id
int32
0
252k
repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
5,200
jbittel/django-mama-cas
mama_cas/cas.py
logout_user
def logout_user(request): """End a single sign-on session for the current user.""" logger.debug("Logout request received for %s" % request.user) if is_authenticated(request.user): ServiceTicket.objects.consume_tickets(request.user) ProxyTicket.objects.consume_tickets(request.user) ProxyGrantingTicket.objects.consume_tickets(request.user) ServiceTicket.objects.request_sign_out(request.user) logger.info("Single sign-on session ended for %s" % request.user) logout(request) messages.success(request, _('You have been successfully logged out'))
python
def logout_user(request): """End a single sign-on session for the current user.""" logger.debug("Logout request received for %s" % request.user) if is_authenticated(request.user): ServiceTicket.objects.consume_tickets(request.user) ProxyTicket.objects.consume_tickets(request.user) ProxyGrantingTicket.objects.consume_tickets(request.user) ServiceTicket.objects.request_sign_out(request.user) logger.info("Single sign-on session ended for %s" % request.user) logout(request) messages.success(request, _('You have been successfully logged out'))
[ "def", "logout_user", "(", "request", ")", ":", "logger", ".", "debug", "(", "\"Logout request received for %s\"", "%", "request", ".", "user", ")", "if", "is_authenticated", "(", "request", ".", "user", ")", ":", "ServiceTicket", ".", "objects", ".", "consume_tickets", "(", "request", ".", "user", ")", "ProxyTicket", ".", "objects", ".", "consume_tickets", "(", "request", ".", "user", ")", "ProxyGrantingTicket", ".", "objects", ".", "consume_tickets", "(", "request", ".", "user", ")", "ServiceTicket", ".", "objects", ".", "request_sign_out", "(", "request", ".", "user", ")", "logger", ".", "info", "(", "\"Single sign-on session ended for %s\"", "%", "request", ".", "user", ")", "logout", "(", "request", ")", "messages", ".", "success", "(", "request", ",", "_", "(", "'You have been successfully logged out'", ")", ")" ]
End a single sign-on session for the current user.
[ "End", "a", "single", "sign", "-", "on", "session", "for", "the", "current", "user", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/cas.py#L94-L106
5,201
jbittel/django-mama-cas
mama_cas/callbacks.py
user_name_attributes
def user_name_attributes(user, service): """Return all available user name related fields and methods.""" attributes = {} attributes['username'] = user.get_username() attributes['full_name'] = user.get_full_name() attributes['short_name'] = user.get_short_name() return attributes
python
def user_name_attributes(user, service): """Return all available user name related fields and methods.""" attributes = {} attributes['username'] = user.get_username() attributes['full_name'] = user.get_full_name() attributes['short_name'] = user.get_short_name() return attributes
[ "def", "user_name_attributes", "(", "user", ",", "service", ")", ":", "attributes", "=", "{", "}", "attributes", "[", "'username'", "]", "=", "user", ".", "get_username", "(", ")", "attributes", "[", "'full_name'", "]", "=", "user", ".", "get_full_name", "(", ")", "attributes", "[", "'short_name'", "]", "=", "user", ".", "get_short_name", "(", ")", "return", "attributes" ]
Return all available user name related fields and methods.
[ "Return", "all", "available", "user", "name", "related", "fields", "and", "methods", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/callbacks.py#L1-L7
5,202
jbittel/django-mama-cas
mama_cas/callbacks.py
user_model_attributes
def user_model_attributes(user, service): """ Return all fields on the user object that are not in the list of fields to ignore. """ ignore_fields = ['id', 'password'] attributes = {} for field in user._meta.fields: if field.name not in ignore_fields: attributes[field.name] = getattr(user, field.name) return attributes
python
def user_model_attributes(user, service): """ Return all fields on the user object that are not in the list of fields to ignore. """ ignore_fields = ['id', 'password'] attributes = {} for field in user._meta.fields: if field.name not in ignore_fields: attributes[field.name] = getattr(user, field.name) return attributes
[ "def", "user_model_attributes", "(", "user", ",", "service", ")", ":", "ignore_fields", "=", "[", "'id'", ",", "'password'", "]", "attributes", "=", "{", "}", "for", "field", "in", "user", ".", "_meta", ".", "fields", ":", "if", "field", ".", "name", "not", "in", "ignore_fields", ":", "attributes", "[", "field", ".", "name", "]", "=", "getattr", "(", "user", ",", "field", ".", "name", ")", "return", "attributes" ]
Return all fields on the user object that are not in the list of fields to ignore.
[ "Return", "all", "fields", "on", "the", "user", "object", "that", "are", "not", "in", "the", "list", "of", "fields", "to", "ignore", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/callbacks.py#L10-L20
5,203
jbittel/django-mama-cas
mama_cas/utils.py
add_query_params
def add_query_params(url, params): """ Inject additional query parameters into an existing URL. If parameters already exist with the same name, they will be overwritten. Parameters with empty values are ignored. Return the modified URL as a string. """ def encode(s): return force_bytes(s, settings.DEFAULT_CHARSET) params = dict([(encode(k), encode(v)) for k, v in params.items() if v]) parts = list(urlparse(url)) query = dict(parse_qsl(parts[4])) query.update(params) parts[4] = urlencode(query) return urlunparse(parts)
python
def add_query_params(url, params): """ Inject additional query parameters into an existing URL. If parameters already exist with the same name, they will be overwritten. Parameters with empty values are ignored. Return the modified URL as a string. """ def encode(s): return force_bytes(s, settings.DEFAULT_CHARSET) params = dict([(encode(k), encode(v)) for k, v in params.items() if v]) parts = list(urlparse(url)) query = dict(parse_qsl(parts[4])) query.update(params) parts[4] = urlencode(query) return urlunparse(parts)
[ "def", "add_query_params", "(", "url", ",", "params", ")", ":", "def", "encode", "(", "s", ")", ":", "return", "force_bytes", "(", "s", ",", "settings", ".", "DEFAULT_CHARSET", ")", "params", "=", "dict", "(", "[", "(", "encode", "(", "k", ")", ",", "encode", "(", "v", ")", ")", "for", "k", ",", "v", "in", "params", ".", "items", "(", ")", "if", "v", "]", ")", "parts", "=", "list", "(", "urlparse", "(", "url", ")", ")", "query", "=", "dict", "(", "parse_qsl", "(", "parts", "[", "4", "]", ")", ")", "query", ".", "update", "(", "params", ")", "parts", "[", "4", "]", "=", "urlencode", "(", "query", ")", "return", "urlunparse", "(", "parts", ")" ]
Inject additional query parameters into an existing URL. If parameters already exist with the same name, they will be overwritten. Parameters with empty values are ignored. Return the modified URL as a string.
[ "Inject", "additional", "query", "parameters", "into", "an", "existing", "URL", ".", "If", "parameters", "already", "exist", "with", "the", "same", "name", "they", "will", "be", "overwritten", ".", "Parameters", "with", "empty", "values", "are", "ignored", ".", "Return", "the", "modified", "URL", "as", "a", "string", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/utils.py#L23-L38
5,204
jbittel/django-mama-cas
mama_cas/utils.py
match_service
def match_service(service1, service2): """ Compare two service URLs. Return ``True`` if the scheme, hostname, optional port and path match. """ s1, s2 = urlparse(service1), urlparse(service2) try: return (s1.scheme, s1.netloc, s1.path) == (s2.scheme, s2.netloc, s2.path) except ValueError: return False
python
def match_service(service1, service2): """ Compare two service URLs. Return ``True`` if the scheme, hostname, optional port and path match. """ s1, s2 = urlparse(service1), urlparse(service2) try: return (s1.scheme, s1.netloc, s1.path) == (s2.scheme, s2.netloc, s2.path) except ValueError: return False
[ "def", "match_service", "(", "service1", ",", "service2", ")", ":", "s1", ",", "s2", "=", "urlparse", "(", "service1", ")", ",", "urlparse", "(", "service2", ")", "try", ":", "return", "(", "s1", ".", "scheme", ",", "s1", ".", "netloc", ",", "s1", ".", "path", ")", "==", "(", "s2", ".", "scheme", ",", "s2", ".", "netloc", ",", "s2", ".", "path", ")", "except", "ValueError", ":", "return", "False" ]
Compare two service URLs. Return ``True`` if the scheme, hostname, optional port and path match.
[ "Compare", "two", "service", "URLs", ".", "Return", "True", "if", "the", "scheme", "hostname", "optional", "port", "and", "path", "match", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/utils.py#L58-L67
5,205
jbittel/django-mama-cas
mama_cas/utils.py
redirect
def redirect(to, *args, **kwargs): """ Similar to the Django ``redirect`` shortcut but with altered functionality. If an optional ``params`` argument is provided, the dictionary items will be injected as query parameters on the redirection URL. """ params = kwargs.pop('params', {}) try: to = reverse(to, args=args, kwargs=kwargs) except NoReverseMatch: if '/' not in to and '.' not in to: to = reverse('cas_login') elif not service_allowed(to): raise PermissionDenied() if params: to = add_query_params(to, params) logger.debug("Redirecting to %s" % to) return HttpResponseRedirect(to)
python
def redirect(to, *args, **kwargs): """ Similar to the Django ``redirect`` shortcut but with altered functionality. If an optional ``params`` argument is provided, the dictionary items will be injected as query parameters on the redirection URL. """ params = kwargs.pop('params', {}) try: to = reverse(to, args=args, kwargs=kwargs) except NoReverseMatch: if '/' not in to and '.' not in to: to = reverse('cas_login') elif not service_allowed(to): raise PermissionDenied() if params: to = add_query_params(to, params) logger.debug("Redirecting to %s" % to) return HttpResponseRedirect(to)
[ "def", "redirect", "(", "to", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "params", "=", "kwargs", ".", "pop", "(", "'params'", ",", "{", "}", ")", "try", ":", "to", "=", "reverse", "(", "to", ",", "args", "=", "args", ",", "kwargs", "=", "kwargs", ")", "except", "NoReverseMatch", ":", "if", "'/'", "not", "in", "to", "and", "'.'", "not", "in", "to", ":", "to", "=", "reverse", "(", "'cas_login'", ")", "elif", "not", "service_allowed", "(", "to", ")", ":", "raise", "PermissionDenied", "(", ")", "if", "params", ":", "to", "=", "add_query_params", "(", "to", ",", "params", ")", "logger", ".", "debug", "(", "\"Redirecting to %s\"", "%", "to", ")", "return", "HttpResponseRedirect", "(", "to", ")" ]
Similar to the Django ``redirect`` shortcut but with altered functionality. If an optional ``params`` argument is provided, the dictionary items will be injected as query parameters on the redirection URL.
[ "Similar", "to", "the", "Django", "redirect", "shortcut", "but", "with", "altered", "functionality", ".", "If", "an", "optional", "params", "argument", "is", "provided", "the", "dictionary", "items", "will", "be", "injected", "as", "query", "parameters", "on", "the", "redirection", "URL", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/utils.py#L70-L91
5,206
jbittel/django-mama-cas
mama_cas/services/backends.py
ServiceConfig.get_config
def get_config(self, service, setting): """ Access the configuration for a given service and setting. If the service is not found, return a default value. """ try: return self.get_service(service)[setting] except KeyError: return getattr(self, setting + '_DEFAULT')
python
def get_config(self, service, setting): """ Access the configuration for a given service and setting. If the service is not found, return a default value. """ try: return self.get_service(service)[setting] except KeyError: return getattr(self, setting + '_DEFAULT')
[ "def", "get_config", "(", "self", ",", "service", ",", "setting", ")", ":", "try", ":", "return", "self", ".", "get_service", "(", "service", ")", "[", "setting", "]", "except", "KeyError", ":", "return", "getattr", "(", "self", ",", "setting", "+", "'_DEFAULT'", ")" ]
Access the configuration for a given service and setting. If the service is not found, return a default value.
[ "Access", "the", "configuration", "for", "a", "given", "service", "and", "setting", ".", "If", "the", "service", "is", "not", "found", "return", "a", "default", "value", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/services/backends.py#L47-L55
5,207
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_status
def get_status(self, status_value, message=None): """ Build a Status XML block for a SAML 1.1 Response. """ status = etree.Element('Status') status_code = etree.SubElement(status, 'StatusCode') status_code.set('Value', 'samlp:' + status_value) if message: status_message = etree.SubElement(status, 'StatusMessage') status_message.text = message return status
python
def get_status(self, status_value, message=None): """ Build a Status XML block for a SAML 1.1 Response. """ status = etree.Element('Status') status_code = etree.SubElement(status, 'StatusCode') status_code.set('Value', 'samlp:' + status_value) if message: status_message = etree.SubElement(status, 'StatusMessage') status_message.text = message return status
[ "def", "get_status", "(", "self", ",", "status_value", ",", "message", "=", "None", ")", ":", "status", "=", "etree", ".", "Element", "(", "'Status'", ")", "status_code", "=", "etree", ".", "SubElement", "(", "status", ",", "'StatusCode'", ")", "status_code", ".", "set", "(", "'Value'", ",", "'samlp:'", "+", "status_value", ")", "if", "message", ":", "status_message", "=", "etree", ".", "SubElement", "(", "status", ",", "'StatusMessage'", ")", "status_message", ".", "text", "=", "message", "return", "status" ]
Build a Status XML block for a SAML 1.1 Response.
[ "Build", "a", "Status", "XML", "block", "for", "a", "SAML", "1", ".", "1", "Response", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L185-L195
5,208
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_assertion
def get_assertion(self, ticket, attributes): """ Build a SAML 1.1 Assertion XML block. """ assertion = etree.Element('Assertion') assertion.set('xmlns', 'urn:oasis:names:tc:SAML:1.0:assertion') assertion.set('AssertionID', self.generate_id()) assertion.set('IssueInstant', self.instant()) assertion.set('Issuer', 'localhost') assertion.set('MajorVersion', '1') assertion.set('MinorVersion', '1') assertion.append(self.get_conditions(ticket.service)) subject = self.get_subject(ticket.user.get_username()) if attributes: assertion.append(self.get_attribute_statement(subject, attributes)) assertion.append(self.get_authentication_statement(subject, ticket)) return assertion
python
def get_assertion(self, ticket, attributes): """ Build a SAML 1.1 Assertion XML block. """ assertion = etree.Element('Assertion') assertion.set('xmlns', 'urn:oasis:names:tc:SAML:1.0:assertion') assertion.set('AssertionID', self.generate_id()) assertion.set('IssueInstant', self.instant()) assertion.set('Issuer', 'localhost') assertion.set('MajorVersion', '1') assertion.set('MinorVersion', '1') assertion.append(self.get_conditions(ticket.service)) subject = self.get_subject(ticket.user.get_username()) if attributes: assertion.append(self.get_attribute_statement(subject, attributes)) assertion.append(self.get_authentication_statement(subject, ticket)) return assertion
[ "def", "get_assertion", "(", "self", ",", "ticket", ",", "attributes", ")", ":", "assertion", "=", "etree", ".", "Element", "(", "'Assertion'", ")", "assertion", ".", "set", "(", "'xmlns'", ",", "'urn:oasis:names:tc:SAML:1.0:assertion'", ")", "assertion", ".", "set", "(", "'AssertionID'", ",", "self", ".", "generate_id", "(", ")", ")", "assertion", ".", "set", "(", "'IssueInstant'", ",", "self", ".", "instant", "(", ")", ")", "assertion", ".", "set", "(", "'Issuer'", ",", "'localhost'", ")", "assertion", ".", "set", "(", "'MajorVersion'", ",", "'1'", ")", "assertion", ".", "set", "(", "'MinorVersion'", ",", "'1'", ")", "assertion", ".", "append", "(", "self", ".", "get_conditions", "(", "ticket", ".", "service", ")", ")", "subject", "=", "self", ".", "get_subject", "(", "ticket", ".", "user", ".", "get_username", "(", ")", ")", "if", "attributes", ":", "assertion", ".", "append", "(", "self", ".", "get_attribute_statement", "(", "subject", ",", "attributes", ")", ")", "assertion", ".", "append", "(", "self", ".", "get_authentication_statement", "(", "subject", ",", "ticket", ")", ")", "return", "assertion" ]
Build a SAML 1.1 Assertion XML block.
[ "Build", "a", "SAML", "1", ".", "1", "Assertion", "XML", "block", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L197-L214
5,209
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_conditions
def get_conditions(self, service_id): """ Build a Conditions XML block for a SAML 1.1 Assertion. """ conditions = etree.Element('Conditions') conditions.set('NotBefore', self.instant()) conditions.set('NotOnOrAfter', self.instant(offset=30)) restriction = etree.SubElement(conditions, 'AudienceRestrictionCondition') audience = etree.SubElement(restriction, 'Audience') audience.text = service_id return conditions
python
def get_conditions(self, service_id): """ Build a Conditions XML block for a SAML 1.1 Assertion. """ conditions = etree.Element('Conditions') conditions.set('NotBefore', self.instant()) conditions.set('NotOnOrAfter', self.instant(offset=30)) restriction = etree.SubElement(conditions, 'AudienceRestrictionCondition') audience = etree.SubElement(restriction, 'Audience') audience.text = service_id return conditions
[ "def", "get_conditions", "(", "self", ",", "service_id", ")", ":", "conditions", "=", "etree", ".", "Element", "(", "'Conditions'", ")", "conditions", ".", "set", "(", "'NotBefore'", ",", "self", ".", "instant", "(", ")", ")", "conditions", ".", "set", "(", "'NotOnOrAfter'", ",", "self", ".", "instant", "(", "offset", "=", "30", ")", ")", "restriction", "=", "etree", ".", "SubElement", "(", "conditions", ",", "'AudienceRestrictionCondition'", ")", "audience", "=", "etree", ".", "SubElement", "(", "restriction", ",", "'Audience'", ")", "audience", ".", "text", "=", "service_id", "return", "conditions" ]
Build a Conditions XML block for a SAML 1.1 Assertion.
[ "Build", "a", "Conditions", "XML", "block", "for", "a", "SAML", "1", ".", "1", "Assertion", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L216-L226
5,210
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_attribute_statement
def get_attribute_statement(self, subject, attributes): """ Build an AttributeStatement XML block for a SAML 1.1 Assertion. """ attribute_statement = etree.Element('AttributeStatement') attribute_statement.append(subject) for name, value in attributes.items(): attribute = etree.SubElement(attribute_statement, 'Attribute') attribute.set('AttributeName', name) attribute.set('AttributeNamespace', self.namespace) if isinstance(value, list): for v in value: attribute_value = etree.SubElement(attribute, 'AttributeValue') attribute_value.text = force_text(v) else: attribute_value = etree.SubElement(attribute, 'AttributeValue') attribute_value.text = force_text(value) return attribute_statement
python
def get_attribute_statement(self, subject, attributes): """ Build an AttributeStatement XML block for a SAML 1.1 Assertion. """ attribute_statement = etree.Element('AttributeStatement') attribute_statement.append(subject) for name, value in attributes.items(): attribute = etree.SubElement(attribute_statement, 'Attribute') attribute.set('AttributeName', name) attribute.set('AttributeNamespace', self.namespace) if isinstance(value, list): for v in value: attribute_value = etree.SubElement(attribute, 'AttributeValue') attribute_value.text = force_text(v) else: attribute_value = etree.SubElement(attribute, 'AttributeValue') attribute_value.text = force_text(value) return attribute_statement
[ "def", "get_attribute_statement", "(", "self", ",", "subject", ",", "attributes", ")", ":", "attribute_statement", "=", "etree", ".", "Element", "(", "'AttributeStatement'", ")", "attribute_statement", ".", "append", "(", "subject", ")", "for", "name", ",", "value", "in", "attributes", ".", "items", "(", ")", ":", "attribute", "=", "etree", ".", "SubElement", "(", "attribute_statement", ",", "'Attribute'", ")", "attribute", ".", "set", "(", "'AttributeName'", ",", "name", ")", "attribute", ".", "set", "(", "'AttributeNamespace'", ",", "self", ".", "namespace", ")", "if", "isinstance", "(", "value", ",", "list", ")", ":", "for", "v", "in", "value", ":", "attribute_value", "=", "etree", ".", "SubElement", "(", "attribute", ",", "'AttributeValue'", ")", "attribute_value", ".", "text", "=", "force_text", "(", "v", ")", "else", ":", "attribute_value", "=", "etree", ".", "SubElement", "(", "attribute", ",", "'AttributeValue'", ")", "attribute_value", ".", "text", "=", "force_text", "(", "value", ")", "return", "attribute_statement" ]
Build an AttributeStatement XML block for a SAML 1.1 Assertion.
[ "Build", "an", "AttributeStatement", "XML", "block", "for", "a", "SAML", "1", ".", "1", "Assertion", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L228-L245
5,211
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_authentication_statement
def get_authentication_statement(self, subject, ticket): """ Build an AuthenticationStatement XML block for a SAML 1.1 Assertion. """ authentication_statement = etree.Element('AuthenticationStatement') authentication_statement.set('AuthenticationInstant', self.instant(instant=ticket.consumed)) authentication_statement.set('AuthenticationMethod', self.authn_method_password) authentication_statement.append(subject) return authentication_statement
python
def get_authentication_statement(self, subject, ticket): """ Build an AuthenticationStatement XML block for a SAML 1.1 Assertion. """ authentication_statement = etree.Element('AuthenticationStatement') authentication_statement.set('AuthenticationInstant', self.instant(instant=ticket.consumed)) authentication_statement.set('AuthenticationMethod', self.authn_method_password) authentication_statement.append(subject) return authentication_statement
[ "def", "get_authentication_statement", "(", "self", ",", "subject", ",", "ticket", ")", ":", "authentication_statement", "=", "etree", ".", "Element", "(", "'AuthenticationStatement'", ")", "authentication_statement", ".", "set", "(", "'AuthenticationInstant'", ",", "self", ".", "instant", "(", "instant", "=", "ticket", ".", "consumed", ")", ")", "authentication_statement", ".", "set", "(", "'AuthenticationMethod'", ",", "self", ".", "authn_method_password", ")", "authentication_statement", ".", "append", "(", "subject", ")", "return", "authentication_statement" ]
Build an AuthenticationStatement XML block for a SAML 1.1 Assertion.
[ "Build", "an", "AuthenticationStatement", "XML", "block", "for", "a", "SAML", "1", ".", "1", "Assertion", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L247-L258
5,212
jbittel/django-mama-cas
mama_cas/response.py
SamlValidationResponse.get_subject
def get_subject(self, identifier): """ Build a Subject XML block for a SAML 1.1 AuthenticationStatement or AttributeStatement. """ subject = etree.Element('Subject') name = etree.SubElement(subject, 'NameIdentifier') name.text = identifier subject_confirmation = etree.SubElement(subject, 'SubjectConfirmation') method = etree.SubElement(subject_confirmation, 'ConfirmationMethod') method.text = self.confirmation_method return subject
python
def get_subject(self, identifier): """ Build a Subject XML block for a SAML 1.1 AuthenticationStatement or AttributeStatement. """ subject = etree.Element('Subject') name = etree.SubElement(subject, 'NameIdentifier') name.text = identifier subject_confirmation = etree.SubElement(subject, 'SubjectConfirmation') method = etree.SubElement(subject_confirmation, 'ConfirmationMethod') method.text = self.confirmation_method return subject
[ "def", "get_subject", "(", "self", ",", "identifier", ")", ":", "subject", "=", "etree", ".", "Element", "(", "'Subject'", ")", "name", "=", "etree", ".", "SubElement", "(", "subject", ",", "'NameIdentifier'", ")", "name", ".", "text", "=", "identifier", "subject_confirmation", "=", "etree", ".", "SubElement", "(", "subject", ",", "'SubjectConfirmation'", ")", "method", "=", "etree", ".", "SubElement", "(", "subject_confirmation", ",", "'ConfirmationMethod'", ")", "method", ".", "text", "=", "self", ".", "confirmation_method", "return", "subject" ]
Build a Subject XML block for a SAML 1.1 AuthenticationStatement or AttributeStatement.
[ "Build", "a", "Subject", "XML", "block", "for", "a", "SAML", "1", ".", "1", "AuthenticationStatement", "or", "AttributeStatement", "." ]
03935d97442b46d8127ab9e1cd8deb96953fe156
https://github.com/jbittel/django-mama-cas/blob/03935d97442b46d8127ab9e1cd8deb96953fe156/mama_cas/response.py#L260-L271
5,213
sarugaku/vistir
src/vistir/compat.py
is_bytes
def is_bytes(string): """Check if a string is a bytes instance :param Union[str, bytes] string: A string that may be string or bytes like :return: Whether the provided string is a bytes type or not :rtype: bool """ if six.PY3 and isinstance(string, (bytes, memoryview, bytearray)): # noqa return True elif six.PY2 and isinstance(string, (buffer, bytearray)): # noqa return True return False
python
def is_bytes(string): """Check if a string is a bytes instance :param Union[str, bytes] string: A string that may be string or bytes like :return: Whether the provided string is a bytes type or not :rtype: bool """ if six.PY3 and isinstance(string, (bytes, memoryview, bytearray)): # noqa return True elif six.PY2 and isinstance(string, (buffer, bytearray)): # noqa return True return False
[ "def", "is_bytes", "(", "string", ")", ":", "if", "six", ".", "PY3", "and", "isinstance", "(", "string", ",", "(", "bytes", ",", "memoryview", ",", "bytearray", ")", ")", ":", "# noqa", "return", "True", "elif", "six", ".", "PY2", "and", "isinstance", "(", "string", ",", "(", "buffer", ",", "bytearray", ")", ")", ":", "# noqa", "return", "True", "return", "False" ]
Check if a string is a bytes instance :param Union[str, bytes] string: A string that may be string or bytes like :return: Whether the provided string is a bytes type or not :rtype: bool
[ "Check", "if", "a", "string", "is", "a", "bytes", "instance" ]
96c008ee62a43608d1e70797f74634cb66a004c1
https://github.com/sarugaku/vistir/blob/96c008ee62a43608d1e70797f74634cb66a004c1/src/vistir/compat.py#L205-L216
5,214
sarugaku/vistir
src/vistir/misc.py
partialclass
def partialclass(cls, *args, **kwargs): """Returns a partially instantiated class :return: A partial class instance :rtype: cls >>> source = partialclass(Source, url="https://pypi.org/simple") >>> source <class '__main__.Source'> >>> source(name="pypi") >>> source.__dict__ mappingproxy({'__module__': '__main__', '__dict__': <attribute '__dict__' of 'Source' objects>, '__weakref__': <attribute '__weakref__' of 'Source' objects>, '__doc__': None, '__init__': functools.partialmethod(<function Source.__init__ at 0x7f23af429bf8>, , url='https://pypi.org/simple')}) >>> new_source = source(name="pypi") >>> new_source <__main__.Source object at 0x7f23af189b38> >>> new_source.__dict__ {'url': 'https://pypi.org/simple', 'verify_ssl': True, 'name': 'pypi'} """ name_attrs = [ n for n in (getattr(cls, name, str(cls)) for name in ("__name__", "__qualname__")) if n is not None ] name_attrs = name_attrs[0] type_ = type( name_attrs, (cls,), {"__init__": partialmethod(cls.__init__, *args, **kwargs)} ) # Swiped from attrs.make_class try: type_.__module__ = sys._getframe(1).f_globals.get("__name__", "__main__") except (AttributeError, ValueError): # pragma: no cover pass # pragma: no cover return type_
python
def partialclass(cls, *args, **kwargs): """Returns a partially instantiated class :return: A partial class instance :rtype: cls >>> source = partialclass(Source, url="https://pypi.org/simple") >>> source <class '__main__.Source'> >>> source(name="pypi") >>> source.__dict__ mappingproxy({'__module__': '__main__', '__dict__': <attribute '__dict__' of 'Source' objects>, '__weakref__': <attribute '__weakref__' of 'Source' objects>, '__doc__': None, '__init__': functools.partialmethod(<function Source.__init__ at 0x7f23af429bf8>, , url='https://pypi.org/simple')}) >>> new_source = source(name="pypi") >>> new_source <__main__.Source object at 0x7f23af189b38> >>> new_source.__dict__ {'url': 'https://pypi.org/simple', 'verify_ssl': True, 'name': 'pypi'} """ name_attrs = [ n for n in (getattr(cls, name, str(cls)) for name in ("__name__", "__qualname__")) if n is not None ] name_attrs = name_attrs[0] type_ = type( name_attrs, (cls,), {"__init__": partialmethod(cls.__init__, *args, **kwargs)} ) # Swiped from attrs.make_class try: type_.__module__ = sys._getframe(1).f_globals.get("__name__", "__main__") except (AttributeError, ValueError): # pragma: no cover pass # pragma: no cover return type_
[ "def", "partialclass", "(", "cls", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "name_attrs", "=", "[", "n", "for", "n", "in", "(", "getattr", "(", "cls", ",", "name", ",", "str", "(", "cls", ")", ")", "for", "name", "in", "(", "\"__name__\"", ",", "\"__qualname__\"", ")", ")", "if", "n", "is", "not", "None", "]", "name_attrs", "=", "name_attrs", "[", "0", "]", "type_", "=", "type", "(", "name_attrs", ",", "(", "cls", ",", ")", ",", "{", "\"__init__\"", ":", "partialmethod", "(", "cls", ".", "__init__", ",", "*", "args", ",", "*", "*", "kwargs", ")", "}", ")", "# Swiped from attrs.make_class", "try", ":", "type_", ".", "__module__", "=", "sys", ".", "_getframe", "(", "1", ")", ".", "f_globals", ".", "get", "(", "\"__name__\"", ",", "\"__main__\"", ")", "except", "(", "AttributeError", ",", "ValueError", ")", ":", "# pragma: no cover", "pass", "# pragma: no cover", "return", "type_" ]
Returns a partially instantiated class :return: A partial class instance :rtype: cls >>> source = partialclass(Source, url="https://pypi.org/simple") >>> source <class '__main__.Source'> >>> source(name="pypi") >>> source.__dict__ mappingproxy({'__module__': '__main__', '__dict__': <attribute '__dict__' of 'Source' objects>, '__weakref__': <attribute '__weakref__' of 'Source' objects>, '__doc__': None, '__init__': functools.partialmethod(<function Source.__init__ at 0x7f23af429bf8>, , url='https://pypi.org/simple')}) >>> new_source = source(name="pypi") >>> new_source <__main__.Source object at 0x7f23af189b38> >>> new_source.__dict__ {'url': 'https://pypi.org/simple', 'verify_ssl': True, 'name': 'pypi'}
[ "Returns", "a", "partially", "instantiated", "class" ]
96c008ee62a43608d1e70797f74634cb66a004c1
https://github.com/sarugaku/vistir/blob/96c008ee62a43608d1e70797f74634cb66a004c1/src/vistir/misc.py#L371-L404
5,215
sarugaku/vistir
src/vistir/misc.py
replace_with_text_stream
def replace_with_text_stream(stream_name): """Given a stream name, replace the target stream with a text-converted equivalent :param str stream_name: The name of a target stream, such as **stdout** or **stderr** :return: None """ new_stream = TEXT_STREAMS.get(stream_name) if new_stream is not None: new_stream = new_stream() setattr(sys, stream_name, new_stream) return None
python
def replace_with_text_stream(stream_name): """Given a stream name, replace the target stream with a text-converted equivalent :param str stream_name: The name of a target stream, such as **stdout** or **stderr** :return: None """ new_stream = TEXT_STREAMS.get(stream_name) if new_stream is not None: new_stream = new_stream() setattr(sys, stream_name, new_stream) return None
[ "def", "replace_with_text_stream", "(", "stream_name", ")", ":", "new_stream", "=", "TEXT_STREAMS", ".", "get", "(", "stream_name", ")", "if", "new_stream", "is", "not", "None", ":", "new_stream", "=", "new_stream", "(", ")", "setattr", "(", "sys", ",", "stream_name", ",", "new_stream", ")", "return", "None" ]
Given a stream name, replace the target stream with a text-converted equivalent :param str stream_name: The name of a target stream, such as **stdout** or **stderr** :return: None
[ "Given", "a", "stream", "name", "replace", "the", "target", "stream", "with", "a", "text", "-", "converted", "equivalent" ]
96c008ee62a43608d1e70797f74634cb66a004c1
https://github.com/sarugaku/vistir/blob/96c008ee62a43608d1e70797f74634cb66a004c1/src/vistir/misc.py#L913-L923
5,216
sarugaku/vistir
src/vistir/backports/tempfile.py
_sanitize_params
def _sanitize_params(prefix, suffix, dir): """Common parameter processing for most APIs in this module.""" output_type = _infer_return_type(prefix, suffix, dir) if suffix is None: suffix = output_type() if prefix is None: if output_type is str: prefix = "tmp" else: prefix = os.fsencode("tmp") if dir is None: if output_type is str: dir = gettempdir() else: dir = fs_encode(gettempdir()) return prefix, suffix, dir, output_type
python
def _sanitize_params(prefix, suffix, dir): """Common parameter processing for most APIs in this module.""" output_type = _infer_return_type(prefix, suffix, dir) if suffix is None: suffix = output_type() if prefix is None: if output_type is str: prefix = "tmp" else: prefix = os.fsencode("tmp") if dir is None: if output_type is str: dir = gettempdir() else: dir = fs_encode(gettempdir()) return prefix, suffix, dir, output_type
[ "def", "_sanitize_params", "(", "prefix", ",", "suffix", ",", "dir", ")", ":", "output_type", "=", "_infer_return_type", "(", "prefix", ",", "suffix", ",", "dir", ")", "if", "suffix", "is", "None", ":", "suffix", "=", "output_type", "(", ")", "if", "prefix", "is", "None", ":", "if", "output_type", "is", "str", ":", "prefix", "=", "\"tmp\"", "else", ":", "prefix", "=", "os", ".", "fsencode", "(", "\"tmp\"", ")", "if", "dir", "is", "None", ":", "if", "output_type", "is", "str", ":", "dir", "=", "gettempdir", "(", ")", "else", ":", "dir", "=", "fs_encode", "(", "gettempdir", "(", ")", ")", "return", "prefix", ",", "suffix", ",", "dir", ",", "output_type" ]
Common parameter processing for most APIs in this module.
[ "Common", "parameter", "processing", "for", "most", "APIs", "in", "this", "module", "." ]
96c008ee62a43608d1e70797f74634cb66a004c1
https://github.com/sarugaku/vistir/blob/96c008ee62a43608d1e70797f74634cb66a004c1/src/vistir/backports/tempfile.py#L55-L70
5,217
danielholmstrom/dictalchemy
dictalchemy/utils.py
fromdict
def fromdict(model, data, exclude=None, exclude_underscore=None, allow_pk=None, follow=None, include=None, only=None): """Update a model from a dict Works almost identically as :meth:`dictalchemy.utils.asdict`. However, it will not create missing instances or update collections. This method updates the following properties on a model: * Simple columns * Synonyms * Simple 1-m relationships :param data: dict of data :param exclude: list of properties that should be excluded :param exclude_underscore: If True underscore properties will be excluded,\ if set to None model.dictalchemy_exclude_underscore will be used. :param allow_pk: If True any column that refers to the primary key will \ be excluded. Defaults model.dictalchemy_fromdict_allow_pk or \ dictable.constants.fromdict_allow_pk. If set to True a primary \ key can still be excluded with the `exclude` parameter. :param follow: Dict of relations that should be followed, the key is the \ arguments passed to the relation. Relations only works on simple \ relations, not on lists. :param include: List of properties that should be included. This list \ will override anything in the exclude list. It will not override \ allow_pk. :param only: List of the only properties that should be set. This \ will not override `allow_pk` or `follow`. :raises: :class:`dictalchemy.errors.DictalchemyError` If a primary key is \ in data and allow_pk is False :returns: The model """ follow = arg_to_dict(follow) info = inspect(model) columns = [c.key for c in info.mapper.column_attrs] synonyms = [c.key for c in info.mapper.synonyms] relations = [c.key for c in info.mapper.relationships] primary_keys = [c.key for c in info.mapper.primary_key] if allow_pk is None: allow_pk = getattr(model, 'dictalchemy_fromdict_allow_pk', constants.default_fromdict_allow_pk) if only: valid_keys = only else: exclude = exclude or [] exclude += getattr(model, 'dictalchemy_exclude', constants.default_exclude) or [] if exclude_underscore is None: exclude_underscore = getattr(model, 'dictalchemy_exclude_underscore', constants.default_exclude_underscore) if exclude_underscore: # Exclude all properties starting with underscore exclude += [k.key for k in info.mapper.attrs if k.key[0] == '_'] include = (include or []) + (getattr(model, 'dictalchemy_fromdict_include', getattr(model, 'dictalchemy_include', None)) or []) valid_keys = [k for k in columns + synonyms if k not in exclude] + include # Keys that will be updated update_keys = set(valid_keys) & set(data.keys()) # Check for primary keys data_primary_key= update_keys & set(primary_keys) if len(data_primary_key) and not allow_pk: msg = ("Primary keys({0}) cannot be updated by fromdict." "Set 'dictalchemy_fromdict_allow_pk' to True in your Model" " or pass 'allow_pk=True'.").format(','.join(data_primary_key)) raise errors.DictalchemyError(msg) # Update columns and synonyms for k in update_keys: setattr(model, k, data[k]) # Update simple relations for (k, args) in follow.iteritems(): if k not in data: continue if k not in relations: raise errors.MissingRelationError(k) rel = getattr(model, k) if hasattr(rel, 'fromdict'): rel.fromdict(data[k], **args) return model
python
def fromdict(model, data, exclude=None, exclude_underscore=None, allow_pk=None, follow=None, include=None, only=None): """Update a model from a dict Works almost identically as :meth:`dictalchemy.utils.asdict`. However, it will not create missing instances or update collections. This method updates the following properties on a model: * Simple columns * Synonyms * Simple 1-m relationships :param data: dict of data :param exclude: list of properties that should be excluded :param exclude_underscore: If True underscore properties will be excluded,\ if set to None model.dictalchemy_exclude_underscore will be used. :param allow_pk: If True any column that refers to the primary key will \ be excluded. Defaults model.dictalchemy_fromdict_allow_pk or \ dictable.constants.fromdict_allow_pk. If set to True a primary \ key can still be excluded with the `exclude` parameter. :param follow: Dict of relations that should be followed, the key is the \ arguments passed to the relation. Relations only works on simple \ relations, not on lists. :param include: List of properties that should be included. This list \ will override anything in the exclude list. It will not override \ allow_pk. :param only: List of the only properties that should be set. This \ will not override `allow_pk` or `follow`. :raises: :class:`dictalchemy.errors.DictalchemyError` If a primary key is \ in data and allow_pk is False :returns: The model """ follow = arg_to_dict(follow) info = inspect(model) columns = [c.key for c in info.mapper.column_attrs] synonyms = [c.key for c in info.mapper.synonyms] relations = [c.key for c in info.mapper.relationships] primary_keys = [c.key for c in info.mapper.primary_key] if allow_pk is None: allow_pk = getattr(model, 'dictalchemy_fromdict_allow_pk', constants.default_fromdict_allow_pk) if only: valid_keys = only else: exclude = exclude or [] exclude += getattr(model, 'dictalchemy_exclude', constants.default_exclude) or [] if exclude_underscore is None: exclude_underscore = getattr(model, 'dictalchemy_exclude_underscore', constants.default_exclude_underscore) if exclude_underscore: # Exclude all properties starting with underscore exclude += [k.key for k in info.mapper.attrs if k.key[0] == '_'] include = (include or []) + (getattr(model, 'dictalchemy_fromdict_include', getattr(model, 'dictalchemy_include', None)) or []) valid_keys = [k for k in columns + synonyms if k not in exclude] + include # Keys that will be updated update_keys = set(valid_keys) & set(data.keys()) # Check for primary keys data_primary_key= update_keys & set(primary_keys) if len(data_primary_key) and not allow_pk: msg = ("Primary keys({0}) cannot be updated by fromdict." "Set 'dictalchemy_fromdict_allow_pk' to True in your Model" " or pass 'allow_pk=True'.").format(','.join(data_primary_key)) raise errors.DictalchemyError(msg) # Update columns and synonyms for k in update_keys: setattr(model, k, data[k]) # Update simple relations for (k, args) in follow.iteritems(): if k not in data: continue if k not in relations: raise errors.MissingRelationError(k) rel = getattr(model, k) if hasattr(rel, 'fromdict'): rel.fromdict(data[k], **args) return model
[ "def", "fromdict", "(", "model", ",", "data", ",", "exclude", "=", "None", ",", "exclude_underscore", "=", "None", ",", "allow_pk", "=", "None", ",", "follow", "=", "None", ",", "include", "=", "None", ",", "only", "=", "None", ")", ":", "follow", "=", "arg_to_dict", "(", "follow", ")", "info", "=", "inspect", "(", "model", ")", "columns", "=", "[", "c", ".", "key", "for", "c", "in", "info", ".", "mapper", ".", "column_attrs", "]", "synonyms", "=", "[", "c", ".", "key", "for", "c", "in", "info", ".", "mapper", ".", "synonyms", "]", "relations", "=", "[", "c", ".", "key", "for", "c", "in", "info", ".", "mapper", ".", "relationships", "]", "primary_keys", "=", "[", "c", ".", "key", "for", "c", "in", "info", ".", "mapper", ".", "primary_key", "]", "if", "allow_pk", "is", "None", ":", "allow_pk", "=", "getattr", "(", "model", ",", "'dictalchemy_fromdict_allow_pk'", ",", "constants", ".", "default_fromdict_allow_pk", ")", "if", "only", ":", "valid_keys", "=", "only", "else", ":", "exclude", "=", "exclude", "or", "[", "]", "exclude", "+=", "getattr", "(", "model", ",", "'dictalchemy_exclude'", ",", "constants", ".", "default_exclude", ")", "or", "[", "]", "if", "exclude_underscore", "is", "None", ":", "exclude_underscore", "=", "getattr", "(", "model", ",", "'dictalchemy_exclude_underscore'", ",", "constants", ".", "default_exclude_underscore", ")", "if", "exclude_underscore", ":", "# Exclude all properties starting with underscore", "exclude", "+=", "[", "k", ".", "key", "for", "k", "in", "info", ".", "mapper", ".", "attrs", "if", "k", ".", "key", "[", "0", "]", "==", "'_'", "]", "include", "=", "(", "include", "or", "[", "]", ")", "+", "(", "getattr", "(", "model", ",", "'dictalchemy_fromdict_include'", ",", "getattr", "(", "model", ",", "'dictalchemy_include'", ",", "None", ")", ")", "or", "[", "]", ")", "valid_keys", "=", "[", "k", "for", "k", "in", "columns", "+", "synonyms", "if", "k", "not", "in", "exclude", "]", "+", "include", "# Keys that will be updated", "update_keys", "=", "set", "(", "valid_keys", ")", "&", "set", "(", "data", ".", "keys", "(", ")", ")", "# Check for primary keys", "data_primary_key", "=", "update_keys", "&", "set", "(", "primary_keys", ")", "if", "len", "(", "data_primary_key", ")", "and", "not", "allow_pk", ":", "msg", "=", "(", "\"Primary keys({0}) cannot be updated by fromdict.\"", "\"Set 'dictalchemy_fromdict_allow_pk' to True in your Model\"", "\" or pass 'allow_pk=True'.\"", ")", ".", "format", "(", "','", ".", "join", "(", "data_primary_key", ")", ")", "raise", "errors", ".", "DictalchemyError", "(", "msg", ")", "# Update columns and synonyms", "for", "k", "in", "update_keys", ":", "setattr", "(", "model", ",", "k", ",", "data", "[", "k", "]", ")", "# Update simple relations", "for", "(", "k", ",", "args", ")", "in", "follow", ".", "iteritems", "(", ")", ":", "if", "k", "not", "in", "data", ":", "continue", "if", "k", "not", "in", "relations", ":", "raise", "errors", ".", "MissingRelationError", "(", "k", ")", "rel", "=", "getattr", "(", "model", ",", "k", ")", "if", "hasattr", "(", "rel", ",", "'fromdict'", ")", ":", "rel", ".", "fromdict", "(", "data", "[", "k", "]", ",", "*", "*", "args", ")", "return", "model" ]
Update a model from a dict Works almost identically as :meth:`dictalchemy.utils.asdict`. However, it will not create missing instances or update collections. This method updates the following properties on a model: * Simple columns * Synonyms * Simple 1-m relationships :param data: dict of data :param exclude: list of properties that should be excluded :param exclude_underscore: If True underscore properties will be excluded,\ if set to None model.dictalchemy_exclude_underscore will be used. :param allow_pk: If True any column that refers to the primary key will \ be excluded. Defaults model.dictalchemy_fromdict_allow_pk or \ dictable.constants.fromdict_allow_pk. If set to True a primary \ key can still be excluded with the `exclude` parameter. :param follow: Dict of relations that should be followed, the key is the \ arguments passed to the relation. Relations only works on simple \ relations, not on lists. :param include: List of properties that should be included. This list \ will override anything in the exclude list. It will not override \ allow_pk. :param only: List of the only properties that should be set. This \ will not override `allow_pk` or `follow`. :raises: :class:`dictalchemy.errors.DictalchemyError` If a primary key is \ in data and allow_pk is False :returns: The model
[ "Update", "a", "model", "from", "a", "dict" ]
038b8822b0ed66feef78a80b3af8f3a09f795b5a
https://github.com/danielholmstrom/dictalchemy/blob/038b8822b0ed66feef78a80b3af8f3a09f795b5a/dictalchemy/utils.py#L186-L283
5,218
danielholmstrom/dictalchemy
dictalchemy/utils.py
make_class_dictable
def make_class_dictable( cls, exclude=constants.default_exclude, exclude_underscore=constants.default_exclude_underscore, fromdict_allow_pk=constants.default_fromdict_allow_pk, include=None, asdict_include=None, fromdict_include=None): """Make a class dictable Useful for when the Base class is already defined, for example when using Flask-SQLAlchemy. Warning: This method will overwrite existing attributes if they exists. :param exclude: Will be set as dictalchemy_exclude on the class :param exclude_underscore: Will be set as dictalchemy_exclude_underscore \ on the class :param fromdict_allow_pk: Will be set as dictalchemy_fromdict_allow_pk\ on the class :param include: Will be set as dictalchemy_include on the class. :param asdict_include: Will be set as `dictalchemy_asdict_include` on the \ class. If not None it will override `dictalchemy_include`. :param fromdict_include: Will be set as `dictalchemy_fromdict_include` on \ the class. If not None it will override `dictalchemy_include`. :returns: The class """ setattr(cls, 'dictalchemy_exclude', exclude) setattr(cls, 'dictalchemy_exclude_underscore', exclude_underscore) setattr(cls, 'dictalchemy_fromdict_allow_pk', fromdict_allow_pk) setattr(cls, 'asdict', asdict) setattr(cls, 'fromdict', fromdict) setattr(cls, '__iter__', iter) setattr(cls, 'dictalchemy_include', include) setattr(cls, 'dictalchemy_asdict_include', asdict_include) setattr(cls, 'dictalchemy_fromdict_include', fromdict_include) return cls
python
def make_class_dictable( cls, exclude=constants.default_exclude, exclude_underscore=constants.default_exclude_underscore, fromdict_allow_pk=constants.default_fromdict_allow_pk, include=None, asdict_include=None, fromdict_include=None): """Make a class dictable Useful for when the Base class is already defined, for example when using Flask-SQLAlchemy. Warning: This method will overwrite existing attributes if they exists. :param exclude: Will be set as dictalchemy_exclude on the class :param exclude_underscore: Will be set as dictalchemy_exclude_underscore \ on the class :param fromdict_allow_pk: Will be set as dictalchemy_fromdict_allow_pk\ on the class :param include: Will be set as dictalchemy_include on the class. :param asdict_include: Will be set as `dictalchemy_asdict_include` on the \ class. If not None it will override `dictalchemy_include`. :param fromdict_include: Will be set as `dictalchemy_fromdict_include` on \ the class. If not None it will override `dictalchemy_include`. :returns: The class """ setattr(cls, 'dictalchemy_exclude', exclude) setattr(cls, 'dictalchemy_exclude_underscore', exclude_underscore) setattr(cls, 'dictalchemy_fromdict_allow_pk', fromdict_allow_pk) setattr(cls, 'asdict', asdict) setattr(cls, 'fromdict', fromdict) setattr(cls, '__iter__', iter) setattr(cls, 'dictalchemy_include', include) setattr(cls, 'dictalchemy_asdict_include', asdict_include) setattr(cls, 'dictalchemy_fromdict_include', fromdict_include) return cls
[ "def", "make_class_dictable", "(", "cls", ",", "exclude", "=", "constants", ".", "default_exclude", ",", "exclude_underscore", "=", "constants", ".", "default_exclude_underscore", ",", "fromdict_allow_pk", "=", "constants", ".", "default_fromdict_allow_pk", ",", "include", "=", "None", ",", "asdict_include", "=", "None", ",", "fromdict_include", "=", "None", ")", ":", "setattr", "(", "cls", ",", "'dictalchemy_exclude'", ",", "exclude", ")", "setattr", "(", "cls", ",", "'dictalchemy_exclude_underscore'", ",", "exclude_underscore", ")", "setattr", "(", "cls", ",", "'dictalchemy_fromdict_allow_pk'", ",", "fromdict_allow_pk", ")", "setattr", "(", "cls", ",", "'asdict'", ",", "asdict", ")", "setattr", "(", "cls", ",", "'fromdict'", ",", "fromdict", ")", "setattr", "(", "cls", ",", "'__iter__'", ",", "iter", ")", "setattr", "(", "cls", ",", "'dictalchemy_include'", ",", "include", ")", "setattr", "(", "cls", ",", "'dictalchemy_asdict_include'", ",", "asdict_include", ")", "setattr", "(", "cls", ",", "'dictalchemy_fromdict_include'", ",", "fromdict_include", ")", "return", "cls" ]
Make a class dictable Useful for when the Base class is already defined, for example when using Flask-SQLAlchemy. Warning: This method will overwrite existing attributes if they exists. :param exclude: Will be set as dictalchemy_exclude on the class :param exclude_underscore: Will be set as dictalchemy_exclude_underscore \ on the class :param fromdict_allow_pk: Will be set as dictalchemy_fromdict_allow_pk\ on the class :param include: Will be set as dictalchemy_include on the class. :param asdict_include: Will be set as `dictalchemy_asdict_include` on the \ class. If not None it will override `dictalchemy_include`. :param fromdict_include: Will be set as `dictalchemy_fromdict_include` on \ the class. If not None it will override `dictalchemy_include`. :returns: The class
[ "Make", "a", "class", "dictable" ]
038b8822b0ed66feef78a80b3af8f3a09f795b5a
https://github.com/danielholmstrom/dictalchemy/blob/038b8822b0ed66feef78a80b3af8f3a09f795b5a/dictalchemy/utils.py#L295-L333
5,219
simon-anders/htseq
python2/HTSeq/__init__.py
parse_GFF_attribute_string
def parse_GFF_attribute_string(attrStr, extra_return_first_value=False): """Parses a GFF attribute string and returns it as a dictionary. If 'extra_return_first_value' is set, a pair is returned: the dictionary and the value of the first attribute. This might be useful if this is the ID. """ if attrStr.endswith("\n"): attrStr = attrStr[:-1] d = {} first_val = "_unnamed_" for (i, attr) in itertools.izip( itertools.count(), _HTSeq.quotesafe_split(attrStr)): if _re_attr_empty.match(attr): continue if attr.count('"') not in (0, 2): raise ValueError( "The attribute string seems to contain mismatched quotes.") mo = _re_attr_main.match(attr) if not mo: raise ValueError("Failure parsing GFF attribute line") val = mo.group(2) if val.startswith('"') and val.endswith('"'): val = val[1:-1] d[intern(mo.group(1))] = intern(val) if extra_return_first_value and i == 0: first_val = val if extra_return_first_value: return (d, first_val) else: return d
python
def parse_GFF_attribute_string(attrStr, extra_return_first_value=False): """Parses a GFF attribute string and returns it as a dictionary. If 'extra_return_first_value' is set, a pair is returned: the dictionary and the value of the first attribute. This might be useful if this is the ID. """ if attrStr.endswith("\n"): attrStr = attrStr[:-1] d = {} first_val = "_unnamed_" for (i, attr) in itertools.izip( itertools.count(), _HTSeq.quotesafe_split(attrStr)): if _re_attr_empty.match(attr): continue if attr.count('"') not in (0, 2): raise ValueError( "The attribute string seems to contain mismatched quotes.") mo = _re_attr_main.match(attr) if not mo: raise ValueError("Failure parsing GFF attribute line") val = mo.group(2) if val.startswith('"') and val.endswith('"'): val = val[1:-1] d[intern(mo.group(1))] = intern(val) if extra_return_first_value and i == 0: first_val = val if extra_return_first_value: return (d, first_val) else: return d
[ "def", "parse_GFF_attribute_string", "(", "attrStr", ",", "extra_return_first_value", "=", "False", ")", ":", "if", "attrStr", ".", "endswith", "(", "\"\\n\"", ")", ":", "attrStr", "=", "attrStr", "[", ":", "-", "1", "]", "d", "=", "{", "}", "first_val", "=", "\"_unnamed_\"", "for", "(", "i", ",", "attr", ")", "in", "itertools", ".", "izip", "(", "itertools", ".", "count", "(", ")", ",", "_HTSeq", ".", "quotesafe_split", "(", "attrStr", ")", ")", ":", "if", "_re_attr_empty", ".", "match", "(", "attr", ")", ":", "continue", "if", "attr", ".", "count", "(", "'\"'", ")", "not", "in", "(", "0", ",", "2", ")", ":", "raise", "ValueError", "(", "\"The attribute string seems to contain mismatched quotes.\"", ")", "mo", "=", "_re_attr_main", ".", "match", "(", "attr", ")", "if", "not", "mo", ":", "raise", "ValueError", "(", "\"Failure parsing GFF attribute line\"", ")", "val", "=", "mo", ".", "group", "(", "2", ")", "if", "val", ".", "startswith", "(", "'\"'", ")", "and", "val", ".", "endswith", "(", "'\"'", ")", ":", "val", "=", "val", "[", "1", ":", "-", "1", "]", "d", "[", "intern", "(", "mo", ".", "group", "(", "1", ")", ")", "]", "=", "intern", "(", "val", ")", "if", "extra_return_first_value", "and", "i", "==", "0", ":", "first_val", "=", "val", "if", "extra_return_first_value", ":", "return", "(", "d", ",", "first_val", ")", "else", ":", "return", "d" ]
Parses a GFF attribute string and returns it as a dictionary. If 'extra_return_first_value' is set, a pair is returned: the dictionary and the value of the first attribute. This might be useful if this is the ID.
[ "Parses", "a", "GFF", "attribute", "string", "and", "returns", "it", "as", "a", "dictionary", "." ]
6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0
https://github.com/simon-anders/htseq/blob/6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0/python2/HTSeq/__init__.py#L144-L175
5,220
simon-anders/htseq
python2/HTSeq/__init__.py
pair_SAM_alignments
def pair_SAM_alignments( alignments, bundle=False, primary_only=False): '''Iterate over SAM aligments, name-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap bundle (bool): if True, bundle all alignments from one read pair into a single yield. If False (default), each pair of alignments is yielded separately. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments or, if bundle==True, each bundled list of alignments. ''' mate_missing_count = [0] def process_list(almnt_list): '''Transform a list of alignment with the same read name into pairs Args: almnt_list (list): alignments to process Yields: each pair of alignments. This function is needed because each line of a BAM file is not a read but an alignment. For uniquely mapped and unmapped reads, those two are the same. For multimapped reads, however, there can be more than one alignment for each read. Also, it is normal for a mapper to uniquely map one read and multimap its mate. This function goes down the list of alignments for a given read name and tries to find the first mate. So if read 1 is uniquely mapped but read 2 is mapped 4 times, only (read 1, read 2 - first occurrence) will yield; the other 3 alignments of read 2 are ignored. ''' while len(almnt_list) > 0: a1 = almnt_list.pop(0) # Find its mate for a2 in almnt_list: if a1.pe_which == a2.pe_which: continue if a1.aligned != a2.mate_aligned or a1.mate_aligned != a2.aligned: continue if not (a1.aligned and a2.aligned): break if a1.iv.chrom == a2.mate_start.chrom and a1.iv.start == a2.mate_start.pos and \ a2.iv.chrom == a1.mate_start.chrom and a2.iv.start == a1.mate_start.pos: break else: if a1.mate_aligned: mate_missing_count[0] += 1 if mate_missing_count[0] == 1: warnings.warn( "Read " + a1.read.name + " claims to have an aligned mate " + "which could not be found in an adjacent line.") a2 = None if a2 is not None: almnt_list.remove(a2) if a1.pe_which == "first": yield (a1, a2) else: assert a1.pe_which == "second" yield (a2, a1) almnt_list = [] current_name = None for almnt in alignments: if not almnt.paired_end: raise ValueError( "'pair_alignments' needs a sequence of paired-end alignments") if almnt.pe_which == "unknown": raise ValueError( "Paired-end read found with 'unknown' 'pe_which' status.") # FIXME: almnt.not_primary_alignment currently means secondary if primary_only and (almnt.not_primary_alignment or almnt.supplementary): continue if almnt.read.name == current_name: almnt_list.append(almnt) else: if bundle: yield list(process_list(almnt_list)) else: for p in process_list(almnt_list): yield p current_name = almnt.read.name almnt_list = [almnt] if bundle: yield list(process_list(almnt_list)) else: for p in process_list(almnt_list): yield p if mate_missing_count[0] > 1: warnings.warn("%d reads with missing mate encountered." % mate_missing_count[0])
python
def pair_SAM_alignments( alignments, bundle=False, primary_only=False): '''Iterate over SAM aligments, name-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap bundle (bool): if True, bundle all alignments from one read pair into a single yield. If False (default), each pair of alignments is yielded separately. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments or, if bundle==True, each bundled list of alignments. ''' mate_missing_count = [0] def process_list(almnt_list): '''Transform a list of alignment with the same read name into pairs Args: almnt_list (list): alignments to process Yields: each pair of alignments. This function is needed because each line of a BAM file is not a read but an alignment. For uniquely mapped and unmapped reads, those two are the same. For multimapped reads, however, there can be more than one alignment for each read. Also, it is normal for a mapper to uniquely map one read and multimap its mate. This function goes down the list of alignments for a given read name and tries to find the first mate. So if read 1 is uniquely mapped but read 2 is mapped 4 times, only (read 1, read 2 - first occurrence) will yield; the other 3 alignments of read 2 are ignored. ''' while len(almnt_list) > 0: a1 = almnt_list.pop(0) # Find its mate for a2 in almnt_list: if a1.pe_which == a2.pe_which: continue if a1.aligned != a2.mate_aligned or a1.mate_aligned != a2.aligned: continue if not (a1.aligned and a2.aligned): break if a1.iv.chrom == a2.mate_start.chrom and a1.iv.start == a2.mate_start.pos and \ a2.iv.chrom == a1.mate_start.chrom and a2.iv.start == a1.mate_start.pos: break else: if a1.mate_aligned: mate_missing_count[0] += 1 if mate_missing_count[0] == 1: warnings.warn( "Read " + a1.read.name + " claims to have an aligned mate " + "which could not be found in an adjacent line.") a2 = None if a2 is not None: almnt_list.remove(a2) if a1.pe_which == "first": yield (a1, a2) else: assert a1.pe_which == "second" yield (a2, a1) almnt_list = [] current_name = None for almnt in alignments: if not almnt.paired_end: raise ValueError( "'pair_alignments' needs a sequence of paired-end alignments") if almnt.pe_which == "unknown": raise ValueError( "Paired-end read found with 'unknown' 'pe_which' status.") # FIXME: almnt.not_primary_alignment currently means secondary if primary_only and (almnt.not_primary_alignment or almnt.supplementary): continue if almnt.read.name == current_name: almnt_list.append(almnt) else: if bundle: yield list(process_list(almnt_list)) else: for p in process_list(almnt_list): yield p current_name = almnt.read.name almnt_list = [almnt] if bundle: yield list(process_list(almnt_list)) else: for p in process_list(almnt_list): yield p if mate_missing_count[0] > 1: warnings.warn("%d reads with missing mate encountered." % mate_missing_count[0])
[ "def", "pair_SAM_alignments", "(", "alignments", ",", "bundle", "=", "False", ",", "primary_only", "=", "False", ")", ":", "mate_missing_count", "=", "[", "0", "]", "def", "process_list", "(", "almnt_list", ")", ":", "'''Transform a list of alignment with the same read name into pairs\n\n Args:\n almnt_list (list): alignments to process\n\n Yields:\n each pair of alignments.\n\n This function is needed because each line of a BAM file is not a read\n but an alignment. For uniquely mapped and unmapped reads, those two are\n the same. For multimapped reads, however, there can be more than one\n alignment for each read. Also, it is normal for a mapper to uniquely\n map one read and multimap its mate.\n\n This function goes down the list of alignments for a given read name\n and tries to find the first mate. So if read 1 is uniquely mapped but\n read 2 is mapped 4 times, only (read 1, read 2 - first occurrence) will\n yield; the other 3 alignments of read 2 are ignored.\n '''", "while", "len", "(", "almnt_list", ")", ">", "0", ":", "a1", "=", "almnt_list", ".", "pop", "(", "0", ")", "# Find its mate", "for", "a2", "in", "almnt_list", ":", "if", "a1", ".", "pe_which", "==", "a2", ".", "pe_which", ":", "continue", "if", "a1", ".", "aligned", "!=", "a2", ".", "mate_aligned", "or", "a1", ".", "mate_aligned", "!=", "a2", ".", "aligned", ":", "continue", "if", "not", "(", "a1", ".", "aligned", "and", "a2", ".", "aligned", ")", ":", "break", "if", "a1", ".", "iv", ".", "chrom", "==", "a2", ".", "mate_start", ".", "chrom", "and", "a1", ".", "iv", ".", "start", "==", "a2", ".", "mate_start", ".", "pos", "and", "a2", ".", "iv", ".", "chrom", "==", "a1", ".", "mate_start", ".", "chrom", "and", "a2", ".", "iv", ".", "start", "==", "a1", ".", "mate_start", ".", "pos", ":", "break", "else", ":", "if", "a1", ".", "mate_aligned", ":", "mate_missing_count", "[", "0", "]", "+=", "1", "if", "mate_missing_count", "[", "0", "]", "==", "1", ":", "warnings", ".", "warn", "(", "\"Read \"", "+", "a1", ".", "read", ".", "name", "+", "\" claims to have an aligned mate \"", "+", "\"which could not be found in an adjacent line.\"", ")", "a2", "=", "None", "if", "a2", "is", "not", "None", ":", "almnt_list", ".", "remove", "(", "a2", ")", "if", "a1", ".", "pe_which", "==", "\"first\"", ":", "yield", "(", "a1", ",", "a2", ")", "else", ":", "assert", "a1", ".", "pe_which", "==", "\"second\"", "yield", "(", "a2", ",", "a1", ")", "almnt_list", "=", "[", "]", "current_name", "=", "None", "for", "almnt", "in", "alignments", ":", "if", "not", "almnt", ".", "paired_end", ":", "raise", "ValueError", "(", "\"'pair_alignments' needs a sequence of paired-end alignments\"", ")", "if", "almnt", ".", "pe_which", "==", "\"unknown\"", ":", "raise", "ValueError", "(", "\"Paired-end read found with 'unknown' 'pe_which' status.\"", ")", "# FIXME: almnt.not_primary_alignment currently means secondary", "if", "primary_only", "and", "(", "almnt", ".", "not_primary_alignment", "or", "almnt", ".", "supplementary", ")", ":", "continue", "if", "almnt", ".", "read", ".", "name", "==", "current_name", ":", "almnt_list", ".", "append", "(", "almnt", ")", "else", ":", "if", "bundle", ":", "yield", "list", "(", "process_list", "(", "almnt_list", ")", ")", "else", ":", "for", "p", "in", "process_list", "(", "almnt_list", ")", ":", "yield", "p", "current_name", "=", "almnt", ".", "read", ".", "name", "almnt_list", "=", "[", "almnt", "]", "if", "bundle", ":", "yield", "list", "(", "process_list", "(", "almnt_list", ")", ")", "else", ":", "for", "p", "in", "process_list", "(", "almnt_list", ")", ":", "yield", "p", "if", "mate_missing_count", "[", "0", "]", ">", "1", ":", "warnings", ".", "warn", "(", "\"%d reads with missing mate encountered.\"", "%", "mate_missing_count", "[", "0", "]", ")" ]
Iterate over SAM aligments, name-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap bundle (bool): if True, bundle all alignments from one read pair into a single yield. If False (default), each pair of alignments is yielded separately. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments or, if bundle==True, each bundled list of alignments.
[ "Iterate", "over", "SAM", "aligments", "name", "-", "sorted", "paired", "-", "end" ]
6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0
https://github.com/simon-anders/htseq/blob/6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0/python2/HTSeq/__init__.py#L634-L736
5,221
simon-anders/htseq
python3/HTSeq/__init__.py
pair_SAM_alignments_with_buffer
def pair_SAM_alignments_with_buffer( alignments, max_buffer_size=30000000, primary_only=False): '''Iterate over SAM aligments with buffer, position-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap max_buffer_size (int): maxmal numer of alignments to keep in memory. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments. ''' almnt_buffer = {} ambiguous_pairing_counter = 0 for almnt in alignments: if not almnt.paired_end: raise ValueError( "Sequence of paired-end alignments expected, but got single-end alignment.") if almnt.pe_which == "unknown": raise ValueError( "Cannot process paired-end alignment found with 'unknown' 'pe_which' status.") # FIXME: almnt.not_primary_alignment currently means secondary if primary_only and (almnt.not_primary_alignment or almnt.supplementary): continue matekey = ( almnt.read.name, "second" if almnt.pe_which == "first" else "first", almnt.mate_start.chrom if almnt.mate_aligned else None, almnt.mate_start.pos if almnt.mate_aligned else None, almnt.iv.chrom if almnt.aligned else None, almnt.iv.start if almnt.aligned else None, -almnt.inferred_insert_size if almnt.aligned and almnt.mate_aligned else None) if matekey in almnt_buffer: if len(almnt_buffer[matekey]) == 1: mate = almnt_buffer[matekey][0] del almnt_buffer[matekey] else: mate = almnt_buffer[matekey].pop(0) if ambiguous_pairing_counter == 0: ambiguous_pairing_first_occurance = matekey ambiguous_pairing_counter += 1 if almnt.pe_which == "first": yield (almnt, mate) else: yield (mate, almnt) else: almntkey = ( almnt.read.name, almnt.pe_which, almnt.iv.chrom if almnt.aligned else None, almnt.iv.start if almnt.aligned else None, almnt.mate_start.chrom if almnt.mate_aligned else None, almnt.mate_start.pos if almnt.mate_aligned else None, almnt.inferred_insert_size if almnt.aligned and almnt.mate_aligned else None) if almntkey not in almnt_buffer: almnt_buffer[almntkey] = [almnt] else: almnt_buffer[almntkey].append(almnt) if len(almnt_buffer) > max_buffer_size: raise ValueError( "Maximum alignment buffer size exceeded while pairing SAM alignments.") if len(almnt_buffer) > 0: warnings.warn( "Mate records missing for %d records; first such record: %s." % (len(almnt_buffer), str(list(almnt_buffer.values())[0][0]))) for almnt_list in list(almnt_buffer.values()): for almnt in almnt_list: if almnt.pe_which == "first": yield (almnt, None) else: yield (None, almnt) if ambiguous_pairing_counter > 0: warnings.warn( "Mate pairing was ambiguous for %d records; mate key for first such record: %s." % (ambiguous_pairing_counter, str(ambiguous_pairing_first_occurance)))
python
def pair_SAM_alignments_with_buffer( alignments, max_buffer_size=30000000, primary_only=False): '''Iterate over SAM aligments with buffer, position-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap max_buffer_size (int): maxmal numer of alignments to keep in memory. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments. ''' almnt_buffer = {} ambiguous_pairing_counter = 0 for almnt in alignments: if not almnt.paired_end: raise ValueError( "Sequence of paired-end alignments expected, but got single-end alignment.") if almnt.pe_which == "unknown": raise ValueError( "Cannot process paired-end alignment found with 'unknown' 'pe_which' status.") # FIXME: almnt.not_primary_alignment currently means secondary if primary_only and (almnt.not_primary_alignment or almnt.supplementary): continue matekey = ( almnt.read.name, "second" if almnt.pe_which == "first" else "first", almnt.mate_start.chrom if almnt.mate_aligned else None, almnt.mate_start.pos if almnt.mate_aligned else None, almnt.iv.chrom if almnt.aligned else None, almnt.iv.start if almnt.aligned else None, -almnt.inferred_insert_size if almnt.aligned and almnt.mate_aligned else None) if matekey in almnt_buffer: if len(almnt_buffer[matekey]) == 1: mate = almnt_buffer[matekey][0] del almnt_buffer[matekey] else: mate = almnt_buffer[matekey].pop(0) if ambiguous_pairing_counter == 0: ambiguous_pairing_first_occurance = matekey ambiguous_pairing_counter += 1 if almnt.pe_which == "first": yield (almnt, mate) else: yield (mate, almnt) else: almntkey = ( almnt.read.name, almnt.pe_which, almnt.iv.chrom if almnt.aligned else None, almnt.iv.start if almnt.aligned else None, almnt.mate_start.chrom if almnt.mate_aligned else None, almnt.mate_start.pos if almnt.mate_aligned else None, almnt.inferred_insert_size if almnt.aligned and almnt.mate_aligned else None) if almntkey not in almnt_buffer: almnt_buffer[almntkey] = [almnt] else: almnt_buffer[almntkey].append(almnt) if len(almnt_buffer) > max_buffer_size: raise ValueError( "Maximum alignment buffer size exceeded while pairing SAM alignments.") if len(almnt_buffer) > 0: warnings.warn( "Mate records missing for %d records; first such record: %s." % (len(almnt_buffer), str(list(almnt_buffer.values())[0][0]))) for almnt_list in list(almnt_buffer.values()): for almnt in almnt_list: if almnt.pe_which == "first": yield (almnt, None) else: yield (None, almnt) if ambiguous_pairing_counter > 0: warnings.warn( "Mate pairing was ambiguous for %d records; mate key for first such record: %s." % (ambiguous_pairing_counter, str(ambiguous_pairing_first_occurance)))
[ "def", "pair_SAM_alignments_with_buffer", "(", "alignments", ",", "max_buffer_size", "=", "30000000", ",", "primary_only", "=", "False", ")", ":", "almnt_buffer", "=", "{", "}", "ambiguous_pairing_counter", "=", "0", "for", "almnt", "in", "alignments", ":", "if", "not", "almnt", ".", "paired_end", ":", "raise", "ValueError", "(", "\"Sequence of paired-end alignments expected, but got single-end alignment.\"", ")", "if", "almnt", ".", "pe_which", "==", "\"unknown\"", ":", "raise", "ValueError", "(", "\"Cannot process paired-end alignment found with 'unknown' 'pe_which' status.\"", ")", "# FIXME: almnt.not_primary_alignment currently means secondary", "if", "primary_only", "and", "(", "almnt", ".", "not_primary_alignment", "or", "almnt", ".", "supplementary", ")", ":", "continue", "matekey", "=", "(", "almnt", ".", "read", ".", "name", ",", "\"second\"", "if", "almnt", ".", "pe_which", "==", "\"first\"", "else", "\"first\"", ",", "almnt", ".", "mate_start", ".", "chrom", "if", "almnt", ".", "mate_aligned", "else", "None", ",", "almnt", ".", "mate_start", ".", "pos", "if", "almnt", ".", "mate_aligned", "else", "None", ",", "almnt", ".", "iv", ".", "chrom", "if", "almnt", ".", "aligned", "else", "None", ",", "almnt", ".", "iv", ".", "start", "if", "almnt", ".", "aligned", "else", "None", ",", "-", "almnt", ".", "inferred_insert_size", "if", "almnt", ".", "aligned", "and", "almnt", ".", "mate_aligned", "else", "None", ")", "if", "matekey", "in", "almnt_buffer", ":", "if", "len", "(", "almnt_buffer", "[", "matekey", "]", ")", "==", "1", ":", "mate", "=", "almnt_buffer", "[", "matekey", "]", "[", "0", "]", "del", "almnt_buffer", "[", "matekey", "]", "else", ":", "mate", "=", "almnt_buffer", "[", "matekey", "]", ".", "pop", "(", "0", ")", "if", "ambiguous_pairing_counter", "==", "0", ":", "ambiguous_pairing_first_occurance", "=", "matekey", "ambiguous_pairing_counter", "+=", "1", "if", "almnt", ".", "pe_which", "==", "\"first\"", ":", "yield", "(", "almnt", ",", "mate", ")", "else", ":", "yield", "(", "mate", ",", "almnt", ")", "else", ":", "almntkey", "=", "(", "almnt", ".", "read", ".", "name", ",", "almnt", ".", "pe_which", ",", "almnt", ".", "iv", ".", "chrom", "if", "almnt", ".", "aligned", "else", "None", ",", "almnt", ".", "iv", ".", "start", "if", "almnt", ".", "aligned", "else", "None", ",", "almnt", ".", "mate_start", ".", "chrom", "if", "almnt", ".", "mate_aligned", "else", "None", ",", "almnt", ".", "mate_start", ".", "pos", "if", "almnt", ".", "mate_aligned", "else", "None", ",", "almnt", ".", "inferred_insert_size", "if", "almnt", ".", "aligned", "and", "almnt", ".", "mate_aligned", "else", "None", ")", "if", "almntkey", "not", "in", "almnt_buffer", ":", "almnt_buffer", "[", "almntkey", "]", "=", "[", "almnt", "]", "else", ":", "almnt_buffer", "[", "almntkey", "]", ".", "append", "(", "almnt", ")", "if", "len", "(", "almnt_buffer", ")", ">", "max_buffer_size", ":", "raise", "ValueError", "(", "\"Maximum alignment buffer size exceeded while pairing SAM alignments.\"", ")", "if", "len", "(", "almnt_buffer", ")", ">", "0", ":", "warnings", ".", "warn", "(", "\"Mate records missing for %d records; first such record: %s.\"", "%", "(", "len", "(", "almnt_buffer", ")", ",", "str", "(", "list", "(", "almnt_buffer", ".", "values", "(", ")", ")", "[", "0", "]", "[", "0", "]", ")", ")", ")", "for", "almnt_list", "in", "list", "(", "almnt_buffer", ".", "values", "(", ")", ")", ":", "for", "almnt", "in", "almnt_list", ":", "if", "almnt", ".", "pe_which", "==", "\"first\"", ":", "yield", "(", "almnt", ",", "None", ")", "else", ":", "yield", "(", "None", ",", "almnt", ")", "if", "ambiguous_pairing_counter", ">", "0", ":", "warnings", ".", "warn", "(", "\"Mate pairing was ambiguous for %d records; mate key for first such record: %s.\"", "%", "(", "ambiguous_pairing_counter", ",", "str", "(", "ambiguous_pairing_first_occurance", ")", ")", ")" ]
Iterate over SAM aligments with buffer, position-sorted paired-end Args: alignments (iterator of SAM/BAM alignments): the alignments to wrap max_buffer_size (int): maxmal numer of alignments to keep in memory. primary_only (bool): for each read, consider only the primary line (SAM flag 0x900 = 0). The SAM specification requires one and only one of those for each read. Yields: 2-tuples with each pair of alignments.
[ "Iterate", "over", "SAM", "aligments", "with", "buffer", "position", "-", "sorted", "paired", "-", "end" ]
6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0
https://github.com/simon-anders/htseq/blob/6f7d66e757e610228c33ebf2bb5dc8cc5051c7f0/python3/HTSeq/__init__.py#L742-L824
5,222
sqreen/PyMiniRacer
py_mini_racer/extension/v8_build.py
ensure_v8_src
def ensure_v8_src(): """ Ensure that v8 src are presents and up-to-date """ path = local_path('v8') if not os.path.isdir(path): fetch_v8(path) else: update_v8(path) checkout_v8_version(local_path("v8/v8"), V8_VERSION) dependencies_sync(path)
python
def ensure_v8_src(): """ Ensure that v8 src are presents and up-to-date """ path = local_path('v8') if not os.path.isdir(path): fetch_v8(path) else: update_v8(path) checkout_v8_version(local_path("v8/v8"), V8_VERSION) dependencies_sync(path)
[ "def", "ensure_v8_src", "(", ")", ":", "path", "=", "local_path", "(", "'v8'", ")", "if", "not", "os", ".", "path", ".", "isdir", "(", "path", ")", ":", "fetch_v8", "(", "path", ")", "else", ":", "update_v8", "(", "path", ")", "checkout_v8_version", "(", "local_path", "(", "\"v8/v8\"", ")", ",", "V8_VERSION", ")", "dependencies_sync", "(", "path", ")" ]
Ensure that v8 src are presents and up-to-date
[ "Ensure", "that", "v8", "src", "are", "presents", "and", "up", "-", "to", "-", "date" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/extension/v8_build.py#L57-L68
5,223
sqreen/PyMiniRacer
wheel_pymalloc.py
get_filenames
def get_filenames(directory): """Get all the file to copy""" for filename in os.listdir(directory): if re.search(r"cp\d{2}mu?-manylinux1_\S+\.whl", filename): yield filename
python
def get_filenames(directory): """Get all the file to copy""" for filename in os.listdir(directory): if re.search(r"cp\d{2}mu?-manylinux1_\S+\.whl", filename): yield filename
[ "def", "get_filenames", "(", "directory", ")", ":", "for", "filename", "in", "os", ".", "listdir", "(", "directory", ")", ":", "if", "re", ".", "search", "(", "r\"cp\\d{2}mu?-manylinux1_\\S+\\.whl\"", ",", "filename", ")", ":", "yield", "filename" ]
Get all the file to copy
[ "Get", "all", "the", "file", "to", "copy" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/wheel_pymalloc.py#L11-L15
5,224
sqreen/PyMiniRacer
wheel_pymalloc.py
copy_file
def copy_file(filename): """Copy the file and put the correct tag""" print("Updating file %s" % filename) out_dir = os.path.abspath(DIRECTORY) tags = filename[:-4].split("-") tags[-2] = tags[-2].replace("m", "") new_name = "-".join(tags) + ".whl" wheel_flag = "-".join(tags[2:]) with InWheelCtx(os.path.join(DIRECTORY, filename)) as ctx: info_fname = os.path.join(_dist_info_dir(ctx.path), 'WHEEL') infos = pkginfo.read_pkg_info(info_fname) print("Changing Tag %s to %s" % (infos["Tag"], wheel_flag)) del infos['Tag'] infos.add_header('Tag', wheel_flag) pkginfo.write_pkg_info(info_fname, infos) ctx.out_wheel = os.path.join(out_dir, new_name) print("Saving new wheel into %s" % ctx.out_wheel)
python
def copy_file(filename): """Copy the file and put the correct tag""" print("Updating file %s" % filename) out_dir = os.path.abspath(DIRECTORY) tags = filename[:-4].split("-") tags[-2] = tags[-2].replace("m", "") new_name = "-".join(tags) + ".whl" wheel_flag = "-".join(tags[2:]) with InWheelCtx(os.path.join(DIRECTORY, filename)) as ctx: info_fname = os.path.join(_dist_info_dir(ctx.path), 'WHEEL') infos = pkginfo.read_pkg_info(info_fname) print("Changing Tag %s to %s" % (infos["Tag"], wheel_flag)) del infos['Tag'] infos.add_header('Tag', wheel_flag) pkginfo.write_pkg_info(info_fname, infos) ctx.out_wheel = os.path.join(out_dir, new_name) print("Saving new wheel into %s" % ctx.out_wheel)
[ "def", "copy_file", "(", "filename", ")", ":", "print", "(", "\"Updating file %s\"", "%", "filename", ")", "out_dir", "=", "os", ".", "path", ".", "abspath", "(", "DIRECTORY", ")", "tags", "=", "filename", "[", ":", "-", "4", "]", ".", "split", "(", "\"-\"", ")", "tags", "[", "-", "2", "]", "=", "tags", "[", "-", "2", "]", ".", "replace", "(", "\"m\"", ",", "\"\"", ")", "new_name", "=", "\"-\"", ".", "join", "(", "tags", ")", "+", "\".whl\"", "wheel_flag", "=", "\"-\"", ".", "join", "(", "tags", "[", "2", ":", "]", ")", "with", "InWheelCtx", "(", "os", ".", "path", ".", "join", "(", "DIRECTORY", ",", "filename", ")", ")", "as", "ctx", ":", "info_fname", "=", "os", ".", "path", ".", "join", "(", "_dist_info_dir", "(", "ctx", ".", "path", ")", ",", "'WHEEL'", ")", "infos", "=", "pkginfo", ".", "read_pkg_info", "(", "info_fname", ")", "print", "(", "\"Changing Tag %s to %s\"", "%", "(", "infos", "[", "\"Tag\"", "]", ",", "wheel_flag", ")", ")", "del", "infos", "[", "'Tag'", "]", "infos", ".", "add_header", "(", "'Tag'", ",", "wheel_flag", ")", "pkginfo", ".", "write_pkg_info", "(", "info_fname", ",", "infos", ")", "ctx", ".", "out_wheel", "=", "os", ".", "path", ".", "join", "(", "out_dir", ",", "new_name", ")", "print", "(", "\"Saving new wheel into %s\"", "%", "ctx", ".", "out_wheel", ")" ]
Copy the file and put the correct tag
[ "Copy", "the", "file", "and", "put", "the", "correct", "tag" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/wheel_pymalloc.py#L17-L40
5,225
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
is_unicode
def is_unicode(value): """ Check if a value is a valid unicode string, compatible with python 2 and python 3 >>> is_unicode(u'foo') True >>> is_unicode(u'✌') True >>> is_unicode(b'foo') False >>> is_unicode(42) False >>> is_unicode(('abc',)) False """ python_version = sys.version_info[0] if python_version == 2: return isinstance(value, unicode) elif python_version == 3: return isinstance(value, str) else: raise NotImplementedError()
python
def is_unicode(value): """ Check if a value is a valid unicode string, compatible with python 2 and python 3 >>> is_unicode(u'foo') True >>> is_unicode(u'✌') True >>> is_unicode(b'foo') False >>> is_unicode(42) False >>> is_unicode(('abc',)) False """ python_version = sys.version_info[0] if python_version == 2: return isinstance(value, unicode) elif python_version == 3: return isinstance(value, str) else: raise NotImplementedError()
[ "def", "is_unicode", "(", "value", ")", ":", "python_version", "=", "sys", ".", "version_info", "[", "0", "]", "if", "python_version", "==", "2", ":", "return", "isinstance", "(", "value", ",", "unicode", ")", "elif", "python_version", "==", "3", ":", "return", "isinstance", "(", "value", ",", "str", ")", "else", ":", "raise", "NotImplementedError", "(", ")" ]
Check if a value is a valid unicode string, compatible with python 2 and python 3 >>> is_unicode(u'foo') True >>> is_unicode(u'✌') True >>> is_unicode(b'foo') False >>> is_unicode(42) False >>> is_unicode(('abc',)) False
[ "Check", "if", "a", "value", "is", "a", "valid", "unicode", "string", "compatible", "with", "python", "2", "and", "python", "3" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L59-L80
5,226
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
MiniRacer.execute
def execute(self, js_str, timeout=0, max_memory=0): """ Exec the given JS value """ wrapped = "(function(){return (%s)})()" % js_str return self.eval(wrapped, timeout, max_memory)
python
def execute(self, js_str, timeout=0, max_memory=0): """ Exec the given JS value """ wrapped = "(function(){return (%s)})()" % js_str return self.eval(wrapped, timeout, max_memory)
[ "def", "execute", "(", "self", ",", "js_str", ",", "timeout", "=", "0", ",", "max_memory", "=", "0", ")", ":", "wrapped", "=", "\"(function(){return (%s)})()\"", "%", "js_str", "return", "self", ".", "eval", "(", "wrapped", ",", "timeout", ",", "max_memory", ")" ]
Exec the given JS value
[ "Exec", "the", "given", "JS", "value" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L136-L140
5,227
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
MiniRacer.eval
def eval(self, js_str, timeout=0, max_memory=0): """ Eval the JavaScript string """ if is_unicode(js_str): bytes_val = js_str.encode("utf8") else: bytes_val = js_str res = None self.lock.acquire() try: res = self.ext.mr_eval_context(self.ctx, bytes_val, len(bytes_val), ctypes.c_ulong(timeout), ctypes.c_size_t(max_memory)) if bool(res) is False: raise JSConversionException() python_value = res.contents.to_python() return python_value finally: self.lock.release() if res is not None: self.free(res)
python
def eval(self, js_str, timeout=0, max_memory=0): """ Eval the JavaScript string """ if is_unicode(js_str): bytes_val = js_str.encode("utf8") else: bytes_val = js_str res = None self.lock.acquire() try: res = self.ext.mr_eval_context(self.ctx, bytes_val, len(bytes_val), ctypes.c_ulong(timeout), ctypes.c_size_t(max_memory)) if bool(res) is False: raise JSConversionException() python_value = res.contents.to_python() return python_value finally: self.lock.release() if res is not None: self.free(res)
[ "def", "eval", "(", "self", ",", "js_str", ",", "timeout", "=", "0", ",", "max_memory", "=", "0", ")", ":", "if", "is_unicode", "(", "js_str", ")", ":", "bytes_val", "=", "js_str", ".", "encode", "(", "\"utf8\"", ")", "else", ":", "bytes_val", "=", "js_str", "res", "=", "None", "self", ".", "lock", ".", "acquire", "(", ")", "try", ":", "res", "=", "self", ".", "ext", ".", "mr_eval_context", "(", "self", ".", "ctx", ",", "bytes_val", ",", "len", "(", "bytes_val", ")", ",", "ctypes", ".", "c_ulong", "(", "timeout", ")", ",", "ctypes", ".", "c_size_t", "(", "max_memory", ")", ")", "if", "bool", "(", "res", ")", "is", "False", ":", "raise", "JSConversionException", "(", ")", "python_value", "=", "res", ".", "contents", ".", "to_python", "(", ")", "return", "python_value", "finally", ":", "self", ".", "lock", ".", "release", "(", ")", "if", "res", "is", "not", "None", ":", "self", ".", "free", "(", "res", ")" ]
Eval the JavaScript string
[ "Eval", "the", "JavaScript", "string" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L142-L166
5,228
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
MiniRacer.call
def call(self, identifier, *args, **kwargs): """ Call the named function with provided arguments You can pass a custom JSON encoder by passing it in the encoder keyword only argument. """ encoder = kwargs.get('encoder', None) timeout = kwargs.get('timeout', 0) max_memory = kwargs.get('max_memory', 0) json_args = json.dumps(args, separators=(',', ':'), cls=encoder) js = "{identifier}.apply(this, {json_args})" return self.eval(js.format(identifier=identifier, json_args=json_args), timeout, max_memory)
python
def call(self, identifier, *args, **kwargs): """ Call the named function with provided arguments You can pass a custom JSON encoder by passing it in the encoder keyword only argument. """ encoder = kwargs.get('encoder', None) timeout = kwargs.get('timeout', 0) max_memory = kwargs.get('max_memory', 0) json_args = json.dumps(args, separators=(',', ':'), cls=encoder) js = "{identifier}.apply(this, {json_args})" return self.eval(js.format(identifier=identifier, json_args=json_args), timeout, max_memory)
[ "def", "call", "(", "self", ",", "identifier", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "encoder", "=", "kwargs", ".", "get", "(", "'encoder'", ",", "None", ")", "timeout", "=", "kwargs", ".", "get", "(", "'timeout'", ",", "0", ")", "max_memory", "=", "kwargs", ".", "get", "(", "'max_memory'", ",", "0", ")", "json_args", "=", "json", ".", "dumps", "(", "args", ",", "separators", "=", "(", "','", ",", "':'", ")", ",", "cls", "=", "encoder", ")", "js", "=", "\"{identifier}.apply(this, {json_args})\"", "return", "self", ".", "eval", "(", "js", ".", "format", "(", "identifier", "=", "identifier", ",", "json_args", "=", "json_args", ")", ",", "timeout", ",", "max_memory", ")" ]
Call the named function with provided arguments You can pass a custom JSON encoder by passing it in the encoder keyword only argument.
[ "Call", "the", "named", "function", "with", "provided", "arguments", "You", "can", "pass", "a", "custom", "JSON", "encoder", "by", "passing", "it", "in", "the", "encoder", "keyword", "only", "argument", "." ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L168-L180
5,229
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
MiniRacer.heap_stats
def heap_stats(self): """ Return heap statistics """ self.lock.acquire() res = self.ext.mr_heap_stats(self.ctx) self.lock.release() python_value = res.contents.to_python() self.free(res) return python_value
python
def heap_stats(self): """ Return heap statistics """ self.lock.acquire() res = self.ext.mr_heap_stats(self.ctx) self.lock.release() python_value = res.contents.to_python() self.free(res) return python_value
[ "def", "heap_stats", "(", "self", ")", ":", "self", ".", "lock", ".", "acquire", "(", ")", "res", "=", "self", ".", "ext", ".", "mr_heap_stats", "(", "self", ".", "ctx", ")", "self", ".", "lock", ".", "release", "(", ")", "python_value", "=", "res", ".", "contents", ".", "to_python", "(", ")", "self", ".", "free", "(", "res", ")", "return", "python_value" ]
Return heap statistics
[ "Return", "heap", "statistics" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L182-L191
5,230
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
MiniRacer.heap_snapshot
def heap_snapshot(self): """ Return heap snapshot """ self.lock.acquire() res = self.ext.mr_heap_snapshot(self.ctx) self.lock.release() python_value = res.contents.to_python() self.free(res) return python_value
python
def heap_snapshot(self): """ Return heap snapshot """ self.lock.acquire() res = self.ext.mr_heap_snapshot(self.ctx) self.lock.release() python_value = res.contents.to_python() self.free(res) return python_value
[ "def", "heap_snapshot", "(", "self", ")", ":", "self", ".", "lock", ".", "acquire", "(", ")", "res", "=", "self", ".", "ext", ".", "mr_heap_snapshot", "(", "self", ".", "ctx", ")", "self", ".", "lock", ".", "release", "(", ")", "python_value", "=", "res", ".", "contents", ".", "to_python", "(", ")", "self", ".", "free", "(", "res", ")", "return", "python_value" ]
Return heap snapshot
[ "Return", "heap", "snapshot" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L196-L205
5,231
sqreen/PyMiniRacer
py_mini_racer/py_mini_racer.py
PythonValue.to_python
def to_python(self): """ Return an object as native Python """ result = None if self.type == PythonTypes.null: result = None elif self.type == PythonTypes.bool: result = self.value == 1 elif self.type == PythonTypes.integer: if self.value is None: result = 0 else: result = ctypes.c_int32(self.value).value elif self.type == PythonTypes.double: result = self._double_value() elif self.type == PythonTypes.str_utf8: buf = ctypes.c_char_p(self.value) ptr = ctypes.cast(buf, ctypes.POINTER(ctypes.c_char)) result = ptr[0:self.len].decode("utf8") elif self.type == PythonTypes.array: if self.len == 0: return [] ary = [] ary_addr = ctypes.c_void_p.from_address(self.value) ptr_to_ary = ctypes.pointer(ary_addr) for i in range(self.len): pval = PythonValue.from_address(ptr_to_ary[i]) ary.append(pval.to_python()) result = ary elif self.type == PythonTypes.hash: if self.len == 0: return {} res = {} hash_ary_addr = ctypes.c_void_p.from_address(self.value) ptr_to_hash = ctypes.pointer(hash_ary_addr) for i in range(self.len): pkey = PythonValue.from_address(ptr_to_hash[i*2]) pval = PythonValue.from_address(ptr_to_hash[i*2+1]) res[pkey.to_python()] = pval.to_python() result = res elif self.type == PythonTypes.function: result = JSFunction() elif self.type == PythonTypes.parse_exception: msg = ctypes.c_char_p(self.value).value raise JSParseException(msg) elif self.type == PythonTypes.execute_exception: msg = ctypes.c_char_p(self.value).value raise JSEvalException(msg.decode('utf-8', errors='replace')) elif self.type == PythonTypes.oom_exception: msg = ctypes.c_char_p(self.value).value raise JSOOMException(msg) elif self.type == PythonTypes.timeout_exception: msg = ctypes.c_char_p(self.value).value raise JSTimeoutException(msg) elif self.type == PythonTypes.date: timestamp = self._double_value() # JS timestamp are milliseconds, in python we are in seconds result = datetime.datetime.utcfromtimestamp(timestamp / 1000.) else: raise WrongReturnTypeException("unknown type %d" % self.type) return result
python
def to_python(self): """ Return an object as native Python """ result = None if self.type == PythonTypes.null: result = None elif self.type == PythonTypes.bool: result = self.value == 1 elif self.type == PythonTypes.integer: if self.value is None: result = 0 else: result = ctypes.c_int32(self.value).value elif self.type == PythonTypes.double: result = self._double_value() elif self.type == PythonTypes.str_utf8: buf = ctypes.c_char_p(self.value) ptr = ctypes.cast(buf, ctypes.POINTER(ctypes.c_char)) result = ptr[0:self.len].decode("utf8") elif self.type == PythonTypes.array: if self.len == 0: return [] ary = [] ary_addr = ctypes.c_void_p.from_address(self.value) ptr_to_ary = ctypes.pointer(ary_addr) for i in range(self.len): pval = PythonValue.from_address(ptr_to_ary[i]) ary.append(pval.to_python()) result = ary elif self.type == PythonTypes.hash: if self.len == 0: return {} res = {} hash_ary_addr = ctypes.c_void_p.from_address(self.value) ptr_to_hash = ctypes.pointer(hash_ary_addr) for i in range(self.len): pkey = PythonValue.from_address(ptr_to_hash[i*2]) pval = PythonValue.from_address(ptr_to_hash[i*2+1]) res[pkey.to_python()] = pval.to_python() result = res elif self.type == PythonTypes.function: result = JSFunction() elif self.type == PythonTypes.parse_exception: msg = ctypes.c_char_p(self.value).value raise JSParseException(msg) elif self.type == PythonTypes.execute_exception: msg = ctypes.c_char_p(self.value).value raise JSEvalException(msg.decode('utf-8', errors='replace')) elif self.type == PythonTypes.oom_exception: msg = ctypes.c_char_p(self.value).value raise JSOOMException(msg) elif self.type == PythonTypes.timeout_exception: msg = ctypes.c_char_p(self.value).value raise JSTimeoutException(msg) elif self.type == PythonTypes.date: timestamp = self._double_value() # JS timestamp are milliseconds, in python we are in seconds result = datetime.datetime.utcfromtimestamp(timestamp / 1000.) else: raise WrongReturnTypeException("unknown type %d" % self.type) return result
[ "def", "to_python", "(", "self", ")", ":", "result", "=", "None", "if", "self", ".", "type", "==", "PythonTypes", ".", "null", ":", "result", "=", "None", "elif", "self", ".", "type", "==", "PythonTypes", ".", "bool", ":", "result", "=", "self", ".", "value", "==", "1", "elif", "self", ".", "type", "==", "PythonTypes", ".", "integer", ":", "if", "self", ".", "value", "is", "None", ":", "result", "=", "0", "else", ":", "result", "=", "ctypes", ".", "c_int32", "(", "self", ".", "value", ")", ".", "value", "elif", "self", ".", "type", "==", "PythonTypes", ".", "double", ":", "result", "=", "self", ".", "_double_value", "(", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "str_utf8", ":", "buf", "=", "ctypes", ".", "c_char_p", "(", "self", ".", "value", ")", "ptr", "=", "ctypes", ".", "cast", "(", "buf", ",", "ctypes", ".", "POINTER", "(", "ctypes", ".", "c_char", ")", ")", "result", "=", "ptr", "[", "0", ":", "self", ".", "len", "]", ".", "decode", "(", "\"utf8\"", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "array", ":", "if", "self", ".", "len", "==", "0", ":", "return", "[", "]", "ary", "=", "[", "]", "ary_addr", "=", "ctypes", ".", "c_void_p", ".", "from_address", "(", "self", ".", "value", ")", "ptr_to_ary", "=", "ctypes", ".", "pointer", "(", "ary_addr", ")", "for", "i", "in", "range", "(", "self", ".", "len", ")", ":", "pval", "=", "PythonValue", ".", "from_address", "(", "ptr_to_ary", "[", "i", "]", ")", "ary", ".", "append", "(", "pval", ".", "to_python", "(", ")", ")", "result", "=", "ary", "elif", "self", ".", "type", "==", "PythonTypes", ".", "hash", ":", "if", "self", ".", "len", "==", "0", ":", "return", "{", "}", "res", "=", "{", "}", "hash_ary_addr", "=", "ctypes", ".", "c_void_p", ".", "from_address", "(", "self", ".", "value", ")", "ptr_to_hash", "=", "ctypes", ".", "pointer", "(", "hash_ary_addr", ")", "for", "i", "in", "range", "(", "self", ".", "len", ")", ":", "pkey", "=", "PythonValue", ".", "from_address", "(", "ptr_to_hash", "[", "i", "*", "2", "]", ")", "pval", "=", "PythonValue", ".", "from_address", "(", "ptr_to_hash", "[", "i", "*", "2", "+", "1", "]", ")", "res", "[", "pkey", ".", "to_python", "(", ")", "]", "=", "pval", ".", "to_python", "(", ")", "result", "=", "res", "elif", "self", ".", "type", "==", "PythonTypes", ".", "function", ":", "result", "=", "JSFunction", "(", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "parse_exception", ":", "msg", "=", "ctypes", ".", "c_char_p", "(", "self", ".", "value", ")", ".", "value", "raise", "JSParseException", "(", "msg", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "execute_exception", ":", "msg", "=", "ctypes", ".", "c_char_p", "(", "self", ".", "value", ")", ".", "value", "raise", "JSEvalException", "(", "msg", ".", "decode", "(", "'utf-8'", ",", "errors", "=", "'replace'", ")", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "oom_exception", ":", "msg", "=", "ctypes", ".", "c_char_p", "(", "self", ".", "value", ")", ".", "value", "raise", "JSOOMException", "(", "msg", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "timeout_exception", ":", "msg", "=", "ctypes", ".", "c_char_p", "(", "self", ".", "value", ")", ".", "value", "raise", "JSTimeoutException", "(", "msg", ")", "elif", "self", ".", "type", "==", "PythonTypes", ".", "date", ":", "timestamp", "=", "self", ".", "_double_value", "(", ")", "# JS timestamp are milliseconds, in python we are in seconds", "result", "=", "datetime", ".", "datetime", ".", "utcfromtimestamp", "(", "timestamp", "/", "1000.", ")", "else", ":", "raise", "WrongReturnTypeException", "(", "\"unknown type %d\"", "%", "self", ".", "type", ")", "return", "result" ]
Return an object as native Python
[ "Return", "an", "object", "as", "native", "Python" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/py_mini_racer/py_mini_racer.py#L248-L308
5,232
sqreen/PyMiniRacer
setup.py
libv8_object
def libv8_object(object_name): """ Return a path for object_name which is OS independent """ filename = join(V8_LIB_DIRECTORY, 'out.gn/x64.release/obj/{}'.format(object_name)) if not isfile(filename): filename = join(local_path('vendor/v8/out.gn/libv8/obj/{}'.format(object_name))) if not isfile(filename): filename = join(V8_LIB_DIRECTORY, 'out.gn/x64.release/obj/{}'.format(object_name)) return filename
python
def libv8_object(object_name): """ Return a path for object_name which is OS independent """ filename = join(V8_LIB_DIRECTORY, 'out.gn/x64.release/obj/{}'.format(object_name)) if not isfile(filename): filename = join(local_path('vendor/v8/out.gn/libv8/obj/{}'.format(object_name))) if not isfile(filename): filename = join(V8_LIB_DIRECTORY, 'out.gn/x64.release/obj/{}'.format(object_name)) return filename
[ "def", "libv8_object", "(", "object_name", ")", ":", "filename", "=", "join", "(", "V8_LIB_DIRECTORY", ",", "'out.gn/x64.release/obj/{}'", ".", "format", "(", "object_name", ")", ")", "if", "not", "isfile", "(", "filename", ")", ":", "filename", "=", "join", "(", "local_path", "(", "'vendor/v8/out.gn/libv8/obj/{}'", ".", "format", "(", "object_name", ")", ")", ")", "if", "not", "isfile", "(", "filename", ")", ":", "filename", "=", "join", "(", "V8_LIB_DIRECTORY", ",", "'out.gn/x64.release/obj/{}'", ".", "format", "(", "object_name", ")", ")", "return", "filename" ]
Return a path for object_name which is OS independent
[ "Return", "a", "path", "for", "object_name", "which", "is", "OS", "independent" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/setup.py#L88-L100
5,233
sqreen/PyMiniRacer
setup.py
get_static_lib_paths
def get_static_lib_paths(): """ Return the required static libraries path """ libs = [] is_linux = sys.platform.startswith('linux') if is_linux: libs += ['-Wl,--start-group'] libs += get_raw_static_lib_path() if is_linux: libs += ['-Wl,--end-group'] return libs
python
def get_static_lib_paths(): """ Return the required static libraries path """ libs = [] is_linux = sys.platform.startswith('linux') if is_linux: libs += ['-Wl,--start-group'] libs += get_raw_static_lib_path() if is_linux: libs += ['-Wl,--end-group'] return libs
[ "def", "get_static_lib_paths", "(", ")", ":", "libs", "=", "[", "]", "is_linux", "=", "sys", ".", "platform", ".", "startswith", "(", "'linux'", ")", "if", "is_linux", ":", "libs", "+=", "[", "'-Wl,--start-group'", "]", "libs", "+=", "get_raw_static_lib_path", "(", ")", "if", "is_linux", ":", "libs", "+=", "[", "'-Wl,--end-group'", "]", "return", "libs" ]
Return the required static libraries path
[ "Return", "the", "required", "static", "libraries", "path" ]
86747cddb13895ccaba990704ad68e5e059587f9
https://github.com/sqreen/PyMiniRacer/blob/86747cddb13895ccaba990704ad68e5e059587f9/setup.py#L110-L120
5,234
ajbosco/dag-factory
dagfactory/dagbuilder.py
DagBuilder.get_dag_params
def get_dag_params(self) -> Dict[str, Any]: """ Merges default config with dag config, sets dag_id, and extropolates dag_start_date :returns: dict of dag parameters """ try: dag_params: Dict[str, Any] = utils.merge_configs(self.dag_config, self.default_config) except Exception as e: raise Exception(f"Failed to merge config with default config, err: {e}") dag_params["dag_id"]: str = self.dag_name try: # ensure that default_args dictionary contains key "start_date" with "datetime" value in specified timezone dag_params["default_args"]["start_date"]: datetime = utils.get_start_date( date_value=dag_params["default_args"]["start_date"], timezone=dag_params["default_args"].get("timezone", "UTC"), ) except KeyError as e: raise Exception(f"{self.dag_name} config is missing start_date, err: {e}") return dag_params
python
def get_dag_params(self) -> Dict[str, Any]: """ Merges default config with dag config, sets dag_id, and extropolates dag_start_date :returns: dict of dag parameters """ try: dag_params: Dict[str, Any] = utils.merge_configs(self.dag_config, self.default_config) except Exception as e: raise Exception(f"Failed to merge config with default config, err: {e}") dag_params["dag_id"]: str = self.dag_name try: # ensure that default_args dictionary contains key "start_date" with "datetime" value in specified timezone dag_params["default_args"]["start_date"]: datetime = utils.get_start_date( date_value=dag_params["default_args"]["start_date"], timezone=dag_params["default_args"].get("timezone", "UTC"), ) except KeyError as e: raise Exception(f"{self.dag_name} config is missing start_date, err: {e}") return dag_params
[ "def", "get_dag_params", "(", "self", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "try", ":", "dag_params", ":", "Dict", "[", "str", ",", "Any", "]", "=", "utils", ".", "merge_configs", "(", "self", ".", "dag_config", ",", "self", ".", "default_config", ")", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "f\"Failed to merge config with default config, err: {e}\"", ")", "dag_params", "[", "\"dag_id\"", "]", ":", "str", "=", "self", ".", "dag_name", "try", ":", "# ensure that default_args dictionary contains key \"start_date\" with \"datetime\" value in specified timezone", "dag_params", "[", "\"default_args\"", "]", "[", "\"start_date\"", "]", ":", "datetime", "=", "utils", ".", "get_start_date", "(", "date_value", "=", "dag_params", "[", "\"default_args\"", "]", "[", "\"start_date\"", "]", ",", "timezone", "=", "dag_params", "[", "\"default_args\"", "]", ".", "get", "(", "\"timezone\"", ",", "\"UTC\"", ")", ",", ")", "except", "KeyError", "as", "e", ":", "raise", "Exception", "(", "f\"{self.dag_name} config is missing start_date, err: {e}\"", ")", "return", "dag_params" ]
Merges default config with dag config, sets dag_id, and extropolates dag_start_date :returns: dict of dag parameters
[ "Merges", "default", "config", "with", "dag", "config", "sets", "dag_id", "and", "extropolates", "dag_start_date" ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagbuilder.py#L24-L43
5,235
ajbosco/dag-factory
dagfactory/dagbuilder.py
DagBuilder.make_task
def make_task(operator: str, task_params: Dict[str, Any]) -> BaseOperator: """ Takes an operator and params and creates an instance of that operator. :returns: instance of operator object """ try: # class is a Callable https://stackoverflow.com/a/34578836/3679900 operator_obj: Callable[..., BaseOperator] = import_string(operator) except Exception as e: raise Exception(f"Failed to import operator: {operator}. err: {e}") try: task: BaseOperator = operator_obj(**task_params) except Exception as e: raise Exception(f"Failed to create {operator_obj} task. err: {e}") return task
python
def make_task(operator: str, task_params: Dict[str, Any]) -> BaseOperator: """ Takes an operator and params and creates an instance of that operator. :returns: instance of operator object """ try: # class is a Callable https://stackoverflow.com/a/34578836/3679900 operator_obj: Callable[..., BaseOperator] = import_string(operator) except Exception as e: raise Exception(f"Failed to import operator: {operator}. err: {e}") try: task: BaseOperator = operator_obj(**task_params) except Exception as e: raise Exception(f"Failed to create {operator_obj} task. err: {e}") return task
[ "def", "make_task", "(", "operator", ":", "str", ",", "task_params", ":", "Dict", "[", "str", ",", "Any", "]", ")", "->", "BaseOperator", ":", "try", ":", "# class is a Callable https://stackoverflow.com/a/34578836/3679900", "operator_obj", ":", "Callable", "[", "...", ",", "BaseOperator", "]", "=", "import_string", "(", "operator", ")", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "f\"Failed to import operator: {operator}. err: {e}\"", ")", "try", ":", "task", ":", "BaseOperator", "=", "operator_obj", "(", "*", "*", "task_params", ")", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "f\"Failed to create {operator_obj} task. err: {e}\"", ")", "return", "task" ]
Takes an operator and params and creates an instance of that operator. :returns: instance of operator object
[ "Takes", "an", "operator", "and", "params", "and", "creates", "an", "instance", "of", "that", "operator", "." ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagbuilder.py#L46-L61
5,236
ajbosco/dag-factory
dagfactory/dagbuilder.py
DagBuilder.build
def build(self) -> Dict[str, Union[str, DAG]]: """ Generates a DAG from the DAG parameters. :returns: dict with dag_id and DAG object :type: Dict[str, Union[str, DAG]] """ dag_params: Dict[str, Any] = self.get_dag_params() dag: DAG = DAG( dag_id=dag_params["dag_id"], schedule_interval=dag_params["schedule_interval"], description=dag_params.get("description", ""), max_active_runs=dag_params.get( "max_active_runs", configuration.conf.getint("core", "max_active_runs_per_dag"), ), default_args=dag_params.get("default_args", {}), ) tasks: Dict[str, Dict[str, Any]] = dag_params["tasks"] # create dictionary to track tasks and set dependencies tasks_dict: Dict[str, BaseOperator] = {} for task_name, task_conf in tasks.items(): task_conf["task_id"]: str = task_name operator: str = task_conf["operator"] task_conf["dag"]: DAG = dag params: Dict[str, Any] = {k: v for k, v in task_conf.items() if k not in SYSTEM_PARAMS} task: BaseOperator = DagBuilder.make_task(operator=operator, task_params=params) tasks_dict[task.task_id]: BaseOperator = task # set task dependencies after creating tasks for task_name, task_conf in tasks.items(): if task_conf.get("dependencies"): source_task: BaseOperator = tasks_dict[task_name] for dep in task_conf["dependencies"]: dep_task: BaseOperator = tasks_dict[dep] source_task.set_upstream(dep_task) return {"dag_id": dag_params["dag_id"], "dag": dag}
python
def build(self) -> Dict[str, Union[str, DAG]]: """ Generates a DAG from the DAG parameters. :returns: dict with dag_id and DAG object :type: Dict[str, Union[str, DAG]] """ dag_params: Dict[str, Any] = self.get_dag_params() dag: DAG = DAG( dag_id=dag_params["dag_id"], schedule_interval=dag_params["schedule_interval"], description=dag_params.get("description", ""), max_active_runs=dag_params.get( "max_active_runs", configuration.conf.getint("core", "max_active_runs_per_dag"), ), default_args=dag_params.get("default_args", {}), ) tasks: Dict[str, Dict[str, Any]] = dag_params["tasks"] # create dictionary to track tasks and set dependencies tasks_dict: Dict[str, BaseOperator] = {} for task_name, task_conf in tasks.items(): task_conf["task_id"]: str = task_name operator: str = task_conf["operator"] task_conf["dag"]: DAG = dag params: Dict[str, Any] = {k: v for k, v in task_conf.items() if k not in SYSTEM_PARAMS} task: BaseOperator = DagBuilder.make_task(operator=operator, task_params=params) tasks_dict[task.task_id]: BaseOperator = task # set task dependencies after creating tasks for task_name, task_conf in tasks.items(): if task_conf.get("dependencies"): source_task: BaseOperator = tasks_dict[task_name] for dep in task_conf["dependencies"]: dep_task: BaseOperator = tasks_dict[dep] source_task.set_upstream(dep_task) return {"dag_id": dag_params["dag_id"], "dag": dag}
[ "def", "build", "(", "self", ")", "->", "Dict", "[", "str", ",", "Union", "[", "str", ",", "DAG", "]", "]", ":", "dag_params", ":", "Dict", "[", "str", ",", "Any", "]", "=", "self", ".", "get_dag_params", "(", ")", "dag", ":", "DAG", "=", "DAG", "(", "dag_id", "=", "dag_params", "[", "\"dag_id\"", "]", ",", "schedule_interval", "=", "dag_params", "[", "\"schedule_interval\"", "]", ",", "description", "=", "dag_params", ".", "get", "(", "\"description\"", ",", "\"\"", ")", ",", "max_active_runs", "=", "dag_params", ".", "get", "(", "\"max_active_runs\"", ",", "configuration", ".", "conf", ".", "getint", "(", "\"core\"", ",", "\"max_active_runs_per_dag\"", ")", ",", ")", ",", "default_args", "=", "dag_params", ".", "get", "(", "\"default_args\"", ",", "{", "}", ")", ",", ")", "tasks", ":", "Dict", "[", "str", ",", "Dict", "[", "str", ",", "Any", "]", "]", "=", "dag_params", "[", "\"tasks\"", "]", "# create dictionary to track tasks and set dependencies", "tasks_dict", ":", "Dict", "[", "str", ",", "BaseOperator", "]", "=", "{", "}", "for", "task_name", ",", "task_conf", "in", "tasks", ".", "items", "(", ")", ":", "task_conf", "[", "\"task_id\"", "]", ":", "str", "=", "task_name", "operator", ":", "str", "=", "task_conf", "[", "\"operator\"", "]", "task_conf", "[", "\"dag\"", "]", ":", "DAG", "=", "dag", "params", ":", "Dict", "[", "str", ",", "Any", "]", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "task_conf", ".", "items", "(", ")", "if", "k", "not", "in", "SYSTEM_PARAMS", "}", "task", ":", "BaseOperator", "=", "DagBuilder", ".", "make_task", "(", "operator", "=", "operator", ",", "task_params", "=", "params", ")", "tasks_dict", "[", "task", ".", "task_id", "]", ":", "BaseOperator", "=", "task", "# set task dependencies after creating tasks", "for", "task_name", ",", "task_conf", "in", "tasks", ".", "items", "(", ")", ":", "if", "task_conf", ".", "get", "(", "\"dependencies\"", ")", ":", "source_task", ":", "BaseOperator", "=", "tasks_dict", "[", "task_name", "]", "for", "dep", "in", "task_conf", "[", "\"dependencies\"", "]", ":", "dep_task", ":", "BaseOperator", "=", "tasks_dict", "[", "dep", "]", "source_task", ".", "set_upstream", "(", "dep_task", ")", "return", "{", "\"dag_id\"", ":", "dag_params", "[", "\"dag_id\"", "]", ",", "\"dag\"", ":", "dag", "}" ]
Generates a DAG from the DAG parameters. :returns: dict with dag_id and DAG object :type: Dict[str, Union[str, DAG]]
[ "Generates", "a", "DAG", "from", "the", "DAG", "parameters", "." ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagbuilder.py#L63-L101
5,237
ajbosco/dag-factory
dagfactory/utils.py
merge_configs
def merge_configs(config: Dict[str, Any], default_config: Dict[str, Any]) -> Dict[str, Any]: """ Merges a `default` config with DAG config. Used to set default values for a group of DAGs. :param config: config to merge in default values :type config: Dict[str, Any] :param default_config: config to merge default values from :type default_config: Dict[str, Any] :returns: dict with merged configs :type: Dict[str, Any] """ for key in default_config: if key in config: if isinstance(config[key], dict) and isinstance(default_config[key], dict): merge_configs(config[key], default_config[key]) else: config[key]: Any = default_config[key] return config
python
def merge_configs(config: Dict[str, Any], default_config: Dict[str, Any]) -> Dict[str, Any]: """ Merges a `default` config with DAG config. Used to set default values for a group of DAGs. :param config: config to merge in default values :type config: Dict[str, Any] :param default_config: config to merge default values from :type default_config: Dict[str, Any] :returns: dict with merged configs :type: Dict[str, Any] """ for key in default_config: if key in config: if isinstance(config[key], dict) and isinstance(default_config[key], dict): merge_configs(config[key], default_config[key]) else: config[key]: Any = default_config[key] return config
[ "def", "merge_configs", "(", "config", ":", "Dict", "[", "str", ",", "Any", "]", ",", "default_config", ":", "Dict", "[", "str", ",", "Any", "]", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "for", "key", "in", "default_config", ":", "if", "key", "in", "config", ":", "if", "isinstance", "(", "config", "[", "key", "]", ",", "dict", ")", "and", "isinstance", "(", "default_config", "[", "key", "]", ",", "dict", ")", ":", "merge_configs", "(", "config", "[", "key", "]", ",", "default_config", "[", "key", "]", ")", "else", ":", "config", "[", "key", "]", ":", "Any", "=", "default_config", "[", "key", "]", "return", "config" ]
Merges a `default` config with DAG config. Used to set default values for a group of DAGs. :param config: config to merge in default values :type config: Dict[str, Any] :param default_config: config to merge default values from :type default_config: Dict[str, Any] :returns: dict with merged configs :type: Dict[str, Any]
[ "Merges", "a", "default", "config", "with", "DAG", "config", ".", "Used", "to", "set", "default", "values", "for", "a", "group", "of", "DAGs", "." ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/utils.py#L68-L86
5,238
ajbosco/dag-factory
dagfactory/dagfactory.py
DagFactory._load_config
def _load_config(config_filepath: str) -> Dict[str, Any]: """ Loads YAML config file to dictionary :returns: dict from YAML config file """ try: config: Dict[str, Any] = yaml.load(stream=open(config_filepath, "r")) except Exception as e: raise Exception(f"Invalid DAG Factory config file; err: {e}") return config
python
def _load_config(config_filepath: str) -> Dict[str, Any]: """ Loads YAML config file to dictionary :returns: dict from YAML config file """ try: config: Dict[str, Any] = yaml.load(stream=open(config_filepath, "r")) except Exception as e: raise Exception(f"Invalid DAG Factory config file; err: {e}") return config
[ "def", "_load_config", "(", "config_filepath", ":", "str", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "try", ":", "config", ":", "Dict", "[", "str", ",", "Any", "]", "=", "yaml", ".", "load", "(", "stream", "=", "open", "(", "config_filepath", ",", "\"r\"", ")", ")", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "f\"Invalid DAG Factory config file; err: {e}\"", ")", "return", "config" ]
Loads YAML config file to dictionary :returns: dict from YAML config file
[ "Loads", "YAML", "config", "file", "to", "dictionary" ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagfactory.py#L30-L40
5,239
ajbosco/dag-factory
dagfactory/dagfactory.py
DagFactory.get_dag_configs
def get_dag_configs(self) -> Dict[str, Dict[str, Any]]: """ Returns configuration for each the DAG in factory :returns: dict with configuration for dags """ return {dag: self.config[dag] for dag in self.config.keys() if dag != "default"}
python
def get_dag_configs(self) -> Dict[str, Dict[str, Any]]: """ Returns configuration for each the DAG in factory :returns: dict with configuration for dags """ return {dag: self.config[dag] for dag in self.config.keys() if dag != "default"}
[ "def", "get_dag_configs", "(", "self", ")", "->", "Dict", "[", "str", ",", "Dict", "[", "str", ",", "Any", "]", "]", ":", "return", "{", "dag", ":", "self", ".", "config", "[", "dag", "]", "for", "dag", "in", "self", ".", "config", ".", "keys", "(", ")", "if", "dag", "!=", "\"default\"", "}" ]
Returns configuration for each the DAG in factory :returns: dict with configuration for dags
[ "Returns", "configuration", "for", "each", "the", "DAG", "in", "factory" ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagfactory.py#L42-L48
5,240
ajbosco/dag-factory
dagfactory/dagfactory.py
DagFactory.generate_dags
def generate_dags(self, globals: Dict[str, Any]) -> None: """ Generates DAGs from YAML config :param globals: The globals() from the file used to generate DAGs. The dag_id must be passed into globals() for Airflow to import """ dag_configs: Dict[str, Dict[str, Any]] = self.get_dag_configs() default_config: Dict[str, Any] = self.get_default_config() for dag_name, dag_config in dag_configs.items(): dag_builder: DagBuilder = DagBuilder(dag_name=dag_name, dag_config=dag_config, default_config=default_config) try: dag: Dict[str, Union[str, DAG]] = dag_builder.build() except Exception as e: raise Exception( f"Failed to generate dag {dag_name}. make sure config is properly populated. err:{e}" ) globals[dag["dag_id"]]: DAG = dag["dag"]
python
def generate_dags(self, globals: Dict[str, Any]) -> None: """ Generates DAGs from YAML config :param globals: The globals() from the file used to generate DAGs. The dag_id must be passed into globals() for Airflow to import """ dag_configs: Dict[str, Dict[str, Any]] = self.get_dag_configs() default_config: Dict[str, Any] = self.get_default_config() for dag_name, dag_config in dag_configs.items(): dag_builder: DagBuilder = DagBuilder(dag_name=dag_name, dag_config=dag_config, default_config=default_config) try: dag: Dict[str, Union[str, DAG]] = dag_builder.build() except Exception as e: raise Exception( f"Failed to generate dag {dag_name}. make sure config is properly populated. err:{e}" ) globals[dag["dag_id"]]: DAG = dag["dag"]
[ "def", "generate_dags", "(", "self", ",", "globals", ":", "Dict", "[", "str", ",", "Any", "]", ")", "->", "None", ":", "dag_configs", ":", "Dict", "[", "str", ",", "Dict", "[", "str", ",", "Any", "]", "]", "=", "self", ".", "get_dag_configs", "(", ")", "default_config", ":", "Dict", "[", "str", ",", "Any", "]", "=", "self", ".", "get_default_config", "(", ")", "for", "dag_name", ",", "dag_config", "in", "dag_configs", ".", "items", "(", ")", ":", "dag_builder", ":", "DagBuilder", "=", "DagBuilder", "(", "dag_name", "=", "dag_name", ",", "dag_config", "=", "dag_config", ",", "default_config", "=", "default_config", ")", "try", ":", "dag", ":", "Dict", "[", "str", ",", "Union", "[", "str", ",", "DAG", "]", "]", "=", "dag_builder", ".", "build", "(", ")", "except", "Exception", "as", "e", ":", "raise", "Exception", "(", "f\"Failed to generate dag {dag_name}. make sure config is properly populated. err:{e}\"", ")", "globals", "[", "dag", "[", "\"dag_id\"", "]", "]", ":", "DAG", "=", "dag", "[", "\"dag\"", "]" ]
Generates DAGs from YAML config :param globals: The globals() from the file used to generate DAGs. The dag_id must be passed into globals() for Airflow to import
[ "Generates", "DAGs", "from", "YAML", "config" ]
cc7cfe74e62f82859fe38d527e95311a2805723b
https://github.com/ajbosco/dag-factory/blob/cc7cfe74e62f82859fe38d527e95311a2805723b/dagfactory/dagfactory.py#L58-L78
5,241
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.attributes
def attributes(self): """Return sync attributes.""" attr = { 'name': self.name, 'id': self.sync_id, 'network_id': self.network_id, 'serial': self.serial, 'status': self.status, 'region': self.region, 'region_id': self.region_id, } return attr
python
def attributes(self): """Return sync attributes.""" attr = { 'name': self.name, 'id': self.sync_id, 'network_id': self.network_id, 'serial': self.serial, 'status': self.status, 'region': self.region, 'region_id': self.region_id, } return attr
[ "def", "attributes", "(", "self", ")", ":", "attr", "=", "{", "'name'", ":", "self", ".", "name", ",", "'id'", ":", "self", ".", "sync_id", ",", "'network_id'", ":", "self", ".", "network_id", ",", "'serial'", ":", "self", ".", "serial", ",", "'status'", ":", "self", ".", "status", ",", "'region'", ":", "self", ".", "region", ",", "'region_id'", ":", "self", ".", "region_id", ",", "}", "return", "attr" ]
Return sync attributes.
[ "Return", "sync", "attributes", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L41-L52
5,242
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.arm
def arm(self, value): """Arm or disarm system.""" if value: return api.request_system_arm(self.blink, self.network_id) return api.request_system_disarm(self.blink, self.network_id)
python
def arm(self, value): """Arm or disarm system.""" if value: return api.request_system_arm(self.blink, self.network_id) return api.request_system_disarm(self.blink, self.network_id)
[ "def", "arm", "(", "self", ",", "value", ")", ":", "if", "value", ":", "return", "api", ".", "request_system_arm", "(", "self", ".", "blink", ",", "self", ".", "network_id", ")", "return", "api", ".", "request_system_disarm", "(", "self", ".", "blink", ",", "self", ".", "network_id", ")" ]
Arm or disarm system.
[ "Arm", "or", "disarm", "system", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L73-L78
5,243
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.start
def start(self): """Initialize the system.""" response = api.request_syncmodule(self.blink, self.network_id, force=True) try: self.summary = response['syncmodule'] self.network_id = self.summary['network_id'] except (TypeError, KeyError): _LOGGER.error(("Could not retrieve sync module information " "with response: %s"), response, exc_info=True) return False try: self.sync_id = self.summary['id'] self.serial = self.summary['serial'] self.status = self.summary['status'] except KeyError: _LOGGER.error("Could not extract some sync module info: %s", response, exc_info=True) self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() try: for camera_config in self.camera_list: if 'name' not in camera_config: break name = camera_config['name'] self.cameras[name] = BlinkCamera(self) self.motion[name] = False camera_info = self.get_camera_info(camera_config['id']) self.cameras[name].update(camera_info, force_cache=True, force=True) except KeyError: _LOGGER.error("Could not create cameras instances for %s", self.name, exc_info=True) return False return True
python
def start(self): """Initialize the system.""" response = api.request_syncmodule(self.blink, self.network_id, force=True) try: self.summary = response['syncmodule'] self.network_id = self.summary['network_id'] except (TypeError, KeyError): _LOGGER.error(("Could not retrieve sync module information " "with response: %s"), response, exc_info=True) return False try: self.sync_id = self.summary['id'] self.serial = self.summary['serial'] self.status = self.summary['status'] except KeyError: _LOGGER.error("Could not extract some sync module info: %s", response, exc_info=True) self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() try: for camera_config in self.camera_list: if 'name' not in camera_config: break name = camera_config['name'] self.cameras[name] = BlinkCamera(self) self.motion[name] = False camera_info = self.get_camera_info(camera_config['id']) self.cameras[name].update(camera_info, force_cache=True, force=True) except KeyError: _LOGGER.error("Could not create cameras instances for %s", self.name, exc_info=True) return False return True
[ "def", "start", "(", "self", ")", ":", "response", "=", "api", ".", "request_syncmodule", "(", "self", ".", "blink", ",", "self", ".", "network_id", ",", "force", "=", "True", ")", "try", ":", "self", ".", "summary", "=", "response", "[", "'syncmodule'", "]", "self", ".", "network_id", "=", "self", ".", "summary", "[", "'network_id'", "]", "except", "(", "TypeError", ",", "KeyError", ")", ":", "_LOGGER", ".", "error", "(", "(", "\"Could not retrieve sync module information \"", "\"with response: %s\"", ")", ",", "response", ",", "exc_info", "=", "True", ")", "return", "False", "try", ":", "self", ".", "sync_id", "=", "self", ".", "summary", "[", "'id'", "]", "self", ".", "serial", "=", "self", ".", "summary", "[", "'serial'", "]", "self", ".", "status", "=", "self", ".", "summary", "[", "'status'", "]", "except", "KeyError", ":", "_LOGGER", ".", "error", "(", "\"Could not extract some sync module info: %s\"", ",", "response", ",", "exc_info", "=", "True", ")", "self", ".", "network_info", "=", "api", ".", "request_network_status", "(", "self", ".", "blink", ",", "self", ".", "network_id", ")", "self", ".", "check_new_videos", "(", ")", "try", ":", "for", "camera_config", "in", "self", ".", "camera_list", ":", "if", "'name'", "not", "in", "camera_config", ":", "break", "name", "=", "camera_config", "[", "'name'", "]", "self", ".", "cameras", "[", "name", "]", "=", "BlinkCamera", "(", "self", ")", "self", ".", "motion", "[", "name", "]", "=", "False", "camera_info", "=", "self", ".", "get_camera_info", "(", "camera_config", "[", "'id'", "]", ")", "self", ".", "cameras", "[", "name", "]", ".", "update", "(", "camera_info", ",", "force_cache", "=", "True", ",", "force", "=", "True", ")", "except", "KeyError", ":", "_LOGGER", ".", "error", "(", "\"Could not create cameras instances for %s\"", ",", "self", ".", "name", ",", "exc_info", "=", "True", ")", "return", "False", "return", "True" ]
Initialize the system.
[ "Initialize", "the", "system", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L80-L123
5,244
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.get_events
def get_events(self, **kwargs): """Retrieve events from server.""" force = kwargs.pop('force', False) response = api.request_sync_events(self.blink, self.network_id, force=force) try: return response['event'] except (TypeError, KeyError): _LOGGER.error("Could not extract events: %s", response, exc_info=True) return False
python
def get_events(self, **kwargs): """Retrieve events from server.""" force = kwargs.pop('force', False) response = api.request_sync_events(self.blink, self.network_id, force=force) try: return response['event'] except (TypeError, KeyError): _LOGGER.error("Could not extract events: %s", response, exc_info=True) return False
[ "def", "get_events", "(", "self", ",", "*", "*", "kwargs", ")", ":", "force", "=", "kwargs", ".", "pop", "(", "'force'", ",", "False", ")", "response", "=", "api", ".", "request_sync_events", "(", "self", ".", "blink", ",", "self", ".", "network_id", ",", "force", "=", "force", ")", "try", ":", "return", "response", "[", "'event'", "]", "except", "(", "TypeError", ",", "KeyError", ")", ":", "_LOGGER", ".", "error", "(", "\"Could not extract events: %s\"", ",", "response", ",", "exc_info", "=", "True", ")", "return", "False" ]
Retrieve events from server.
[ "Retrieve", "events", "from", "server", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L125-L137
5,245
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.get_camera_info
def get_camera_info(self, camera_id): """Retrieve camera information.""" response = api.request_camera_info(self.blink, self.network_id, camera_id) try: return response['camera'][0] except (TypeError, KeyError): _LOGGER.error("Could not extract camera info: %s", response, exc_info=True) return []
python
def get_camera_info(self, camera_id): """Retrieve camera information.""" response = api.request_camera_info(self.blink, self.network_id, camera_id) try: return response['camera'][0] except (TypeError, KeyError): _LOGGER.error("Could not extract camera info: %s", response, exc_info=True) return []
[ "def", "get_camera_info", "(", "self", ",", "camera_id", ")", ":", "response", "=", "api", ".", "request_camera_info", "(", "self", ".", "blink", ",", "self", ".", "network_id", ",", "camera_id", ")", "try", ":", "return", "response", "[", "'camera'", "]", "[", "0", "]", "except", "(", "TypeError", ",", "KeyError", ")", ":", "_LOGGER", ".", "error", "(", "\"Could not extract camera info: %s\"", ",", "response", ",", "exc_info", "=", "True", ")", "return", "[", "]" ]
Retrieve camera information.
[ "Retrieve", "camera", "information", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L139-L150
5,246
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.refresh
def refresh(self, force_cache=False): """Get all blink cameras and pulls their most recent status.""" self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() for camera_name in self.cameras.keys(): camera_id = self.cameras[camera_name].camera_id camera_info = self.get_camera_info(camera_id) self.cameras[camera_name].update(camera_info, force_cache=force_cache)
python
def refresh(self, force_cache=False): """Get all blink cameras and pulls their most recent status.""" self.network_info = api.request_network_status(self.blink, self.network_id) self.check_new_videos() for camera_name in self.cameras.keys(): camera_id = self.cameras[camera_name].camera_id camera_info = self.get_camera_info(camera_id) self.cameras[camera_name].update(camera_info, force_cache=force_cache)
[ "def", "refresh", "(", "self", ",", "force_cache", "=", "False", ")", ":", "self", ".", "network_info", "=", "api", ".", "request_network_status", "(", "self", ".", "blink", ",", "self", ".", "network_id", ")", "self", ".", "check_new_videos", "(", ")", "for", "camera_name", "in", "self", ".", "cameras", ".", "keys", "(", ")", ":", "camera_id", "=", "self", ".", "cameras", "[", "camera_name", "]", ".", "camera_id", "camera_info", "=", "self", ".", "get_camera_info", "(", "camera_id", ")", "self", ".", "cameras", "[", "camera_name", "]", ".", "update", "(", "camera_info", ",", "force_cache", "=", "force_cache", ")" ]
Get all blink cameras and pulls their most recent status.
[ "Get", "all", "blink", "cameras", "and", "pulls", "their", "most", "recent", "status", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L152-L161
5,247
fronzbot/blinkpy
blinkpy/sync_module.py
BlinkSyncModule.check_new_videos
def check_new_videos(self): """Check if new videos since last refresh.""" resp = api.request_videos(self.blink, time=self.blink.last_refresh, page=0) for camera in self.cameras.keys(): self.motion[camera] = False try: info = resp['videos'] except (KeyError, TypeError): _LOGGER.warning("Could not check for motion. Response: %s", resp) return False for entry in info: try: name = entry['camera_name'] clip = entry['address'] timestamp = entry['created_at'] self.motion[name] = True self.last_record[name] = {'clip': clip, 'time': timestamp} except KeyError: _LOGGER.debug("No new videos since last refresh.") return True
python
def check_new_videos(self): """Check if new videos since last refresh.""" resp = api.request_videos(self.blink, time=self.blink.last_refresh, page=0) for camera in self.cameras.keys(): self.motion[camera] = False try: info = resp['videos'] except (KeyError, TypeError): _LOGGER.warning("Could not check for motion. Response: %s", resp) return False for entry in info: try: name = entry['camera_name'] clip = entry['address'] timestamp = entry['created_at'] self.motion[name] = True self.last_record[name] = {'clip': clip, 'time': timestamp} except KeyError: _LOGGER.debug("No new videos since last refresh.") return True
[ "def", "check_new_videos", "(", "self", ")", ":", "resp", "=", "api", ".", "request_videos", "(", "self", ".", "blink", ",", "time", "=", "self", ".", "blink", ".", "last_refresh", ",", "page", "=", "0", ")", "for", "camera", "in", "self", ".", "cameras", ".", "keys", "(", ")", ":", "self", ".", "motion", "[", "camera", "]", "=", "False", "try", ":", "info", "=", "resp", "[", "'videos'", "]", "except", "(", "KeyError", ",", "TypeError", ")", ":", "_LOGGER", ".", "warning", "(", "\"Could not check for motion. Response: %s\"", ",", "resp", ")", "return", "False", "for", "entry", "in", "info", ":", "try", ":", "name", "=", "entry", "[", "'camera_name'", "]", "clip", "=", "entry", "[", "'address'", "]", "timestamp", "=", "entry", "[", "'created_at'", "]", "self", ".", "motion", "[", "name", "]", "=", "True", "self", ".", "last_record", "[", "name", "]", "=", "{", "'clip'", ":", "clip", ",", "'time'", ":", "timestamp", "}", "except", "KeyError", ":", "_LOGGER", ".", "debug", "(", "\"No new videos since last refresh.\"", ")", "return", "True" ]
Check if new videos since last refresh.
[ "Check", "if", "new", "videos", "since", "last", "refresh", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/sync_module.py#L163-L188
5,248
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.attributes
def attributes(self): """Return dictionary of all camera attributes.""" attributes = { 'name': self.name, 'camera_id': self.camera_id, 'serial': self.serial, 'temperature': self.temperature, 'temperature_c': self.temperature_c, 'temperature_calibrated': self.temperature_calibrated, 'battery': self.battery, 'thumbnail': self.thumbnail, 'video': self.clip, 'motion_enabled': self.motion_enabled, 'motion_detected': self.motion_detected, 'wifi_strength': self.wifi_strength, 'network_id': self.sync.network_id, 'sync_module': self.sync.name, 'last_record': self.last_record } return attributes
python
def attributes(self): """Return dictionary of all camera attributes.""" attributes = { 'name': self.name, 'camera_id': self.camera_id, 'serial': self.serial, 'temperature': self.temperature, 'temperature_c': self.temperature_c, 'temperature_calibrated': self.temperature_calibrated, 'battery': self.battery, 'thumbnail': self.thumbnail, 'video': self.clip, 'motion_enabled': self.motion_enabled, 'motion_detected': self.motion_detected, 'wifi_strength': self.wifi_strength, 'network_id': self.sync.network_id, 'sync_module': self.sync.name, 'last_record': self.last_record } return attributes
[ "def", "attributes", "(", "self", ")", ":", "attributes", "=", "{", "'name'", ":", "self", ".", "name", ",", "'camera_id'", ":", "self", ".", "camera_id", ",", "'serial'", ":", "self", ".", "serial", ",", "'temperature'", ":", "self", ".", "temperature", ",", "'temperature_c'", ":", "self", ".", "temperature_c", ",", "'temperature_calibrated'", ":", "self", ".", "temperature_calibrated", ",", "'battery'", ":", "self", ".", "battery", ",", "'thumbnail'", ":", "self", ".", "thumbnail", ",", "'video'", ":", "self", ".", "clip", ",", "'motion_enabled'", ":", "self", ".", "motion_enabled", ",", "'motion_detected'", ":", "self", ".", "motion_detected", ",", "'wifi_strength'", ":", "self", ".", "wifi_strength", ",", "'network_id'", ":", "self", ".", "sync", ".", "network_id", ",", "'sync_module'", ":", "self", ".", "sync", ".", "name", ",", "'last_record'", ":", "self", ".", "last_record", "}", "return", "attributes" ]
Return dictionary of all camera attributes.
[ "Return", "dictionary", "of", "all", "camera", "attributes", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L34-L53
5,249
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.snap_picture
def snap_picture(self): """Take a picture with camera to create a new thumbnail.""" return api.request_new_image(self.sync.blink, self.network_id, self.camera_id)
python
def snap_picture(self): """Take a picture with camera to create a new thumbnail.""" return api.request_new_image(self.sync.blink, self.network_id, self.camera_id)
[ "def", "snap_picture", "(", "self", ")", ":", "return", "api", ".", "request_new_image", "(", "self", ".", "sync", ".", "blink", ",", "self", ".", "network_id", ",", "self", ".", "camera_id", ")" ]
Take a picture with camera to create a new thumbnail.
[ "Take", "a", "picture", "with", "camera", "to", "create", "a", "new", "thumbnail", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L79-L83
5,250
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.set_motion_detect
def set_motion_detect(self, enable): """Set motion detection.""" if enable: return api.request_motion_detection_enable(self.sync.blink, self.network_id, self.camera_id) return api.request_motion_detection_disable(self.sync.blink, self.network_id, self.camera_id)
python
def set_motion_detect(self, enable): """Set motion detection.""" if enable: return api.request_motion_detection_enable(self.sync.blink, self.network_id, self.camera_id) return api.request_motion_detection_disable(self.sync.blink, self.network_id, self.camera_id)
[ "def", "set_motion_detect", "(", "self", ",", "enable", ")", ":", "if", "enable", ":", "return", "api", ".", "request_motion_detection_enable", "(", "self", ".", "sync", ".", "blink", ",", "self", ".", "network_id", ",", "self", ".", "camera_id", ")", "return", "api", ".", "request_motion_detection_disable", "(", "self", ".", "sync", ".", "blink", ",", "self", ".", "network_id", ",", "self", ".", "camera_id", ")" ]
Set motion detection.
[ "Set", "motion", "detection", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L85-L93
5,251
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.update
def update(self, config, force_cache=False, **kwargs): """Update camera info.""" # force = kwargs.pop('force', False) self.name = config['name'] self.camera_id = str(config['id']) self.network_id = str(config['network_id']) self.serial = config['serial'] self.motion_enabled = config['enabled'] self.battery_voltage = config['battery_voltage'] self.battery_state = config['battery_state'] self.temperature = config['temperature'] self.wifi_strength = config['wifi_strength'] # Retrieve calibrated temperature from special endpoint resp = api.request_camera_sensors(self.sync.blink, self.network_id, self.camera_id) try: self.temperature_calibrated = resp['temp'] except KeyError: self.temperature_calibrated = self.temperature _LOGGER.warning("Could not retrieve calibrated temperature.") # Check if thumbnail exists in config, if not try to # get it from the homescreen info in teh sync module # otherwise set it to None and log an error new_thumbnail = None if config['thumbnail']: thumb_addr = config['thumbnail'] else: thumb_addr = self.get_thumb_from_homescreen() if thumb_addr is not None: new_thumbnail = "{}{}.jpg".format(self.sync.urls.base_url, thumb_addr) try: self.motion_detected = self.sync.motion[self.name] except KeyError: self.motion_detected = False clip_addr = None if self.name in self.sync.last_record: clip_addr = self.sync.last_record[self.name]['clip'] self.last_record = self.sync.last_record[self.name]['time'] self.clip = "{}{}".format(self.sync.urls.base_url, clip_addr) # If the thumbnail or clip have changed, update the cache update_cached_image = False if new_thumbnail != self.thumbnail or self._cached_image is None: update_cached_image = True self.thumbnail = new_thumbnail update_cached_video = False if self._cached_video is None or self.motion_detected: update_cached_video = True if new_thumbnail is not None and (update_cached_image or force_cache): self._cached_image = api.http_get(self.sync.blink, url=self.thumbnail, stream=True, json=False) if clip_addr is not None and (update_cached_video or force_cache): self._cached_video = api.http_get(self.sync.blink, url=self.clip, stream=True, json=False)
python
def update(self, config, force_cache=False, **kwargs): """Update camera info.""" # force = kwargs.pop('force', False) self.name = config['name'] self.camera_id = str(config['id']) self.network_id = str(config['network_id']) self.serial = config['serial'] self.motion_enabled = config['enabled'] self.battery_voltage = config['battery_voltage'] self.battery_state = config['battery_state'] self.temperature = config['temperature'] self.wifi_strength = config['wifi_strength'] # Retrieve calibrated temperature from special endpoint resp = api.request_camera_sensors(self.sync.blink, self.network_id, self.camera_id) try: self.temperature_calibrated = resp['temp'] except KeyError: self.temperature_calibrated = self.temperature _LOGGER.warning("Could not retrieve calibrated temperature.") # Check if thumbnail exists in config, if not try to # get it from the homescreen info in teh sync module # otherwise set it to None and log an error new_thumbnail = None if config['thumbnail']: thumb_addr = config['thumbnail'] else: thumb_addr = self.get_thumb_from_homescreen() if thumb_addr is not None: new_thumbnail = "{}{}.jpg".format(self.sync.urls.base_url, thumb_addr) try: self.motion_detected = self.sync.motion[self.name] except KeyError: self.motion_detected = False clip_addr = None if self.name in self.sync.last_record: clip_addr = self.sync.last_record[self.name]['clip'] self.last_record = self.sync.last_record[self.name]['time'] self.clip = "{}{}".format(self.sync.urls.base_url, clip_addr) # If the thumbnail or clip have changed, update the cache update_cached_image = False if new_thumbnail != self.thumbnail or self._cached_image is None: update_cached_image = True self.thumbnail = new_thumbnail update_cached_video = False if self._cached_video is None or self.motion_detected: update_cached_video = True if new_thumbnail is not None and (update_cached_image or force_cache): self._cached_image = api.http_get(self.sync.blink, url=self.thumbnail, stream=True, json=False) if clip_addr is not None and (update_cached_video or force_cache): self._cached_video = api.http_get(self.sync.blink, url=self.clip, stream=True, json=False)
[ "def", "update", "(", "self", ",", "config", ",", "force_cache", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# force = kwargs.pop('force', False)", "self", ".", "name", "=", "config", "[", "'name'", "]", "self", ".", "camera_id", "=", "str", "(", "config", "[", "'id'", "]", ")", "self", ".", "network_id", "=", "str", "(", "config", "[", "'network_id'", "]", ")", "self", ".", "serial", "=", "config", "[", "'serial'", "]", "self", ".", "motion_enabled", "=", "config", "[", "'enabled'", "]", "self", ".", "battery_voltage", "=", "config", "[", "'battery_voltage'", "]", "self", ".", "battery_state", "=", "config", "[", "'battery_state'", "]", "self", ".", "temperature", "=", "config", "[", "'temperature'", "]", "self", ".", "wifi_strength", "=", "config", "[", "'wifi_strength'", "]", "# Retrieve calibrated temperature from special endpoint", "resp", "=", "api", ".", "request_camera_sensors", "(", "self", ".", "sync", ".", "blink", ",", "self", ".", "network_id", ",", "self", ".", "camera_id", ")", "try", ":", "self", ".", "temperature_calibrated", "=", "resp", "[", "'temp'", "]", "except", "KeyError", ":", "self", ".", "temperature_calibrated", "=", "self", ".", "temperature", "_LOGGER", ".", "warning", "(", "\"Could not retrieve calibrated temperature.\"", ")", "# Check if thumbnail exists in config, if not try to", "# get it from the homescreen info in teh sync module", "# otherwise set it to None and log an error", "new_thumbnail", "=", "None", "if", "config", "[", "'thumbnail'", "]", ":", "thumb_addr", "=", "config", "[", "'thumbnail'", "]", "else", ":", "thumb_addr", "=", "self", ".", "get_thumb_from_homescreen", "(", ")", "if", "thumb_addr", "is", "not", "None", ":", "new_thumbnail", "=", "\"{}{}.jpg\"", ".", "format", "(", "self", ".", "sync", ".", "urls", ".", "base_url", ",", "thumb_addr", ")", "try", ":", "self", ".", "motion_detected", "=", "self", ".", "sync", ".", "motion", "[", "self", ".", "name", "]", "except", "KeyError", ":", "self", ".", "motion_detected", "=", "False", "clip_addr", "=", "None", "if", "self", ".", "name", "in", "self", ".", "sync", ".", "last_record", ":", "clip_addr", "=", "self", ".", "sync", ".", "last_record", "[", "self", ".", "name", "]", "[", "'clip'", "]", "self", ".", "last_record", "=", "self", ".", "sync", ".", "last_record", "[", "self", ".", "name", "]", "[", "'time'", "]", "self", ".", "clip", "=", "\"{}{}\"", ".", "format", "(", "self", ".", "sync", ".", "urls", ".", "base_url", ",", "clip_addr", ")", "# If the thumbnail or clip have changed, update the cache", "update_cached_image", "=", "False", "if", "new_thumbnail", "!=", "self", ".", "thumbnail", "or", "self", ".", "_cached_image", "is", "None", ":", "update_cached_image", "=", "True", "self", ".", "thumbnail", "=", "new_thumbnail", "update_cached_video", "=", "False", "if", "self", ".", "_cached_video", "is", "None", "or", "self", ".", "motion_detected", ":", "update_cached_video", "=", "True", "if", "new_thumbnail", "is", "not", "None", "and", "(", "update_cached_image", "or", "force_cache", ")", ":", "self", ".", "_cached_image", "=", "api", ".", "http_get", "(", "self", ".", "sync", ".", "blink", ",", "url", "=", "self", ".", "thumbnail", ",", "stream", "=", "True", ",", "json", "=", "False", ")", "if", "clip_addr", "is", "not", "None", "and", "(", "update_cached_video", "or", "force_cache", ")", ":", "self", ".", "_cached_video", "=", "api", ".", "http_get", "(", "self", ".", "sync", ".", "blink", ",", "url", "=", "self", ".", "clip", ",", "stream", "=", "True", ",", "json", "=", "False", ")" ]
Update camera info.
[ "Update", "camera", "info", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L95-L162
5,252
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.image_to_file
def image_to_file(self, path): """ Write image to file. :param path: Path to write file """ _LOGGER.debug("Writing image from %s to %s", self.name, path) response = self._cached_image if response.status_code == 200: with open(path, 'wb') as imgfile: copyfileobj(response.raw, imgfile) else: _LOGGER.error("Cannot write image to file, response %s", response.status_code, exc_info=True)
python
def image_to_file(self, path): """ Write image to file. :param path: Path to write file """ _LOGGER.debug("Writing image from %s to %s", self.name, path) response = self._cached_image if response.status_code == 200: with open(path, 'wb') as imgfile: copyfileobj(response.raw, imgfile) else: _LOGGER.error("Cannot write image to file, response %s", response.status_code, exc_info=True)
[ "def", "image_to_file", "(", "self", ",", "path", ")", ":", "_LOGGER", ".", "debug", "(", "\"Writing image from %s to %s\"", ",", "self", ".", "name", ",", "path", ")", "response", "=", "self", ".", "_cached_image", "if", "response", ".", "status_code", "==", "200", ":", "with", "open", "(", "path", ",", "'wb'", ")", "as", "imgfile", ":", "copyfileobj", "(", "response", ".", "raw", ",", "imgfile", ")", "else", ":", "_LOGGER", ".", "error", "(", "\"Cannot write image to file, response %s\"", ",", "response", ".", "status_code", ",", "exc_info", "=", "True", ")" ]
Write image to file. :param path: Path to write file
[ "Write", "image", "to", "file", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L164-L178
5,253
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.video_to_file
def video_to_file(self, path): """Write video to file. :param path: Path to write file """ _LOGGER.debug("Writing video from %s to %s", self.name, path) response = self._cached_video if response is None: _LOGGER.error("No saved video exist for %s.", self.name, exc_info=True) return with open(path, 'wb') as vidfile: copyfileobj(response.raw, vidfile)
python
def video_to_file(self, path): """Write video to file. :param path: Path to write file """ _LOGGER.debug("Writing video from %s to %s", self.name, path) response = self._cached_video if response is None: _LOGGER.error("No saved video exist for %s.", self.name, exc_info=True) return with open(path, 'wb') as vidfile: copyfileobj(response.raw, vidfile)
[ "def", "video_to_file", "(", "self", ",", "path", ")", ":", "_LOGGER", ".", "debug", "(", "\"Writing video from %s to %s\"", ",", "self", ".", "name", ",", "path", ")", "response", "=", "self", ".", "_cached_video", "if", "response", "is", "None", ":", "_LOGGER", ".", "error", "(", "\"No saved video exist for %s.\"", ",", "self", ".", "name", ",", "exc_info", "=", "True", ")", "return", "with", "open", "(", "path", ",", "'wb'", ")", "as", "vidfile", ":", "copyfileobj", "(", "response", ".", "raw", ",", "vidfile", ")" ]
Write video to file. :param path: Path to write file
[ "Write", "video", "to", "file", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L180-L193
5,254
fronzbot/blinkpy
blinkpy/camera.py
BlinkCamera.get_thumb_from_homescreen
def get_thumb_from_homescreen(self): """Retrieve thumbnail from homescreen.""" for device in self.sync.homescreen['devices']: try: device_type = device['device_type'] device_name = device['name'] device_thumb = device['thumbnail'] if device_type == 'camera' and device_name == self.name: return device_thumb except KeyError: pass _LOGGER.error("Could not find thumbnail for camera %s", self.name, exc_info=True) return None
python
def get_thumb_from_homescreen(self): """Retrieve thumbnail from homescreen.""" for device in self.sync.homescreen['devices']: try: device_type = device['device_type'] device_name = device['name'] device_thumb = device['thumbnail'] if device_type == 'camera' and device_name == self.name: return device_thumb except KeyError: pass _LOGGER.error("Could not find thumbnail for camera %s", self.name, exc_info=True) return None
[ "def", "get_thumb_from_homescreen", "(", "self", ")", ":", "for", "device", "in", "self", ".", "sync", ".", "homescreen", "[", "'devices'", "]", ":", "try", ":", "device_type", "=", "device", "[", "'device_type'", "]", "device_name", "=", "device", "[", "'name'", "]", "device_thumb", "=", "device", "[", "'thumbnail'", "]", "if", "device_type", "==", "'camera'", "and", "device_name", "==", "self", ".", "name", ":", "return", "device_thumb", "except", "KeyError", ":", "pass", "_LOGGER", ".", "error", "(", "\"Could not find thumbnail for camera %s\"", ",", "self", ".", "name", ",", "exc_info", "=", "True", ")", "return", "None" ]
Retrieve thumbnail from homescreen.
[ "Retrieve", "thumbnail", "from", "homescreen", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/camera.py#L195-L209
5,255
fronzbot/blinkpy
blinkpy/helpers/util.py
get_time
def get_time(time_to_convert=None): """Create blink-compatible timestamp.""" if time_to_convert is None: time_to_convert = time.time() return time.strftime(TIMESTAMP_FORMAT, time.localtime(time_to_convert))
python
def get_time(time_to_convert=None): """Create blink-compatible timestamp.""" if time_to_convert is None: time_to_convert = time.time() return time.strftime(TIMESTAMP_FORMAT, time.localtime(time_to_convert))
[ "def", "get_time", "(", "time_to_convert", "=", "None", ")", ":", "if", "time_to_convert", "is", "None", ":", "time_to_convert", "=", "time", ".", "time", "(", ")", "return", "time", ".", "strftime", "(", "TIMESTAMP_FORMAT", ",", "time", ".", "localtime", "(", "time_to_convert", ")", ")" ]
Create blink-compatible timestamp.
[ "Create", "blink", "-", "compatible", "timestamp", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/helpers/util.py#L14-L18
5,256
fronzbot/blinkpy
blinkpy/helpers/util.py
merge_dicts
def merge_dicts(dict_a, dict_b): """Merge two dictionaries into one.""" duplicates = [val for val in dict_a if val in dict_b] if duplicates: _LOGGER.warning(("Duplicates found during merge: %s. " "Renaming is recommended."), duplicates) return {**dict_a, **dict_b}
python
def merge_dicts(dict_a, dict_b): """Merge two dictionaries into one.""" duplicates = [val for val in dict_a if val in dict_b] if duplicates: _LOGGER.warning(("Duplicates found during merge: %s. " "Renaming is recommended."), duplicates) return {**dict_a, **dict_b}
[ "def", "merge_dicts", "(", "dict_a", ",", "dict_b", ")", ":", "duplicates", "=", "[", "val", "for", "val", "in", "dict_a", "if", "val", "in", "dict_b", "]", "if", "duplicates", ":", "_LOGGER", ".", "warning", "(", "(", "\"Duplicates found during merge: %s. \"", "\"Renaming is recommended.\"", ")", ",", "duplicates", ")", "return", "{", "*", "*", "dict_a", ",", "*", "*", "dict_b", "}" ]
Merge two dictionaries into one.
[ "Merge", "two", "dictionaries", "into", "one", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/helpers/util.py#L21-L27
5,257
fronzbot/blinkpy
blinkpy/helpers/util.py
attempt_reauthorization
def attempt_reauthorization(blink): """Attempt to refresh auth token and links.""" _LOGGER.info("Auth token expired, attempting reauthorization.") headers = blink.get_auth_token(is_retry=True) return headers
python
def attempt_reauthorization(blink): """Attempt to refresh auth token and links.""" _LOGGER.info("Auth token expired, attempting reauthorization.") headers = blink.get_auth_token(is_retry=True) return headers
[ "def", "attempt_reauthorization", "(", "blink", ")", ":", "_LOGGER", ".", "info", "(", "\"Auth token expired, attempting reauthorization.\"", ")", "headers", "=", "blink", ".", "get_auth_token", "(", "is_retry", "=", "True", ")", "return", "headers" ]
Attempt to refresh auth token and links.
[ "Attempt", "to", "refresh", "auth", "token", "and", "links", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/helpers/util.py#L36-L40
5,258
fronzbot/blinkpy
blinkpy/helpers/util.py
http_req
def http_req(blink, url='http://example.com', data=None, headers=None, reqtype='get', stream=False, json_resp=True, is_retry=False): """ Perform server requests and check if reauthorization neccessary. :param blink: Blink instance :param url: URL to perform request :param data: Data to send (default: None) :param headers: Headers to send (default: None) :param reqtype: Can be 'get' or 'post' (default: 'get') :param stream: Stream response? True/FALSE :param json_resp: Return JSON response? TRUE/False :param is_retry: Is this a retry attempt? True/FALSE """ if reqtype == 'post': req = Request('POST', url, headers=headers, data=data) elif reqtype == 'get': req = Request('GET', url, headers=headers) else: _LOGGER.error("Invalid request type: %s", reqtype) raise BlinkException(ERROR.REQUEST) prepped = req.prepare() try: response = blink.session.send(prepped, stream=stream, timeout=10) if json_resp and 'code' in response.json(): if is_retry: _LOGGER.error("Cannot obtain new token for server auth.") return None else: headers = attempt_reauthorization(blink) if not headers: raise exceptions.ConnectionError return http_req(blink, url=url, data=data, headers=headers, reqtype=reqtype, stream=stream, json_resp=json_resp, is_retry=True) except (exceptions.ConnectionError, exceptions.Timeout): _LOGGER.info("Cannot connect to server with url %s.", url) if not is_retry: headers = attempt_reauthorization(blink) return http_req(blink, url=url, data=data, headers=headers, reqtype=reqtype, stream=stream, json_resp=json_resp, is_retry=True) _LOGGER.error("Endpoint %s failed. Possible issue with Blink servers.", url) return None if json_resp: return response.json() return response
python
def http_req(blink, url='http://example.com', data=None, headers=None, reqtype='get', stream=False, json_resp=True, is_retry=False): """ Perform server requests and check if reauthorization neccessary. :param blink: Blink instance :param url: URL to perform request :param data: Data to send (default: None) :param headers: Headers to send (default: None) :param reqtype: Can be 'get' or 'post' (default: 'get') :param stream: Stream response? True/FALSE :param json_resp: Return JSON response? TRUE/False :param is_retry: Is this a retry attempt? True/FALSE """ if reqtype == 'post': req = Request('POST', url, headers=headers, data=data) elif reqtype == 'get': req = Request('GET', url, headers=headers) else: _LOGGER.error("Invalid request type: %s", reqtype) raise BlinkException(ERROR.REQUEST) prepped = req.prepare() try: response = blink.session.send(prepped, stream=stream, timeout=10) if json_resp and 'code' in response.json(): if is_retry: _LOGGER.error("Cannot obtain new token for server auth.") return None else: headers = attempt_reauthorization(blink) if not headers: raise exceptions.ConnectionError return http_req(blink, url=url, data=data, headers=headers, reqtype=reqtype, stream=stream, json_resp=json_resp, is_retry=True) except (exceptions.ConnectionError, exceptions.Timeout): _LOGGER.info("Cannot connect to server with url %s.", url) if not is_retry: headers = attempt_reauthorization(blink) return http_req(blink, url=url, data=data, headers=headers, reqtype=reqtype, stream=stream, json_resp=json_resp, is_retry=True) _LOGGER.error("Endpoint %s failed. Possible issue with Blink servers.", url) return None if json_resp: return response.json() return response
[ "def", "http_req", "(", "blink", ",", "url", "=", "'http://example.com'", ",", "data", "=", "None", ",", "headers", "=", "None", ",", "reqtype", "=", "'get'", ",", "stream", "=", "False", ",", "json_resp", "=", "True", ",", "is_retry", "=", "False", ")", ":", "if", "reqtype", "==", "'post'", ":", "req", "=", "Request", "(", "'POST'", ",", "url", ",", "headers", "=", "headers", ",", "data", "=", "data", ")", "elif", "reqtype", "==", "'get'", ":", "req", "=", "Request", "(", "'GET'", ",", "url", ",", "headers", "=", "headers", ")", "else", ":", "_LOGGER", ".", "error", "(", "\"Invalid request type: %s\"", ",", "reqtype", ")", "raise", "BlinkException", "(", "ERROR", ".", "REQUEST", ")", "prepped", "=", "req", ".", "prepare", "(", ")", "try", ":", "response", "=", "blink", ".", "session", ".", "send", "(", "prepped", ",", "stream", "=", "stream", ",", "timeout", "=", "10", ")", "if", "json_resp", "and", "'code'", "in", "response", ".", "json", "(", ")", ":", "if", "is_retry", ":", "_LOGGER", ".", "error", "(", "\"Cannot obtain new token for server auth.\"", ")", "return", "None", "else", ":", "headers", "=", "attempt_reauthorization", "(", "blink", ")", "if", "not", "headers", ":", "raise", "exceptions", ".", "ConnectionError", "return", "http_req", "(", "blink", ",", "url", "=", "url", ",", "data", "=", "data", ",", "headers", "=", "headers", ",", "reqtype", "=", "reqtype", ",", "stream", "=", "stream", ",", "json_resp", "=", "json_resp", ",", "is_retry", "=", "True", ")", "except", "(", "exceptions", ".", "ConnectionError", ",", "exceptions", ".", "Timeout", ")", ":", "_LOGGER", ".", "info", "(", "\"Cannot connect to server with url %s.\"", ",", "url", ")", "if", "not", "is_retry", ":", "headers", "=", "attempt_reauthorization", "(", "blink", ")", "return", "http_req", "(", "blink", ",", "url", "=", "url", ",", "data", "=", "data", ",", "headers", "=", "headers", ",", "reqtype", "=", "reqtype", ",", "stream", "=", "stream", ",", "json_resp", "=", "json_resp", ",", "is_retry", "=", "True", ")", "_LOGGER", ".", "error", "(", "\"Endpoint %s failed. Possible issue with Blink servers.\"", ",", "url", ")", "return", "None", "if", "json_resp", ":", "return", "response", ".", "json", "(", ")", "return", "response" ]
Perform server requests and check if reauthorization neccessary. :param blink: Blink instance :param url: URL to perform request :param data: Data to send (default: None) :param headers: Headers to send (default: None) :param reqtype: Can be 'get' or 'post' (default: 'get') :param stream: Stream response? True/FALSE :param json_resp: Return JSON response? TRUE/False :param is_retry: Is this a retry attempt? True/FALSE
[ "Perform", "server", "requests", "and", "check", "if", "reauthorization", "neccessary", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/helpers/util.py#L43-L94
5,259
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.start
def start(self): """ Perform full system setup. Method logs in and sets auth token, urls, and ids for future requests. Essentially this is just a wrapper function for ease of use. """ if self._username is None or self._password is None: if not self.login(): return elif not self.get_auth_token(): return camera_list = self.get_cameras() networks = self.get_ids() for network_name, network_id in networks.items(): if network_id not in camera_list.keys(): camera_list[network_id] = {} _LOGGER.warning("No cameras found for %s", network_name) sync_module = BlinkSyncModule(self, network_name, network_id, camera_list[network_id]) sync_module.start() self.sync[network_name] = sync_module self.cameras = self.merge_cameras()
python
def start(self): """ Perform full system setup. Method logs in and sets auth token, urls, and ids for future requests. Essentially this is just a wrapper function for ease of use. """ if self._username is None or self._password is None: if not self.login(): return elif not self.get_auth_token(): return camera_list = self.get_cameras() networks = self.get_ids() for network_name, network_id in networks.items(): if network_id not in camera_list.keys(): camera_list[network_id] = {} _LOGGER.warning("No cameras found for %s", network_name) sync_module = BlinkSyncModule(self, network_name, network_id, camera_list[network_id]) sync_module.start() self.sync[network_name] = sync_module self.cameras = self.merge_cameras()
[ "def", "start", "(", "self", ")", ":", "if", "self", ".", "_username", "is", "None", "or", "self", ".", "_password", "is", "None", ":", "if", "not", "self", ".", "login", "(", ")", ":", "return", "elif", "not", "self", ".", "get_auth_token", "(", ")", ":", "return", "camera_list", "=", "self", ".", "get_cameras", "(", ")", "networks", "=", "self", ".", "get_ids", "(", ")", "for", "network_name", ",", "network_id", "in", "networks", ".", "items", "(", ")", ":", "if", "network_id", "not", "in", "camera_list", ".", "keys", "(", ")", ":", "camera_list", "[", "network_id", "]", "=", "{", "}", "_LOGGER", ".", "warning", "(", "\"No cameras found for %s\"", ",", "network_name", ")", "sync_module", "=", "BlinkSyncModule", "(", "self", ",", "network_name", ",", "network_id", ",", "camera_list", "[", "network_id", "]", ")", "sync_module", ".", "start", "(", ")", "self", ".", "sync", "[", "network_name", "]", "=", "sync_module", "self", ".", "cameras", "=", "self", ".", "merge_cameras", "(", ")" ]
Perform full system setup. Method logs in and sets auth token, urls, and ids for future requests. Essentially this is just a wrapper function for ease of use.
[ "Perform", "full", "system", "setup", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L82-L107
5,260
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.login
def login(self): """Prompt user for username and password.""" self._username = input("Username:") self._password = getpass.getpass("Password:") if self.get_auth_token(): _LOGGER.debug("Login successful!") return True _LOGGER.warning("Unable to login with %s.", self._username) return False
python
def login(self): """Prompt user for username and password.""" self._username = input("Username:") self._password = getpass.getpass("Password:") if self.get_auth_token(): _LOGGER.debug("Login successful!") return True _LOGGER.warning("Unable to login with %s.", self._username) return False
[ "def", "login", "(", "self", ")", ":", "self", ".", "_username", "=", "input", "(", "\"Username:\"", ")", "self", ".", "_password", "=", "getpass", ".", "getpass", "(", "\"Password:\"", ")", "if", "self", ".", "get_auth_token", "(", ")", ":", "_LOGGER", ".", "debug", "(", "\"Login successful!\"", ")", "return", "True", "_LOGGER", ".", "warning", "(", "\"Unable to login with %s.\"", ",", "self", ".", "_username", ")", "return", "False" ]
Prompt user for username and password.
[ "Prompt", "user", "for", "username", "and", "password", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L109-L117
5,261
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.get_auth_token
def get_auth_token(self, is_retry=False): """Retrieve the authentication token from Blink.""" if not isinstance(self._username, str): raise BlinkAuthenticationException(ERROR.USERNAME) if not isinstance(self._password, str): raise BlinkAuthenticationException(ERROR.PASSWORD) login_urls = [LOGIN_URL, OLD_LOGIN_URL, LOGIN_BACKUP_URL] response = self.login_request(login_urls, is_retry=is_retry) if not response: return False self._host = "{}.{}".format(self.region_id, BLINK_URL) self._token = response['authtoken']['authtoken'] self.networks = response['networks'] self._auth_header = {'Host': self._host, 'TOKEN_AUTH': self._token} self.urls = BlinkURLHandler(self.region_id) return self._auth_header
python
def get_auth_token(self, is_retry=False): """Retrieve the authentication token from Blink.""" if not isinstance(self._username, str): raise BlinkAuthenticationException(ERROR.USERNAME) if not isinstance(self._password, str): raise BlinkAuthenticationException(ERROR.PASSWORD) login_urls = [LOGIN_URL, OLD_LOGIN_URL, LOGIN_BACKUP_URL] response = self.login_request(login_urls, is_retry=is_retry) if not response: return False self._host = "{}.{}".format(self.region_id, BLINK_URL) self._token = response['authtoken']['authtoken'] self.networks = response['networks'] self._auth_header = {'Host': self._host, 'TOKEN_AUTH': self._token} self.urls = BlinkURLHandler(self.region_id) return self._auth_header
[ "def", "get_auth_token", "(", "self", ",", "is_retry", "=", "False", ")", ":", "if", "not", "isinstance", "(", "self", ".", "_username", ",", "str", ")", ":", "raise", "BlinkAuthenticationException", "(", "ERROR", ".", "USERNAME", ")", "if", "not", "isinstance", "(", "self", ".", "_password", ",", "str", ")", ":", "raise", "BlinkAuthenticationException", "(", "ERROR", ".", "PASSWORD", ")", "login_urls", "=", "[", "LOGIN_URL", ",", "OLD_LOGIN_URL", ",", "LOGIN_BACKUP_URL", "]", "response", "=", "self", ".", "login_request", "(", "login_urls", ",", "is_retry", "=", "is_retry", ")", "if", "not", "response", ":", "return", "False", "self", ".", "_host", "=", "\"{}.{}\"", ".", "format", "(", "self", ".", "region_id", ",", "BLINK_URL", ")", "self", ".", "_token", "=", "response", "[", "'authtoken'", "]", "[", "'authtoken'", "]", "self", ".", "networks", "=", "response", "[", "'networks'", "]", "self", ".", "_auth_header", "=", "{", "'Host'", ":", "self", ".", "_host", ",", "'TOKEN_AUTH'", ":", "self", ".", "_token", "}", "self", ".", "urls", "=", "BlinkURLHandler", "(", "self", ".", "region_id", ")", "return", "self", ".", "_auth_header" ]
Retrieve the authentication token from Blink.
[ "Retrieve", "the", "authentication", "token", "from", "Blink", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L119-L141
5,262
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.login_request
def login_request(self, login_urls, is_retry=False): """Make a login request.""" try: login_url = login_urls.pop(0) except IndexError: _LOGGER.error("Could not login to blink servers.") return False _LOGGER.info("Attempting login with %s", login_url) response = api.request_login(self, login_url, self._username, self._password, is_retry=is_retry) try: if response.status_code != 200: response = self.login_request(login_urls) response = response.json() (self.region_id, self.region), = response['region'].items() except AttributeError: _LOGGER.error("Login API endpoint failed with response %s", response, exc_info=True) return False except KeyError: _LOGGER.warning("Could not extract region info.") self.region_id = 'piri' self.region = 'UNKNOWN' self._login_url = login_url return response
python
def login_request(self, login_urls, is_retry=False): """Make a login request.""" try: login_url = login_urls.pop(0) except IndexError: _LOGGER.error("Could not login to blink servers.") return False _LOGGER.info("Attempting login with %s", login_url) response = api.request_login(self, login_url, self._username, self._password, is_retry=is_retry) try: if response.status_code != 200: response = self.login_request(login_urls) response = response.json() (self.region_id, self.region), = response['region'].items() except AttributeError: _LOGGER.error("Login API endpoint failed with response %s", response, exc_info=True) return False except KeyError: _LOGGER.warning("Could not extract region info.") self.region_id = 'piri' self.region = 'UNKNOWN' self._login_url = login_url return response
[ "def", "login_request", "(", "self", ",", "login_urls", ",", "is_retry", "=", "False", ")", ":", "try", ":", "login_url", "=", "login_urls", ".", "pop", "(", "0", ")", "except", "IndexError", ":", "_LOGGER", ".", "error", "(", "\"Could not login to blink servers.\"", ")", "return", "False", "_LOGGER", ".", "info", "(", "\"Attempting login with %s\"", ",", "login_url", ")", "response", "=", "api", ".", "request_login", "(", "self", ",", "login_url", ",", "self", ".", "_username", ",", "self", ".", "_password", ",", "is_retry", "=", "is_retry", ")", "try", ":", "if", "response", ".", "status_code", "!=", "200", ":", "response", "=", "self", ".", "login_request", "(", "login_urls", ")", "response", "=", "response", ".", "json", "(", ")", "(", "self", ".", "region_id", ",", "self", ".", "region", ")", ",", "=", "response", "[", "'region'", "]", ".", "items", "(", ")", "except", "AttributeError", ":", "_LOGGER", ".", "error", "(", "\"Login API endpoint failed with response %s\"", ",", "response", ",", "exc_info", "=", "True", ")", "return", "False", "except", "KeyError", ":", "_LOGGER", ".", "warning", "(", "\"Could not extract region info.\"", ")", "self", ".", "region_id", "=", "'piri'", "self", ".", "region", "=", "'UNKNOWN'", "self", ".", "_login_url", "=", "login_url", "return", "response" ]
Make a login request.
[ "Make", "a", "login", "request", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L143-L176
5,263
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.get_ids
def get_ids(self): """Set the network ID and Account ID.""" response = api.request_networks(self) all_networks = [] network_dict = {} for network, status in self.networks.items(): if status['onboarded']: all_networks.append('{}'.format(network)) network_dict[status['name']] = network # For the first onboarded network we find, grab the account id for resp in response['networks']: if str(resp['id']) in all_networks: self.account_id = resp['account_id'] break self.network_ids = all_networks return network_dict
python
def get_ids(self): """Set the network ID and Account ID.""" response = api.request_networks(self) all_networks = [] network_dict = {} for network, status in self.networks.items(): if status['onboarded']: all_networks.append('{}'.format(network)) network_dict[status['name']] = network # For the first onboarded network we find, grab the account id for resp in response['networks']: if str(resp['id']) in all_networks: self.account_id = resp['account_id'] break self.network_ids = all_networks return network_dict
[ "def", "get_ids", "(", "self", ")", ":", "response", "=", "api", ".", "request_networks", "(", "self", ")", "all_networks", "=", "[", "]", "network_dict", "=", "{", "}", "for", "network", ",", "status", "in", "self", ".", "networks", ".", "items", "(", ")", ":", "if", "status", "[", "'onboarded'", "]", ":", "all_networks", ".", "append", "(", "'{}'", ".", "format", "(", "network", ")", ")", "network_dict", "[", "status", "[", "'name'", "]", "]", "=", "network", "# For the first onboarded network we find, grab the account id", "for", "resp", "in", "response", "[", "'networks'", "]", ":", "if", "str", "(", "resp", "[", "'id'", "]", ")", "in", "all_networks", ":", "self", ".", "account_id", "=", "resp", "[", "'account_id'", "]", "break", "self", ".", "network_ids", "=", "all_networks", "return", "network_dict" ]
Set the network ID and Account ID.
[ "Set", "the", "network", "ID", "and", "Account", "ID", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L178-L195
5,264
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.get_cameras
def get_cameras(self): """Retrieve a camera list for each onboarded network.""" response = api.request_homescreen(self) try: all_cameras = {} for camera in response['cameras']: camera_network = str(camera['network_id']) camera_name = camera['name'] camera_id = camera['id'] camera_info = {'name': camera_name, 'id': camera_id} if camera_network not in all_cameras: all_cameras[camera_network] = [] all_cameras[camera_network].append(camera_info) return all_cameras except KeyError: _LOGGER.error("Initialization failue. Could not retrieve cameras.") return {}
python
def get_cameras(self): """Retrieve a camera list for each onboarded network.""" response = api.request_homescreen(self) try: all_cameras = {} for camera in response['cameras']: camera_network = str(camera['network_id']) camera_name = camera['name'] camera_id = camera['id'] camera_info = {'name': camera_name, 'id': camera_id} if camera_network not in all_cameras: all_cameras[camera_network] = [] all_cameras[camera_network].append(camera_info) return all_cameras except KeyError: _LOGGER.error("Initialization failue. Could not retrieve cameras.") return {}
[ "def", "get_cameras", "(", "self", ")", ":", "response", "=", "api", ".", "request_homescreen", "(", "self", ")", "try", ":", "all_cameras", "=", "{", "}", "for", "camera", "in", "response", "[", "'cameras'", "]", ":", "camera_network", "=", "str", "(", "camera", "[", "'network_id'", "]", ")", "camera_name", "=", "camera", "[", "'name'", "]", "camera_id", "=", "camera", "[", "'id'", "]", "camera_info", "=", "{", "'name'", ":", "camera_name", ",", "'id'", ":", "camera_id", "}", "if", "camera_network", "not", "in", "all_cameras", ":", "all_cameras", "[", "camera_network", "]", "=", "[", "]", "all_cameras", "[", "camera_network", "]", ".", "append", "(", "camera_info", ")", "return", "all_cameras", "except", "KeyError", ":", "_LOGGER", ".", "error", "(", "\"Initialization failue. Could not retrieve cameras.\"", ")", "return", "{", "}" ]
Retrieve a camera list for each onboarded network.
[ "Retrieve", "a", "camera", "list", "for", "each", "onboarded", "network", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L197-L214
5,265
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.refresh
def refresh(self, force_cache=False): """ Perform a system refresh. :param force_cache: Force an update of the camera cache """ if self.check_if_ok_to_update() or force_cache: for sync_name, sync_module in self.sync.items(): _LOGGER.debug("Attempting refresh of sync %s", sync_name) sync_module.refresh(force_cache=force_cache) if not force_cache: # Prevents rapid clearing of motion detect property self.last_refresh = int(time.time()) return True return False
python
def refresh(self, force_cache=False): """ Perform a system refresh. :param force_cache: Force an update of the camera cache """ if self.check_if_ok_to_update() or force_cache: for sync_name, sync_module in self.sync.items(): _LOGGER.debug("Attempting refresh of sync %s", sync_name) sync_module.refresh(force_cache=force_cache) if not force_cache: # Prevents rapid clearing of motion detect property self.last_refresh = int(time.time()) return True return False
[ "def", "refresh", "(", "self", ",", "force_cache", "=", "False", ")", ":", "if", "self", ".", "check_if_ok_to_update", "(", ")", "or", "force_cache", ":", "for", "sync_name", ",", "sync_module", "in", "self", ".", "sync", ".", "items", "(", ")", ":", "_LOGGER", ".", "debug", "(", "\"Attempting refresh of sync %s\"", ",", "sync_name", ")", "sync_module", ".", "refresh", "(", "force_cache", "=", "force_cache", ")", "if", "not", "force_cache", ":", "# Prevents rapid clearing of motion detect property", "self", ".", "last_refresh", "=", "int", "(", "time", ".", "time", "(", ")", ")", "return", "True", "return", "False" ]
Perform a system refresh. :param force_cache: Force an update of the camera cache
[ "Perform", "a", "system", "refresh", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L217-L231
5,266
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.check_if_ok_to_update
def check_if_ok_to_update(self): """Check if it is ok to perform an http request.""" current_time = int(time.time()) last_refresh = self.last_refresh if last_refresh is None: last_refresh = 0 if current_time >= (last_refresh + self.refresh_rate): return True return False
python
def check_if_ok_to_update(self): """Check if it is ok to perform an http request.""" current_time = int(time.time()) last_refresh = self.last_refresh if last_refresh is None: last_refresh = 0 if current_time >= (last_refresh + self.refresh_rate): return True return False
[ "def", "check_if_ok_to_update", "(", "self", ")", ":", "current_time", "=", "int", "(", "time", ".", "time", "(", ")", ")", "last_refresh", "=", "self", ".", "last_refresh", "if", "last_refresh", "is", "None", ":", "last_refresh", "=", "0", "if", "current_time", ">=", "(", "last_refresh", "+", "self", ".", "refresh_rate", ")", ":", "return", "True", "return", "False" ]
Check if it is ok to perform an http request.
[ "Check", "if", "it", "is", "ok", "to", "perform", "an", "http", "request", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L233-L241
5,267
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.merge_cameras
def merge_cameras(self): """Merge all sync camera dicts into one.""" combined = CaseInsensitiveDict({}) for sync in self.sync: combined = merge_dicts(combined, self.sync[sync].cameras) return combined
python
def merge_cameras(self): """Merge all sync camera dicts into one.""" combined = CaseInsensitiveDict({}) for sync in self.sync: combined = merge_dicts(combined, self.sync[sync].cameras) return combined
[ "def", "merge_cameras", "(", "self", ")", ":", "combined", "=", "CaseInsensitiveDict", "(", "{", "}", ")", "for", "sync", "in", "self", ".", "sync", ":", "combined", "=", "merge_dicts", "(", "combined", ",", "self", ".", "sync", "[", "sync", "]", ".", "cameras", ")", "return", "combined" ]
Merge all sync camera dicts into one.
[ "Merge", "all", "sync", "camera", "dicts", "into", "one", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L243-L248
5,268
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink.download_videos
def download_videos(self, path, since=None, camera='all', stop=10): """ Download all videos from server since specified time. :param path: Path to write files. /path/<cameraname>_<recorddate>.mp4 :param since: Date and time to get videos from. Ex: "2018/07/28 12:33:00" to retrieve videos since July 28th 2018 at 12:33:00 :param camera: Camera name to retrieve. Defaults to "all". Use a list for multiple cameras. :param stop: Page to stop on (~25 items per page. Default page 10). """ if since is None: since_epochs = self.last_refresh else: parsed_datetime = parse(since, fuzzy=True) since_epochs = parsed_datetime.timestamp() formatted_date = get_time(time_to_convert=since_epochs) _LOGGER.info("Retrieving videos since %s", formatted_date) if not isinstance(camera, list): camera = [camera] for page in range(1, stop): response = api.request_videos(self, time=since_epochs, page=page) _LOGGER.debug("Processing page %s", page) try: result = response['videos'] if not result: raise IndexError except (KeyError, IndexError): _LOGGER.info("No videos found on page %s. Exiting.", page) break self._parse_downloaded_items(result, camera, path)
python
def download_videos(self, path, since=None, camera='all', stop=10): """ Download all videos from server since specified time. :param path: Path to write files. /path/<cameraname>_<recorddate>.mp4 :param since: Date and time to get videos from. Ex: "2018/07/28 12:33:00" to retrieve videos since July 28th 2018 at 12:33:00 :param camera: Camera name to retrieve. Defaults to "all". Use a list for multiple cameras. :param stop: Page to stop on (~25 items per page. Default page 10). """ if since is None: since_epochs = self.last_refresh else: parsed_datetime = parse(since, fuzzy=True) since_epochs = parsed_datetime.timestamp() formatted_date = get_time(time_to_convert=since_epochs) _LOGGER.info("Retrieving videos since %s", formatted_date) if not isinstance(camera, list): camera = [camera] for page in range(1, stop): response = api.request_videos(self, time=since_epochs, page=page) _LOGGER.debug("Processing page %s", page) try: result = response['videos'] if not result: raise IndexError except (KeyError, IndexError): _LOGGER.info("No videos found on page %s. Exiting.", page) break self._parse_downloaded_items(result, camera, path)
[ "def", "download_videos", "(", "self", ",", "path", ",", "since", "=", "None", ",", "camera", "=", "'all'", ",", "stop", "=", "10", ")", ":", "if", "since", "is", "None", ":", "since_epochs", "=", "self", ".", "last_refresh", "else", ":", "parsed_datetime", "=", "parse", "(", "since", ",", "fuzzy", "=", "True", ")", "since_epochs", "=", "parsed_datetime", ".", "timestamp", "(", ")", "formatted_date", "=", "get_time", "(", "time_to_convert", "=", "since_epochs", ")", "_LOGGER", ".", "info", "(", "\"Retrieving videos since %s\"", ",", "formatted_date", ")", "if", "not", "isinstance", "(", "camera", ",", "list", ")", ":", "camera", "=", "[", "camera", "]", "for", "page", "in", "range", "(", "1", ",", "stop", ")", ":", "response", "=", "api", ".", "request_videos", "(", "self", ",", "time", "=", "since_epochs", ",", "page", "=", "page", ")", "_LOGGER", ".", "debug", "(", "\"Processing page %s\"", ",", "page", ")", "try", ":", "result", "=", "response", "[", "'videos'", "]", "if", "not", "result", ":", "raise", "IndexError", "except", "(", "KeyError", ",", "IndexError", ")", ":", "_LOGGER", ".", "info", "(", "\"No videos found on page %s. Exiting.\"", ",", "page", ")", "break", "self", ".", "_parse_downloaded_items", "(", "result", ",", "camera", ",", "path", ")" ]
Download all videos from server since specified time. :param path: Path to write files. /path/<cameraname>_<recorddate>.mp4 :param since: Date and time to get videos from. Ex: "2018/07/28 12:33:00" to retrieve videos since July 28th 2018 at 12:33:00 :param camera: Camera name to retrieve. Defaults to "all". Use a list for multiple cameras. :param stop: Page to stop on (~25 items per page. Default page 10).
[ "Download", "all", "videos", "from", "server", "since", "specified", "time", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L250-L285
5,269
fronzbot/blinkpy
blinkpy/blinkpy.py
Blink._parse_downloaded_items
def _parse_downloaded_items(self, result, camera, path): """Parse downloaded videos.""" for item in result: try: created_at = item['created_at'] camera_name = item['camera_name'] is_deleted = item['deleted'] address = item['address'] except KeyError: _LOGGER.info("Missing clip information, skipping...") continue if camera_name not in camera and 'all' not in camera: _LOGGER.debug("Skipping videos for %s.", camera_name) continue if is_deleted: _LOGGER.debug("%s: %s is marked as deleted.", camera_name, address) continue clip_address = "{}{}".format(self.urls.base_url, address) filename = "{}_{}.mp4".format(camera_name, created_at) filename = os.path.join(path, filename) if os.path.isfile(filename): _LOGGER.info("%s already exists, skipping...", filename) continue response = api.http_get(self, url=clip_address, stream=True, json=False) with open(filename, 'wb') as vidfile: copyfileobj(response.raw, vidfile) _LOGGER.info("Downloaded video to %s", filename)
python
def _parse_downloaded_items(self, result, camera, path): """Parse downloaded videos.""" for item in result: try: created_at = item['created_at'] camera_name = item['camera_name'] is_deleted = item['deleted'] address = item['address'] except KeyError: _LOGGER.info("Missing clip information, skipping...") continue if camera_name not in camera and 'all' not in camera: _LOGGER.debug("Skipping videos for %s.", camera_name) continue if is_deleted: _LOGGER.debug("%s: %s is marked as deleted.", camera_name, address) continue clip_address = "{}{}".format(self.urls.base_url, address) filename = "{}_{}.mp4".format(camera_name, created_at) filename = os.path.join(path, filename) if os.path.isfile(filename): _LOGGER.info("%s already exists, skipping...", filename) continue response = api.http_get(self, url=clip_address, stream=True, json=False) with open(filename, 'wb') as vidfile: copyfileobj(response.raw, vidfile) _LOGGER.info("Downloaded video to %s", filename)
[ "def", "_parse_downloaded_items", "(", "self", ",", "result", ",", "camera", ",", "path", ")", ":", "for", "item", "in", "result", ":", "try", ":", "created_at", "=", "item", "[", "'created_at'", "]", "camera_name", "=", "item", "[", "'camera_name'", "]", "is_deleted", "=", "item", "[", "'deleted'", "]", "address", "=", "item", "[", "'address'", "]", "except", "KeyError", ":", "_LOGGER", ".", "info", "(", "\"Missing clip information, skipping...\"", ")", "continue", "if", "camera_name", "not", "in", "camera", "and", "'all'", "not", "in", "camera", ":", "_LOGGER", ".", "debug", "(", "\"Skipping videos for %s.\"", ",", "camera_name", ")", "continue", "if", "is_deleted", ":", "_LOGGER", ".", "debug", "(", "\"%s: %s is marked as deleted.\"", ",", "camera_name", ",", "address", ")", "continue", "clip_address", "=", "\"{}{}\"", ".", "format", "(", "self", ".", "urls", ".", "base_url", ",", "address", ")", "filename", "=", "\"{}_{}.mp4\"", ".", "format", "(", "camera_name", ",", "created_at", ")", "filename", "=", "os", ".", "path", ".", "join", "(", "path", ",", "filename", ")", "if", "os", ".", "path", ".", "isfile", "(", "filename", ")", ":", "_LOGGER", ".", "info", "(", "\"%s already exists, skipping...\"", ",", "filename", ")", "continue", "response", "=", "api", ".", "http_get", "(", "self", ",", "url", "=", "clip_address", ",", "stream", "=", "True", ",", "json", "=", "False", ")", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "vidfile", ":", "copyfileobj", "(", "response", ".", "raw", ",", "vidfile", ")", "_LOGGER", ".", "info", "(", "\"Downloaded video to %s\"", ",", "filename", ")" ]
Parse downloaded videos.
[ "Parse", "downloaded", "videos", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/blinkpy.py#L287-L322
5,270
fronzbot/blinkpy
blinkpy/api.py
request_login
def request_login(blink, url, username, password, is_retry=False): """ Login request. :param blink: Blink instance. :param url: Login url. :param username: Blink username. :param password: Blink password. :param is_retry: Is this part of a re-authorization attempt? """ headers = { 'Host': DEFAULT_URL, 'Content-Type': 'application/json' } data = dumps({ 'email': username, 'password': password, 'client_specifier': 'iPhone 9.2 | 2.2 | 222' }) return http_req(blink, url=url, headers=headers, data=data, json_resp=False, reqtype='post', is_retry=is_retry)
python
def request_login(blink, url, username, password, is_retry=False): """ Login request. :param blink: Blink instance. :param url: Login url. :param username: Blink username. :param password: Blink password. :param is_retry: Is this part of a re-authorization attempt? """ headers = { 'Host': DEFAULT_URL, 'Content-Type': 'application/json' } data = dumps({ 'email': username, 'password': password, 'client_specifier': 'iPhone 9.2 | 2.2 | 222' }) return http_req(blink, url=url, headers=headers, data=data, json_resp=False, reqtype='post', is_retry=is_retry)
[ "def", "request_login", "(", "blink", ",", "url", ",", "username", ",", "password", ",", "is_retry", "=", "False", ")", ":", "headers", "=", "{", "'Host'", ":", "DEFAULT_URL", ",", "'Content-Type'", ":", "'application/json'", "}", "data", "=", "dumps", "(", "{", "'email'", ":", "username", ",", "'password'", ":", "password", ",", "'client_specifier'", ":", "'iPhone 9.2 | 2.2 | 222'", "}", ")", "return", "http_req", "(", "blink", ",", "url", "=", "url", ",", "headers", "=", "headers", ",", "data", "=", "data", ",", "json_resp", "=", "False", ",", "reqtype", "=", "'post'", ",", "is_retry", "=", "is_retry", ")" ]
Login request. :param blink: Blink instance. :param url: Login url. :param username: Blink username. :param password: Blink password. :param is_retry: Is this part of a re-authorization attempt?
[ "Login", "request", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L14-L34
5,271
fronzbot/blinkpy
blinkpy/api.py
request_networks
def request_networks(blink): """Request all networks information.""" url = "{}/networks".format(blink.urls.base_url) return http_get(blink, url)
python
def request_networks(blink): """Request all networks information.""" url = "{}/networks".format(blink.urls.base_url) return http_get(blink, url)
[ "def", "request_networks", "(", "blink", ")", ":", "url", "=", "\"{}/networks\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request all networks information.
[ "Request", "all", "networks", "information", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L37-L40
5,272
fronzbot/blinkpy
blinkpy/api.py
request_network_status
def request_network_status(blink, network): """ Request network information. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}".format(blink.urls.base_url, network) return http_get(blink, url)
python
def request_network_status(blink, network): """ Request network information. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}".format(blink.urls.base_url, network) return http_get(blink, url)
[ "def", "request_network_status", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/network/{}\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request network information. :param blink: Blink instance. :param network: Sync module network id.
[ "Request", "network", "information", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L44-L52
5,273
fronzbot/blinkpy
blinkpy/api.py
request_syncmodule
def request_syncmodule(blink, network): """ Request sync module info. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/syncmodules".format(blink.urls.base_url, network) return http_get(blink, url)
python
def request_syncmodule(blink, network): """ Request sync module info. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/syncmodules".format(blink.urls.base_url, network) return http_get(blink, url)
[ "def", "request_syncmodule", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/network/{}/syncmodules\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request sync module info. :param blink: Blink instance. :param network: Sync module network id.
[ "Request", "sync", "module", "info", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L56-L64
5,274
fronzbot/blinkpy
blinkpy/api.py
request_system_arm
def request_system_arm(blink, network): """ Arm system. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/arm".format(blink.urls.base_url, network) return http_post(blink, url)
python
def request_system_arm(blink, network): """ Arm system. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/arm".format(blink.urls.base_url, network) return http_post(blink, url)
[ "def", "request_system_arm", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/network/{}/arm\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_post", "(", "blink", ",", "url", ")" ]
Arm system. :param blink: Blink instance. :param network: Sync module network id.
[ "Arm", "system", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L68-L76
5,275
fronzbot/blinkpy
blinkpy/api.py
request_system_disarm
def request_system_disarm(blink, network): """ Disarm system. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/disarm".format(blink.urls.base_url, network) return http_post(blink, url)
python
def request_system_disarm(blink, network): """ Disarm system. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/disarm".format(blink.urls.base_url, network) return http_post(blink, url)
[ "def", "request_system_disarm", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/network/{}/disarm\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_post", "(", "blink", ",", "url", ")" ]
Disarm system. :param blink: Blink instance. :param network: Sync module network id.
[ "Disarm", "system", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L80-L88
5,276
fronzbot/blinkpy
blinkpy/api.py
request_command_status
def request_command_status(blink, network, command_id): """ Request command status. :param blink: Blink instance. :param network: Sync module network id. :param command_id: Command id to check. """ url = "{}/network/{}/command/{}".format(blink.urls.base_url, network, command_id) return http_get(blink, url)
python
def request_command_status(blink, network, command_id): """ Request command status. :param blink: Blink instance. :param network: Sync module network id. :param command_id: Command id to check. """ url = "{}/network/{}/command/{}".format(blink.urls.base_url, network, command_id) return http_get(blink, url)
[ "def", "request_command_status", "(", "blink", ",", "network", ",", "command_id", ")", ":", "url", "=", "\"{}/network/{}/command/{}\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ",", "command_id", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request command status. :param blink: Blink instance. :param network: Sync module network id. :param command_id: Command id to check.
[ "Request", "command", "status", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L91-L102
5,277
fronzbot/blinkpy
blinkpy/api.py
request_homescreen
def request_homescreen(blink): """Request homescreen info.""" url = "{}/api/v3/accounts/{}/homescreen".format(blink.urls.base_url, blink.account_id) return http_get(blink, url)
python
def request_homescreen(blink): """Request homescreen info.""" url = "{}/api/v3/accounts/{}/homescreen".format(blink.urls.base_url, blink.account_id) return http_get(blink, url)
[ "def", "request_homescreen", "(", "blink", ")", ":", "url", "=", "\"{}/api/v3/accounts/{}/homescreen\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "blink", ".", "account_id", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request homescreen info.
[ "Request", "homescreen", "info", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L106-L110
5,278
fronzbot/blinkpy
blinkpy/api.py
request_sync_events
def request_sync_events(blink, network): """ Request events from sync module. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/events/network/{}".format(blink.urls.base_url, network) return http_get(blink, url)
python
def request_sync_events(blink, network): """ Request events from sync module. :param blink: Blink instance. :param network: Sync module network id. """ url = "{}/events/network/{}".format(blink.urls.base_url, network) return http_get(blink, url)
[ "def", "request_sync_events", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/events/network/{}\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request events from sync module. :param blink: Blink instance. :param network: Sync module network id.
[ "Request", "events", "from", "sync", "module", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L114-L122
5,279
fronzbot/blinkpy
blinkpy/api.py
request_video_count
def request_video_count(blink): """Request total video count.""" url = "{}/api/v2/videos/count".format(blink.urls.base_url) return http_get(blink, url)
python
def request_video_count(blink): """Request total video count.""" url = "{}/api/v2/videos/count".format(blink.urls.base_url) return http_get(blink, url)
[ "def", "request_video_count", "(", "blink", ")", ":", "url", "=", "\"{}/api/v2/videos/count\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request total video count.
[ "Request", "total", "video", "count", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L156-L159
5,280
fronzbot/blinkpy
blinkpy/api.py
request_videos
def request_videos(blink, time=None, page=0): """ Perform a request for videos. :param blink: Blink instance. :param time: Get videos since this time. In epoch seconds. :param page: Page number to get videos from. """ timestamp = get_time(time) url = "{}/api/v2/videos/changed?since={}&page={}".format( blink.urls.base_url, timestamp, page) return http_get(blink, url)
python
def request_videos(blink, time=None, page=0): """ Perform a request for videos. :param blink: Blink instance. :param time: Get videos since this time. In epoch seconds. :param page: Page number to get videos from. """ timestamp = get_time(time) url = "{}/api/v2/videos/changed?since={}&page={}".format( blink.urls.base_url, timestamp, page) return http_get(blink, url)
[ "def", "request_videos", "(", "blink", ",", "time", "=", "None", ",", "page", "=", "0", ")", ":", "timestamp", "=", "get_time", "(", "time", ")", "url", "=", "\"{}/api/v2/videos/changed?since={}&page={}\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "timestamp", ",", "page", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Perform a request for videos. :param blink: Blink instance. :param time: Get videos since this time. In epoch seconds. :param page: Page number to get videos from.
[ "Perform", "a", "request", "for", "videos", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L162-L173
5,281
fronzbot/blinkpy
blinkpy/api.py
request_cameras
def request_cameras(blink, network): """ Request all camera information. :param Blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/cameras".format(blink.urls.base_url, network) return http_get(blink, url)
python
def request_cameras(blink, network): """ Request all camera information. :param Blink: Blink instance. :param network: Sync module network id. """ url = "{}/network/{}/cameras".format(blink.urls.base_url, network) return http_get(blink, url)
[ "def", "request_cameras", "(", "blink", ",", "network", ")", ":", "url", "=", "\"{}/network/{}/cameras\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request all camera information. :param Blink: Blink instance. :param network: Sync module network id.
[ "Request", "all", "camera", "information", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L177-L185
5,282
fronzbot/blinkpy
blinkpy/api.py
request_camera_sensors
def request_camera_sensors(blink, network, camera_id): """ Request camera sensor info for one camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to request sesnor info from. """ url = "{}/network/{}/camera/{}/signals".format(blink.urls.base_url, network, camera_id) return http_get(blink, url)
python
def request_camera_sensors(blink, network, camera_id): """ Request camera sensor info for one camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to request sesnor info from. """ url = "{}/network/{}/camera/{}/signals".format(blink.urls.base_url, network, camera_id) return http_get(blink, url)
[ "def", "request_camera_sensors", "(", "blink", ",", "network", ",", "camera_id", ")", ":", "url", "=", "\"{}/network/{}/camera/{}/signals\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ",", "camera_id", ")", "return", "http_get", "(", "blink", ",", "url", ")" ]
Request camera sensor info for one camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to request sesnor info from.
[ "Request", "camera", "sensor", "info", "for", "one", "camera", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L202-L213
5,283
fronzbot/blinkpy
blinkpy/api.py
request_motion_detection_enable
def request_motion_detection_enable(blink, network, camera_id): """ Enable motion detection for a camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to enable. """ url = "{}/network/{}/camera/{}/enable".format(blink.urls.base_url, network, camera_id) return http_post(blink, url)
python
def request_motion_detection_enable(blink, network, camera_id): """ Enable motion detection for a camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to enable. """ url = "{}/network/{}/camera/{}/enable".format(blink.urls.base_url, network, camera_id) return http_post(blink, url)
[ "def", "request_motion_detection_enable", "(", "blink", ",", "network", ",", "camera_id", ")", ":", "url", "=", "\"{}/network/{}/camera/{}/enable\"", ".", "format", "(", "blink", ".", "urls", ".", "base_url", ",", "network", ",", "camera_id", ")", "return", "http_post", "(", "blink", ",", "url", ")" ]
Enable motion detection for a camera. :param blink: Blink instance. :param network: Sync module network id. :param camera_id: Camera ID of camera to enable.
[ "Enable", "motion", "detection", "for", "a", "camera", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L217-L228
5,284
fronzbot/blinkpy
blinkpy/api.py
http_get
def http_get(blink, url, stream=False, json=True, is_retry=False): """ Perform an http get request. :param url: URL to perform get request. :param stream: Stream response? True/FALSE :param json: Return json response? TRUE/False :param is_retry: Is this part of a re-auth attempt? """ if blink.auth_header is None: raise BlinkException(ERROR.AUTH_TOKEN) _LOGGER.debug("Making GET request to %s", url) return http_req(blink, url=url, headers=blink.auth_header, reqtype='get', stream=stream, json_resp=json, is_retry=is_retry)
python
def http_get(blink, url, stream=False, json=True, is_retry=False): """ Perform an http get request. :param url: URL to perform get request. :param stream: Stream response? True/FALSE :param json: Return json response? TRUE/False :param is_retry: Is this part of a re-auth attempt? """ if blink.auth_header is None: raise BlinkException(ERROR.AUTH_TOKEN) _LOGGER.debug("Making GET request to %s", url) return http_req(blink, url=url, headers=blink.auth_header, reqtype='get', stream=stream, json_resp=json, is_retry=is_retry)
[ "def", "http_get", "(", "blink", ",", "url", ",", "stream", "=", "False", ",", "json", "=", "True", ",", "is_retry", "=", "False", ")", ":", "if", "blink", ".", "auth_header", "is", "None", ":", "raise", "BlinkException", "(", "ERROR", ".", "AUTH_TOKEN", ")", "_LOGGER", ".", "debug", "(", "\"Making GET request to %s\"", ",", "url", ")", "return", "http_req", "(", "blink", ",", "url", "=", "url", ",", "headers", "=", "blink", ".", "auth_header", ",", "reqtype", "=", "'get'", ",", "stream", "=", "stream", ",", "json_resp", "=", "json", ",", "is_retry", "=", "is_retry", ")" ]
Perform an http get request. :param url: URL to perform get request. :param stream: Stream response? True/FALSE :param json: Return json response? TRUE/False :param is_retry: Is this part of a re-auth attempt?
[ "Perform", "an", "http", "get", "request", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L245-L259
5,285
fronzbot/blinkpy
blinkpy/api.py
http_post
def http_post(blink, url, is_retry=False): """ Perform an http post request. :param url: URL to perfom post request. :param is_retry: Is this part of a re-auth attempt? """ if blink.auth_header is None: raise BlinkException(ERROR.AUTH_TOKEN) _LOGGER.debug("Making POST request to %s", url) return http_req(blink, url=url, headers=blink.auth_header, reqtype='post', is_retry=is_retry)
python
def http_post(blink, url, is_retry=False): """ Perform an http post request. :param url: URL to perfom post request. :param is_retry: Is this part of a re-auth attempt? """ if blink.auth_header is None: raise BlinkException(ERROR.AUTH_TOKEN) _LOGGER.debug("Making POST request to %s", url) return http_req(blink, url=url, headers=blink.auth_header, reqtype='post', is_retry=is_retry)
[ "def", "http_post", "(", "blink", ",", "url", ",", "is_retry", "=", "False", ")", ":", "if", "blink", ".", "auth_header", "is", "None", ":", "raise", "BlinkException", "(", "ERROR", ".", "AUTH_TOKEN", ")", "_LOGGER", ".", "debug", "(", "\"Making POST request to %s\"", ",", "url", ")", "return", "http_req", "(", "blink", ",", "url", "=", "url", ",", "headers", "=", "blink", ".", "auth_header", ",", "reqtype", "=", "'post'", ",", "is_retry", "=", "is_retry", ")" ]
Perform an http post request. :param url: URL to perfom post request. :param is_retry: Is this part of a re-auth attempt?
[ "Perform", "an", "http", "post", "request", "." ]
bfdc1e47bdd84903f1aca653605846f3c99bcfac
https://github.com/fronzbot/blinkpy/blob/bfdc1e47bdd84903f1aca653605846f3c99bcfac/blinkpy/api.py#L262-L273
5,286
loli/medpy
medpy/filter/image.py
sls
def sls(minuend, subtrahend, metric = "ssd", noise = "global", signed = True, sn_size = None, sn_footprint = None, sn_mode = "reflect", sn_cval = 0.0, pn_size = None, pn_footprint = None, pn_mode = "reflect", pn_cval = 0.0): r""" Computes the signed local similarity between two images. Compares a patch around each voxel of the minuend array to a number of patches centered at the points of a search neighbourhood in the subtrahend. Thus, creates a multi-dimensional measure of patch similarity between the minuend and a corresponding search area in the subtrahend. This filter can also be used to compute local self-similarity, obtaining a descriptor similar to the one described in [1]_. Parameters ---------- minuend : array_like Input array from which to subtract the subtrahend. subtrahend : array_like Input array to subtract from the minuend. metric : {'ssd', 'mi', 'nmi', 'ncc'}, optional The `metric` parameter determines the metric used to compute the filter output. Default is 'ssd'. noise : {'global', 'local'}, optional The `noise` parameter determines how the noise is handled. If set to 'global', the variance determining the noise is a scalar, if set to 'local', it is a Gaussian smoothed field of estimated local noise. Default is 'global'. signed : bool, optional Whether the filter output should be signed or not. If set to 'False', only the absolute values will be returned. Default is 'True'. sn_size : scalar or tuple, optional See sn_footprint, below sn_footprint : array, optional The search neighbourhood. Either `sn_size` or `sn_footprint` must be defined. `sn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `sn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``sn_size=(n,m)`` is equivalent to ``sn_footprint=np.ones((n,m))``. We adjust `sn_size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `sn_size` is 2, then the actual size used is (2,2,2). sn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `sn_mode` parameter determines how the array borders are handled, where `sn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' sn_cval : scalar, optional Value to fill past edges of input if `sn_mode` is 'constant'. Default is 0.0 pn_size : scalar or tuple, optional See pn_footprint, below pn_footprint : array, optional The patch over which the distance measure is applied. Either `pn_size` or `pn_footprint` must be defined. `pn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `pn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``pn_size=(n,m)`` is equivalent of dimensions of the input array, so that, if the input array is shape (10,10,10), and `pn_size` is 2, then the actual size used is (2,2,2). pn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `pn_mode` parameter determines how the array borders are handled, where `pn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' pn_cval : scalar, optional Value to fill past edges of input if `pn_mode` is 'constant'. Default is 0.0 Returns ------- sls : ndarray The signed local similarity image between subtrahend and minuend. References ---------- .. [1] Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir Michael Brady, Julia A. Schnabel MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration Medical Image Analysis, Volume 16, Issue 7, October 2012, Pages 1423-1435, ISSN 1361-8415 http://dx.doi.org/10.1016/j.media.2012.05.008 """ minuend = numpy.asarray(minuend) subtrahend = numpy.asarray(subtrahend) if numpy.iscomplexobj(minuend): raise TypeError('complex type not supported') if numpy.iscomplexobj(subtrahend): raise TypeError('complex type not supported') mshape = [ii for ii in minuend.shape if ii > 0] sshape = [ii for ii in subtrahend.shape if ii > 0] if not len(mshape) == len(sshape): raise RuntimeError("minuend and subtrahend must be of same shape") if not numpy.all([sm == ss for sm, ss in zip(mshape, sshape)]): raise RuntimeError("minuend and subtrahend must be of same shape") sn_footprint = __make_footprint(minuend, sn_size, sn_footprint) sn_fshape = [ii for ii in sn_footprint.shape if ii > 0] if len(sn_fshape) != minuend.ndim: raise RuntimeError('search neighbourhood footprint array has incorrect shape.') #!TODO: Is this required? if not sn_footprint.flags.contiguous: sn_footprint = sn_footprint.copy() # created a padded copy of the subtrahend, whereas the padding mode is always 'reflect' subtrahend = pad(subtrahend, footprint=sn_footprint, mode=sn_mode, cval=sn_cval) # compute slicers for position where the search neighbourhood sn_footprint is TRUE slicers = [[slice(x, (x + 1) - d if 0 != (x + 1) - d else None) for x in range(d)] for d in sn_fshape] slicers = [sl for sl, tv in zip(itertools.product(*slicers), sn_footprint.flat) if tv] # compute difference images and sign images for search neighbourhood elements ssds = [ssd(minuend, subtrahend[slicer], normalized=True, signed=signed, size=pn_size, footprint=pn_footprint, mode=pn_mode, cval=pn_cval) for slicer in slicers] distance = [x[0] for x in ssds] distance_sign = [x[1] for x in ssds] # compute local variance, which constitutes an approximation of local noise, out of patch-distances over the neighbourhood structure variance = numpy.average(distance, 0) variance = gaussian_filter(variance, sigma=3) #!TODO: Figure out if a fixed sigma is desirable here... I think that yes if 'global' == noise: variance = variance.sum() / float(numpy.product(variance.shape)) # variance[variance < variance_global / 10.] = variance_global / 10. #!TODO: Should I keep this i.e. regularizing the variance to be at least 10% of the global one? # compute sls sls = [dist_sign * numpy.exp(-1 * (dist / variance)) for dist_sign, dist in zip(distance_sign, distance)] # convert into sls image, swapping dimensions to have varying patches in the last dimension return numpy.rollaxis(numpy.asarray(sls), 0, minuend.ndim + 1)
python
def sls(minuend, subtrahend, metric = "ssd", noise = "global", signed = True, sn_size = None, sn_footprint = None, sn_mode = "reflect", sn_cval = 0.0, pn_size = None, pn_footprint = None, pn_mode = "reflect", pn_cval = 0.0): r""" Computes the signed local similarity between two images. Compares a patch around each voxel of the minuend array to a number of patches centered at the points of a search neighbourhood in the subtrahend. Thus, creates a multi-dimensional measure of patch similarity between the minuend and a corresponding search area in the subtrahend. This filter can also be used to compute local self-similarity, obtaining a descriptor similar to the one described in [1]_. Parameters ---------- minuend : array_like Input array from which to subtract the subtrahend. subtrahend : array_like Input array to subtract from the minuend. metric : {'ssd', 'mi', 'nmi', 'ncc'}, optional The `metric` parameter determines the metric used to compute the filter output. Default is 'ssd'. noise : {'global', 'local'}, optional The `noise` parameter determines how the noise is handled. If set to 'global', the variance determining the noise is a scalar, if set to 'local', it is a Gaussian smoothed field of estimated local noise. Default is 'global'. signed : bool, optional Whether the filter output should be signed or not. If set to 'False', only the absolute values will be returned. Default is 'True'. sn_size : scalar or tuple, optional See sn_footprint, below sn_footprint : array, optional The search neighbourhood. Either `sn_size` or `sn_footprint` must be defined. `sn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `sn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``sn_size=(n,m)`` is equivalent to ``sn_footprint=np.ones((n,m))``. We adjust `sn_size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `sn_size` is 2, then the actual size used is (2,2,2). sn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `sn_mode` parameter determines how the array borders are handled, where `sn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' sn_cval : scalar, optional Value to fill past edges of input if `sn_mode` is 'constant'. Default is 0.0 pn_size : scalar or tuple, optional See pn_footprint, below pn_footprint : array, optional The patch over which the distance measure is applied. Either `pn_size` or `pn_footprint` must be defined. `pn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `pn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``pn_size=(n,m)`` is equivalent of dimensions of the input array, so that, if the input array is shape (10,10,10), and `pn_size` is 2, then the actual size used is (2,2,2). pn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `pn_mode` parameter determines how the array borders are handled, where `pn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' pn_cval : scalar, optional Value to fill past edges of input if `pn_mode` is 'constant'. Default is 0.0 Returns ------- sls : ndarray The signed local similarity image between subtrahend and minuend. References ---------- .. [1] Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir Michael Brady, Julia A. Schnabel MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration Medical Image Analysis, Volume 16, Issue 7, October 2012, Pages 1423-1435, ISSN 1361-8415 http://dx.doi.org/10.1016/j.media.2012.05.008 """ minuend = numpy.asarray(minuend) subtrahend = numpy.asarray(subtrahend) if numpy.iscomplexobj(minuend): raise TypeError('complex type not supported') if numpy.iscomplexobj(subtrahend): raise TypeError('complex type not supported') mshape = [ii for ii in minuend.shape if ii > 0] sshape = [ii for ii in subtrahend.shape if ii > 0] if not len(mshape) == len(sshape): raise RuntimeError("minuend and subtrahend must be of same shape") if not numpy.all([sm == ss for sm, ss in zip(mshape, sshape)]): raise RuntimeError("minuend and subtrahend must be of same shape") sn_footprint = __make_footprint(minuend, sn_size, sn_footprint) sn_fshape = [ii for ii in sn_footprint.shape if ii > 0] if len(sn_fshape) != minuend.ndim: raise RuntimeError('search neighbourhood footprint array has incorrect shape.') #!TODO: Is this required? if not sn_footprint.flags.contiguous: sn_footprint = sn_footprint.copy() # created a padded copy of the subtrahend, whereas the padding mode is always 'reflect' subtrahend = pad(subtrahend, footprint=sn_footprint, mode=sn_mode, cval=sn_cval) # compute slicers for position where the search neighbourhood sn_footprint is TRUE slicers = [[slice(x, (x + 1) - d if 0 != (x + 1) - d else None) for x in range(d)] for d in sn_fshape] slicers = [sl for sl, tv in zip(itertools.product(*slicers), sn_footprint.flat) if tv] # compute difference images and sign images for search neighbourhood elements ssds = [ssd(minuend, subtrahend[slicer], normalized=True, signed=signed, size=pn_size, footprint=pn_footprint, mode=pn_mode, cval=pn_cval) for slicer in slicers] distance = [x[0] for x in ssds] distance_sign = [x[1] for x in ssds] # compute local variance, which constitutes an approximation of local noise, out of patch-distances over the neighbourhood structure variance = numpy.average(distance, 0) variance = gaussian_filter(variance, sigma=3) #!TODO: Figure out if a fixed sigma is desirable here... I think that yes if 'global' == noise: variance = variance.sum() / float(numpy.product(variance.shape)) # variance[variance < variance_global / 10.] = variance_global / 10. #!TODO: Should I keep this i.e. regularizing the variance to be at least 10% of the global one? # compute sls sls = [dist_sign * numpy.exp(-1 * (dist / variance)) for dist_sign, dist in zip(distance_sign, distance)] # convert into sls image, swapping dimensions to have varying patches in the last dimension return numpy.rollaxis(numpy.asarray(sls), 0, minuend.ndim + 1)
[ "def", "sls", "(", "minuend", ",", "subtrahend", ",", "metric", "=", "\"ssd\"", ",", "noise", "=", "\"global\"", ",", "signed", "=", "True", ",", "sn_size", "=", "None", ",", "sn_footprint", "=", "None", ",", "sn_mode", "=", "\"reflect\"", ",", "sn_cval", "=", "0.0", ",", "pn_size", "=", "None", ",", "pn_footprint", "=", "None", ",", "pn_mode", "=", "\"reflect\"", ",", "pn_cval", "=", "0.0", ")", ":", "minuend", "=", "numpy", ".", "asarray", "(", "minuend", ")", "subtrahend", "=", "numpy", ".", "asarray", "(", "subtrahend", ")", "if", "numpy", ".", "iscomplexobj", "(", "minuend", ")", ":", "raise", "TypeError", "(", "'complex type not supported'", ")", "if", "numpy", ".", "iscomplexobj", "(", "subtrahend", ")", ":", "raise", "TypeError", "(", "'complex type not supported'", ")", "mshape", "=", "[", "ii", "for", "ii", "in", "minuend", ".", "shape", "if", "ii", ">", "0", "]", "sshape", "=", "[", "ii", "for", "ii", "in", "subtrahend", ".", "shape", "if", "ii", ">", "0", "]", "if", "not", "len", "(", "mshape", ")", "==", "len", "(", "sshape", ")", ":", "raise", "RuntimeError", "(", "\"minuend and subtrahend must be of same shape\"", ")", "if", "not", "numpy", ".", "all", "(", "[", "sm", "==", "ss", "for", "sm", ",", "ss", "in", "zip", "(", "mshape", ",", "sshape", ")", "]", ")", ":", "raise", "RuntimeError", "(", "\"minuend and subtrahend must be of same shape\"", ")", "sn_footprint", "=", "__make_footprint", "(", "minuend", ",", "sn_size", ",", "sn_footprint", ")", "sn_fshape", "=", "[", "ii", "for", "ii", "in", "sn_footprint", ".", "shape", "if", "ii", ">", "0", "]", "if", "len", "(", "sn_fshape", ")", "!=", "minuend", ".", "ndim", ":", "raise", "RuntimeError", "(", "'search neighbourhood footprint array has incorrect shape.'", ")", "#!TODO: Is this required?", "if", "not", "sn_footprint", ".", "flags", ".", "contiguous", ":", "sn_footprint", "=", "sn_footprint", ".", "copy", "(", ")", "# created a padded copy of the subtrahend, whereas the padding mode is always 'reflect' ", "subtrahend", "=", "pad", "(", "subtrahend", ",", "footprint", "=", "sn_footprint", ",", "mode", "=", "sn_mode", ",", "cval", "=", "sn_cval", ")", "# compute slicers for position where the search neighbourhood sn_footprint is TRUE", "slicers", "=", "[", "[", "slice", "(", "x", ",", "(", "x", "+", "1", ")", "-", "d", "if", "0", "!=", "(", "x", "+", "1", ")", "-", "d", "else", "None", ")", "for", "x", "in", "range", "(", "d", ")", "]", "for", "d", "in", "sn_fshape", "]", "slicers", "=", "[", "sl", "for", "sl", ",", "tv", "in", "zip", "(", "itertools", ".", "product", "(", "*", "slicers", ")", ",", "sn_footprint", ".", "flat", ")", "if", "tv", "]", "# compute difference images and sign images for search neighbourhood elements", "ssds", "=", "[", "ssd", "(", "minuend", ",", "subtrahend", "[", "slicer", "]", ",", "normalized", "=", "True", ",", "signed", "=", "signed", ",", "size", "=", "pn_size", ",", "footprint", "=", "pn_footprint", ",", "mode", "=", "pn_mode", ",", "cval", "=", "pn_cval", ")", "for", "slicer", "in", "slicers", "]", "distance", "=", "[", "x", "[", "0", "]", "for", "x", "in", "ssds", "]", "distance_sign", "=", "[", "x", "[", "1", "]", "for", "x", "in", "ssds", "]", "# compute local variance, which constitutes an approximation of local noise, out of patch-distances over the neighbourhood structure", "variance", "=", "numpy", ".", "average", "(", "distance", ",", "0", ")", "variance", "=", "gaussian_filter", "(", "variance", ",", "sigma", "=", "3", ")", "#!TODO: Figure out if a fixed sigma is desirable here... I think that yes", "if", "'global'", "==", "noise", ":", "variance", "=", "variance", ".", "sum", "(", ")", "/", "float", "(", "numpy", ".", "product", "(", "variance", ".", "shape", ")", ")", "# variance[variance < variance_global / 10.] = variance_global / 10. #!TODO: Should I keep this i.e. regularizing the variance to be at least 10% of the global one?", "# compute sls", "sls", "=", "[", "dist_sign", "*", "numpy", ".", "exp", "(", "-", "1", "*", "(", "dist", "/", "variance", ")", ")", "for", "dist_sign", ",", "dist", "in", "zip", "(", "distance_sign", ",", "distance", ")", "]", "# convert into sls image, swapping dimensions to have varying patches in the last dimension", "return", "numpy", ".", "rollaxis", "(", "numpy", ".", "asarray", "(", "sls", ")", ",", "0", ",", "minuend", ".", "ndim", "+", "1", ")" ]
r""" Computes the signed local similarity between two images. Compares a patch around each voxel of the minuend array to a number of patches centered at the points of a search neighbourhood in the subtrahend. Thus, creates a multi-dimensional measure of patch similarity between the minuend and a corresponding search area in the subtrahend. This filter can also be used to compute local self-similarity, obtaining a descriptor similar to the one described in [1]_. Parameters ---------- minuend : array_like Input array from which to subtract the subtrahend. subtrahend : array_like Input array to subtract from the minuend. metric : {'ssd', 'mi', 'nmi', 'ncc'}, optional The `metric` parameter determines the metric used to compute the filter output. Default is 'ssd'. noise : {'global', 'local'}, optional The `noise` parameter determines how the noise is handled. If set to 'global', the variance determining the noise is a scalar, if set to 'local', it is a Gaussian smoothed field of estimated local noise. Default is 'global'. signed : bool, optional Whether the filter output should be signed or not. If set to 'False', only the absolute values will be returned. Default is 'True'. sn_size : scalar or tuple, optional See sn_footprint, below sn_footprint : array, optional The search neighbourhood. Either `sn_size` or `sn_footprint` must be defined. `sn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `sn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``sn_size=(n,m)`` is equivalent to ``sn_footprint=np.ones((n,m))``. We adjust `sn_size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `sn_size` is 2, then the actual size used is (2,2,2). sn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `sn_mode` parameter determines how the array borders are handled, where `sn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' sn_cval : scalar, optional Value to fill past edges of input if `sn_mode` is 'constant'. Default is 0.0 pn_size : scalar or tuple, optional See pn_footprint, below pn_footprint : array, optional The patch over which the distance measure is applied. Either `pn_size` or `pn_footprint` must be defined. `pn_size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `pn_footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``pn_size=(n,m)`` is equivalent of dimensions of the input array, so that, if the input array is shape (10,10,10), and `pn_size` is 2, then the actual size used is (2,2,2). pn_mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The `pn_mode` parameter determines how the array borders are handled, where `pn_cval` is the value when mode is equal to 'constant'. Default is 'reflect' pn_cval : scalar, optional Value to fill past edges of input if `pn_mode` is 'constant'. Default is 0.0 Returns ------- sls : ndarray The signed local similarity image between subtrahend and minuend. References ---------- .. [1] Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir Michael Brady, Julia A. Schnabel MIND: Modality independent neighbourhood descriptor for multi-modal deformable registration Medical Image Analysis, Volume 16, Issue 7, October 2012, Pages 1423-1435, ISSN 1361-8415 http://dx.doi.org/10.1016/j.media.2012.05.008
[ "r", "Computes", "the", "signed", "local", "similarity", "between", "two", "images", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/image.py#L37-L170
5,287
loli/medpy
medpy/filter/image.py
average_filter
def average_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): r""" Calculates a multi-dimensional average filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- average_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel. """ footprint = __make_footprint(input, size, footprint) filter_size = footprint.sum() output = _get_output(output, input) sum_filter(input, footprint=footprint, output=output, mode=mode, cval=cval, origin=origin) output /= filter_size return output
python
def average_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): r""" Calculates a multi-dimensional average filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- average_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel. """ footprint = __make_footprint(input, size, footprint) filter_size = footprint.sum() output = _get_output(output, input) sum_filter(input, footprint=footprint, output=output, mode=mode, cval=cval, origin=origin) output /= filter_size return output
[ "def", "average_filter", "(", "input", ",", "size", "=", "None", ",", "footprint", "=", "None", ",", "output", "=", "None", ",", "mode", "=", "\"reflect\"", ",", "cval", "=", "0.0", ",", "origin", "=", "0", ")", ":", "footprint", "=", "__make_footprint", "(", "input", ",", "size", ",", "footprint", ")", "filter_size", "=", "footprint", ".", "sum", "(", ")", "output", "=", "_get_output", "(", "output", ",", "input", ")", "sum_filter", "(", "input", ",", "footprint", "=", "footprint", ",", "output", "=", "output", ",", "mode", "=", "mode", ",", "cval", "=", "cval", ",", "origin", "=", "origin", ")", "output", "/=", "filter_size", "return", "output" ]
r""" Calculates a multi-dimensional average filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- average_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel.
[ "r", "Calculates", "a", "multi", "-", "dimensional", "average", "filter", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/image.py#L230-L284
5,288
loli/medpy
medpy/filter/image.py
sum_filter
def sum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): r""" Calculates a multi-dimensional sum filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- sum_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel. """ footprint = __make_footprint(input, size, footprint) slicer = [slice(None, None, -1)] * footprint.ndim return convolve(input, footprint[slicer], output, mode, cval, origin)
python
def sum_filter(input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0): r""" Calculates a multi-dimensional sum filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- sum_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel. """ footprint = __make_footprint(input, size, footprint) slicer = [slice(None, None, -1)] * footprint.ndim return convolve(input, footprint[slicer], output, mode, cval, origin)
[ "def", "sum_filter", "(", "input", ",", "size", "=", "None", ",", "footprint", "=", "None", ",", "output", "=", "None", ",", "mode", "=", "\"reflect\"", ",", "cval", "=", "0.0", ",", "origin", "=", "0", ")", ":", "footprint", "=", "__make_footprint", "(", "input", ",", "size", ",", "footprint", ")", "slicer", "=", "[", "slice", "(", "None", ",", "None", ",", "-", "1", ")", "]", "*", "footprint", ".", "ndim", "return", "convolve", "(", "input", ",", "footprint", "[", "slicer", "]", ",", "output", ",", "mode", ",", "cval", ",", "origin", ")" ]
r""" Calculates a multi-dimensional sum filter. Parameters ---------- input : array-like input array to filter size : scalar or tuple, optional See footprint, below footprint : array, optional Either `size` or `footprint` must be defined. `size` gives the shape that is taken from the input array, at every element position, to define the input to the filter function. `footprint` is a boolean array that specifies (implicitly) a shape, but also which of the elements within this shape will get passed to the filter function. Thus ``size=(n,m)`` is equivalent to ``footprint=np.ones((n,m))``. We adjust `size` to the number of dimensions of the input array, so that, if the input array is shape (10,10,10), and `size` is 2, then the actual size used is (2,2,2). output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'reflect' cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 origin : scalar, optional The ``origin`` parameter controls the placement of the filter. Default 0 Returns ------- sum_filter : ndarray Returned array of same shape as `input`. Notes ----- Convenience implementation employing convolve. See Also -------- scipy.ndimage.filters.convolve : Convolve an image with a kernel.
[ "r", "Calculates", "a", "multi", "-", "dimensional", "sum", "filter", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/image.py#L287-L337
5,289
loli/medpy
medpy/features/histogram.py
_gaussian_membership_sigma
def _gaussian_membership_sigma(smoothness, eps = 0.0005): # 275us @ smothness=10 r"""Compute the sigma required for a gaussian, such that in a neighbourhood of smoothness the maximum error is 'eps'. The error is here the difference between the clipped integral and one. """ error = 0 deltas = [0.1, 0.01, 0.001, 0.0001] sigma = smoothness * 0.3 point = -1. * (smoothness + 0.5) for delta in deltas: while error < eps: sigma += delta error = scipy.stats.norm.cdf(0.5, point, sigma) - scipy.stats.norm.cdf(-0.5, point, sigma) # x, mu, sigma sigma -= delta return sigma
python
def _gaussian_membership_sigma(smoothness, eps = 0.0005): # 275us @ smothness=10 r"""Compute the sigma required for a gaussian, such that in a neighbourhood of smoothness the maximum error is 'eps'. The error is here the difference between the clipped integral and one. """ error = 0 deltas = [0.1, 0.01, 0.001, 0.0001] sigma = smoothness * 0.3 point = -1. * (smoothness + 0.5) for delta in deltas: while error < eps: sigma += delta error = scipy.stats.norm.cdf(0.5, point, sigma) - scipy.stats.norm.cdf(-0.5, point, sigma) # x, mu, sigma sigma -= delta return sigma
[ "def", "_gaussian_membership_sigma", "(", "smoothness", ",", "eps", "=", "0.0005", ")", ":", "# 275us @ smothness=10", "error", "=", "0", "deltas", "=", "[", "0.1", ",", "0.01", ",", "0.001", ",", "0.0001", "]", "sigma", "=", "smoothness", "*", "0.3", "point", "=", "-", "1.", "*", "(", "smoothness", "+", "0.5", ")", "for", "delta", "in", "deltas", ":", "while", "error", "<", "eps", ":", "sigma", "+=", "delta", "error", "=", "scipy", ".", "stats", ".", "norm", ".", "cdf", "(", "0.5", ",", "point", ",", "sigma", ")", "-", "scipy", ".", "stats", ".", "norm", ".", "cdf", "(", "-", "0.5", ",", "point", ",", "sigma", ")", "# x, mu, sigma", "sigma", "-=", "delta", "return", "sigma" ]
r"""Compute the sigma required for a gaussian, such that in a neighbourhood of smoothness the maximum error is 'eps'. The error is here the difference between the clipped integral and one.
[ "r", "Compute", "the", "sigma", "required", "for", "a", "gaussian", "such", "that", "in", "a", "neighbourhood", "of", "smoothness", "the", "maximum", "error", "is", "eps", ".", "The", "error", "is", "here", "the", "difference", "between", "the", "clipped", "integral", "and", "one", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/features/histogram.py#L361-L375
5,290
loli/medpy
doc/numpydoc/numpydoc/plot_directive.py
out_of_date
def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime)
python
def out_of_date(original, derived): """ Returns True if derivative is out-of-date wrt original, both of which are full file paths. """ return (not os.path.exists(derived) or os.stat(derived).st_mtime < os.stat(original).st_mtime)
[ "def", "out_of_date", "(", "original", ",", "derived", ")", ":", "return", "(", "not", "os", ".", "path", ".", "exists", "(", "derived", ")", "or", "os", ".", "stat", "(", "derived", ")", ".", "st_mtime", "<", "os", ".", "stat", "(", "original", ")", ".", "st_mtime", ")" ]
Returns True if derivative is out-of-date wrt original, both of which are full file paths.
[ "Returns", "True", "if", "derivative", "is", "out", "-", "of", "-", "date", "wrt", "original", "both", "of", "which", "are", "full", "file", "paths", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/doc/numpydoc/numpydoc/plot_directive.py#L481-L487
5,291
loli/medpy
medpy/features/texture.py
local_maxima
def local_maxima(vector,min_distance = 4, brd_mode = "wrap"): """ Internal finder for local maxima . Returns UNSORTED indices of maxima in input vector. """ fits = gaussian_filter(numpy.asarray(vector,dtype=numpy.float32),1., mode=brd_mode) for ii in range(len(fits)): if fits[ii] == fits[ii-1]: fits[ii-1] = 0.0 maxfits = maximum_filter(fits, size=min_distance, mode=brd_mode) maxima_mask = fits == maxfits maximum = numpy.transpose(maxima_mask.nonzero()) return numpy.asarray(maximum)
python
def local_maxima(vector,min_distance = 4, brd_mode = "wrap"): """ Internal finder for local maxima . Returns UNSORTED indices of maxima in input vector. """ fits = gaussian_filter(numpy.asarray(vector,dtype=numpy.float32),1., mode=brd_mode) for ii in range(len(fits)): if fits[ii] == fits[ii-1]: fits[ii-1] = 0.0 maxfits = maximum_filter(fits, size=min_distance, mode=brd_mode) maxima_mask = fits == maxfits maximum = numpy.transpose(maxima_mask.nonzero()) return numpy.asarray(maximum)
[ "def", "local_maxima", "(", "vector", ",", "min_distance", "=", "4", ",", "brd_mode", "=", "\"wrap\"", ")", ":", "fits", "=", "gaussian_filter", "(", "numpy", ".", "asarray", "(", "vector", ",", "dtype", "=", "numpy", ".", "float32", ")", ",", "1.", ",", "mode", "=", "brd_mode", ")", "for", "ii", "in", "range", "(", "len", "(", "fits", ")", ")", ":", "if", "fits", "[", "ii", "]", "==", "fits", "[", "ii", "-", "1", "]", ":", "fits", "[", "ii", "-", "1", "]", "=", "0.0", "maxfits", "=", "maximum_filter", "(", "fits", ",", "size", "=", "min_distance", ",", "mode", "=", "brd_mode", ")", "maxima_mask", "=", "fits", "==", "maxfits", "maximum", "=", "numpy", ".", "transpose", "(", "maxima_mask", ".", "nonzero", "(", ")", ")", "return", "numpy", ".", "asarray", "(", "maximum", ")" ]
Internal finder for local maxima . Returns UNSORTED indices of maxima in input vector.
[ "Internal", "finder", "for", "local", "maxima", ".", "Returns", "UNSORTED", "indices", "of", "maxima", "in", "input", "vector", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/features/texture.py#L268-L280
5,292
loli/medpy
medpy/features/texture.py
local_minima
def local_minima(vector,min_distance = 4, brd_mode = "wrap"): """ Internal finder for local minima . Returns UNSORTED indices of minima in input vector. """ fits = gaussian_filter(numpy.asarray(vector,dtype=numpy.float32),1., mode=brd_mode) for ii in range(len(fits)): if fits[ii] == fits[ii-1]: fits[ii-1] = numpy.pi/2.0 minfits = minimum_filter(fits, size=min_distance, mode=brd_mode) minima_mask = fits == minfits minima = numpy.transpose(minima_mask.nonzero()) return numpy.asarray(minima)
python
def local_minima(vector,min_distance = 4, brd_mode = "wrap"): """ Internal finder for local minima . Returns UNSORTED indices of minima in input vector. """ fits = gaussian_filter(numpy.asarray(vector,dtype=numpy.float32),1., mode=brd_mode) for ii in range(len(fits)): if fits[ii] == fits[ii-1]: fits[ii-1] = numpy.pi/2.0 minfits = minimum_filter(fits, size=min_distance, mode=brd_mode) minima_mask = fits == minfits minima = numpy.transpose(minima_mask.nonzero()) return numpy.asarray(minima)
[ "def", "local_minima", "(", "vector", ",", "min_distance", "=", "4", ",", "brd_mode", "=", "\"wrap\"", ")", ":", "fits", "=", "gaussian_filter", "(", "numpy", ".", "asarray", "(", "vector", ",", "dtype", "=", "numpy", ".", "float32", ")", ",", "1.", ",", "mode", "=", "brd_mode", ")", "for", "ii", "in", "range", "(", "len", "(", "fits", ")", ")", ":", "if", "fits", "[", "ii", "]", "==", "fits", "[", "ii", "-", "1", "]", ":", "fits", "[", "ii", "-", "1", "]", "=", "numpy", ".", "pi", "/", "2.0", "minfits", "=", "minimum_filter", "(", "fits", ",", "size", "=", "min_distance", ",", "mode", "=", "brd_mode", ")", "minima_mask", "=", "fits", "==", "minfits", "minima", "=", "numpy", ".", "transpose", "(", "minima_mask", ".", "nonzero", "(", ")", ")", "return", "numpy", ".", "asarray", "(", "minima", ")" ]
Internal finder for local minima . Returns UNSORTED indices of minima in input vector.
[ "Internal", "finder", "for", "local", "minima", ".", "Returns", "UNSORTED", "indices", "of", "minima", "in", "input", "vector", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/features/texture.py#L282-L294
5,293
loli/medpy
medpy/features/texture.py
find_valley_range
def find_valley_range(vector, min_distance = 4): """ Internal finder peaks and valley ranges. Returns UNSORTED indices of maxima in input vector. Returns range of valleys before and after maximum """ # http://users.monash.edu.au/~dengs/resource/papers/icme08.pdf # find min and max with mode = wrap mode = "wrap" minima = local_minima(vector,min_distance,mode) maxima = local_maxima(vector,min_distance,mode) if len(maxima)>len(minima): if vector[maxima[0]] >= vector[maxima[-1]]: maxima=maxima[1:] else: maxima=maxima[:-1] if len(maxima)==len(minima): valley_range = numpy.asarray([minima[ii+1] - minima[ii] for ii in range(len(minima)-1)] + [len(vector)-minima[-1]+minima[0]]) if minima[0] < maxima[0]: minima = numpy.asarray(list(minima) + [minima[0]]) else: minima = numpy.asarray(list(minima) + [minima[-1]]) else: valley_range = numpy.asarray([minima[ii+1] - minima[ii] for ii in range(len(maxima))]) return maxima, minima, valley_range
python
def find_valley_range(vector, min_distance = 4): """ Internal finder peaks and valley ranges. Returns UNSORTED indices of maxima in input vector. Returns range of valleys before and after maximum """ # http://users.monash.edu.au/~dengs/resource/papers/icme08.pdf # find min and max with mode = wrap mode = "wrap" minima = local_minima(vector,min_distance,mode) maxima = local_maxima(vector,min_distance,mode) if len(maxima)>len(minima): if vector[maxima[0]] >= vector[maxima[-1]]: maxima=maxima[1:] else: maxima=maxima[:-1] if len(maxima)==len(minima): valley_range = numpy.asarray([minima[ii+1] - minima[ii] for ii in range(len(minima)-1)] + [len(vector)-minima[-1]+minima[0]]) if minima[0] < maxima[0]: minima = numpy.asarray(list(minima) + [minima[0]]) else: minima = numpy.asarray(list(minima) + [minima[-1]]) else: valley_range = numpy.asarray([minima[ii+1] - minima[ii] for ii in range(len(maxima))]) return maxima, minima, valley_range
[ "def", "find_valley_range", "(", "vector", ",", "min_distance", "=", "4", ")", ":", "# http://users.monash.edu.au/~dengs/resource/papers/icme08.pdf", "# find min and max with mode = wrap", "mode", "=", "\"wrap\"", "minima", "=", "local_minima", "(", "vector", ",", "min_distance", ",", "mode", ")", "maxima", "=", "local_maxima", "(", "vector", ",", "min_distance", ",", "mode", ")", "if", "len", "(", "maxima", ")", ">", "len", "(", "minima", ")", ":", "if", "vector", "[", "maxima", "[", "0", "]", "]", ">=", "vector", "[", "maxima", "[", "-", "1", "]", "]", ":", "maxima", "=", "maxima", "[", "1", ":", "]", "else", ":", "maxima", "=", "maxima", "[", ":", "-", "1", "]", "if", "len", "(", "maxima", ")", "==", "len", "(", "minima", ")", ":", "valley_range", "=", "numpy", ".", "asarray", "(", "[", "minima", "[", "ii", "+", "1", "]", "-", "minima", "[", "ii", "]", "for", "ii", "in", "range", "(", "len", "(", "minima", ")", "-", "1", ")", "]", "+", "[", "len", "(", "vector", ")", "-", "minima", "[", "-", "1", "]", "+", "minima", "[", "0", "]", "]", ")", "if", "minima", "[", "0", "]", "<", "maxima", "[", "0", "]", ":", "minima", "=", "numpy", ".", "asarray", "(", "list", "(", "minima", ")", "+", "[", "minima", "[", "0", "]", "]", ")", "else", ":", "minima", "=", "numpy", ".", "asarray", "(", "list", "(", "minima", ")", "+", "[", "minima", "[", "-", "1", "]", "]", ")", "else", ":", "valley_range", "=", "numpy", ".", "asarray", "(", "[", "minima", "[", "ii", "+", "1", "]", "-", "minima", "[", "ii", "]", "for", "ii", "in", "range", "(", "len", "(", "maxima", ")", ")", "]", ")", "return", "maxima", ",", "minima", ",", "valley_range" ]
Internal finder peaks and valley ranges. Returns UNSORTED indices of maxima in input vector. Returns range of valleys before and after maximum
[ "Internal", "finder", "peaks", "and", "valley", "ranges", ".", "Returns", "UNSORTED", "indices", "of", "maxima", "in", "input", "vector", ".", "Returns", "range", "of", "valleys", "before", "and", "after", "maximum" ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/features/texture.py#L296-L324
5,294
loli/medpy
medpy/filter/smoothing.py
gauss_xminus1d
def gauss_xminus1d(img, sigma, dim=2): r""" Applies a X-1D gauss to a copy of a XD image, slicing it along dim. Essentially uses `scipy.ndimage.filters.gaussian_filter`, but applies it to a dimension less than the image has. Parameters ---------- img : array_like The image to smooth. sigma : integer The sigma i.e. gaussian kernel size in pixel dim : integer The dimension along which to apply the filter. Returns ------- gauss_xminus1d : ndarray The input image ``img`` smoothed by a gaussian kernel along dimension ``dim``. """ img = numpy.array(img, copy=False) return xminus1d(img, gaussian_filter, dim, sigma=sigma)
python
def gauss_xminus1d(img, sigma, dim=2): r""" Applies a X-1D gauss to a copy of a XD image, slicing it along dim. Essentially uses `scipy.ndimage.filters.gaussian_filter`, but applies it to a dimension less than the image has. Parameters ---------- img : array_like The image to smooth. sigma : integer The sigma i.e. gaussian kernel size in pixel dim : integer The dimension along which to apply the filter. Returns ------- gauss_xminus1d : ndarray The input image ``img`` smoothed by a gaussian kernel along dimension ``dim``. """ img = numpy.array(img, copy=False) return xminus1d(img, gaussian_filter, dim, sigma=sigma)
[ "def", "gauss_xminus1d", "(", "img", ",", "sigma", ",", "dim", "=", "2", ")", ":", "img", "=", "numpy", ".", "array", "(", "img", ",", "copy", "=", "False", ")", "return", "xminus1d", "(", "img", ",", "gaussian_filter", ",", "dim", ",", "sigma", "=", "sigma", ")" ]
r""" Applies a X-1D gauss to a copy of a XD image, slicing it along dim. Essentially uses `scipy.ndimage.filters.gaussian_filter`, but applies it to a dimension less than the image has. Parameters ---------- img : array_like The image to smooth. sigma : integer The sigma i.e. gaussian kernel size in pixel dim : integer The dimension along which to apply the filter. Returns ------- gauss_xminus1d : ndarray The input image ``img`` smoothed by a gaussian kernel along dimension ``dim``.
[ "r", "Applies", "a", "X", "-", "1D", "gauss", "to", "a", "copy", "of", "a", "XD", "image", "slicing", "it", "along", "dim", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/smoothing.py#L34-L56
5,295
loli/medpy
medpy/filter/smoothing.py
anisotropic_diffusion
def anisotropic_diffusion(img, niter=1, kappa=50, gamma=0.1, voxelspacing=None, option=1): r""" Edge-preserving, XD Anisotropic diffusion. Parameters ---------- img : array_like Input image (will be cast to numpy.float). niter : integer Number of iterations. kappa : integer Conduction coefficient, e.g. 20-100. ``kappa`` controls conduction as a function of the gradient. If ``kappa`` is low small intensity gradients are able to block conduction and hence diffusion across steep edges. A large value reduces the influence of intensity gradients on conduction. gamma : float Controls the speed of diffusion. Pick a value :math:`<= .25` for stability. voxelspacing : tuple of floats or array_like The distance between adjacent pixels in all img.ndim directions option : {1, 2, 3} Whether to use the Perona Malik diffusion equation No. 1 or No. 2, or Tukey's biweight function. Equation 1 favours high contrast edges over low contrast ones, while equation 2 favours wide regions over smaller ones. See [1]_ for details. Equation 3 preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. See [2]_ for details. Returns ------- anisotropic_diffusion : ndarray Diffused image. Notes ----- Original MATLAB code by Peter Kovesi, School of Computer Science & Software Engineering, The University of Western Australia, pk @ csse uwa edu au, <http://www.csse.uwa.edu.au> Translated to Python and optimised by Alistair Muldal, Department of Pharmacology, University of Oxford, <[email protected]> Adapted to arbitrary dimensionality and added to the MedPy library Oskar Maier, Institute for Medical Informatics, Universitaet Luebeck, <[email protected]> June 2000 original version. - March 2002 corrected diffusion eqn No 2. - July 2012 translated to Python - August 2013 incorporated into MedPy, arbitrary dimensionality - References ---------- .. [1] P. Perona and J. Malik. Scale-space and edge detection using ansotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639, July 1990. .. [2] M.J. Black, G. Sapiro, D. Marimont, D. Heeger Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-432, March 1998. """ # define conduction gradients functions if option == 1: def condgradient(delta, spacing): return numpy.exp(-(delta/kappa)**2.)/float(spacing) elif option == 2: def condgradient(delta, spacing): return 1./(1.+(delta/kappa)**2.)/float(spacing) elif option == 3: kappa_s = kappa * (2**0.5) def condgradient(delta, spacing): top = 0.5*((1.-(delta/kappa_s)**2.)**2.)/float(spacing) return numpy.where(numpy.abs(delta) <= kappa_s, top, 0) # initialize output array out = numpy.array(img, dtype=numpy.float32, copy=True) # set default voxel spacing if not supplied if voxelspacing is None: voxelspacing = tuple([1.] * img.ndim) # initialize some internal variables deltas = [numpy.zeros_like(out) for _ in range(out.ndim)] for _ in range(niter): # calculate the diffs for i in range(out.ndim): slicer = [slice(None, -1) if j == i else slice(None) for j in range(out.ndim)] deltas[i][slicer] = numpy.diff(out, axis=i) # update matrices matrices = [condgradient(delta, spacing) * delta for delta, spacing in zip(deltas, voxelspacing)] # subtract a copy that has been shifted ('Up/North/West' in 3D case) by one # pixel. Don't as questions. just do it. trust me. for i in range(out.ndim): slicer = [slice(1, None) if j == i else slice(None) for j in range(out.ndim)] matrices[i][slicer] = numpy.diff(matrices[i], axis=i) # update the image out += gamma * (numpy.sum(matrices, axis=0)) return out
python
def anisotropic_diffusion(img, niter=1, kappa=50, gamma=0.1, voxelspacing=None, option=1): r""" Edge-preserving, XD Anisotropic diffusion. Parameters ---------- img : array_like Input image (will be cast to numpy.float). niter : integer Number of iterations. kappa : integer Conduction coefficient, e.g. 20-100. ``kappa`` controls conduction as a function of the gradient. If ``kappa`` is low small intensity gradients are able to block conduction and hence diffusion across steep edges. A large value reduces the influence of intensity gradients on conduction. gamma : float Controls the speed of diffusion. Pick a value :math:`<= .25` for stability. voxelspacing : tuple of floats or array_like The distance between adjacent pixels in all img.ndim directions option : {1, 2, 3} Whether to use the Perona Malik diffusion equation No. 1 or No. 2, or Tukey's biweight function. Equation 1 favours high contrast edges over low contrast ones, while equation 2 favours wide regions over smaller ones. See [1]_ for details. Equation 3 preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. See [2]_ for details. Returns ------- anisotropic_diffusion : ndarray Diffused image. Notes ----- Original MATLAB code by Peter Kovesi, School of Computer Science & Software Engineering, The University of Western Australia, pk @ csse uwa edu au, <http://www.csse.uwa.edu.au> Translated to Python and optimised by Alistair Muldal, Department of Pharmacology, University of Oxford, <[email protected]> Adapted to arbitrary dimensionality and added to the MedPy library Oskar Maier, Institute for Medical Informatics, Universitaet Luebeck, <[email protected]> June 2000 original version. - March 2002 corrected diffusion eqn No 2. - July 2012 translated to Python - August 2013 incorporated into MedPy, arbitrary dimensionality - References ---------- .. [1] P. Perona and J. Malik. Scale-space and edge detection using ansotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639, July 1990. .. [2] M.J. Black, G. Sapiro, D. Marimont, D. Heeger Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-432, March 1998. """ # define conduction gradients functions if option == 1: def condgradient(delta, spacing): return numpy.exp(-(delta/kappa)**2.)/float(spacing) elif option == 2: def condgradient(delta, spacing): return 1./(1.+(delta/kappa)**2.)/float(spacing) elif option == 3: kappa_s = kappa * (2**0.5) def condgradient(delta, spacing): top = 0.5*((1.-(delta/kappa_s)**2.)**2.)/float(spacing) return numpy.where(numpy.abs(delta) <= kappa_s, top, 0) # initialize output array out = numpy.array(img, dtype=numpy.float32, copy=True) # set default voxel spacing if not supplied if voxelspacing is None: voxelspacing = tuple([1.] * img.ndim) # initialize some internal variables deltas = [numpy.zeros_like(out) for _ in range(out.ndim)] for _ in range(niter): # calculate the diffs for i in range(out.ndim): slicer = [slice(None, -1) if j == i else slice(None) for j in range(out.ndim)] deltas[i][slicer] = numpy.diff(out, axis=i) # update matrices matrices = [condgradient(delta, spacing) * delta for delta, spacing in zip(deltas, voxelspacing)] # subtract a copy that has been shifted ('Up/North/West' in 3D case) by one # pixel. Don't as questions. just do it. trust me. for i in range(out.ndim): slicer = [slice(1, None) if j == i else slice(None) for j in range(out.ndim)] matrices[i][slicer] = numpy.diff(matrices[i], axis=i) # update the image out += gamma * (numpy.sum(matrices, axis=0)) return out
[ "def", "anisotropic_diffusion", "(", "img", ",", "niter", "=", "1", ",", "kappa", "=", "50", ",", "gamma", "=", "0.1", ",", "voxelspacing", "=", "None", ",", "option", "=", "1", ")", ":", "# define conduction gradients functions", "if", "option", "==", "1", ":", "def", "condgradient", "(", "delta", ",", "spacing", ")", ":", "return", "numpy", ".", "exp", "(", "-", "(", "delta", "/", "kappa", ")", "**", "2.", ")", "/", "float", "(", "spacing", ")", "elif", "option", "==", "2", ":", "def", "condgradient", "(", "delta", ",", "spacing", ")", ":", "return", "1.", "/", "(", "1.", "+", "(", "delta", "/", "kappa", ")", "**", "2.", ")", "/", "float", "(", "spacing", ")", "elif", "option", "==", "3", ":", "kappa_s", "=", "kappa", "*", "(", "2", "**", "0.5", ")", "def", "condgradient", "(", "delta", ",", "spacing", ")", ":", "top", "=", "0.5", "*", "(", "(", "1.", "-", "(", "delta", "/", "kappa_s", ")", "**", "2.", ")", "**", "2.", ")", "/", "float", "(", "spacing", ")", "return", "numpy", ".", "where", "(", "numpy", ".", "abs", "(", "delta", ")", "<=", "kappa_s", ",", "top", ",", "0", ")", "# initialize output array", "out", "=", "numpy", ".", "array", "(", "img", ",", "dtype", "=", "numpy", ".", "float32", ",", "copy", "=", "True", ")", "# set default voxel spacing if not supplied", "if", "voxelspacing", "is", "None", ":", "voxelspacing", "=", "tuple", "(", "[", "1.", "]", "*", "img", ".", "ndim", ")", "# initialize some internal variables", "deltas", "=", "[", "numpy", ".", "zeros_like", "(", "out", ")", "for", "_", "in", "range", "(", "out", ".", "ndim", ")", "]", "for", "_", "in", "range", "(", "niter", ")", ":", "# calculate the diffs", "for", "i", "in", "range", "(", "out", ".", "ndim", ")", ":", "slicer", "=", "[", "slice", "(", "None", ",", "-", "1", ")", "if", "j", "==", "i", "else", "slice", "(", "None", ")", "for", "j", "in", "range", "(", "out", ".", "ndim", ")", "]", "deltas", "[", "i", "]", "[", "slicer", "]", "=", "numpy", ".", "diff", "(", "out", ",", "axis", "=", "i", ")", "# update matrices", "matrices", "=", "[", "condgradient", "(", "delta", ",", "spacing", ")", "*", "delta", "for", "delta", ",", "spacing", "in", "zip", "(", "deltas", ",", "voxelspacing", ")", "]", "# subtract a copy that has been shifted ('Up/North/West' in 3D case) by one", "# pixel. Don't as questions. just do it. trust me.", "for", "i", "in", "range", "(", "out", ".", "ndim", ")", ":", "slicer", "=", "[", "slice", "(", "1", ",", "None", ")", "if", "j", "==", "i", "else", "slice", "(", "None", ")", "for", "j", "in", "range", "(", "out", ".", "ndim", ")", "]", "matrices", "[", "i", "]", "[", "slicer", "]", "=", "numpy", ".", "diff", "(", "matrices", "[", "i", "]", ",", "axis", "=", "i", ")", "# update the image", "out", "+=", "gamma", "*", "(", "numpy", ".", "sum", "(", "matrices", ",", "axis", "=", "0", ")", ")", "return", "out" ]
r""" Edge-preserving, XD Anisotropic diffusion. Parameters ---------- img : array_like Input image (will be cast to numpy.float). niter : integer Number of iterations. kappa : integer Conduction coefficient, e.g. 20-100. ``kappa`` controls conduction as a function of the gradient. If ``kappa`` is low small intensity gradients are able to block conduction and hence diffusion across steep edges. A large value reduces the influence of intensity gradients on conduction. gamma : float Controls the speed of diffusion. Pick a value :math:`<= .25` for stability. voxelspacing : tuple of floats or array_like The distance between adjacent pixels in all img.ndim directions option : {1, 2, 3} Whether to use the Perona Malik diffusion equation No. 1 or No. 2, or Tukey's biweight function. Equation 1 favours high contrast edges over low contrast ones, while equation 2 favours wide regions over smaller ones. See [1]_ for details. Equation 3 preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. See [2]_ for details. Returns ------- anisotropic_diffusion : ndarray Diffused image. Notes ----- Original MATLAB code by Peter Kovesi, School of Computer Science & Software Engineering, The University of Western Australia, pk @ csse uwa edu au, <http://www.csse.uwa.edu.au> Translated to Python and optimised by Alistair Muldal, Department of Pharmacology, University of Oxford, <[email protected]> Adapted to arbitrary dimensionality and added to the MedPy library Oskar Maier, Institute for Medical Informatics, Universitaet Luebeck, <[email protected]> June 2000 original version. - March 2002 corrected diffusion eqn No 2. - July 2012 translated to Python - August 2013 incorporated into MedPy, arbitrary dimensionality - References ---------- .. [1] P. Perona and J. Malik. Scale-space and edge detection using ansotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639, July 1990. .. [2] M.J. Black, G. Sapiro, D. Marimont, D. Heeger Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-432, March 1998.
[ "r", "Edge", "-", "preserving", "XD", "Anisotropic", "diffusion", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/filter/smoothing.py#L58-L169
5,296
loli/medpy
medpy/graphcut/generate.py
__voxel_4conectedness
def __voxel_4conectedness(shape): """ Returns the number of edges for the supplied image shape assuming 4-connectedness. The name of the function has historical reasons. Essentially it returns the number of edges assuming 4-connectedness only for 2D. For 3D it assumes 6-connectedness, etc. @param shape the shape of the image @type shape sequence @return the number of edges @rtype int """ shape = list(shape) while 1 in shape: shape.remove(1) # empty resp. 1-sized dimensions have to be removed (equal to scipy.squeeze on the array) return int(round(sum([(dim - 1)/float(dim) for dim in shape]) * scipy.prod(shape)))
python
def __voxel_4conectedness(shape): """ Returns the number of edges for the supplied image shape assuming 4-connectedness. The name of the function has historical reasons. Essentially it returns the number of edges assuming 4-connectedness only for 2D. For 3D it assumes 6-connectedness, etc. @param shape the shape of the image @type shape sequence @return the number of edges @rtype int """ shape = list(shape) while 1 in shape: shape.remove(1) # empty resp. 1-sized dimensions have to be removed (equal to scipy.squeeze on the array) return int(round(sum([(dim - 1)/float(dim) for dim in shape]) * scipy.prod(shape)))
[ "def", "__voxel_4conectedness", "(", "shape", ")", ":", "shape", "=", "list", "(", "shape", ")", "while", "1", "in", "shape", ":", "shape", ".", "remove", "(", "1", ")", "# empty resp. 1-sized dimensions have to be removed (equal to scipy.squeeze on the array)", "return", "int", "(", "round", "(", "sum", "(", "[", "(", "dim", "-", "1", ")", "/", "float", "(", "dim", ")", "for", "dim", "in", "shape", "]", ")", "*", "scipy", ".", "prod", "(", "shape", ")", ")", ")" ]
Returns the number of edges for the supplied image shape assuming 4-connectedness. The name of the function has historical reasons. Essentially it returns the number of edges assuming 4-connectedness only for 2D. For 3D it assumes 6-connectedness, etc. @param shape the shape of the image @type shape sequence @return the number of edges @rtype int
[ "Returns", "the", "number", "of", "edges", "for", "the", "supplied", "image", "shape", "assuming", "4", "-", "connectedness", ".", "The", "name", "of", "the", "function", "has", "historical", "reasons", ".", "Essentially", "it", "returns", "the", "number", "of", "edges", "assuming", "4", "-", "connectedness", "only", "for", "2D", ".", "For", "3D", "it", "assumes", "6", "-", "connectedness", "etc", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/graphcut/generate.py#L316-L331
5,297
loli/medpy
medpy/graphcut/energy_voxel.py
__skeleton_base
def __skeleton_base(graph, image, boundary_term, neighbourhood_function, spacing): """ Base of the skeleton for voxel based boundary term calculation. This function holds the low level procedures shared by nearly all boundary terms. @param graph An initialized graph.GCGraph object @type graph.GCGraph @param image The image containing the voxel intensity values @type image numpy.ndarray @param boundary_term A function to compute the boundary term over an array of absolute intensity differences @type boundary_term function @param neighbourhood_function A function that takes two arrays of neighbouring pixels and computes an intensity term from them that is returned as a single array of the same shape @type neighbourhood_function function @param spacing A sequence containing the slice spacing used for weighting the computed neighbourhood weight value for different dimensions. If False, no distance based weighting of the graph edges is performed. @param spacing sequence | False """ image = scipy.asarray(image) image = image.astype(scipy.float_) # iterate over the image dimensions and for each create the appropriate edges and compute the associated weights for dim in range(image.ndim): # construct slice-objects for the current dimension slices_exclude_last = [slice(None)] * image.ndim slices_exclude_last[dim] = slice(-1) slices_exclude_first = [slice(None)] * image.ndim slices_exclude_first[dim] = slice(1, None) # compute difference between all layers in the current dimensions direction neighbourhood_intensity_term = neighbourhood_function(image[slices_exclude_last], image[slices_exclude_first]) # apply boundary term neighbourhood_intensity_term = boundary_term(neighbourhood_intensity_term) # compute key offset for relative key difference offset_key = [1 if i == dim else 0 for i in range(image.ndim)] offset = __flatten_index(offset_key, image.shape) # generate index offset function for index dependent offset idx_offset_divider = (image.shape[dim] - 1) * offset idx_offset = lambda x: int(x / idx_offset_divider) * offset # weight the computed distanced in dimension dim by the corresponding slice spacing provided if spacing: neighbourhood_intensity_term /= spacing[dim] for key, value in enumerate(neighbourhood_intensity_term.ravel()): # apply index dependent offset key += idx_offset(key) # add edges and set the weight graph.set_nweight(key, key + offset, value, value)
python
def __skeleton_base(graph, image, boundary_term, neighbourhood_function, spacing): """ Base of the skeleton for voxel based boundary term calculation. This function holds the low level procedures shared by nearly all boundary terms. @param graph An initialized graph.GCGraph object @type graph.GCGraph @param image The image containing the voxel intensity values @type image numpy.ndarray @param boundary_term A function to compute the boundary term over an array of absolute intensity differences @type boundary_term function @param neighbourhood_function A function that takes two arrays of neighbouring pixels and computes an intensity term from them that is returned as a single array of the same shape @type neighbourhood_function function @param spacing A sequence containing the slice spacing used for weighting the computed neighbourhood weight value for different dimensions. If False, no distance based weighting of the graph edges is performed. @param spacing sequence | False """ image = scipy.asarray(image) image = image.astype(scipy.float_) # iterate over the image dimensions and for each create the appropriate edges and compute the associated weights for dim in range(image.ndim): # construct slice-objects for the current dimension slices_exclude_last = [slice(None)] * image.ndim slices_exclude_last[dim] = slice(-1) slices_exclude_first = [slice(None)] * image.ndim slices_exclude_first[dim] = slice(1, None) # compute difference between all layers in the current dimensions direction neighbourhood_intensity_term = neighbourhood_function(image[slices_exclude_last], image[slices_exclude_first]) # apply boundary term neighbourhood_intensity_term = boundary_term(neighbourhood_intensity_term) # compute key offset for relative key difference offset_key = [1 if i == dim else 0 for i in range(image.ndim)] offset = __flatten_index(offset_key, image.shape) # generate index offset function for index dependent offset idx_offset_divider = (image.shape[dim] - 1) * offset idx_offset = lambda x: int(x / idx_offset_divider) * offset # weight the computed distanced in dimension dim by the corresponding slice spacing provided if spacing: neighbourhood_intensity_term /= spacing[dim] for key, value in enumerate(neighbourhood_intensity_term.ravel()): # apply index dependent offset key += idx_offset(key) # add edges and set the weight graph.set_nweight(key, key + offset, value, value)
[ "def", "__skeleton_base", "(", "graph", ",", "image", ",", "boundary_term", ",", "neighbourhood_function", ",", "spacing", ")", ":", "image", "=", "scipy", ".", "asarray", "(", "image", ")", "image", "=", "image", ".", "astype", "(", "scipy", ".", "float_", ")", "# iterate over the image dimensions and for each create the appropriate edges and compute the associated weights", "for", "dim", "in", "range", "(", "image", ".", "ndim", ")", ":", "# construct slice-objects for the current dimension", "slices_exclude_last", "=", "[", "slice", "(", "None", ")", "]", "*", "image", ".", "ndim", "slices_exclude_last", "[", "dim", "]", "=", "slice", "(", "-", "1", ")", "slices_exclude_first", "=", "[", "slice", "(", "None", ")", "]", "*", "image", ".", "ndim", "slices_exclude_first", "[", "dim", "]", "=", "slice", "(", "1", ",", "None", ")", "# compute difference between all layers in the current dimensions direction", "neighbourhood_intensity_term", "=", "neighbourhood_function", "(", "image", "[", "slices_exclude_last", "]", ",", "image", "[", "slices_exclude_first", "]", ")", "# apply boundary term", "neighbourhood_intensity_term", "=", "boundary_term", "(", "neighbourhood_intensity_term", ")", "# compute key offset for relative key difference", "offset_key", "=", "[", "1", "if", "i", "==", "dim", "else", "0", "for", "i", "in", "range", "(", "image", ".", "ndim", ")", "]", "offset", "=", "__flatten_index", "(", "offset_key", ",", "image", ".", "shape", ")", "# generate index offset function for index dependent offset", "idx_offset_divider", "=", "(", "image", ".", "shape", "[", "dim", "]", "-", "1", ")", "*", "offset", "idx_offset", "=", "lambda", "x", ":", "int", "(", "x", "/", "idx_offset_divider", ")", "*", "offset", "# weight the computed distanced in dimension dim by the corresponding slice spacing provided", "if", "spacing", ":", "neighbourhood_intensity_term", "/=", "spacing", "[", "dim", "]", "for", "key", ",", "value", "in", "enumerate", "(", "neighbourhood_intensity_term", ".", "ravel", "(", ")", ")", ":", "# apply index dependent offset", "key", "+=", "idx_offset", "(", "key", ")", "# add edges and set the weight", "graph", ".", "set_nweight", "(", "key", ",", "key", "+", "offset", ",", "value", ",", "value", ")" ]
Base of the skeleton for voxel based boundary term calculation. This function holds the low level procedures shared by nearly all boundary terms. @param graph An initialized graph.GCGraph object @type graph.GCGraph @param image The image containing the voxel intensity values @type image numpy.ndarray @param boundary_term A function to compute the boundary term over an array of absolute intensity differences @type boundary_term function @param neighbourhood_function A function that takes two arrays of neighbouring pixels and computes an intensity term from them that is returned as a single array of the same shape @type neighbourhood_function function @param spacing A sequence containing the slice spacing used for weighting the computed neighbourhood weight value for different dimensions. If False, no distance based weighting of the graph edges is performed. @param spacing sequence | False
[ "Base", "of", "the", "skeleton", "for", "voxel", "based", "boundary", "term", "calculation", ".", "This", "function", "holds", "the", "low", "level", "procedures", "shared", "by", "nearly", "all", "boundary", "terms", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/graphcut/energy_voxel.py#L590-L640
5,298
loli/medpy
medpy/metric/image.py
__range
def __range(a, bins): '''Compute the histogram range of the values in the array a according to scipy.stats.histogram.''' a = numpy.asarray(a) a_max = a.max() a_min = a.min() s = 0.5 * (a_max - a_min) / float(bins - 1) return (a_min - s, a_max + s)
python
def __range(a, bins): '''Compute the histogram range of the values in the array a according to scipy.stats.histogram.''' a = numpy.asarray(a) a_max = a.max() a_min = a.min() s = 0.5 * (a_max - a_min) / float(bins - 1) return (a_min - s, a_max + s)
[ "def", "__range", "(", "a", ",", "bins", ")", ":", "a", "=", "numpy", ".", "asarray", "(", "a", ")", "a_max", "=", "a", ".", "max", "(", ")", "a_min", "=", "a", ".", "min", "(", ")", "s", "=", "0.5", "*", "(", "a_max", "-", "a_min", ")", "/", "float", "(", "bins", "-", "1", ")", "return", "(", "a_min", "-", "s", ",", "a_max", "+", "s", ")" ]
Compute the histogram range of the values in the array a according to scipy.stats.histogram.
[ "Compute", "the", "histogram", "range", "of", "the", "values", "in", "the", "array", "a", "according", "to", "scipy", ".", "stats", ".", "histogram", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/metric/image.py#L103-L110
5,299
loli/medpy
medpy/features/intensity.py
centerdistance
def centerdistance(image, voxelspacing = None, mask = slice(None)): r""" Takes a simple or multi-spectral image and returns its voxel-wise center distance in mm. A multi-spectral image must be supplied as a list or tuple of its spectra. Optionally a binary mask can be supplied to select the voxels for which the feature should be extracted. The center distance is the exact euclidean distance in mm of each voxels center to the central point of the overal image volume. Note that this feature is independent of the actual image content, but depends solely on its shape. Therefore always a one-dimensional feature is returned, even if a multi-spectral image has been supplied. Parameters ---------- image : array_like or list/tuple of array_like A single image or a list/tuple of images (for multi-spectral case). voxelspacing : sequence of floats The side-length of each voxel. mask : array_like A binary mask for the image. Returns ------- centerdistance : ndarray The distance of each voxel to the images center. See Also -------- centerdistance_xdminus1 """ if type(image) == tuple or type(image) == list: image = image[0] return _extract_feature(_extract_centerdistance, image, mask, voxelspacing = voxelspacing)
python
def centerdistance(image, voxelspacing = None, mask = slice(None)): r""" Takes a simple or multi-spectral image and returns its voxel-wise center distance in mm. A multi-spectral image must be supplied as a list or tuple of its spectra. Optionally a binary mask can be supplied to select the voxels for which the feature should be extracted. The center distance is the exact euclidean distance in mm of each voxels center to the central point of the overal image volume. Note that this feature is independent of the actual image content, but depends solely on its shape. Therefore always a one-dimensional feature is returned, even if a multi-spectral image has been supplied. Parameters ---------- image : array_like or list/tuple of array_like A single image or a list/tuple of images (for multi-spectral case). voxelspacing : sequence of floats The side-length of each voxel. mask : array_like A binary mask for the image. Returns ------- centerdistance : ndarray The distance of each voxel to the images center. See Also -------- centerdistance_xdminus1 """ if type(image) == tuple or type(image) == list: image = image[0] return _extract_feature(_extract_centerdistance, image, mask, voxelspacing = voxelspacing)
[ "def", "centerdistance", "(", "image", ",", "voxelspacing", "=", "None", ",", "mask", "=", "slice", "(", "None", ")", ")", ":", "if", "type", "(", "image", ")", "==", "tuple", "or", "type", "(", "image", ")", "==", "list", ":", "image", "=", "image", "[", "0", "]", "return", "_extract_feature", "(", "_extract_centerdistance", ",", "image", ",", "mask", ",", "voxelspacing", "=", "voxelspacing", ")" ]
r""" Takes a simple or multi-spectral image and returns its voxel-wise center distance in mm. A multi-spectral image must be supplied as a list or tuple of its spectra. Optionally a binary mask can be supplied to select the voxels for which the feature should be extracted. The center distance is the exact euclidean distance in mm of each voxels center to the central point of the overal image volume. Note that this feature is independent of the actual image content, but depends solely on its shape. Therefore always a one-dimensional feature is returned, even if a multi-spectral image has been supplied. Parameters ---------- image : array_like or list/tuple of array_like A single image or a list/tuple of images (for multi-spectral case). voxelspacing : sequence of floats The side-length of each voxel. mask : array_like A binary mask for the image. Returns ------- centerdistance : ndarray The distance of each voxel to the images center. See Also -------- centerdistance_xdminus1
[ "r", "Takes", "a", "simple", "or", "multi", "-", "spectral", "image", "and", "returns", "its", "voxel", "-", "wise", "center", "distance", "in", "mm", ".", "A", "multi", "-", "spectral", "image", "must", "be", "supplied", "as", "a", "list", "or", "tuple", "of", "its", "spectra", ".", "Optionally", "a", "binary", "mask", "can", "be", "supplied", "to", "select", "the", "voxels", "for", "which", "the", "feature", "should", "be", "extracted", ".", "The", "center", "distance", "is", "the", "exact", "euclidean", "distance", "in", "mm", "of", "each", "voxels", "center", "to", "the", "central", "point", "of", "the", "overal", "image", "volume", ".", "Note", "that", "this", "feature", "is", "independent", "of", "the", "actual", "image", "content", "but", "depends", "solely", "on", "its", "shape", ".", "Therefore", "always", "a", "one", "-", "dimensional", "feature", "is", "returned", "even", "if", "a", "multi", "-", "spectral", "image", "has", "been", "supplied", "." ]
95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5
https://github.com/loli/medpy/blob/95216b9e22e7ce301f0edf953ee2a2f1b6c6aee5/medpy/features/intensity.py#L59-L96