", "NdarrayToEntry", "(", "self", ",", "x", ")", ":", "row_counts", "=", "[", "]", "for", "row", "in", "x", ":", "try", ":", "rc", "=", "np", ".", "count_nonzero", "(", "~", "np", ".", "isnan", "(", "row", ")", ")", "if", "rc", "!=", "0", ":", "row_counts", ".", "append", "(", "rc", ")", "except", "TypeError", ":", "try", ":", "row_counts", ".", "append", "(", "row", ".", "size", ")", "except", "AttributeError", ":", "row_counts", ".", "append", "(", "1", ")", "data_type", "=", "self", ".", "DtypeToType", "(", "x", ".", "dtype", ")", "converter", "=", "self", ".", "DtypeToNumberConverter", "(", "x", ".", "dtype", ")", "flattened", "=", "x", ".", "ravel", "(", ")", "orig_size", "=", "len", "(", "flattened", ")", "# Remove all None and nan values and count how many were removed.", "flattened", "=", "flattened", "[", "flattened", "!=", "np", ".", "array", "(", "None", ")", "]", "if", "converter", ":", "flattened", "=", "converter", "(", "flattened", ")", "if", "data_type", "==", "self", ".", "fs_proto", ".", "STRING", ":", "flattened_temp", "=", "[", "]", "for", "x", "in", "flattened", ":", "try", ":", "if", "str", "(", "x", ")", "!=", "'nan'", ":", "flattened_temp", ".", "append", "(", "x", ")", "except", "UnicodeEncodeError", ":", "if", "x", ".", "encode", "(", "'utf-8'", ")", "!=", "'nan'", ":", "flattened_temp", ".", "append", "(", "x", ")", "flattened", "=", "flattened_temp", "else", ":", "flattened", "=", "flattened", "[", "~", "np", ".", "isnan", "(", "flattened", ")", "]", ".", "tolist", "(", ")", "missing", "=", "orig_size", "-", "len", "(", "flattened", ")", "return", "{", "'vals'", ":", "flattened", ",", "'counts'", ":", "row_counts", ",", "'missing'", ":", "missing", ",", "'type'", ":", "data_type", "}" ]
Converts an ndarray to the Entry format.
[ "Converts", "an", "ndarray", "to", "the", "Entry", "format", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/google/datalab/utils/facets/base_generic_feature_statistics_generator.py#L96-L137
5,114
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
serving_from_csv_input
def serving_from_csv_input(train_config, args, keep_target): """Read the input features from a placeholder csv string tensor.""" examples = tf.placeholder( dtype=tf.string, shape=(None,), name='csv_input_string') features = parse_example_tensor(examples=examples, train_config=train_config, keep_target=keep_target) if keep_target: target = features.pop(train_config['target_column']) else: target = None features, target = preprocess_input( features=features, target=target, train_config=train_config, preprocess_output_dir=args.preprocess_output_dir, model_type=args.model_type) return input_fn_utils.InputFnOps(features, target, {'csv_line': examples} )
python
def serving_from_csv_input(train_config, args, keep_target): """Read the input features from a placeholder csv string tensor.""" examples = tf.placeholder( dtype=tf.string, shape=(None,), name='csv_input_string') features = parse_example_tensor(examples=examples, train_config=train_config, keep_target=keep_target) if keep_target: target = features.pop(train_config['target_column']) else: target = None features, target = preprocess_input( features=features, target=target, train_config=train_config, preprocess_output_dir=args.preprocess_output_dir, model_type=args.model_type) return input_fn_utils.InputFnOps(features, target, {'csv_line': examples} )
[ "def", "serving_from_csv_input", "(", "train_config", ",", "args", ",", "keep_target", ")", ":", "examples", "=", "tf", ".", "placeholder", "(", "dtype", "=", "tf", ".", "string", ",", "shape", "=", "(", "None", ",", ")", ",", "name", "=", "'csv_input_string'", ")", "features", "=", "parse_example_tensor", "(", "examples", "=", "examples", ",", "train_config", "=", "train_config", ",", "keep_target", "=", "keep_target", ")", "if", "keep_target", ":", "target", "=", "features", ".", "pop", "(", "train_config", "[", "'target_column'", "]", ")", "else", ":", "target", "=", "None", "features", ",", "target", "=", "preprocess_input", "(", "features", "=", "features", ",", "target", "=", "target", ",", "train_config", "=", "train_config", ",", "preprocess_output_dir", "=", "args", ".", "preprocess_output_dir", ",", "model_type", "=", "args", ".", "model_type", ")", "return", "input_fn_utils", ".", "InputFnOps", "(", "features", ",", "target", ",", "{", "'csv_line'", ":", "examples", "}", ")" ]
Read the input features from a placeholder csv string tensor.
[ "Read", "the", "input", "features", "from", "a", "placeholder", "csv", "string", "tensor", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L90-L115
5,115
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
parse_example_tensor
def parse_example_tensor(examples, train_config, keep_target): """Read the csv files. Args: examples: string tensor train_config: training config keep_target: if true, the target column is expected to exist and it is returned in the features dict. Returns: Dict of feature_name to tensor. Target feature is in the dict. """ csv_header = [] if keep_target: csv_header = train_config['csv_header'] else: csv_header = [name for name in train_config['csv_header'] if name != train_config['target_column']] # record_defaults are used by tf.decode_csv to insert defaults, and to infer # the datatype. record_defaults = [[train_config['csv_defaults'][name]] for name in csv_header] tensors = tf.decode_csv(examples, record_defaults, name='csv_to_tensors') # I'm not really sure why expand_dims needs to be called. If using regression # models, it errors without it. tensors = [tf.expand_dims(x, axis=1) for x in tensors] tensor_dict = dict(zip(csv_header, tensors)) return tensor_dict
python
def parse_example_tensor(examples, train_config, keep_target): """Read the csv files. Args: examples: string tensor train_config: training config keep_target: if true, the target column is expected to exist and it is returned in the features dict. Returns: Dict of feature_name to tensor. Target feature is in the dict. """ csv_header = [] if keep_target: csv_header = train_config['csv_header'] else: csv_header = [name for name in train_config['csv_header'] if name != train_config['target_column']] # record_defaults are used by tf.decode_csv to insert defaults, and to infer # the datatype. record_defaults = [[train_config['csv_defaults'][name]] for name in csv_header] tensors = tf.decode_csv(examples, record_defaults, name='csv_to_tensors') # I'm not really sure why expand_dims needs to be called. If using regression # models, it errors without it. tensors = [tf.expand_dims(x, axis=1) for x in tensors] tensor_dict = dict(zip(csv_header, tensors)) return tensor_dict
[ "def", "parse_example_tensor", "(", "examples", ",", "train_config", ",", "keep_target", ")", ":", "csv_header", "=", "[", "]", "if", "keep_target", ":", "csv_header", "=", "train_config", "[", "'csv_header'", "]", "else", ":", "csv_header", "=", "[", "name", "for", "name", "in", "train_config", "[", "'csv_header'", "]", "if", "name", "!=", "train_config", "[", "'target_column'", "]", "]", "# record_defaults are used by tf.decode_csv to insert defaults, and to infer", "# the datatype.", "record_defaults", "=", "[", "[", "train_config", "[", "'csv_defaults'", "]", "[", "name", "]", "]", "for", "name", "in", "csv_header", "]", "tensors", "=", "tf", ".", "decode_csv", "(", "examples", ",", "record_defaults", ",", "name", "=", "'csv_to_tensors'", ")", "# I'm not really sure why expand_dims needs to be called. If using regression", "# models, it errors without it.", "tensors", "=", "[", "tf", ".", "expand_dims", "(", "x", ",", "axis", "=", "1", ")", "for", "x", "in", "tensors", "]", "tensor_dict", "=", "dict", "(", "zip", "(", "csv_header", ",", "tensors", ")", ")", "return", "tensor_dict" ]
Read the csv files. Args: examples: string tensor train_config: training config keep_target: if true, the target column is expected to exist and it is returned in the features dict. Returns: Dict of feature_name to tensor. Target feature is in the dict.
[ "Read", "the", "csv", "files", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L281-L312
5,116
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
get_estimator
def get_estimator(output_dir, train_config, args): """Returns a tf learn estimator. We only support {DNN, Linear}Regressor and {DNN, Linear}Classifier. This is controlled by the values of model_type in the args. Args: output_dir: Modes are saved into outputdir/train train_config: our training config args: command line parameters Returns: TF lean estimator Raises: ValueError: if config is wrong. """ # Check the requested mode fits the preprocessed data. target_name = train_config['target_column'] if is_classification_model(args.model_type) and target_name not in \ train_config['categorical_columns']: raise ValueError('When using a classification model, the target must be a ' 'categorical variable.') if is_regression_model(args.model_type) and target_name not in \ train_config['numerical_columns']: raise ValueError('When using a regression model, the target must be a ' 'numerical variable.') # Check layers used for dnn models. if is_dnn_model(args.model_type) and not args.layer_sizes: raise ValueError('--layer-size* must be used with DNN models') if is_linear_model(args.model_type) and args.layer_sizes: raise ValueError('--layer-size* cannot be used with linear models') # Build tf.learn features feature_columns = _tflearn_features(train_config, args) # Set how often to run checkpointing in terms of time. config = tf.contrib.learn.RunConfig( save_checkpoints_secs=args.save_checkpoints_secs) train_dir = os.path.join(output_dir, 'train') if args.model_type == 'dnn_regression': estimator = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=args.layer_sizes, config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'linear_regression': estimator = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'dnn_classification': estimator = tf.contrib.learn.DNNClassifier( feature_columns=feature_columns, hidden_units=args.layer_sizes, n_classes=train_config['vocab_stats'][target_name]['n_classes'], config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'linear_classification': estimator = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns, n_classes=train_config['vocab_stats'][target_name]['n_classes'], config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) else: raise ValueError('bad --model-type value') return estimator
python
def get_estimator(output_dir, train_config, args): """Returns a tf learn estimator. We only support {DNN, Linear}Regressor and {DNN, Linear}Classifier. This is controlled by the values of model_type in the args. Args: output_dir: Modes are saved into outputdir/train train_config: our training config args: command line parameters Returns: TF lean estimator Raises: ValueError: if config is wrong. """ # Check the requested mode fits the preprocessed data. target_name = train_config['target_column'] if is_classification_model(args.model_type) and target_name not in \ train_config['categorical_columns']: raise ValueError('When using a classification model, the target must be a ' 'categorical variable.') if is_regression_model(args.model_type) and target_name not in \ train_config['numerical_columns']: raise ValueError('When using a regression model, the target must be a ' 'numerical variable.') # Check layers used for dnn models. if is_dnn_model(args.model_type) and not args.layer_sizes: raise ValueError('--layer-size* must be used with DNN models') if is_linear_model(args.model_type) and args.layer_sizes: raise ValueError('--layer-size* cannot be used with linear models') # Build tf.learn features feature_columns = _tflearn_features(train_config, args) # Set how often to run checkpointing in terms of time. config = tf.contrib.learn.RunConfig( save_checkpoints_secs=args.save_checkpoints_secs) train_dir = os.path.join(output_dir, 'train') if args.model_type == 'dnn_regression': estimator = tf.contrib.learn.DNNRegressor( feature_columns=feature_columns, hidden_units=args.layer_sizes, config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'linear_regression': estimator = tf.contrib.learn.LinearRegressor( feature_columns=feature_columns, config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'dnn_classification': estimator = tf.contrib.learn.DNNClassifier( feature_columns=feature_columns, hidden_units=args.layer_sizes, n_classes=train_config['vocab_stats'][target_name]['n_classes'], config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) elif args.model_type == 'linear_classification': estimator = tf.contrib.learn.LinearClassifier( feature_columns=feature_columns, n_classes=train_config['vocab_stats'][target_name]['n_classes'], config=config, model_dir=train_dir, optimizer=tf.train.AdamOptimizer( args.learning_rate, epsilon=args.epsilon)) else: raise ValueError('bad --model-type value') return estimator
[ "def", "get_estimator", "(", "output_dir", ",", "train_config", ",", "args", ")", ":", "# Check the requested mode fits the preprocessed data.", "target_name", "=", "train_config", "[", "'target_column'", "]", "if", "is_classification_model", "(", "args", ".", "model_type", ")", "and", "target_name", "not", "in", "train_config", "[", "'categorical_columns'", "]", ":", "raise", "ValueError", "(", "'When using a classification model, the target must be a '", "'categorical variable.'", ")", "if", "is_regression_model", "(", "args", ".", "model_type", ")", "and", "target_name", "not", "in", "train_config", "[", "'numerical_columns'", "]", ":", "raise", "ValueError", "(", "'When using a regression model, the target must be a '", "'numerical variable.'", ")", "# Check layers used for dnn models.", "if", "is_dnn_model", "(", "args", ".", "model_type", ")", "and", "not", "args", ".", "layer_sizes", ":", "raise", "ValueError", "(", "'--layer-size* must be used with DNN models'", ")", "if", "is_linear_model", "(", "args", ".", "model_type", ")", "and", "args", ".", "layer_sizes", ":", "raise", "ValueError", "(", "'--layer-size* cannot be used with linear models'", ")", "# Build tf.learn features", "feature_columns", "=", "_tflearn_features", "(", "train_config", ",", "args", ")", "# Set how often to run checkpointing in terms of time.", "config", "=", "tf", ".", "contrib", ".", "learn", ".", "RunConfig", "(", "save_checkpoints_secs", "=", "args", ".", "save_checkpoints_secs", ")", "train_dir", "=", "os", ".", "path", ".", "join", "(", "output_dir", ",", "'train'", ")", "if", "args", ".", "model_type", "==", "'dnn_regression'", ":", "estimator", "=", "tf", ".", "contrib", ".", "learn", ".", "DNNRegressor", "(", "feature_columns", "=", "feature_columns", ",", "hidden_units", "=", "args", ".", "layer_sizes", ",", "config", "=", "config", ",", "model_dir", "=", "train_dir", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "args", ".", "learning_rate", ",", "epsilon", "=", "args", ".", "epsilon", ")", ")", "elif", "args", ".", "model_type", "==", "'linear_regression'", ":", "estimator", "=", "tf", ".", "contrib", ".", "learn", ".", "LinearRegressor", "(", "feature_columns", "=", "feature_columns", ",", "config", "=", "config", ",", "model_dir", "=", "train_dir", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "args", ".", "learning_rate", ",", "epsilon", "=", "args", ".", "epsilon", ")", ")", "elif", "args", ".", "model_type", "==", "'dnn_classification'", ":", "estimator", "=", "tf", ".", "contrib", ".", "learn", ".", "DNNClassifier", "(", "feature_columns", "=", "feature_columns", ",", "hidden_units", "=", "args", ".", "layer_sizes", ",", "n_classes", "=", "train_config", "[", "'vocab_stats'", "]", "[", "target_name", "]", "[", "'n_classes'", "]", ",", "config", "=", "config", ",", "model_dir", "=", "train_dir", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "args", ".", "learning_rate", ",", "epsilon", "=", "args", ".", "epsilon", ")", ")", "elif", "args", ".", "model_type", "==", "'linear_classification'", ":", "estimator", "=", "tf", ".", "contrib", ".", "learn", ".", "LinearClassifier", "(", "feature_columns", "=", "feature_columns", ",", "n_classes", "=", "train_config", "[", "'vocab_stats'", "]", "[", "target_name", "]", "[", "'n_classes'", "]", ",", "config", "=", "config", ",", "model_dir", "=", "train_dir", ",", "optimizer", "=", "tf", ".", "train", ".", "AdamOptimizer", "(", "args", ".", "learning_rate", ",", "epsilon", "=", "args", ".", "epsilon", ")", ")", "else", ":", "raise", "ValueError", "(", "'bad --model-type value'", ")", "return", "estimator" ]
Returns a tf learn estimator. We only support {DNN, Linear}Regressor and {DNN, Linear}Classifier. This is controlled by the values of model_type in the args. Args: output_dir: Modes are saved into outputdir/train train_config: our training config args: command line parameters Returns: TF lean estimator Raises: ValueError: if config is wrong.
[ "Returns", "a", "tf", "learn", "estimator", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L367-L445
5,117
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
preprocess_input
def preprocess_input(features, target, train_config, preprocess_output_dir, model_type): """Perform some transformations after reading in the input tensors. Args: features: dict of feature_name to tensor target: tensor train_config: our training config object preprocess_output_dir: folder should contain the vocab files. model_type: the tf model type. Raises: ValueError: if wrong transforms are used Returns: New features dict and new target tensor. """ target_name = train_config['target_column'] key_name = train_config['key_column'] # Do the numerical transforms. # Numerical transforms supported for regression/classification # 1) num -> do nothing (identity, default) # 2) num -> scale to -1, 1 (scale) # 3) num -> scale to -a, a (scale with value parameter) with tf.name_scope('numerical_feature_preprocess'): if train_config['numerical_columns']: numerical_analysis_file = os.path.join(preprocess_output_dir, NUMERICAL_ANALYSIS) if not file_io.file_exists(numerical_analysis_file): raise ValueError('File %s not found in %s' % (NUMERICAL_ANALYSIS, preprocess_output_dir)) numerical_anlysis = json.loads( python_portable_string( file_io.read_file_to_string(numerical_analysis_file))) for name in train_config['numerical_columns']: if name == target_name or name == key_name: continue transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if transform_name == 'scale': value = float(transform_config.get('value', 1.0)) features[name] = _scale_tensor( features[name], range_min=numerical_anlysis[name]['min'], range_max=numerical_anlysis[name]['max'], scale_min=-value, scale_max=value) elif transform_name == 'identity' or transform_name is None: pass else: raise ValueError(('For numerical variables, only scale ' 'and identity are supported: ' 'Error for %s') % name) # Do target transform if it exists. if target is not None: with tf.name_scope('target_feature_preprocess'): if target_name in train_config['categorical_columns']: labels = train_config['vocab_stats'][target_name]['labels'] table = tf.contrib.lookup.string_to_index_table_from_tensor(labels) target = table.lookup(target) # target = tf.contrib.lookup.string_to_index(target, labels) # Do categorical transforms. Only apply vocab mapping. The real # transforms are done with tf learn column features. with tf.name_scope('categorical_feature_preprocess'): for name in train_config['categorical_columns']: if name == key_name or name == target_name: continue transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if is_dnn_model(model_type): if transform_name == 'embedding' or transform_name == 'one_hot' or transform_name is None: map_vocab = True else: raise ValueError('Unknown transform %s' % transform_name) elif is_linear_model(model_type): if (transform_name == 'one_hot' or transform_name is None): map_vocab = True elif transform_name == 'embedding': map_vocab = False else: raise ValueError('Unknown transform %s' % transform_name) if map_vocab: labels = train_config['vocab_stats'][name]['labels'] table = tf.contrib.lookup.string_to_index_table_from_tensor(labels) features[name] = table.lookup(features[name]) return features, target
python
def preprocess_input(features, target, train_config, preprocess_output_dir, model_type): """Perform some transformations after reading in the input tensors. Args: features: dict of feature_name to tensor target: tensor train_config: our training config object preprocess_output_dir: folder should contain the vocab files. model_type: the tf model type. Raises: ValueError: if wrong transforms are used Returns: New features dict and new target tensor. """ target_name = train_config['target_column'] key_name = train_config['key_column'] # Do the numerical transforms. # Numerical transforms supported for regression/classification # 1) num -> do nothing (identity, default) # 2) num -> scale to -1, 1 (scale) # 3) num -> scale to -a, a (scale with value parameter) with tf.name_scope('numerical_feature_preprocess'): if train_config['numerical_columns']: numerical_analysis_file = os.path.join(preprocess_output_dir, NUMERICAL_ANALYSIS) if not file_io.file_exists(numerical_analysis_file): raise ValueError('File %s not found in %s' % (NUMERICAL_ANALYSIS, preprocess_output_dir)) numerical_anlysis = json.loads( python_portable_string( file_io.read_file_to_string(numerical_analysis_file))) for name in train_config['numerical_columns']: if name == target_name or name == key_name: continue transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if transform_name == 'scale': value = float(transform_config.get('value', 1.0)) features[name] = _scale_tensor( features[name], range_min=numerical_anlysis[name]['min'], range_max=numerical_anlysis[name]['max'], scale_min=-value, scale_max=value) elif transform_name == 'identity' or transform_name is None: pass else: raise ValueError(('For numerical variables, only scale ' 'and identity are supported: ' 'Error for %s') % name) # Do target transform if it exists. if target is not None: with tf.name_scope('target_feature_preprocess'): if target_name in train_config['categorical_columns']: labels = train_config['vocab_stats'][target_name]['labels'] table = tf.contrib.lookup.string_to_index_table_from_tensor(labels) target = table.lookup(target) # target = tf.contrib.lookup.string_to_index(target, labels) # Do categorical transforms. Only apply vocab mapping. The real # transforms are done with tf learn column features. with tf.name_scope('categorical_feature_preprocess'): for name in train_config['categorical_columns']: if name == key_name or name == target_name: continue transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if is_dnn_model(model_type): if transform_name == 'embedding' or transform_name == 'one_hot' or transform_name is None: map_vocab = True else: raise ValueError('Unknown transform %s' % transform_name) elif is_linear_model(model_type): if (transform_name == 'one_hot' or transform_name is None): map_vocab = True elif transform_name == 'embedding': map_vocab = False else: raise ValueError('Unknown transform %s' % transform_name) if map_vocab: labels = train_config['vocab_stats'][name]['labels'] table = tf.contrib.lookup.string_to_index_table_from_tensor(labels) features[name] = table.lookup(features[name]) return features, target
[ "def", "preprocess_input", "(", "features", ",", "target", ",", "train_config", ",", "preprocess_output_dir", ",", "model_type", ")", ":", "target_name", "=", "train_config", "[", "'target_column'", "]", "key_name", "=", "train_config", "[", "'key_column'", "]", "# Do the numerical transforms.", "# Numerical transforms supported for regression/classification", "# 1) num -> do nothing (identity, default)", "# 2) num -> scale to -1, 1 (scale)", "# 3) num -> scale to -a, a (scale with value parameter)", "with", "tf", ".", "name_scope", "(", "'numerical_feature_preprocess'", ")", ":", "if", "train_config", "[", "'numerical_columns'", "]", ":", "numerical_analysis_file", "=", "os", ".", "path", ".", "join", "(", "preprocess_output_dir", ",", "NUMERICAL_ANALYSIS", ")", "if", "not", "file_io", ".", "file_exists", "(", "numerical_analysis_file", ")", ":", "raise", "ValueError", "(", "'File %s not found in %s'", "%", "(", "NUMERICAL_ANALYSIS", ",", "preprocess_output_dir", ")", ")", "numerical_anlysis", "=", "json", ".", "loads", "(", "python_portable_string", "(", "file_io", ".", "read_file_to_string", "(", "numerical_analysis_file", ")", ")", ")", "for", "name", "in", "train_config", "[", "'numerical_columns'", "]", ":", "if", "name", "==", "target_name", "or", "name", "==", "key_name", ":", "continue", "transform_config", "=", "train_config", "[", "'transforms'", "]", ".", "get", "(", "name", ",", "{", "}", ")", "transform_name", "=", "transform_config", ".", "get", "(", "'transform'", ",", "None", ")", "if", "transform_name", "==", "'scale'", ":", "value", "=", "float", "(", "transform_config", ".", "get", "(", "'value'", ",", "1.0", ")", ")", "features", "[", "name", "]", "=", "_scale_tensor", "(", "features", "[", "name", "]", ",", "range_min", "=", "numerical_anlysis", "[", "name", "]", "[", "'min'", "]", ",", "range_max", "=", "numerical_anlysis", "[", "name", "]", "[", "'max'", "]", ",", "scale_min", "=", "-", "value", ",", "scale_max", "=", "value", ")", "elif", "transform_name", "==", "'identity'", "or", "transform_name", "is", "None", ":", "pass", "else", ":", "raise", "ValueError", "(", "(", "'For numerical variables, only scale '", "'and identity are supported: '", "'Error for %s'", ")", "%", "name", ")", "# Do target transform if it exists.", "if", "target", "is", "not", "None", ":", "with", "tf", ".", "name_scope", "(", "'target_feature_preprocess'", ")", ":", "if", "target_name", "in", "train_config", "[", "'categorical_columns'", "]", ":", "labels", "=", "train_config", "[", "'vocab_stats'", "]", "[", "target_name", "]", "[", "'labels'", "]", "table", "=", "tf", ".", "contrib", ".", "lookup", ".", "string_to_index_table_from_tensor", "(", "labels", ")", "target", "=", "table", ".", "lookup", "(", "target", ")", "# target = tf.contrib.lookup.string_to_index(target, labels)", "# Do categorical transforms. Only apply vocab mapping. The real", "# transforms are done with tf learn column features.", "with", "tf", ".", "name_scope", "(", "'categorical_feature_preprocess'", ")", ":", "for", "name", "in", "train_config", "[", "'categorical_columns'", "]", ":", "if", "name", "==", "key_name", "or", "name", "==", "target_name", ":", "continue", "transform_config", "=", "train_config", "[", "'transforms'", "]", ".", "get", "(", "name", ",", "{", "}", ")", "transform_name", "=", "transform_config", ".", "get", "(", "'transform'", ",", "None", ")", "if", "is_dnn_model", "(", "model_type", ")", ":", "if", "transform_name", "==", "'embedding'", "or", "transform_name", "==", "'one_hot'", "or", "transform_name", "is", "None", ":", "map_vocab", "=", "True", "else", ":", "raise", "ValueError", "(", "'Unknown transform %s'", "%", "transform_name", ")", "elif", "is_linear_model", "(", "model_type", ")", ":", "if", "(", "transform_name", "==", "'one_hot'", "or", "transform_name", "is", "None", ")", ":", "map_vocab", "=", "True", "elif", "transform_name", "==", "'embedding'", ":", "map_vocab", "=", "False", "else", ":", "raise", "ValueError", "(", "'Unknown transform %s'", "%", "transform_name", ")", "if", "map_vocab", ":", "labels", "=", "train_config", "[", "'vocab_stats'", "]", "[", "name", "]", "[", "'labels'", "]", "table", "=", "tf", ".", "contrib", ".", "lookup", ".", "string_to_index_table_from_tensor", "(", "labels", ")", "features", "[", "name", "]", "=", "table", ".", "lookup", "(", "features", "[", "name", "]", ")", "return", "features", ",", "target" ]
Perform some transformations after reading in the input tensors. Args: features: dict of feature_name to tensor target: tensor train_config: our training config object preprocess_output_dir: folder should contain the vocab files. model_type: the tf model type. Raises: ValueError: if wrong transforms are used Returns: New features dict and new target tensor.
[ "Perform", "some", "transformations", "after", "reading", "in", "the", "input", "tensors", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L448-L542
5,118
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
_scale_tensor
def _scale_tensor(tensor, range_min, range_max, scale_min, scale_max): """Scale a tensor to scale_min to scale_max. Args: tensor: input tensor. Should be a numerical tensor. range_min: min expected value for this feature/tensor. range_max: max expected Value. scale_min: new expected min value. scale_max: new expected max value. Returns: scaled tensor. """ if range_min == range_max: return tensor float_tensor = tf.to_float(tensor) scaled_tensor = tf.divide((tf.subtract(float_tensor, range_min) * tf.constant(float(scale_max - scale_min))), tf.constant(float(range_max - range_min))) shifted_tensor = scaled_tensor + tf.constant(float(scale_min)) return shifted_tensor
python
def _scale_tensor(tensor, range_min, range_max, scale_min, scale_max): """Scale a tensor to scale_min to scale_max. Args: tensor: input tensor. Should be a numerical tensor. range_min: min expected value for this feature/tensor. range_max: max expected Value. scale_min: new expected min value. scale_max: new expected max value. Returns: scaled tensor. """ if range_min == range_max: return tensor float_tensor = tf.to_float(tensor) scaled_tensor = tf.divide((tf.subtract(float_tensor, range_min) * tf.constant(float(scale_max - scale_min))), tf.constant(float(range_max - range_min))) shifted_tensor = scaled_tensor + tf.constant(float(scale_min)) return shifted_tensor
[ "def", "_scale_tensor", "(", "tensor", ",", "range_min", ",", "range_max", ",", "scale_min", ",", "scale_max", ")", ":", "if", "range_min", "==", "range_max", ":", "return", "tensor", "float_tensor", "=", "tf", ".", "to_float", "(", "tensor", ")", "scaled_tensor", "=", "tf", ".", "divide", "(", "(", "tf", ".", "subtract", "(", "float_tensor", ",", "range_min", ")", "*", "tf", ".", "constant", "(", "float", "(", "scale_max", "-", "scale_min", ")", ")", ")", ",", "tf", ".", "constant", "(", "float", "(", "range_max", "-", "range_min", ")", ")", ")", "shifted_tensor", "=", "scaled_tensor", "+", "tf", ".", "constant", "(", "float", "(", "scale_min", ")", ")", "return", "shifted_tensor" ]
Scale a tensor to scale_min to scale_max. Args: tensor: input tensor. Should be a numerical tensor. range_min: min expected value for this feature/tensor. range_max: max expected Value. scale_min: new expected min value. scale_max: new expected max value. Returns: scaled tensor.
[ "Scale", "a", "tensor", "to", "scale_min", "to", "scale_max", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L545-L567
5,119
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
_tflearn_features
def _tflearn_features(train_config, args): """Builds the tf.learn feature list. All numerical features are just given real_valued_column because all the preprocessing transformations are done in preprocess_input. Categoriacl features are processed here depending if the vocab map (from string to int) was applied in preprocess_input. Args: train_config: our train config object args: command line args. Returns: List of TF lean feature columns. Raises: ValueError: if wrong transforms are used for the model type. """ feature_columns = [] target_name = train_config['target_column'] key_name = train_config['key_column'] for name in train_config['numerical_columns']: if name != target_name and name != key_name: feature_columns.append(tf.contrib.layers.real_valued_column( name, dimension=1)) # Supported transforms: # for DNN # 1) string -> make int -> embedding (embedding) # 2) string -> make int -> one_hot (one_hot, default) # for linear # 1) string -> sparse_column_with_hash_bucket (embedding) # 2) string -> make int -> sparse_column_with_integerized_feature (one_hot, default) # It is unfortunate that tf.layers has different feature transforms if the # model is linear or DNN. This pacakge should not expose to the user that # we are using tf.layers. It is crazy that DNN models support more feature # types (like string -> hash sparse column -> embedding) for name in train_config['categorical_columns']: if name != target_name and name != key_name: transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if is_dnn_model(args.model_type): if transform_name == 'embedding': sparse = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) learn_feature = tf.contrib.layers.embedding_column( sparse, dimension=transform_config['embedding_dim']) elif transform_name == 'one_hot' or transform_name is None: sparse = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) learn_feature = tf.contrib.layers.one_hot_column(sparse) else: raise ValueError(('Unknown transform name. Only \'embedding\' ' 'and \'one_hot\' transforms are supported. Got %s') % transform_name) elif is_linear_model(args.model_type): if transform_name == 'one_hot' or transform_name is None: learn_feature = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) elif transform_name == 'embedding': learn_feature = tf.contrib.layers.sparse_column_with_hash_bucket( name, hash_bucket_size=transform_config['embedding_dim']) else: raise ValueError(('Unknown transform name. Only \'embedding\' ' 'and \'one_hot\' transforms are supported. Got %s') % transform_name) # Save the feature feature_columns.append(learn_feature) return feature_columns
python
def _tflearn_features(train_config, args): """Builds the tf.learn feature list. All numerical features are just given real_valued_column because all the preprocessing transformations are done in preprocess_input. Categoriacl features are processed here depending if the vocab map (from string to int) was applied in preprocess_input. Args: train_config: our train config object args: command line args. Returns: List of TF lean feature columns. Raises: ValueError: if wrong transforms are used for the model type. """ feature_columns = [] target_name = train_config['target_column'] key_name = train_config['key_column'] for name in train_config['numerical_columns']: if name != target_name and name != key_name: feature_columns.append(tf.contrib.layers.real_valued_column( name, dimension=1)) # Supported transforms: # for DNN # 1) string -> make int -> embedding (embedding) # 2) string -> make int -> one_hot (one_hot, default) # for linear # 1) string -> sparse_column_with_hash_bucket (embedding) # 2) string -> make int -> sparse_column_with_integerized_feature (one_hot, default) # It is unfortunate that tf.layers has different feature transforms if the # model is linear or DNN. This pacakge should not expose to the user that # we are using tf.layers. It is crazy that DNN models support more feature # types (like string -> hash sparse column -> embedding) for name in train_config['categorical_columns']: if name != target_name and name != key_name: transform_config = train_config['transforms'].get(name, {}) transform_name = transform_config.get('transform', None) if is_dnn_model(args.model_type): if transform_name == 'embedding': sparse = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) learn_feature = tf.contrib.layers.embedding_column( sparse, dimension=transform_config['embedding_dim']) elif transform_name == 'one_hot' or transform_name is None: sparse = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) learn_feature = tf.contrib.layers.one_hot_column(sparse) else: raise ValueError(('Unknown transform name. Only \'embedding\' ' 'and \'one_hot\' transforms are supported. Got %s') % transform_name) elif is_linear_model(args.model_type): if transform_name == 'one_hot' or transform_name is None: learn_feature = tf.contrib.layers.sparse_column_with_integerized_feature( name, bucket_size=train_config['vocab_stats'][name]['n_classes']) elif transform_name == 'embedding': learn_feature = tf.contrib.layers.sparse_column_with_hash_bucket( name, hash_bucket_size=transform_config['embedding_dim']) else: raise ValueError(('Unknown transform name. Only \'embedding\' ' 'and \'one_hot\' transforms are supported. Got %s') % transform_name) # Save the feature feature_columns.append(learn_feature) return feature_columns
[ "def", "_tflearn_features", "(", "train_config", ",", "args", ")", ":", "feature_columns", "=", "[", "]", "target_name", "=", "train_config", "[", "'target_column'", "]", "key_name", "=", "train_config", "[", "'key_column'", "]", "for", "name", "in", "train_config", "[", "'numerical_columns'", "]", ":", "if", "name", "!=", "target_name", "and", "name", "!=", "key_name", ":", "feature_columns", ".", "append", "(", "tf", ".", "contrib", ".", "layers", ".", "real_valued_column", "(", "name", ",", "dimension", "=", "1", ")", ")", "# Supported transforms:", "# for DNN", "# 1) string -> make int -> embedding (embedding)", "# 2) string -> make int -> one_hot (one_hot, default)", "# for linear", "# 1) string -> sparse_column_with_hash_bucket (embedding)", "# 2) string -> make int -> sparse_column_with_integerized_feature (one_hot, default)", "# It is unfortunate that tf.layers has different feature transforms if the", "# model is linear or DNN. This pacakge should not expose to the user that", "# we are using tf.layers. It is crazy that DNN models support more feature", "# types (like string -> hash sparse column -> embedding)", "for", "name", "in", "train_config", "[", "'categorical_columns'", "]", ":", "if", "name", "!=", "target_name", "and", "name", "!=", "key_name", ":", "transform_config", "=", "train_config", "[", "'transforms'", "]", ".", "get", "(", "name", ",", "{", "}", ")", "transform_name", "=", "transform_config", ".", "get", "(", "'transform'", ",", "None", ")", "if", "is_dnn_model", "(", "args", ".", "model_type", ")", ":", "if", "transform_name", "==", "'embedding'", ":", "sparse", "=", "tf", ".", "contrib", ".", "layers", ".", "sparse_column_with_integerized_feature", "(", "name", ",", "bucket_size", "=", "train_config", "[", "'vocab_stats'", "]", "[", "name", "]", "[", "'n_classes'", "]", ")", "learn_feature", "=", "tf", ".", "contrib", ".", "layers", ".", "embedding_column", "(", "sparse", ",", "dimension", "=", "transform_config", "[", "'embedding_dim'", "]", ")", "elif", "transform_name", "==", "'one_hot'", "or", "transform_name", "is", "None", ":", "sparse", "=", "tf", ".", "contrib", ".", "layers", ".", "sparse_column_with_integerized_feature", "(", "name", ",", "bucket_size", "=", "train_config", "[", "'vocab_stats'", "]", "[", "name", "]", "[", "'n_classes'", "]", ")", "learn_feature", "=", "tf", ".", "contrib", ".", "layers", ".", "one_hot_column", "(", "sparse", ")", "else", ":", "raise", "ValueError", "(", "(", "'Unknown transform name. Only \\'embedding\\' '", "'and \\'one_hot\\' transforms are supported. Got %s'", ")", "%", "transform_name", ")", "elif", "is_linear_model", "(", "args", ".", "model_type", ")", ":", "if", "transform_name", "==", "'one_hot'", "or", "transform_name", "is", "None", ":", "learn_feature", "=", "tf", ".", "contrib", ".", "layers", ".", "sparse_column_with_integerized_feature", "(", "name", ",", "bucket_size", "=", "train_config", "[", "'vocab_stats'", "]", "[", "name", "]", "[", "'n_classes'", "]", ")", "elif", "transform_name", "==", "'embedding'", ":", "learn_feature", "=", "tf", ".", "contrib", ".", "layers", ".", "sparse_column_with_hash_bucket", "(", "name", ",", "hash_bucket_size", "=", "transform_config", "[", "'embedding_dim'", "]", ")", "else", ":", "raise", "ValueError", "(", "(", "'Unknown transform name. Only \\'embedding\\' '", "'and \\'one_hot\\' transforms are supported. Got %s'", ")", "%", "transform_name", ")", "# Save the feature", "feature_columns", ".", "append", "(", "learn_feature", ")", "return", "feature_columns" ]
Builds the tf.learn feature list. All numerical features are just given real_valued_column because all the preprocessing transformations are done in preprocess_input. Categoriacl features are processed here depending if the vocab map (from string to int) was applied in preprocess_input. Args: train_config: our train config object args: command line args. Returns: List of TF lean feature columns. Raises: ValueError: if wrong transforms are used for the model type.
[ "Builds", "the", "tf", ".", "learn", "feature", "list", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L570-L647
5,120
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
get_vocabulary
def get_vocabulary(preprocess_output_dir, name): """Loads the vocabulary file as a list of strings. Args: preprocess_output_dir: Should contain the file CATEGORICAL_ANALYSIS % name. name: name of the csv column. Returns: List of strings. Raises: ValueError: if file is missing. """ vocab_file = os.path.join(preprocess_output_dir, CATEGORICAL_ANALYSIS % name) if not file_io.file_exists(vocab_file): raise ValueError('File %s not found in %s' % (CATEGORICAL_ANALYSIS % name, preprocess_output_dir)) labels = python_portable_string( file_io.read_file_to_string(vocab_file)).split('\n') label_values = [x for x in labels if x] # remove empty lines return label_values
python
def get_vocabulary(preprocess_output_dir, name): """Loads the vocabulary file as a list of strings. Args: preprocess_output_dir: Should contain the file CATEGORICAL_ANALYSIS % name. name: name of the csv column. Returns: List of strings. Raises: ValueError: if file is missing. """ vocab_file = os.path.join(preprocess_output_dir, CATEGORICAL_ANALYSIS % name) if not file_io.file_exists(vocab_file): raise ValueError('File %s not found in %s' % (CATEGORICAL_ANALYSIS % name, preprocess_output_dir)) labels = python_portable_string( file_io.read_file_to_string(vocab_file)).split('\n') label_values = [x for x in labels if x] # remove empty lines return label_values
[ "def", "get_vocabulary", "(", "preprocess_output_dir", ",", "name", ")", ":", "vocab_file", "=", "os", ".", "path", ".", "join", "(", "preprocess_output_dir", ",", "CATEGORICAL_ANALYSIS", "%", "name", ")", "if", "not", "file_io", ".", "file_exists", "(", "vocab_file", ")", ":", "raise", "ValueError", "(", "'File %s not found in %s'", "%", "(", "CATEGORICAL_ANALYSIS", "%", "name", ",", "preprocess_output_dir", ")", ")", "labels", "=", "python_portable_string", "(", "file_io", ".", "read_file_to_string", "(", "vocab_file", ")", ")", ".", "split", "(", "'\\n'", ")", "label_values", "=", "[", "x", "for", "x", "in", "labels", "if", "x", "]", "# remove empty lines", "return", "label_values" ]
Loads the vocabulary file as a list of strings. Args: preprocess_output_dir: Should contain the file CATEGORICAL_ANALYSIS % name. name: name of the csv column. Returns: List of strings. Raises: ValueError: if file is missing.
[ "Loads", "the", "vocabulary", "file", "as", "a", "list", "of", "strings", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L655-L677
5,121
googledatalab/pydatalab
solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py
validate_metadata
def validate_metadata(train_config): """Perform some checks that the trainig config is correct. Args: train_config: train config as produced by merge_metadata() Raises: ValueError: if columns look wrong. """ # Make sure we have a default for every column if len(train_config['csv_header']) != len(train_config['csv_defaults']): raise ValueError('Unequal number of columns in input features file and ' 'schema file.') # Check there are no missing columns. sorted_colums has two copies of the # target column because the target column is also listed in # categorical_columns or numerical_columns. sorted_columns = sorted(train_config['csv_header'] + [train_config['target_column']]) sorted_columns2 = sorted(train_config['categorical_columns'] + train_config['numerical_columns'] + [train_config['key_column']] + [train_config['target_column']]) if sorted_columns2 != sorted_columns: raise ValueError('Each csv header must be a numerical/categorical type, a ' ' key, or a target.')
python
def validate_metadata(train_config): """Perform some checks that the trainig config is correct. Args: train_config: train config as produced by merge_metadata() Raises: ValueError: if columns look wrong. """ # Make sure we have a default for every column if len(train_config['csv_header']) != len(train_config['csv_defaults']): raise ValueError('Unequal number of columns in input features file and ' 'schema file.') # Check there are no missing columns. sorted_colums has two copies of the # target column because the target column is also listed in # categorical_columns or numerical_columns. sorted_columns = sorted(train_config['csv_header'] + [train_config['target_column']]) sorted_columns2 = sorted(train_config['categorical_columns'] + train_config['numerical_columns'] + [train_config['key_column']] + [train_config['target_column']]) if sorted_columns2 != sorted_columns: raise ValueError('Each csv header must be a numerical/categorical type, a ' ' key, or a target.')
[ "def", "validate_metadata", "(", "train_config", ")", ":", "# Make sure we have a default for every column", "if", "len", "(", "train_config", "[", "'csv_header'", "]", ")", "!=", "len", "(", "train_config", "[", "'csv_defaults'", "]", ")", ":", "raise", "ValueError", "(", "'Unequal number of columns in input features file and '", "'schema file.'", ")", "# Check there are no missing columns. sorted_colums has two copies of the", "# target column because the target column is also listed in", "# categorical_columns or numerical_columns.", "sorted_columns", "=", "sorted", "(", "train_config", "[", "'csv_header'", "]", "+", "[", "train_config", "[", "'target_column'", "]", "]", ")", "sorted_columns2", "=", "sorted", "(", "train_config", "[", "'categorical_columns'", "]", "+", "train_config", "[", "'numerical_columns'", "]", "+", "[", "train_config", "[", "'key_column'", "]", "]", "+", "[", "train_config", "[", "'target_column'", "]", "]", ")", "if", "sorted_columns2", "!=", "sorted_columns", ":", "raise", "ValueError", "(", "'Each csv header must be a numerical/categorical type, a '", "' key, or a target.'", ")" ]
Perform some checks that the trainig config is correct. Args: train_config: train config as produced by merge_metadata() Raises: ValueError: if columns look wrong.
[ "Perform", "some", "checks", "that", "the", "trainig", "config", "is", "correct", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/solutionbox/structured_data/mltoolbox/_structured_data/trainer/util.py#L811-L838
5,122
googledatalab/pydatalab
datalab/context/_project.py
Projects.get_default_id
def get_default_id(credentials=None): """ Get default project id. Returns: the default project id if there is one, or None. """ project_id = _utils.get_project_id() if project_id is None: projects, _ = Projects(credentials)._retrieve_projects(None, 2) if len(projects) == 1: project_id = projects[0].id return project_id
python
def get_default_id(credentials=None): """ Get default project id. Returns: the default project id if there is one, or None. """ project_id = _utils.get_project_id() if project_id is None: projects, _ = Projects(credentials)._retrieve_projects(None, 2) if len(projects) == 1: project_id = projects[0].id return project_id
[ "def", "get_default_id", "(", "credentials", "=", "None", ")", ":", "project_id", "=", "_utils", ".", "get_project_id", "(", ")", "if", "project_id", "is", "None", ":", "projects", ",", "_", "=", "Projects", "(", "credentials", ")", ".", "_retrieve_projects", "(", "None", ",", "2", ")", "if", "len", "(", "projects", ")", "==", "1", ":", "project_id", "=", "projects", "[", "0", "]", ".", "id", "return", "project_id" ]
Get default project id. Returns: the default project id if there is one, or None.
[ "Get", "default", "project", "id", "." ]
d9031901d5bca22fe0d5925d204e6698df9852e1
https://github.com/googledatalab/pydatalab/blob/d9031901d5bca22fe0d5925d204e6698df9852e1/datalab/context/_project.py#L97-L107
5,123
jpvanhal/flask-split
flask_split/core.py
init_app
def init_app(state): """ Prepare the Flask application for Flask-Split. :param state: :class:`BlueprintSetupState` instance """ app = state.app app.config.setdefault('SPLIT_ALLOW_MULTIPLE_EXPERIMENTS', False) app.config.setdefault('SPLIT_DB_FAILOVER', False) app.config.setdefault('SPLIT_IGNORE_IP_ADDRESSES', []) app.config.setdefault('SPLIT_ROBOT_REGEX', r""" (?i)\b( Baidu| Gigabot| Googlebot| libwww-perl| lwp-trivial| msnbot| SiteUptime| Slurp| WordPress| ZIBB| ZyBorg )\b """) app.jinja_env.globals.update({ 'ab_test': ab_test, 'finished': finished }) @app.template_filter() def percentage(number): number *= 100 if abs(number) < 10: return "%.1f%%" % round(number, 1) else: return "%d%%" % round(number)
python
def init_app(state): """ Prepare the Flask application for Flask-Split. :param state: :class:`BlueprintSetupState` instance """ app = state.app app.config.setdefault('SPLIT_ALLOW_MULTIPLE_EXPERIMENTS', False) app.config.setdefault('SPLIT_DB_FAILOVER', False) app.config.setdefault('SPLIT_IGNORE_IP_ADDRESSES', []) app.config.setdefault('SPLIT_ROBOT_REGEX', r""" (?i)\b( Baidu| Gigabot| Googlebot| libwww-perl| lwp-trivial| msnbot| SiteUptime| Slurp| WordPress| ZIBB| ZyBorg )\b """) app.jinja_env.globals.update({ 'ab_test': ab_test, 'finished': finished }) @app.template_filter() def percentage(number): number *= 100 if abs(number) < 10: return "%.1f%%" % round(number, 1) else: return "%d%%" % round(number)
[ "def", "init_app", "(", "state", ")", ":", "app", "=", "state", ".", "app", "app", ".", "config", ".", "setdefault", "(", "'SPLIT_ALLOW_MULTIPLE_EXPERIMENTS'", ",", "False", ")", "app", ".", "config", ".", "setdefault", "(", "'SPLIT_DB_FAILOVER'", ",", "False", ")", "app", ".", "config", ".", "setdefault", "(", "'SPLIT_IGNORE_IP_ADDRESSES'", ",", "[", "]", ")", "app", ".", "config", ".", "setdefault", "(", "'SPLIT_ROBOT_REGEX'", ",", "r\"\"\"\n (?i)\\b(\n Baidu|\n Gigabot|\n Googlebot|\n libwww-perl|\n lwp-trivial|\n msnbot|\n SiteUptime|\n Slurp|\n WordPress|\n ZIBB|\n ZyBorg\n )\\b\n \"\"\"", ")", "app", ".", "jinja_env", ".", "globals", ".", "update", "(", "{", "'ab_test'", ":", "ab_test", ",", "'finished'", ":", "finished", "}", ")", "@", "app", ".", "template_filter", "(", ")", "def", "percentage", "(", "number", ")", ":", "number", "*=", "100", "if", "abs", "(", "number", ")", "<", "10", ":", "return", "\"%.1f%%\"", "%", "round", "(", "number", ",", "1", ")", "else", ":", "return", "\"%d%%\"", "%", "round", "(", "number", ")" ]
Prepare the Flask application for Flask-Split. :param state: :class:`BlueprintSetupState` instance
[ "Prepare", "the", "Flask", "application", "for", "Flask", "-", "Split", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/core.py#L23-L61
5,124
jpvanhal/flask-split
flask_split/core.py
finished
def finished(experiment_name, reset=True): """ Track a conversion. :param experiment_name: Name of the experiment. :param reset: If set to `True` current user's session is reset so that they may start the test again in the future. If set to `False` the user will always see the alternative they started with. Defaults to `True`. """ if _exclude_visitor(): return redis = _get_redis_connection() try: experiment = Experiment.find(redis, experiment_name) if not experiment: return alternative_name = _get_session().get(experiment.key) if alternative_name: split_finished = set(session.get('split_finished', [])) if experiment.key not in split_finished: alternative = Alternative( redis, alternative_name, experiment_name) alternative.increment_completion() if reset: _get_session().pop(experiment.key, None) try: split_finished.remove(experiment.key) except KeyError: pass else: split_finished.add(experiment.key) session['split_finished'] = list(split_finished) except ConnectionError: if not current_app.config['SPLIT_DB_FAILOVER']: raise
python
def finished(experiment_name, reset=True): """ Track a conversion. :param experiment_name: Name of the experiment. :param reset: If set to `True` current user's session is reset so that they may start the test again in the future. If set to `False` the user will always see the alternative they started with. Defaults to `True`. """ if _exclude_visitor(): return redis = _get_redis_connection() try: experiment = Experiment.find(redis, experiment_name) if not experiment: return alternative_name = _get_session().get(experiment.key) if alternative_name: split_finished = set(session.get('split_finished', [])) if experiment.key not in split_finished: alternative = Alternative( redis, alternative_name, experiment_name) alternative.increment_completion() if reset: _get_session().pop(experiment.key, None) try: split_finished.remove(experiment.key) except KeyError: pass else: split_finished.add(experiment.key) session['split_finished'] = list(split_finished) except ConnectionError: if not current_app.config['SPLIT_DB_FAILOVER']: raise
[ "def", "finished", "(", "experiment_name", ",", "reset", "=", "True", ")", ":", "if", "_exclude_visitor", "(", ")", ":", "return", "redis", "=", "_get_redis_connection", "(", ")", "try", ":", "experiment", "=", "Experiment", ".", "find", "(", "redis", ",", "experiment_name", ")", "if", "not", "experiment", ":", "return", "alternative_name", "=", "_get_session", "(", ")", ".", "get", "(", "experiment", ".", "key", ")", "if", "alternative_name", ":", "split_finished", "=", "set", "(", "session", ".", "get", "(", "'split_finished'", ",", "[", "]", ")", ")", "if", "experiment", ".", "key", "not", "in", "split_finished", ":", "alternative", "=", "Alternative", "(", "redis", ",", "alternative_name", ",", "experiment_name", ")", "alternative", ".", "increment_completion", "(", ")", "if", "reset", ":", "_get_session", "(", ")", ".", "pop", "(", "experiment", ".", "key", ",", "None", ")", "try", ":", "split_finished", ".", "remove", "(", "experiment", ".", "key", ")", "except", "KeyError", ":", "pass", "else", ":", "split_finished", ".", "add", "(", "experiment", ".", "key", ")", "session", "[", "'split_finished'", "]", "=", "list", "(", "split_finished", ")", "except", "ConnectionError", ":", "if", "not", "current_app", ".", "config", "[", "'SPLIT_DB_FAILOVER'", "]", ":", "raise" ]
Track a conversion. :param experiment_name: Name of the experiment. :param reset: If set to `True` current user's session is reset so that they may start the test again in the future. If set to `False` the user will always see the alternative they started with. Defaults to `True`.
[ "Track", "a", "conversion", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/core.py#L108-L142
5,125
jpvanhal/flask-split
flask_split/core.py
_is_robot
def _is_robot(): """ Return `True` if the current visitor is a robot or spider, or `False` otherwise. This function works by comparing the request's user agent with a regular expression. The regular expression can be configured with the ``SPLIT_ROBOT_REGEX`` setting. """ robot_regex = current_app.config['SPLIT_ROBOT_REGEX'] user_agent = request.headers.get('User-Agent', '') return re.search(robot_regex, user_agent, flags=re.VERBOSE)
python
def _is_robot(): """ Return `True` if the current visitor is a robot or spider, or `False` otherwise. This function works by comparing the request's user agent with a regular expression. The regular expression can be configured with the ``SPLIT_ROBOT_REGEX`` setting. """ robot_regex = current_app.config['SPLIT_ROBOT_REGEX'] user_agent = request.headers.get('User-Agent', '') return re.search(robot_regex, user_agent, flags=re.VERBOSE)
[ "def", "_is_robot", "(", ")", ":", "robot_regex", "=", "current_app", ".", "config", "[", "'SPLIT_ROBOT_REGEX'", "]", "user_agent", "=", "request", ".", "headers", ".", "get", "(", "'User-Agent'", ",", "''", ")", "return", "re", ".", "search", "(", "robot_regex", ",", "user_agent", ",", "flags", "=", "re", ".", "VERBOSE", ")" ]
Return `True` if the current visitor is a robot or spider, or `False` otherwise. This function works by comparing the request's user agent with a regular expression. The regular expression can be configured with the ``SPLIT_ROBOT_REGEX`` setting.
[ "Return", "True", "if", "the", "current", "visitor", "is", "a", "robot", "or", "spider", "or", "False", "otherwise", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/core.py#L206-L217
5,126
jpvanhal/flask-split
flask_split/models.py
Experiment.start_time
def start_time(self): """The start time of this experiment.""" t = self.redis.hget('experiment_start_times', self.name) if t: return datetime.strptime(t, '%Y-%m-%dT%H:%M:%S')
python
def start_time(self): """The start time of this experiment.""" t = self.redis.hget('experiment_start_times', self.name) if t: return datetime.strptime(t, '%Y-%m-%dT%H:%M:%S')
[ "def", "start_time", "(", "self", ")", ":", "t", "=", "self", ".", "redis", ".", "hget", "(", "'experiment_start_times'", ",", "self", ".", "name", ")", "if", "t", ":", "return", "datetime", ".", "strptime", "(", "t", ",", "'%Y-%m-%dT%H:%M:%S'", ")" ]
The start time of this experiment.
[ "The", "start", "time", "of", "this", "experiment", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/models.py#L163-L167
5,127
jpvanhal/flask-split
flask_split/models.py
Experiment.reset
def reset(self): """Delete all data for this experiment.""" for alternative in self.alternatives: alternative.reset() self.reset_winner() self.increment_version()
python
def reset(self): """Delete all data for this experiment.""" for alternative in self.alternatives: alternative.reset() self.reset_winner() self.increment_version()
[ "def", "reset", "(", "self", ")", ":", "for", "alternative", "in", "self", ".", "alternatives", ":", "alternative", ".", "reset", "(", ")", "self", ".", "reset_winner", "(", ")", "self", ".", "increment_version", "(", ")" ]
Delete all data for this experiment.
[ "Delete", "all", "data", "for", "this", "experiment", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/models.py#L211-L216
5,128
jpvanhal/flask-split
flask_split/models.py
Experiment.delete
def delete(self): """Delete this experiment and all its data.""" for alternative in self.alternatives: alternative.delete() self.reset_winner() self.redis.srem('experiments', self.name) self.redis.delete(self.name) self.increment_version()
python
def delete(self): """Delete this experiment and all its data.""" for alternative in self.alternatives: alternative.delete() self.reset_winner() self.redis.srem('experiments', self.name) self.redis.delete(self.name) self.increment_version()
[ "def", "delete", "(", "self", ")", ":", "for", "alternative", "in", "self", ".", "alternatives", ":", "alternative", ".", "delete", "(", ")", "self", ".", "reset_winner", "(", ")", "self", ".", "redis", ".", "srem", "(", "'experiments'", ",", "self", ".", "name", ")", "self", ".", "redis", ".", "delete", "(", "self", ".", "name", ")", "self", ".", "increment_version", "(", ")" ]
Delete this experiment and all its data.
[ "Delete", "this", "experiment", "and", "all", "its", "data", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/models.py#L218-L225
5,129
jpvanhal/flask-split
flask_split/utils.py
_get_redis_connection
def _get_redis_connection(): """ Return a Redis connection based on the Flask application's configuration. The connection parameters are retrieved from `REDIS_URL` configuration variable. :return: an instance of :class:`redis.Connection` """ url = current_app.config.get('REDIS_URL', 'redis://localhost:6379') return redis.from_url(url, decode_responses=True)
python
def _get_redis_connection(): """ Return a Redis connection based on the Flask application's configuration. The connection parameters are retrieved from `REDIS_URL` configuration variable. :return: an instance of :class:`redis.Connection` """ url = current_app.config.get('REDIS_URL', 'redis://localhost:6379') return redis.from_url(url, decode_responses=True)
[ "def", "_get_redis_connection", "(", ")", ":", "url", "=", "current_app", ".", "config", ".", "get", "(", "'REDIS_URL'", ",", "'redis://localhost:6379'", ")", "return", "redis", ".", "from_url", "(", "url", ",", "decode_responses", "=", "True", ")" ]
Return a Redis connection based on the Flask application's configuration. The connection parameters are retrieved from `REDIS_URL` configuration variable. :return: an instance of :class:`redis.Connection`
[ "Return", "a", "Redis", "connection", "based", "on", "the", "Flask", "application", "s", "configuration", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/utils.py#L24-L34
5,130
jpvanhal/flask-split
flask_split/views.py
set_experiment_winner
def set_experiment_winner(experiment): """Mark an alternative as the winner of the experiment.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: alternative_name = request.form.get('alternative') alternative = Alternative(redis, alternative_name, experiment.name) if alternative.name in experiment.alternative_names: experiment.winner = alternative.name return redirect(url_for('.index'))
python
def set_experiment_winner(experiment): """Mark an alternative as the winner of the experiment.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: alternative_name = request.form.get('alternative') alternative = Alternative(redis, alternative_name, experiment.name) if alternative.name in experiment.alternative_names: experiment.winner = alternative.name return redirect(url_for('.index'))
[ "def", "set_experiment_winner", "(", "experiment", ")", ":", "redis", "=", "_get_redis_connection", "(", ")", "experiment", "=", "Experiment", ".", "find", "(", "redis", ",", "experiment", ")", "if", "experiment", ":", "alternative_name", "=", "request", ".", "form", ".", "get", "(", "'alternative'", ")", "alternative", "=", "Alternative", "(", "redis", ",", "alternative_name", ",", "experiment", ".", "name", ")", "if", "alternative", ".", "name", "in", "experiment", ".", "alternative_names", ":", "experiment", ".", "winner", "=", "alternative", ".", "name", "return", "redirect", "(", "url_for", "(", "'.index'", ")", ")" ]
Mark an alternative as the winner of the experiment.
[ "Mark", "an", "alternative", "as", "the", "winner", "of", "the", "experiment", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/views.py#L44-L53
5,131
jpvanhal/flask-split
flask_split/views.py
reset_experiment
def reset_experiment(experiment): """Delete all data for an experiment.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: experiment.reset() return redirect(url_for('.index'))
python
def reset_experiment(experiment): """Delete all data for an experiment.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: experiment.reset() return redirect(url_for('.index'))
[ "def", "reset_experiment", "(", "experiment", ")", ":", "redis", "=", "_get_redis_connection", "(", ")", "experiment", "=", "Experiment", ".", "find", "(", "redis", ",", "experiment", ")", "if", "experiment", ":", "experiment", ".", "reset", "(", ")", "return", "redirect", "(", "url_for", "(", "'.index'", ")", ")" ]
Delete all data for an experiment.
[ "Delete", "all", "data", "for", "an", "experiment", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/views.py#L57-L63
5,132
jpvanhal/flask-split
flask_split/views.py
delete_experiment
def delete_experiment(experiment): """Delete an experiment and all its data.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: experiment.delete() return redirect(url_for('.index'))
python
def delete_experiment(experiment): """Delete an experiment and all its data.""" redis = _get_redis_connection() experiment = Experiment.find(redis, experiment) if experiment: experiment.delete() return redirect(url_for('.index'))
[ "def", "delete_experiment", "(", "experiment", ")", ":", "redis", "=", "_get_redis_connection", "(", ")", "experiment", "=", "Experiment", ".", "find", "(", "redis", ",", "experiment", ")", "if", "experiment", ":", "experiment", ".", "delete", "(", ")", "return", "redirect", "(", "url_for", "(", "'.index'", ")", ")" ]
Delete an experiment and all its data.
[ "Delete", "an", "experiment", "and", "all", "its", "data", "." ]
52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba
https://github.com/jpvanhal/flask-split/blob/52bc9df49b5ce8b0ec436ba09b361a4b0b1793ba/flask_split/views.py#L67-L73
5,133
tobami/littlechef
littlechef/chef.py
_get_ipaddress
def _get_ipaddress(node): """Adds the ipaddress attribute to the given node object if not already present and it is correctly given by ohai Returns True if ipaddress is added, False otherwise """ if "ipaddress" not in node: with settings(hide('stdout'), warn_only=True): output = sudo('ohai -l warn ipaddress') if output.succeeded: try: node['ipaddress'] = json.loads(output)[0] except ValueError: abort("Could not parse ohai's output for ipaddress" ":\n {0}".format(output)) return True return False
python
def _get_ipaddress(node): """Adds the ipaddress attribute to the given node object if not already present and it is correctly given by ohai Returns True if ipaddress is added, False otherwise """ if "ipaddress" not in node: with settings(hide('stdout'), warn_only=True): output = sudo('ohai -l warn ipaddress') if output.succeeded: try: node['ipaddress'] = json.loads(output)[0] except ValueError: abort("Could not parse ohai's output for ipaddress" ":\n {0}".format(output)) return True return False
[ "def", "_get_ipaddress", "(", "node", ")", ":", "if", "\"ipaddress\"", "not", "in", "node", ":", "with", "settings", "(", "hide", "(", "'stdout'", ")", ",", "warn_only", "=", "True", ")", ":", "output", "=", "sudo", "(", "'ohai -l warn ipaddress'", ")", "if", "output", ".", "succeeded", ":", "try", ":", "node", "[", "'ipaddress'", "]", "=", "json", ".", "loads", "(", "output", ")", "[", "0", "]", "except", "ValueError", ":", "abort", "(", "\"Could not parse ohai's output for ipaddress\"", "\":\\n {0}\"", ".", "format", "(", "output", ")", ")", "return", "True", "return", "False" ]
Adds the ipaddress attribute to the given node object if not already present and it is correctly given by ohai Returns True if ipaddress is added, False otherwise
[ "Adds", "the", "ipaddress", "attribute", "to", "the", "given", "node", "object", "if", "not", "already", "present", "and", "it", "is", "correctly", "given", "by", "ohai", "Returns", "True", "if", "ipaddress", "is", "added", "False", "otherwise" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L55-L71
5,134
tobami/littlechef
littlechef/chef.py
sync_node
def sync_node(node): """Builds, synchronizes and configures a node. It also injects the ipaddress to the node's config file if not already existent. """ if node.get('dummy') or 'dummy' in node.get('tags', []): lib.print_header("Skipping dummy: {0}".format(env.host)) return False current_node = lib.get_node(node['name']) # Always configure Chef Solo solo.configure(current_node) ipaddress = _get_ipaddress(node) # Everything was configured alright, so save the node configuration # This is done without credentials, so that we keep the node name used # by the user and not the hostname or IP translated by .ssh/config filepath = save_config(node, ipaddress) try: # Synchronize the kitchen directory _synchronize_node(filepath, node) # Execute Chef Solo _configure_node() finally: _node_cleanup() return True
python
def sync_node(node): """Builds, synchronizes and configures a node. It also injects the ipaddress to the node's config file if not already existent. """ if node.get('dummy') or 'dummy' in node.get('tags', []): lib.print_header("Skipping dummy: {0}".format(env.host)) return False current_node = lib.get_node(node['name']) # Always configure Chef Solo solo.configure(current_node) ipaddress = _get_ipaddress(node) # Everything was configured alright, so save the node configuration # This is done without credentials, so that we keep the node name used # by the user and not the hostname or IP translated by .ssh/config filepath = save_config(node, ipaddress) try: # Synchronize the kitchen directory _synchronize_node(filepath, node) # Execute Chef Solo _configure_node() finally: _node_cleanup() return True
[ "def", "sync_node", "(", "node", ")", ":", "if", "node", ".", "get", "(", "'dummy'", ")", "or", "'dummy'", "in", "node", ".", "get", "(", "'tags'", ",", "[", "]", ")", ":", "lib", ".", "print_header", "(", "\"Skipping dummy: {0}\"", ".", "format", "(", "env", ".", "host", ")", ")", "return", "False", "current_node", "=", "lib", ".", "get_node", "(", "node", "[", "'name'", "]", ")", "# Always configure Chef Solo", "solo", ".", "configure", "(", "current_node", ")", "ipaddress", "=", "_get_ipaddress", "(", "node", ")", "# Everything was configured alright, so save the node configuration", "# This is done without credentials, so that we keep the node name used", "# by the user and not the hostname or IP translated by .ssh/config", "filepath", "=", "save_config", "(", "node", ",", "ipaddress", ")", "try", ":", "# Synchronize the kitchen directory", "_synchronize_node", "(", "filepath", ",", "node", ")", "# Execute Chef Solo", "_configure_node", "(", ")", "finally", ":", "_node_cleanup", "(", ")", "return", "True" ]
Builds, synchronizes and configures a node. It also injects the ipaddress to the node's config file if not already existent.
[ "Builds", "synchronizes", "and", "configures", "a", "node", ".", "It", "also", "injects", "the", "ipaddress", "to", "the", "node", "s", "config", "file", "if", "not", "already", "existent", "." ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L86-L110
5,135
tobami/littlechef
littlechef/chef.py
build_dct
def build_dct(dic, keys, value): """Builds a dictionary with arbitrary depth out of a key list""" key = keys.pop(0) if len(keys): dic.setdefault(key, {}) build_dct(dic[key], keys, value) else: # Transform cookbook default attribute strings into proper booleans if value == "false": value = False elif value == "true": value = True # It's a leaf, assign value dic[key] = deepcopy(value)
python
def build_dct(dic, keys, value): """Builds a dictionary with arbitrary depth out of a key list""" key = keys.pop(0) if len(keys): dic.setdefault(key, {}) build_dct(dic[key], keys, value) else: # Transform cookbook default attribute strings into proper booleans if value == "false": value = False elif value == "true": value = True # It's a leaf, assign value dic[key] = deepcopy(value)
[ "def", "build_dct", "(", "dic", ",", "keys", ",", "value", ")", ":", "key", "=", "keys", ".", "pop", "(", "0", ")", "if", "len", "(", "keys", ")", ":", "dic", ".", "setdefault", "(", "key", ",", "{", "}", ")", "build_dct", "(", "dic", "[", "key", "]", ",", "keys", ",", "value", ")", "else", ":", "# Transform cookbook default attribute strings into proper booleans", "if", "value", "==", "\"false\"", ":", "value", "=", "False", "elif", "value", "==", "\"true\"", ":", "value", "=", "True", "# It's a leaf, assign value", "dic", "[", "key", "]", "=", "deepcopy", "(", "value", ")" ]
Builds a dictionary with arbitrary depth out of a key list
[ "Builds", "a", "dictionary", "with", "arbitrary", "depth", "out", "of", "a", "key", "list" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L192-L205
5,136
tobami/littlechef
littlechef/chef.py
update_dct
def update_dct(dic1, dic2): """Merges two dictionaries recursively dic2 will have preference over dic1 """ for key, val in dic2.items(): if isinstance(val, dict): dic1.setdefault(key, {}) update_dct(dic1[key], val) else: dic1[key] = val
python
def update_dct(dic1, dic2): """Merges two dictionaries recursively dic2 will have preference over dic1 """ for key, val in dic2.items(): if isinstance(val, dict): dic1.setdefault(key, {}) update_dct(dic1[key], val) else: dic1[key] = val
[ "def", "update_dct", "(", "dic1", ",", "dic2", ")", ":", "for", "key", ",", "val", "in", "dic2", ".", "items", "(", ")", ":", "if", "isinstance", "(", "val", ",", "dict", ")", ":", "dic1", ".", "setdefault", "(", "key", ",", "{", "}", ")", "update_dct", "(", "dic1", "[", "key", "]", ",", "val", ")", "else", ":", "dic1", "[", "key", "]", "=", "val" ]
Merges two dictionaries recursively dic2 will have preference over dic1
[ "Merges", "two", "dictionaries", "recursively", "dic2", "will", "have", "preference", "over", "dic1" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L208-L218
5,137
tobami/littlechef
littlechef/chef.py
_add_merged_attributes
def _add_merged_attributes(node, all_recipes, all_roles): """Merges attributes from cookbooks, node and roles Chef Attribute precedence: http://docs.opscode.com/essentials_cookbook_attribute_files.html#attribute-precedence LittleChef implements, in precedence order: - Cookbook default - Environment default - Role default - Node normal - Role override - Environment override NOTE: In order for cookbook attributes to be read, they need to be correctly defined in its metadata.json """ # Get cookbooks from extended recipes attributes = {} for recipe in node['recipes']: # Find this recipe found = False for r in all_recipes: if recipe == r['name']: found = True for attr in r['attributes']: if r['attributes'][attr].get('type') == "hash": value = {} else: value = r['attributes'][attr].get('default') # Attribute dictionaries are defined as a single # compound key. Split and build proper dict build_dct(attributes, attr.split("/"), value) if not found: error = "Could not find recipe '{0}' while ".format(recipe) error += "building node data bag for '{0}'".format(node['name']) abort(error) # Get default role attributes for role in node['roles']: for r in all_roles: if role == r['name']: update_dct(attributes, r.get('default_attributes', {})) # Get default environment attributes environment = lib.get_environment(node['chef_environment']) update_dct(attributes, environment.get('default_attributes', {})) # Get normal node attributes non_attribute_fields = [ 'id', 'name', 'role', 'roles', 'recipes', 'run_list', 'ipaddress'] node_attributes = {} for key in node: if key in non_attribute_fields: continue node_attributes[key] = node[key] update_dct(attributes, node_attributes) # Get override role attributes for role in node['roles']: for r in all_roles: if role == r['name']: update_dct(attributes, r.get('override_attributes', {})) # Get override environment attributes update_dct(attributes, environment.get('override_attributes', {})) # Merge back to the original node object node.update(attributes)
python
def _add_merged_attributes(node, all_recipes, all_roles): """Merges attributes from cookbooks, node and roles Chef Attribute precedence: http://docs.opscode.com/essentials_cookbook_attribute_files.html#attribute-precedence LittleChef implements, in precedence order: - Cookbook default - Environment default - Role default - Node normal - Role override - Environment override NOTE: In order for cookbook attributes to be read, they need to be correctly defined in its metadata.json """ # Get cookbooks from extended recipes attributes = {} for recipe in node['recipes']: # Find this recipe found = False for r in all_recipes: if recipe == r['name']: found = True for attr in r['attributes']: if r['attributes'][attr].get('type') == "hash": value = {} else: value = r['attributes'][attr].get('default') # Attribute dictionaries are defined as a single # compound key. Split and build proper dict build_dct(attributes, attr.split("/"), value) if not found: error = "Could not find recipe '{0}' while ".format(recipe) error += "building node data bag for '{0}'".format(node['name']) abort(error) # Get default role attributes for role in node['roles']: for r in all_roles: if role == r['name']: update_dct(attributes, r.get('default_attributes', {})) # Get default environment attributes environment = lib.get_environment(node['chef_environment']) update_dct(attributes, environment.get('default_attributes', {})) # Get normal node attributes non_attribute_fields = [ 'id', 'name', 'role', 'roles', 'recipes', 'run_list', 'ipaddress'] node_attributes = {} for key in node: if key in non_attribute_fields: continue node_attributes[key] = node[key] update_dct(attributes, node_attributes) # Get override role attributes for role in node['roles']: for r in all_roles: if role == r['name']: update_dct(attributes, r.get('override_attributes', {})) # Get override environment attributes update_dct(attributes, environment.get('override_attributes', {})) # Merge back to the original node object node.update(attributes)
[ "def", "_add_merged_attributes", "(", "node", ",", "all_recipes", ",", "all_roles", ")", ":", "# Get cookbooks from extended recipes", "attributes", "=", "{", "}", "for", "recipe", "in", "node", "[", "'recipes'", "]", ":", "# Find this recipe", "found", "=", "False", "for", "r", "in", "all_recipes", ":", "if", "recipe", "==", "r", "[", "'name'", "]", ":", "found", "=", "True", "for", "attr", "in", "r", "[", "'attributes'", "]", ":", "if", "r", "[", "'attributes'", "]", "[", "attr", "]", ".", "get", "(", "'type'", ")", "==", "\"hash\"", ":", "value", "=", "{", "}", "else", ":", "value", "=", "r", "[", "'attributes'", "]", "[", "attr", "]", ".", "get", "(", "'default'", ")", "# Attribute dictionaries are defined as a single", "# compound key. Split and build proper dict", "build_dct", "(", "attributes", ",", "attr", ".", "split", "(", "\"/\"", ")", ",", "value", ")", "if", "not", "found", ":", "error", "=", "\"Could not find recipe '{0}' while \"", ".", "format", "(", "recipe", ")", "error", "+=", "\"building node data bag for '{0}'\"", ".", "format", "(", "node", "[", "'name'", "]", ")", "abort", "(", "error", ")", "# Get default role attributes", "for", "role", "in", "node", "[", "'roles'", "]", ":", "for", "r", "in", "all_roles", ":", "if", "role", "==", "r", "[", "'name'", "]", ":", "update_dct", "(", "attributes", ",", "r", ".", "get", "(", "'default_attributes'", ",", "{", "}", ")", ")", "# Get default environment attributes", "environment", "=", "lib", ".", "get_environment", "(", "node", "[", "'chef_environment'", "]", ")", "update_dct", "(", "attributes", ",", "environment", ".", "get", "(", "'default_attributes'", ",", "{", "}", ")", ")", "# Get normal node attributes", "non_attribute_fields", "=", "[", "'id'", ",", "'name'", ",", "'role'", ",", "'roles'", ",", "'recipes'", ",", "'run_list'", ",", "'ipaddress'", "]", "node_attributes", "=", "{", "}", "for", "key", "in", "node", ":", "if", "key", "in", "non_attribute_fields", ":", "continue", "node_attributes", "[", "key", "]", "=", "node", "[", "key", "]", "update_dct", "(", "attributes", ",", "node_attributes", ")", "# Get override role attributes", "for", "role", "in", "node", "[", "'roles'", "]", ":", "for", "r", "in", "all_roles", ":", "if", "role", "==", "r", "[", "'name'", "]", ":", "update_dct", "(", "attributes", ",", "r", ".", "get", "(", "'override_attributes'", ",", "{", "}", ")", ")", "# Get override environment attributes", "update_dct", "(", "attributes", ",", "environment", ".", "get", "(", "'override_attributes'", ",", "{", "}", ")", ")", "# Merge back to the original node object", "node", ".", "update", "(", "attributes", ")" ]
Merges attributes from cookbooks, node and roles Chef Attribute precedence: http://docs.opscode.com/essentials_cookbook_attribute_files.html#attribute-precedence LittleChef implements, in precedence order: - Cookbook default - Environment default - Role default - Node normal - Role override - Environment override NOTE: In order for cookbook attributes to be read, they need to be correctly defined in its metadata.json
[ "Merges", "attributes", "from", "cookbooks", "node", "and", "roles" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L232-L300
5,138
tobami/littlechef
littlechef/chef.py
build_node_data_bag
def build_node_data_bag(): """Builds one 'node' data bag item per file found in the 'nodes' directory Automatic attributes for a node item: 'id': It adds data bag 'id', same as filename but with underscores 'name': same as the filename 'fqdn': same as the filename (LittleChef filenames should be fqdns) 'hostname': Uses the first part of the filename as the hostname (until it finds a period) minus the .json extension 'domain': filename minus the first part of the filename (hostname) minus the .json extension In addition, it will contain the merged attributes from: All default cookbook attributes corresponding to the node All attributes found in nodes/<item>.json file Default and override attributes from all roles """ nodes = lib.get_nodes() node_data_bag_path = os.path.join('data_bags', 'node') # In case there are leftovers remove_local_node_data_bag() os.makedirs(node_data_bag_path) all_recipes = lib.get_recipes() all_roles = lib.get_roles() for node in nodes: # Dots are not allowed (only alphanumeric), substitute by underscores node['id'] = node['name'].replace('.', '_') # Build extended role list node['role'] = lib.get_roles_in_node(node) node['roles'] = node['role'][:] for role in node['role']: node['roles'].extend(lib.get_roles_in_role(role)) node['roles'] = list(set(node['roles'])) # Build extended recipe list node['recipes'] = lib.get_recipes_in_node(node) # Add recipes found inside each roles in the extended role list for role in node['roles']: node['recipes'].extend(lib.get_recipes_in_role(role)) node['recipes'] = list(set(node['recipes'])) # Add node attributes _add_merged_attributes(node, all_recipes, all_roles) _add_automatic_attributes(node) # Save node data bag item with open(os.path.join( 'data_bags', 'node', node['id'] + '.json'), 'w') as f: f.write(json.dumps(node))
python
def build_node_data_bag(): """Builds one 'node' data bag item per file found in the 'nodes' directory Automatic attributes for a node item: 'id': It adds data bag 'id', same as filename but with underscores 'name': same as the filename 'fqdn': same as the filename (LittleChef filenames should be fqdns) 'hostname': Uses the first part of the filename as the hostname (until it finds a period) minus the .json extension 'domain': filename minus the first part of the filename (hostname) minus the .json extension In addition, it will contain the merged attributes from: All default cookbook attributes corresponding to the node All attributes found in nodes/<item>.json file Default and override attributes from all roles """ nodes = lib.get_nodes() node_data_bag_path = os.path.join('data_bags', 'node') # In case there are leftovers remove_local_node_data_bag() os.makedirs(node_data_bag_path) all_recipes = lib.get_recipes() all_roles = lib.get_roles() for node in nodes: # Dots are not allowed (only alphanumeric), substitute by underscores node['id'] = node['name'].replace('.', '_') # Build extended role list node['role'] = lib.get_roles_in_node(node) node['roles'] = node['role'][:] for role in node['role']: node['roles'].extend(lib.get_roles_in_role(role)) node['roles'] = list(set(node['roles'])) # Build extended recipe list node['recipes'] = lib.get_recipes_in_node(node) # Add recipes found inside each roles in the extended role list for role in node['roles']: node['recipes'].extend(lib.get_recipes_in_role(role)) node['recipes'] = list(set(node['recipes'])) # Add node attributes _add_merged_attributes(node, all_recipes, all_roles) _add_automatic_attributes(node) # Save node data bag item with open(os.path.join( 'data_bags', 'node', node['id'] + '.json'), 'w') as f: f.write(json.dumps(node))
[ "def", "build_node_data_bag", "(", ")", ":", "nodes", "=", "lib", ".", "get_nodes", "(", ")", "node_data_bag_path", "=", "os", ".", "path", ".", "join", "(", "'data_bags'", ",", "'node'", ")", "# In case there are leftovers", "remove_local_node_data_bag", "(", ")", "os", ".", "makedirs", "(", "node_data_bag_path", ")", "all_recipes", "=", "lib", ".", "get_recipes", "(", ")", "all_roles", "=", "lib", ".", "get_roles", "(", ")", "for", "node", "in", "nodes", ":", "# Dots are not allowed (only alphanumeric), substitute by underscores", "node", "[", "'id'", "]", "=", "node", "[", "'name'", "]", ".", "replace", "(", "'.'", ",", "'_'", ")", "# Build extended role list", "node", "[", "'role'", "]", "=", "lib", ".", "get_roles_in_node", "(", "node", ")", "node", "[", "'roles'", "]", "=", "node", "[", "'role'", "]", "[", ":", "]", "for", "role", "in", "node", "[", "'role'", "]", ":", "node", "[", "'roles'", "]", ".", "extend", "(", "lib", ".", "get_roles_in_role", "(", "role", ")", ")", "node", "[", "'roles'", "]", "=", "list", "(", "set", "(", "node", "[", "'roles'", "]", ")", ")", "# Build extended recipe list", "node", "[", "'recipes'", "]", "=", "lib", ".", "get_recipes_in_node", "(", "node", ")", "# Add recipes found inside each roles in the extended role list", "for", "role", "in", "node", "[", "'roles'", "]", ":", "node", "[", "'recipes'", "]", ".", "extend", "(", "lib", ".", "get_recipes_in_role", "(", "role", ")", ")", "node", "[", "'recipes'", "]", "=", "list", "(", "set", "(", "node", "[", "'recipes'", "]", ")", ")", "# Add node attributes", "_add_merged_attributes", "(", "node", ",", "all_recipes", ",", "all_roles", ")", "_add_automatic_attributes", "(", "node", ")", "# Save node data bag item", "with", "open", "(", "os", ".", "path", ".", "join", "(", "'data_bags'", ",", "'node'", ",", "node", "[", "'id'", "]", "+", "'.json'", ")", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "json", ".", "dumps", "(", "node", ")", ")" ]
Builds one 'node' data bag item per file found in the 'nodes' directory Automatic attributes for a node item: 'id': It adds data bag 'id', same as filename but with underscores 'name': same as the filename 'fqdn': same as the filename (LittleChef filenames should be fqdns) 'hostname': Uses the first part of the filename as the hostname (until it finds a period) minus the .json extension 'domain': filename minus the first part of the filename (hostname) minus the .json extension In addition, it will contain the merged attributes from: All default cookbook attributes corresponding to the node All attributes found in nodes/<item>.json file Default and override attributes from all roles
[ "Builds", "one", "node", "data", "bag", "item", "per", "file", "found", "in", "the", "nodes", "directory" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L303-L352
5,139
tobami/littlechef
littlechef/chef.py
remove_local_node_data_bag
def remove_local_node_data_bag(): """Removes generated 'node' data_bag locally""" node_data_bag_path = os.path.join('data_bags', 'node') if os.path.exists(node_data_bag_path): shutil.rmtree(node_data_bag_path)
python
def remove_local_node_data_bag(): """Removes generated 'node' data_bag locally""" node_data_bag_path = os.path.join('data_bags', 'node') if os.path.exists(node_data_bag_path): shutil.rmtree(node_data_bag_path)
[ "def", "remove_local_node_data_bag", "(", ")", ":", "node_data_bag_path", "=", "os", ".", "path", ".", "join", "(", "'data_bags'", ",", "'node'", ")", "if", "os", ".", "path", ".", "exists", "(", "node_data_bag_path", ")", ":", "shutil", ".", "rmtree", "(", "node_data_bag_path", ")" ]
Removes generated 'node' data_bag locally
[ "Removes", "generated", "node", "data_bag", "locally" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L355-L359
5,140
tobami/littlechef
littlechef/chef.py
ensure_berksfile_cookbooks_are_installed
def ensure_berksfile_cookbooks_are_installed(): """Run 'berks vendor' to berksfile cookbooks directory""" msg = "Vendoring cookbooks from Berksfile {0} to directory {1}..." print(msg.format(env.berksfile, env.berksfile_cookbooks_directory)) run_vendor = True cookbooks_dir = env.berksfile_cookbooks_directory berksfile_lock_path = cookbooks_dir+'/Berksfile.lock' berksfile_lock_exists = os.path.isfile(berksfile_lock_path) cookbooks_dir_exists = os.path.isdir(cookbooks_dir) if cookbooks_dir_exists and berksfile_lock_exists: berksfile_mtime = os.stat('Berksfile').st_mtime cookbooks_mtime = os.stat(berksfile_lock_path).st_mtime run_vendor = berksfile_mtime > cookbooks_mtime if run_vendor: if cookbooks_dir_exists: shutil.rmtree(env.berksfile_cookbooks_directory) p = subprocess.Popen(['berks', 'vendor', env.berksfile_cookbooks_directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if env.verbose or p.returncode: print stdout, stderr
python
def ensure_berksfile_cookbooks_are_installed(): """Run 'berks vendor' to berksfile cookbooks directory""" msg = "Vendoring cookbooks from Berksfile {0} to directory {1}..." print(msg.format(env.berksfile, env.berksfile_cookbooks_directory)) run_vendor = True cookbooks_dir = env.berksfile_cookbooks_directory berksfile_lock_path = cookbooks_dir+'/Berksfile.lock' berksfile_lock_exists = os.path.isfile(berksfile_lock_path) cookbooks_dir_exists = os.path.isdir(cookbooks_dir) if cookbooks_dir_exists and berksfile_lock_exists: berksfile_mtime = os.stat('Berksfile').st_mtime cookbooks_mtime = os.stat(berksfile_lock_path).st_mtime run_vendor = berksfile_mtime > cookbooks_mtime if run_vendor: if cookbooks_dir_exists: shutil.rmtree(env.berksfile_cookbooks_directory) p = subprocess.Popen(['berks', 'vendor', env.berksfile_cookbooks_directory], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() if env.verbose or p.returncode: print stdout, stderr
[ "def", "ensure_berksfile_cookbooks_are_installed", "(", ")", ":", "msg", "=", "\"Vendoring cookbooks from Berksfile {0} to directory {1}...\"", "print", "(", "msg", ".", "format", "(", "env", ".", "berksfile", ",", "env", ".", "berksfile_cookbooks_directory", ")", ")", "run_vendor", "=", "True", "cookbooks_dir", "=", "env", ".", "berksfile_cookbooks_directory", "berksfile_lock_path", "=", "cookbooks_dir", "+", "'/Berksfile.lock'", "berksfile_lock_exists", "=", "os", ".", "path", ".", "isfile", "(", "berksfile_lock_path", ")", "cookbooks_dir_exists", "=", "os", ".", "path", ".", "isdir", "(", "cookbooks_dir", ")", "if", "cookbooks_dir_exists", "and", "berksfile_lock_exists", ":", "berksfile_mtime", "=", "os", ".", "stat", "(", "'Berksfile'", ")", ".", "st_mtime", "cookbooks_mtime", "=", "os", ".", "stat", "(", "berksfile_lock_path", ")", ".", "st_mtime", "run_vendor", "=", "berksfile_mtime", ">", "cookbooks_mtime", "if", "run_vendor", ":", "if", "cookbooks_dir_exists", ":", "shutil", ".", "rmtree", "(", "env", ".", "berksfile_cookbooks_directory", ")", "p", "=", "subprocess", ".", "Popen", "(", "[", "'berks'", ",", "'vendor'", ",", "env", ".", "berksfile_cookbooks_directory", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", "stdout", ",", "stderr", "=", "p", ".", "communicate", "(", ")", "if", "env", ".", "verbose", "or", "p", ".", "returncode", ":", "print", "stdout", ",", "stderr" ]
Run 'berks vendor' to berksfile cookbooks directory
[ "Run", "berks", "vendor", "to", "berksfile", "cookbooks", "directory" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L362-L388
5,141
tobami/littlechef
littlechef/chef.py
_remove_remote_node_data_bag
def _remove_remote_node_data_bag(): """Removes generated 'node' data_bag from the remote node""" node_data_bag_path = os.path.join(env.node_work_path, 'data_bags', 'node') if exists(node_data_bag_path): sudo("rm -rf {0}".format(node_data_bag_path))
python
def _remove_remote_node_data_bag(): """Removes generated 'node' data_bag from the remote node""" node_data_bag_path = os.path.join(env.node_work_path, 'data_bags', 'node') if exists(node_data_bag_path): sudo("rm -rf {0}".format(node_data_bag_path))
[ "def", "_remove_remote_node_data_bag", "(", ")", ":", "node_data_bag_path", "=", "os", ".", "path", ".", "join", "(", "env", ".", "node_work_path", ",", "'data_bags'", ",", "'node'", ")", "if", "exists", "(", "node_data_bag_path", ")", ":", "sudo", "(", "\"rm -rf {0}\"", ".", "format", "(", "node_data_bag_path", ")", ")" ]
Removes generated 'node' data_bag from the remote node
[ "Removes", "generated", "node", "data_bag", "from", "the", "remote", "node" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L391-L395
5,142
tobami/littlechef
littlechef/chef.py
_remove_remote_data_bags
def _remove_remote_data_bags(): """Remove remote data bags, so it won't leak any sensitive information""" data_bags_path = os.path.join(env.node_work_path, 'data_bags') if exists(data_bags_path): sudo("rm -rf {0}".format(data_bags_path))
python
def _remove_remote_data_bags(): """Remove remote data bags, so it won't leak any sensitive information""" data_bags_path = os.path.join(env.node_work_path, 'data_bags') if exists(data_bags_path): sudo("rm -rf {0}".format(data_bags_path))
[ "def", "_remove_remote_data_bags", "(", ")", ":", "data_bags_path", "=", "os", ".", "path", ".", "join", "(", "env", ".", "node_work_path", ",", "'data_bags'", ")", "if", "exists", "(", "data_bags_path", ")", ":", "sudo", "(", "\"rm -rf {0}\"", ".", "format", "(", "data_bags_path", ")", ")" ]
Remove remote data bags, so it won't leak any sensitive information
[ "Remove", "remote", "data", "bags", "so", "it", "won", "t", "leak", "any", "sensitive", "information" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L397-L401
5,143
tobami/littlechef
littlechef/chef.py
_configure_node
def _configure_node(): """Exectutes chef-solo to apply roles and recipes to a node""" print("") msg = "Cooking..." if env.parallel: msg = "[{0}]: {1}".format(env.host_string, msg) print(msg) # Backup last report with settings(hide('stdout', 'warnings', 'running'), warn_only=True): sudo("mv {0} {0}.1".format(LOGFILE)) # Build chef-solo command cmd = "RUBYOPT=-Ku chef-solo" if whyrun: cmd += " --why-run" cmd += ' -l {0} -j /etc/chef/node.json'.format(env.loglevel) if ENABLE_LOGS: cmd += ' | tee {0}'.format(LOGFILE) if env.loglevel == "debug": print("Executing Chef Solo with the following command:\n" "{0}".format(cmd)) with settings(hide('warnings', 'running'), warn_only=True): output = sudo(cmd) if (output.failed or "FATAL: Stacktrace dumped" in output or ("Chef Run complete" not in output and "Report handlers complete" not in output)): if 'chef-solo: command not found' in output: print( colors.red( "\nFAILED: Chef Solo is not installed on this node")) print( "Type 'fix node:{0} deploy_chef' to install it".format( env.host)) abort("") else: print(colors.red( "\nFAILED: chef-solo could not finish configuring the node\n")) import sys sys.exit(1) else: msg = "\n" if env.parallel: msg += "[{0}]: ".format(env.host_string) msg += "SUCCESS: Node correctly configured" print(colors.green(msg))
python
def _configure_node(): """Exectutes chef-solo to apply roles and recipes to a node""" print("") msg = "Cooking..." if env.parallel: msg = "[{0}]: {1}".format(env.host_string, msg) print(msg) # Backup last report with settings(hide('stdout', 'warnings', 'running'), warn_only=True): sudo("mv {0} {0}.1".format(LOGFILE)) # Build chef-solo command cmd = "RUBYOPT=-Ku chef-solo" if whyrun: cmd += " --why-run" cmd += ' -l {0} -j /etc/chef/node.json'.format(env.loglevel) if ENABLE_LOGS: cmd += ' | tee {0}'.format(LOGFILE) if env.loglevel == "debug": print("Executing Chef Solo with the following command:\n" "{0}".format(cmd)) with settings(hide('warnings', 'running'), warn_only=True): output = sudo(cmd) if (output.failed or "FATAL: Stacktrace dumped" in output or ("Chef Run complete" not in output and "Report handlers complete" not in output)): if 'chef-solo: command not found' in output: print( colors.red( "\nFAILED: Chef Solo is not installed on this node")) print( "Type 'fix node:{0} deploy_chef' to install it".format( env.host)) abort("") else: print(colors.red( "\nFAILED: chef-solo could not finish configuring the node\n")) import sys sys.exit(1) else: msg = "\n" if env.parallel: msg += "[{0}]: ".format(env.host_string) msg += "SUCCESS: Node correctly configured" print(colors.green(msg))
[ "def", "_configure_node", "(", ")", ":", "print", "(", "\"\"", ")", "msg", "=", "\"Cooking...\"", "if", "env", ".", "parallel", ":", "msg", "=", "\"[{0}]: {1}\"", ".", "format", "(", "env", ".", "host_string", ",", "msg", ")", "print", "(", "msg", ")", "# Backup last report", "with", "settings", "(", "hide", "(", "'stdout'", ",", "'warnings'", ",", "'running'", ")", ",", "warn_only", "=", "True", ")", ":", "sudo", "(", "\"mv {0} {0}.1\"", ".", "format", "(", "LOGFILE", ")", ")", "# Build chef-solo command", "cmd", "=", "\"RUBYOPT=-Ku chef-solo\"", "if", "whyrun", ":", "cmd", "+=", "\" --why-run\"", "cmd", "+=", "' -l {0} -j /etc/chef/node.json'", ".", "format", "(", "env", ".", "loglevel", ")", "if", "ENABLE_LOGS", ":", "cmd", "+=", "' | tee {0}'", ".", "format", "(", "LOGFILE", ")", "if", "env", ".", "loglevel", "==", "\"debug\"", ":", "print", "(", "\"Executing Chef Solo with the following command:\\n\"", "\"{0}\"", ".", "format", "(", "cmd", ")", ")", "with", "settings", "(", "hide", "(", "'warnings'", ",", "'running'", ")", ",", "warn_only", "=", "True", ")", ":", "output", "=", "sudo", "(", "cmd", ")", "if", "(", "output", ".", "failed", "or", "\"FATAL: Stacktrace dumped\"", "in", "output", "or", "(", "\"Chef Run complete\"", "not", "in", "output", "and", "\"Report handlers complete\"", "not", "in", "output", ")", ")", ":", "if", "'chef-solo: command not found'", "in", "output", ":", "print", "(", "colors", ".", "red", "(", "\"\\nFAILED: Chef Solo is not installed on this node\"", ")", ")", "print", "(", "\"Type 'fix node:{0} deploy_chef' to install it\"", ".", "format", "(", "env", ".", "host", ")", ")", "abort", "(", "\"\"", ")", "else", ":", "print", "(", "colors", ".", "red", "(", "\"\\nFAILED: chef-solo could not finish configuring the node\\n\"", ")", ")", "import", "sys", "sys", ".", "exit", "(", "1", ")", "else", ":", "msg", "=", "\"\\n\"", "if", "env", ".", "parallel", ":", "msg", "+=", "\"[{0}]: \"", ".", "format", "(", "env", ".", "host_string", ")", "msg", "+=", "\"SUCCESS: Node correctly configured\"", "print", "(", "colors", ".", "green", "(", "msg", ")", ")" ]
Exectutes chef-solo to apply roles and recipes to a node
[ "Exectutes", "chef", "-", "solo", "to", "apply", "roles", "and", "recipes", "to", "a", "node" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/chef.py#L431-L474
5,144
tobami/littlechef
littlechef/lib.py
_resolve_hostname
def _resolve_hostname(name): """Returns resolved hostname using the ssh config""" if env.ssh_config is None: return name elif not os.path.exists(os.path.join("nodes", name + ".json")): resolved_name = env.ssh_config.lookup(name)['hostname'] if os.path.exists(os.path.join("nodes", resolved_name + ".json")): name = resolved_name return name
python
def _resolve_hostname(name): """Returns resolved hostname using the ssh config""" if env.ssh_config is None: return name elif not os.path.exists(os.path.join("nodes", name + ".json")): resolved_name = env.ssh_config.lookup(name)['hostname'] if os.path.exists(os.path.join("nodes", resolved_name + ".json")): name = resolved_name return name
[ "def", "_resolve_hostname", "(", "name", ")", ":", "if", "env", ".", "ssh_config", "is", "None", ":", "return", "name", "elif", "not", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "\"nodes\"", ",", "name", "+", "\".json\"", ")", ")", ":", "resolved_name", "=", "env", ".", "ssh_config", ".", "lookup", "(", "name", ")", "[", "'hostname'", "]", "if", "os", ".", "path", ".", "exists", "(", "os", ".", "path", ".", "join", "(", "\"nodes\"", ",", "resolved_name", "+", "\".json\"", ")", ")", ":", "name", "=", "resolved_name", "return", "name" ]
Returns resolved hostname using the ssh config
[ "Returns", "resolved", "hostname", "using", "the", "ssh", "config" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L31-L39
5,145
tobami/littlechef
littlechef/lib.py
get_environment
def get_environment(name): """Returns a JSON environment file as a dictionary""" if name == "_default": return env_from_template(name) filename = os.path.join("environments", name + ".json") try: with open(filename) as f: try: return json.loads(f.read()) except ValueError as e: msg = 'LittleChef found the following error in' msg += ' "{0}":\n {1}'.format(filename, str(e)) abort(msg) except IOError: raise FileNotFoundError('File {0} not found'.format(filename))
python
def get_environment(name): """Returns a JSON environment file as a dictionary""" if name == "_default": return env_from_template(name) filename = os.path.join("environments", name + ".json") try: with open(filename) as f: try: return json.loads(f.read()) except ValueError as e: msg = 'LittleChef found the following error in' msg += ' "{0}":\n {1}'.format(filename, str(e)) abort(msg) except IOError: raise FileNotFoundError('File {0} not found'.format(filename))
[ "def", "get_environment", "(", "name", ")", ":", "if", "name", "==", "\"_default\"", ":", "return", "env_from_template", "(", "name", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "\"environments\"", ",", "name", "+", "\".json\"", ")", "try", ":", "with", "open", "(", "filename", ")", "as", "f", ":", "try", ":", "return", "json", ".", "loads", "(", "f", ".", "read", "(", ")", ")", "except", "ValueError", "as", "e", ":", "msg", "=", "'LittleChef found the following error in'", "msg", "+=", "' \"{0}\":\\n {1}'", ".", "format", "(", "filename", ",", "str", "(", "e", ")", ")", "abort", "(", "msg", ")", "except", "IOError", ":", "raise", "FileNotFoundError", "(", "'File {0} not found'", ".", "format", "(", "filename", ")", ")" ]
Returns a JSON environment file as a dictionary
[ "Returns", "a", "JSON", "environment", "file", "as", "a", "dictionary" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L62-L76
5,146
tobami/littlechef
littlechef/lib.py
get_environments
def get_environments(): """Gets all environments found in the 'environments' directory""" envs = [] for root, subfolders, files in os.walk('environments'): for filename in files: if filename.endswith(".json"): path = os.path.join( root[len('environments'):], filename[:-len('.json')]) envs.append(get_environment(path)) return sorted(envs, key=lambda x: x['name'])
python
def get_environments(): """Gets all environments found in the 'environments' directory""" envs = [] for root, subfolders, files in os.walk('environments'): for filename in files: if filename.endswith(".json"): path = os.path.join( root[len('environments'):], filename[:-len('.json')]) envs.append(get_environment(path)) return sorted(envs, key=lambda x: x['name'])
[ "def", "get_environments", "(", ")", ":", "envs", "=", "[", "]", "for", "root", ",", "subfolders", ",", "files", "in", "os", ".", "walk", "(", "'environments'", ")", ":", "for", "filename", "in", "files", ":", "if", "filename", ".", "endswith", "(", "\".json\"", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "root", "[", "len", "(", "'environments'", ")", ":", "]", ",", "filename", "[", ":", "-", "len", "(", "'.json'", ")", "]", ")", "envs", ".", "append", "(", "get_environment", "(", "path", ")", ")", "return", "sorted", "(", "envs", ",", "key", "=", "lambda", "x", ":", "x", "[", "'name'", "]", ")" ]
Gets all environments found in the 'environments' directory
[ "Gets", "all", "environments", "found", "in", "the", "environments", "directory" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L79-L88
5,147
tobami/littlechef
littlechef/lib.py
get_node
def get_node(name, merged=False): """Returns a JSON node file as a dictionary""" if merged: node_path = os.path.join("data_bags", "node", name.replace('.', '_') + ".json") else: node_path = os.path.join("nodes", name + ".json") if os.path.exists(node_path): # Read node.json with open(node_path, 'r') as f: try: node = json.loads(f.read()) except ValueError as e: msg = 'LittleChef found the following error in' msg += ' "{0}":\n {1}'.format(node_path, str(e)) abort(msg) else: print "Creating new node file '{0}.json'".format(name) node = {'run_list': []} # Add node name so that we can tell to which node it is node['name'] = name if not node.get('chef_environment'): node['chef_environment'] = '_default' return node
python
def get_node(name, merged=False): """Returns a JSON node file as a dictionary""" if merged: node_path = os.path.join("data_bags", "node", name.replace('.', '_') + ".json") else: node_path = os.path.join("nodes", name + ".json") if os.path.exists(node_path): # Read node.json with open(node_path, 'r') as f: try: node = json.loads(f.read()) except ValueError as e: msg = 'LittleChef found the following error in' msg += ' "{0}":\n {1}'.format(node_path, str(e)) abort(msg) else: print "Creating new node file '{0}.json'".format(name) node = {'run_list': []} # Add node name so that we can tell to which node it is node['name'] = name if not node.get('chef_environment'): node['chef_environment'] = '_default' return node
[ "def", "get_node", "(", "name", ",", "merged", "=", "False", ")", ":", "if", "merged", ":", "node_path", "=", "os", ".", "path", ".", "join", "(", "\"data_bags\"", ",", "\"node\"", ",", "name", ".", "replace", "(", "'.'", ",", "'_'", ")", "+", "\".json\"", ")", "else", ":", "node_path", "=", "os", ".", "path", ".", "join", "(", "\"nodes\"", ",", "name", "+", "\".json\"", ")", "if", "os", ".", "path", ".", "exists", "(", "node_path", ")", ":", "# Read node.json", "with", "open", "(", "node_path", ",", "'r'", ")", "as", "f", ":", "try", ":", "node", "=", "json", ".", "loads", "(", "f", ".", "read", "(", ")", ")", "except", "ValueError", "as", "e", ":", "msg", "=", "'LittleChef found the following error in'", "msg", "+=", "' \"{0}\":\\n {1}'", ".", "format", "(", "node_path", ",", "str", "(", "e", ")", ")", "abort", "(", "msg", ")", "else", ":", "print", "\"Creating new node file '{0}.json'\"", ".", "format", "(", "name", ")", "node", "=", "{", "'run_list'", ":", "[", "]", "}", "# Add node name so that we can tell to which node it is", "node", "[", "'name'", "]", "=", "name", "if", "not", "node", ".", "get", "(", "'chef_environment'", ")", ":", "node", "[", "'chef_environment'", "]", "=", "'_default'", "return", "node" ]
Returns a JSON node file as a dictionary
[ "Returns", "a", "JSON", "node", "file", "as", "a", "dictionary" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L91-L113
5,148
tobami/littlechef
littlechef/lib.py
get_nodes_with_role
def get_nodes_with_role(role_name, environment=None): """Get all nodes which include a given role, prefix-searches are also supported """ prefix_search = role_name.endswith("*") if prefix_search: role_name = role_name.rstrip("*") for n in get_nodes(environment): roles = get_roles_in_node(n, recursive=True) if prefix_search: if any(role.startswith(role_name) for role in roles): yield n else: if role_name in roles: yield n
python
def get_nodes_with_role(role_name, environment=None): """Get all nodes which include a given role, prefix-searches are also supported """ prefix_search = role_name.endswith("*") if prefix_search: role_name = role_name.rstrip("*") for n in get_nodes(environment): roles = get_roles_in_node(n, recursive=True) if prefix_search: if any(role.startswith(role_name) for role in roles): yield n else: if role_name in roles: yield n
[ "def", "get_nodes_with_role", "(", "role_name", ",", "environment", "=", "None", ")", ":", "prefix_search", "=", "role_name", ".", "endswith", "(", "\"*\"", ")", "if", "prefix_search", ":", "role_name", "=", "role_name", ".", "rstrip", "(", "\"*\"", ")", "for", "n", "in", "get_nodes", "(", "environment", ")", ":", "roles", "=", "get_roles_in_node", "(", "n", ",", "recursive", "=", "True", ")", "if", "prefix_search", ":", "if", "any", "(", "role", ".", "startswith", "(", "role_name", ")", "for", "role", "in", "roles", ")", ":", "yield", "n", "else", ":", "if", "role_name", "in", "roles", ":", "yield", "n" ]
Get all nodes which include a given role, prefix-searches are also supported
[ "Get", "all", "nodes", "which", "include", "a", "given", "role", "prefix", "-", "searches", "are", "also", "supported" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L132-L147
5,149
tobami/littlechef
littlechef/lib.py
get_nodes_with_tag
def get_nodes_with_tag(tag, environment=None, include_guests=False): """Get all nodes which include a given tag""" nodes = get_nodes(environment) nodes_mapping = dict((n['name'], n) for n in nodes) for n in nodes: if tag in n.get('tags', []): # Remove from node mapping so it doesn't get added twice by # guest walking below try: del nodes_mapping[n['fqdn']] except KeyError: pass yield n # Walk guest if it is a host if include_guests and n.get('virtualization', {}).get('role') == 'host': for guest in n['virtualization'].get('guests', []): try: yield nodes_mapping[guest['fqdn']] except KeyError: # we ignore guests which are not in the same # chef environments than their hosts for now pass
python
def get_nodes_with_tag(tag, environment=None, include_guests=False): """Get all nodes which include a given tag""" nodes = get_nodes(environment) nodes_mapping = dict((n['name'], n) for n in nodes) for n in nodes: if tag in n.get('tags', []): # Remove from node mapping so it doesn't get added twice by # guest walking below try: del nodes_mapping[n['fqdn']] except KeyError: pass yield n # Walk guest if it is a host if include_guests and n.get('virtualization', {}).get('role') == 'host': for guest in n['virtualization'].get('guests', []): try: yield nodes_mapping[guest['fqdn']] except KeyError: # we ignore guests which are not in the same # chef environments than their hosts for now pass
[ "def", "get_nodes_with_tag", "(", "tag", ",", "environment", "=", "None", ",", "include_guests", "=", "False", ")", ":", "nodes", "=", "get_nodes", "(", "environment", ")", "nodes_mapping", "=", "dict", "(", "(", "n", "[", "'name'", "]", ",", "n", ")", "for", "n", "in", "nodes", ")", "for", "n", "in", "nodes", ":", "if", "tag", "in", "n", ".", "get", "(", "'tags'", ",", "[", "]", ")", ":", "# Remove from node mapping so it doesn't get added twice by", "# guest walking below", "try", ":", "del", "nodes_mapping", "[", "n", "[", "'fqdn'", "]", "]", "except", "KeyError", ":", "pass", "yield", "n", "# Walk guest if it is a host", "if", "include_guests", "and", "n", ".", "get", "(", "'virtualization'", ",", "{", "}", ")", ".", "get", "(", "'role'", ")", "==", "'host'", ":", "for", "guest", "in", "n", "[", "'virtualization'", "]", ".", "get", "(", "'guests'", ",", "[", "]", ")", ":", "try", ":", "yield", "nodes_mapping", "[", "guest", "[", "'fqdn'", "]", "]", "except", "KeyError", ":", "# we ignore guests which are not in the same", "# chef environments than their hosts for now", "pass" ]
Get all nodes which include a given tag
[ "Get", "all", "nodes", "which", "include", "a", "given", "tag" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L150-L171
5,150
tobami/littlechef
littlechef/lib.py
get_nodes_with_recipe
def get_nodes_with_recipe(recipe_name, environment=None): """Get all nodes which include a given recipe, prefix-searches are also supported """ prefix_search = recipe_name.endswith("*") if prefix_search: recipe_name = recipe_name.rstrip("*") for n in get_nodes(environment): recipes = get_recipes_in_node(n) for role in get_roles_in_node(n, recursive=True): recipes.extend(get_recipes_in_role(role)) if prefix_search: if any(recipe.startswith(recipe_name) for recipe in recipes): yield n else: if recipe_name in recipes: yield n
python
def get_nodes_with_recipe(recipe_name, environment=None): """Get all nodes which include a given recipe, prefix-searches are also supported """ prefix_search = recipe_name.endswith("*") if prefix_search: recipe_name = recipe_name.rstrip("*") for n in get_nodes(environment): recipes = get_recipes_in_node(n) for role in get_roles_in_node(n, recursive=True): recipes.extend(get_recipes_in_role(role)) if prefix_search: if any(recipe.startswith(recipe_name) for recipe in recipes): yield n else: if recipe_name in recipes: yield n
[ "def", "get_nodes_with_recipe", "(", "recipe_name", ",", "environment", "=", "None", ")", ":", "prefix_search", "=", "recipe_name", ".", "endswith", "(", "\"*\"", ")", "if", "prefix_search", ":", "recipe_name", "=", "recipe_name", ".", "rstrip", "(", "\"*\"", ")", "for", "n", "in", "get_nodes", "(", "environment", ")", ":", "recipes", "=", "get_recipes_in_node", "(", "n", ")", "for", "role", "in", "get_roles_in_node", "(", "n", ",", "recursive", "=", "True", ")", ":", "recipes", ".", "extend", "(", "get_recipes_in_role", "(", "role", ")", ")", "if", "prefix_search", ":", "if", "any", "(", "recipe", ".", "startswith", "(", "recipe_name", ")", "for", "recipe", "in", "recipes", ")", ":", "yield", "n", "else", ":", "if", "recipe_name", "in", "recipes", ":", "yield", "n" ]
Get all nodes which include a given recipe, prefix-searches are also supported
[ "Get", "all", "nodes", "which", "include", "a", "given", "recipe", "prefix", "-", "searches", "are", "also", "supported" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L174-L191
5,151
tobami/littlechef
littlechef/lib.py
print_node
def print_node(node, detailed=False): """Pretty prints the given node""" nodename = node['name'] print(colors.yellow("\n" + nodename)) # Roles if detailed: for role in get_roles_in_node(node): print_role(_get_role(role), detailed=False) else: print(' Roles: {0}'.format(", ".join(get_roles_in_node(node)))) # Recipes if detailed: for recipe in get_recipes_in_node(node): print " Recipe:", recipe print " attributes: {0}".format(node.get(recipe, "")) else: print(' Recipes: {0}'.format(", ".join(get_recipes_in_node(node)))) # Node attributes print " Node attributes:" for attribute in node.keys(): if attribute == "run_list" or attribute == "name": continue print " {0}: {1}".format(attribute, node[attribute])
python
def print_node(node, detailed=False): """Pretty prints the given node""" nodename = node['name'] print(colors.yellow("\n" + nodename)) # Roles if detailed: for role in get_roles_in_node(node): print_role(_get_role(role), detailed=False) else: print(' Roles: {0}'.format(", ".join(get_roles_in_node(node)))) # Recipes if detailed: for recipe in get_recipes_in_node(node): print " Recipe:", recipe print " attributes: {0}".format(node.get(recipe, "")) else: print(' Recipes: {0}'.format(", ".join(get_recipes_in_node(node)))) # Node attributes print " Node attributes:" for attribute in node.keys(): if attribute == "run_list" or attribute == "name": continue print " {0}: {1}".format(attribute, node[attribute])
[ "def", "print_node", "(", "node", ",", "detailed", "=", "False", ")", ":", "nodename", "=", "node", "[", "'name'", "]", "print", "(", "colors", ".", "yellow", "(", "\"\\n\"", "+", "nodename", ")", ")", "# Roles", "if", "detailed", ":", "for", "role", "in", "get_roles_in_node", "(", "node", ")", ":", "print_role", "(", "_get_role", "(", "role", ")", ",", "detailed", "=", "False", ")", "else", ":", "print", "(", "' Roles: {0}'", ".", "format", "(", "\", \"", ".", "join", "(", "get_roles_in_node", "(", "node", ")", ")", ")", ")", "# Recipes", "if", "detailed", ":", "for", "recipe", "in", "get_recipes_in_node", "(", "node", ")", ":", "print", "\" Recipe:\"", ",", "recipe", "print", "\" attributes: {0}\"", ".", "format", "(", "node", ".", "get", "(", "recipe", ",", "\"\"", ")", ")", "else", ":", "print", "(", "' Recipes: {0}'", ".", "format", "(", "\", \"", ".", "join", "(", "get_recipes_in_node", "(", "node", ")", ")", ")", ")", "# Node attributes", "print", "\" Node attributes:\"", "for", "attribute", "in", "node", ".", "keys", "(", ")", ":", "if", "attribute", "==", "\"run_list\"", "or", "attribute", "==", "\"name\"", ":", "continue", "print", "\" {0}: {1}\"", ".", "format", "(", "attribute", ",", "node", "[", "attribute", "]", ")" ]
Pretty prints the given node
[ "Pretty", "prints", "the", "given", "node" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L194-L216
5,152
tobami/littlechef
littlechef/lib.py
print_nodes
def print_nodes(nodes, detailed=False): """Prints all the given nodes""" found = 0 for node in nodes: found += 1 print_node(node, detailed=detailed) print("\nFound {0} node{1}".format(found, "s" if found != 1 else ""))
python
def print_nodes(nodes, detailed=False): """Prints all the given nodes""" found = 0 for node in nodes: found += 1 print_node(node, detailed=detailed) print("\nFound {0} node{1}".format(found, "s" if found != 1 else ""))
[ "def", "print_nodes", "(", "nodes", ",", "detailed", "=", "False", ")", ":", "found", "=", "0", "for", "node", "in", "nodes", ":", "found", "+=", "1", "print_node", "(", "node", ",", "detailed", "=", "detailed", ")", "print", "(", "\"\\nFound {0} node{1}\"", ".", "format", "(", "found", ",", "\"s\"", "if", "found", "!=", "1", "else", "\"\"", ")", ")" ]
Prints all the given nodes
[ "Prints", "all", "the", "given", "nodes" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L219-L225
5,153
tobami/littlechef
littlechef/lib.py
_generate_metadata
def _generate_metadata(path, cookbook_path, name): """Checks whether metadata.rb has changed and regenerate metadata.json""" global knife_installed if not knife_installed: return metadata_path_rb = os.path.join(path, 'metadata.rb') metadata_path_json = os.path.join(path, 'metadata.json') if (os.path.exists(metadata_path_rb) and (not os.path.exists(metadata_path_json) or os.stat(metadata_path_rb).st_mtime > os.stat(metadata_path_json).st_mtime)): error_msg = "Warning: metadata.json for {0}".format(name) error_msg += " in {0} is older that metadata.rb".format(cookbook_path) error_msg += ", cookbook attributes could be out of date\n\n" try: proc = subprocess.Popen( ['knife', 'cookbook', 'metadata', '-o', cookbook_path, name], stdout=subprocess.PIPE, stderr=subprocess.PIPE) resp, error = proc.communicate() if ('ERROR:' in resp or 'FATAL:' in resp or 'Generating metadata for' not in resp): if("No user specified, pass via -u or specifiy 'node_name'" in error): error_msg += "You need to have an up-to-date (>=0.10.x)" error_msg += " version of knife installed locally in order" error_msg += " to generate metadata.json.\nError " else: error_msg += "Unkown error " error_msg += "while executing knife to generate " error_msg += "metadata.json for {0}".format(path) print(error_msg) print resp if env.loglevel == 'debug': print "\n".join(resp.split("\n")[:2]) except OSError: knife_installed = False error_msg += "If you locally install Chef's knife tool, LittleChef" error_msg += " will regenerate metadata.json files automatically\n" print(error_msg) else: print("Generated metadata.json for {0}\n".format(path))
python
def _generate_metadata(path, cookbook_path, name): """Checks whether metadata.rb has changed and regenerate metadata.json""" global knife_installed if not knife_installed: return metadata_path_rb = os.path.join(path, 'metadata.rb') metadata_path_json = os.path.join(path, 'metadata.json') if (os.path.exists(metadata_path_rb) and (not os.path.exists(metadata_path_json) or os.stat(metadata_path_rb).st_mtime > os.stat(metadata_path_json).st_mtime)): error_msg = "Warning: metadata.json for {0}".format(name) error_msg += " in {0} is older that metadata.rb".format(cookbook_path) error_msg += ", cookbook attributes could be out of date\n\n" try: proc = subprocess.Popen( ['knife', 'cookbook', 'metadata', '-o', cookbook_path, name], stdout=subprocess.PIPE, stderr=subprocess.PIPE) resp, error = proc.communicate() if ('ERROR:' in resp or 'FATAL:' in resp or 'Generating metadata for' not in resp): if("No user specified, pass via -u or specifiy 'node_name'" in error): error_msg += "You need to have an up-to-date (>=0.10.x)" error_msg += " version of knife installed locally in order" error_msg += " to generate metadata.json.\nError " else: error_msg += "Unkown error " error_msg += "while executing knife to generate " error_msg += "metadata.json for {0}".format(path) print(error_msg) print resp if env.loglevel == 'debug': print "\n".join(resp.split("\n")[:2]) except OSError: knife_installed = False error_msg += "If you locally install Chef's knife tool, LittleChef" error_msg += " will regenerate metadata.json files automatically\n" print(error_msg) else: print("Generated metadata.json for {0}\n".format(path))
[ "def", "_generate_metadata", "(", "path", ",", "cookbook_path", ",", "name", ")", ":", "global", "knife_installed", "if", "not", "knife_installed", ":", "return", "metadata_path_rb", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'metadata.rb'", ")", "metadata_path_json", "=", "os", ".", "path", ".", "join", "(", "path", ",", "'metadata.json'", ")", "if", "(", "os", ".", "path", ".", "exists", "(", "metadata_path_rb", ")", "and", "(", "not", "os", ".", "path", ".", "exists", "(", "metadata_path_json", ")", "or", "os", ".", "stat", "(", "metadata_path_rb", ")", ".", "st_mtime", ">", "os", ".", "stat", "(", "metadata_path_json", ")", ".", "st_mtime", ")", ")", ":", "error_msg", "=", "\"Warning: metadata.json for {0}\"", ".", "format", "(", "name", ")", "error_msg", "+=", "\" in {0} is older that metadata.rb\"", ".", "format", "(", "cookbook_path", ")", "error_msg", "+=", "\", cookbook attributes could be out of date\\n\\n\"", "try", ":", "proc", "=", "subprocess", ".", "Popen", "(", "[", "'knife'", ",", "'cookbook'", ",", "'metadata'", ",", "'-o'", ",", "cookbook_path", ",", "name", "]", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ")", "resp", ",", "error", "=", "proc", ".", "communicate", "(", ")", "if", "(", "'ERROR:'", "in", "resp", "or", "'FATAL:'", "in", "resp", "or", "'Generating metadata for'", "not", "in", "resp", ")", ":", "if", "(", "\"No user specified, pass via -u or specifiy 'node_name'\"", "in", "error", ")", ":", "error_msg", "+=", "\"You need to have an up-to-date (>=0.10.x)\"", "error_msg", "+=", "\" version of knife installed locally in order\"", "error_msg", "+=", "\" to generate metadata.json.\\nError \"", "else", ":", "error_msg", "+=", "\"Unkown error \"", "error_msg", "+=", "\"while executing knife to generate \"", "error_msg", "+=", "\"metadata.json for {0}\"", ".", "format", "(", "path", ")", "print", "(", "error_msg", ")", "print", "resp", "if", "env", ".", "loglevel", "==", "'debug'", ":", "print", "\"\\n\"", ".", "join", "(", "resp", ".", "split", "(", "\"\\n\"", ")", "[", ":", "2", "]", ")", "except", "OSError", ":", "knife_installed", "=", "False", "error_msg", "+=", "\"If you locally install Chef's knife tool, LittleChef\"", "error_msg", "+=", "\" will regenerate metadata.json files automatically\\n\"", "print", "(", "error_msg", ")", "else", ":", "print", "(", "\"Generated metadata.json for {0}\\n\"", ".", "format", "(", "path", ")", ")" ]
Checks whether metadata.rb has changed and regenerate metadata.json
[ "Checks", "whether", "metadata", ".", "rb", "has", "changed", "and", "regenerate", "metadata", ".", "json" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L228-L268
5,154
tobami/littlechef
littlechef/lib.py
get_recipes_in_cookbook
def get_recipes_in_cookbook(name): """Gets the name of all recipes present in a cookbook Returns a list of dictionaries """ recipes = {} path = None cookbook_exists = False metadata_exists = False for cookbook_path in cookbook_paths: path = os.path.join(cookbook_path, name) path_exists = os.path.exists(path) # cookbook exists if present in any of the cookbook paths cookbook_exists = cookbook_exists or path_exists if not path_exists: continue _generate_metadata(path, cookbook_path, name) # Now try to open metadata.json try: with open(os.path.join(path, 'metadata.json'), 'r') as f: try: cookbook = json.loads(f.read()) except ValueError as e: msg = "Little Chef found the following error in your" msg += " {0} file:\n {1}".format( os.path.join(path, 'metadata.json'), e) abort(msg) # Add each recipe defined in the cookbook metadata_exists = True recipe_defaults = { 'description': '', 'version': cookbook.get('version'), 'dependencies': cookbook.get('dependencies', {}).keys(), 'attributes': cookbook.get('attributes', {}) } for recipe in cookbook.get('recipes', []): recipes[recipe] = dict( recipe_defaults, name=recipe, description=cookbook['recipes'][recipe] ) # Cookbook metadata.json was found, don't try next cookbook path # because metadata.json in site-cookbooks has preference break except IOError: # metadata.json was not found, try next cookbook_path pass if not cookbook_exists: abort('Unable to find cookbook "{0}"'.format(name)) elif not metadata_exists: abort('Cookbook "{0}" has no metadata.json'.format(name)) # Add recipes found in the 'recipes' directory but not listed # in the metadata for cookbook_path in cookbook_paths: recipes_dir = os.path.join(cookbook_path, name, 'recipes') if not os.path.isdir(recipes_dir): continue for basename in os.listdir(recipes_dir): fname, ext = os.path.splitext(basename) if ext != '.rb': continue if fname != 'default': recipe = '%s::%s' % (name, fname) else: recipe = name if recipe not in recipes: recipes[recipe] = dict(recipe_defaults, name=recipe) # When a recipe has no default recipe (libraries?), # add one so that it is listed if not recipes: recipes[name] = dict( recipe_defaults, name=name, description='This cookbook has no default recipe' ) return recipes.values()
python
def get_recipes_in_cookbook(name): """Gets the name of all recipes present in a cookbook Returns a list of dictionaries """ recipes = {} path = None cookbook_exists = False metadata_exists = False for cookbook_path in cookbook_paths: path = os.path.join(cookbook_path, name) path_exists = os.path.exists(path) # cookbook exists if present in any of the cookbook paths cookbook_exists = cookbook_exists or path_exists if not path_exists: continue _generate_metadata(path, cookbook_path, name) # Now try to open metadata.json try: with open(os.path.join(path, 'metadata.json'), 'r') as f: try: cookbook = json.loads(f.read()) except ValueError as e: msg = "Little Chef found the following error in your" msg += " {0} file:\n {1}".format( os.path.join(path, 'metadata.json'), e) abort(msg) # Add each recipe defined in the cookbook metadata_exists = True recipe_defaults = { 'description': '', 'version': cookbook.get('version'), 'dependencies': cookbook.get('dependencies', {}).keys(), 'attributes': cookbook.get('attributes', {}) } for recipe in cookbook.get('recipes', []): recipes[recipe] = dict( recipe_defaults, name=recipe, description=cookbook['recipes'][recipe] ) # Cookbook metadata.json was found, don't try next cookbook path # because metadata.json in site-cookbooks has preference break except IOError: # metadata.json was not found, try next cookbook_path pass if not cookbook_exists: abort('Unable to find cookbook "{0}"'.format(name)) elif not metadata_exists: abort('Cookbook "{0}" has no metadata.json'.format(name)) # Add recipes found in the 'recipes' directory but not listed # in the metadata for cookbook_path in cookbook_paths: recipes_dir = os.path.join(cookbook_path, name, 'recipes') if not os.path.isdir(recipes_dir): continue for basename in os.listdir(recipes_dir): fname, ext = os.path.splitext(basename) if ext != '.rb': continue if fname != 'default': recipe = '%s::%s' % (name, fname) else: recipe = name if recipe not in recipes: recipes[recipe] = dict(recipe_defaults, name=recipe) # When a recipe has no default recipe (libraries?), # add one so that it is listed if not recipes: recipes[name] = dict( recipe_defaults, name=name, description='This cookbook has no default recipe' ) return recipes.values()
[ "def", "get_recipes_in_cookbook", "(", "name", ")", ":", "recipes", "=", "{", "}", "path", "=", "None", "cookbook_exists", "=", "False", "metadata_exists", "=", "False", "for", "cookbook_path", "in", "cookbook_paths", ":", "path", "=", "os", ".", "path", ".", "join", "(", "cookbook_path", ",", "name", ")", "path_exists", "=", "os", ".", "path", ".", "exists", "(", "path", ")", "# cookbook exists if present in any of the cookbook paths", "cookbook_exists", "=", "cookbook_exists", "or", "path_exists", "if", "not", "path_exists", ":", "continue", "_generate_metadata", "(", "path", ",", "cookbook_path", ",", "name", ")", "# Now try to open metadata.json", "try", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "path", ",", "'metadata.json'", ")", ",", "'r'", ")", "as", "f", ":", "try", ":", "cookbook", "=", "json", ".", "loads", "(", "f", ".", "read", "(", ")", ")", "except", "ValueError", "as", "e", ":", "msg", "=", "\"Little Chef found the following error in your\"", "msg", "+=", "\" {0} file:\\n {1}\"", ".", "format", "(", "os", ".", "path", ".", "join", "(", "path", ",", "'metadata.json'", ")", ",", "e", ")", "abort", "(", "msg", ")", "# Add each recipe defined in the cookbook", "metadata_exists", "=", "True", "recipe_defaults", "=", "{", "'description'", ":", "''", ",", "'version'", ":", "cookbook", ".", "get", "(", "'version'", ")", ",", "'dependencies'", ":", "cookbook", ".", "get", "(", "'dependencies'", ",", "{", "}", ")", ".", "keys", "(", ")", ",", "'attributes'", ":", "cookbook", ".", "get", "(", "'attributes'", ",", "{", "}", ")", "}", "for", "recipe", "in", "cookbook", ".", "get", "(", "'recipes'", ",", "[", "]", ")", ":", "recipes", "[", "recipe", "]", "=", "dict", "(", "recipe_defaults", ",", "name", "=", "recipe", ",", "description", "=", "cookbook", "[", "'recipes'", "]", "[", "recipe", "]", ")", "# Cookbook metadata.json was found, don't try next cookbook path", "# because metadata.json in site-cookbooks has preference", "break", "except", "IOError", ":", "# metadata.json was not found, try next cookbook_path", "pass", "if", "not", "cookbook_exists", ":", "abort", "(", "'Unable to find cookbook \"{0}\"'", ".", "format", "(", "name", ")", ")", "elif", "not", "metadata_exists", ":", "abort", "(", "'Cookbook \"{0}\" has no metadata.json'", ".", "format", "(", "name", ")", ")", "# Add recipes found in the 'recipes' directory but not listed", "# in the metadata", "for", "cookbook_path", "in", "cookbook_paths", ":", "recipes_dir", "=", "os", ".", "path", ".", "join", "(", "cookbook_path", ",", "name", ",", "'recipes'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "recipes_dir", ")", ":", "continue", "for", "basename", "in", "os", ".", "listdir", "(", "recipes_dir", ")", ":", "fname", ",", "ext", "=", "os", ".", "path", ".", "splitext", "(", "basename", ")", "if", "ext", "!=", "'.rb'", ":", "continue", "if", "fname", "!=", "'default'", ":", "recipe", "=", "'%s::%s'", "%", "(", "name", ",", "fname", ")", "else", ":", "recipe", "=", "name", "if", "recipe", "not", "in", "recipes", ":", "recipes", "[", "recipe", "]", "=", "dict", "(", "recipe_defaults", ",", "name", "=", "recipe", ")", "# When a recipe has no default recipe (libraries?),", "# add one so that it is listed", "if", "not", "recipes", ":", "recipes", "[", "name", "]", "=", "dict", "(", "recipe_defaults", ",", "name", "=", "name", ",", "description", "=", "'This cookbook has no default recipe'", ")", "return", "recipes", ".", "values", "(", ")" ]
Gets the name of all recipes present in a cookbook Returns a list of dictionaries
[ "Gets", "the", "name", "of", "all", "recipes", "present", "in", "a", "cookbook", "Returns", "a", "list", "of", "dictionaries" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L271-L348
5,155
tobami/littlechef
littlechef/lib.py
get_recipes_in_node
def get_recipes_in_node(node): """Gets the name of all recipes present in the run_list of a node""" recipes = [] for elem in node.get('run_list', []): if elem.startswith("recipe"): recipe = elem.split('[')[1].split(']')[0] recipes.append(recipe) return recipes
python
def get_recipes_in_node(node): """Gets the name of all recipes present in the run_list of a node""" recipes = [] for elem in node.get('run_list', []): if elem.startswith("recipe"): recipe = elem.split('[')[1].split(']')[0] recipes.append(recipe) return recipes
[ "def", "get_recipes_in_node", "(", "node", ")", ":", "recipes", "=", "[", "]", "for", "elem", "in", "node", ".", "get", "(", "'run_list'", ",", "[", "]", ")", ":", "if", "elem", ".", "startswith", "(", "\"recipe\"", ")", ":", "recipe", "=", "elem", ".", "split", "(", "'['", ")", "[", "1", "]", ".", "split", "(", "']'", ")", "[", "0", "]", "recipes", ".", "append", "(", "recipe", ")", "return", "recipes" ]
Gets the name of all recipes present in the run_list of a node
[ "Gets", "the", "name", "of", "all", "recipes", "present", "in", "the", "run_list", "of", "a", "node" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L357-L364
5,156
tobami/littlechef
littlechef/lib.py
get_recipes
def get_recipes(): """Gets all recipes found in the cookbook directories""" dirnames = set() for path in cookbook_paths: dirnames.update([d for d in os.listdir(path) if os.path.isdir( os.path.join(path, d)) and not d.startswith('.')]) recipes = [] for dirname in dirnames: recipes.extend(get_recipes_in_cookbook(dirname)) return sorted(recipes, key=lambda x: x['name'])
python
def get_recipes(): """Gets all recipes found in the cookbook directories""" dirnames = set() for path in cookbook_paths: dirnames.update([d for d in os.listdir(path) if os.path.isdir( os.path.join(path, d)) and not d.startswith('.')]) recipes = [] for dirname in dirnames: recipes.extend(get_recipes_in_cookbook(dirname)) return sorted(recipes, key=lambda x: x['name'])
[ "def", "get_recipes", "(", ")", ":", "dirnames", "=", "set", "(", ")", "for", "path", "in", "cookbook_paths", ":", "dirnames", ".", "update", "(", "[", "d", "for", "d", "in", "os", ".", "listdir", "(", "path", ")", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "path", ",", "d", ")", ")", "and", "not", "d", ".", "startswith", "(", "'.'", ")", "]", ")", "recipes", "=", "[", "]", "for", "dirname", "in", "dirnames", ":", "recipes", ".", "extend", "(", "get_recipes_in_cookbook", "(", "dirname", ")", ")", "return", "sorted", "(", "recipes", ",", "key", "=", "lambda", "x", ":", "x", "[", "'name'", "]", ")" ]
Gets all recipes found in the cookbook directories
[ "Gets", "all", "recipes", "found", "in", "the", "cookbook", "directories" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L367-L376
5,157
tobami/littlechef
littlechef/lib.py
print_recipe
def print_recipe(recipe): """Pretty prints the given recipe""" print(colors.yellow("\n{0}".format(recipe['name']))) print " description: {0}".format(recipe['description']) print " version: {0}".format(recipe['version']) print " dependencies: {0}".format(", ".join(recipe['dependencies'])) print " attributes: {0}".format(", ".join(recipe['attributes']))
python
def print_recipe(recipe): """Pretty prints the given recipe""" print(colors.yellow("\n{0}".format(recipe['name']))) print " description: {0}".format(recipe['description']) print " version: {0}".format(recipe['version']) print " dependencies: {0}".format(", ".join(recipe['dependencies'])) print " attributes: {0}".format(", ".join(recipe['attributes']))
[ "def", "print_recipe", "(", "recipe", ")", ":", "print", "(", "colors", ".", "yellow", "(", "\"\\n{0}\"", ".", "format", "(", "recipe", "[", "'name'", "]", ")", ")", ")", "print", "\" description: {0}\"", ".", "format", "(", "recipe", "[", "'description'", "]", ")", "print", "\" version: {0}\"", ".", "format", "(", "recipe", "[", "'version'", "]", ")", "print", "\" dependencies: {0}\"", ".", "format", "(", "\", \"", ".", "join", "(", "recipe", "[", "'dependencies'", "]", ")", ")", "print", "\" attributes: {0}\"", ".", "format", "(", "\", \"", ".", "join", "(", "recipe", "[", "'attributes'", "]", ")", ")" ]
Pretty prints the given recipe
[ "Pretty", "prints", "the", "given", "recipe" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L379-L385
5,158
tobami/littlechef
littlechef/lib.py
_get_role
def _get_role(rolename): """Reads and parses a file containing a role""" path = os.path.join('roles', rolename + '.json') if not os.path.exists(path): abort("Couldn't read role file {0}".format(path)) with open(path, 'r') as f: try: role = json.loads(f.read()) except ValueError as e: msg = "Little Chef found the following error in your" msg += " {0}.json file:\n {1}".format(rolename, str(e)) abort(msg) role['fullname'] = rolename return role
python
def _get_role(rolename): """Reads and parses a file containing a role""" path = os.path.join('roles', rolename + '.json') if not os.path.exists(path): abort("Couldn't read role file {0}".format(path)) with open(path, 'r') as f: try: role = json.loads(f.read()) except ValueError as e: msg = "Little Chef found the following error in your" msg += " {0}.json file:\n {1}".format(rolename, str(e)) abort(msg) role['fullname'] = rolename return role
[ "def", "_get_role", "(", "rolename", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "'roles'", ",", "rolename", "+", "'.json'", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "abort", "(", "\"Couldn't read role file {0}\"", ".", "format", "(", "path", ")", ")", "with", "open", "(", "path", ",", "'r'", ")", "as", "f", ":", "try", ":", "role", "=", "json", ".", "loads", "(", "f", ".", "read", "(", ")", ")", "except", "ValueError", "as", "e", ":", "msg", "=", "\"Little Chef found the following error in your\"", "msg", "+=", "\" {0}.json file:\\n {1}\"", ".", "format", "(", "rolename", ",", "str", "(", "e", ")", ")", "abort", "(", "msg", ")", "role", "[", "'fullname'", "]", "=", "rolename", "return", "role" ]
Reads and parses a file containing a role
[ "Reads", "and", "parses", "a", "file", "containing", "a", "role" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L413-L426
5,159
tobami/littlechef
littlechef/lib.py
get_roles
def get_roles(): """Gets all roles found in the 'roles' directory""" roles = [] for root, subfolders, files in os.walk('roles'): for filename in files: if filename.endswith(".json"): path = os.path.join( root[len('roles'):], filename[:-len('.json')]) roles.append(_get_role(path)) return sorted(roles, key=lambda x: x['fullname'])
python
def get_roles(): """Gets all roles found in the 'roles' directory""" roles = [] for root, subfolders, files in os.walk('roles'): for filename in files: if filename.endswith(".json"): path = os.path.join( root[len('roles'):], filename[:-len('.json')]) roles.append(_get_role(path)) return sorted(roles, key=lambda x: x['fullname'])
[ "def", "get_roles", "(", ")", ":", "roles", "=", "[", "]", "for", "root", ",", "subfolders", ",", "files", "in", "os", ".", "walk", "(", "'roles'", ")", ":", "for", "filename", "in", "files", ":", "if", "filename", ".", "endswith", "(", "\".json\"", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "root", "[", "len", "(", "'roles'", ")", ":", "]", ",", "filename", "[", ":", "-", "len", "(", "'.json'", ")", "]", ")", "roles", ".", "append", "(", "_get_role", "(", "path", ")", ")", "return", "sorted", "(", "roles", ",", "key", "=", "lambda", "x", ":", "x", "[", "'fullname'", "]", ")" ]
Gets all roles found in the 'roles' directory
[ "Gets", "all", "roles", "found", "in", "the", "roles", "directory" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L429-L438
5,160
tobami/littlechef
littlechef/lib.py
print_role
def print_role(role, detailed=True): """Pretty prints the given role""" if detailed: print(colors.yellow(role.get('fullname'))) else: print(" Role: {0}".format(role.get('fullname'))) if detailed: print(" description: {0}".format(role.get('description'))) if 'default_attributes' in role: print(" default_attributes:") _pprint(role['default_attributes']) if 'override_attributes' in role: print(" override_attributes:") _pprint(role['override_attributes']) if detailed: print(" run_list: {0}".format(role.get('run_list'))) print("")
python
def print_role(role, detailed=True): """Pretty prints the given role""" if detailed: print(colors.yellow(role.get('fullname'))) else: print(" Role: {0}".format(role.get('fullname'))) if detailed: print(" description: {0}".format(role.get('description'))) if 'default_attributes' in role: print(" default_attributes:") _pprint(role['default_attributes']) if 'override_attributes' in role: print(" override_attributes:") _pprint(role['override_attributes']) if detailed: print(" run_list: {0}".format(role.get('run_list'))) print("")
[ "def", "print_role", "(", "role", ",", "detailed", "=", "True", ")", ":", "if", "detailed", ":", "print", "(", "colors", ".", "yellow", "(", "role", ".", "get", "(", "'fullname'", ")", ")", ")", "else", ":", "print", "(", "\" Role: {0}\"", ".", "format", "(", "role", ".", "get", "(", "'fullname'", ")", ")", ")", "if", "detailed", ":", "print", "(", "\" description: {0}\"", ".", "format", "(", "role", ".", "get", "(", "'description'", ")", ")", ")", "if", "'default_attributes'", "in", "role", ":", "print", "(", "\" default_attributes:\"", ")", "_pprint", "(", "role", "[", "'default_attributes'", "]", ")", "if", "'override_attributes'", "in", "role", ":", "print", "(", "\" override_attributes:\"", ")", "_pprint", "(", "role", "[", "'override_attributes'", "]", ")", "if", "detailed", ":", "print", "(", "\" run_list: {0}\"", ".", "format", "(", "role", ".", "get", "(", "'run_list'", ")", ")", ")", "print", "(", "\"\"", ")" ]
Pretty prints the given role
[ "Pretty", "prints", "the", "given", "role" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L441-L457
5,161
tobami/littlechef
littlechef/lib.py
import_plugin
def import_plugin(name): """Imports plugin python module""" path = os.path.join("plugins", name + ".py") try: with open(path, 'rb') as f: try: plugin = imp.load_module( "p_" + name, f, name + '.py', ('.py', 'rb', imp.PY_SOURCE) ) except SyntaxError as e: error = "Found plugin '{0}', but it seems".format(name) error += " to have a syntax error: {0}".format(str(e)) abort(error) except IOError: abort("Sorry, could not find '{0}.py' in the plugin directory".format( name)) return plugin
python
def import_plugin(name): """Imports plugin python module""" path = os.path.join("plugins", name + ".py") try: with open(path, 'rb') as f: try: plugin = imp.load_module( "p_" + name, f, name + '.py', ('.py', 'rb', imp.PY_SOURCE) ) except SyntaxError as e: error = "Found plugin '{0}', but it seems".format(name) error += " to have a syntax error: {0}".format(str(e)) abort(error) except IOError: abort("Sorry, could not find '{0}.py' in the plugin directory".format( name)) return plugin
[ "def", "import_plugin", "(", "name", ")", ":", "path", "=", "os", ".", "path", ".", "join", "(", "\"plugins\"", ",", "name", "+", "\".py\"", ")", "try", ":", "with", "open", "(", "path", ",", "'rb'", ")", "as", "f", ":", "try", ":", "plugin", "=", "imp", ".", "load_module", "(", "\"p_\"", "+", "name", ",", "f", ",", "name", "+", "'.py'", ",", "(", "'.py'", ",", "'rb'", ",", "imp", ".", "PY_SOURCE", ")", ")", "except", "SyntaxError", "as", "e", ":", "error", "=", "\"Found plugin '{0}', but it seems\"", ".", "format", "(", "name", ")", "error", "+=", "\" to have a syntax error: {0}\"", ".", "format", "(", "str", "(", "e", ")", ")", "abort", "(", "error", ")", "except", "IOError", ":", "abort", "(", "\"Sorry, could not find '{0}.py' in the plugin directory\"", ".", "format", "(", "name", ")", ")", "return", "plugin" ]
Imports plugin python module
[ "Imports", "plugin", "python", "module" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L482-L499
5,162
tobami/littlechef
littlechef/lib.py
get_cookbook_path
def get_cookbook_path(cookbook_name): """Returns path to the cookbook for the given cookbook name""" for cookbook_path in cookbook_paths: path = os.path.join(cookbook_path, cookbook_name) if os.path.exists(path): return path raise IOError('Can\'t find cookbook with name "{0}"'.format(cookbook_name))
python
def get_cookbook_path(cookbook_name): """Returns path to the cookbook for the given cookbook name""" for cookbook_path in cookbook_paths: path = os.path.join(cookbook_path, cookbook_name) if os.path.exists(path): return path raise IOError('Can\'t find cookbook with name "{0}"'.format(cookbook_name))
[ "def", "get_cookbook_path", "(", "cookbook_name", ")", ":", "for", "cookbook_path", "in", "cookbook_paths", ":", "path", "=", "os", ".", "path", ".", "join", "(", "cookbook_path", ",", "cookbook_name", ")", "if", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "return", "path", "raise", "IOError", "(", "'Can\\'t find cookbook with name \"{0}\"'", ".", "format", "(", "cookbook_name", ")", ")" ]
Returns path to the cookbook for the given cookbook name
[ "Returns", "path", "to", "the", "cookbook", "for", "the", "given", "cookbook", "name" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L502-L508
5,163
tobami/littlechef
littlechef/lib.py
global_confirm
def global_confirm(question, default=True): """Shows a confirmation that applies to all hosts by temporarily disabling parallel execution in Fabric """ if env.abort_on_prompts: return True original_parallel = env.parallel env.parallel = False result = confirm(question, default) env.parallel = original_parallel return result
python
def global_confirm(question, default=True): """Shows a confirmation that applies to all hosts by temporarily disabling parallel execution in Fabric """ if env.abort_on_prompts: return True original_parallel = env.parallel env.parallel = False result = confirm(question, default) env.parallel = original_parallel return result
[ "def", "global_confirm", "(", "question", ",", "default", "=", "True", ")", ":", "if", "env", ".", "abort_on_prompts", ":", "return", "True", "original_parallel", "=", "env", ".", "parallel", "env", ".", "parallel", "=", "False", "result", "=", "confirm", "(", "question", ",", "default", ")", "env", ".", "parallel", "=", "original_parallel", "return", "result" ]
Shows a confirmation that applies to all hosts by temporarily disabling parallel execution in Fabric
[ "Shows", "a", "confirmation", "that", "applies", "to", "all", "hosts", "by", "temporarily", "disabling", "parallel", "execution", "in", "Fabric" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L511-L521
5,164
tobami/littlechef
littlechef/lib.py
_pprint
def _pprint(dic): """Prints a dictionary with one indentation level""" for key, value in dic.items(): print(" {0}: {1}".format(key, value))
python
def _pprint(dic): """Prints a dictionary with one indentation level""" for key, value in dic.items(): print(" {0}: {1}".format(key, value))
[ "def", "_pprint", "(", "dic", ")", ":", "for", "key", ",", "value", "in", "dic", ".", "items", "(", ")", ":", "print", "(", "\" {0}: {1}\"", ".", "format", "(", "key", ",", "value", ")", ")" ]
Prints a dictionary with one indentation level
[ "Prints", "a", "dictionary", "with", "one", "indentation", "level" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L524-L527
5,165
tobami/littlechef
littlechef/lib.py
get_margin
def get_margin(length): """Add enough tabs to align in two columns""" if length > 23: margin_left = "\t" chars = 1 elif length > 15: margin_left = "\t\t" chars = 2 elif length > 7: margin_left = "\t\t\t" chars = 3 else: margin_left = "\t\t\t\t" chars = 4 return margin_left
python
def get_margin(length): """Add enough tabs to align in two columns""" if length > 23: margin_left = "\t" chars = 1 elif length > 15: margin_left = "\t\t" chars = 2 elif length > 7: margin_left = "\t\t\t" chars = 3 else: margin_left = "\t\t\t\t" chars = 4 return margin_left
[ "def", "get_margin", "(", "length", ")", ":", "if", "length", ">", "23", ":", "margin_left", "=", "\"\\t\"", "chars", "=", "1", "elif", "length", ">", "15", ":", "margin_left", "=", "\"\\t\\t\"", "chars", "=", "2", "elif", "length", ">", "7", ":", "margin_left", "=", "\"\\t\\t\\t\"", "chars", "=", "3", "else", ":", "margin_left", "=", "\"\\t\\t\\t\\t\"", "chars", "=", "4", "return", "margin_left" ]
Add enough tabs to align in two columns
[ "Add", "enough", "tabs", "to", "align", "in", "two", "columns" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/lib.py#L535-L549
5,166
tobami/littlechef
littlechef/solo.py
configure
def configure(current_node=None): """Deploy chef-solo specific files""" current_node = current_node or {} # Ensure that the /tmp/chef-solo/cache directory exist cache_dir = "{0}/cache".format(env.node_work_path) # First remote call, could go wrong try: cache_exists = exists(cache_dir) except EOFError as e: abort("Could not login to node, got: {0}".format(e)) if not cache_exists: with settings(hide('running', 'stdout'), warn_only=True): output = sudo('mkdir -p {0}'.format(cache_dir)) if output.failed: error = "Could not create {0} dir. ".format(env.node_work_path) error += "Do you have sudo rights?" abort(error) # Change ownership of /tmp/chef-solo/ so that we can rsync with hide('running', 'stdout'): with settings(warn_only=True): output = sudo( 'chown -R {0} {1}'.format(env.user, env.node_work_path)) if output.failed: error = "Could not modify {0} dir. ".format(env.node_work_path) error += "Do you have sudo rights?" abort(error) # Set up chef solo configuration logging_path = os.path.dirname(LOGFILE) if not exists(logging_path): sudo('mkdir -p {0}'.format(logging_path)) if not exists('/etc/chef'): sudo('mkdir -p /etc/chef') # Set parameters and upload solo.rb template reversed_cookbook_paths = cookbook_paths[:] reversed_cookbook_paths.reverse() cookbook_paths_list = '[{0}]'.format(', '.join( ['"{0}/{1}"'.format(env.node_work_path, x) for x in reversed_cookbook_paths])) data = { 'node_work_path': env.node_work_path, 'cookbook_paths_list': cookbook_paths_list, 'environment': current_node.get('chef_environment', '_default'), 'verbose': "true" if env.verbose else "false", 'http_proxy': env.http_proxy, 'https_proxy': env.https_proxy } with settings(hide('everything')): try: upload_template('solo.rb.j2', '/etc/chef/solo.rb', context=data, use_sudo=True, backup=False, template_dir=BASEDIR, use_jinja=True, mode=0400) except SystemExit: error = ("Failed to upload '/etc/chef/solo.rb'\nThis " "can happen when the deployment user does not have a " "home directory, which is needed as a temporary location") abort(error) with hide('stdout'): sudo('chown root:$(id -g -n root) {0}'.format('/etc/chef/solo.rb'))
python
def configure(current_node=None): """Deploy chef-solo specific files""" current_node = current_node or {} # Ensure that the /tmp/chef-solo/cache directory exist cache_dir = "{0}/cache".format(env.node_work_path) # First remote call, could go wrong try: cache_exists = exists(cache_dir) except EOFError as e: abort("Could not login to node, got: {0}".format(e)) if not cache_exists: with settings(hide('running', 'stdout'), warn_only=True): output = sudo('mkdir -p {0}'.format(cache_dir)) if output.failed: error = "Could not create {0} dir. ".format(env.node_work_path) error += "Do you have sudo rights?" abort(error) # Change ownership of /tmp/chef-solo/ so that we can rsync with hide('running', 'stdout'): with settings(warn_only=True): output = sudo( 'chown -R {0} {1}'.format(env.user, env.node_work_path)) if output.failed: error = "Could not modify {0} dir. ".format(env.node_work_path) error += "Do you have sudo rights?" abort(error) # Set up chef solo configuration logging_path = os.path.dirname(LOGFILE) if not exists(logging_path): sudo('mkdir -p {0}'.format(logging_path)) if not exists('/etc/chef'): sudo('mkdir -p /etc/chef') # Set parameters and upload solo.rb template reversed_cookbook_paths = cookbook_paths[:] reversed_cookbook_paths.reverse() cookbook_paths_list = '[{0}]'.format(', '.join( ['"{0}/{1}"'.format(env.node_work_path, x) for x in reversed_cookbook_paths])) data = { 'node_work_path': env.node_work_path, 'cookbook_paths_list': cookbook_paths_list, 'environment': current_node.get('chef_environment', '_default'), 'verbose': "true" if env.verbose else "false", 'http_proxy': env.http_proxy, 'https_proxy': env.https_proxy } with settings(hide('everything')): try: upload_template('solo.rb.j2', '/etc/chef/solo.rb', context=data, use_sudo=True, backup=False, template_dir=BASEDIR, use_jinja=True, mode=0400) except SystemExit: error = ("Failed to upload '/etc/chef/solo.rb'\nThis " "can happen when the deployment user does not have a " "home directory, which is needed as a temporary location") abort(error) with hide('stdout'): sudo('chown root:$(id -g -n root) {0}'.format('/etc/chef/solo.rb'))
[ "def", "configure", "(", "current_node", "=", "None", ")", ":", "current_node", "=", "current_node", "or", "{", "}", "# Ensure that the /tmp/chef-solo/cache directory exist", "cache_dir", "=", "\"{0}/cache\"", ".", "format", "(", "env", ".", "node_work_path", ")", "# First remote call, could go wrong", "try", ":", "cache_exists", "=", "exists", "(", "cache_dir", ")", "except", "EOFError", "as", "e", ":", "abort", "(", "\"Could not login to node, got: {0}\"", ".", "format", "(", "e", ")", ")", "if", "not", "cache_exists", ":", "with", "settings", "(", "hide", "(", "'running'", ",", "'stdout'", ")", ",", "warn_only", "=", "True", ")", ":", "output", "=", "sudo", "(", "'mkdir -p {0}'", ".", "format", "(", "cache_dir", ")", ")", "if", "output", ".", "failed", ":", "error", "=", "\"Could not create {0} dir. \"", ".", "format", "(", "env", ".", "node_work_path", ")", "error", "+=", "\"Do you have sudo rights?\"", "abort", "(", "error", ")", "# Change ownership of /tmp/chef-solo/ so that we can rsync", "with", "hide", "(", "'running'", ",", "'stdout'", ")", ":", "with", "settings", "(", "warn_only", "=", "True", ")", ":", "output", "=", "sudo", "(", "'chown -R {0} {1}'", ".", "format", "(", "env", ".", "user", ",", "env", ".", "node_work_path", ")", ")", "if", "output", ".", "failed", ":", "error", "=", "\"Could not modify {0} dir. \"", ".", "format", "(", "env", ".", "node_work_path", ")", "error", "+=", "\"Do you have sudo rights?\"", "abort", "(", "error", ")", "# Set up chef solo configuration", "logging_path", "=", "os", ".", "path", ".", "dirname", "(", "LOGFILE", ")", "if", "not", "exists", "(", "logging_path", ")", ":", "sudo", "(", "'mkdir -p {0}'", ".", "format", "(", "logging_path", ")", ")", "if", "not", "exists", "(", "'/etc/chef'", ")", ":", "sudo", "(", "'mkdir -p /etc/chef'", ")", "# Set parameters and upload solo.rb template", "reversed_cookbook_paths", "=", "cookbook_paths", "[", ":", "]", "reversed_cookbook_paths", ".", "reverse", "(", ")", "cookbook_paths_list", "=", "'[{0}]'", ".", "format", "(", "', '", ".", "join", "(", "[", "'\"{0}/{1}\"'", ".", "format", "(", "env", ".", "node_work_path", ",", "x", ")", "for", "x", "in", "reversed_cookbook_paths", "]", ")", ")", "data", "=", "{", "'node_work_path'", ":", "env", ".", "node_work_path", ",", "'cookbook_paths_list'", ":", "cookbook_paths_list", ",", "'environment'", ":", "current_node", ".", "get", "(", "'chef_environment'", ",", "'_default'", ")", ",", "'verbose'", ":", "\"true\"", "if", "env", ".", "verbose", "else", "\"false\"", ",", "'http_proxy'", ":", "env", ".", "http_proxy", ",", "'https_proxy'", ":", "env", ".", "https_proxy", "}", "with", "settings", "(", "hide", "(", "'everything'", ")", ")", ":", "try", ":", "upload_template", "(", "'solo.rb.j2'", ",", "'/etc/chef/solo.rb'", ",", "context", "=", "data", ",", "use_sudo", "=", "True", ",", "backup", "=", "False", ",", "template_dir", "=", "BASEDIR", ",", "use_jinja", "=", "True", ",", "mode", "=", "0400", ")", "except", "SystemExit", ":", "error", "=", "(", "\"Failed to upload '/etc/chef/solo.rb'\\nThis \"", "\"can happen when the deployment user does not have a \"", "\"home directory, which is needed as a temporary location\"", ")", "abort", "(", "error", ")", "with", "hide", "(", "'stdout'", ")", ":", "sudo", "(", "'chown root:$(id -g -n root) {0}'", ".", "format", "(", "'/etc/chef/solo.rb'", ")", ")" ]
Deploy chef-solo specific files
[ "Deploy", "chef", "-", "solo", "specific", "files" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/solo.py#L42-L99
5,167
tobami/littlechef
plugins/save_xen_info.py
execute
def execute(node): """Uses ohai to get virtualization information which is then saved to then node file """ with hide('everything'): virt = json.loads(sudo('ohai virtualization')) if not len(virt) or virt[0][1] != "host": # It may work for virtualization solutions other than Xen print("This node is not a Xen host, doing nothing") return node['virtualization'] = { 'role': 'host', 'system': 'xen', 'vms': [], } # VMs with hide('everything'): vm_list = sudo("xm list") for vm in vm_list.split("\n")[2:]: data = vm.split() if len(data) != 6: break node['virtualization']['vms'].append({ 'fqdn': data[0], 'RAM': data[2], 'cpus': data[3]}) print("Found {0} VMs for this Xen host".format( len(node['virtualization']['vms']))) # Save node file and remove the returned temp file del node['name'] os.remove(chef.save_config(node, True))
python
def execute(node): """Uses ohai to get virtualization information which is then saved to then node file """ with hide('everything'): virt = json.loads(sudo('ohai virtualization')) if not len(virt) or virt[0][1] != "host": # It may work for virtualization solutions other than Xen print("This node is not a Xen host, doing nothing") return node['virtualization'] = { 'role': 'host', 'system': 'xen', 'vms': [], } # VMs with hide('everything'): vm_list = sudo("xm list") for vm in vm_list.split("\n")[2:]: data = vm.split() if len(data) != 6: break node['virtualization']['vms'].append({ 'fqdn': data[0], 'RAM': data[2], 'cpus': data[3]}) print("Found {0} VMs for this Xen host".format( len(node['virtualization']['vms']))) # Save node file and remove the returned temp file del node['name'] os.remove(chef.save_config(node, True))
[ "def", "execute", "(", "node", ")", ":", "with", "hide", "(", "'everything'", ")", ":", "virt", "=", "json", ".", "loads", "(", "sudo", "(", "'ohai virtualization'", ")", ")", "if", "not", "len", "(", "virt", ")", "or", "virt", "[", "0", "]", "[", "1", "]", "!=", "\"host\"", ":", "# It may work for virtualization solutions other than Xen", "print", "(", "\"This node is not a Xen host, doing nothing\"", ")", "return", "node", "[", "'virtualization'", "]", "=", "{", "'role'", ":", "'host'", ",", "'system'", ":", "'xen'", ",", "'vms'", ":", "[", "]", ",", "}", "# VMs", "with", "hide", "(", "'everything'", ")", ":", "vm_list", "=", "sudo", "(", "\"xm list\"", ")", "for", "vm", "in", "vm_list", ".", "split", "(", "\"\\n\"", ")", "[", "2", ":", "]", ":", "data", "=", "vm", ".", "split", "(", ")", "if", "len", "(", "data", ")", "!=", "6", ":", "break", "node", "[", "'virtualization'", "]", "[", "'vms'", "]", ".", "append", "(", "{", "'fqdn'", ":", "data", "[", "0", "]", ",", "'RAM'", ":", "data", "[", "2", "]", ",", "'cpus'", ":", "data", "[", "3", "]", "}", ")", "print", "(", "\"Found {0} VMs for this Xen host\"", ".", "format", "(", "len", "(", "node", "[", "'virtualization'", "]", "[", "'vms'", "]", ")", ")", ")", "# Save node file and remove the returned temp file", "del", "node", "[", "'name'", "]", "os", ".", "remove", "(", "chef", ".", "save_config", "(", "node", ",", "True", ")", ")" ]
Uses ohai to get virtualization information which is then saved to then node file
[ "Uses", "ohai", "to", "get", "virtualization", "information", "which", "is", "then", "saved", "to", "then", "node", "file" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/plugins/save_xen_info.py#L11-L40
5,168
tobami/littlechef
littlechef/runner.py
nodes_with_role
def nodes_with_role(rolename): """Configures a list of nodes that have the given role in their run list""" nodes = [n['name'] for n in lib.get_nodes_with_role(rolename, env.chef_environment)] if not len(nodes): print("No nodes found with role '{0}'".format(rolename)) sys.exit(0) return node(*nodes)
python
def nodes_with_role(rolename): """Configures a list of nodes that have the given role in their run list""" nodes = [n['name'] for n in lib.get_nodes_with_role(rolename, env.chef_environment)] if not len(nodes): print("No nodes found with role '{0}'".format(rolename)) sys.exit(0) return node(*nodes)
[ "def", "nodes_with_role", "(", "rolename", ")", ":", "nodes", "=", "[", "n", "[", "'name'", "]", "for", "n", "in", "lib", ".", "get_nodes_with_role", "(", "rolename", ",", "env", ".", "chef_environment", ")", "]", "if", "not", "len", "(", "nodes", ")", ":", "print", "(", "\"No nodes found with role '{0}'\"", ".", "format", "(", "rolename", ")", ")", "sys", ".", "exit", "(", "0", ")", "return", "node", "(", "*", "nodes", ")" ]
Configures a list of nodes that have the given role in their run list
[ "Configures", "a", "list", "of", "nodes", "that", "have", "the", "given", "role", "in", "their", "run", "list" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L92-L99
5,169
tobami/littlechef
littlechef/runner.py
nodes_with_recipe
def nodes_with_recipe(recipename): """Configures a list of nodes that have the given recipe in their run list """ nodes = [n['name'] for n in lib.get_nodes_with_recipe(recipename, env.chef_environment)] if not len(nodes): print("No nodes found with recipe '{0}'".format(recipename)) sys.exit(0) return node(*nodes)
python
def nodes_with_recipe(recipename): """Configures a list of nodes that have the given recipe in their run list """ nodes = [n['name'] for n in lib.get_nodes_with_recipe(recipename, env.chef_environment)] if not len(nodes): print("No nodes found with recipe '{0}'".format(recipename)) sys.exit(0) return node(*nodes)
[ "def", "nodes_with_recipe", "(", "recipename", ")", ":", "nodes", "=", "[", "n", "[", "'name'", "]", "for", "n", "in", "lib", ".", "get_nodes_with_recipe", "(", "recipename", ",", "env", ".", "chef_environment", ")", "]", "if", "not", "len", "(", "nodes", ")", ":", "print", "(", "\"No nodes found with recipe '{0}'\"", ".", "format", "(", "recipename", ")", ")", "sys", ".", "exit", "(", "0", ")", "return", "node", "(", "*", "nodes", ")" ]
Configures a list of nodes that have the given recipe in their run list
[ "Configures", "a", "list", "of", "nodes", "that", "have", "the", "given", "recipe", "in", "their", "run", "list" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L102-L110
5,170
tobami/littlechef
littlechef/runner.py
node
def node(*nodes): """Selects and configures a list of nodes. 'all' configures all nodes""" chef.build_node_data_bag() if not len(nodes) or nodes[0] == '': abort('No node was given') elif nodes[0] == 'all': # Fetch all nodes and add them to env.hosts for node in lib.get_nodes(env.chef_environment): env.hosts.append(node['name']) if not len(env.hosts): abort('No nodes found in /nodes/') message = "Are you sure you want to configure all nodes ({0})".format( len(env.hosts)) if env.chef_environment: message += " in the {0} environment".format(env.chef_environment) message += "?" if not __testing__: if not lib.global_confirm(message): abort('Aborted by user') else: # A list of nodes was given env.hosts = list(nodes) env.all_hosts = list(env.hosts) # Shouldn't be needed # Check whether another command was given in addition to "node:" if not(littlechef.__cooking__ and 'node:' not in sys.argv[-1] and 'nodes_with_role:' not in sys.argv[-1] and 'nodes_with_recipe:' not in sys.argv[-1] and 'nodes_with_tag:' not in sys.argv[-1]): # If user didn't type recipe:X, role:Y or deploy_chef, # configure the nodes with settings(): execute(_node_runner) chef.remove_local_node_data_bag()
python
def node(*nodes): """Selects and configures a list of nodes. 'all' configures all nodes""" chef.build_node_data_bag() if not len(nodes) or nodes[0] == '': abort('No node was given') elif nodes[0] == 'all': # Fetch all nodes and add them to env.hosts for node in lib.get_nodes(env.chef_environment): env.hosts.append(node['name']) if not len(env.hosts): abort('No nodes found in /nodes/') message = "Are you sure you want to configure all nodes ({0})".format( len(env.hosts)) if env.chef_environment: message += " in the {0} environment".format(env.chef_environment) message += "?" if not __testing__: if not lib.global_confirm(message): abort('Aborted by user') else: # A list of nodes was given env.hosts = list(nodes) env.all_hosts = list(env.hosts) # Shouldn't be needed # Check whether another command was given in addition to "node:" if not(littlechef.__cooking__ and 'node:' not in sys.argv[-1] and 'nodes_with_role:' not in sys.argv[-1] and 'nodes_with_recipe:' not in sys.argv[-1] and 'nodes_with_tag:' not in sys.argv[-1]): # If user didn't type recipe:X, role:Y or deploy_chef, # configure the nodes with settings(): execute(_node_runner) chef.remove_local_node_data_bag()
[ "def", "node", "(", "*", "nodes", ")", ":", "chef", ".", "build_node_data_bag", "(", ")", "if", "not", "len", "(", "nodes", ")", "or", "nodes", "[", "0", "]", "==", "''", ":", "abort", "(", "'No node was given'", ")", "elif", "nodes", "[", "0", "]", "==", "'all'", ":", "# Fetch all nodes and add them to env.hosts", "for", "node", "in", "lib", ".", "get_nodes", "(", "env", ".", "chef_environment", ")", ":", "env", ".", "hosts", ".", "append", "(", "node", "[", "'name'", "]", ")", "if", "not", "len", "(", "env", ".", "hosts", ")", ":", "abort", "(", "'No nodes found in /nodes/'", ")", "message", "=", "\"Are you sure you want to configure all nodes ({0})\"", ".", "format", "(", "len", "(", "env", ".", "hosts", ")", ")", "if", "env", ".", "chef_environment", ":", "message", "+=", "\" in the {0} environment\"", ".", "format", "(", "env", ".", "chef_environment", ")", "message", "+=", "\"?\"", "if", "not", "__testing__", ":", "if", "not", "lib", ".", "global_confirm", "(", "message", ")", ":", "abort", "(", "'Aborted by user'", ")", "else", ":", "# A list of nodes was given", "env", ".", "hosts", "=", "list", "(", "nodes", ")", "env", ".", "all_hosts", "=", "list", "(", "env", ".", "hosts", ")", "# Shouldn't be needed", "# Check whether another command was given in addition to \"node:\"", "if", "not", "(", "littlechef", ".", "__cooking__", "and", "'node:'", "not", "in", "sys", ".", "argv", "[", "-", "1", "]", "and", "'nodes_with_role:'", "not", "in", "sys", ".", "argv", "[", "-", "1", "]", "and", "'nodes_with_recipe:'", "not", "in", "sys", ".", "argv", "[", "-", "1", "]", "and", "'nodes_with_tag:'", "not", "in", "sys", ".", "argv", "[", "-", "1", "]", ")", ":", "# If user didn't type recipe:X, role:Y or deploy_chef,", "# configure the nodes", "with", "settings", "(", ")", ":", "execute", "(", "_node_runner", ")", "chef", ".", "remove_local_node_data_bag", "(", ")" ]
Selects and configures a list of nodes. 'all' configures all nodes
[ "Selects", "and", "configures", "a", "list", "of", "nodes", ".", "all", "configures", "all", "nodes" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L124-L158
5,171
tobami/littlechef
littlechef/runner.py
_node_runner
def _node_runner(): """This is only used by node so that we can execute in parallel""" env.host_string = lib.get_env_host_string() node = lib.get_node(env.host_string) _configure_fabric_for_platform(node.get("platform")) if __testing__: print "TEST: would now configure {0}".format(env.host_string) else: lib.print_header("Configuring {0}".format(env.host_string)) if env.autodeploy_chef and not chef.chef_test(): deploy_chef(ask="no") chef.sync_node(node)
python
def _node_runner(): """This is only used by node so that we can execute in parallel""" env.host_string = lib.get_env_host_string() node = lib.get_node(env.host_string) _configure_fabric_for_platform(node.get("platform")) if __testing__: print "TEST: would now configure {0}".format(env.host_string) else: lib.print_header("Configuring {0}".format(env.host_string)) if env.autodeploy_chef and not chef.chef_test(): deploy_chef(ask="no") chef.sync_node(node)
[ "def", "_node_runner", "(", ")", ":", "env", ".", "host_string", "=", "lib", ".", "get_env_host_string", "(", ")", "node", "=", "lib", ".", "get_node", "(", "env", ".", "host_string", ")", "_configure_fabric_for_platform", "(", "node", ".", "get", "(", "\"platform\"", ")", ")", "if", "__testing__", ":", "print", "\"TEST: would now configure {0}\"", ".", "format", "(", "env", ".", "host_string", ")", "else", ":", "lib", ".", "print_header", "(", "\"Configuring {0}\"", ".", "format", "(", "env", ".", "host_string", ")", ")", "if", "env", ".", "autodeploy_chef", "and", "not", "chef", ".", "chef_test", "(", ")", ":", "deploy_chef", "(", "ask", "=", "\"no\"", ")", "chef", ".", "sync_node", "(", "node", ")" ]
This is only used by node so that we can execute in parallel
[ "This", "is", "only", "used", "by", "node", "so", "that", "we", "can", "execute", "in", "parallel" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L167-L180
5,172
tobami/littlechef
littlechef/runner.py
deploy_chef
def deploy_chef(ask="yes", version="11"): """Install chef-solo on a node""" env.host_string = lib.get_env_host_string() if ask == "no" or littlechef.noninteractive: print("Deploying Chef using omnibus installer version: ...".format(version)) else: message = ('\nAre you sure you want to install Chef version:' '{0} on node {1}?'.format(version, env.host_string)) if not confirm(message): abort('Aborted by user') lib.print_header("Configuring Chef Solo on {0}".format(env.host_string)) if not __testing__: solo.install(version) solo.configure() # Build a basic node file if there isn't one already # with some properties from ohai with settings(hide('stdout'), warn_only=True): output = sudo('ohai -l warn') if output.succeeded: try: ohai = json.loads(output) except ValueError: abort("Could not parse ohai's output" ":\n {0}".format(output)) node = {"run_list": []} for attribute in ["ipaddress", "platform", "platform_family", "platform_version"]: if ohai.get(attribute): node[attribute] = ohai[attribute] chef.save_config(node)
python
def deploy_chef(ask="yes", version="11"): """Install chef-solo on a node""" env.host_string = lib.get_env_host_string() if ask == "no" or littlechef.noninteractive: print("Deploying Chef using omnibus installer version: ...".format(version)) else: message = ('\nAre you sure you want to install Chef version:' '{0} on node {1}?'.format(version, env.host_string)) if not confirm(message): abort('Aborted by user') lib.print_header("Configuring Chef Solo on {0}".format(env.host_string)) if not __testing__: solo.install(version) solo.configure() # Build a basic node file if there isn't one already # with some properties from ohai with settings(hide('stdout'), warn_only=True): output = sudo('ohai -l warn') if output.succeeded: try: ohai = json.loads(output) except ValueError: abort("Could not parse ohai's output" ":\n {0}".format(output)) node = {"run_list": []} for attribute in ["ipaddress", "platform", "platform_family", "platform_version"]: if ohai.get(attribute): node[attribute] = ohai[attribute] chef.save_config(node)
[ "def", "deploy_chef", "(", "ask", "=", "\"yes\"", ",", "version", "=", "\"11\"", ")", ":", "env", ".", "host_string", "=", "lib", ".", "get_env_host_string", "(", ")", "if", "ask", "==", "\"no\"", "or", "littlechef", ".", "noninteractive", ":", "print", "(", "\"Deploying Chef using omnibus installer version: ...\"", ".", "format", "(", "version", ")", ")", "else", ":", "message", "=", "(", "'\\nAre you sure you want to install Chef version:'", "'{0} on node {1}?'", ".", "format", "(", "version", ",", "env", ".", "host_string", ")", ")", "if", "not", "confirm", "(", "message", ")", ":", "abort", "(", "'Aborted by user'", ")", "lib", ".", "print_header", "(", "\"Configuring Chef Solo on {0}\"", ".", "format", "(", "env", ".", "host_string", ")", ")", "if", "not", "__testing__", ":", "solo", ".", "install", "(", "version", ")", "solo", ".", "configure", "(", ")", "# Build a basic node file if there isn't one already", "# with some properties from ohai", "with", "settings", "(", "hide", "(", "'stdout'", ")", ",", "warn_only", "=", "True", ")", ":", "output", "=", "sudo", "(", "'ohai -l warn'", ")", "if", "output", ".", "succeeded", ":", "try", ":", "ohai", "=", "json", ".", "loads", "(", "output", ")", "except", "ValueError", ":", "abort", "(", "\"Could not parse ohai's output\"", "\":\\n {0}\"", ".", "format", "(", "output", ")", ")", "node", "=", "{", "\"run_list\"", ":", "[", "]", "}", "for", "attribute", "in", "[", "\"ipaddress\"", ",", "\"platform\"", ",", "\"platform_family\"", ",", "\"platform_version\"", "]", ":", "if", "ohai", ".", "get", "(", "attribute", ")", ":", "node", "[", "attribute", "]", "=", "ohai", "[", "attribute", "]", "chef", ".", "save_config", "(", "node", ")" ]
Install chef-solo on a node
[ "Install", "chef", "-", "solo", "on", "a", "node" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L183-L215
5,173
tobami/littlechef
littlechef/runner.py
plugin
def plugin(name): """Executes the selected plugin Plugins are expected to be found in the kitchen's 'plugins' directory """ env.host_string = lib.get_env_host_string() plug = lib.import_plugin(name) lib.print_header("Executing plugin '{0}' on " "{1}".format(name, env.host_string)) node = lib.get_node(env.host_string) if node == {'run_list': []}: node['name'] = env.host_string plug.execute(node) print("Finished executing plugin")
python
def plugin(name): """Executes the selected plugin Plugins are expected to be found in the kitchen's 'plugins' directory """ env.host_string = lib.get_env_host_string() plug = lib.import_plugin(name) lib.print_header("Executing plugin '{0}' on " "{1}".format(name, env.host_string)) node = lib.get_node(env.host_string) if node == {'run_list': []}: node['name'] = env.host_string plug.execute(node) print("Finished executing plugin")
[ "def", "plugin", "(", "name", ")", ":", "env", ".", "host_string", "=", "lib", ".", "get_env_host_string", "(", ")", "plug", "=", "lib", ".", "import_plugin", "(", "name", ")", "lib", ".", "print_header", "(", "\"Executing plugin '{0}' on \"", "\"{1}\"", ".", "format", "(", "name", ",", "env", ".", "host_string", ")", ")", "node", "=", "lib", ".", "get_node", "(", "env", ".", "host_string", ")", "if", "node", "==", "{", "'run_list'", ":", "[", "]", "}", ":", "node", "[", "'name'", "]", "=", "env", ".", "host_string", "plug", ".", "execute", "(", "node", ")", "print", "(", "\"Finished executing plugin\"", ")" ]
Executes the selected plugin Plugins are expected to be found in the kitchen's 'plugins' directory
[ "Executes", "the", "selected", "plugin", "Plugins", "are", "expected", "to", "be", "found", "in", "the", "kitchen", "s", "plugins", "directory" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L269-L282
5,174
tobami/littlechef
littlechef/runner.py
list_envs
def list_envs(): """List all environments""" for env in lib.get_environments(): margin_left = lib.get_margin(len(env['name'])) print("{0}{1}{2}".format( env['name'], margin_left, env.get('description', '(no description)')))
python
def list_envs(): """List all environments""" for env in lib.get_environments(): margin_left = lib.get_margin(len(env['name'])) print("{0}{1}{2}".format( env['name'], margin_left, env.get('description', '(no description)')))
[ "def", "list_envs", "(", ")", ":", "for", "env", "in", "lib", ".", "get_environments", "(", ")", ":", "margin_left", "=", "lib", ".", "get_margin", "(", "len", "(", "env", "[", "'name'", "]", ")", ")", "print", "(", "\"{0}{1}{2}\"", ".", "format", "(", "env", "[", "'name'", "]", ",", "margin_left", ",", "env", ".", "get", "(", "'description'", ",", "'(no description)'", ")", ")", ")" ]
List all environments
[ "List", "all", "environments" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L310-L316
5,175
tobami/littlechef
littlechef/runner.py
list_nodes_with_tag
def list_nodes_with_tag(tag): """Show all nodes which have assigned a given tag""" lib.print_nodes(lib.get_nodes_with_tag(tag, env.chef_environment, littlechef.include_guests))
python
def list_nodes_with_tag(tag): """Show all nodes which have assigned a given tag""" lib.print_nodes(lib.get_nodes_with_tag(tag, env.chef_environment, littlechef.include_guests))
[ "def", "list_nodes_with_tag", "(", "tag", ")", ":", "lib", ".", "print_nodes", "(", "lib", ".", "get_nodes_with_tag", "(", "tag", ",", "env", ".", "chef_environment", ",", "littlechef", ".", "include_guests", ")", ")" ]
Show all nodes which have assigned a given tag
[ "Show", "all", "nodes", "which", "have", "assigned", "a", "given", "tag" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L320-L323
5,176
tobami/littlechef
littlechef/runner.py
list_recipes
def list_recipes(): """Show a list of all available recipes""" for recipe in lib.get_recipes(): margin_left = lib.get_margin(len(recipe['name'])) print("{0}{1}{2}".format( recipe['name'], margin_left, recipe['description']))
python
def list_recipes(): """Show a list of all available recipes""" for recipe in lib.get_recipes(): margin_left = lib.get_margin(len(recipe['name'])) print("{0}{1}{2}".format( recipe['name'], margin_left, recipe['description']))
[ "def", "list_recipes", "(", ")", ":", "for", "recipe", "in", "lib", ".", "get_recipes", "(", ")", ":", "margin_left", "=", "lib", ".", "get_margin", "(", "len", "(", "recipe", "[", "'name'", "]", ")", ")", "print", "(", "\"{0}{1}{2}\"", ".", "format", "(", "recipe", "[", "'name'", "]", ",", "margin_left", ",", "recipe", "[", "'description'", "]", ")", ")" ]
Show a list of all available recipes
[ "Show", "a", "list", "of", "all", "available", "recipes" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L327-L332
5,177
tobami/littlechef
littlechef/runner.py
list_roles
def list_roles(): """Show a list of all available roles""" for role in lib.get_roles(): margin_left = lib.get_margin(len(role['fullname'])) print("{0}{1}{2}".format( role['fullname'], margin_left, role.get('description', '(no description)')))
python
def list_roles(): """Show a list of all available roles""" for role in lib.get_roles(): margin_left = lib.get_margin(len(role['fullname'])) print("{0}{1}{2}".format( role['fullname'], margin_left, role.get('description', '(no description)')))
[ "def", "list_roles", "(", ")", ":", "for", "role", "in", "lib", ".", "get_roles", "(", ")", ":", "margin_left", "=", "lib", ".", "get_margin", "(", "len", "(", "role", "[", "'fullname'", "]", ")", ")", "print", "(", "\"{0}{1}{2}\"", ".", "format", "(", "role", "[", "'fullname'", "]", ",", "margin_left", ",", "role", ".", "get", "(", "'description'", ",", "'(no description)'", ")", ")", ")" ]
Show a list of all available roles
[ "Show", "a", "list", "of", "all", "available", "roles" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L343-L349
5,178
tobami/littlechef
littlechef/runner.py
_check_appliances
def _check_appliances(): """Looks around and return True or False based on whether we are in a kitchen """ filenames = os.listdir(os.getcwd()) missing = [] for dirname in ['nodes', 'environments', 'roles', 'cookbooks', 'data_bags']: if (dirname not in filenames) or (not os.path.isdir(dirname)): missing.append(dirname) return (not bool(missing)), missing
python
def _check_appliances(): """Looks around and return True or False based on whether we are in a kitchen """ filenames = os.listdir(os.getcwd()) missing = [] for dirname in ['nodes', 'environments', 'roles', 'cookbooks', 'data_bags']: if (dirname not in filenames) or (not os.path.isdir(dirname)): missing.append(dirname) return (not bool(missing)), missing
[ "def", "_check_appliances", "(", ")", ":", "filenames", "=", "os", ".", "listdir", "(", "os", ".", "getcwd", "(", ")", ")", "missing", "=", "[", "]", "for", "dirname", "in", "[", "'nodes'", ",", "'environments'", ",", "'roles'", ",", "'cookbooks'", ",", "'data_bags'", "]", ":", "if", "(", "dirname", "not", "in", "filenames", ")", "or", "(", "not", "os", ".", "path", ".", "isdir", "(", "dirname", ")", ")", ":", "missing", ".", "append", "(", "dirname", ")", "return", "(", "not", "bool", "(", "missing", ")", ")", ",", "missing" ]
Looks around and return True or False based on whether we are in a kitchen
[ "Looks", "around", "and", "return", "True", "or", "False", "based", "on", "whether", "we", "are", "in", "a", "kitchen" ]
aab8c94081b38100a69cc100bc4278ae7419c58e
https://github.com/tobami/littlechef/blob/aab8c94081b38100a69cc100bc4278ae7419c58e/littlechef/runner.py#L365-L374
5,179
jbittel/django-mama-cas
mama_cas/models.py
TicketManager.create_ticket_str
def create_ticket_str(self, prefix=None): """ Generate a sufficiently opaque ticket string to ensure the ticket is not guessable. If a prefix is provided, prepend it to the string. """ if not prefix: prefix = self.model.TICKET_PREFIX return "%s-%d-%s" % (prefix, int(time.time()), get_random_string(length=self.model.TICKET_RAND_LEN))
python
def create_ticket_str(self, prefix=None): """ Generate a sufficiently opaque ticket string to ensure the ticket is not guessable. If a prefix is provided, prepend it to the string. """ if not prefix: prefix = self.model.TICKET_PREFIX return "%s-%d-%s" % (prefix, int(time.time()), get_random_string(length=self.model.TICKET_RAND_LEN))
[ "def", "create_ticket_str", "(", "self", ",", "prefix", "=", "None", ")", ":", "if", "not", "prefix", ":", "prefix", "=", "self", ".", "model", ".", "TICKET_PREFIX", "return", "\"%s-%d-%s\"", "%", "(", "prefix", ",", "int", "(", "time", ".", "time", "(", ")", ")", ",", "get_random_string", "(", "length", "=", "self", ".", "model", ".", "TICKET_RAND_LEN", ")", ")" ]
Generate a sufficiently opaque ticket string to ensure the ticket is not guessable. If a prefix is provided, prepend it to the string.
[ "Generate", "a", "sufficiently", "opaque", "ticket", "string", "to", "ensure", "the", "ticket", "is", "not", "guessable", ".", "If", "a", "prefix", "is", "provided", "prepend", "it", "to", "the", "string", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L58-L66
5,180
jbittel/django-mama-cas
mama_cas/models.py
TicketManager.validate_ticket
def validate_ticket(self, ticket, service, renew=False, require_https=False): """ Given a ticket string and service identifier, validate the corresponding ``Ticket``. If validation succeeds, return the ``Ticket``. If validation fails, raise an appropriate error. If ``renew`` is ``True``, ``ServiceTicket`` validation will only succeed if the ticket was issued from the presentation of the user's primary credentials. If ``require_https`` is ``True``, ``ServiceTicket`` validation will only succeed if the service URL scheme is HTTPS. """ if not ticket: raise InvalidRequest("No ticket string provided") if not self.model.TICKET_RE.match(ticket): raise InvalidTicket("Ticket string %s is invalid" % ticket) try: t = self.get(ticket=ticket) except self.model.DoesNotExist: raise InvalidTicket("Ticket %s does not exist" % ticket) if t.is_consumed(): raise InvalidTicket("%s %s has already been used" % (t.name, ticket)) if t.is_expired(): raise InvalidTicket("%s %s has expired" % (t.name, ticket)) if not service: raise InvalidRequest("No service identifier provided") if require_https and not is_scheme_https(service): raise InvalidService("Service %s is not HTTPS" % service) if not service_allowed(service): raise InvalidService("Service %s is not a valid %s URL" % (service, t.name)) try: if not match_service(t.service, service): raise InvalidService("%s %s for service %s is invalid for " "service %s" % (t.name, ticket, t.service, service)) except AttributeError: pass try: if renew and not t.is_primary(): raise InvalidTicket("%s %s was not issued via primary " "credentials" % (t.name, ticket)) except AttributeError: pass logger.debug("Validated %s %s" % (t.name, ticket)) return t
python
def validate_ticket(self, ticket, service, renew=False, require_https=False): """ Given a ticket string and service identifier, validate the corresponding ``Ticket``. If validation succeeds, return the ``Ticket``. If validation fails, raise an appropriate error. If ``renew`` is ``True``, ``ServiceTicket`` validation will only succeed if the ticket was issued from the presentation of the user's primary credentials. If ``require_https`` is ``True``, ``ServiceTicket`` validation will only succeed if the service URL scheme is HTTPS. """ if not ticket: raise InvalidRequest("No ticket string provided") if not self.model.TICKET_RE.match(ticket): raise InvalidTicket("Ticket string %s is invalid" % ticket) try: t = self.get(ticket=ticket) except self.model.DoesNotExist: raise InvalidTicket("Ticket %s does not exist" % ticket) if t.is_consumed(): raise InvalidTicket("%s %s has already been used" % (t.name, ticket)) if t.is_expired(): raise InvalidTicket("%s %s has expired" % (t.name, ticket)) if not service: raise InvalidRequest("No service identifier provided") if require_https and not is_scheme_https(service): raise InvalidService("Service %s is not HTTPS" % service) if not service_allowed(service): raise InvalidService("Service %s is not a valid %s URL" % (service, t.name)) try: if not match_service(t.service, service): raise InvalidService("%s %s for service %s is invalid for " "service %s" % (t.name, ticket, t.service, service)) except AttributeError: pass try: if renew and not t.is_primary(): raise InvalidTicket("%s %s was not issued via primary " "credentials" % (t.name, ticket)) except AttributeError: pass logger.debug("Validated %s %s" % (t.name, ticket)) return t
[ "def", "validate_ticket", "(", "self", ",", "ticket", ",", "service", ",", "renew", "=", "False", ",", "require_https", "=", "False", ")", ":", "if", "not", "ticket", ":", "raise", "InvalidRequest", "(", "\"No ticket string provided\"", ")", "if", "not", "self", ".", "model", ".", "TICKET_RE", ".", "match", "(", "ticket", ")", ":", "raise", "InvalidTicket", "(", "\"Ticket string %s is invalid\"", "%", "ticket", ")", "try", ":", "t", "=", "self", ".", "get", "(", "ticket", "=", "ticket", ")", "except", "self", ".", "model", ".", "DoesNotExist", ":", "raise", "InvalidTicket", "(", "\"Ticket %s does not exist\"", "%", "ticket", ")", "if", "t", ".", "is_consumed", "(", ")", ":", "raise", "InvalidTicket", "(", "\"%s %s has already been used\"", "%", "(", "t", ".", "name", ",", "ticket", ")", ")", "if", "t", ".", "is_expired", "(", ")", ":", "raise", "InvalidTicket", "(", "\"%s %s has expired\"", "%", "(", "t", ".", "name", ",", "ticket", ")", ")", "if", "not", "service", ":", "raise", "InvalidRequest", "(", "\"No service identifier provided\"", ")", "if", "require_https", "and", "not", "is_scheme_https", "(", "service", ")", ":", "raise", "InvalidService", "(", "\"Service %s is not HTTPS\"", "%", "service", ")", "if", "not", "service_allowed", "(", "service", ")", ":", "raise", "InvalidService", "(", "\"Service %s is not a valid %s URL\"", "%", "(", "service", ",", "t", ".", "name", ")", ")", "try", ":", "if", "not", "match_service", "(", "t", ".", "service", ",", "service", ")", ":", "raise", "InvalidService", "(", "\"%s %s for service %s is invalid for \"", "\"service %s\"", "%", "(", "t", ".", "name", ",", "ticket", ",", "t", ".", "service", ",", "service", ")", ")", "except", "AttributeError", ":", "pass", "try", ":", "if", "renew", "and", "not", "t", ".", "is_primary", "(", ")", ":", "raise", "InvalidTicket", "(", "\"%s %s was not issued via primary \"", "\"credentials\"", "%", "(", "t", ".", "name", ",", "ticket", ")", ")", "except", "AttributeError", ":", "pass", "logger", ".", "debug", "(", "\"Validated %s %s\"", "%", "(", "t", ".", "name", ",", "ticket", ")", ")", "return", "t" ]
Given a ticket string and service identifier, validate the corresponding ``Ticket``. If validation succeeds, return the ``Ticket``. If validation fails, raise an appropriate error. If ``renew`` is ``True``, ``ServiceTicket`` validation will only succeed if the ticket was issued from the presentation of the user's primary credentials. If ``require_https`` is ``True``, ``ServiceTicket`` validation will only succeed if the service URL scheme is HTTPS.
[ "Given", "a", "ticket", "string", "and", "service", "identifier", "validate", "the", "corresponding", "Ticket", ".", "If", "validation", "succeeds", "return", "the", "Ticket", ".", "If", "validation", "fails", "raise", "an", "appropriate", "error", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L68-L123
5,181
jbittel/django-mama-cas
mama_cas/models.py
TicketManager.delete_invalid_tickets
def delete_invalid_tickets(self): """ Delete consumed or expired ``Ticket``s that are not referenced by other ``Ticket``s. Invalid tickets are no longer valid for authentication and can be safely deleted. A custom management command is provided that executes this method on all applicable models by running ``manage.py cleanupcas``. """ for ticket in self.filter(Q(consumed__isnull=False) | Q(expires__lte=now())).order_by('-expires'): try: ticket.delete() except models.ProtectedError: pass
python
def delete_invalid_tickets(self): """ Delete consumed or expired ``Ticket``s that are not referenced by other ``Ticket``s. Invalid tickets are no longer valid for authentication and can be safely deleted. A custom management command is provided that executes this method on all applicable models by running ``manage.py cleanupcas``. """ for ticket in self.filter(Q(consumed__isnull=False) | Q(expires__lte=now())).order_by('-expires'): try: ticket.delete() except models.ProtectedError: pass
[ "def", "delete_invalid_tickets", "(", "self", ")", ":", "for", "ticket", "in", "self", ".", "filter", "(", "Q", "(", "consumed__isnull", "=", "False", ")", "|", "Q", "(", "expires__lte", "=", "now", "(", ")", ")", ")", ".", "order_by", "(", "'-expires'", ")", ":", "try", ":", "ticket", ".", "delete", "(", ")", "except", "models", ".", "ProtectedError", ":", "pass" ]
Delete consumed or expired ``Ticket``s that are not referenced by other ``Ticket``s. Invalid tickets are no longer valid for authentication and can be safely deleted. A custom management command is provided that executes this method on all applicable models by running ``manage.py cleanupcas``.
[ "Delete", "consumed", "or", "expired", "Ticket", "s", "that", "are", "not", "referenced", "by", "other", "Ticket", "s", ".", "Invalid", "tickets", "are", "no", "longer", "valid", "for", "authentication", "and", "can", "be", "safely", "deleted", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L125-L139
5,182
jbittel/django-mama-cas
mama_cas/models.py
TicketManager.consume_tickets
def consume_tickets(self, user): """ Consume all valid ``Ticket``s for a specified user. This is run when the user logs out to ensure all issued tickets are no longer valid for future authentication attempts. """ for ticket in self.filter(user=user, consumed__isnull=True, expires__gt=now()): ticket.consume()
python
def consume_tickets(self, user): """ Consume all valid ``Ticket``s for a specified user. This is run when the user logs out to ensure all issued tickets are no longer valid for future authentication attempts. """ for ticket in self.filter(user=user, consumed__isnull=True, expires__gt=now()): ticket.consume()
[ "def", "consume_tickets", "(", "self", ",", "user", ")", ":", "for", "ticket", "in", "self", ".", "filter", "(", "user", "=", "user", ",", "consumed__isnull", "=", "True", ",", "expires__gt", "=", "now", "(", ")", ")", ":", "ticket", ".", "consume", "(", ")" ]
Consume all valid ``Ticket``s for a specified user. This is run when the user logs out to ensure all issued tickets are no longer valid for future authentication attempts.
[ "Consume", "all", "valid", "Ticket", "s", "for", "a", "specified", "user", ".", "This", "is", "run", "when", "the", "user", "logs", "out", "to", "ensure", "all", "issued", "tickets", "are", "no", "longer", "valid", "for", "future", "authentication", "attempts", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L141-L149
5,183
jbittel/django-mama-cas
mama_cas/models.py
ServiceTicketManager.request_sign_out
def request_sign_out(self, user): """ Send a single logout request to each service accessed by a specified user. This is called at logout when single logout is enabled. If requests-futures is installed, asynchronous requests will be sent. Otherwise, synchronous requests will be sent. """ session = Session() for ticket in self.filter(user=user, consumed__gte=user.last_login): ticket.request_sign_out(session=session)
python
def request_sign_out(self, user): """ Send a single logout request to each service accessed by a specified user. This is called at logout when single logout is enabled. If requests-futures is installed, asynchronous requests will be sent. Otherwise, synchronous requests will be sent. """ session = Session() for ticket in self.filter(user=user, consumed__gte=user.last_login): ticket.request_sign_out(session=session)
[ "def", "request_sign_out", "(", "self", ",", "user", ")", ":", "session", "=", "Session", "(", ")", "for", "ticket", "in", "self", ".", "filter", "(", "user", "=", "user", ",", "consumed__gte", "=", "user", ".", "last_login", ")", ":", "ticket", ".", "request_sign_out", "(", "session", "=", "session", ")" ]
Send a single logout request to each service accessed by a specified user. This is called at logout when single logout is enabled. If requests-futures is installed, asynchronous requests will be sent. Otherwise, synchronous requests will be sent.
[ "Send", "a", "single", "logout", "request", "to", "each", "service", "accessed", "by", "a", "specified", "user", ".", "This", "is", "called", "at", "logout", "when", "single", "logout", "is", "enabled", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L207-L218
5,184
jbittel/django-mama-cas
mama_cas/models.py
ServiceTicket.request_sign_out
def request_sign_out(self, session=requests): """ Send a POST request to the ``ServiceTicket``s logout URL to request sign-out. """ if logout_allowed(self.service): request = SingleSignOutRequest(context={'ticket': self}) url = get_logout_url(self.service) or self.service session.post(url, data={'logoutRequest': request.render_content()}) logger.info("Single sign-out request sent to %s" % url)
python
def request_sign_out(self, session=requests): """ Send a POST request to the ``ServiceTicket``s logout URL to request sign-out. """ if logout_allowed(self.service): request = SingleSignOutRequest(context={'ticket': self}) url = get_logout_url(self.service) or self.service session.post(url, data={'logoutRequest': request.render_content()}) logger.info("Single sign-out request sent to %s" % url)
[ "def", "request_sign_out", "(", "self", ",", "session", "=", "requests", ")", ":", "if", "logout_allowed", "(", "self", ".", "service", ")", ":", "request", "=", "SingleSignOutRequest", "(", "context", "=", "{", "'ticket'", ":", "self", "}", ")", "url", "=", "get_logout_url", "(", "self", ".", "service", ")", "or", "self", ".", "service", "session", ".", "post", "(", "url", ",", "data", "=", "{", "'logoutRequest'", ":", "request", ".", "render_content", "(", ")", "}", ")", "logger", ".", "info", "(", "\"Single sign-out request sent to %s\"", "%", "url", ")" ]
Send a POST request to the ``ServiceTicket``s logout URL to request sign-out.
[ "Send", "a", "POST", "request", "to", "the", "ServiceTicket", "s", "logout", "URL", "to", "request", "sign", "-", "out", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L248-L257
5,185
jbittel/django-mama-cas
mama_cas/models.py
ProxyGrantingTicketManager.validate_callback
def validate_callback(self, service, pgturl, pgtid, pgtiou): """Verify the provided proxy callback URL.""" if not proxy_allowed(service): raise UnauthorizedServiceProxy("%s is not authorized to use proxy authentication" % service) if not is_scheme_https(pgturl): raise InvalidProxyCallback("Proxy callback %s is not HTTPS" % pgturl) if not proxy_callback_allowed(service, pgturl): raise InvalidProxyCallback("%s is not an authorized proxy callback URL" % pgturl) # Verify that the SSL certificate is valid verify = os.environ.get('REQUESTS_CA_BUNDLE', True) try: requests.get(pgturl, verify=verify, timeout=5) except requests.exceptions.SSLError: raise InvalidProxyCallback("SSL certificate validation failed for proxy callback %s" % pgturl) except requests.exceptions.RequestException as e: raise InvalidProxyCallback(e) # Callback certificate appears valid, so send the ticket strings pgturl = add_query_params(pgturl, {'pgtId': pgtid, 'pgtIou': pgtiou}) try: response = requests.get(pgturl, verify=verify, timeout=5) except requests.exceptions.RequestException as e: raise InvalidProxyCallback(e) try: response.raise_for_status() except requests.exceptions.HTTPError as e: raise InvalidProxyCallback("Proxy callback %s returned %s" % (pgturl, e))
python
def validate_callback(self, service, pgturl, pgtid, pgtiou): """Verify the provided proxy callback URL.""" if not proxy_allowed(service): raise UnauthorizedServiceProxy("%s is not authorized to use proxy authentication" % service) if not is_scheme_https(pgturl): raise InvalidProxyCallback("Proxy callback %s is not HTTPS" % pgturl) if not proxy_callback_allowed(service, pgturl): raise InvalidProxyCallback("%s is not an authorized proxy callback URL" % pgturl) # Verify that the SSL certificate is valid verify = os.environ.get('REQUESTS_CA_BUNDLE', True) try: requests.get(pgturl, verify=verify, timeout=5) except requests.exceptions.SSLError: raise InvalidProxyCallback("SSL certificate validation failed for proxy callback %s" % pgturl) except requests.exceptions.RequestException as e: raise InvalidProxyCallback(e) # Callback certificate appears valid, so send the ticket strings pgturl = add_query_params(pgturl, {'pgtId': pgtid, 'pgtIou': pgtiou}) try: response = requests.get(pgturl, verify=verify, timeout=5) except requests.exceptions.RequestException as e: raise InvalidProxyCallback(e) try: response.raise_for_status() except requests.exceptions.HTTPError as e: raise InvalidProxyCallback("Proxy callback %s returned %s" % (pgturl, e))
[ "def", "validate_callback", "(", "self", ",", "service", ",", "pgturl", ",", "pgtid", ",", "pgtiou", ")", ":", "if", "not", "proxy_allowed", "(", "service", ")", ":", "raise", "UnauthorizedServiceProxy", "(", "\"%s is not authorized to use proxy authentication\"", "%", "service", ")", "if", "not", "is_scheme_https", "(", "pgturl", ")", ":", "raise", "InvalidProxyCallback", "(", "\"Proxy callback %s is not HTTPS\"", "%", "pgturl", ")", "if", "not", "proxy_callback_allowed", "(", "service", ",", "pgturl", ")", ":", "raise", "InvalidProxyCallback", "(", "\"%s is not an authorized proxy callback URL\"", "%", "pgturl", ")", "# Verify that the SSL certificate is valid", "verify", "=", "os", ".", "environ", ".", "get", "(", "'REQUESTS_CA_BUNDLE'", ",", "True", ")", "try", ":", "requests", ".", "get", "(", "pgturl", ",", "verify", "=", "verify", ",", "timeout", "=", "5", ")", "except", "requests", ".", "exceptions", ".", "SSLError", ":", "raise", "InvalidProxyCallback", "(", "\"SSL certificate validation failed for proxy callback %s\"", "%", "pgturl", ")", "except", "requests", ".", "exceptions", ".", "RequestException", "as", "e", ":", "raise", "InvalidProxyCallback", "(", "e", ")", "# Callback certificate appears valid, so send the ticket strings", "pgturl", "=", "add_query_params", "(", "pgturl", ",", "{", "'pgtId'", ":", "pgtid", ",", "'pgtIou'", ":", "pgtiou", "}", ")", "try", ":", "response", "=", "requests", ".", "get", "(", "pgturl", ",", "verify", "=", "verify", ",", "timeout", "=", "5", ")", "except", "requests", ".", "exceptions", ".", "RequestException", "as", "e", ":", "raise", "InvalidProxyCallback", "(", "e", ")", "try", ":", "response", ".", "raise_for_status", "(", ")", "except", "requests", ".", "exceptions", ".", "HTTPError", "as", "e", ":", "raise", "InvalidProxyCallback", "(", "\"Proxy callback %s returned %s\"", "%", "(", "pgturl", ",", "e", ")", ")" ]
Verify the provided proxy callback URL.
[ "Verify", "the", "provided", "proxy", "callback", "URL", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/models.py#L299-L329
5,186
jbittel/django-mama-cas
mama_cas/services/__init__.py
_get_backends
def _get_backends(): """Retrieve the list of configured service backends.""" backends = [] backend_paths = getattr( settings, 'MAMA_CAS_SERVICE_BACKENDS', ['mama_cas.services.backends.SettingsBackend'] ) for backend_path in backend_paths: backend = import_string(backend_path)() backends.append(backend) return backends
python
def _get_backends(): """Retrieve the list of configured service backends.""" backends = [] backend_paths = getattr( settings, 'MAMA_CAS_SERVICE_BACKENDS', ['mama_cas.services.backends.SettingsBackend'] ) for backend_path in backend_paths: backend = import_string(backend_path)() backends.append(backend) return backends
[ "def", "_get_backends", "(", ")", ":", "backends", "=", "[", "]", "backend_paths", "=", "getattr", "(", "settings", ",", "'MAMA_CAS_SERVICE_BACKENDS'", ",", "[", "'mama_cas.services.backends.SettingsBackend'", "]", ")", "for", "backend_path", "in", "backend_paths", ":", "backend", "=", "import_string", "(", "backend_path", ")", "(", ")", "backends", ".", "append", "(", "backend", ")", "return", "backends" ]
Retrieve the list of configured service backends.
[ "Retrieve", "the", "list", "of", "configured", "service", "backends", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L8-L18
5,187
jbittel/django-mama-cas
mama_cas/services/__init__.py
_is_allowed
def _is_allowed(attr, *args): """ Test if a given attribute is allowed according to the current set of configured service backends. """ for backend in _get_backends(): try: if getattr(backend, attr)(*args): return True except AttributeError: raise NotImplementedError("%s.%s.%s() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__, attr) ) return False
python
def _is_allowed(attr, *args): """ Test if a given attribute is allowed according to the current set of configured service backends. """ for backend in _get_backends(): try: if getattr(backend, attr)(*args): return True except AttributeError: raise NotImplementedError("%s.%s.%s() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__, attr) ) return False
[ "def", "_is_allowed", "(", "attr", ",", "*", "args", ")", ":", "for", "backend", "in", "_get_backends", "(", ")", ":", "try", ":", "if", "getattr", "(", "backend", ",", "attr", ")", "(", "*", "args", ")", ":", "return", "True", "except", "AttributeError", ":", "raise", "NotImplementedError", "(", "\"%s.%s.%s() not implemented\"", "%", "(", "backend", ".", "__class__", ".", "__module__", ",", "backend", ".", "__class__", ".", "__name__", ",", "attr", ")", ")", "return", "False" ]
Test if a given attribute is allowed according to the current set of configured service backends.
[ "Test", "if", "a", "given", "attribute", "is", "allowed", "according", "to", "the", "current", "set", "of", "configured", "service", "backends", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L21-L34
5,188
jbittel/django-mama-cas
mama_cas/services/__init__.py
_is_valid_service_url
def _is_valid_service_url(url): """Access services list from ``MAMA_CAS_VALID_SERVICES``.""" valid_services = getattr(settings, 'MAMA_CAS_VALID_SERVICES', ()) if not valid_services: return True warnings.warn( 'The MAMA_CAS_VALID_SERVICES setting is deprecated. Services ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) for service in [re.compile(s) for s in valid_services]: if service.match(url): return True return False
python
def _is_valid_service_url(url): """Access services list from ``MAMA_CAS_VALID_SERVICES``.""" valid_services = getattr(settings, 'MAMA_CAS_VALID_SERVICES', ()) if not valid_services: return True warnings.warn( 'The MAMA_CAS_VALID_SERVICES setting is deprecated. Services ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) for service in [re.compile(s) for s in valid_services]: if service.match(url): return True return False
[ "def", "_is_valid_service_url", "(", "url", ")", ":", "valid_services", "=", "getattr", "(", "settings", ",", "'MAMA_CAS_VALID_SERVICES'", ",", "(", ")", ")", "if", "not", "valid_services", ":", "return", "True", "warnings", ".", "warn", "(", "'The MAMA_CAS_VALID_SERVICES setting is deprecated. Services '", "'should be configured using MAMA_CAS_SERVICES.'", ",", "DeprecationWarning", ")", "for", "service", "in", "[", "re", ".", "compile", "(", "s", ")", "for", "s", "in", "valid_services", "]", ":", "if", "service", ".", "match", "(", "url", ")", ":", "return", "True", "return", "False" ]
Access services list from ``MAMA_CAS_VALID_SERVICES``.
[ "Access", "services", "list", "from", "MAMA_CAS_VALID_SERVICES", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L37-L48
5,189
jbittel/django-mama-cas
mama_cas/services/__init__.py
get_backend_path
def get_backend_path(service): """Return the dotted path of the matching backend.""" for backend in _get_backends(): try: if backend.service_allowed(service): return "%s.%s" % (backend.__class__.__module__, backend.__class__.__name__) except AttributeError: raise NotImplementedError("%s.%s.service_allowed() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return None
python
def get_backend_path(service): """Return the dotted path of the matching backend.""" for backend in _get_backends(): try: if backend.service_allowed(service): return "%s.%s" % (backend.__class__.__module__, backend.__class__.__name__) except AttributeError: raise NotImplementedError("%s.%s.service_allowed() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return None
[ "def", "get_backend_path", "(", "service", ")", ":", "for", "backend", "in", "_get_backends", "(", ")", ":", "try", ":", "if", "backend", ".", "service_allowed", "(", "service", ")", ":", "return", "\"%s.%s\"", "%", "(", "backend", ".", "__class__", ".", "__module__", ",", "backend", ".", "__class__", ".", "__name__", ")", "except", "AttributeError", ":", "raise", "NotImplementedError", "(", "\"%s.%s.service_allowed() not implemented\"", "%", "(", "backend", ".", "__class__", ".", "__module__", ",", "backend", ".", "__class__", ".", "__name__", ")", ")", "return", "None" ]
Return the dotted path of the matching backend.
[ "Return", "the", "dotted", "path", "of", "the", "matching", "backend", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L51-L61
5,190
jbittel/django-mama-cas
mama_cas/services/__init__.py
get_callbacks
def get_callbacks(service): """Get configured callbacks list for a given service identifier.""" callbacks = list(getattr(settings, 'MAMA_CAS_ATTRIBUTE_CALLBACKS', [])) if callbacks: warnings.warn( 'The MAMA_CAS_ATTRIBUTE_CALLBACKS setting is deprecated. Service callbacks ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) for backend in _get_backends(): try: callbacks.extend(backend.get_callbacks(service)) except AttributeError: raise NotImplementedError("%s.%s.get_callbacks() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return callbacks
python
def get_callbacks(service): """Get configured callbacks list for a given service identifier.""" callbacks = list(getattr(settings, 'MAMA_CAS_ATTRIBUTE_CALLBACKS', [])) if callbacks: warnings.warn( 'The MAMA_CAS_ATTRIBUTE_CALLBACKS setting is deprecated. Service callbacks ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) for backend in _get_backends(): try: callbacks.extend(backend.get_callbacks(service)) except AttributeError: raise NotImplementedError("%s.%s.get_callbacks() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return callbacks
[ "def", "get_callbacks", "(", "service", ")", ":", "callbacks", "=", "list", "(", "getattr", "(", "settings", ",", "'MAMA_CAS_ATTRIBUTE_CALLBACKS'", ",", "[", "]", ")", ")", "if", "callbacks", ":", "warnings", ".", "warn", "(", "'The MAMA_CAS_ATTRIBUTE_CALLBACKS setting is deprecated. Service callbacks '", "'should be configured using MAMA_CAS_SERVICES.'", ",", "DeprecationWarning", ")", "for", "backend", "in", "_get_backends", "(", ")", ":", "try", ":", "callbacks", ".", "extend", "(", "backend", ".", "get_callbacks", "(", "service", ")", ")", "except", "AttributeError", ":", "raise", "NotImplementedError", "(", "\"%s.%s.get_callbacks() not implemented\"", "%", "(", "backend", ".", "__class__", ".", "__module__", ",", "backend", ".", "__class__", ".", "__name__", ")", ")", "return", "callbacks" ]
Get configured callbacks list for a given service identifier.
[ "Get", "configured", "callbacks", "list", "for", "a", "given", "service", "identifier", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L64-L79
5,191
jbittel/django-mama-cas
mama_cas/services/__init__.py
get_logout_url
def get_logout_url(service): """Get the configured logout URL for a given service identifier, if any.""" for backend in _get_backends(): try: return backend.get_logout_url(service) except AttributeError: raise NotImplementedError("%s.%s.get_logout_url() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return None
python
def get_logout_url(service): """Get the configured logout URL for a given service identifier, if any.""" for backend in _get_backends(): try: return backend.get_logout_url(service) except AttributeError: raise NotImplementedError("%s.%s.get_logout_url() not implemented" % ( backend.__class__.__module__, backend.__class__.__name__) ) return None
[ "def", "get_logout_url", "(", "service", ")", ":", "for", "backend", "in", "_get_backends", "(", ")", ":", "try", ":", "return", "backend", ".", "get_logout_url", "(", "service", ")", "except", "AttributeError", ":", "raise", "NotImplementedError", "(", "\"%s.%s.get_logout_url() not implemented\"", "%", "(", "backend", ".", "__class__", ".", "__module__", ",", "backend", ".", "__class__", ".", "__name__", ")", ")", "return", "None" ]
Get the configured logout URL for a given service identifier, if any.
[ "Get", "the", "configured", "logout", "URL", "for", "a", "given", "service", "identifier", "if", "any", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L82-L91
5,192
jbittel/django-mama-cas
mama_cas/services/__init__.py
logout_allowed
def logout_allowed(service): """Check if a given service identifier should be sent a logout request.""" if hasattr(settings, 'MAMA_CAS_SERVICES'): return _is_allowed('logout_allowed', service) if hasattr(settings, 'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT'): warnings.warn( 'The MAMA_CAS_ENABLE_SINGLE_SIGN_OUT setting is deprecated. SLO ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) return getattr(settings, 'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT', False)
python
def logout_allowed(service): """Check if a given service identifier should be sent a logout request.""" if hasattr(settings, 'MAMA_CAS_SERVICES'): return _is_allowed('logout_allowed', service) if hasattr(settings, 'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT'): warnings.warn( 'The MAMA_CAS_ENABLE_SINGLE_SIGN_OUT setting is deprecated. SLO ' 'should be configured using MAMA_CAS_SERVICES.', DeprecationWarning) return getattr(settings, 'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT', False)
[ "def", "logout_allowed", "(", "service", ")", ":", "if", "hasattr", "(", "settings", ",", "'MAMA_CAS_SERVICES'", ")", ":", "return", "_is_allowed", "(", "'logout_allowed'", ",", "service", ")", "if", "hasattr", "(", "settings", ",", "'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT'", ")", ":", "warnings", ".", "warn", "(", "'The MAMA_CAS_ENABLE_SINGLE_SIGN_OUT setting is deprecated. SLO '", "'should be configured using MAMA_CAS_SERVICES.'", ",", "DeprecationWarning", ")", "return", "getattr", "(", "settings", ",", "'MAMA_CAS_ENABLE_SINGLE_SIGN_OUT'", ",", "False", ")" ]
Check if a given service identifier should be sent a logout request.
[ "Check", "if", "a", "given", "service", "identifier", "should", "be", "sent", "a", "logout", "request", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L94-L103
5,193
jbittel/django-mama-cas
mama_cas/services/__init__.py
proxy_callback_allowed
def proxy_callback_allowed(service, pgturl): """Check if a given proxy callback is allowed for the given service identifier.""" if hasattr(settings, 'MAMA_CAS_SERVICES'): return _is_allowed('proxy_callback_allowed', service, pgturl) return _is_valid_service_url(service)
python
def proxy_callback_allowed(service, pgturl): """Check if a given proxy callback is allowed for the given service identifier.""" if hasattr(settings, 'MAMA_CAS_SERVICES'): return _is_allowed('proxy_callback_allowed', service, pgturl) return _is_valid_service_url(service)
[ "def", "proxy_callback_allowed", "(", "service", ",", "pgturl", ")", ":", "if", "hasattr", "(", "settings", ",", "'MAMA_CAS_SERVICES'", ")", ":", "return", "_is_allowed", "(", "'proxy_callback_allowed'", ",", "service", ",", "pgturl", ")", "return", "_is_valid_service_url", "(", "service", ")" ]
Check if a given proxy callback is allowed for the given service identifier.
[ "Check", "if", "a", "given", "proxy", "callback", "is", "allowed", "for", "the", "given", "service", "identifier", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/__init__.py#L111-L115
5,194
jbittel/django-mama-cas
mama_cas/forms.py
LoginForm.clean
def clean(self): """ Pass the provided username and password to the active authentication backends and verify the user account is not disabled. If authentication succeeds, the ``User`` object is assigned to the form so it can be accessed in the view. """ username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') if username and password: try: self.user = authenticate(request=self.request, username=username, password=password) except Exception: logger.exception("Error authenticating %s" % username) error_msg = _('Internal error while authenticating user') raise forms.ValidationError(error_msg) if self.user is None: logger.warning("Failed authentication for %s" % username) error_msg = _('The username or password is not correct') raise forms.ValidationError(error_msg) else: if not self.user.is_active: logger.warning("User account %s is disabled" % username) error_msg = _('This user account is disabled') raise forms.ValidationError(error_msg) return self.cleaned_data
python
def clean(self): """ Pass the provided username and password to the active authentication backends and verify the user account is not disabled. If authentication succeeds, the ``User`` object is assigned to the form so it can be accessed in the view. """ username = self.cleaned_data.get('username') password = self.cleaned_data.get('password') if username and password: try: self.user = authenticate(request=self.request, username=username, password=password) except Exception: logger.exception("Error authenticating %s" % username) error_msg = _('Internal error while authenticating user') raise forms.ValidationError(error_msg) if self.user is None: logger.warning("Failed authentication for %s" % username) error_msg = _('The username or password is not correct') raise forms.ValidationError(error_msg) else: if not self.user.is_active: logger.warning("User account %s is disabled" % username) error_msg = _('This user account is disabled') raise forms.ValidationError(error_msg) return self.cleaned_data
[ "def", "clean", "(", "self", ")", ":", "username", "=", "self", ".", "cleaned_data", ".", "get", "(", "'username'", ")", "password", "=", "self", ".", "cleaned_data", ".", "get", "(", "'password'", ")", "if", "username", "and", "password", ":", "try", ":", "self", ".", "user", "=", "authenticate", "(", "request", "=", "self", ".", "request", ",", "username", "=", "username", ",", "password", "=", "password", ")", "except", "Exception", ":", "logger", ".", "exception", "(", "\"Error authenticating %s\"", "%", "username", ")", "error_msg", "=", "_", "(", "'Internal error while authenticating user'", ")", "raise", "forms", ".", "ValidationError", "(", "error_msg", ")", "if", "self", ".", "user", "is", "None", ":", "logger", ".", "warning", "(", "\"Failed authentication for %s\"", "%", "username", ")", "error_msg", "=", "_", "(", "'The username or password is not correct'", ")", "raise", "forms", ".", "ValidationError", "(", "error_msg", ")", "else", ":", "if", "not", "self", ".", "user", ".", "is_active", ":", "logger", ".", "warning", "(", "\"User account %s is disabled\"", "%", "username", ")", "error_msg", "=", "_", "(", "'This user account is disabled'", ")", "raise", "forms", ".", "ValidationError", "(", "error_msg", ")", "return", "self", ".", "cleaned_data" ]
Pass the provided username and password to the active authentication backends and verify the user account is not disabled. If authentication succeeds, the ``User`` object is assigned to the form so it can be accessed in the view.
[ "Pass", "the", "provided", "username", "and", "password", "to", "the", "active", "authentication", "backends", "and", "verify", "the", "user", "account", "is", "not", "disabled", ".", "If", "authentication", "succeeds", "the", "User", "object", "is", "assigned", "to", "the", "form", "so", "it", "can", "be", "accessed", "in", "the", "view", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/forms.py#L34-L62
5,195
jbittel/django-mama-cas
mama_cas/request.py
CasRequestBase.ns
def ns(self, prefix, tag): """ Given a prefix and an XML tag, output the qualified name for proper namespace handling on output. """ return etree.QName(self.prefixes[prefix], tag)
python
def ns(self, prefix, tag): """ Given a prefix and an XML tag, output the qualified name for proper namespace handling on output. """ return etree.QName(self.prefixes[prefix], tag)
[ "def", "ns", "(", "self", ",", "prefix", ",", "tag", ")", ":", "return", "etree", ".", "QName", "(", "self", ".", "prefixes", "[", "prefix", "]", ",", "tag", ")" ]
Given a prefix and an XML tag, output the qualified name for proper namespace handling on output.
[ "Given", "a", "prefix", "and", "an", "XML", "tag", "output", "the", "qualified", "name", "for", "proper", "namespace", "handling", "on", "output", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/request.py#L19-L24
5,196
jbittel/django-mama-cas
mama_cas/cas.py
validate_service_ticket
def validate_service_ticket(service, ticket, pgturl=None, renew=False, require_https=False): """ Validate a service ticket string. Return a triplet containing a ``ServiceTicket`` and an optional ``ProxyGrantingTicket``, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Service validation request received for %s" % ticket) # Check for proxy tickets passed to /serviceValidate if ticket and ticket.startswith(ProxyTicket.TICKET_PREFIX): raise InvalidTicketSpec('Proxy tickets cannot be validated with /serviceValidate') st = ServiceTicket.objects.validate_ticket(ticket, service, renew=renew, require_https=require_https) attributes = get_attributes(st.user, st.service) if pgturl is not None: logger.debug("Proxy-granting ticket request received for %s" % pgturl) pgt = ProxyGrantingTicket.objects.create_ticket(service, pgturl, user=st.user, granted_by_st=st) else: pgt = None return st, attributes, pgt
python
def validate_service_ticket(service, ticket, pgturl=None, renew=False, require_https=False): """ Validate a service ticket string. Return a triplet containing a ``ServiceTicket`` and an optional ``ProxyGrantingTicket``, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Service validation request received for %s" % ticket) # Check for proxy tickets passed to /serviceValidate if ticket and ticket.startswith(ProxyTicket.TICKET_PREFIX): raise InvalidTicketSpec('Proxy tickets cannot be validated with /serviceValidate') st = ServiceTicket.objects.validate_ticket(ticket, service, renew=renew, require_https=require_https) attributes = get_attributes(st.user, st.service) if pgturl is not None: logger.debug("Proxy-granting ticket request received for %s" % pgturl) pgt = ProxyGrantingTicket.objects.create_ticket(service, pgturl, user=st.user, granted_by_st=st) else: pgt = None return st, attributes, pgt
[ "def", "validate_service_ticket", "(", "service", ",", "ticket", ",", "pgturl", "=", "None", ",", "renew", "=", "False", ",", "require_https", "=", "False", ")", ":", "logger", ".", "debug", "(", "\"Service validation request received for %s\"", "%", "ticket", ")", "# Check for proxy tickets passed to /serviceValidate", "if", "ticket", "and", "ticket", ".", "startswith", "(", "ProxyTicket", ".", "TICKET_PREFIX", ")", ":", "raise", "InvalidTicketSpec", "(", "'Proxy tickets cannot be validated with /serviceValidate'", ")", "st", "=", "ServiceTicket", ".", "objects", ".", "validate_ticket", "(", "ticket", ",", "service", ",", "renew", "=", "renew", ",", "require_https", "=", "require_https", ")", "attributes", "=", "get_attributes", "(", "st", ".", "user", ",", "st", ".", "service", ")", "if", "pgturl", "is", "not", "None", ":", "logger", ".", "debug", "(", "\"Proxy-granting ticket request received for %s\"", "%", "pgturl", ")", "pgt", "=", "ProxyGrantingTicket", ".", "objects", ".", "create_ticket", "(", "service", ",", "pgturl", ",", "user", "=", "st", ".", "user", ",", "granted_by_st", "=", "st", ")", "else", ":", "pgt", "=", "None", "return", "st", ",", "attributes", ",", "pgt" ]
Validate a service ticket string. Return a triplet containing a ``ServiceTicket`` and an optional ``ProxyGrantingTicket``, or a ``ValidationError`` if ticket validation failed.
[ "Validate", "a", "service", "ticket", "string", ".", "Return", "a", "triplet", "containing", "a", "ServiceTicket", "and", "an", "optional", "ProxyGrantingTicket", "or", "a", "ValidationError", "if", "ticket", "validation", "failed", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/cas.py#L18-L38
5,197
jbittel/django-mama-cas
mama_cas/cas.py
validate_proxy_ticket
def validate_proxy_ticket(service, ticket, pgturl=None): """ Validate a proxy ticket string. Return a 4-tuple containing a ``ProxyTicket``, an optional ``ProxyGrantingTicket`` and a list of proxies through which authentication proceeded, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Proxy validation request received for %s" % ticket) pt = ProxyTicket.objects.validate_ticket(ticket, service) attributes = get_attributes(pt.user, pt.service) # Build a list of all services that proxied authentication, # in reverse order of which they were traversed proxies = [pt.service] prior_pt = pt.granted_by_pgt.granted_by_pt while prior_pt: proxies.append(prior_pt.service) prior_pt = prior_pt.granted_by_pgt.granted_by_pt if pgturl is not None: logger.debug("Proxy-granting ticket request received for %s" % pgturl) pgt = ProxyGrantingTicket.objects.create_ticket(service, pgturl, user=pt.user, granted_by_pt=pt) else: pgt = None return pt, attributes, pgt, proxies
python
def validate_proxy_ticket(service, ticket, pgturl=None): """ Validate a proxy ticket string. Return a 4-tuple containing a ``ProxyTicket``, an optional ``ProxyGrantingTicket`` and a list of proxies through which authentication proceeded, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Proxy validation request received for %s" % ticket) pt = ProxyTicket.objects.validate_ticket(ticket, service) attributes = get_attributes(pt.user, pt.service) # Build a list of all services that proxied authentication, # in reverse order of which they were traversed proxies = [pt.service] prior_pt = pt.granted_by_pgt.granted_by_pt while prior_pt: proxies.append(prior_pt.service) prior_pt = prior_pt.granted_by_pgt.granted_by_pt if pgturl is not None: logger.debug("Proxy-granting ticket request received for %s" % pgturl) pgt = ProxyGrantingTicket.objects.create_ticket(service, pgturl, user=pt.user, granted_by_pt=pt) else: pgt = None return pt, attributes, pgt, proxies
[ "def", "validate_proxy_ticket", "(", "service", ",", "ticket", ",", "pgturl", "=", "None", ")", ":", "logger", ".", "debug", "(", "\"Proxy validation request received for %s\"", "%", "ticket", ")", "pt", "=", "ProxyTicket", ".", "objects", ".", "validate_ticket", "(", "ticket", ",", "service", ")", "attributes", "=", "get_attributes", "(", "pt", ".", "user", ",", "pt", ".", "service", ")", "# Build a list of all services that proxied authentication,", "# in reverse order of which they were traversed", "proxies", "=", "[", "pt", ".", "service", "]", "prior_pt", "=", "pt", ".", "granted_by_pgt", ".", "granted_by_pt", "while", "prior_pt", ":", "proxies", ".", "append", "(", "prior_pt", ".", "service", ")", "prior_pt", "=", "prior_pt", ".", "granted_by_pgt", ".", "granted_by_pt", "if", "pgturl", "is", "not", "None", ":", "logger", ".", "debug", "(", "\"Proxy-granting ticket request received for %s\"", "%", "pgturl", ")", "pgt", "=", "ProxyGrantingTicket", ".", "objects", ".", "create_ticket", "(", "service", ",", "pgturl", ",", "user", "=", "pt", ".", "user", ",", "granted_by_pt", "=", "pt", ")", "else", ":", "pgt", "=", "None", "return", "pt", ",", "attributes", ",", "pgt", ",", "proxies" ]
Validate a proxy ticket string. Return a 4-tuple containing a ``ProxyTicket``, an optional ``ProxyGrantingTicket`` and a list of proxies through which authentication proceeded, or a ``ValidationError`` if ticket validation failed.
[ "Validate", "a", "proxy", "ticket", "string", ".", "Return", "a", "4", "-", "tuple", "containing", "a", "ProxyTicket", "an", "optional", "ProxyGrantingTicket", "and", "a", "list", "of", "proxies", "through", "which", "authentication", "proceeded", "or", "a", "ValidationError", "if", "ticket", "validation", "failed", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/cas.py#L41-L66
5,198
jbittel/django-mama-cas
mama_cas/cas.py
validate_proxy_granting_ticket
def validate_proxy_granting_ticket(pgt, target_service): """ Validate a proxy granting ticket string. Return an ordered pair containing a ``ProxyTicket``, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Proxy ticket request received for %s using %s" % (target_service, pgt)) pgt = ProxyGrantingTicket.objects.validate_ticket(pgt, target_service) pt = ProxyTicket.objects.create_ticket(service=target_service, user=pgt.user, granted_by_pgt=pgt) return pt
python
def validate_proxy_granting_ticket(pgt, target_service): """ Validate a proxy granting ticket string. Return an ordered pair containing a ``ProxyTicket``, or a ``ValidationError`` if ticket validation failed. """ logger.debug("Proxy ticket request received for %s using %s" % (target_service, pgt)) pgt = ProxyGrantingTicket.objects.validate_ticket(pgt, target_service) pt = ProxyTicket.objects.create_ticket(service=target_service, user=pgt.user, granted_by_pgt=pgt) return pt
[ "def", "validate_proxy_granting_ticket", "(", "pgt", ",", "target_service", ")", ":", "logger", ".", "debug", "(", "\"Proxy ticket request received for %s using %s\"", "%", "(", "target_service", ",", "pgt", ")", ")", "pgt", "=", "ProxyGrantingTicket", ".", "objects", ".", "validate_ticket", "(", "pgt", ",", "target_service", ")", "pt", "=", "ProxyTicket", ".", "objects", ".", "create_ticket", "(", "service", "=", "target_service", ",", "user", "=", "pgt", ".", "user", ",", "granted_by_pgt", "=", "pgt", ")", "return", "pt" ]
Validate a proxy granting ticket string. Return an ordered pair containing a ``ProxyTicket``, or a ``ValidationError`` if ticket validation failed.
[ "Validate", "a", "proxy", "granting", "ticket", "string", ".", "Return", "an", "ordered", "pair", "containing", "a", "ProxyTicket", "or", "a", "ValidationError", "if", "ticket", "validation", "failed", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/cas.py#L69-L79
5,199
jbittel/django-mama-cas
mama_cas/cas.py
get_attributes
def get_attributes(user, service): """ Return a dictionary of user attributes from the set of configured callback functions. """ attributes = {} for path in get_callbacks(service): callback = import_string(path) attributes.update(callback(user, service)) return attributes
python
def get_attributes(user, service): """ Return a dictionary of user attributes from the set of configured callback functions. """ attributes = {} for path in get_callbacks(service): callback = import_string(path) attributes.update(callback(user, service)) return attributes
[ "def", "get_attributes", "(", "user", ",", "service", ")", ":", "attributes", "=", "{", "}", "for", "path", "in", "get_callbacks", "(", "service", ")", ":", "callback", "=", "import_string", "(", "path", ")", "attributes", ".", "update", "(", "callback", "(", "user", ",", "service", ")", ")", "return", "attributes" ]
Return a dictionary of user attributes from the set of configured callback functions.
[ "Return", "a", "dictionary", "of", "user", "attributes", "from", "the", "set", "of", "configured", "callback", "functions", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/cas.py#L82-L91