# Install required package | |
# pip install ultralytics | |
from ultralytics import YOLO | |
# Dataset structure expected: | |
# βββ dataset/ | |
# β βββ train/ | |
# β β βββ images/ | |
# β β βββ labels/ | |
# β βββ valid/ | |
# β β βββ images/ | |
# β β βββ labels/ | |
# β βββ test/ | |
# β βββ images/ | |
# β βββ labels/ | |
# data.yaml example: | |
# path: /path/to/dataset | |
# train: train/images | |
# val: valid/images | |
# test: test/images | |
# names: | |
# 0: class1 | |
# 1: class2 | |
# ... | |
def train_yolov8(): | |
# Load the YOLOv8 Large model | |
model = YOLO('yolov8l.pt') # pretrained model | |
# Train the model | |
results = model.train( | |
data='data.yaml', | |
epochs=100, | |
batch=16, | |
imgsz=640, | |
device='0', # 'cpu' or '0' for GPU | |
name='yolov8l_custom', | |
optimizer='Adam', | |
lr0=0.001, | |
warmup_epochs=3, | |
augment=True, | |
patience=50, | |
pretrained=True | |
) | |
# Validate the model | |
metrics = model.val() # Validate on validation set | |
print(f"Validation [email protected]: {metrics.box.map}") | |
# Test the model (optional) | |
test_model = YOLO('runs/detect/yolov8l_custom/weights/best.pt') | |
test_metrics = test_model.val(data='data.yaml', split='test') | |
print(f"Test [email protected]: {test_metrics.box.map}") | |
# Export to ONNX format (optional) | |
model.export(format='onnx') | |
if __name__ == '__main__': | |
train_yolov8() |