code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
import os from enum import Enum STAFF_CODE = os.getenv('STAFF_CODE', '20190607') ADMIN_CODE = os.getenv('ADMIN_CODE', 'nerd-bear') TEAM_NAMES = ( '밍크고래팀', '혹등고래팀', '대왕고래팀', '향유고래팀', ) TEAM_COUNT = 3 MAX_TEAM_MEMBER_COUNT = 10 class TIME_CHECK(Enum): BEFORE_START = 0 DURING_TIME = 1 AFTER_END = 2
normal
{ "blob_id": "967984444d9e26452226b13f33c5afbc96b5fe2b", "index": 3176, "step-1": "<mask token>\n\n\nclass TIME_CHECK(Enum):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TIME_CHECK(Enum):\n BEFORE_START = 0\n DURING_TIME = 1\n AFTER_END = 2\n", "step-3": "<mask token>\nSTAFF_CODE = os.getenv('STAFF_CODE', '20190607')\nADMIN_CODE = os.getenv('ADMIN_CODE', 'nerd-bear')\nTEAM_NAMES = '밍크고래팀', '혹등고래팀', '대왕고래팀', '향유고래팀'\nTEAM_COUNT = 3\nMAX_TEAM_MEMBER_COUNT = 10\n\n\nclass TIME_CHECK(Enum):\n BEFORE_START = 0\n DURING_TIME = 1\n AFTER_END = 2\n", "step-4": "import os\nfrom enum import Enum\nSTAFF_CODE = os.getenv('STAFF_CODE', '20190607')\nADMIN_CODE = os.getenv('ADMIN_CODE', 'nerd-bear')\nTEAM_NAMES = '밍크고래팀', '혹등고래팀', '대왕고래팀', '향유고래팀'\nTEAM_COUNT = 3\nMAX_TEAM_MEMBER_COUNT = 10\n\n\nclass TIME_CHECK(Enum):\n BEFORE_START = 0\n DURING_TIME = 1\n AFTER_END = 2\n", "step-5": "import os\nfrom enum import Enum\n\nSTAFF_CODE = os.getenv('STAFF_CODE', '20190607')\nADMIN_CODE = os.getenv('ADMIN_CODE', 'nerd-bear')\n\nTEAM_NAMES = (\n '밍크고래팀',\n '혹등고래팀',\n '대왕고래팀',\n '향유고래팀',\n)\nTEAM_COUNT = 3\nMAX_TEAM_MEMBER_COUNT = 10\n\n\nclass TIME_CHECK(Enum):\n BEFORE_START = 0\n DURING_TIME = 1\n AFTER_END = 2\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(version) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> API_URL = 'https://meta.decidim.org/api' decidim_connector = DecidimConnector(API_URL) version_reader = VersionReader(decidim_connector) version = version_reader.process_query() print(version) participatory_processes_reader = ParticipatoryProcessesReader(decidim_connector ) participatory_processes = participatory_processes_reader.process_query() <|reserved_special_token_1|> from api.decidim_connector import DecidimConnector from api.participatory_processes_reader import ParticipatoryProcessesReader from api.version_reader import VersionReader API_URL = 'https://meta.decidim.org/api' decidim_connector = DecidimConnector(API_URL) version_reader = VersionReader(decidim_connector) version = version_reader.process_query() print(version) participatory_processes_reader = ParticipatoryProcessesReader(decidim_connector ) participatory_processes = participatory_processes_reader.process_query() <|reserved_special_token_1|> from api.decidim_connector import DecidimConnector from api.participatory_processes_reader import ParticipatoryProcessesReader from api.version_reader import VersionReader API_URL = "https://meta.decidim.org/api" decidim_connector = DecidimConnector(API_URL) version_reader = VersionReader(decidim_connector) version = version_reader.process_query() print(version) participatory_processes_reader = ParticipatoryProcessesReader(decidim_connector) participatory_processes = participatory_processes_reader.process_query()
flexible
{ "blob_id": "88a469eba61fb6968db8cc5e1f93f12093b7f128", "index": 6973, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(version)\n<mask token>\n", "step-3": "<mask token>\nAPI_URL = 'https://meta.decidim.org/api'\ndecidim_connector = DecidimConnector(API_URL)\nversion_reader = VersionReader(decidim_connector)\nversion = version_reader.process_query()\nprint(version)\nparticipatory_processes_reader = ParticipatoryProcessesReader(decidim_connector\n )\nparticipatory_processes = participatory_processes_reader.process_query()\n", "step-4": "from api.decidim_connector import DecidimConnector\nfrom api.participatory_processes_reader import ParticipatoryProcessesReader\nfrom api.version_reader import VersionReader\nAPI_URL = 'https://meta.decidim.org/api'\ndecidim_connector = DecidimConnector(API_URL)\nversion_reader = VersionReader(decidim_connector)\nversion = version_reader.process_query()\nprint(version)\nparticipatory_processes_reader = ParticipatoryProcessesReader(decidim_connector\n )\nparticipatory_processes = participatory_processes_reader.process_query()\n", "step-5": "from api.decidim_connector import DecidimConnector\nfrom api.participatory_processes_reader import ParticipatoryProcessesReader\nfrom api.version_reader import VersionReader\n\nAPI_URL = \"https://meta.decidim.org/api\"\ndecidim_connector = DecidimConnector(API_URL)\nversion_reader = VersionReader(decidim_connector)\nversion = version_reader.process_query()\nprint(version)\n\nparticipatory_processes_reader = ParticipatoryProcessesReader(decidim_connector)\nparticipatory_processes = participatory_processes_reader.process_query()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Tests for challenge116 """ import pytest from robber import expect from pemjh.challenge116 import main @pytest.mark.parametrize('input, expected', [ pytest.param(5, 12, marks=pytest.mark.example), pytest.param(50, 20492570929, marks=pytest.mark.regression) ]) def test_challenge116(input, expected): """ Regression testing challenge116 """ expect(main(input)).to.eq(expected)
normal
{ "blob_id": "c9279434736d4e94564170fe98163ad3be9470b1", "index": 4844, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('input, expected', [pytest.param(5, 12, marks=\n pytest.mark.example), pytest.param(50, 20492570929, marks=pytest.mark.\n regression)])\ndef test_challenge116(input, expected):\n \"\"\" Regression testing challenge116 \"\"\"\n expect(main(input)).to.eq(expected)\n", "step-3": "<mask token>\nimport pytest\nfrom robber import expect\nfrom pemjh.challenge116 import main\n\n\[email protected]('input, expected', [pytest.param(5, 12, marks=\n pytest.mark.example), pytest.param(50, 20492570929, marks=pytest.mark.\n regression)])\ndef test_challenge116(input, expected):\n \"\"\" Regression testing challenge116 \"\"\"\n expect(main(input)).to.eq(expected)\n", "step-4": "\"\"\" Tests for challenge116 \"\"\"\r\nimport pytest\r\nfrom robber import expect\r\nfrom pemjh.challenge116 import main\r\n\r\n\r\[email protected]('input, expected',\r\n [\r\n pytest.param(5, 12, marks=pytest.mark.example),\r\n pytest.param(50, 20492570929,\r\n marks=pytest.mark.regression)\r\n ])\r\ndef test_challenge116(input, expected):\r\n \"\"\" Regression testing challenge116 \"\"\"\r\n expect(main(input)).to.eq(expected)\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'} self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str (x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')( outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return <|reserved_special_token_0|> def get_mean_img(self, imgs_paths, mean_img_path): """Compute the mean image from the given paths and save it to the given path.""" logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32 ) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) df = pd.read_csv(imgs_csv) imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[ 'image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size']] + self.config ['input_shape']) tags_batch = np.zeros([self.config['batch_size']] + self.config ['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np. float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'} self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str (x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')( outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self. config['trn_imgs_dir'], self.config['trn_transform']) cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger( '%s/history.csv' % self.cpdir), ModelCheckpoint( '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only= True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor= 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')] self.net.fit_generator(batch_gen, steps_per_epoch=self.config[ 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[ 'trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): """Compute the mean image from the given paths and save it to the given path.""" logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32 ) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) df = pd.read_csv(imgs_csv) imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[ 'image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size']] + self.config ['input_shape']) tags_batch = np.zeros([self.config['batch_size']] + self.config ['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np. float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> np.random.seed(317) <|reserved_special_token_0|> sys.path.append('.') <|reserved_special_token_0|> class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'} self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str (x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')( outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self. config['trn_imgs_dir'], self.config['trn_transform']) cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger( '%s/history.csv' % self.cpdir), ModelCheckpoint( '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only= True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor= 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')] self.net.fit_generator(batch_gen, steps_per_epoch=self.config[ 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[ 'trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): """Compute the mean image from the given paths and save it to the given path.""" logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32 ) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) df = pd.read_csv(imgs_csv) imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[ 'image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size']] + self.config ['input_shape']) tags_batch = np.zeros([self.config['batch_size']] + self.config ['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np. float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred if __name__ == '__main__': from planet.model_runner import model_runner model = VGGNet() model_runner(model) <|reserved_special_token_1|> import numpy as np np.random.seed(317) from glob import glob from itertools import cycle from keras.applications.vgg19 import VGG19 from keras.optimizers import Adam from keras.models import Model from keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense from keras.utils import plot_model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback from keras.losses import kullback_leibler_divergence from math import ceil from os import path, mkdir, listdir from skimage.transform import resize from scipy.misc import imread, imsave from time import time import argparse import logging import keras.backend as K import pandas as pd import tifffile as tif import sys sys.path.append('.') from planet.utils.data_utils import tagset_to_ints, random_transforms from planet.utils.keras_utils import HistoryPlot from planet.utils.runtime import funcname class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'} self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str (x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')( outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self. config['trn_imgs_dir'], self.config['trn_transform']) cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger( '%s/history.csv' % self.cpdir), ModelCheckpoint( '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only= True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor= 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')] self.net.fit_generator(batch_gen, steps_per_epoch=self.config[ 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[ 'trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): """Compute the mean image from the given paths and save it to the given path.""" logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32 ) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) df = pd.read_csv(imgs_csv) imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[ 'image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size']] + self.config ['input_shape']) tags_batch = np.zeros([self.config['batch_size']] + self.config ['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np. float32) / 255.0 mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32 ) / 255.0 - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred if __name__ == '__main__': from planet.model_runner import model_runner model = VGGNet() model_runner(model) <|reserved_special_token_1|> # VGGNet import numpy as np np.random.seed(317) from glob import glob from itertools import cycle from keras.applications.vgg19 import VGG19 from keras.optimizers import Adam from keras.models import Model from keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense from keras.utils import plot_model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback from keras.losses import kullback_leibler_divergence from math import ceil from os import path, mkdir, listdir from skimage.transform import resize from scipy.misc import imread, imsave from time import time import argparse import logging import keras.backend as K import pandas as pd import tifffile as tif import sys sys.path.append('.') from planet.utils.data_utils import tagset_to_ints, random_transforms from planet.utils.keras_utils import HistoryPlot from planet.utils.runtime import funcname class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = { 'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17, ], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg' } self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[ 'trn_imgs_dir'], self.config['trn_transform']) cb = [ HistoryPlot('%s/history.png' % self.cpdir), CSVLogger('%s/history.csv' % self.cpdir), ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only=True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max') ] self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb, epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): '''Compute the mean image from the given paths and save it to the given path.''' logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) # Read the CSV and extract image names and tags. df = pd.read_csv(imgs_csv) imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] # Compute the mean image for pre-processing. mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape']) tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): # Get the mean image imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred if __name__ == "__main__": from planet.model_runner import model_runner model = VGGNet() model_runner(model)
flexible
{ "blob_id": "c6a4d566460a06504abf7e2c54be4f2ea36e01fb", "index": 7735, "step-1": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n <mask token>\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-3": "<mask token>\nnp.random.seed(317)\n<mask token>\nsys.path.append('.')\n<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-4": "import numpy as np\nnp.random.seed(317)\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-5": "# VGGNet\nimport numpy as np\nnp.random.seed(317)\n\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\n\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n\n self.config = {\n 'image_shape': [256, 256, 3],\n 'input_shape': [224, 224, 3],\n 'output_shape': [17, ],\n 'batch_size': 60,\n 'trn_steps': 680,\n 'trn_nb_epochs': 200,\n 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv',\n 'trn_imgs_dir': 'data/train-jpg',\n 'tst_imgs_csv': 'data/sample_submission_v2.csv',\n 'tst_imgs_dir': 'data/test-jpg'\n }\n\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon()))\n\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[\n 'trn_imgs_dir'], self.config['trn_transform'])\n\n cb = [\n HistoryPlot('%s/history.png' % self.cpdir),\n CSVLogger('%s/history.csv' % self.cpdir),\n ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=True),\n ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'),\n EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max')\n ]\n\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb,\n epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True)\n\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n '''Compute the mean image from the given paths and save it to the given path.'''\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n\n logger = logging.getLogger(funcname())\n\n # Read the CSV and extract image names and tags.\n df = pd.read_csv(imgs_csv)\n imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n\n # Compute the mean image for pre-processing.\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n while True:\n\n imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape'])\n tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths)))\n\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n\n # Get the mean image\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\nif __name__ == \"__main__\":\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
<|reserved_special_token_0|> def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <|reserved_special_token_0|> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <|reserved_special_token_0|> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <|reserved_special_token_0|> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2 * expo1 / pi, 0.75) norm2 = pow(2 * expo2 / pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, power_of_r + 2) return value <|reserved_special_token_1|> import os, sys import numpy as np from math import exp, sqrt, pi def factorial(n): value = 1 for i in range(n, 1, -1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i return k <|reserved_special_token_0|> def gaussian_integral(alpha, m): if int(m / 2) * 2 == m: n = int(m / 2) value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow( alpha, n + 0.5) else: n = int((m - 1) / 2) value = factorial(n) / 2 / pow(alpha, n + 1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2 * expo1 / pi, 0.75) norm2 = pow(2 * expo2 / pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, power_of_r + 2) return value <|reserved_special_token_1|> # coding: utf-8 import os, sys import numpy as np from math import exp, sqrt, pi def factorial(n): value = 1 for i in range(n,1,-1): value *= i return value def double_factorial(n): k = 1 for i in range(n, 1, -2): k *= i #print("n:", n, "double factorial:", k) return k """\int_0^\infty r^m e^{-alpha * r^2} dr""" def gaussian_integral(alpha, m): if int(m/2)*2 == m: # even number n = int(m/2) value = double_factorial(2*n-1) * sqrt(pi) / pow(2, n+1) / pow(alpha, n+0.5) else: n = int((m-1)/2) value = factorial(n) / 2 / pow(alpha, n+1) return value def overlap_s_gaussians(expo1, expo2, power_of_r): norm1 = pow(2*expo1/pi, 0.75) norm2 = pow(2*expo2/pi, 0.75) value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1+expo2, power_of_r+2) return value
flexible
{ "blob_id": "005650e2747c61b730960a29891b6ba6c8bd381b", "index": 1334, "step-1": "<mask token>\n\n\ndef double_factorial(n):\n k = 1\n for i in range(n, 1, -2):\n k *= i\n return k\n\n\n<mask token>\n\n\ndef gaussian_integral(alpha, m):\n if int(m / 2) * 2 == m:\n n = int(m / 2)\n value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow(\n alpha, n + 0.5)\n else:\n n = int((m - 1) / 2)\n value = factorial(n) / 2 / pow(alpha, n + 1)\n return value\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef factorial(n):\n value = 1\n for i in range(n, 1, -1):\n value *= i\n return value\n\n\ndef double_factorial(n):\n k = 1\n for i in range(n, 1, -2):\n k *= i\n return k\n\n\n<mask token>\n\n\ndef gaussian_integral(alpha, m):\n if int(m / 2) * 2 == m:\n n = int(m / 2)\n value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow(\n alpha, n + 0.5)\n else:\n n = int((m - 1) / 2)\n value = factorial(n) / 2 / pow(alpha, n + 1)\n return value\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef factorial(n):\n value = 1\n for i in range(n, 1, -1):\n value *= i\n return value\n\n\ndef double_factorial(n):\n k = 1\n for i in range(n, 1, -2):\n k *= i\n return k\n\n\n<mask token>\n\n\ndef gaussian_integral(alpha, m):\n if int(m / 2) * 2 == m:\n n = int(m / 2)\n value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow(\n alpha, n + 0.5)\n else:\n n = int((m - 1) / 2)\n value = factorial(n) / 2 / pow(alpha, n + 1)\n return value\n\n\ndef overlap_s_gaussians(expo1, expo2, power_of_r):\n norm1 = pow(2 * expo1 / pi, 0.75)\n norm2 = pow(2 * expo2 / pi, 0.75)\n value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, \n power_of_r + 2)\n return value\n", "step-4": "import os, sys\nimport numpy as np\nfrom math import exp, sqrt, pi\n\n\ndef factorial(n):\n value = 1\n for i in range(n, 1, -1):\n value *= i\n return value\n\n\ndef double_factorial(n):\n k = 1\n for i in range(n, 1, -2):\n k *= i\n return k\n\n\n<mask token>\n\n\ndef gaussian_integral(alpha, m):\n if int(m / 2) * 2 == m:\n n = int(m / 2)\n value = double_factorial(2 * n - 1) * sqrt(pi) / pow(2, n + 1) / pow(\n alpha, n + 0.5)\n else:\n n = int((m - 1) / 2)\n value = factorial(n) / 2 / pow(alpha, n + 1)\n return value\n\n\ndef overlap_s_gaussians(expo1, expo2, power_of_r):\n norm1 = pow(2 * expo1 / pi, 0.75)\n norm2 = pow(2 * expo2 / pi, 0.75)\n value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1 + expo2, \n power_of_r + 2)\n return value\n", "step-5": "# coding: utf-8\n\nimport os, sys\nimport numpy as np\nfrom math import exp, sqrt, pi\n\ndef factorial(n):\n value = 1\n for i in range(n,1,-1):\n value *= i\n return value\n \ndef double_factorial(n):\n k = 1\n for i in range(n, 1, -2):\n k *= i\n #print(\"n:\", n, \"double factorial:\", k)\n return k\n\n\"\"\"\\int_0^\\infty r^m e^{-alpha * r^2} dr\"\"\"\ndef gaussian_integral(alpha, m):\n if int(m/2)*2 == m: # even number\n n = int(m/2)\n value = double_factorial(2*n-1) * sqrt(pi) / pow(2, n+1) / pow(alpha, n+0.5)\n else:\n n = int((m-1)/2)\n value = factorial(n) / 2 / pow(alpha, n+1)\n return value\n\ndef overlap_s_gaussians(expo1, expo2, power_of_r):\n norm1 = pow(2*expo1/pi, 0.75)\n norm2 = pow(2*expo2/pi, 0.75)\n value = norm1 * norm2 * 4 * pi * gaussian_integral(expo1+expo2, power_of_r+2)\n return value\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def boyhook(dic): print('test') if dic['name']: return dic['name'], dic['age'] return dic <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def boyhook(dic): print('test') if dic['name']: return dic['name'], dic['age'] return dic <|reserved_special_token_0|> print(new_boy) <|reserved_special_token_1|> <|reserved_special_token_0|> a = '{"ddd": {{}}}' def boyhook(dic): print('test') if dic['name']: return dic['name'], dic['age'] return dic new_boy = json.loads(a, object_hook=boyhook) print(new_boy) <|reserved_special_token_1|> import json a = '{"ddd": {{}}}' def boyhook(dic): print('test') if dic['name']: return dic['name'], dic['age'] return dic new_boy = json.loads(a, object_hook=boyhook) print(new_boy) <|reserved_special_token_1|> # coding=utf-8 # @FileName: test_json.py # @Author: ZhengQiang # Date: 2020/1/15 5:26 下午 import json a = "{\"ddd\": {{}}}" def boyhook(dic): print('test') if dic['name']: return dic['name'], dic['age'] return dic new_boy = json.loads(a, object_hook=boyhook) print(new_boy)
flexible
{ "blob_id": "2bc5711839ccbe525551b60211d8cd79ddb7775a", "index": 7019, "step-1": "<mask token>\n\n\ndef boyhook(dic):\n print('test')\n if dic['name']:\n return dic['name'], dic['age']\n return dic\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef boyhook(dic):\n print('test')\n if dic['name']:\n return dic['name'], dic['age']\n return dic\n\n\n<mask token>\nprint(new_boy)\n", "step-3": "<mask token>\na = '{\"ddd\": {{}}}'\n\n\ndef boyhook(dic):\n print('test')\n if dic['name']:\n return dic['name'], dic['age']\n return dic\n\n\nnew_boy = json.loads(a, object_hook=boyhook)\nprint(new_boy)\n", "step-4": "import json\na = '{\"ddd\": {{}}}'\n\n\ndef boyhook(dic):\n print('test')\n if dic['name']:\n return dic['name'], dic['age']\n return dic\n\n\nnew_boy = json.loads(a, object_hook=boyhook)\nprint(new_boy)\n", "step-5": "# coding=utf-8\n# @FileName: test_json.py\n# @Author: ZhengQiang\n# Date: 2020/1/15 5:26 下午\nimport json\na = \"{\\\"ddd\\\": {{}}}\"\n\ndef boyhook(dic):\n print('test')\n if dic['name']:\n return dic['name'], dic['age']\n return dic\n\nnew_boy = json.loads(a, object_hook=boyhook)\nprint(new_boy)", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import pandas as pd file = pd.read_csv("KDDTest+.csv") with open("test_9feats.csv", "w") as f: df = pd.DataFrame(file, columns=[ "dst_host_srv_serror_rate", "dst_host_serror_rate", "serror_rate", "srv_serror_rate", "count", "flag", "same_srv_rate", "dst_host_srv_count", "dst_host_diff_srv_rate", "Malicious" ]) df.to_csv(f, index=False, header=True, line_terminator='\n') print(df)
normal
{ "blob_id": "ce28330db66dcdfad63bdac698ce9d285964d288", "index": 5124, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('test_9feats.csv', 'w') as f:\n df = pd.DataFrame(file, columns=['dst_host_srv_serror_rate',\n 'dst_host_serror_rate', 'serror_rate', 'srv_serror_rate', 'count',\n 'flag', 'same_srv_rate', 'dst_host_srv_count',\n 'dst_host_diff_srv_rate', 'Malicious'])\n df.to_csv(f, index=False, header=True, line_terminator='\\n')\n print(df)\n", "step-3": "<mask token>\nfile = pd.read_csv('KDDTest+.csv')\nwith open('test_9feats.csv', 'w') as f:\n df = pd.DataFrame(file, columns=['dst_host_srv_serror_rate',\n 'dst_host_serror_rate', 'serror_rate', 'srv_serror_rate', 'count',\n 'flag', 'same_srv_rate', 'dst_host_srv_count',\n 'dst_host_diff_srv_rate', 'Malicious'])\n df.to_csv(f, index=False, header=True, line_terminator='\\n')\n print(df)\n", "step-4": "import pandas as pd\nfile = pd.read_csv('KDDTest+.csv')\nwith open('test_9feats.csv', 'w') as f:\n df = pd.DataFrame(file, columns=['dst_host_srv_serror_rate',\n 'dst_host_serror_rate', 'serror_rate', 'srv_serror_rate', 'count',\n 'flag', 'same_srv_rate', 'dst_host_srv_count',\n 'dst_host_diff_srv_rate', 'Malicious'])\n df.to_csv(f, index=False, header=True, line_terminator='\\n')\n print(df)\n", "step-5": "import pandas as pd\n\nfile = pd.read_csv(\"KDDTest+.csv\")\nwith open(\"test_9feats.csv\", \"w\") as f:\n df = pd.DataFrame(file,\n columns=[\n \"dst_host_srv_serror_rate\", \"dst_host_serror_rate\",\n \"serror_rate\", \"srv_serror_rate\", \"count\", \"flag\",\n \"same_srv_rate\", \"dst_host_srv_count\",\n \"dst_host_diff_srv_rate\", \"Malicious\"\n ])\n df.to_csv(f, index=False, header=True, line_terminator='\\n')\n print(df)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class RankedHand(object): def __init__(self, remaining_cards): self._remaining_cards = remaining_cards self.rank = None def remaining_cards(self): return self._remaining_cards # Returns 1 if self is higher, 0 if equal, -1 if self is lower def compare_high_cards(self, other): s_cards = reversed(sorted(self.remaining_cards())) o_cards = reversed(sorted(other.remaining_cards())) for card_pair in zip(s_cards, o_cards): print("Comparing %s and %s" % (str(card_pair[0]), str(card_pair[1]))) if(card_pair[0] > card_pair[1]): return 1 elif(card_pair[0] < card_pair[1]): return -1 return 0 def __eq__(self, other): return self.rank == other.rank def __lt__(self, other): return self.rank < other.rank class HighCard(RankedHand): def __init__(self, remaining_cards): super(HighCard, self).__init__(remaining_cards) self.rank = 0 def __eq__(self, other): if self.rank != other.rank: return super(HighCard, self).__eq__(other) else: return self.compare_high_cards(other) == 0 def __lt__(self, other): if self.rank != other.rank: return super(HighCard, self).__lt__(other) else: return self.compare_high_cards(other) == -1 class OnePair(RankedHand): def __init__(self, pair_cards, remaining_cards): super(OnePair, self).__init__(remaining_cards) self.rank = 1 self.pair_cards = pair_cards def __eq__(self, other): if self.rank != other.rank: return super(OnePair, self).__eq__(other) else: return self.pair_cards == other.pair_cards and self.compare_high_cards(other) == 0 def __lt__(self, other): if self.rank != other.rank: return super(OnePair, self).__lt__(other) else: return self.pair_cards < other.pair_cards or (self.pair_cards == other.pair_cards and self.compare_high_cards(other) == -1) class TwoPair(RankedHand): def __init__(self, two_pair_ranks, remaining_card): super(TwoPair, self).__init__(remaining_card) self.two_pair_ranks = sorted(two_pair_ranks) self.rank = 2 def high_pair(self): return self.two_pair_ranks[1] def low_pair(self): return self.two_pair_ranks[0] def __eq__(self, other): if self.rank != other.rank: return super(TwoPair, self).__eq__(other) else: return self.high_pair() == other.high_pair() and self.low_pair() == other.low_pair() and self.compare_high_cards(other) == 0 def __lt__(self, other): if self.rank != other.rank: return super(TwoPair, self).__lt__(other) if self.high_pair() < other.high_pair(): return True elif(self.high_pair() == other.high_pair() and self.low_pair() < other.low_pair()): return True elif(self.high_pair() == other.high_pair() and self.low_pair() == other.low_pair() and self.compare_high_cards(other) == -1): return True else: return False class ThreeKind(RankedHand): def __init__(self, three_kind_rank): self.rank = 3 self.three_kind_rank = three_kind_rank def __eq__(self, other): if self.rank != other.rank: return super(ThreeKind, self).__eq__(other) else: return False # Can't be equal def __lt__(self, other): if self.rank != other.rank: return super(ThreeKind, self).__lt__(other) if self.three_kind_rank < other.three_kind_rank: return True elif(self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(other) == -1): return True else: return False class Straight(RankedHand): def __init__(self, all_cards): super(Straight, self).__init__(all_cards) self.rank = 4 # Account for Ace low if 14 in all_cards and 2 in all_cards: tmp = all_cards tmp.remove(14) self.straight_rank = max(tmp) else: self.straight_rank = max(all_cards) def __eq__(self, other): if self.rank != other.rank: return super(Straight, self).__eq__(other) else: return self.straight_rank == other.straight_rank def __lt__(self, other): if self.rank != other.rank: return super(Straight, self).__lt__(other) else: return self.straight_rank < other.straight_rank class Flush(RankedHand): def __init__(self, all_cards): super(Flush, self).__init__(all_cards) self.rank = 5 def __eq__(self, other): if self.rank != other.rank: return super(Flush, self).__eq__(other) else: return self.compare_high_cards(other) == 0 def __lt__(self, other): if self.rank != other.rank: return super(Flush, self).__lt__(other) else: return self.compare_high_cards(other) == -1 class FullHouse(RankedHand): def __init__(self, three_kind_rank): super(FullHouse, self).__init__([]) self.three_kind_rank = three_kind_rank self.rank = 6 def __eq__(self, other): if self.rank != other.rank: return super(FullHouse, self).__eq__(other) else: return False # Can't be equal def __lt__(self, other): if self.rank != other.rank: return super(FullHouse, self).__lt__(other) elif(self.three_kind_rank < other.three_kind_rank): return True else: return False class FourKind(RankedHand): def __init__(self, four_kind_rank): self.four_kind_rank = four_kind_rank self.rank = 7 def __eq__(self, other): if self.rank != other.rank: return super(FourKind, self).__eq__(other) return False # Can't be equal def __lt__(self, other): if self.rank != other.rank: return super(FourKind, self).__lt__(other) elif(self.four_kind_rank < other.four_kind_rank): return True else: return False class StraightFlush(Straight): def __init__(self, all_cards): super(StraightFlush, self).__init__(all_cards) self.rank = 8 class RoyalFlush(RankedHand): def __init__(self): self.rank = 9
normal
{ "blob_id": "a0d1ef11d00e2ddd65b648a87f493b7adcda5115", "index": 9412, "step-1": "<mask token>\n\n\nclass TwoPair(RankedHand):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass ThreeKind(RankedHand):\n\n def __init__(self, three_kind_rank):\n self.rank = 3\n self.three_kind_rank = three_kind_rank\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__lt__(other)\n if self.three_kind_rank < other.three_kind_rank:\n return True\n elif self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(\n other) == -1:\n return True\n else:\n return False\n\n\nclass Straight(RankedHand):\n\n def __init__(self, all_cards):\n super(Straight, self).__init__(all_cards)\n self.rank = 4\n if 14 in all_cards and 2 in all_cards:\n tmp = all_cards\n tmp.remove(14)\n self.straight_rank = max(tmp)\n else:\n self.straight_rank = max(all_cards)\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__eq__(other)\n else:\n return self.straight_rank == other.straight_rank\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__lt__(other)\n else:\n return self.straight_rank < other.straight_rank\n\n\nclass Flush(RankedHand):\n\n def __init__(self, all_cards):\n super(Flush, self).__init__(all_cards)\n self.rank = 5\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass FullHouse(RankedHand):\n\n def __init__(self, three_kind_rank):\n super(FullHouse, self).__init__([])\n self.three_kind_rank = three_kind_rank\n self.rank = 6\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__lt__(other)\n elif self.three_kind_rank < other.three_kind_rank:\n return True\n else:\n return False\n\n\nclass FourKind(RankedHand):\n\n def __init__(self, four_kind_rank):\n self.four_kind_rank = four_kind_rank\n self.rank = 7\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__eq__(other)\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__lt__(other)\n elif self.four_kind_rank < other.four_kind_rank:\n return True\n else:\n return False\n\n\nclass StraightFlush(Straight):\n\n def __init__(self, all_cards):\n super(StraightFlush, self).__init__(all_cards)\n self.rank = 8\n\n\nclass RoyalFlush(RankedHand):\n\n def __init__(self):\n self.rank = 9\n", "step-2": "<mask token>\n\n\nclass TwoPair(RankedHand):\n\n def __init__(self, two_pair_ranks, remaining_card):\n super(TwoPair, self).__init__(remaining_card)\n self.two_pair_ranks = sorted(two_pair_ranks)\n self.rank = 2\n <mask token>\n <mask token>\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__eq__(other)\n else:\n return self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__lt__(other)\n if self.high_pair() < other.high_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) < other.low_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == -1:\n return True\n else:\n return False\n\n\nclass ThreeKind(RankedHand):\n\n def __init__(self, three_kind_rank):\n self.rank = 3\n self.three_kind_rank = three_kind_rank\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__lt__(other)\n if self.three_kind_rank < other.three_kind_rank:\n return True\n elif self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(\n other) == -1:\n return True\n else:\n return False\n\n\nclass Straight(RankedHand):\n\n def __init__(self, all_cards):\n super(Straight, self).__init__(all_cards)\n self.rank = 4\n if 14 in all_cards and 2 in all_cards:\n tmp = all_cards\n tmp.remove(14)\n self.straight_rank = max(tmp)\n else:\n self.straight_rank = max(all_cards)\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__eq__(other)\n else:\n return self.straight_rank == other.straight_rank\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__lt__(other)\n else:\n return self.straight_rank < other.straight_rank\n\n\nclass Flush(RankedHand):\n\n def __init__(self, all_cards):\n super(Flush, self).__init__(all_cards)\n self.rank = 5\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass FullHouse(RankedHand):\n\n def __init__(self, three_kind_rank):\n super(FullHouse, self).__init__([])\n self.three_kind_rank = three_kind_rank\n self.rank = 6\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__lt__(other)\n elif self.three_kind_rank < other.three_kind_rank:\n return True\n else:\n return False\n\n\nclass FourKind(RankedHand):\n\n def __init__(self, four_kind_rank):\n self.four_kind_rank = four_kind_rank\n self.rank = 7\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__eq__(other)\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__lt__(other)\n elif self.four_kind_rank < other.four_kind_rank:\n return True\n else:\n return False\n\n\nclass StraightFlush(Straight):\n\n def __init__(self, all_cards):\n super(StraightFlush, self).__init__(all_cards)\n self.rank = 8\n\n\nclass RoyalFlush(RankedHand):\n\n def __init__(self):\n self.rank = 9\n", "step-3": "class RankedHand(object):\n <mask token>\n <mask token>\n\n def compare_high_cards(self, other):\n s_cards = reversed(sorted(self.remaining_cards()))\n o_cards = reversed(sorted(other.remaining_cards()))\n for card_pair in zip(s_cards, o_cards):\n print('Comparing %s and %s' % (str(card_pair[0]), str(card_pair\n [1])))\n if card_pair[0] > card_pair[1]:\n return 1\n elif card_pair[0] < card_pair[1]:\n return -1\n return 0\n\n def __eq__(self, other):\n return self.rank == other.rank\n\n def __lt__(self, other):\n return self.rank < other.rank\n\n\nclass HighCard(RankedHand):\n\n def __init__(self, remaining_cards):\n super(HighCard, self).__init__(remaining_cards)\n self.rank = 0\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass OnePair(RankedHand):\n\n def __init__(self, pair_cards, remaining_cards):\n super(OnePair, self).__init__(remaining_cards)\n self.rank = 1\n self.pair_cards = pair_cards\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__eq__(other)\n else:\n return (self.pair_cards == other.pair_cards and self.\n compare_high_cards(other) == 0)\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__lt__(other)\n else:\n return (self.pair_cards < other.pair_cards or self.pair_cards ==\n other.pair_cards and self.compare_high_cards(other) == -1)\n\n\nclass TwoPair(RankedHand):\n\n def __init__(self, two_pair_ranks, remaining_card):\n super(TwoPair, self).__init__(remaining_card)\n self.two_pair_ranks = sorted(two_pair_ranks)\n self.rank = 2\n\n def high_pair(self):\n return self.two_pair_ranks[1]\n\n def low_pair(self):\n return self.two_pair_ranks[0]\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__eq__(other)\n else:\n return self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__lt__(other)\n if self.high_pair() < other.high_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) < other.low_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == -1:\n return True\n else:\n return False\n\n\nclass ThreeKind(RankedHand):\n\n def __init__(self, three_kind_rank):\n self.rank = 3\n self.three_kind_rank = three_kind_rank\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__lt__(other)\n if self.three_kind_rank < other.three_kind_rank:\n return True\n elif self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(\n other) == -1:\n return True\n else:\n return False\n\n\nclass Straight(RankedHand):\n\n def __init__(self, all_cards):\n super(Straight, self).__init__(all_cards)\n self.rank = 4\n if 14 in all_cards and 2 in all_cards:\n tmp = all_cards\n tmp.remove(14)\n self.straight_rank = max(tmp)\n else:\n self.straight_rank = max(all_cards)\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__eq__(other)\n else:\n return self.straight_rank == other.straight_rank\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__lt__(other)\n else:\n return self.straight_rank < other.straight_rank\n\n\nclass Flush(RankedHand):\n\n def __init__(self, all_cards):\n super(Flush, self).__init__(all_cards)\n self.rank = 5\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass FullHouse(RankedHand):\n\n def __init__(self, three_kind_rank):\n super(FullHouse, self).__init__([])\n self.three_kind_rank = three_kind_rank\n self.rank = 6\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__lt__(other)\n elif self.three_kind_rank < other.three_kind_rank:\n return True\n else:\n return False\n\n\nclass FourKind(RankedHand):\n\n def __init__(self, four_kind_rank):\n self.four_kind_rank = four_kind_rank\n self.rank = 7\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__eq__(other)\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__lt__(other)\n elif self.four_kind_rank < other.four_kind_rank:\n return True\n else:\n return False\n\n\nclass StraightFlush(Straight):\n\n def __init__(self, all_cards):\n super(StraightFlush, self).__init__(all_cards)\n self.rank = 8\n\n\nclass RoyalFlush(RankedHand):\n\n def __init__(self):\n self.rank = 9\n", "step-4": "class RankedHand(object):\n\n def __init__(self, remaining_cards):\n self._remaining_cards = remaining_cards\n self.rank = None\n <mask token>\n\n def compare_high_cards(self, other):\n s_cards = reversed(sorted(self.remaining_cards()))\n o_cards = reversed(sorted(other.remaining_cards()))\n for card_pair in zip(s_cards, o_cards):\n print('Comparing %s and %s' % (str(card_pair[0]), str(card_pair\n [1])))\n if card_pair[0] > card_pair[1]:\n return 1\n elif card_pair[0] < card_pair[1]:\n return -1\n return 0\n\n def __eq__(self, other):\n return self.rank == other.rank\n\n def __lt__(self, other):\n return self.rank < other.rank\n\n\nclass HighCard(RankedHand):\n\n def __init__(self, remaining_cards):\n super(HighCard, self).__init__(remaining_cards)\n self.rank = 0\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass OnePair(RankedHand):\n\n def __init__(self, pair_cards, remaining_cards):\n super(OnePair, self).__init__(remaining_cards)\n self.rank = 1\n self.pair_cards = pair_cards\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__eq__(other)\n else:\n return (self.pair_cards == other.pair_cards and self.\n compare_high_cards(other) == 0)\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__lt__(other)\n else:\n return (self.pair_cards < other.pair_cards or self.pair_cards ==\n other.pair_cards and self.compare_high_cards(other) == -1)\n\n\nclass TwoPair(RankedHand):\n\n def __init__(self, two_pair_ranks, remaining_card):\n super(TwoPair, self).__init__(remaining_card)\n self.two_pair_ranks = sorted(two_pair_ranks)\n self.rank = 2\n\n def high_pair(self):\n return self.two_pair_ranks[1]\n\n def low_pair(self):\n return self.two_pair_ranks[0]\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__eq__(other)\n else:\n return self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__lt__(other)\n if self.high_pair() < other.high_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) < other.low_pair():\n return True\n elif self.high_pair() == other.high_pair() and self.low_pair(\n ) == other.low_pair() and self.compare_high_cards(other) == -1:\n return True\n else:\n return False\n\n\nclass ThreeKind(RankedHand):\n\n def __init__(self, three_kind_rank):\n self.rank = 3\n self.three_kind_rank = three_kind_rank\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__lt__(other)\n if self.three_kind_rank < other.three_kind_rank:\n return True\n elif self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(\n other) == -1:\n return True\n else:\n return False\n\n\nclass Straight(RankedHand):\n\n def __init__(self, all_cards):\n super(Straight, self).__init__(all_cards)\n self.rank = 4\n if 14 in all_cards and 2 in all_cards:\n tmp = all_cards\n tmp.remove(14)\n self.straight_rank = max(tmp)\n else:\n self.straight_rank = max(all_cards)\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__eq__(other)\n else:\n return self.straight_rank == other.straight_rank\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__lt__(other)\n else:\n return self.straight_rank < other.straight_rank\n\n\nclass Flush(RankedHand):\n\n def __init__(self, all_cards):\n super(Flush, self).__init__(all_cards)\n self.rank = 5\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\n\nclass FullHouse(RankedHand):\n\n def __init__(self, three_kind_rank):\n super(FullHouse, self).__init__([])\n self.three_kind_rank = three_kind_rank\n self.rank = 6\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__eq__(other)\n else:\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__lt__(other)\n elif self.three_kind_rank < other.three_kind_rank:\n return True\n else:\n return False\n\n\nclass FourKind(RankedHand):\n\n def __init__(self, four_kind_rank):\n self.four_kind_rank = four_kind_rank\n self.rank = 7\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__eq__(other)\n return False\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__lt__(other)\n elif self.four_kind_rank < other.four_kind_rank:\n return True\n else:\n return False\n\n\nclass StraightFlush(Straight):\n\n def __init__(self, all_cards):\n super(StraightFlush, self).__init__(all_cards)\n self.rank = 8\n\n\nclass RoyalFlush(RankedHand):\n\n def __init__(self):\n self.rank = 9\n", "step-5": "class RankedHand(object):\n def __init__(self, remaining_cards):\n self._remaining_cards = remaining_cards\n self.rank = None\n\n def remaining_cards(self):\n return self._remaining_cards\n\n # Returns 1 if self is higher, 0 if equal, -1 if self is lower\n def compare_high_cards(self, other):\n s_cards = reversed(sorted(self.remaining_cards()))\n o_cards = reversed(sorted(other.remaining_cards()))\n for card_pair in zip(s_cards, o_cards):\n print(\"Comparing %s and %s\" % (str(card_pair[0]), str(card_pair[1])))\n if(card_pair[0] > card_pair[1]):\n return 1\n elif(card_pair[0] < card_pair[1]):\n return -1\n return 0\n\n def __eq__(self, other):\n return self.rank == other.rank\n\n def __lt__(self, other):\n return self.rank < other.rank\n\nclass HighCard(RankedHand):\n def __init__(self, remaining_cards):\n super(HighCard, self).__init__(remaining_cards)\n self.rank = 0\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(HighCard, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\nclass OnePair(RankedHand):\n def __init__(self, pair_cards, remaining_cards):\n super(OnePair, self).__init__(remaining_cards)\n self.rank = 1\n self.pair_cards = pair_cards\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__eq__(other)\n else:\n return self.pair_cards == other.pair_cards and self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(OnePair, self).__lt__(other)\n else:\n return self.pair_cards < other.pair_cards or (self.pair_cards == other.pair_cards and self.compare_high_cards(other) == -1)\n\nclass TwoPair(RankedHand):\n def __init__(self, two_pair_ranks, remaining_card):\n super(TwoPair, self).__init__(remaining_card)\n self.two_pair_ranks = sorted(two_pair_ranks)\n self.rank = 2\n\n def high_pair(self):\n return self.two_pair_ranks[1]\n\n def low_pair(self):\n return self.two_pair_ranks[0]\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__eq__(other)\n else:\n return self.high_pair() == other.high_pair() and self.low_pair() == other.low_pair() and self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(TwoPair, self).__lt__(other)\n if self.high_pair() < other.high_pair():\n return True\n elif(self.high_pair() == other.high_pair() and self.low_pair() < other.low_pair()):\n return True\n elif(self.high_pair() == other.high_pair() and self.low_pair() == other.low_pair() and self.compare_high_cards(other) == -1):\n return True\n else:\n return False\n\nclass ThreeKind(RankedHand):\n def __init__(self, three_kind_rank):\n self.rank = 3\n self.three_kind_rank = three_kind_rank\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__eq__(other)\n else:\n return False # Can't be equal\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(ThreeKind, self).__lt__(other)\n if self.three_kind_rank < other.three_kind_rank:\n return True\n elif(self.three_kind_rank == other.three_kind_rank and self.compare_high_cards(other) == -1):\n return True\n else:\n return False\n\nclass Straight(RankedHand):\n def __init__(self, all_cards):\n super(Straight, self).__init__(all_cards)\n self.rank = 4\n # Account for Ace low\n if 14 in all_cards and 2 in all_cards:\n tmp = all_cards\n tmp.remove(14)\n self.straight_rank = max(tmp)\n else:\n self.straight_rank = max(all_cards)\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__eq__(other)\n else:\n return self.straight_rank == other.straight_rank\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Straight, self).__lt__(other)\n else:\n return self.straight_rank < other.straight_rank\n\nclass Flush(RankedHand):\n def __init__(self, all_cards):\n super(Flush, self).__init__(all_cards)\n self.rank = 5\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__eq__(other)\n else:\n return self.compare_high_cards(other) == 0\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(Flush, self).__lt__(other)\n else:\n return self.compare_high_cards(other) == -1\n\nclass FullHouse(RankedHand):\n def __init__(self, three_kind_rank):\n super(FullHouse, self).__init__([])\n self.three_kind_rank = three_kind_rank\n self.rank = 6\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__eq__(other)\n else:\n return False # Can't be equal\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FullHouse, self).__lt__(other)\n elif(self.three_kind_rank < other.three_kind_rank):\n return True\n else:\n return False\n\nclass FourKind(RankedHand):\n def __init__(self, four_kind_rank):\n self.four_kind_rank = four_kind_rank\n self.rank = 7\n\n def __eq__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__eq__(other)\n return False # Can't be equal\n\n def __lt__(self, other):\n if self.rank != other.rank:\n return super(FourKind, self).__lt__(other)\n elif(self.four_kind_rank < other.four_kind_rank):\n return True\n else:\n return False\n\nclass StraightFlush(Straight):\n def __init__(self, all_cards):\n super(StraightFlush, self).__init__(all_cards)\n self.rank = 8\n\nclass RoyalFlush(RankedHand):\n def __init__(self):\n self.rank = 9\n\n\n\n\n", "step-ids": [ 25, 28, 42, 43, 45 ] }
[ 25, 28, 42, 43, 45 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.fixture(scope='module') def base_app(tmp_shared_volume_path): """Flask application fixture.""" config_mapping = {'SERVER_NAME': 'localhost:5000', 'SECRET_KEY': 'SECRET_KEY', 'TESTING': True, 'SHARED_VOLUME_PATH': tmp_shared_volume_path, 'SQLALCHEMY_DATABASE_URI': 'sqlite:///testdb.db', 'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'ORGANIZATIONS': ['default']} app_ = create_app(config_mapping) return app_ <|reserved_special_token_1|> <|reserved_special_token_0|> from __future__ import absolute_import, print_function import os import shutil import pytest from reana_db.models import Base, User from sqlalchemy_utils import create_database, database_exists, drop_database from reana_workflow_controller.factory import create_app @pytest.fixture(scope='module') def base_app(tmp_shared_volume_path): """Flask application fixture.""" config_mapping = {'SERVER_NAME': 'localhost:5000', 'SECRET_KEY': 'SECRET_KEY', 'TESTING': True, 'SHARED_VOLUME_PATH': tmp_shared_volume_path, 'SQLALCHEMY_DATABASE_URI': 'sqlite:///testdb.db', 'SQLALCHEMY_TRACK_MODIFICATIONS': False, 'ORGANIZATIONS': ['default']} app_ = create_app(config_mapping) return app_ <|reserved_special_token_1|> # -*- coding: utf-8 -*- # # This file is part of REANA. # Copyright (C) 2017, 2018 CERN. # # REANA is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Pytest configuration for REANA-Workflow-Controller.""" from __future__ import absolute_import, print_function import os import shutil import pytest from reana_db.models import Base, User from sqlalchemy_utils import create_database, database_exists, drop_database from reana_workflow_controller.factory import create_app @pytest.fixture(scope="module") def base_app(tmp_shared_volume_path): """Flask application fixture.""" config_mapping = { "SERVER_NAME": "localhost:5000", "SECRET_KEY": "SECRET_KEY", "TESTING": True, "SHARED_VOLUME_PATH": tmp_shared_volume_path, "SQLALCHEMY_DATABASE_URI": "sqlite:///testdb.db", "SQLALCHEMY_TRACK_MODIFICATIONS": False, "ORGANIZATIONS": ["default"], } app_ = create_app(config_mapping) return app_
flexible
{ "blob_id": "502e92d3e5d059d73016702ce0b2591a123810d3", "index": 6892, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected](scope='module')\ndef base_app(tmp_shared_volume_path):\n \"\"\"Flask application fixture.\"\"\"\n config_mapping = {'SERVER_NAME': 'localhost:5000', 'SECRET_KEY':\n 'SECRET_KEY', 'TESTING': True, 'SHARED_VOLUME_PATH':\n tmp_shared_volume_path, 'SQLALCHEMY_DATABASE_URI':\n 'sqlite:///testdb.db', 'SQLALCHEMY_TRACK_MODIFICATIONS': False,\n 'ORGANIZATIONS': ['default']}\n app_ = create_app(config_mapping)\n return app_\n", "step-3": "<mask token>\nfrom __future__ import absolute_import, print_function\nimport os\nimport shutil\nimport pytest\nfrom reana_db.models import Base, User\nfrom sqlalchemy_utils import create_database, database_exists, drop_database\nfrom reana_workflow_controller.factory import create_app\n\n\[email protected](scope='module')\ndef base_app(tmp_shared_volume_path):\n \"\"\"Flask application fixture.\"\"\"\n config_mapping = {'SERVER_NAME': 'localhost:5000', 'SECRET_KEY':\n 'SECRET_KEY', 'TESTING': True, 'SHARED_VOLUME_PATH':\n tmp_shared_volume_path, 'SQLALCHEMY_DATABASE_URI':\n 'sqlite:///testdb.db', 'SQLALCHEMY_TRACK_MODIFICATIONS': False,\n 'ORGANIZATIONS': ['default']}\n app_ = create_app(config_mapping)\n return app_\n", "step-4": "# -*- coding: utf-8 -*-\n#\n# This file is part of REANA.\n# Copyright (C) 2017, 2018 CERN.\n#\n# REANA is free software; you can redistribute it and/or modify it\n# under the terms of the MIT License; see LICENSE file for more details.\n\n\"\"\"Pytest configuration for REANA-Workflow-Controller.\"\"\"\n\nfrom __future__ import absolute_import, print_function\n\nimport os\nimport shutil\n\nimport pytest\nfrom reana_db.models import Base, User\nfrom sqlalchemy_utils import create_database, database_exists, drop_database\n\nfrom reana_workflow_controller.factory import create_app\n\n\[email protected](scope=\"module\")\ndef base_app(tmp_shared_volume_path):\n \"\"\"Flask application fixture.\"\"\"\n config_mapping = {\n \"SERVER_NAME\": \"localhost:5000\",\n \"SECRET_KEY\": \"SECRET_KEY\",\n \"TESTING\": True,\n \"SHARED_VOLUME_PATH\": tmp_shared_volume_path,\n \"SQLALCHEMY_DATABASE_URI\": \"sqlite:///testdb.db\",\n \"SQLALCHEMY_TRACK_MODIFICATIONS\": False,\n \"ORGANIZATIONS\": [\"default\"],\n }\n app_ = create_app(config_mapping)\n return app_\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#14681 #점의 좌표를 입력받아 그 점이 어느 사분면에 속하는지 알아내는 프로그램을 작성하시오. 단, x좌표와 y좌표는 모두 양수나 음수라고 가정한다. x = int(input()) y = int(input()) if(x>0 and y>0): print("1") elif(x>0 and y<0): print("4") elif(x<0 and y>0): print("2") else: print("3")
normal
{ "blob_id": "e9908e32204da8973f06d98430fc660c90b5e303", "index": 3987, "step-1": "<mask token>\n", "step-2": "<mask token>\nif x > 0 and y > 0:\n print('1')\nelif x > 0 and y < 0:\n print('4')\nelif x < 0 and y > 0:\n print('2')\nelse:\n print('3')\n", "step-3": "x = int(input())\ny = int(input())\nif x > 0 and y > 0:\n print('1')\nelif x > 0 and y < 0:\n print('4')\nelif x < 0 and y > 0:\n print('2')\nelse:\n print('3')\n", "step-4": "#14681\n#점의 좌표를 입력받아 그 점이 어느 사분면에 속하는지 알아내는 프로그램을 작성하시오. 단, x좌표와 y좌표는 모두 양수나 음수라고 가정한다.\n\nx = int(input())\ny = int(input())\n\nif(x>0 and y>0):\n print(\"1\")\nelif(x>0 and y<0):\n print(\"4\")\nelif(x<0 and y>0):\n print(\"2\")\nelse:\n print(\"3\")\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class SubBatchNorm3d(nn.Module): <|reserved_special_token_0|> def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args['num_features'] if args.get('affine', True): self.affine = True args['affine'] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args['num_features'] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2 ).view(n, -1).sum(0) / n return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: self.bn.running_mean.data, self.bn.running_var.data = (self. _get_aggregated_mean_std(self.split_bn.running_mean, self. split_bn.running_var, self.num_splits)) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x <|reserved_special_token_1|> <|reserved_special_token_0|> class SubBatchNorm3d(nn.Module): """ The standard BN layer computes stats across all examples in a GPU. In some cases it is desirable to compute stats across only a subset of examples (e.g., in multigrid training https://arxiv.org/abs/1912.00998). SubBatchNorm3d splits the batch dimension into N splits, and run BN on each of them separately (so that the stats are computed on each subset of examples (1/N of batch) independently. During evaluation, it aggregates the stats from all splits into one BN. """ def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args['num_features'] if args.get('affine', True): self.affine = True args['affine'] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args['num_features'] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2 ).view(n, -1).sum(0) / n return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: self.bn.running_mean.data, self.bn.running_var.data = (self. _get_aggregated_mean_std(self.split_bn.running_mean, self. split_bn.running_var, self.num_splits)) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x <|reserved_special_token_1|> <|reserved_special_token_0|> def get_norm(cfg): """ Args: cfg (CfgNode): model building configs, details are in the comments of the config file. Returns: nn.Module: the normalization layer. """ if cfg.BN.NORM_TYPE in {'batchnorm', 'sync_batchnorm_apex'}: return nn.BatchNorm3d elif cfg.BN.NORM_TYPE == 'sub_batchnorm': return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS) elif cfg.BN.NORM_TYPE == 'sync_batchnorm': return partial(NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN. NUM_SYNC_DEVICES, global_sync=cfg.BN.GLOBAL_SYNC) else: raise NotImplementedError('Norm type {} is not supported'.format( cfg.BN.NORM_TYPE)) class SubBatchNorm3d(nn.Module): """ The standard BN layer computes stats across all examples in a GPU. In some cases it is desirable to compute stats across only a subset of examples (e.g., in multigrid training https://arxiv.org/abs/1912.00998). SubBatchNorm3d splits the batch dimension into N splits, and run BN on each of them separately (so that the stats are computed on each subset of examples (1/N of batch) independently. During evaluation, it aggregates the stats from all splits into one BN. """ def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args['num_features'] if args.get('affine', True): self.affine = True args['affine'] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args['num_features'] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2 ).view(n, -1).sum(0) / n return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: self.bn.running_mean.data, self.bn.running_var.data = (self. _get_aggregated_mean_std(self.split_bn.running_mean, self. split_bn.running_var, self.num_splits)) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x <|reserved_special_token_1|> <|reserved_special_token_0|> from functools import partial import torch import torch.nn as nn from pytorchvideo.layers.batch_norm import NaiveSyncBatchNorm1d, NaiveSyncBatchNorm3d def get_norm(cfg): """ Args: cfg (CfgNode): model building configs, details are in the comments of the config file. Returns: nn.Module: the normalization layer. """ if cfg.BN.NORM_TYPE in {'batchnorm', 'sync_batchnorm_apex'}: return nn.BatchNorm3d elif cfg.BN.NORM_TYPE == 'sub_batchnorm': return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS) elif cfg.BN.NORM_TYPE == 'sync_batchnorm': return partial(NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN. NUM_SYNC_DEVICES, global_sync=cfg.BN.GLOBAL_SYNC) else: raise NotImplementedError('Norm type {} is not supported'.format( cfg.BN.NORM_TYPE)) class SubBatchNorm3d(nn.Module): """ The standard BN layer computes stats across all examples in a GPU. In some cases it is desirable to compute stats across only a subset of examples (e.g., in multigrid training https://arxiv.org/abs/1912.00998). SubBatchNorm3d splits the batch dimension into N splits, and run BN on each of them separately (so that the stats are computed on each subset of examples (1/N of batch) independently. During evaluation, it aggregates the stats from all splits into one BN. """ def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args['num_features'] if args.get('affine', True): self.affine = True args['affine'] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args['num_features'] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2 ).view(n, -1).sum(0) / n return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: self.bn.running_mean.data, self.bn.running_var.data = (self. _get_aggregated_mean_std(self.split_bn.running_mean, self. split_bn.running_var, self.num_splits)) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x <|reserved_special_token_1|> #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """BatchNorm (BN) utility functions and custom batch-size BN implementations""" from functools import partial import torch import torch.nn as nn from pytorchvideo.layers.batch_norm import ( NaiveSyncBatchNorm1d, NaiveSyncBatchNorm3d, ) # noqa def get_norm(cfg): """ Args: cfg (CfgNode): model building configs, details are in the comments of the config file. Returns: nn.Module: the normalization layer. """ if cfg.BN.NORM_TYPE in {"batchnorm", "sync_batchnorm_apex"}: return nn.BatchNorm3d elif cfg.BN.NORM_TYPE == "sub_batchnorm": return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS) elif cfg.BN.NORM_TYPE == "sync_batchnorm": return partial( NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN.NUM_SYNC_DEVICES, global_sync=cfg.BN.GLOBAL_SYNC, ) else: raise NotImplementedError( "Norm type {} is not supported".format(cfg.BN.NORM_TYPE) ) class SubBatchNorm3d(nn.Module): """ The standard BN layer computes stats across all examples in a GPU. In some cases it is desirable to compute stats across only a subset of examples (e.g., in multigrid training https://arxiv.org/abs/1912.00998). SubBatchNorm3d splits the batch dimension into N splits, and run BN on each of them separately (so that the stats are computed on each subset of examples (1/N of batch) independently. During evaluation, it aggregates the stats from all splits into one BN. """ def __init__(self, num_splits, **args): """ Args: num_splits (int): number of splits. args (list): other arguments. """ super(SubBatchNorm3d, self).__init__() self.num_splits = num_splits num_features = args["num_features"] # Keep only one set of weight and bias. if args.get("affine", True): self.affine = True args["affine"] = False self.weight = torch.nn.Parameter(torch.ones(num_features)) self.bias = torch.nn.Parameter(torch.zeros(num_features)) else: self.affine = False self.bn = nn.BatchNorm3d(**args) args["num_features"] = num_features * num_splits self.split_bn = nn.BatchNorm3d(**args) def _get_aggregated_mean_std(self, means, stds, n): """ Calculate the aggregated mean and stds. Args: means (tensor): mean values. stds (tensor): standard deviations. n (int): number of sets of means and stds. """ mean = means.view(n, -1).sum(0) / n std = ( stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2).view(n, -1).sum(0) / n ) return mean.detach(), std.detach() def aggregate_stats(self): """ Synchronize running_mean, and running_var. Call this before eval. """ if self.split_bn.track_running_stats: ( self.bn.running_mean.data, self.bn.running_var.data, ) = self._get_aggregated_mean_std( self.split_bn.running_mean, self.split_bn.running_var, self.num_splits, ) def forward(self, x): if self.training: n, c, t, h, w = x.shape x = x.view(n // self.num_splits, c * self.num_splits, t, h, w) x = self.split_bn(x) x = x.view(n, c, t, h, w) else: x = self.bn(x) if self.affine: x = x * self.weight.view((-1, 1, 1, 1)) x = x + self.bias.view((-1, 1, 1, 1)) return x
flexible
{ "blob_id": "4e5e1be289b32655736d8c6c02d354a85d4268b7", "index": 3027, "step-1": "<mask token>\n\n\nclass SubBatchNorm3d(nn.Module):\n <mask token>\n\n def __init__(self, num_splits, **args):\n \"\"\"\n Args:\n num_splits (int): number of splits.\n args (list): other arguments.\n \"\"\"\n super(SubBatchNorm3d, self).__init__()\n self.num_splits = num_splits\n num_features = args['num_features']\n if args.get('affine', True):\n self.affine = True\n args['affine'] = False\n self.weight = torch.nn.Parameter(torch.ones(num_features))\n self.bias = torch.nn.Parameter(torch.zeros(num_features))\n else:\n self.affine = False\n self.bn = nn.BatchNorm3d(**args)\n args['num_features'] = num_features * num_splits\n self.split_bn = nn.BatchNorm3d(**args)\n\n def _get_aggregated_mean_std(self, means, stds, n):\n \"\"\"\n Calculate the aggregated mean and stds.\n Args:\n means (tensor): mean values.\n stds (tensor): standard deviations.\n n (int): number of sets of means and stds.\n \"\"\"\n mean = means.view(n, -1).sum(0) / n\n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2\n ).view(n, -1).sum(0) / n\n return mean.detach(), std.detach()\n\n def aggregate_stats(self):\n \"\"\"\n Synchronize running_mean, and running_var. Call this before eval.\n \"\"\"\n if self.split_bn.track_running_stats:\n self.bn.running_mean.data, self.bn.running_var.data = (self.\n _get_aggregated_mean_std(self.split_bn.running_mean, self.\n split_bn.running_var, self.num_splits))\n\n def forward(self, x):\n if self.training:\n n, c, t, h, w = x.shape\n x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)\n x = self.split_bn(x)\n x = x.view(n, c, t, h, w)\n else:\n x = self.bn(x)\n if self.affine:\n x = x * self.weight.view((-1, 1, 1, 1))\n x = x + self.bias.view((-1, 1, 1, 1))\n return x\n", "step-2": "<mask token>\n\n\nclass SubBatchNorm3d(nn.Module):\n \"\"\"\n The standard BN layer computes stats across all examples in a GPU. In some\n cases it is desirable to compute stats across only a subset of examples\n (e.g., in multigrid training https://arxiv.org/abs/1912.00998).\n SubBatchNorm3d splits the batch dimension into N splits, and run BN on\n each of them separately (so that the stats are computed on each subset of\n examples (1/N of batch) independently. During evaluation, it aggregates\n the stats from all splits into one BN.\n \"\"\"\n\n def __init__(self, num_splits, **args):\n \"\"\"\n Args:\n num_splits (int): number of splits.\n args (list): other arguments.\n \"\"\"\n super(SubBatchNorm3d, self).__init__()\n self.num_splits = num_splits\n num_features = args['num_features']\n if args.get('affine', True):\n self.affine = True\n args['affine'] = False\n self.weight = torch.nn.Parameter(torch.ones(num_features))\n self.bias = torch.nn.Parameter(torch.zeros(num_features))\n else:\n self.affine = False\n self.bn = nn.BatchNorm3d(**args)\n args['num_features'] = num_features * num_splits\n self.split_bn = nn.BatchNorm3d(**args)\n\n def _get_aggregated_mean_std(self, means, stds, n):\n \"\"\"\n Calculate the aggregated mean and stds.\n Args:\n means (tensor): mean values.\n stds (tensor): standard deviations.\n n (int): number of sets of means and stds.\n \"\"\"\n mean = means.view(n, -1).sum(0) / n\n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2\n ).view(n, -1).sum(0) / n\n return mean.detach(), std.detach()\n\n def aggregate_stats(self):\n \"\"\"\n Synchronize running_mean, and running_var. Call this before eval.\n \"\"\"\n if self.split_bn.track_running_stats:\n self.bn.running_mean.data, self.bn.running_var.data = (self.\n _get_aggregated_mean_std(self.split_bn.running_mean, self.\n split_bn.running_var, self.num_splits))\n\n def forward(self, x):\n if self.training:\n n, c, t, h, w = x.shape\n x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)\n x = self.split_bn(x)\n x = x.view(n, c, t, h, w)\n else:\n x = self.bn(x)\n if self.affine:\n x = x * self.weight.view((-1, 1, 1, 1))\n x = x + self.bias.view((-1, 1, 1, 1))\n return x\n", "step-3": "<mask token>\n\n\ndef get_norm(cfg):\n \"\"\"\n Args:\n cfg (CfgNode): model building configs, details are in the comments of\n the config file.\n Returns:\n nn.Module: the normalization layer.\n \"\"\"\n if cfg.BN.NORM_TYPE in {'batchnorm', 'sync_batchnorm_apex'}:\n return nn.BatchNorm3d\n elif cfg.BN.NORM_TYPE == 'sub_batchnorm':\n return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS)\n elif cfg.BN.NORM_TYPE == 'sync_batchnorm':\n return partial(NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN.\n NUM_SYNC_DEVICES, global_sync=cfg.BN.GLOBAL_SYNC)\n else:\n raise NotImplementedError('Norm type {} is not supported'.format(\n cfg.BN.NORM_TYPE))\n\n\nclass SubBatchNorm3d(nn.Module):\n \"\"\"\n The standard BN layer computes stats across all examples in a GPU. In some\n cases it is desirable to compute stats across only a subset of examples\n (e.g., in multigrid training https://arxiv.org/abs/1912.00998).\n SubBatchNorm3d splits the batch dimension into N splits, and run BN on\n each of them separately (so that the stats are computed on each subset of\n examples (1/N of batch) independently. During evaluation, it aggregates\n the stats from all splits into one BN.\n \"\"\"\n\n def __init__(self, num_splits, **args):\n \"\"\"\n Args:\n num_splits (int): number of splits.\n args (list): other arguments.\n \"\"\"\n super(SubBatchNorm3d, self).__init__()\n self.num_splits = num_splits\n num_features = args['num_features']\n if args.get('affine', True):\n self.affine = True\n args['affine'] = False\n self.weight = torch.nn.Parameter(torch.ones(num_features))\n self.bias = torch.nn.Parameter(torch.zeros(num_features))\n else:\n self.affine = False\n self.bn = nn.BatchNorm3d(**args)\n args['num_features'] = num_features * num_splits\n self.split_bn = nn.BatchNorm3d(**args)\n\n def _get_aggregated_mean_std(self, means, stds, n):\n \"\"\"\n Calculate the aggregated mean and stds.\n Args:\n means (tensor): mean values.\n stds (tensor): standard deviations.\n n (int): number of sets of means and stds.\n \"\"\"\n mean = means.view(n, -1).sum(0) / n\n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2\n ).view(n, -1).sum(0) / n\n return mean.detach(), std.detach()\n\n def aggregate_stats(self):\n \"\"\"\n Synchronize running_mean, and running_var. Call this before eval.\n \"\"\"\n if self.split_bn.track_running_stats:\n self.bn.running_mean.data, self.bn.running_var.data = (self.\n _get_aggregated_mean_std(self.split_bn.running_mean, self.\n split_bn.running_var, self.num_splits))\n\n def forward(self, x):\n if self.training:\n n, c, t, h, w = x.shape\n x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)\n x = self.split_bn(x)\n x = x.view(n, c, t, h, w)\n else:\n x = self.bn(x)\n if self.affine:\n x = x * self.weight.view((-1, 1, 1, 1))\n x = x + self.bias.view((-1, 1, 1, 1))\n return x\n", "step-4": "<mask token>\nfrom functools import partial\nimport torch\nimport torch.nn as nn\nfrom pytorchvideo.layers.batch_norm import NaiveSyncBatchNorm1d, NaiveSyncBatchNorm3d\n\n\ndef get_norm(cfg):\n \"\"\"\n Args:\n cfg (CfgNode): model building configs, details are in the comments of\n the config file.\n Returns:\n nn.Module: the normalization layer.\n \"\"\"\n if cfg.BN.NORM_TYPE in {'batchnorm', 'sync_batchnorm_apex'}:\n return nn.BatchNorm3d\n elif cfg.BN.NORM_TYPE == 'sub_batchnorm':\n return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS)\n elif cfg.BN.NORM_TYPE == 'sync_batchnorm':\n return partial(NaiveSyncBatchNorm3d, num_sync_devices=cfg.BN.\n NUM_SYNC_DEVICES, global_sync=cfg.BN.GLOBAL_SYNC)\n else:\n raise NotImplementedError('Norm type {} is not supported'.format(\n cfg.BN.NORM_TYPE))\n\n\nclass SubBatchNorm3d(nn.Module):\n \"\"\"\n The standard BN layer computes stats across all examples in a GPU. In some\n cases it is desirable to compute stats across only a subset of examples\n (e.g., in multigrid training https://arxiv.org/abs/1912.00998).\n SubBatchNorm3d splits the batch dimension into N splits, and run BN on\n each of them separately (so that the stats are computed on each subset of\n examples (1/N of batch) independently. During evaluation, it aggregates\n the stats from all splits into one BN.\n \"\"\"\n\n def __init__(self, num_splits, **args):\n \"\"\"\n Args:\n num_splits (int): number of splits.\n args (list): other arguments.\n \"\"\"\n super(SubBatchNorm3d, self).__init__()\n self.num_splits = num_splits\n num_features = args['num_features']\n if args.get('affine', True):\n self.affine = True\n args['affine'] = False\n self.weight = torch.nn.Parameter(torch.ones(num_features))\n self.bias = torch.nn.Parameter(torch.zeros(num_features))\n else:\n self.affine = False\n self.bn = nn.BatchNorm3d(**args)\n args['num_features'] = num_features * num_splits\n self.split_bn = nn.BatchNorm3d(**args)\n\n def _get_aggregated_mean_std(self, means, stds, n):\n \"\"\"\n Calculate the aggregated mean and stds.\n Args:\n means (tensor): mean values.\n stds (tensor): standard deviations.\n n (int): number of sets of means and stds.\n \"\"\"\n mean = means.view(n, -1).sum(0) / n\n std = stds.view(n, -1).sum(0) / n + ((means.view(n, -1) - mean) ** 2\n ).view(n, -1).sum(0) / n\n return mean.detach(), std.detach()\n\n def aggregate_stats(self):\n \"\"\"\n Synchronize running_mean, and running_var. Call this before eval.\n \"\"\"\n if self.split_bn.track_running_stats:\n self.bn.running_mean.data, self.bn.running_var.data = (self.\n _get_aggregated_mean_std(self.split_bn.running_mean, self.\n split_bn.running_var, self.num_splits))\n\n def forward(self, x):\n if self.training:\n n, c, t, h, w = x.shape\n x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)\n x = self.split_bn(x)\n x = x.view(n, c, t, h, w)\n else:\n x = self.bn(x)\n if self.affine:\n x = x * self.weight.view((-1, 1, 1, 1))\n x = x + self.bias.view((-1, 1, 1, 1))\n return x\n", "step-5": "#!/usr/bin/env python3\n# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.\n\n\"\"\"BatchNorm (BN) utility functions and custom batch-size BN implementations\"\"\"\n\nfrom functools import partial\nimport torch\nimport torch.nn as nn\n\nfrom pytorchvideo.layers.batch_norm import (\n NaiveSyncBatchNorm1d,\n NaiveSyncBatchNorm3d,\n) # noqa\n\n\ndef get_norm(cfg):\n \"\"\"\n Args:\n cfg (CfgNode): model building configs, details are in the comments of\n the config file.\n Returns:\n nn.Module: the normalization layer.\n \"\"\"\n if cfg.BN.NORM_TYPE in {\"batchnorm\", \"sync_batchnorm_apex\"}:\n return nn.BatchNorm3d\n elif cfg.BN.NORM_TYPE == \"sub_batchnorm\":\n return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS)\n elif cfg.BN.NORM_TYPE == \"sync_batchnorm\":\n return partial(\n NaiveSyncBatchNorm3d,\n num_sync_devices=cfg.BN.NUM_SYNC_DEVICES,\n global_sync=cfg.BN.GLOBAL_SYNC,\n )\n else:\n raise NotImplementedError(\n \"Norm type {} is not supported\".format(cfg.BN.NORM_TYPE)\n )\n\n\nclass SubBatchNorm3d(nn.Module):\n \"\"\"\n The standard BN layer computes stats across all examples in a GPU. In some\n cases it is desirable to compute stats across only a subset of examples\n (e.g., in multigrid training https://arxiv.org/abs/1912.00998).\n SubBatchNorm3d splits the batch dimension into N splits, and run BN on\n each of them separately (so that the stats are computed on each subset of\n examples (1/N of batch) independently. During evaluation, it aggregates\n the stats from all splits into one BN.\n \"\"\"\n\n def __init__(self, num_splits, **args):\n \"\"\"\n Args:\n num_splits (int): number of splits.\n args (list): other arguments.\n \"\"\"\n super(SubBatchNorm3d, self).__init__()\n self.num_splits = num_splits\n num_features = args[\"num_features\"]\n # Keep only one set of weight and bias.\n if args.get(\"affine\", True):\n self.affine = True\n args[\"affine\"] = False\n self.weight = torch.nn.Parameter(torch.ones(num_features))\n self.bias = torch.nn.Parameter(torch.zeros(num_features))\n else:\n self.affine = False\n self.bn = nn.BatchNorm3d(**args)\n args[\"num_features\"] = num_features * num_splits\n self.split_bn = nn.BatchNorm3d(**args)\n\n def _get_aggregated_mean_std(self, means, stds, n):\n \"\"\"\n Calculate the aggregated mean and stds.\n Args:\n means (tensor): mean values.\n stds (tensor): standard deviations.\n n (int): number of sets of means and stds.\n \"\"\"\n mean = means.view(n, -1).sum(0) / n\n std = (\n stds.view(n, -1).sum(0) / n\n + ((means.view(n, -1) - mean) ** 2).view(n, -1).sum(0) / n\n )\n return mean.detach(), std.detach()\n\n def aggregate_stats(self):\n \"\"\"\n Synchronize running_mean, and running_var. Call this before eval.\n \"\"\"\n if self.split_bn.track_running_stats:\n (\n self.bn.running_mean.data,\n self.bn.running_var.data,\n ) = self._get_aggregated_mean_std(\n self.split_bn.running_mean,\n self.split_bn.running_var,\n self.num_splits,\n )\n\n def forward(self, x):\n if self.training:\n n, c, t, h, w = x.shape\n x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)\n x = self.split_bn(x)\n x = x.view(n, c, t, h, w)\n else:\n x = self.bn(x)\n if self.affine:\n x = x * self.weight.view((-1, 1, 1, 1))\n x = x + self.bias.view((-1, 1, 1, 1))\n return x\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def two_sum(nums, target): dct = {} for i, num1 in enumerate(nums): num2 = target - num1 if num2 in dct: return [dct[num2], i] dct[num1] = i <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def two_sum(nums, target): dct = {} for i, num1 in enumerate(nums): num2 = target - num1 if num2 in dct: return [dct[num2], i] dct[num1] = i print(two_sum([14, 2, 31, 4], 6)) <|reserved_special_token_1|> """ 时间最优 思路: 将和为目标值的那 两个 整数定义为 num1 和 num2 创建一个新字典,内容存在数组中的数字及索引 将数组nums转换为字典, 遍历字典, num1为字典中的元素(其实与数组总的元素一样), num2 为 target减去num1, 判定num2是否在字典中,如果存在,返回字典中num2的值(也就是在数组nums中的下标)和 i(也就是num1在数组中的下标) 如果不存在,设置字典num1的值为i """ def two_sum(nums, target): dct = {} for i, num1 in enumerate(nums): num2 = target - num1 if num2 in dct: return [dct[num2], i] dct[num1] = i print(two_sum([14, 2, 31, 4], 6))
flexible
{ "blob_id": "dac8dbb0eba78d4f8dfbe3284325735324a87dc2", "index": 8674, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef two_sum(nums, target):\n dct = {}\n for i, num1 in enumerate(nums):\n num2 = target - num1\n if num2 in dct:\n return [dct[num2], i]\n dct[num1] = i\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef two_sum(nums, target):\n dct = {}\n for i, num1 in enumerate(nums):\n num2 = target - num1\n if num2 in dct:\n return [dct[num2], i]\n dct[num1] = i\n\n\nprint(two_sum([14, 2, 31, 4], 6))\n", "step-4": "\"\"\"\r\n时间最优\r\n\r\n思路:\r\n将和为目标值的那 两个 整数定义为 num1 和 num2\r\n创建一个新字典,内容存在数组中的数字及索引\r\n将数组nums转换为字典,\r\n遍历字典, num1为字典中的元素(其实与数组总的元素一样),\r\nnum2 为 target减去num1, 判定num2是否在字典中,如果存在,返回字典中num2的值(也就是在数组nums中的下标)和 i(也就是num1在数组中的下标)\r\n如果不存在,设置字典num1的值为i\r\n\"\"\"\r\n\r\ndef two_sum(nums, target):\r\n dct = {}\r\n for i, num1 in enumerate(nums):\r\n num2 = target - num1\r\n if num2 in dct:\r\n return [dct[num2], i]\r\n dct[num1] = i\r\n\r\n\r\nprint(two_sum([14, 2, 31, 4], 6))\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Table(Base): <|reserved_special_token_0|> def __init__(self, dataset_id, table_id, **kwargs): super().__init__(**kwargs) self.table_id = table_id.replace('-', '_') self.dataset_id = dataset_id.replace('-', '_') self.dataset_folder = Path(self.metadata_path / self.dataset_id) self.table_folder = self.dataset_folder / table_id self.table_full_name = dict(prod= f"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}" , staging= f"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}" ) self.table_full_name.update(dict(all=deepcopy(self.table_full_name))) self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs) @property def table_config(self): """ Load table_config.yaml """ return self._load_yaml(self.table_folder / 'table_config.yaml') <|reserved_special_token_0|> <|reserved_special_token_0|> def _load_schema(self, mode='staging'): """Load schema from table_config.yaml Args: mode (bool): Which dataset to create [prod|staging]. """ self._check_mode(mode) json_path = self.table_folder / f'schema-{mode}.json' columns = self.table_config['columns'] if mode == 'staging': new_columns = [] for c in columns: is_in_staging = True if c.get('is_in_staging') is None else c[ 'is_in_staging'] if is_in_staging and not c.get('is_partition'): c['type'] = 'STRING' new_columns.append(c) del columns columns = new_columns elif mode == 'prod': schema = self._get_table_obj(mode).schema column_names = [c['name'] for c in columns] schema_names = [s.name for s in schema] not_in_columns = [name for name in schema_names if name not in column_names] not_in_schema = [name for name in column_names if name not in schema_names] if not_in_columns: raise BaseDosDadosException( 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_columns, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) if not_in_schema: raise BaseDosDadosException( 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_schema, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) for c in columns: for s in schema: if c['name'] == s.name: c['type'] = s.field_type c['mode'] = s.mode break json.dump(columns, json_path.open('w', encoding='utf-8')) return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path)) def _make_publish_sql(self): """Create publish.sql with columns and bigquery_type""" publish_txt = """ /* Query para publicar a tabela. Esse é o lugar para: - modificar nomes, ordem e tipos de colunas - dar join com outras tabelas - criar colunas extras (e.g. logs, proporções, etc.) Qualquer coluna definida aqui deve também existir em `table_config.yaml`. # Além disso, sinta-se à vontade para alterar alguns nomes obscuros # para algo um pouco mais explícito. TIPOS: - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido. - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name` - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types */ """ publish_txt = inspect.cleandoc(publish_txt) publish_txt = textwrap.dedent(publish_txt) project_id_prod = self.client['bigquery_prod'].project publish_txt += f""" CREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS SELECT """ if self._is_partitioned(): columns = sorted(self.table_config['columns'], key=lambda k: (k ['is_partition'] is not None, k['is_partition']), reverse=True) else: columns = self.table_config['columns'] for col in columns: name = col['name'] bigquery_type = 'STRING' if col['bigquery_type'] is None else col[ 'bigquery_type'].upper() publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\n' publish_txt = publish_txt[:-2] + '\n' project_id_staging = self.client['bigquery_staging'].project publish_txt += ( f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t' ) (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write( publish_txt) <|reserved_special_token_0|> @staticmethod def _sheet_to_df(columns_config_url_or_path): """ Convert sheet to dataframe """ url = columns_config_url_or_path.replace('edit#gid=', 'export?format=csv&gid=') try: return pd.read_csv(StringIO(requests.get(url, timeout=10). content.decode('utf-8'))) except Exception as e: raise BaseDosDadosException( 'Check if your google sheet Share are: Anyone on the internet with this link can view' ) from e <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def update(self, mode='all'): """Updates BigQuery schema and description. Args: mode (str): Optional. Table of which table to update [prod|staging|all] not_found_ok (bool): Optional. What to do if table is not found """ self._check_mode(mode) mode = ['prod', 'staging'] if mode == 'all' else [mode] for m in mode: try: table = self._get_table_obj(m) except google.api_core.exceptions.NotFound: continue table.description = self._render_template(Path( 'table/table_description.txt'), self.table_config) with open(self.metadata_path / self.dataset_id / self.table_id / 'table_description.txt', 'w', encoding='utf-8') as f: f.write(table.description) table.schema = self._load_schema(m) fields = ['description', 'schema'] if m == 'prod' else [ 'description'] self.client[f'bigquery_{m}'].update_table(table, fields=fields) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='updated') <|reserved_special_token_0|> <|reserved_special_token_0|> def append(self, filepath, partitions=None, if_exists='replace', chunk_size=None, **upload_args): """Appends new data to existing BigQuery table. As long as the data has the same schema. It appends the data in the filepath to the existing table. Args: filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with partitions (str, pathlib.PosixPath, dict): Optional. Hive structured partition as a string or dict * str : `<key>=<value>/<key2>=<value2>` * dict: `dict(key=value, key2=value2)` if_exists (str): 0ptional. What to do if data with same name exists in storage * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if not self.table_exists('staging'): raise BaseDosDadosException( 'You cannot append to a table that does not exist') Storage(self.dataset_id, self.table_id, **self.main_vars).upload( filepath, mode='staging', partitions=partitions, if_exists= if_exists, chunk_size=chunk_size, **upload_args) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='appended') <|reserved_special_token_1|> <|reserved_special_token_0|> class Table(Base): <|reserved_special_token_0|> def __init__(self, dataset_id, table_id, **kwargs): super().__init__(**kwargs) self.table_id = table_id.replace('-', '_') self.dataset_id = dataset_id.replace('-', '_') self.dataset_folder = Path(self.metadata_path / self.dataset_id) self.table_folder = self.dataset_folder / table_id self.table_full_name = dict(prod= f"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}" , staging= f"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}" ) self.table_full_name.update(dict(all=deepcopy(self.table_full_name))) self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs) @property def table_config(self): """ Load table_config.yaml """ return self._load_yaml(self.table_folder / 'table_config.yaml') def _get_table_obj(self, mode): """ Get table object from BigQuery """ return self.client[f'bigquery_{mode}'].get_table(self. table_full_name[mode]) def _is_partitioned(self): """ Check if table is partitioned """ partitions = self.table_config['partitions'] if partitions is None or len(partitions) == 0: return False if isinstance(partitions, list): return all(item is not None for item in partitions) raise ValueError('Partitions must be a list or None') def _load_schema(self, mode='staging'): """Load schema from table_config.yaml Args: mode (bool): Which dataset to create [prod|staging]. """ self._check_mode(mode) json_path = self.table_folder / f'schema-{mode}.json' columns = self.table_config['columns'] if mode == 'staging': new_columns = [] for c in columns: is_in_staging = True if c.get('is_in_staging') is None else c[ 'is_in_staging'] if is_in_staging and not c.get('is_partition'): c['type'] = 'STRING' new_columns.append(c) del columns columns = new_columns elif mode == 'prod': schema = self._get_table_obj(mode).schema column_names = [c['name'] for c in columns] schema_names = [s.name for s in schema] not_in_columns = [name for name in schema_names if name not in column_names] not_in_schema = [name for name in column_names if name not in schema_names] if not_in_columns: raise BaseDosDadosException( 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_columns, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) if not_in_schema: raise BaseDosDadosException( 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_schema, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) for c in columns: for s in schema: if c['name'] == s.name: c['type'] = s.field_type c['mode'] = s.mode break json.dump(columns, json_path.open('w', encoding='utf-8')) return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path)) def _make_publish_sql(self): """Create publish.sql with columns and bigquery_type""" publish_txt = """ /* Query para publicar a tabela. Esse é o lugar para: - modificar nomes, ordem e tipos de colunas - dar join com outras tabelas - criar colunas extras (e.g. logs, proporções, etc.) Qualquer coluna definida aqui deve também existir em `table_config.yaml`. # Além disso, sinta-se à vontade para alterar alguns nomes obscuros # para algo um pouco mais explícito. TIPOS: - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido. - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name` - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types */ """ publish_txt = inspect.cleandoc(publish_txt) publish_txt = textwrap.dedent(publish_txt) project_id_prod = self.client['bigquery_prod'].project publish_txt += f""" CREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS SELECT """ if self._is_partitioned(): columns = sorted(self.table_config['columns'], key=lambda k: (k ['is_partition'] is not None, k['is_partition']), reverse=True) else: columns = self.table_config['columns'] for col in columns: name = col['name'] bigquery_type = 'STRING' if col['bigquery_type'] is None else col[ 'bigquery_type'].upper() publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\n' publish_txt = publish_txt[:-2] + '\n' project_id_staging = self.client['bigquery_staging'].project publish_txt += ( f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t' ) (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write( publish_txt) <|reserved_special_token_0|> @staticmethod def _sheet_to_df(columns_config_url_or_path): """ Convert sheet to dataframe """ url = columns_config_url_or_path.replace('edit#gid=', 'export?format=csv&gid=') try: return pd.read_csv(StringIO(requests.get(url, timeout=10). content.decode('utf-8'))) except Exception as e: raise BaseDosDadosException( 'Check if your google sheet Share are: Anyone on the internet with this link can view' ) from e def table_exists(self, mode): """Check if table exists in BigQuery. Args: mode (str): Which dataset to check [prod|staging]. """ try: ref = self._get_table_obj(mode=mode) except google.api_core.exceptions.NotFound: ref = None return bool(ref) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def update(self, mode='all'): """Updates BigQuery schema and description. Args: mode (str): Optional. Table of which table to update [prod|staging|all] not_found_ok (bool): Optional. What to do if table is not found """ self._check_mode(mode) mode = ['prod', 'staging'] if mode == 'all' else [mode] for m in mode: try: table = self._get_table_obj(m) except google.api_core.exceptions.NotFound: continue table.description = self._render_template(Path( 'table/table_description.txt'), self.table_config) with open(self.metadata_path / self.dataset_id / self.table_id / 'table_description.txt', 'w', encoding='utf-8') as f: f.write(table.description) table.schema = self._load_schema(m) fields = ['description', 'schema'] if m == 'prod' else [ 'description'] self.client[f'bigquery_{m}'].update_table(table, fields=fields) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='updated') def publish(self, if_exists='raise'): """Creates BigQuery table at production dataset. Table should be located at `<dataset_id>.<table_id>`. It creates a view that uses the query from `<metadata_path>/<dataset_id>/<table_id>/publish.sql`. Make sure that all columns from the query also exists at `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including the partitions. Args: if_exists (str): Optional. What to do if table exists. * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing Todo: * Check if all required fields are filled """ if if_exists == 'replace': self.delete(mode='prod') self.client['bigquery_prod'].query((self.table_folder / 'publish.sql').open('r', encoding='utf-8').read()).result() self.update() logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='published') <|reserved_special_token_0|> def append(self, filepath, partitions=None, if_exists='replace', chunk_size=None, **upload_args): """Appends new data to existing BigQuery table. As long as the data has the same schema. It appends the data in the filepath to the existing table. Args: filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with partitions (str, pathlib.PosixPath, dict): Optional. Hive structured partition as a string or dict * str : `<key>=<value>/<key2>=<value2>` * dict: `dict(key=value, key2=value2)` if_exists (str): 0ptional. What to do if data with same name exists in storage * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if not self.table_exists('staging'): raise BaseDosDadosException( 'You cannot append to a table that does not exist') Storage(self.dataset_id, self.table_id, **self.main_vars).upload( filepath, mode='staging', partitions=partitions, if_exists= if_exists, chunk_size=chunk_size, **upload_args) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='appended') <|reserved_special_token_1|> <|reserved_special_token_0|> class Table(Base): <|reserved_special_token_0|> def __init__(self, dataset_id, table_id, **kwargs): super().__init__(**kwargs) self.table_id = table_id.replace('-', '_') self.dataset_id = dataset_id.replace('-', '_') self.dataset_folder = Path(self.metadata_path / self.dataset_id) self.table_folder = self.dataset_folder / table_id self.table_full_name = dict(prod= f"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}" , staging= f"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}" ) self.table_full_name.update(dict(all=deepcopy(self.table_full_name))) self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs) @property def table_config(self): """ Load table_config.yaml """ return self._load_yaml(self.table_folder / 'table_config.yaml') def _get_table_obj(self, mode): """ Get table object from BigQuery """ return self.client[f'bigquery_{mode}'].get_table(self. table_full_name[mode]) def _is_partitioned(self): """ Check if table is partitioned """ partitions = self.table_config['partitions'] if partitions is None or len(partitions) == 0: return False if isinstance(partitions, list): return all(item is not None for item in partitions) raise ValueError('Partitions must be a list or None') def _load_schema(self, mode='staging'): """Load schema from table_config.yaml Args: mode (bool): Which dataset to create [prod|staging]. """ self._check_mode(mode) json_path = self.table_folder / f'schema-{mode}.json' columns = self.table_config['columns'] if mode == 'staging': new_columns = [] for c in columns: is_in_staging = True if c.get('is_in_staging') is None else c[ 'is_in_staging'] if is_in_staging and not c.get('is_partition'): c['type'] = 'STRING' new_columns.append(c) del columns columns = new_columns elif mode == 'prod': schema = self._get_table_obj(mode).schema column_names = [c['name'] for c in columns] schema_names = [s.name for s in schema] not_in_columns = [name for name in schema_names if name not in column_names] not_in_schema = [name for name in column_names if name not in schema_names] if not_in_columns: raise BaseDosDadosException( 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_columns, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) if not_in_schema: raise BaseDosDadosException( 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_schema, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) for c in columns: for s in schema: if c['name'] == s.name: c['type'] = s.field_type c['mode'] = s.mode break json.dump(columns, json_path.open('w', encoding='utf-8')) return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path)) def _make_publish_sql(self): """Create publish.sql with columns and bigquery_type""" publish_txt = """ /* Query para publicar a tabela. Esse é o lugar para: - modificar nomes, ordem e tipos de colunas - dar join com outras tabelas - criar colunas extras (e.g. logs, proporções, etc.) Qualquer coluna definida aqui deve também existir em `table_config.yaml`. # Além disso, sinta-se à vontade para alterar alguns nomes obscuros # para algo um pouco mais explícito. TIPOS: - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido. - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name` - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types */ """ publish_txt = inspect.cleandoc(publish_txt) publish_txt = textwrap.dedent(publish_txt) project_id_prod = self.client['bigquery_prod'].project publish_txt += f""" CREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS SELECT """ if self._is_partitioned(): columns = sorted(self.table_config['columns'], key=lambda k: (k ['is_partition'] is not None, k['is_partition']), reverse=True) else: columns = self.table_config['columns'] for col in columns: name = col['name'] bigquery_type = 'STRING' if col['bigquery_type'] is None else col[ 'bigquery_type'].upper() publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\n' publish_txt = publish_txt[:-2] + '\n' project_id_staging = self.client['bigquery_staging'].project publish_txt += ( f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t' ) (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write( publish_txt) def _make_template(self, columns, partition_columns, if_table_config_exists, force_columns): self.metadata.create(if_exists=if_table_config_exists, columns= partition_columns + columns, partition_columns= partition_columns, force_columns=force_columns, table_only=False) self._make_publish_sql() @staticmethod def _sheet_to_df(columns_config_url_or_path): """ Convert sheet to dataframe """ url = columns_config_url_or_path.replace('edit#gid=', 'export?format=csv&gid=') try: return pd.read_csv(StringIO(requests.get(url, timeout=10). content.decode('utf-8'))) except Exception as e: raise BaseDosDadosException( 'Check if your google sheet Share are: Anyone on the internet with this link can view' ) from e def table_exists(self, mode): """Check if table exists in BigQuery. Args: mode (str): Which dataset to check [prod|staging]. """ try: ref = self._get_table_obj(mode=mode) except google.api_core.exceptions.NotFound: ref = None return bool(ref) def update_columns(self, columns_config_url_or_path=None): """ Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate publish.sql and autofill type using bigquery_type. The sheet must contain the columns: - name: column name - description: column description - bigquery_type: column bigquery type - measurement_unit: column mesurement unit - covered_by_dictionary: column related dictionary - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name> - temporal_coverage: column temporal coverage - has_sensitive_data: the column has sensitive data - observations: column observations Args: columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. """ ruamel = ryaml.YAML() ruamel.preserve_quotes = True ruamel.indent(mapping=4, sequence=6, offset=4) table_config_yaml = ruamel.load((self.table_folder / 'table_config.yaml').open(encoding='utf-8')) if ('https://docs.google.com/spreadsheets/d/' in columns_config_url_or_path): if ('edit#gid=' not in columns_config_url_or_path or 'https://docs.google.com/spreadsheets/d/' not in columns_config_url_or_path or not columns_config_url_or_path.split('=')[1].isdigit()): raise BaseDosDadosException( 'The Google sheet url not in correct format.The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>' ) df = self._sheet_to_df(columns_config_url_or_path) else: file_type = columns_config_url_or_path.split('.')[-1] if file_type == 'csv': df = pd.read_csv(columns_config_url_or_path, encoding='utf-8') elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf', 'ods', 'odt']: df = pd.read_excel(columns_config_url_or_path) else: raise BaseDosDadosException( 'File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported.' ) df = df.fillna('NULL') required_columns = ['name', 'bigquery_type', 'description', 'temporal_coverage', 'covered_by_dictionary', 'directory_column', 'measurement_unit', 'has_sensitive_data', 'observations'] not_found_columns = required_columns.copy() for sheet_column in df.columns.tolist(): for required_column in required_columns: if sheet_column == required_column: not_found_columns.remove(required_column) if not_found_columns: raise BaseDosDadosException( f"The following required columns are not found: {', '.join(not_found_columns)}." ) columns_parameters = zip(*[df[required_column].tolist() for required_column in required_columns]) for name, bigquery_type, description, temporal_coverage, covered_by_dictionary, directory_column, measurement_unit, has_sensitive_data, observations in columns_parameters: for col in table_config_yaml['columns']: if col['name'] == name: col['bigquery_type'] = col['bigquery_type' ] if bigquery_type == 'NULL' else bigquery_type.lower() col['description'] = col['description' ] if description == 'NULL' else description col['temporal_coverage'] = col['temporal_coverage' ] if temporal_coverage == 'NULL' else [ temporal_coverage] col['covered_by_dictionary'] = ('no' if covered_by_dictionary == 'NULL' else covered_by_dictionary) dataset = directory_column.split('.')[0] col['directory_column']['dataset_id'] = col[ 'directory_column']['dataset_id' ] if dataset == 'NULL' else dataset table = directory_column.split('.')[-1].split(':')[0] col['directory_column']['table_id'] = col[ 'directory_column']['table_id' ] if table == 'NULL' else table column = directory_column.split('.')[-1].split(':')[-1] col['directory_column']['column_name'] = col[ 'directory_column']['column_name' ] if column == 'NULL' else column col['measurement_unit'] = col['measurement_unit' ] if measurement_unit == 'NULL' else measurement_unit col['has_sensitive_data'] = ('no' if has_sensitive_data == 'NULL' else has_sensitive_data) col['observations'] = col['observations' ] if observations == 'NULL' else observations with open(self.table_folder / 'table_config.yaml', 'w', encoding= 'utf-8') as f: ruamel.dump(table_config_yaml, f) self._make_publish_sql() def init(self, data_sample_path=None, if_folder_exists='raise', if_table_config_exists='raise', source_format='csv', force_columns= False, columns_config_url_or_path=None): """Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`. The folder should contain: * `table_config.yaml` * `publish.sql` You can also point to a sample of the data to auto complete columns names. Args: data_sample_path (str, pathlib.PosixPath): Optional. Data sample path to auto complete columns names It supports Comma Delimited CSV, Apache Avro and Apache Parquet. if_folder_exists (str): Optional. What to do if table folder exists * 'raise' : Raises FileExistsError * 'replace' : Replace folder * 'pass' : Do nothing if_table_config_exists (str): Optional What to do if table_config.yaml and publish.sql exists * 'raise' : Raises FileExistsError * 'replace' : Replace files with blank template * 'pass' : Do nothing source_format (str): Optional Data source format. Only 'csv', 'avro' and 'parquet' are supported. Defaults to 'csv'. force_columns (bool): Optional. If set to `True`, overwrite CKAN's columns with the ones provi ded. If set to `False`, keep CKAN's columns instead of the ones pro vided. columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. Raises: FileExistsError: If folder exists and replace is False. NotImplementedError: If data sample is not in supported type or format. """ if not self.dataset_folder.exists(): raise FileExistsError( f'Dataset folder {self.dataset_folder} folder does not exists. Create a dataset before adding tables.' ) try: self.table_folder.mkdir(exist_ok=if_folder_exists == 'replace') except FileExistsError as e: if if_folder_exists == 'raise': raise FileExistsError( f'Table folder already exists for {self.table_id}. ' ) from e if if_folder_exists == 'pass': return self if not data_sample_path and if_table_config_exists != 'pass': raise BaseDosDadosException( 'You must provide a path to correctly create config files') partition_columns = [] if isinstance(data_sample_path, (str, Path)): data_sample_path = Path(data_sample_path) if data_sample_path.is_dir(): data_sample_path = [f for f in data_sample_path.glob('**/*' ) if f.is_file() and f.suffix == f'.{source_format}'][0] partition_columns = [k.split('=')[0] for k in data_sample_path.as_posix().split('/') if '=' in k] columns = Datatype(self, source_format).header(data_sample_path) else: columns = ['column_name'] if if_table_config_exists == 'pass': if Path(self.table_folder / 'table_config.yaml').is_file( ) and Path(self.table_folder / 'publish.sql').is_file(): pass elif not data_sample_path: raise BaseDosDadosException( 'You must provide a path to correctly create config files') else: self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) elif if_table_config_exists == 'raise': if Path(self.table_folder / 'table_config.yaml').is_file( ) and Path(self.table_folder / 'publish.sql').is_file(): raise FileExistsError( f'table_config.yaml and publish.sql already exists at {self.table_folder}' ) self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) else: self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) if columns_config_url_or_path is not None: self.update_columns(columns_config_url_or_path) return self <|reserved_special_token_0|> def update(self, mode='all'): """Updates BigQuery schema and description. Args: mode (str): Optional. Table of which table to update [prod|staging|all] not_found_ok (bool): Optional. What to do if table is not found """ self._check_mode(mode) mode = ['prod', 'staging'] if mode == 'all' else [mode] for m in mode: try: table = self._get_table_obj(m) except google.api_core.exceptions.NotFound: continue table.description = self._render_template(Path( 'table/table_description.txt'), self.table_config) with open(self.metadata_path / self.dataset_id / self.table_id / 'table_description.txt', 'w', encoding='utf-8') as f: f.write(table.description) table.schema = self._load_schema(m) fields = ['description', 'schema'] if m == 'prod' else [ 'description'] self.client[f'bigquery_{m}'].update_table(table, fields=fields) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='updated') def publish(self, if_exists='raise'): """Creates BigQuery table at production dataset. Table should be located at `<dataset_id>.<table_id>`. It creates a view that uses the query from `<metadata_path>/<dataset_id>/<table_id>/publish.sql`. Make sure that all columns from the query also exists at `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including the partitions. Args: if_exists (str): Optional. What to do if table exists. * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing Todo: * Check if all required fields are filled """ if if_exists == 'replace': self.delete(mode='prod') self.client['bigquery_prod'].query((self.table_folder / 'publish.sql').open('r', encoding='utf-8').read()).result() self.update() logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='published') <|reserved_special_token_0|> def append(self, filepath, partitions=None, if_exists='replace', chunk_size=None, **upload_args): """Appends new data to existing BigQuery table. As long as the data has the same schema. It appends the data in the filepath to the existing table. Args: filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with partitions (str, pathlib.PosixPath, dict): Optional. Hive structured partition as a string or dict * str : `<key>=<value>/<key2>=<value2>` * dict: `dict(key=value, key2=value2)` if_exists (str): 0ptional. What to do if data with same name exists in storage * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if not self.table_exists('staging'): raise BaseDosDadosException( 'You cannot append to a table that does not exist') Storage(self.dataset_id, self.table_id, **self.main_vars).upload( filepath, mode='staging', partitions=partitions, if_exists= if_exists, chunk_size=chunk_size, **upload_args) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='appended') <|reserved_special_token_1|> <|reserved_special_token_0|> class Table(Base): <|reserved_special_token_0|> def __init__(self, dataset_id, table_id, **kwargs): super().__init__(**kwargs) self.table_id = table_id.replace('-', '_') self.dataset_id = dataset_id.replace('-', '_') self.dataset_folder = Path(self.metadata_path / self.dataset_id) self.table_folder = self.dataset_folder / table_id self.table_full_name = dict(prod= f"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}" , staging= f"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}" ) self.table_full_name.update(dict(all=deepcopy(self.table_full_name))) self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs) @property def table_config(self): """ Load table_config.yaml """ return self._load_yaml(self.table_folder / 'table_config.yaml') def _get_table_obj(self, mode): """ Get table object from BigQuery """ return self.client[f'bigquery_{mode}'].get_table(self. table_full_name[mode]) def _is_partitioned(self): """ Check if table is partitioned """ partitions = self.table_config['partitions'] if partitions is None or len(partitions) == 0: return False if isinstance(partitions, list): return all(item is not None for item in partitions) raise ValueError('Partitions must be a list or None') def _load_schema(self, mode='staging'): """Load schema from table_config.yaml Args: mode (bool): Which dataset to create [prod|staging]. """ self._check_mode(mode) json_path = self.table_folder / f'schema-{mode}.json' columns = self.table_config['columns'] if mode == 'staging': new_columns = [] for c in columns: is_in_staging = True if c.get('is_in_staging') is None else c[ 'is_in_staging'] if is_in_staging and not c.get('is_partition'): c['type'] = 'STRING' new_columns.append(c) del columns columns = new_columns elif mode == 'prod': schema = self._get_table_obj(mode).schema column_names = [c['name'] for c in columns] schema_names = [s.name for s in schema] not_in_columns = [name for name in schema_names if name not in column_names] not_in_schema = [name for name in column_names if name not in schema_names] if not_in_columns: raise BaseDosDadosException( 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_columns, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) if not_in_schema: raise BaseDosDadosException( 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?' .format(error_columns=not_in_schema, project_id=self. table_config['project_id_prod'], dataset_id=self. table_config['dataset_id'], table_id=self.table_config[ 'table_id'])) for c in columns: for s in schema: if c['name'] == s.name: c['type'] = s.field_type c['mode'] = s.mode break json.dump(columns, json_path.open('w', encoding='utf-8')) return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path)) def _make_publish_sql(self): """Create publish.sql with columns and bigquery_type""" publish_txt = """ /* Query para publicar a tabela. Esse é o lugar para: - modificar nomes, ordem e tipos de colunas - dar join com outras tabelas - criar colunas extras (e.g. logs, proporções, etc.) Qualquer coluna definida aqui deve também existir em `table_config.yaml`. # Além disso, sinta-se à vontade para alterar alguns nomes obscuros # para algo um pouco mais explícito. TIPOS: - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido. - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name` - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types */ """ publish_txt = inspect.cleandoc(publish_txt) publish_txt = textwrap.dedent(publish_txt) project_id_prod = self.client['bigquery_prod'].project publish_txt += f""" CREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS SELECT """ if self._is_partitioned(): columns = sorted(self.table_config['columns'], key=lambda k: (k ['is_partition'] is not None, k['is_partition']), reverse=True) else: columns = self.table_config['columns'] for col in columns: name = col['name'] bigquery_type = 'STRING' if col['bigquery_type'] is None else col[ 'bigquery_type'].upper() publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\n' publish_txt = publish_txt[:-2] + '\n' project_id_staging = self.client['bigquery_staging'].project publish_txt += ( f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t' ) (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write( publish_txt) def _make_template(self, columns, partition_columns, if_table_config_exists, force_columns): self.metadata.create(if_exists=if_table_config_exists, columns= partition_columns + columns, partition_columns= partition_columns, force_columns=force_columns, table_only=False) self._make_publish_sql() @staticmethod def _sheet_to_df(columns_config_url_or_path): """ Convert sheet to dataframe """ url = columns_config_url_or_path.replace('edit#gid=', 'export?format=csv&gid=') try: return pd.read_csv(StringIO(requests.get(url, timeout=10). content.decode('utf-8'))) except Exception as e: raise BaseDosDadosException( 'Check if your google sheet Share are: Anyone on the internet with this link can view' ) from e def table_exists(self, mode): """Check if table exists in BigQuery. Args: mode (str): Which dataset to check [prod|staging]. """ try: ref = self._get_table_obj(mode=mode) except google.api_core.exceptions.NotFound: ref = None return bool(ref) def update_columns(self, columns_config_url_or_path=None): """ Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate publish.sql and autofill type using bigquery_type. The sheet must contain the columns: - name: column name - description: column description - bigquery_type: column bigquery type - measurement_unit: column mesurement unit - covered_by_dictionary: column related dictionary - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name> - temporal_coverage: column temporal coverage - has_sensitive_data: the column has sensitive data - observations: column observations Args: columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. """ ruamel = ryaml.YAML() ruamel.preserve_quotes = True ruamel.indent(mapping=4, sequence=6, offset=4) table_config_yaml = ruamel.load((self.table_folder / 'table_config.yaml').open(encoding='utf-8')) if ('https://docs.google.com/spreadsheets/d/' in columns_config_url_or_path): if ('edit#gid=' not in columns_config_url_or_path or 'https://docs.google.com/spreadsheets/d/' not in columns_config_url_or_path or not columns_config_url_or_path.split('=')[1].isdigit()): raise BaseDosDadosException( 'The Google sheet url not in correct format.The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>' ) df = self._sheet_to_df(columns_config_url_or_path) else: file_type = columns_config_url_or_path.split('.')[-1] if file_type == 'csv': df = pd.read_csv(columns_config_url_or_path, encoding='utf-8') elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf', 'ods', 'odt']: df = pd.read_excel(columns_config_url_or_path) else: raise BaseDosDadosException( 'File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported.' ) df = df.fillna('NULL') required_columns = ['name', 'bigquery_type', 'description', 'temporal_coverage', 'covered_by_dictionary', 'directory_column', 'measurement_unit', 'has_sensitive_data', 'observations'] not_found_columns = required_columns.copy() for sheet_column in df.columns.tolist(): for required_column in required_columns: if sheet_column == required_column: not_found_columns.remove(required_column) if not_found_columns: raise BaseDosDadosException( f"The following required columns are not found: {', '.join(not_found_columns)}." ) columns_parameters = zip(*[df[required_column].tolist() for required_column in required_columns]) for name, bigquery_type, description, temporal_coverage, covered_by_dictionary, directory_column, measurement_unit, has_sensitive_data, observations in columns_parameters: for col in table_config_yaml['columns']: if col['name'] == name: col['bigquery_type'] = col['bigquery_type' ] if bigquery_type == 'NULL' else bigquery_type.lower() col['description'] = col['description' ] if description == 'NULL' else description col['temporal_coverage'] = col['temporal_coverage' ] if temporal_coverage == 'NULL' else [ temporal_coverage] col['covered_by_dictionary'] = ('no' if covered_by_dictionary == 'NULL' else covered_by_dictionary) dataset = directory_column.split('.')[0] col['directory_column']['dataset_id'] = col[ 'directory_column']['dataset_id' ] if dataset == 'NULL' else dataset table = directory_column.split('.')[-1].split(':')[0] col['directory_column']['table_id'] = col[ 'directory_column']['table_id' ] if table == 'NULL' else table column = directory_column.split('.')[-1].split(':')[-1] col['directory_column']['column_name'] = col[ 'directory_column']['column_name' ] if column == 'NULL' else column col['measurement_unit'] = col['measurement_unit' ] if measurement_unit == 'NULL' else measurement_unit col['has_sensitive_data'] = ('no' if has_sensitive_data == 'NULL' else has_sensitive_data) col['observations'] = col['observations' ] if observations == 'NULL' else observations with open(self.table_folder / 'table_config.yaml', 'w', encoding= 'utf-8') as f: ruamel.dump(table_config_yaml, f) self._make_publish_sql() def init(self, data_sample_path=None, if_folder_exists='raise', if_table_config_exists='raise', source_format='csv', force_columns= False, columns_config_url_or_path=None): """Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`. The folder should contain: * `table_config.yaml` * `publish.sql` You can also point to a sample of the data to auto complete columns names. Args: data_sample_path (str, pathlib.PosixPath): Optional. Data sample path to auto complete columns names It supports Comma Delimited CSV, Apache Avro and Apache Parquet. if_folder_exists (str): Optional. What to do if table folder exists * 'raise' : Raises FileExistsError * 'replace' : Replace folder * 'pass' : Do nothing if_table_config_exists (str): Optional What to do if table_config.yaml and publish.sql exists * 'raise' : Raises FileExistsError * 'replace' : Replace files with blank template * 'pass' : Do nothing source_format (str): Optional Data source format. Only 'csv', 'avro' and 'parquet' are supported. Defaults to 'csv'. force_columns (bool): Optional. If set to `True`, overwrite CKAN's columns with the ones provi ded. If set to `False`, keep CKAN's columns instead of the ones pro vided. columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. Raises: FileExistsError: If folder exists and replace is False. NotImplementedError: If data sample is not in supported type or format. """ if not self.dataset_folder.exists(): raise FileExistsError( f'Dataset folder {self.dataset_folder} folder does not exists. Create a dataset before adding tables.' ) try: self.table_folder.mkdir(exist_ok=if_folder_exists == 'replace') except FileExistsError as e: if if_folder_exists == 'raise': raise FileExistsError( f'Table folder already exists for {self.table_id}. ' ) from e if if_folder_exists == 'pass': return self if not data_sample_path and if_table_config_exists != 'pass': raise BaseDosDadosException( 'You must provide a path to correctly create config files') partition_columns = [] if isinstance(data_sample_path, (str, Path)): data_sample_path = Path(data_sample_path) if data_sample_path.is_dir(): data_sample_path = [f for f in data_sample_path.glob('**/*' ) if f.is_file() and f.suffix == f'.{source_format}'][0] partition_columns = [k.split('=')[0] for k in data_sample_path.as_posix().split('/') if '=' in k] columns = Datatype(self, source_format).header(data_sample_path) else: columns = ['column_name'] if if_table_config_exists == 'pass': if Path(self.table_folder / 'table_config.yaml').is_file( ) and Path(self.table_folder / 'publish.sql').is_file(): pass elif not data_sample_path: raise BaseDosDadosException( 'You must provide a path to correctly create config files') else: self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) elif if_table_config_exists == 'raise': if Path(self.table_folder / 'table_config.yaml').is_file( ) and Path(self.table_folder / 'publish.sql').is_file(): raise FileExistsError( f'table_config.yaml and publish.sql already exists at {self.table_folder}' ) self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) else: self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) if columns_config_url_or_path is not None: self.update_columns(columns_config_url_or_path) return self <|reserved_special_token_0|> def update(self, mode='all'): """Updates BigQuery schema and description. Args: mode (str): Optional. Table of which table to update [prod|staging|all] not_found_ok (bool): Optional. What to do if table is not found """ self._check_mode(mode) mode = ['prod', 'staging'] if mode == 'all' else [mode] for m in mode: try: table = self._get_table_obj(m) except google.api_core.exceptions.NotFound: continue table.description = self._render_template(Path( 'table/table_description.txt'), self.table_config) with open(self.metadata_path / self.dataset_id / self.table_id / 'table_description.txt', 'w', encoding='utf-8') as f: f.write(table.description) table.schema = self._load_schema(m) fields = ['description', 'schema'] if m == 'prod' else [ 'description'] self.client[f'bigquery_{m}'].update_table(table, fields=fields) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='updated') def publish(self, if_exists='raise'): """Creates BigQuery table at production dataset. Table should be located at `<dataset_id>.<table_id>`. It creates a view that uses the query from `<metadata_path>/<dataset_id>/<table_id>/publish.sql`. Make sure that all columns from the query also exists at `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including the partitions. Args: if_exists (str): Optional. What to do if table exists. * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing Todo: * Check if all required fields are filled """ if if_exists == 'replace': self.delete(mode='prod') self.client['bigquery_prod'].query((self.table_folder / 'publish.sql').open('r', encoding='utf-8').read()).result() self.update() logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='published') def delete(self, mode): """Deletes table in BigQuery. Args: mode (str): Table of which table to delete [prod|staging] """ self._check_mode(mode) if mode == 'all': for m, n in self.table_full_name[mode].items(): self.client[f'bigquery_{m}'].delete_table(n, not_found_ok=True) logger.info(' {object} {object_id}_{mode} was {action}!', object_id=self.table_id, mode=mode, object='Table', action= 'deleted') else: self.client[f'bigquery_{mode}'].delete_table(self. table_full_name[mode], not_found_ok=True) logger.info(' {object} {object_id}_{mode} was {action}!', object_id=self.table_id, mode=mode, object='Table', action= 'deleted') def append(self, filepath, partitions=None, if_exists='replace', chunk_size=None, **upload_args): """Appends new data to existing BigQuery table. As long as the data has the same schema. It appends the data in the filepath to the existing table. Args: filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with partitions (str, pathlib.PosixPath, dict): Optional. Hive structured partition as a string or dict * str : `<key>=<value>/<key2>=<value2>` * dict: `dict(key=value, key2=value2)` if_exists (str): 0ptional. What to do if data with same name exists in storage * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if not self.table_exists('staging'): raise BaseDosDadosException( 'You cannot append to a table that does not exist') Storage(self.dataset_id, self.table_id, **self.main_vars).upload( filepath, mode='staging', partitions=partitions, if_exists= if_exists, chunk_size=chunk_size, **upload_args) logger.success(' {object} {object_id} was {action}!', object_id= self.table_id, object='Table', action='appended') <|reserved_special_token_1|> """ Class for manage tables in Storage and Big Query """ # pylint: disable=invalid-name, too-many-locals, too-many-branches, too-many-arguments,line-too-long,R0801,consider-using-f-string from pathlib import Path import json from copy import deepcopy import textwrap import inspect from io import StringIO from loguru import logger from google.cloud import bigquery import ruamel.yaml as ryaml import requests import pandas as pd import google.api_core.exceptions from basedosdados.upload.base import Base from basedosdados.upload.storage import Storage from basedosdados.upload.dataset import Dataset from basedosdados.upload.datatypes import Datatype from basedosdados.upload.metadata import Metadata from basedosdados.exceptions import BaseDosDadosException class Table(Base): """ Manage tables in Google Cloud Storage and BigQuery. """ def __init__(self, dataset_id, table_id, **kwargs): super().__init__(**kwargs) self.table_id = table_id.replace("-", "_") self.dataset_id = dataset_id.replace("-", "_") self.dataset_folder = Path(self.metadata_path / self.dataset_id) self.table_folder = self.dataset_folder / table_id self.table_full_name = dict( prod=f"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}", staging=f"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}", ) self.table_full_name.update(dict(all=deepcopy(self.table_full_name))) self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs) @property def table_config(self): """ Load table_config.yaml """ return self._load_yaml(self.table_folder / "table_config.yaml") def _get_table_obj(self, mode): """ Get table object from BigQuery """ return self.client[f"bigquery_{mode}"].get_table(self.table_full_name[mode]) def _is_partitioned(self): """ Check if table is partitioned """ ## check if the table are partitioned, need the split because of a change in the type of partitions in pydantic partitions = self.table_config["partitions"] if partitions is None or len(partitions) == 0: return False if isinstance(partitions, list): # check if any None inside list. # False if it is the case Ex: [None, 'partition'] # True otherwise Ex: ['partition1', 'partition2'] return all(item is not None for item in partitions) raise ValueError("Partitions must be a list or None") def _load_schema(self, mode="staging"): """Load schema from table_config.yaml Args: mode (bool): Which dataset to create [prod|staging]. """ self._check_mode(mode) json_path = self.table_folder / f"schema-{mode}.json" columns = self.table_config["columns"] if mode == "staging": new_columns = [] for c in columns: # case is_in_staging are None then must be True is_in_staging = ( True if c.get("is_in_staging") is None else c["is_in_staging"] ) # append columns declared in table_config.yaml to schema only if is_in_staging: True if is_in_staging and not c.get("is_partition"): c["type"] = "STRING" new_columns.append(c) del columns columns = new_columns elif mode == "prod": schema = self._get_table_obj(mode).schema # get field names for fields at schema and at table_config.yaml column_names = [c["name"] for c in columns] schema_names = [s.name for s in schema] # check if there are mismatched fields not_in_columns = [name for name in schema_names if name not in column_names] not_in_schema = [name for name in column_names if name not in schema_names] # raise if field is not in table_config if not_in_columns: raise BaseDosDadosException( "Column {error_columns} was not found in table_config.yaml. Are you sure that " "all your column names between table_config.yaml, publish.sql and " "{project_id}.{dataset_id}.{table_id} are the same?".format( error_columns=not_in_columns, project_id=self.table_config["project_id_prod"], dataset_id=self.table_config["dataset_id"], table_id=self.table_config["table_id"], ) ) # raise if field is not in schema if not_in_schema: raise BaseDosDadosException( "Column {error_columns} was not found in publish.sql. Are you sure that " "all your column names between table_config.yaml, publish.sql and " "{project_id}.{dataset_id}.{table_id} are the same?".format( error_columns=not_in_schema, project_id=self.table_config["project_id_prod"], dataset_id=self.table_config["dataset_id"], table_id=self.table_config["table_id"], ) ) # if field is in schema, get field_type and field_mode for c in columns: for s in schema: if c["name"] == s.name: c["type"] = s.field_type c["mode"] = s.mode break ## force utf-8, write schema_{mode}.json json.dump(columns, (json_path).open("w", encoding="utf-8")) # load new created schema return self.client[f"bigquery_{mode}"].schema_from_json(str(json_path)) def _make_publish_sql(self): """Create publish.sql with columns and bigquery_type""" ### publish.sql header and instructions publish_txt = """ /* Query para publicar a tabela. Esse é o lugar para: - modificar nomes, ordem e tipos de colunas - dar join com outras tabelas - criar colunas extras (e.g. logs, proporções, etc.) Qualquer coluna definida aqui deve também existir em `table_config.yaml`. # Além disso, sinta-se à vontade para alterar alguns nomes obscuros # para algo um pouco mais explícito. TIPOS: - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido. - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name` - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types */ """ # remove triple quotes extra space publish_txt = inspect.cleandoc(publish_txt) publish_txt = textwrap.dedent(publish_txt) # add create table statement project_id_prod = self.client["bigquery_prod"].project publish_txt += f"\n\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\nSELECT \n" # sort columns by is_partition, partitions_columns come first if self._is_partitioned(): columns = sorted( self.table_config["columns"], key=lambda k: (k["is_partition"] is not None, k["is_partition"]), reverse=True, ) else: columns = self.table_config["columns"] # add columns in publish.sql for col in columns: name = col["name"] bigquery_type = ( "STRING" if col["bigquery_type"] is None else col["bigquery_type"].upper() ) publish_txt += f"SAFE_CAST({name} AS {bigquery_type}) {name},\n" ## remove last comma publish_txt = publish_txt[:-2] + "\n" # add from statement project_id_staging = self.client["bigquery_staging"].project publish_txt += ( f"FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t" ) # save publish.sql in table_folder (self.table_folder / "publish.sql").open("w", encoding="utf-8").write( publish_txt ) def _make_template(self, columns, partition_columns, if_table_config_exists, force_columns): # create table_config.yaml with metadata self.metadata.create( if_exists=if_table_config_exists, columns=partition_columns + columns, partition_columns=partition_columns, force_columns=force_columns, table_only=False, ) self._make_publish_sql() @staticmethod def _sheet_to_df(columns_config_url_or_path): """ Convert sheet to dataframe """ url = columns_config_url_or_path.replace("edit#gid=", "export?format=csv&gid=") try: return pd.read_csv(StringIO(requests.get(url, timeout=10).content.decode("utf-8"))) except Exception as e: raise BaseDosDadosException( "Check if your google sheet Share are: Anyone on the internet with this link can view" ) from e def table_exists(self, mode): """Check if table exists in BigQuery. Args: mode (str): Which dataset to check [prod|staging]. """ try: ref = self._get_table_obj(mode=mode) except google.api_core.exceptions.NotFound: ref = None return bool(ref) def update_columns(self, columns_config_url_or_path=None): """ Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate publish.sql and autofill type using bigquery_type. The sheet must contain the columns: - name: column name - description: column description - bigquery_type: column bigquery type - measurement_unit: column mesurement unit - covered_by_dictionary: column related dictionary - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name> - temporal_coverage: column temporal coverage - has_sensitive_data: the column has sensitive data - observations: column observations Args: columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. """ ruamel = ryaml.YAML() ruamel.preserve_quotes = True ruamel.indent(mapping=4, sequence=6, offset=4) table_config_yaml = ruamel.load( (self.table_folder / "table_config.yaml").open(encoding="utf-8") ) if "https://docs.google.com/spreadsheets/d/" in columns_config_url_or_path: if ( "edit#gid=" not in columns_config_url_or_path or "https://docs.google.com/spreadsheets/d/" not in columns_config_url_or_path or not columns_config_url_or_path.split("=")[1].isdigit() ): raise BaseDosDadosException( "The Google sheet url not in correct format." "The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>" ) df = self._sheet_to_df(columns_config_url_or_path) else: file_type = columns_config_url_or_path.split(".")[-1] if file_type == "csv": df = pd.read_csv(columns_config_url_or_path, encoding="utf-8") elif file_type in ["xls", "xlsx", "xlsm", "xlsb", "odf", "ods", "odt"]: df = pd.read_excel(columns_config_url_or_path) else: raise BaseDosDadosException( "File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported." ) df = df.fillna("NULL") required_columns = [ "name", "bigquery_type", "description", "temporal_coverage", "covered_by_dictionary", "directory_column", "measurement_unit", "has_sensitive_data", "observations", ] not_found_columns = required_columns.copy() for sheet_column in df.columns.tolist(): for required_column in required_columns: if sheet_column == required_column: not_found_columns.remove(required_column) if not_found_columns: raise BaseDosDadosException( f"The following required columns are not found: {', '.join(not_found_columns)}." ) columns_parameters = zip( *[df[required_column].tolist() for required_column in required_columns] ) for ( name, bigquery_type, description, temporal_coverage, covered_by_dictionary, directory_column, measurement_unit, has_sensitive_data, observations, ) in columns_parameters: for col in table_config_yaml["columns"]: if col["name"] == name: col["bigquery_type"] = ( col["bigquery_type"] if bigquery_type == "NULL" else bigquery_type.lower() ) col["description"] = ( col["description"] if description == "NULL" else description ) col["temporal_coverage"] = ( col["temporal_coverage"] if temporal_coverage == "NULL" else [temporal_coverage] ) col["covered_by_dictionary"] = ( "no" if covered_by_dictionary == "NULL" else covered_by_dictionary ) dataset = directory_column.split(".")[0] col["directory_column"]["dataset_id"] = ( col["directory_column"]["dataset_id"] if dataset == "NULL" else dataset ) table = directory_column.split(".")[-1].split(":")[0] col["directory_column"]["table_id"] = ( col["directory_column"]["table_id"] if table == "NULL" else table ) column = directory_column.split(".")[-1].split(":")[-1] col["directory_column"]["column_name"] = ( col["directory_column"]["column_name"] if column == "NULL" else column ) col["measurement_unit"] = ( col["measurement_unit"] if measurement_unit == "NULL" else measurement_unit ) col["has_sensitive_data"] = ( "no" if has_sensitive_data == "NULL" else has_sensitive_data ) col["observations"] = ( col["observations"] if observations == "NULL" else observations ) with open(self.table_folder / "table_config.yaml", "w", encoding="utf-8") as f: ruamel.dump(table_config_yaml, f) # regenerate publish.sql self._make_publish_sql() def init( self, data_sample_path=None, if_folder_exists="raise", if_table_config_exists="raise", source_format="csv", force_columns = False, columns_config_url_or_path=None, ): # sourcery skip: low-code-quality """Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`. The folder should contain: * `table_config.yaml` * `publish.sql` You can also point to a sample of the data to auto complete columns names. Args: data_sample_path (str, pathlib.PosixPath): Optional. Data sample path to auto complete columns names It supports Comma Delimited CSV, Apache Avro and Apache Parquet. if_folder_exists (str): Optional. What to do if table folder exists * 'raise' : Raises FileExistsError * 'replace' : Replace folder * 'pass' : Do nothing if_table_config_exists (str): Optional What to do if table_config.yaml and publish.sql exists * 'raise' : Raises FileExistsError * 'replace' : Replace files with blank template * 'pass' : Do nothing source_format (str): Optional Data source format. Only 'csv', 'avro' and 'parquet' are supported. Defaults to 'csv'. force_columns (bool): Optional. If set to `True`, overwrite CKAN's columns with the ones provi ded. If set to `False`, keep CKAN's columns instead of the ones pro vided. columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. Raises: FileExistsError: If folder exists and replace is False. NotImplementedError: If data sample is not in supported type or format. """ if not self.dataset_folder.exists(): raise FileExistsError( f"Dataset folder {self.dataset_folder} folder does not exists. " "Create a dataset before adding tables." ) try: self.table_folder.mkdir(exist_ok=(if_folder_exists == "replace")) except FileExistsError as e: if if_folder_exists == "raise": raise FileExistsError( f"Table folder already exists for {self.table_id}. " ) from e if if_folder_exists == "pass": return self if not data_sample_path and if_table_config_exists != "pass": raise BaseDosDadosException( "You must provide a path to correctly create config files" ) partition_columns = [] if isinstance( data_sample_path, ( str, Path, ), ): # Check if partitioned and get data sample and partition columns data_sample_path = Path(data_sample_path) if data_sample_path.is_dir(): data_sample_path = [ f for f in data_sample_path.glob("**/*") if f.is_file() and f.suffix == f".{source_format}" ][0] partition_columns = [ k.split("=")[0] for k in data_sample_path.as_posix().split("/") if "=" in k ] columns = Datatype(self, source_format).header(data_sample_path) else: columns = ["column_name"] if if_table_config_exists == "pass": # Check if config files exists before passing if ( Path(self.table_folder / "table_config.yaml").is_file() and Path(self.table_folder / "publish.sql").is_file() ): pass # Raise if no sample to determine columns elif not data_sample_path: raise BaseDosDadosException( "You must provide a path to correctly create config files" ) else: self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) elif if_table_config_exists == "raise": # Check if config files already exist if ( Path(self.table_folder / "table_config.yaml").is_file() and Path(self.table_folder / "publish.sql").is_file() ): raise FileExistsError( f"table_config.yaml and publish.sql already exists at {self.table_folder}" ) # if config files don't exist, create them self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) else: # Raise: without a path to data sample, should not replace config files with empty template self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns) if columns_config_url_or_path is not None: self.update_columns(columns_config_url_or_path) return self def create( self, path=None, force_dataset=True, if_table_exists="raise", if_storage_data_exists="raise", if_table_config_exists="raise", source_format="csv", force_columns=False, columns_config_url_or_path=None, dataset_is_public=True, location=None, chunk_size=None, ): """Creates BigQuery table at staging dataset. If you add a path, it automatically saves the data in the storage, creates a datasets folder and BigQuery location, besides creating the table and its configuration files. The new table should be located at `<dataset_id>_staging.<table_id>` in BigQuery. It looks for data saved in Storage at `<bucket_name>/staging/<dataset_id>/<table_id>/*` and builds the table. It currently supports the types: - Comma Delimited CSV - Apache Avro - Apache Parquet Data can also be partitioned following the hive partitioning scheme `<key1>=<value1>/<key2>=<value2>` - for instance, `year=2012/country=BR`. The partition is automatcally detected by searching for `partitions` on the `table_config.yaml`. Args: path (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with job_config_params (dict): Optional. Job configuration params from bigquery if_table_exists (str): Optional What to do if table exists * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing force_dataset (bool): Creates `<dataset_id>` folder and BigQuery Dataset if it doesn't exists. if_table_config_exists (str): Optional. What to do if config files already exist * 'raise': Raises FileExistError * 'replace': Replace with blank template * 'pass'; Do nothing if_storage_data_exists (str): Optional. What to do if data already exists on your bucket: * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing source_format (str): Optional Data source format. Only 'csv', 'avro' and 'parquet' are supported. Defaults to 'csv'. force_columns (bool): Optional. If set to `True`, overwrite CKAN's columns with the ones provi ded. If set to `False`, keep CKAN's columns instead of the ones pro vided. columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL. Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats. Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>. dataset_is_public (bool): Control if prod dataset is public or not. By default staging datasets like `dataset_id_staging` are not public. location (str): Optional. Location of dataset data. List of possible region names locations: https://cloud.google.com/bigquery/docs/locations chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if path is None: # Look if table data already exists at Storage data = self.client["storage_staging"].list_blobs( self.bucket_name, prefix=f"staging/{self.dataset_id}/{self.table_id}" ) # Raise: Cannot create table without external data if not data: raise BaseDosDadosException( "You must provide a path for uploading data" ) # Add data to storage if isinstance( path, ( str, Path, ), ): Storage(self.dataset_id, self.table_id, **self.main_vars).upload( path, mode="staging", if_exists=if_storage_data_exists, chunk_size=chunk_size, ) # Create Dataset if it doesn't exist if force_dataset: dataset_obj = Dataset(self.dataset_id, **self.main_vars) try: dataset_obj.init() except FileExistsError: pass dataset_obj.create( if_exists="pass", location=location, dataset_is_public=dataset_is_public ) self.init( data_sample_path=path, if_folder_exists="replace", if_table_config_exists=if_table_config_exists, columns_config_url_or_path=columns_config_url_or_path, source_format=source_format, force_columns=force_columns ) table = bigquery.Table(self.table_full_name["staging"]) table.external_data_configuration = Datatype( self, source_format, "staging", partitioned=self._is_partitioned() ).external_config # Lookup if table alreay exists table_ref = None try: table_ref = self.client["bigquery_staging"].get_table( self.table_full_name["staging"] ) except google.api_core.exceptions.NotFound: pass if isinstance(table_ref, google.cloud.bigquery.table.Table): if if_table_exists == "pass": return None if if_table_exists == "raise": raise FileExistsError( "Table already exists, choose replace if you want to overwrite it" ) if if_table_exists == "replace": self.delete(mode="staging") self.client["bigquery_staging"].create_table(table) logger.success( "{object} {object_id} was {action}!", object_id=self.table_id, object="Table", action="created", ) return None def update(self, mode="all"): """Updates BigQuery schema and description. Args: mode (str): Optional. Table of which table to update [prod|staging|all] not_found_ok (bool): Optional. What to do if table is not found """ self._check_mode(mode) mode = ["prod", "staging"] if mode == "all" else [mode] for m in mode: try: table = self._get_table_obj(m) except google.api_core.exceptions.NotFound: continue # if m == "staging": table.description = self._render_template( Path("table/table_description.txt"), self.table_config ) # save table description with open( self.metadata_path / self.dataset_id / self.table_id / "table_description.txt", "w", encoding="utf-8", ) as f: f.write(table.description) # when mode is staging the table schema already exists table.schema = self._load_schema(m) fields = ["description", "schema"] if m == "prod" else ["description"] self.client[f"bigquery_{m}"].update_table(table, fields=fields) logger.success( " {object} {object_id} was {action}!", object_id=self.table_id, object="Table", action="updated", ) def publish(self, if_exists="raise"): """Creates BigQuery table at production dataset. Table should be located at `<dataset_id>.<table_id>`. It creates a view that uses the query from `<metadata_path>/<dataset_id>/<table_id>/publish.sql`. Make sure that all columns from the query also exists at `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including the partitions. Args: if_exists (str): Optional. What to do if table exists. * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing Todo: * Check if all required fields are filled """ if if_exists == "replace": self.delete(mode="prod") self.client["bigquery_prod"].query( (self.table_folder / "publish.sql").open("r", encoding="utf-8").read() ).result() self.update() logger.success( " {object} {object_id} was {action}!", object_id=self.table_id, object="Table", action="published", ) def delete(self, mode): """Deletes table in BigQuery. Args: mode (str): Table of which table to delete [prod|staging] """ self._check_mode(mode) if mode == "all": for m, n in self.table_full_name[mode].items(): self.client[f"bigquery_{m}"].delete_table(n, not_found_ok=True) logger.info( " {object} {object_id}_{mode} was {action}!", object_id=self.table_id, mode=mode, object="Table", action="deleted", ) else: self.client[f"bigquery_{mode}"].delete_table( self.table_full_name[mode], not_found_ok=True ) logger.info( " {object} {object_id}_{mode} was {action}!", object_id=self.table_id, mode=mode, object="Table", action="deleted", ) def append( self, filepath, partitions=None, if_exists="replace", chunk_size=None, **upload_args, ): """Appends new data to existing BigQuery table. As long as the data has the same schema. It appends the data in the filepath to the existing table. Args: filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with partitions (str, pathlib.PosixPath, dict): Optional. Hive structured partition as a string or dict * str : `<key>=<value>/<key2>=<value2>` * dict: `dict(key=value, key2=value2)` if_exists (str): 0ptional. What to do if data with same name exists in storage * 'raise' : Raises Conflict exception * 'replace' : Replace table * 'pass' : Do nothing chunk_size (int): Optional The size of a chunk of data whenever iterating (in bytes). This must be a multiple of 256 KB per the API specification. If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used. """ if not self.table_exists("staging"): raise BaseDosDadosException( "You cannot append to a table that does not exist" ) Storage(self.dataset_id, self.table_id, **self.main_vars).upload( filepath, mode="staging", partitions=partitions, if_exists=if_exists, chunk_size=chunk_size, **upload_args, ) logger.success( " {object} {object_id} was {action}!", object_id=self.table_id, object="Table", action="appended", )
flexible
{ "blob_id": "da218e6d9ee311eefb8e9ae4dac5053793eb5514", "index": 9369, "step-1": "<mask token>\n\n\nclass Table(Base):\n <mask token>\n\n def __init__(self, dataset_id, table_id, **kwargs):\n super().__init__(**kwargs)\n self.table_id = table_id.replace('-', '_')\n self.dataset_id = dataset_id.replace('-', '_')\n self.dataset_folder = Path(self.metadata_path / self.dataset_id)\n self.table_folder = self.dataset_folder / table_id\n self.table_full_name = dict(prod=\n f\"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}\"\n , staging=\n f\"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}\"\n )\n self.table_full_name.update(dict(all=deepcopy(self.table_full_name)))\n self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs)\n\n @property\n def table_config(self):\n \"\"\"\n Load table_config.yaml\n \"\"\"\n return self._load_yaml(self.table_folder / 'table_config.yaml')\n <mask token>\n <mask token>\n\n def _load_schema(self, mode='staging'):\n \"\"\"Load schema from table_config.yaml\n\n Args:\n mode (bool): Which dataset to create [prod|staging].\n \"\"\"\n self._check_mode(mode)\n json_path = self.table_folder / f'schema-{mode}.json'\n columns = self.table_config['columns']\n if mode == 'staging':\n new_columns = []\n for c in columns:\n is_in_staging = True if c.get('is_in_staging') is None else c[\n 'is_in_staging']\n if is_in_staging and not c.get('is_partition'):\n c['type'] = 'STRING'\n new_columns.append(c)\n del columns\n columns = new_columns\n elif mode == 'prod':\n schema = self._get_table_obj(mode).schema\n column_names = [c['name'] for c in columns]\n schema_names = [s.name for s in schema]\n not_in_columns = [name for name in schema_names if name not in\n column_names]\n not_in_schema = [name for name in column_names if name not in\n schema_names]\n if not_in_columns:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_columns, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n if not_in_schema:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_schema, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n for c in columns:\n for s in schema:\n if c['name'] == s.name:\n c['type'] = s.field_type\n c['mode'] = s.mode\n break\n json.dump(columns, json_path.open('w', encoding='utf-8'))\n return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path))\n\n def _make_publish_sql(self):\n \"\"\"Create publish.sql with columns and bigquery_type\"\"\"\n publish_txt = \"\"\"\n /*\n Query para publicar a tabela.\n\n Esse é o lugar para:\n - modificar nomes, ordem e tipos de colunas\n - dar join com outras tabelas\n - criar colunas extras (e.g. logs, proporções, etc.)\n\n Qualquer coluna definida aqui deve também existir em `table_config.yaml`.\n\n # Além disso, sinta-se à vontade para alterar alguns nomes obscuros\n # para algo um pouco mais explícito.\n\n TIPOS:\n - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido.\n - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name`\n - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types\n */\n \"\"\"\n publish_txt = inspect.cleandoc(publish_txt)\n publish_txt = textwrap.dedent(publish_txt)\n project_id_prod = self.client['bigquery_prod'].project\n publish_txt += f\"\"\"\n\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\nSELECT \n\"\"\"\n if self._is_partitioned():\n columns = sorted(self.table_config['columns'], key=lambda k: (k\n ['is_partition'] is not None, k['is_partition']), reverse=True)\n else:\n columns = self.table_config['columns']\n for col in columns:\n name = col['name']\n bigquery_type = 'STRING' if col['bigquery_type'] is None else col[\n 'bigquery_type'].upper()\n publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\\n'\n publish_txt = publish_txt[:-2] + '\\n'\n project_id_staging = self.client['bigquery_staging'].project\n publish_txt += (\n f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t'\n )\n (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write(\n publish_txt)\n <mask token>\n\n @staticmethod\n def _sheet_to_df(columns_config_url_or_path):\n \"\"\"\n Convert sheet to dataframe\n \"\"\"\n url = columns_config_url_or_path.replace('edit#gid=',\n 'export?format=csv&gid=')\n try:\n return pd.read_csv(StringIO(requests.get(url, timeout=10).\n content.decode('utf-8')))\n except Exception as e:\n raise BaseDosDadosException(\n 'Check if your google sheet Share are: Anyone on the internet with this link can view'\n ) from e\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def update(self, mode='all'):\n \"\"\"Updates BigQuery schema and description.\n Args:\n mode (str): Optional.\n Table of which table to update [prod|staging|all]\n not_found_ok (bool): Optional.\n What to do if table is not found\n \"\"\"\n self._check_mode(mode)\n mode = ['prod', 'staging'] if mode == 'all' else [mode]\n for m in mode:\n try:\n table = self._get_table_obj(m)\n except google.api_core.exceptions.NotFound:\n continue\n table.description = self._render_template(Path(\n 'table/table_description.txt'), self.table_config)\n with open(self.metadata_path / self.dataset_id / self.table_id /\n 'table_description.txt', 'w', encoding='utf-8') as f:\n f.write(table.description)\n table.schema = self._load_schema(m)\n fields = ['description', 'schema'] if m == 'prod' else [\n 'description']\n self.client[f'bigquery_{m}'].update_table(table, fields=fields)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='updated')\n <mask token>\n <mask token>\n\n def append(self, filepath, partitions=None, if_exists='replace',\n chunk_size=None, **upload_args):\n \"\"\"Appends new data to existing BigQuery table.\n\n As long as the data has the same schema. It appends the data in the\n filepath to the existing table.\n\n Args:\n filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n partitions (str, pathlib.PosixPath, dict): Optional.\n Hive structured partition as a string or dict\n\n * str : `<key>=<value>/<key2>=<value2>`\n * dict: `dict(key=value, key2=value2)`\n if_exists (str): 0ptional.\n What to do if data with same name exists in storage\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n if not self.table_exists('staging'):\n raise BaseDosDadosException(\n 'You cannot append to a table that does not exist')\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n filepath, mode='staging', partitions=partitions, if_exists=\n if_exists, chunk_size=chunk_size, **upload_args)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='appended')\n", "step-2": "<mask token>\n\n\nclass Table(Base):\n <mask token>\n\n def __init__(self, dataset_id, table_id, **kwargs):\n super().__init__(**kwargs)\n self.table_id = table_id.replace('-', '_')\n self.dataset_id = dataset_id.replace('-', '_')\n self.dataset_folder = Path(self.metadata_path / self.dataset_id)\n self.table_folder = self.dataset_folder / table_id\n self.table_full_name = dict(prod=\n f\"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}\"\n , staging=\n f\"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}\"\n )\n self.table_full_name.update(dict(all=deepcopy(self.table_full_name)))\n self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs)\n\n @property\n def table_config(self):\n \"\"\"\n Load table_config.yaml\n \"\"\"\n return self._load_yaml(self.table_folder / 'table_config.yaml')\n\n def _get_table_obj(self, mode):\n \"\"\"\n Get table object from BigQuery\n \"\"\"\n return self.client[f'bigquery_{mode}'].get_table(self.\n table_full_name[mode])\n\n def _is_partitioned(self):\n \"\"\"\n Check if table is partitioned\n \"\"\"\n partitions = self.table_config['partitions']\n if partitions is None or len(partitions) == 0:\n return False\n if isinstance(partitions, list):\n return all(item is not None for item in partitions)\n raise ValueError('Partitions must be a list or None')\n\n def _load_schema(self, mode='staging'):\n \"\"\"Load schema from table_config.yaml\n\n Args:\n mode (bool): Which dataset to create [prod|staging].\n \"\"\"\n self._check_mode(mode)\n json_path = self.table_folder / f'schema-{mode}.json'\n columns = self.table_config['columns']\n if mode == 'staging':\n new_columns = []\n for c in columns:\n is_in_staging = True if c.get('is_in_staging') is None else c[\n 'is_in_staging']\n if is_in_staging and not c.get('is_partition'):\n c['type'] = 'STRING'\n new_columns.append(c)\n del columns\n columns = new_columns\n elif mode == 'prod':\n schema = self._get_table_obj(mode).schema\n column_names = [c['name'] for c in columns]\n schema_names = [s.name for s in schema]\n not_in_columns = [name for name in schema_names if name not in\n column_names]\n not_in_schema = [name for name in column_names if name not in\n schema_names]\n if not_in_columns:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_columns, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n if not_in_schema:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_schema, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n for c in columns:\n for s in schema:\n if c['name'] == s.name:\n c['type'] = s.field_type\n c['mode'] = s.mode\n break\n json.dump(columns, json_path.open('w', encoding='utf-8'))\n return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path))\n\n def _make_publish_sql(self):\n \"\"\"Create publish.sql with columns and bigquery_type\"\"\"\n publish_txt = \"\"\"\n /*\n Query para publicar a tabela.\n\n Esse é o lugar para:\n - modificar nomes, ordem e tipos de colunas\n - dar join com outras tabelas\n - criar colunas extras (e.g. logs, proporções, etc.)\n\n Qualquer coluna definida aqui deve também existir em `table_config.yaml`.\n\n # Além disso, sinta-se à vontade para alterar alguns nomes obscuros\n # para algo um pouco mais explícito.\n\n TIPOS:\n - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido.\n - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name`\n - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types\n */\n \"\"\"\n publish_txt = inspect.cleandoc(publish_txt)\n publish_txt = textwrap.dedent(publish_txt)\n project_id_prod = self.client['bigquery_prod'].project\n publish_txt += f\"\"\"\n\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\nSELECT \n\"\"\"\n if self._is_partitioned():\n columns = sorted(self.table_config['columns'], key=lambda k: (k\n ['is_partition'] is not None, k['is_partition']), reverse=True)\n else:\n columns = self.table_config['columns']\n for col in columns:\n name = col['name']\n bigquery_type = 'STRING' if col['bigquery_type'] is None else col[\n 'bigquery_type'].upper()\n publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\\n'\n publish_txt = publish_txt[:-2] + '\\n'\n project_id_staging = self.client['bigquery_staging'].project\n publish_txt += (\n f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t'\n )\n (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write(\n publish_txt)\n <mask token>\n\n @staticmethod\n def _sheet_to_df(columns_config_url_or_path):\n \"\"\"\n Convert sheet to dataframe\n \"\"\"\n url = columns_config_url_or_path.replace('edit#gid=',\n 'export?format=csv&gid=')\n try:\n return pd.read_csv(StringIO(requests.get(url, timeout=10).\n content.decode('utf-8')))\n except Exception as e:\n raise BaseDosDadosException(\n 'Check if your google sheet Share are: Anyone on the internet with this link can view'\n ) from e\n\n def table_exists(self, mode):\n \"\"\"Check if table exists in BigQuery.\n\n Args:\n mode (str): Which dataset to check [prod|staging].\n \"\"\"\n try:\n ref = self._get_table_obj(mode=mode)\n except google.api_core.exceptions.NotFound:\n ref = None\n return bool(ref)\n <mask token>\n <mask token>\n <mask token>\n\n def update(self, mode='all'):\n \"\"\"Updates BigQuery schema and description.\n Args:\n mode (str): Optional.\n Table of which table to update [prod|staging|all]\n not_found_ok (bool): Optional.\n What to do if table is not found\n \"\"\"\n self._check_mode(mode)\n mode = ['prod', 'staging'] if mode == 'all' else [mode]\n for m in mode:\n try:\n table = self._get_table_obj(m)\n except google.api_core.exceptions.NotFound:\n continue\n table.description = self._render_template(Path(\n 'table/table_description.txt'), self.table_config)\n with open(self.metadata_path / self.dataset_id / self.table_id /\n 'table_description.txt', 'w', encoding='utf-8') as f:\n f.write(table.description)\n table.schema = self._load_schema(m)\n fields = ['description', 'schema'] if m == 'prod' else [\n 'description']\n self.client[f'bigquery_{m}'].update_table(table, fields=fields)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='updated')\n\n def publish(self, if_exists='raise'):\n \"\"\"Creates BigQuery table at production dataset.\n\n Table should be located at `<dataset_id>.<table_id>`.\n\n It creates a view that uses the query from\n `<metadata_path>/<dataset_id>/<table_id>/publish.sql`.\n\n Make sure that all columns from the query also exists at\n `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including\n the partitions.\n\n Args:\n if_exists (str): Optional.\n What to do if table exists.\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n\n Todo:\n\n * Check if all required fields are filled\n \"\"\"\n if if_exists == 'replace':\n self.delete(mode='prod')\n self.client['bigquery_prod'].query((self.table_folder /\n 'publish.sql').open('r', encoding='utf-8').read()).result()\n self.update()\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='published')\n <mask token>\n\n def append(self, filepath, partitions=None, if_exists='replace',\n chunk_size=None, **upload_args):\n \"\"\"Appends new data to existing BigQuery table.\n\n As long as the data has the same schema. It appends the data in the\n filepath to the existing table.\n\n Args:\n filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n partitions (str, pathlib.PosixPath, dict): Optional.\n Hive structured partition as a string or dict\n\n * str : `<key>=<value>/<key2>=<value2>`\n * dict: `dict(key=value, key2=value2)`\n if_exists (str): 0ptional.\n What to do if data with same name exists in storage\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n if not self.table_exists('staging'):\n raise BaseDosDadosException(\n 'You cannot append to a table that does not exist')\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n filepath, mode='staging', partitions=partitions, if_exists=\n if_exists, chunk_size=chunk_size, **upload_args)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='appended')\n", "step-3": "<mask token>\n\n\nclass Table(Base):\n <mask token>\n\n def __init__(self, dataset_id, table_id, **kwargs):\n super().__init__(**kwargs)\n self.table_id = table_id.replace('-', '_')\n self.dataset_id = dataset_id.replace('-', '_')\n self.dataset_folder = Path(self.metadata_path / self.dataset_id)\n self.table_folder = self.dataset_folder / table_id\n self.table_full_name = dict(prod=\n f\"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}\"\n , staging=\n f\"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}\"\n )\n self.table_full_name.update(dict(all=deepcopy(self.table_full_name)))\n self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs)\n\n @property\n def table_config(self):\n \"\"\"\n Load table_config.yaml\n \"\"\"\n return self._load_yaml(self.table_folder / 'table_config.yaml')\n\n def _get_table_obj(self, mode):\n \"\"\"\n Get table object from BigQuery\n \"\"\"\n return self.client[f'bigquery_{mode}'].get_table(self.\n table_full_name[mode])\n\n def _is_partitioned(self):\n \"\"\"\n Check if table is partitioned\n \"\"\"\n partitions = self.table_config['partitions']\n if partitions is None or len(partitions) == 0:\n return False\n if isinstance(partitions, list):\n return all(item is not None for item in partitions)\n raise ValueError('Partitions must be a list or None')\n\n def _load_schema(self, mode='staging'):\n \"\"\"Load schema from table_config.yaml\n\n Args:\n mode (bool): Which dataset to create [prod|staging].\n \"\"\"\n self._check_mode(mode)\n json_path = self.table_folder / f'schema-{mode}.json'\n columns = self.table_config['columns']\n if mode == 'staging':\n new_columns = []\n for c in columns:\n is_in_staging = True if c.get('is_in_staging') is None else c[\n 'is_in_staging']\n if is_in_staging and not c.get('is_partition'):\n c['type'] = 'STRING'\n new_columns.append(c)\n del columns\n columns = new_columns\n elif mode == 'prod':\n schema = self._get_table_obj(mode).schema\n column_names = [c['name'] for c in columns]\n schema_names = [s.name for s in schema]\n not_in_columns = [name for name in schema_names if name not in\n column_names]\n not_in_schema = [name for name in column_names if name not in\n schema_names]\n if not_in_columns:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_columns, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n if not_in_schema:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_schema, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n for c in columns:\n for s in schema:\n if c['name'] == s.name:\n c['type'] = s.field_type\n c['mode'] = s.mode\n break\n json.dump(columns, json_path.open('w', encoding='utf-8'))\n return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path))\n\n def _make_publish_sql(self):\n \"\"\"Create publish.sql with columns and bigquery_type\"\"\"\n publish_txt = \"\"\"\n /*\n Query para publicar a tabela.\n\n Esse é o lugar para:\n - modificar nomes, ordem e tipos de colunas\n - dar join com outras tabelas\n - criar colunas extras (e.g. logs, proporções, etc.)\n\n Qualquer coluna definida aqui deve também existir em `table_config.yaml`.\n\n # Além disso, sinta-se à vontade para alterar alguns nomes obscuros\n # para algo um pouco mais explícito.\n\n TIPOS:\n - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido.\n - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name`\n - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types\n */\n \"\"\"\n publish_txt = inspect.cleandoc(publish_txt)\n publish_txt = textwrap.dedent(publish_txt)\n project_id_prod = self.client['bigquery_prod'].project\n publish_txt += f\"\"\"\n\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\nSELECT \n\"\"\"\n if self._is_partitioned():\n columns = sorted(self.table_config['columns'], key=lambda k: (k\n ['is_partition'] is not None, k['is_partition']), reverse=True)\n else:\n columns = self.table_config['columns']\n for col in columns:\n name = col['name']\n bigquery_type = 'STRING' if col['bigquery_type'] is None else col[\n 'bigquery_type'].upper()\n publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\\n'\n publish_txt = publish_txt[:-2] + '\\n'\n project_id_staging = self.client['bigquery_staging'].project\n publish_txt += (\n f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t'\n )\n (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write(\n publish_txt)\n\n def _make_template(self, columns, partition_columns,\n if_table_config_exists, force_columns):\n self.metadata.create(if_exists=if_table_config_exists, columns=\n partition_columns + columns, partition_columns=\n partition_columns, force_columns=force_columns, table_only=False)\n self._make_publish_sql()\n\n @staticmethod\n def _sheet_to_df(columns_config_url_or_path):\n \"\"\"\n Convert sheet to dataframe\n \"\"\"\n url = columns_config_url_or_path.replace('edit#gid=',\n 'export?format=csv&gid=')\n try:\n return pd.read_csv(StringIO(requests.get(url, timeout=10).\n content.decode('utf-8')))\n except Exception as e:\n raise BaseDosDadosException(\n 'Check if your google sheet Share are: Anyone on the internet with this link can view'\n ) from e\n\n def table_exists(self, mode):\n \"\"\"Check if table exists in BigQuery.\n\n Args:\n mode (str): Which dataset to check [prod|staging].\n \"\"\"\n try:\n ref = self._get_table_obj(mode=mode)\n except google.api_core.exceptions.NotFound:\n ref = None\n return bool(ref)\n\n def update_columns(self, columns_config_url_or_path=None):\n \"\"\"\n Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate\n publish.sql and autofill type using bigquery_type.\n\n The sheet must contain the columns:\n - name: column name\n - description: column description\n - bigquery_type: column bigquery type\n - measurement_unit: column mesurement unit\n - covered_by_dictionary: column related dictionary\n - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name>\n - temporal_coverage: column temporal coverage\n - has_sensitive_data: the column has sensitive data\n - observations: column observations\n Args:\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n \"\"\"\n ruamel = ryaml.YAML()\n ruamel.preserve_quotes = True\n ruamel.indent(mapping=4, sequence=6, offset=4)\n table_config_yaml = ruamel.load((self.table_folder /\n 'table_config.yaml').open(encoding='utf-8'))\n if ('https://docs.google.com/spreadsheets/d/' in\n columns_config_url_or_path):\n if ('edit#gid=' not in columns_config_url_or_path or \n 'https://docs.google.com/spreadsheets/d/' not in\n columns_config_url_or_path or not\n columns_config_url_or_path.split('=')[1].isdigit()):\n raise BaseDosDadosException(\n 'The Google sheet url not in correct format.The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>'\n )\n df = self._sheet_to_df(columns_config_url_or_path)\n else:\n file_type = columns_config_url_or_path.split('.')[-1]\n if file_type == 'csv':\n df = pd.read_csv(columns_config_url_or_path, encoding='utf-8')\n elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf', 'ods',\n 'odt']:\n df = pd.read_excel(columns_config_url_or_path)\n else:\n raise BaseDosDadosException(\n 'File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported.'\n )\n df = df.fillna('NULL')\n required_columns = ['name', 'bigquery_type', 'description',\n 'temporal_coverage', 'covered_by_dictionary',\n 'directory_column', 'measurement_unit', 'has_sensitive_data',\n 'observations']\n not_found_columns = required_columns.copy()\n for sheet_column in df.columns.tolist():\n for required_column in required_columns:\n if sheet_column == required_column:\n not_found_columns.remove(required_column)\n if not_found_columns:\n raise BaseDosDadosException(\n f\"The following required columns are not found: {', '.join(not_found_columns)}.\"\n )\n columns_parameters = zip(*[df[required_column].tolist() for\n required_column in required_columns])\n for name, bigquery_type, description, temporal_coverage, covered_by_dictionary, directory_column, measurement_unit, has_sensitive_data, observations in columns_parameters:\n for col in table_config_yaml['columns']:\n if col['name'] == name:\n col['bigquery_type'] = col['bigquery_type'\n ] if bigquery_type == 'NULL' else bigquery_type.lower()\n col['description'] = col['description'\n ] if description == 'NULL' else description\n col['temporal_coverage'] = col['temporal_coverage'\n ] if temporal_coverage == 'NULL' else [\n temporal_coverage]\n col['covered_by_dictionary'] = ('no' if \n covered_by_dictionary == 'NULL' else\n covered_by_dictionary)\n dataset = directory_column.split('.')[0]\n col['directory_column']['dataset_id'] = col[\n 'directory_column']['dataset_id'\n ] if dataset == 'NULL' else dataset\n table = directory_column.split('.')[-1].split(':')[0]\n col['directory_column']['table_id'] = col[\n 'directory_column']['table_id'\n ] if table == 'NULL' else table\n column = directory_column.split('.')[-1].split(':')[-1]\n col['directory_column']['column_name'] = col[\n 'directory_column']['column_name'\n ] if column == 'NULL' else column\n col['measurement_unit'] = col['measurement_unit'\n ] if measurement_unit == 'NULL' else measurement_unit\n col['has_sensitive_data'] = ('no' if has_sensitive_data ==\n 'NULL' else has_sensitive_data)\n col['observations'] = col['observations'\n ] if observations == 'NULL' else observations\n with open(self.table_folder / 'table_config.yaml', 'w', encoding=\n 'utf-8') as f:\n ruamel.dump(table_config_yaml, f)\n self._make_publish_sql()\n\n def init(self, data_sample_path=None, if_folder_exists='raise',\n if_table_config_exists='raise', source_format='csv', force_columns=\n False, columns_config_url_or_path=None):\n \"\"\"Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`.\n\n The folder should contain:\n\n * `table_config.yaml`\n * `publish.sql`\n\n You can also point to a sample of the data to auto complete columns names.\n\n Args:\n data_sample_path (str, pathlib.PosixPath): Optional.\n Data sample path to auto complete columns names\n It supports Comma Delimited CSV, Apache Avro and\n Apache Parquet.\n if_folder_exists (str): Optional.\n What to do if table folder exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace folder\n * 'pass' : Do nothing\n if_table_config_exists (str): Optional\n What to do if table_config.yaml and publish.sql exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace files with blank template\n * 'pass' : Do nothing\n source_format (str): Optional\n Data source format. Only 'csv', 'avro' and 'parquet'\n are supported. Defaults to 'csv'.\n force_columns (bool): Optional.\n If set to `True`, overwrite CKAN's columns with the ones provi\n ded.\n If set to `False`, keep CKAN's columns instead of the ones pro\n vided.\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n Raises:\n FileExistsError: If folder exists and replace is False.\n NotImplementedError: If data sample is not in supported type or format.\n \"\"\"\n if not self.dataset_folder.exists():\n raise FileExistsError(\n f'Dataset folder {self.dataset_folder} folder does not exists. Create a dataset before adding tables.'\n )\n try:\n self.table_folder.mkdir(exist_ok=if_folder_exists == 'replace')\n except FileExistsError as e:\n if if_folder_exists == 'raise':\n raise FileExistsError(\n f'Table folder already exists for {self.table_id}. '\n ) from e\n if if_folder_exists == 'pass':\n return self\n if not data_sample_path and if_table_config_exists != 'pass':\n raise BaseDosDadosException(\n 'You must provide a path to correctly create config files')\n partition_columns = []\n if isinstance(data_sample_path, (str, Path)):\n data_sample_path = Path(data_sample_path)\n if data_sample_path.is_dir():\n data_sample_path = [f for f in data_sample_path.glob('**/*'\n ) if f.is_file() and f.suffix == f'.{source_format}'][0]\n partition_columns = [k.split('=')[0] for k in\n data_sample_path.as_posix().split('/') if '=' in k]\n columns = Datatype(self, source_format).header(data_sample_path)\n else:\n columns = ['column_name']\n if if_table_config_exists == 'pass':\n if Path(self.table_folder / 'table_config.yaml').is_file(\n ) and Path(self.table_folder / 'publish.sql').is_file():\n pass\n elif not data_sample_path:\n raise BaseDosDadosException(\n 'You must provide a path to correctly create config files')\n else:\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n elif if_table_config_exists == 'raise':\n if Path(self.table_folder / 'table_config.yaml').is_file(\n ) and Path(self.table_folder / 'publish.sql').is_file():\n raise FileExistsError(\n f'table_config.yaml and publish.sql already exists at {self.table_folder}'\n )\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n else:\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n if columns_config_url_or_path is not None:\n self.update_columns(columns_config_url_or_path)\n return self\n <mask token>\n\n def update(self, mode='all'):\n \"\"\"Updates BigQuery schema and description.\n Args:\n mode (str): Optional.\n Table of which table to update [prod|staging|all]\n not_found_ok (bool): Optional.\n What to do if table is not found\n \"\"\"\n self._check_mode(mode)\n mode = ['prod', 'staging'] if mode == 'all' else [mode]\n for m in mode:\n try:\n table = self._get_table_obj(m)\n except google.api_core.exceptions.NotFound:\n continue\n table.description = self._render_template(Path(\n 'table/table_description.txt'), self.table_config)\n with open(self.metadata_path / self.dataset_id / self.table_id /\n 'table_description.txt', 'w', encoding='utf-8') as f:\n f.write(table.description)\n table.schema = self._load_schema(m)\n fields = ['description', 'schema'] if m == 'prod' else [\n 'description']\n self.client[f'bigquery_{m}'].update_table(table, fields=fields)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='updated')\n\n def publish(self, if_exists='raise'):\n \"\"\"Creates BigQuery table at production dataset.\n\n Table should be located at `<dataset_id>.<table_id>`.\n\n It creates a view that uses the query from\n `<metadata_path>/<dataset_id>/<table_id>/publish.sql`.\n\n Make sure that all columns from the query also exists at\n `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including\n the partitions.\n\n Args:\n if_exists (str): Optional.\n What to do if table exists.\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n\n Todo:\n\n * Check if all required fields are filled\n \"\"\"\n if if_exists == 'replace':\n self.delete(mode='prod')\n self.client['bigquery_prod'].query((self.table_folder /\n 'publish.sql').open('r', encoding='utf-8').read()).result()\n self.update()\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='published')\n <mask token>\n\n def append(self, filepath, partitions=None, if_exists='replace',\n chunk_size=None, **upload_args):\n \"\"\"Appends new data to existing BigQuery table.\n\n As long as the data has the same schema. It appends the data in the\n filepath to the existing table.\n\n Args:\n filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n partitions (str, pathlib.PosixPath, dict): Optional.\n Hive structured partition as a string or dict\n\n * str : `<key>=<value>/<key2>=<value2>`\n * dict: `dict(key=value, key2=value2)`\n if_exists (str): 0ptional.\n What to do if data with same name exists in storage\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n if not self.table_exists('staging'):\n raise BaseDosDadosException(\n 'You cannot append to a table that does not exist')\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n filepath, mode='staging', partitions=partitions, if_exists=\n if_exists, chunk_size=chunk_size, **upload_args)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='appended')\n", "step-4": "<mask token>\n\n\nclass Table(Base):\n <mask token>\n\n def __init__(self, dataset_id, table_id, **kwargs):\n super().__init__(**kwargs)\n self.table_id = table_id.replace('-', '_')\n self.dataset_id = dataset_id.replace('-', '_')\n self.dataset_folder = Path(self.metadata_path / self.dataset_id)\n self.table_folder = self.dataset_folder / table_id\n self.table_full_name = dict(prod=\n f\"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}\"\n , staging=\n f\"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}\"\n )\n self.table_full_name.update(dict(all=deepcopy(self.table_full_name)))\n self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs)\n\n @property\n def table_config(self):\n \"\"\"\n Load table_config.yaml\n \"\"\"\n return self._load_yaml(self.table_folder / 'table_config.yaml')\n\n def _get_table_obj(self, mode):\n \"\"\"\n Get table object from BigQuery\n \"\"\"\n return self.client[f'bigquery_{mode}'].get_table(self.\n table_full_name[mode])\n\n def _is_partitioned(self):\n \"\"\"\n Check if table is partitioned\n \"\"\"\n partitions = self.table_config['partitions']\n if partitions is None or len(partitions) == 0:\n return False\n if isinstance(partitions, list):\n return all(item is not None for item in partitions)\n raise ValueError('Partitions must be a list or None')\n\n def _load_schema(self, mode='staging'):\n \"\"\"Load schema from table_config.yaml\n\n Args:\n mode (bool): Which dataset to create [prod|staging].\n \"\"\"\n self._check_mode(mode)\n json_path = self.table_folder / f'schema-{mode}.json'\n columns = self.table_config['columns']\n if mode == 'staging':\n new_columns = []\n for c in columns:\n is_in_staging = True if c.get('is_in_staging') is None else c[\n 'is_in_staging']\n if is_in_staging and not c.get('is_partition'):\n c['type'] = 'STRING'\n new_columns.append(c)\n del columns\n columns = new_columns\n elif mode == 'prod':\n schema = self._get_table_obj(mode).schema\n column_names = [c['name'] for c in columns]\n schema_names = [s.name for s in schema]\n not_in_columns = [name for name in schema_names if name not in\n column_names]\n not_in_schema = [name for name in column_names if name not in\n schema_names]\n if not_in_columns:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in table_config.yaml. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_columns, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n if not_in_schema:\n raise BaseDosDadosException(\n 'Column {error_columns} was not found in publish.sql. Are you sure that all your column names between table_config.yaml, publish.sql and {project_id}.{dataset_id}.{table_id} are the same?'\n .format(error_columns=not_in_schema, project_id=self.\n table_config['project_id_prod'], dataset_id=self.\n table_config['dataset_id'], table_id=self.table_config[\n 'table_id']))\n for c in columns:\n for s in schema:\n if c['name'] == s.name:\n c['type'] = s.field_type\n c['mode'] = s.mode\n break\n json.dump(columns, json_path.open('w', encoding='utf-8'))\n return self.client[f'bigquery_{mode}'].schema_from_json(str(json_path))\n\n def _make_publish_sql(self):\n \"\"\"Create publish.sql with columns and bigquery_type\"\"\"\n publish_txt = \"\"\"\n /*\n Query para publicar a tabela.\n\n Esse é o lugar para:\n - modificar nomes, ordem e tipos de colunas\n - dar join com outras tabelas\n - criar colunas extras (e.g. logs, proporções, etc.)\n\n Qualquer coluna definida aqui deve também existir em `table_config.yaml`.\n\n # Além disso, sinta-se à vontade para alterar alguns nomes obscuros\n # para algo um pouco mais explícito.\n\n TIPOS:\n - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido.\n - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name`\n - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types\n */\n \"\"\"\n publish_txt = inspect.cleandoc(publish_txt)\n publish_txt = textwrap.dedent(publish_txt)\n project_id_prod = self.client['bigquery_prod'].project\n publish_txt += f\"\"\"\n\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\nSELECT \n\"\"\"\n if self._is_partitioned():\n columns = sorted(self.table_config['columns'], key=lambda k: (k\n ['is_partition'] is not None, k['is_partition']), reverse=True)\n else:\n columns = self.table_config['columns']\n for col in columns:\n name = col['name']\n bigquery_type = 'STRING' if col['bigquery_type'] is None else col[\n 'bigquery_type'].upper()\n publish_txt += f'SAFE_CAST({name} AS {bigquery_type}) {name},\\n'\n publish_txt = publish_txt[:-2] + '\\n'\n project_id_staging = self.client['bigquery_staging'].project\n publish_txt += (\n f'FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t'\n )\n (self.table_folder / 'publish.sql').open('w', encoding='utf-8').write(\n publish_txt)\n\n def _make_template(self, columns, partition_columns,\n if_table_config_exists, force_columns):\n self.metadata.create(if_exists=if_table_config_exists, columns=\n partition_columns + columns, partition_columns=\n partition_columns, force_columns=force_columns, table_only=False)\n self._make_publish_sql()\n\n @staticmethod\n def _sheet_to_df(columns_config_url_or_path):\n \"\"\"\n Convert sheet to dataframe\n \"\"\"\n url = columns_config_url_or_path.replace('edit#gid=',\n 'export?format=csv&gid=')\n try:\n return pd.read_csv(StringIO(requests.get(url, timeout=10).\n content.decode('utf-8')))\n except Exception as e:\n raise BaseDosDadosException(\n 'Check if your google sheet Share are: Anyone on the internet with this link can view'\n ) from e\n\n def table_exists(self, mode):\n \"\"\"Check if table exists in BigQuery.\n\n Args:\n mode (str): Which dataset to check [prod|staging].\n \"\"\"\n try:\n ref = self._get_table_obj(mode=mode)\n except google.api_core.exceptions.NotFound:\n ref = None\n return bool(ref)\n\n def update_columns(self, columns_config_url_or_path=None):\n \"\"\"\n Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate\n publish.sql and autofill type using bigquery_type.\n\n The sheet must contain the columns:\n - name: column name\n - description: column description\n - bigquery_type: column bigquery type\n - measurement_unit: column mesurement unit\n - covered_by_dictionary: column related dictionary\n - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name>\n - temporal_coverage: column temporal coverage\n - has_sensitive_data: the column has sensitive data\n - observations: column observations\n Args:\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n \"\"\"\n ruamel = ryaml.YAML()\n ruamel.preserve_quotes = True\n ruamel.indent(mapping=4, sequence=6, offset=4)\n table_config_yaml = ruamel.load((self.table_folder /\n 'table_config.yaml').open(encoding='utf-8'))\n if ('https://docs.google.com/spreadsheets/d/' in\n columns_config_url_or_path):\n if ('edit#gid=' not in columns_config_url_or_path or \n 'https://docs.google.com/spreadsheets/d/' not in\n columns_config_url_or_path or not\n columns_config_url_or_path.split('=')[1].isdigit()):\n raise BaseDosDadosException(\n 'The Google sheet url not in correct format.The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>'\n )\n df = self._sheet_to_df(columns_config_url_or_path)\n else:\n file_type = columns_config_url_or_path.split('.')[-1]\n if file_type == 'csv':\n df = pd.read_csv(columns_config_url_or_path, encoding='utf-8')\n elif file_type in ['xls', 'xlsx', 'xlsm', 'xlsb', 'odf', 'ods',\n 'odt']:\n df = pd.read_excel(columns_config_url_or_path)\n else:\n raise BaseDosDadosException(\n 'File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported.'\n )\n df = df.fillna('NULL')\n required_columns = ['name', 'bigquery_type', 'description',\n 'temporal_coverage', 'covered_by_dictionary',\n 'directory_column', 'measurement_unit', 'has_sensitive_data',\n 'observations']\n not_found_columns = required_columns.copy()\n for sheet_column in df.columns.tolist():\n for required_column in required_columns:\n if sheet_column == required_column:\n not_found_columns.remove(required_column)\n if not_found_columns:\n raise BaseDosDadosException(\n f\"The following required columns are not found: {', '.join(not_found_columns)}.\"\n )\n columns_parameters = zip(*[df[required_column].tolist() for\n required_column in required_columns])\n for name, bigquery_type, description, temporal_coverage, covered_by_dictionary, directory_column, measurement_unit, has_sensitive_data, observations in columns_parameters:\n for col in table_config_yaml['columns']:\n if col['name'] == name:\n col['bigquery_type'] = col['bigquery_type'\n ] if bigquery_type == 'NULL' else bigquery_type.lower()\n col['description'] = col['description'\n ] if description == 'NULL' else description\n col['temporal_coverage'] = col['temporal_coverage'\n ] if temporal_coverage == 'NULL' else [\n temporal_coverage]\n col['covered_by_dictionary'] = ('no' if \n covered_by_dictionary == 'NULL' else\n covered_by_dictionary)\n dataset = directory_column.split('.')[0]\n col['directory_column']['dataset_id'] = col[\n 'directory_column']['dataset_id'\n ] if dataset == 'NULL' else dataset\n table = directory_column.split('.')[-1].split(':')[0]\n col['directory_column']['table_id'] = col[\n 'directory_column']['table_id'\n ] if table == 'NULL' else table\n column = directory_column.split('.')[-1].split(':')[-1]\n col['directory_column']['column_name'] = col[\n 'directory_column']['column_name'\n ] if column == 'NULL' else column\n col['measurement_unit'] = col['measurement_unit'\n ] if measurement_unit == 'NULL' else measurement_unit\n col['has_sensitive_data'] = ('no' if has_sensitive_data ==\n 'NULL' else has_sensitive_data)\n col['observations'] = col['observations'\n ] if observations == 'NULL' else observations\n with open(self.table_folder / 'table_config.yaml', 'w', encoding=\n 'utf-8') as f:\n ruamel.dump(table_config_yaml, f)\n self._make_publish_sql()\n\n def init(self, data_sample_path=None, if_folder_exists='raise',\n if_table_config_exists='raise', source_format='csv', force_columns=\n False, columns_config_url_or_path=None):\n \"\"\"Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`.\n\n The folder should contain:\n\n * `table_config.yaml`\n * `publish.sql`\n\n You can also point to a sample of the data to auto complete columns names.\n\n Args:\n data_sample_path (str, pathlib.PosixPath): Optional.\n Data sample path to auto complete columns names\n It supports Comma Delimited CSV, Apache Avro and\n Apache Parquet.\n if_folder_exists (str): Optional.\n What to do if table folder exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace folder\n * 'pass' : Do nothing\n if_table_config_exists (str): Optional\n What to do if table_config.yaml and publish.sql exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace files with blank template\n * 'pass' : Do nothing\n source_format (str): Optional\n Data source format. Only 'csv', 'avro' and 'parquet'\n are supported. Defaults to 'csv'.\n force_columns (bool): Optional.\n If set to `True`, overwrite CKAN's columns with the ones provi\n ded.\n If set to `False`, keep CKAN's columns instead of the ones pro\n vided.\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n Raises:\n FileExistsError: If folder exists and replace is False.\n NotImplementedError: If data sample is not in supported type or format.\n \"\"\"\n if not self.dataset_folder.exists():\n raise FileExistsError(\n f'Dataset folder {self.dataset_folder} folder does not exists. Create a dataset before adding tables.'\n )\n try:\n self.table_folder.mkdir(exist_ok=if_folder_exists == 'replace')\n except FileExistsError as e:\n if if_folder_exists == 'raise':\n raise FileExistsError(\n f'Table folder already exists for {self.table_id}. '\n ) from e\n if if_folder_exists == 'pass':\n return self\n if not data_sample_path and if_table_config_exists != 'pass':\n raise BaseDosDadosException(\n 'You must provide a path to correctly create config files')\n partition_columns = []\n if isinstance(data_sample_path, (str, Path)):\n data_sample_path = Path(data_sample_path)\n if data_sample_path.is_dir():\n data_sample_path = [f for f in data_sample_path.glob('**/*'\n ) if f.is_file() and f.suffix == f'.{source_format}'][0]\n partition_columns = [k.split('=')[0] for k in\n data_sample_path.as_posix().split('/') if '=' in k]\n columns = Datatype(self, source_format).header(data_sample_path)\n else:\n columns = ['column_name']\n if if_table_config_exists == 'pass':\n if Path(self.table_folder / 'table_config.yaml').is_file(\n ) and Path(self.table_folder / 'publish.sql').is_file():\n pass\n elif not data_sample_path:\n raise BaseDosDadosException(\n 'You must provide a path to correctly create config files')\n else:\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n elif if_table_config_exists == 'raise':\n if Path(self.table_folder / 'table_config.yaml').is_file(\n ) and Path(self.table_folder / 'publish.sql').is_file():\n raise FileExistsError(\n f'table_config.yaml and publish.sql already exists at {self.table_folder}'\n )\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n else:\n self._make_template(columns, partition_columns,\n if_table_config_exists, force_columns=force_columns)\n if columns_config_url_or_path is not None:\n self.update_columns(columns_config_url_or_path)\n return self\n <mask token>\n\n def update(self, mode='all'):\n \"\"\"Updates BigQuery schema and description.\n Args:\n mode (str): Optional.\n Table of which table to update [prod|staging|all]\n not_found_ok (bool): Optional.\n What to do if table is not found\n \"\"\"\n self._check_mode(mode)\n mode = ['prod', 'staging'] if mode == 'all' else [mode]\n for m in mode:\n try:\n table = self._get_table_obj(m)\n except google.api_core.exceptions.NotFound:\n continue\n table.description = self._render_template(Path(\n 'table/table_description.txt'), self.table_config)\n with open(self.metadata_path / self.dataset_id / self.table_id /\n 'table_description.txt', 'w', encoding='utf-8') as f:\n f.write(table.description)\n table.schema = self._load_schema(m)\n fields = ['description', 'schema'] if m == 'prod' else [\n 'description']\n self.client[f'bigquery_{m}'].update_table(table, fields=fields)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='updated')\n\n def publish(self, if_exists='raise'):\n \"\"\"Creates BigQuery table at production dataset.\n\n Table should be located at `<dataset_id>.<table_id>`.\n\n It creates a view that uses the query from\n `<metadata_path>/<dataset_id>/<table_id>/publish.sql`.\n\n Make sure that all columns from the query also exists at\n `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including\n the partitions.\n\n Args:\n if_exists (str): Optional.\n What to do if table exists.\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n\n Todo:\n\n * Check if all required fields are filled\n \"\"\"\n if if_exists == 'replace':\n self.delete(mode='prod')\n self.client['bigquery_prod'].query((self.table_folder /\n 'publish.sql').open('r', encoding='utf-8').read()).result()\n self.update()\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='published')\n\n def delete(self, mode):\n \"\"\"Deletes table in BigQuery.\n\n Args:\n mode (str): Table of which table to delete [prod|staging]\n \"\"\"\n self._check_mode(mode)\n if mode == 'all':\n for m, n in self.table_full_name[mode].items():\n self.client[f'bigquery_{m}'].delete_table(n, not_found_ok=True)\n logger.info(' {object} {object_id}_{mode} was {action}!',\n object_id=self.table_id, mode=mode, object='Table', action=\n 'deleted')\n else:\n self.client[f'bigquery_{mode}'].delete_table(self.\n table_full_name[mode], not_found_ok=True)\n logger.info(' {object} {object_id}_{mode} was {action}!',\n object_id=self.table_id, mode=mode, object='Table', action=\n 'deleted')\n\n def append(self, filepath, partitions=None, if_exists='replace',\n chunk_size=None, **upload_args):\n \"\"\"Appends new data to existing BigQuery table.\n\n As long as the data has the same schema. It appends the data in the\n filepath to the existing table.\n\n Args:\n filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n partitions (str, pathlib.PosixPath, dict): Optional.\n Hive structured partition as a string or dict\n\n * str : `<key>=<value>/<key2>=<value2>`\n * dict: `dict(key=value, key2=value2)`\n if_exists (str): 0ptional.\n What to do if data with same name exists in storage\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n if not self.table_exists('staging'):\n raise BaseDosDadosException(\n 'You cannot append to a table that does not exist')\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n filepath, mode='staging', partitions=partitions, if_exists=\n if_exists, chunk_size=chunk_size, **upload_args)\n logger.success(' {object} {object_id} was {action}!', object_id=\n self.table_id, object='Table', action='appended')\n", "step-5": "\"\"\"\nClass for manage tables in Storage and Big Query\n\"\"\"\n# pylint: disable=invalid-name, too-many-locals, too-many-branches, too-many-arguments,line-too-long,R0801,consider-using-f-string\nfrom pathlib import Path\nimport json\nfrom copy import deepcopy\nimport textwrap\nimport inspect\nfrom io import StringIO\n\nfrom loguru import logger\nfrom google.cloud import bigquery\nimport ruamel.yaml as ryaml\nimport requests\nimport pandas as pd\nimport google.api_core.exceptions\n\nfrom basedosdados.upload.base import Base\nfrom basedosdados.upload.storage import Storage\nfrom basedosdados.upload.dataset import Dataset\nfrom basedosdados.upload.datatypes import Datatype\nfrom basedosdados.upload.metadata import Metadata\nfrom basedosdados.exceptions import BaseDosDadosException\n\n\nclass Table(Base):\n \"\"\"\n Manage tables in Google Cloud Storage and BigQuery.\n \"\"\"\n\n def __init__(self, dataset_id, table_id, **kwargs):\n super().__init__(**kwargs)\n\n self.table_id = table_id.replace(\"-\", \"_\")\n self.dataset_id = dataset_id.replace(\"-\", \"_\")\n self.dataset_folder = Path(self.metadata_path / self.dataset_id)\n self.table_folder = self.dataset_folder / table_id\n self.table_full_name = dict(\n prod=f\"{self.client['bigquery_prod'].project}.{self.dataset_id}.{self.table_id}\",\n staging=f\"{self.client['bigquery_staging'].project}.{self.dataset_id}_staging.{self.table_id}\",\n )\n self.table_full_name.update(dict(all=deepcopy(self.table_full_name)))\n self.metadata = Metadata(self.dataset_id, self.table_id, **kwargs)\n\n @property\n def table_config(self):\n \"\"\"\n Load table_config.yaml\n \"\"\"\n return self._load_yaml(self.table_folder / \"table_config.yaml\")\n\n def _get_table_obj(self, mode):\n \"\"\"\n Get table object from BigQuery\n \"\"\"\n return self.client[f\"bigquery_{mode}\"].get_table(self.table_full_name[mode])\n\n def _is_partitioned(self):\n \"\"\"\n Check if table is partitioned\n \"\"\"\n ## check if the table are partitioned, need the split because of a change in the type of partitions in pydantic\n partitions = self.table_config[\"partitions\"]\n if partitions is None or len(partitions) == 0:\n return False\n\n if isinstance(partitions, list):\n # check if any None inside list.\n # False if it is the case Ex: [None, 'partition']\n # True otherwise Ex: ['partition1', 'partition2']\n return all(item is not None for item in partitions)\n\n raise ValueError(\"Partitions must be a list or None\")\n\n def _load_schema(self, mode=\"staging\"):\n \"\"\"Load schema from table_config.yaml\n\n Args:\n mode (bool): Which dataset to create [prod|staging].\n \"\"\"\n\n self._check_mode(mode)\n\n json_path = self.table_folder / f\"schema-{mode}.json\"\n columns = self.table_config[\"columns\"]\n\n if mode == \"staging\":\n new_columns = []\n for c in columns:\n # case is_in_staging are None then must be True\n is_in_staging = (\n True if c.get(\"is_in_staging\") is None else c[\"is_in_staging\"]\n )\n # append columns declared in table_config.yaml to schema only if is_in_staging: True\n if is_in_staging and not c.get(\"is_partition\"):\n c[\"type\"] = \"STRING\"\n new_columns.append(c)\n\n del columns\n columns = new_columns\n\n elif mode == \"prod\":\n schema = self._get_table_obj(mode).schema\n\n # get field names for fields at schema and at table_config.yaml\n column_names = [c[\"name\"] for c in columns]\n schema_names = [s.name for s in schema]\n\n # check if there are mismatched fields\n not_in_columns = [name for name in schema_names if name not in column_names]\n not_in_schema = [name for name in column_names if name not in schema_names]\n\n # raise if field is not in table_config\n if not_in_columns:\n raise BaseDosDadosException(\n \"Column {error_columns} was not found in table_config.yaml. Are you sure that \"\n \"all your column names between table_config.yaml, publish.sql and \"\n \"{project_id}.{dataset_id}.{table_id} are the same?\".format(\n error_columns=not_in_columns,\n project_id=self.table_config[\"project_id_prod\"],\n dataset_id=self.table_config[\"dataset_id\"],\n table_id=self.table_config[\"table_id\"],\n )\n )\n\n # raise if field is not in schema\n if not_in_schema:\n raise BaseDosDadosException(\n \"Column {error_columns} was not found in publish.sql. Are you sure that \"\n \"all your column names between table_config.yaml, publish.sql and \"\n \"{project_id}.{dataset_id}.{table_id} are the same?\".format(\n error_columns=not_in_schema,\n project_id=self.table_config[\"project_id_prod\"],\n dataset_id=self.table_config[\"dataset_id\"],\n table_id=self.table_config[\"table_id\"],\n )\n )\n\n # if field is in schema, get field_type and field_mode\n for c in columns:\n for s in schema:\n if c[\"name\"] == s.name:\n c[\"type\"] = s.field_type\n c[\"mode\"] = s.mode\n break\n ## force utf-8, write schema_{mode}.json\n json.dump(columns, (json_path).open(\"w\", encoding=\"utf-8\"))\n\n # load new created schema\n return self.client[f\"bigquery_{mode}\"].schema_from_json(str(json_path))\n\n def _make_publish_sql(self):\n \"\"\"Create publish.sql with columns and bigquery_type\"\"\"\n\n ### publish.sql header and instructions\n publish_txt = \"\"\"\n /*\n Query para publicar a tabela.\n\n Esse é o lugar para:\n - modificar nomes, ordem e tipos de colunas\n - dar join com outras tabelas\n - criar colunas extras (e.g. logs, proporções, etc.)\n\n Qualquer coluna definida aqui deve também existir em `table_config.yaml`.\n\n # Além disso, sinta-se à vontade para alterar alguns nomes obscuros\n # para algo um pouco mais explícito.\n\n TIPOS:\n - Para modificar tipos de colunas, basta substituir STRING por outro tipo válido.\n - Exemplo: `SAFE_CAST(column_name AS NUMERIC) column_name`\n - Mais detalhes: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types\n */\n \"\"\"\n\n # remove triple quotes extra space\n publish_txt = inspect.cleandoc(publish_txt)\n publish_txt = textwrap.dedent(publish_txt)\n\n # add create table statement\n project_id_prod = self.client[\"bigquery_prod\"].project\n publish_txt += f\"\\n\\nCREATE VIEW {project_id_prod}.{self.dataset_id}.{self.table_id} AS\\nSELECT \\n\"\n\n # sort columns by is_partition, partitions_columns come first\n\n if self._is_partitioned():\n columns = sorted(\n self.table_config[\"columns\"],\n key=lambda k: (k[\"is_partition\"] is not None, k[\"is_partition\"]),\n reverse=True,\n )\n else:\n columns = self.table_config[\"columns\"]\n\n # add columns in publish.sql\n for col in columns:\n name = col[\"name\"]\n bigquery_type = (\n \"STRING\"\n if col[\"bigquery_type\"] is None\n else col[\"bigquery_type\"].upper()\n )\n\n publish_txt += f\"SAFE_CAST({name} AS {bigquery_type}) {name},\\n\"\n ## remove last comma\n publish_txt = publish_txt[:-2] + \"\\n\"\n\n # add from statement\n project_id_staging = self.client[\"bigquery_staging\"].project\n publish_txt += (\n f\"FROM {project_id_staging}.{self.dataset_id}_staging.{self.table_id} AS t\"\n )\n\n # save publish.sql in table_folder\n (self.table_folder / \"publish.sql\").open(\"w\", encoding=\"utf-8\").write(\n publish_txt\n )\n\n def _make_template(self, columns, partition_columns, if_table_config_exists, force_columns):\n # create table_config.yaml with metadata\n self.metadata.create(\n if_exists=if_table_config_exists,\n columns=partition_columns + columns,\n partition_columns=partition_columns,\n force_columns=force_columns,\n table_only=False,\n )\n\n self._make_publish_sql()\n\n @staticmethod\n def _sheet_to_df(columns_config_url_or_path):\n \"\"\"\n Convert sheet to dataframe\n \"\"\"\n url = columns_config_url_or_path.replace(\"edit#gid=\", \"export?format=csv&gid=\")\n try:\n return pd.read_csv(StringIO(requests.get(url, timeout=10).content.decode(\"utf-8\")))\n except Exception as e:\n raise BaseDosDadosException(\n \"Check if your google sheet Share are: Anyone on the internet with this link can view\"\n ) from e\n\n def table_exists(self, mode):\n \"\"\"Check if table exists in BigQuery.\n\n Args:\n mode (str): Which dataset to check [prod|staging].\n \"\"\"\n\n try:\n ref = self._get_table_obj(mode=mode)\n except google.api_core.exceptions.NotFound:\n ref = None\n\n return bool(ref)\n\n def update_columns(self, columns_config_url_or_path=None):\n \"\"\"\n Fills columns in table_config.yaml automatically using a public google sheets URL or a local file. Also regenerate\n publish.sql and autofill type using bigquery_type.\n\n The sheet must contain the columns:\n - name: column name\n - description: column description\n - bigquery_type: column bigquery type\n - measurement_unit: column mesurement unit\n - covered_by_dictionary: column related dictionary\n - directory_column: column related directory in the format <dataset_id>.<table_id>:<column_name>\n - temporal_coverage: column temporal coverage\n - has_sensitive_data: the column has sensitive data\n - observations: column observations\n Args:\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n \"\"\"\n ruamel = ryaml.YAML()\n ruamel.preserve_quotes = True\n ruamel.indent(mapping=4, sequence=6, offset=4)\n table_config_yaml = ruamel.load(\n (self.table_folder / \"table_config.yaml\").open(encoding=\"utf-8\")\n )\n\n if \"https://docs.google.com/spreadsheets/d/\" in columns_config_url_or_path:\n if (\n \"edit#gid=\" not in columns_config_url_or_path\n or \"https://docs.google.com/spreadsheets/d/\"\n not in columns_config_url_or_path\n or not columns_config_url_or_path.split(\"=\")[1].isdigit()\n ):\n raise BaseDosDadosException(\n \"The Google sheet url not in correct format.\"\n \"The url must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>\"\n )\n df = self._sheet_to_df(columns_config_url_or_path)\n else:\n file_type = columns_config_url_or_path.split(\".\")[-1]\n if file_type == \"csv\":\n df = pd.read_csv(columns_config_url_or_path, encoding=\"utf-8\")\n elif file_type in [\"xls\", \"xlsx\", \"xlsm\", \"xlsb\", \"odf\", \"ods\", \"odt\"]:\n df = pd.read_excel(columns_config_url_or_path)\n else:\n raise BaseDosDadosException(\n \"File not suported. Only csv, xls, xlsx, xlsm, xlsb, odf, ods, odt are supported.\"\n )\n\n df = df.fillna(\"NULL\")\n\n required_columns = [\n \"name\",\n \"bigquery_type\",\n \"description\",\n \"temporal_coverage\",\n \"covered_by_dictionary\",\n \"directory_column\",\n \"measurement_unit\",\n \"has_sensitive_data\",\n \"observations\",\n ]\n\n not_found_columns = required_columns.copy()\n for sheet_column in df.columns.tolist():\n for required_column in required_columns:\n if sheet_column == required_column:\n not_found_columns.remove(required_column)\n if not_found_columns:\n raise BaseDosDadosException(\n f\"The following required columns are not found: {', '.join(not_found_columns)}.\"\n )\n\n columns_parameters = zip(\n *[df[required_column].tolist() for required_column in required_columns]\n )\n for (\n name,\n bigquery_type,\n description,\n temporal_coverage,\n covered_by_dictionary,\n directory_column,\n measurement_unit,\n has_sensitive_data,\n observations,\n ) in columns_parameters:\n for col in table_config_yaml[\"columns\"]:\n if col[\"name\"] == name:\n col[\"bigquery_type\"] = (\n col[\"bigquery_type\"]\n if bigquery_type == \"NULL\"\n else bigquery_type.lower()\n )\n\n col[\"description\"] = (\n col[\"description\"] if description == \"NULL\" else description\n )\n\n col[\"temporal_coverage\"] = (\n col[\"temporal_coverage\"]\n if temporal_coverage == \"NULL\"\n else [temporal_coverage]\n )\n\n col[\"covered_by_dictionary\"] = (\n \"no\"\n if covered_by_dictionary == \"NULL\"\n else covered_by_dictionary\n )\n\n dataset = directory_column.split(\".\")[0]\n col[\"directory_column\"][\"dataset_id\"] = (\n col[\"directory_column\"][\"dataset_id\"]\n if dataset == \"NULL\"\n else dataset\n )\n\n table = directory_column.split(\".\")[-1].split(\":\")[0]\n col[\"directory_column\"][\"table_id\"] = (\n col[\"directory_column\"][\"table_id\"]\n if table == \"NULL\"\n else table\n )\n\n column = directory_column.split(\".\")[-1].split(\":\")[-1]\n col[\"directory_column\"][\"column_name\"] = (\n col[\"directory_column\"][\"column_name\"]\n if column == \"NULL\"\n else column\n )\n col[\"measurement_unit\"] = (\n col[\"measurement_unit\"]\n if measurement_unit == \"NULL\"\n else measurement_unit\n )\n\n col[\"has_sensitive_data\"] = (\n \"no\" if has_sensitive_data == \"NULL\" else has_sensitive_data\n )\n\n col[\"observations\"] = (\n col[\"observations\"] if observations == \"NULL\" else observations\n )\n\n with open(self.table_folder / \"table_config.yaml\", \"w\", encoding=\"utf-8\") as f:\n ruamel.dump(table_config_yaml, f)\n\n # regenerate publish.sql\n self._make_publish_sql()\n\n def init(\n self,\n data_sample_path=None,\n if_folder_exists=\"raise\",\n if_table_config_exists=\"raise\",\n source_format=\"csv\",\n force_columns = False,\n columns_config_url_or_path=None,\n ): # sourcery skip: low-code-quality\n \"\"\"Initialize table folder at metadata_path at `metadata_path/<dataset_id>/<table_id>`.\n\n The folder should contain:\n\n * `table_config.yaml`\n * `publish.sql`\n\n You can also point to a sample of the data to auto complete columns names.\n\n Args:\n data_sample_path (str, pathlib.PosixPath): Optional.\n Data sample path to auto complete columns names\n It supports Comma Delimited CSV, Apache Avro and\n Apache Parquet.\n if_folder_exists (str): Optional.\n What to do if table folder exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace folder\n * 'pass' : Do nothing\n if_table_config_exists (str): Optional\n What to do if table_config.yaml and publish.sql exists\n\n * 'raise' : Raises FileExistsError\n * 'replace' : Replace files with blank template\n * 'pass' : Do nothing\n source_format (str): Optional\n Data source format. Only 'csv', 'avro' and 'parquet'\n are supported. Defaults to 'csv'.\n force_columns (bool): Optional.\n If set to `True`, overwrite CKAN's columns with the ones provi\n ded.\n If set to `False`, keep CKAN's columns instead of the ones pro\n vided.\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n Raises:\n FileExistsError: If folder exists and replace is False.\n NotImplementedError: If data sample is not in supported type or format.\n \"\"\"\n if not self.dataset_folder.exists():\n\n raise FileExistsError(\n f\"Dataset folder {self.dataset_folder} folder does not exists. \"\n \"Create a dataset before adding tables.\"\n )\n\n try:\n self.table_folder.mkdir(exist_ok=(if_folder_exists == \"replace\"))\n except FileExistsError as e:\n if if_folder_exists == \"raise\":\n raise FileExistsError(\n f\"Table folder already exists for {self.table_id}. \"\n ) from e\n if if_folder_exists == \"pass\":\n return self\n\n if not data_sample_path and if_table_config_exists != \"pass\":\n raise BaseDosDadosException(\n \"You must provide a path to correctly create config files\"\n )\n\n partition_columns = []\n if isinstance(\n data_sample_path,\n (\n str,\n Path,\n ),\n ):\n # Check if partitioned and get data sample and partition columns\n data_sample_path = Path(data_sample_path)\n\n if data_sample_path.is_dir():\n\n data_sample_path = [\n f\n for f in data_sample_path.glob(\"**/*\")\n if f.is_file() and f.suffix == f\".{source_format}\"\n ][0]\n\n partition_columns = [\n k.split(\"=\")[0]\n for k in data_sample_path.as_posix().split(\"/\")\n if \"=\" in k\n ]\n\n columns = Datatype(self, source_format).header(data_sample_path)\n\n else:\n\n columns = [\"column_name\"]\n\n if if_table_config_exists == \"pass\":\n # Check if config files exists before passing\n if (\n Path(self.table_folder / \"table_config.yaml\").is_file()\n and Path(self.table_folder / \"publish.sql\").is_file()\n ):\n pass\n # Raise if no sample to determine columns\n elif not data_sample_path:\n raise BaseDosDadosException(\n \"You must provide a path to correctly create config files\"\n )\n else:\n self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns)\n\n elif if_table_config_exists == \"raise\":\n\n # Check if config files already exist\n if (\n Path(self.table_folder / \"table_config.yaml\").is_file()\n and Path(self.table_folder / \"publish.sql\").is_file()\n ):\n\n raise FileExistsError(\n f\"table_config.yaml and publish.sql already exists at {self.table_folder}\"\n )\n # if config files don't exist, create them\n self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns)\n\n else:\n # Raise: without a path to data sample, should not replace config files with empty template\n self._make_template(columns, partition_columns, if_table_config_exists, force_columns=force_columns)\n\n if columns_config_url_or_path is not None:\n self.update_columns(columns_config_url_or_path)\n\n return self\n\n def create(\n self,\n path=None,\n force_dataset=True,\n if_table_exists=\"raise\",\n if_storage_data_exists=\"raise\",\n if_table_config_exists=\"raise\",\n source_format=\"csv\",\n force_columns=False,\n columns_config_url_or_path=None,\n dataset_is_public=True,\n location=None,\n chunk_size=None,\n ):\n \"\"\"Creates BigQuery table at staging dataset.\n\n If you add a path, it automatically saves the data in the storage,\n creates a datasets folder and BigQuery location, besides creating the\n table and its configuration files.\n\n The new table should be located at `<dataset_id>_staging.<table_id>` in BigQuery.\n\n It looks for data saved in Storage at `<bucket_name>/staging/<dataset_id>/<table_id>/*`\n and builds the table.\n\n It currently supports the types:\n\n - Comma Delimited CSV\n - Apache Avro\n - Apache Parquet\n\n Data can also be partitioned following the hive partitioning scheme\n `<key1>=<value1>/<key2>=<value2>` - for instance,\n `year=2012/country=BR`. The partition is automatcally detected\n by searching for `partitions` on the `table_config.yaml`.\n\n Args:\n path (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n job_config_params (dict): Optional.\n Job configuration params from bigquery\n if_table_exists (str): Optional\n What to do if table exists\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n force_dataset (bool): Creates `<dataset_id>` folder and BigQuery Dataset if it doesn't exists.\n if_table_config_exists (str): Optional.\n What to do if config files already exist\n\n * 'raise': Raises FileExistError\n * 'replace': Replace with blank template\n * 'pass'; Do nothing\n if_storage_data_exists (str): Optional.\n What to do if data already exists on your bucket:\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n source_format (str): Optional\n Data source format. Only 'csv', 'avro' and 'parquet'\n are supported. Defaults to 'csv'.\n force_columns (bool): Optional.\n If set to `True`, overwrite CKAN's columns with the ones provi\n ded.\n If set to `False`, keep CKAN's columns instead of the ones pro\n vided.\n columns_config_url_or_path (str): Path to the local architeture file or a public google sheets URL.\n Path only suports csv, xls, xlsx, xlsm, xlsb, odf, ods, odt formats.\n Google sheets URL must be in the format https://docs.google.com/spreadsheets/d/<table_key>/edit#gid=<table_gid>.\n\n dataset_is_public (bool): Control if prod dataset is public or not. By default staging datasets like `dataset_id_staging` are not public.\n\n location (str): Optional. Location of dataset data.\n List of possible region names locations: https://cloud.google.com/bigquery/docs/locations\n\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n\n if path is None:\n\n # Look if table data already exists at Storage\n data = self.client[\"storage_staging\"].list_blobs(\n self.bucket_name, prefix=f\"staging/{self.dataset_id}/{self.table_id}\"\n )\n\n # Raise: Cannot create table without external data\n if not data:\n raise BaseDosDadosException(\n \"You must provide a path for uploading data\"\n )\n\n # Add data to storage\n if isinstance(\n path,\n (\n str,\n Path,\n ),\n ):\n\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n path,\n mode=\"staging\",\n if_exists=if_storage_data_exists,\n chunk_size=chunk_size,\n )\n\n # Create Dataset if it doesn't exist\n if force_dataset:\n\n dataset_obj = Dataset(self.dataset_id, **self.main_vars)\n\n try:\n dataset_obj.init()\n except FileExistsError:\n pass\n\n dataset_obj.create(\n if_exists=\"pass\", location=location, dataset_is_public=dataset_is_public\n )\n\n self.init(\n data_sample_path=path,\n if_folder_exists=\"replace\",\n if_table_config_exists=if_table_config_exists,\n columns_config_url_or_path=columns_config_url_or_path,\n source_format=source_format,\n force_columns=force_columns\n )\n\n table = bigquery.Table(self.table_full_name[\"staging\"])\n table.external_data_configuration = Datatype(\n self, source_format, \"staging\", partitioned=self._is_partitioned()\n ).external_config\n\n # Lookup if table alreay exists\n table_ref = None\n try:\n table_ref = self.client[\"bigquery_staging\"].get_table(\n self.table_full_name[\"staging\"]\n )\n\n except google.api_core.exceptions.NotFound:\n pass\n\n if isinstance(table_ref, google.cloud.bigquery.table.Table):\n\n if if_table_exists == \"pass\":\n\n return None\n\n if if_table_exists == \"raise\":\n\n raise FileExistsError(\n \"Table already exists, choose replace if you want to overwrite it\"\n )\n\n if if_table_exists == \"replace\":\n\n self.delete(mode=\"staging\")\n\n self.client[\"bigquery_staging\"].create_table(table)\n\n logger.success(\n \"{object} {object_id} was {action}!\",\n object_id=self.table_id,\n object=\"Table\",\n action=\"created\",\n )\n return None\n\n def update(self, mode=\"all\"):\n \"\"\"Updates BigQuery schema and description.\n Args:\n mode (str): Optional.\n Table of which table to update [prod|staging|all]\n not_found_ok (bool): Optional.\n What to do if table is not found\n \"\"\"\n\n self._check_mode(mode)\n\n mode = [\"prod\", \"staging\"] if mode == \"all\" else [mode]\n for m in mode:\n\n try:\n table = self._get_table_obj(m)\n except google.api_core.exceptions.NotFound:\n continue\n\n # if m == \"staging\":\n\n table.description = self._render_template(\n Path(\"table/table_description.txt\"), self.table_config\n )\n\n # save table description\n with open(\n self.metadata_path\n / self.dataset_id\n / self.table_id\n / \"table_description.txt\",\n \"w\",\n encoding=\"utf-8\",\n ) as f:\n f.write(table.description)\n\n # when mode is staging the table schema already exists\n table.schema = self._load_schema(m)\n fields = [\"description\", \"schema\"] if m == \"prod\" else [\"description\"]\n self.client[f\"bigquery_{m}\"].update_table(table, fields=fields)\n\n logger.success(\n \" {object} {object_id} was {action}!\",\n object_id=self.table_id,\n object=\"Table\",\n action=\"updated\",\n )\n\n def publish(self, if_exists=\"raise\"):\n \"\"\"Creates BigQuery table at production dataset.\n\n Table should be located at `<dataset_id>.<table_id>`.\n\n It creates a view that uses the query from\n `<metadata_path>/<dataset_id>/<table_id>/publish.sql`.\n\n Make sure that all columns from the query also exists at\n `<metadata_path>/<dataset_id>/<table_id>/table_config.sql`, including\n the partitions.\n\n Args:\n if_exists (str): Optional.\n What to do if table exists.\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n\n Todo:\n\n * Check if all required fields are filled\n \"\"\"\n\n if if_exists == \"replace\":\n self.delete(mode=\"prod\")\n\n self.client[\"bigquery_prod\"].query(\n (self.table_folder / \"publish.sql\").open(\"r\", encoding=\"utf-8\").read()\n ).result()\n\n self.update()\n logger.success(\n \" {object} {object_id} was {action}!\",\n object_id=self.table_id,\n object=\"Table\",\n action=\"published\",\n )\n\n def delete(self, mode):\n \"\"\"Deletes table in BigQuery.\n\n Args:\n mode (str): Table of which table to delete [prod|staging]\n \"\"\"\n\n self._check_mode(mode)\n\n if mode == \"all\":\n for m, n in self.table_full_name[mode].items():\n self.client[f\"bigquery_{m}\"].delete_table(n, not_found_ok=True)\n logger.info(\n \" {object} {object_id}_{mode} was {action}!\",\n object_id=self.table_id,\n mode=mode,\n object=\"Table\",\n action=\"deleted\",\n )\n else:\n self.client[f\"bigquery_{mode}\"].delete_table(\n self.table_full_name[mode], not_found_ok=True\n )\n\n logger.info(\n \" {object} {object_id}_{mode} was {action}!\",\n object_id=self.table_id,\n mode=mode,\n object=\"Table\",\n action=\"deleted\",\n )\n\n def append(\n self,\n filepath,\n partitions=None,\n if_exists=\"replace\",\n chunk_size=None,\n **upload_args,\n ):\n \"\"\"Appends new data to existing BigQuery table.\n\n As long as the data has the same schema. It appends the data in the\n filepath to the existing table.\n\n Args:\n filepath (str or pathlib.PosixPath): Where to find the file that you want to upload to create a table with\n partitions (str, pathlib.PosixPath, dict): Optional.\n Hive structured partition as a string or dict\n\n * str : `<key>=<value>/<key2>=<value2>`\n * dict: `dict(key=value, key2=value2)`\n if_exists (str): 0ptional.\n What to do if data with same name exists in storage\n\n * 'raise' : Raises Conflict exception\n * 'replace' : Replace table\n * 'pass' : Do nothing\n chunk_size (int): Optional\n The size of a chunk of data whenever iterating (in bytes).\n This must be a multiple of 256 KB per the API specification.\n If not specified, the chunk_size of the blob itself is used. If that is not specified, a default value of 40 MB is used.\n \"\"\"\n if not self.table_exists(\"staging\"):\n raise BaseDosDadosException(\n \"You cannot append to a table that does not exist\"\n )\n Storage(self.dataset_id, self.table_id, **self.main_vars).upload(\n filepath,\n mode=\"staging\",\n partitions=partitions,\n if_exists=if_exists,\n chunk_size=chunk_size,\n **upload_args,\n )\n logger.success(\n \" {object} {object_id} was {action}!\",\n object_id=self.table_id,\n object=\"Table\",\n action=\"appended\",\n )\n", "step-ids": [ 8, 12, 15, 16, 20 ] }
[ 8, 12, 15, 16, 20 ]
import datetime with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming.txt') as f_obj: lines = f_obj.readlines() m_lines = [] for line in lines: m_line = line.replace('python', 'C#') m_lines.append(m_line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\programming1.txt', 'w') as f_obj: for line in m_lines: f_obj.write(line) with open('D:\Documents\PythonDocs\ehmatthes-pcc-f555082\chapter_10\guestbook.txt', 'w') as f_obj: while True: username = input('Please input your name. ') if username == 'q': break else: t = str(datetime.datetime.now()) f_obj.write(username + ' has visited at ' + t + '\n')
normal
{ "blob_id": "03da813650d56e7ab92885b698d4af3a51176903", "index": 3878, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\n<mask token>\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-3": "<mask token>\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-4": "import datetime\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming.txt'\n ) as f_obj:\n lines = f_obj.readlines()\nm_lines = []\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\programming1.txt'\n , 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\nwith open(\n 'D:\\\\Documents\\\\PythonDocs\\\\ehmatthes-pcc-f555082\\\\chapter_10\\\\guestbook.txt'\n , 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-5": "import datetime\n\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming.txt') as f_obj:\n lines = f_obj.readlines()\n\nm_lines = []\n\nfor line in lines:\n m_line = line.replace('python', 'C#')\n m_lines.append(m_line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\programming1.txt', 'w') as f_obj:\n for line in m_lines:\n f_obj.write(line)\n\nwith open('D:\\Documents\\PythonDocs\\ehmatthes-pcc-f555082\\chapter_10\\guestbook.txt', 'w') as f_obj:\n while True:\n username = input('Please input your name. ')\n if username == 'q':\n break\n else:\n t = str(datetime.datetime.now())\n f_obj.write(username + ' has visited at ' + t + '\\n')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""empty message Revision ID: 42cf7f6532dd Revises: e6d4ac8564fb Create Date: 2019-04-01 16:13:37.207305 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '42cf7f6532dd' down_revision = 'e6d4ac8564fb' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.add_column('stakeholder', sa.Column('archived', sa.Boolean(), nullable=False, default=False, server_default="false")) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column('stakeholder', 'archived') # ### end Alembic commands ###
normal
{ "blob_id": "42d9f40dd50056b1c258508a6cb3f9875680276a", "index": 3393, "step-1": "<mask token>\n\n\ndef downgrade():\n op.drop_column('stakeholder', 'archived')\n", "step-2": "<mask token>\n\n\ndef upgrade():\n op.add_column('stakeholder', sa.Column('archived', sa.Boolean(),\n nullable=False, default=False, server_default='false'))\n\n\ndef downgrade():\n op.drop_column('stakeholder', 'archived')\n", "step-3": "<mask token>\nrevision = '42cf7f6532dd'\ndown_revision = 'e6d4ac8564fb'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.add_column('stakeholder', sa.Column('archived', sa.Boolean(),\n nullable=False, default=False, server_default='false'))\n\n\ndef downgrade():\n op.drop_column('stakeholder', 'archived')\n", "step-4": "<mask token>\nfrom alembic import op\nimport sqlalchemy as sa\nrevision = '42cf7f6532dd'\ndown_revision = 'e6d4ac8564fb'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n op.add_column('stakeholder', sa.Column('archived', sa.Boolean(),\n nullable=False, default=False, server_default='false'))\n\n\ndef downgrade():\n op.drop_column('stakeholder', 'archived')\n", "step-5": "\"\"\"empty message\n\nRevision ID: 42cf7f6532dd\nRevises: e6d4ac8564fb\nCreate Date: 2019-04-01 16:13:37.207305\n\n\"\"\"\nfrom alembic import op\nimport sqlalchemy as sa\n\n\n# revision identifiers, used by Alembic.\nrevision = '42cf7f6532dd'\ndown_revision = 'e6d4ac8564fb'\nbranch_labels = None\ndepends_on = None\n\n\ndef upgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.add_column('stakeholder', sa.Column('archived', sa.Boolean(), nullable=False, default=False, server_default=\"false\"))\n # ### end Alembic commands ###\n\n\ndef downgrade():\n # ### commands auto generated by Alembic - please adjust! ###\n op.drop_column('stakeholder', 'archived')\n # ### end Alembic commands ###\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def forward_selected(data, response): """Linear model designed by forward selection. Parameters: ----------- data : pandas DataFrame with all possible predictors and response response: string, name of response column in data Returns: -------- model: an "optimal" fitted statsmodels linear model with an intercept selected by forward selection evaluated by adjusted R-squared """ remaining = set(data.columns) remaining.remove(response) selected = [] current_score, best_new_score = 0.0, 0.0 while remaining and current_score == best_new_score: scores_with_candidates = [] for candidate in remaining: formula = '{} ~ {} + 1'.format(response, ' + '.join(selected + [candidate])) score = smf.ols(formula, data).fit().rsquared_adj scores_with_candidates.append((score, candidate)) scores_with_candidates.sort() best_new_score, best_candidate = scores_with_candidates.pop() if current_score < best_new_score: remaining.remove(best_candidate) selected.append(best_candidate) current_score = best_new_score formula = '{} ~ {} + 1'.format(response, ' + '.join(selected)) model = smf.ols(formula, data).fit() print(selected) return model <|reserved_special_token_0|> print(model) <|reserved_special_token_1|> <|reserved_special_token_0|> def forward_selected(data, response): """Linear model designed by forward selection. Parameters: ----------- data : pandas DataFrame with all possible predictors and response response: string, name of response column in data Returns: -------- model: an "optimal" fitted statsmodels linear model with an intercept selected by forward selection evaluated by adjusted R-squared """ remaining = set(data.columns) remaining.remove(response) selected = [] current_score, best_new_score = 0.0, 0.0 while remaining and current_score == best_new_score: scores_with_candidates = [] for candidate in remaining: formula = '{} ~ {} + 1'.format(response, ' + '.join(selected + [candidate])) score = smf.ols(formula, data).fit().rsquared_adj scores_with_candidates.append((score, candidate)) scores_with_candidates.sort() best_new_score, best_candidate = scores_with_candidates.pop() if current_score < best_new_score: remaining.remove(best_candidate) selected.append(best_candidate) current_score = best_new_score formula = '{} ~ {} + 1'.format(response, ' + '.join(selected)) model = smf.ols(formula, data).fit() print(selected) return model dfBIG = pd.read_csv('C:\\Users\\family\\Desktop\\Big12and10.csv') dfSEC = pd.read_csv('C:\\Users\\family\\Desktop\\SEC.csv') dfPAC = pd.read_csv('C:\\Users\\family\\Desktop\\AtlanticCoast.csv') df_Predict = pd.read_csv('C:\\Users\\family\\Desktop\\PredictV2.csv') SecX = dfSEC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']] BigX = dfBIG[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']] PacX = dfPAC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS']] PacY = dfPAC['AVG_YDS_SEASON'] SecY = dfSEC['AVG_YDS_SEASON'] BigY = dfBIG['AVG_YDS_SEASON'] PacZ = dfPAC['YDS_GAME'] BigZ = dfBIG['YDS_GAME'] SecZ = dfSEC['YDS_GAME'] PacJ = dfPAC['MAX_YDS_SEASON'] SecJ = dfSEC['MAX_YDS_SEASON'] BigJ = dfBIG['MAX_YDS_SEASON'] PacK = dfPAC['ROOKIE_YDS_GAME'] SecK = dfSEC['ROOKIE_YDS_GAME'] BigK = dfBIG['ROOKIE_YDS_GAME'] regPAC = sm.OLS(PacK, PacX) resultsPAC = regPAC.fit() SecX = SecX.to_numpy() SecY = SecY.to_numpy() model = backwardElimination(SecX, SecY, 0.05) print(model) <|reserved_special_token_1|> import pandas as pd import numpy as np import matplotlib.pyplot as plt import xlrd from enum import Enum from sklearn import linear_model from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import statsmodels.formula.api as smf import statsmodels.api as sm import statsmodels.formula.api as smf def forward_selected(data, response): """Linear model designed by forward selection. Parameters: ----------- data : pandas DataFrame with all possible predictors and response response: string, name of response column in data Returns: -------- model: an "optimal" fitted statsmodels linear model with an intercept selected by forward selection evaluated by adjusted R-squared """ remaining = set(data.columns) remaining.remove(response) selected = [] current_score, best_new_score = 0.0, 0.0 while remaining and current_score == best_new_score: scores_with_candidates = [] for candidate in remaining: formula = '{} ~ {} + 1'.format(response, ' + '.join(selected + [candidate])) score = smf.ols(formula, data).fit().rsquared_adj scores_with_candidates.append((score, candidate)) scores_with_candidates.sort() best_new_score, best_candidate = scores_with_candidates.pop() if current_score < best_new_score: remaining.remove(best_candidate) selected.append(best_candidate) current_score = best_new_score formula = '{} ~ {} + 1'.format(response, ' + '.join(selected)) model = smf.ols(formula, data).fit() print(selected) return model dfBIG = pd.read_csv('C:\\Users\\family\\Desktop\\Big12and10.csv') dfSEC = pd.read_csv('C:\\Users\\family\\Desktop\\SEC.csv') dfPAC = pd.read_csv('C:\\Users\\family\\Desktop\\AtlanticCoast.csv') df_Predict = pd.read_csv('C:\\Users\\family\\Desktop\\PredictV2.csv') SecX = dfSEC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']] BigX = dfBIG[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']] PacX = dfPAC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD', 'YDS_TA', 'BroadJump', 'TARGETS']] PacY = dfPAC['AVG_YDS_SEASON'] SecY = dfSEC['AVG_YDS_SEASON'] BigY = dfBIG['AVG_YDS_SEASON'] PacZ = dfPAC['YDS_GAME'] BigZ = dfBIG['YDS_GAME'] SecZ = dfSEC['YDS_GAME'] PacJ = dfPAC['MAX_YDS_SEASON'] SecJ = dfSEC['MAX_YDS_SEASON'] BigJ = dfBIG['MAX_YDS_SEASON'] PacK = dfPAC['ROOKIE_YDS_GAME'] SecK = dfSEC['ROOKIE_YDS_GAME'] BigK = dfBIG['ROOKIE_YDS_GAME'] regPAC = sm.OLS(PacK, PacX) resultsPAC = regPAC.fit() SecX = SecX.to_numpy() SecY = SecY.to_numpy() model = backwardElimination(SecX, SecY, 0.05) print(model) <|reserved_special_token_1|> import pandas as pd import numpy as np import matplotlib.pyplot as plt import xlrd from enum import Enum from sklearn import linear_model from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import statsmodels.formula.api as smf import statsmodels.api as sm import statsmodels.formula.api as smf def forward_selected(data, response): """Linear model designed by forward selection. Parameters: ----------- data : pandas DataFrame with all possible predictors and response response: string, name of response column in data Returns: -------- model: an "optimal" fitted statsmodels linear model with an intercept selected by forward selection evaluated by adjusted R-squared """ remaining = set(data.columns) remaining.remove(response) selected = [] current_score, best_new_score = 0.0, 0.0 while remaining and current_score == best_new_score: scores_with_candidates = [] for candidate in remaining: formula = "{} ~ {} + 1".format(response, ' + '.join(selected + [candidate])) score = smf.ols(formula, data).fit().rsquared_adj scores_with_candidates.append((score, candidate)) scores_with_candidates.sort() best_new_score, best_candidate = scores_with_candidates.pop() if current_score < best_new_score: remaining.remove(best_candidate) selected.append(best_candidate) current_score = best_new_score formula = "{} ~ {} + 1".format(response, ' + '.join(selected)) model = smf.ols(formula, data).fit() print(selected) return model # def backwardElimination(x, y, sl): # numVars = len(x[0]) # for i in range(0, numVars): # regressor_OLS = sm.OLS(y, x).fit() # maxVar = max(regressor_OLS.pvalues).astype(float) # if maxVar > sl: # for j in range(0, numVars - i): # if (regressor_OLS.pvalues[j].astype(float) == maxVar): # x = (x, j, 1) # regressor_OLS.summary() # return x dfBIG=pd.read_csv("C:\\Users\\family\\Desktop\\Big12and10.csv") dfSEC=pd.read_csv("C:\\Users\\family\\Desktop\\SEC.csv")#- For SEC data dfPAC=pd.read_csv("C:\\Users\\family\\Desktop\\AtlanticCoast.csv")#- For Atlantic Coast and Pac12 df_Predict=pd.read_csv("C:\\Users\\family\\Desktop\\PredictV2.csv") #plt.scatter(dfBIG['DP'],dfBIG['YDS/GAME']) SecX=dfSEC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']]# Works for SEC BigX=dfBIG[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']] #Works for AtlanticCoast/Pac12 and Big 10/12 #PacX=dfPAC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']] #Works for AtlanticCoast/Pac12 and Big 10/12 PacX=dfPAC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS']] #Works for AtlanticCoast/Pac12 and Big 10/12 #PacX=dfPAC[['DP','CATCH_%','40YD','REC','TD','YDS/TA','TARGETS']] #Works for AtlanticCoast/Pac12 and Big 10/12 #PredictSecX=df_Predict[['DP','CATCH_%','YAC','YAC/COMP','40YD','REC','TARGETS','TD','YDS/TA','Broad Jump']] PacY=dfPAC['AVG_YDS_SEASON'] SecY=dfSEC['AVG_YDS_SEASON'] BigY=dfBIG['AVG_YDS_SEASON'] PacZ=dfPAC['YDS_GAME'] BigZ=dfBIG['YDS_GAME'] SecZ=dfSEC['YDS_GAME'] PacJ=dfPAC['MAX_YDS_SEASON'] SecJ=dfSEC['MAX_YDS_SEASON'] BigJ=dfBIG['MAX_YDS_SEASON'] PacK=dfPAC['ROOKIE_YDS_GAME'] SecK=dfSEC['ROOKIE_YDS_GAME'] BigK=dfBIG['ROOKIE_YDS_GAME'] # PacK=dfPAC['ROOKIE_YDS'] # SecK=dfSEC['ROOKIE_YDS'] # BigK=dfBIG['ROOKIE_YDS'] # model=forward_selected(SecX,'ROOKIE_YDS') # print(model) # regrPac = linear_model.LinearRegression() # regrSec=linear_model.LinearRegression() # regrBig=linear_model.LinearRegression() # regPAC=regrPac.fit(PacX, PacK) # regSEC=regrSec.fit(SecX, SecK) # SecX=sm.add_constant(SecX) # regSEC=sm.OLS(SecK,SecX) # regBIG=sm.OLS(BigK,BigX) regPAC=sm.OLS(PacK,PacX) # resultsSEC=regSEC.fit() resultsPAC=regPAC.fit() SecX=SecX.to_numpy() SecY=SecY.to_numpy() model=backwardElimination(SecX,SecY,0.05) print(model) # resultsBIG=regBIG.fit() #model=forward_selected(PacX,'ROOKIE_YDS_GAME') # for i in df_Predict.index: # print(df_Predict['Conference'][i]) # if df_Predict['Conference'][i]=='Southeastern': # print(df_Predict['Player'][i]) # pred=regrSec.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]]) # if pred<0: # pred=0 # print('Predicted AVG_YDS/SEASON: \n', pred) # if df_Predict['Conference'][i]=='Big': # print(df_Predict['Player'][i]) # print('Predicted AVG_YDS/SEASON: \n', regrBig.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]])) # if df_Predict['Conference'][i]=='Pac-12': # print(df_Predict['Player'][i]) # pred=regrPac.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]]) # if pred<0: # pred=0 # print('Predicted AVG_YDS/SEASON: \n', pred) # print (resultsSEC.rsquared_adj) # print(resultsSEC.summary()) #print (resultsPAC.rsquared_adj) # print (resultsBIG.rsquared_adj) # print(model.summary()) #print(model.rsquared_adj) # print('AVG_YDS/GAME\n') #print('Intercept: \n', regrSec.intercept_) #print('Coefficients: \n', regrSec.coef_) #print("R^2: \n",regSEC.score(pcaSecX,SecK)) #print("R^2: \n",regSEC.score(SecX,SecK)) # regPAC=regrPac.fit(PacX, PacZ) # regBIG=regrBig.fit(BigX,BigZ) # regSEC=regrSec.fit(SecX,SecY) # print('YDS/GAME\n') # print('Intercept: \n', regrPac.intercept_) # print('Coefficients: \n', regrPac.coef_) # print("R^2: \n",regPAC.score(PacX,PacZ) ) # regPAC=regrPac.fit(PacX,PacJ)
flexible
{ "blob_id": "a903f9c5cae1c2eb2f40dc8ba29f0625a3d34224", "index": 9690, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef forward_selected(data, response):\n \"\"\"Linear model designed by forward selection.\n\n Parameters:\n -----------\n data : pandas DataFrame with all possible predictors and response\n\n response: string, name of response column in data\n\n Returns:\n --------\n model: an \"optimal\" fitted statsmodels linear model\n with an intercept\n selected by forward selection\n evaluated by adjusted R-squared\n \"\"\"\n remaining = set(data.columns)\n remaining.remove(response)\n selected = []\n current_score, best_new_score = 0.0, 0.0\n while remaining and current_score == best_new_score:\n scores_with_candidates = []\n for candidate in remaining:\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected +\n [candidate]))\n score = smf.ols(formula, data).fit().rsquared_adj\n scores_with_candidates.append((score, candidate))\n scores_with_candidates.sort()\n best_new_score, best_candidate = scores_with_candidates.pop()\n if current_score < best_new_score:\n remaining.remove(best_candidate)\n selected.append(best_candidate)\n current_score = best_new_score\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected))\n model = smf.ols(formula, data).fit()\n print(selected)\n return model\n\n\n<mask token>\nprint(model)\n", "step-3": "<mask token>\n\n\ndef forward_selected(data, response):\n \"\"\"Linear model designed by forward selection.\n\n Parameters:\n -----------\n data : pandas DataFrame with all possible predictors and response\n\n response: string, name of response column in data\n\n Returns:\n --------\n model: an \"optimal\" fitted statsmodels linear model\n with an intercept\n selected by forward selection\n evaluated by adjusted R-squared\n \"\"\"\n remaining = set(data.columns)\n remaining.remove(response)\n selected = []\n current_score, best_new_score = 0.0, 0.0\n while remaining and current_score == best_new_score:\n scores_with_candidates = []\n for candidate in remaining:\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected +\n [candidate]))\n score = smf.ols(formula, data).fit().rsquared_adj\n scores_with_candidates.append((score, candidate))\n scores_with_candidates.sort()\n best_new_score, best_candidate = scores_with_candidates.pop()\n if current_score < best_new_score:\n remaining.remove(best_candidate)\n selected.append(best_candidate)\n current_score = best_new_score\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected))\n model = smf.ols(formula, data).fit()\n print(selected)\n return model\n\n\ndfBIG = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\Big12and10.csv')\ndfSEC = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\SEC.csv')\ndfPAC = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\AtlanticCoast.csv')\ndf_Predict = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\PredictV2.csv')\nSecX = dfSEC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']]\nBigX = dfBIG[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']]\nPacX = dfPAC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS']]\nPacY = dfPAC['AVG_YDS_SEASON']\nSecY = dfSEC['AVG_YDS_SEASON']\nBigY = dfBIG['AVG_YDS_SEASON']\nPacZ = dfPAC['YDS_GAME']\nBigZ = dfBIG['YDS_GAME']\nSecZ = dfSEC['YDS_GAME']\nPacJ = dfPAC['MAX_YDS_SEASON']\nSecJ = dfSEC['MAX_YDS_SEASON']\nBigJ = dfBIG['MAX_YDS_SEASON']\nPacK = dfPAC['ROOKIE_YDS_GAME']\nSecK = dfSEC['ROOKIE_YDS_GAME']\nBigK = dfBIG['ROOKIE_YDS_GAME']\nregPAC = sm.OLS(PacK, PacX)\nresultsPAC = regPAC.fit()\nSecX = SecX.to_numpy()\nSecY = SecY.to_numpy()\nmodel = backwardElimination(SecX, SecY, 0.05)\nprint(model)\n", "step-4": "import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport xlrd\nfrom enum import Enum\nfrom sklearn import linear_model\nfrom sklearn.decomposition import PCA\nfrom sklearn.preprocessing import StandardScaler\nimport statsmodels.formula.api as smf\nimport statsmodels.api as sm\nimport statsmodels.formula.api as smf\n\n\ndef forward_selected(data, response):\n \"\"\"Linear model designed by forward selection.\n\n Parameters:\n -----------\n data : pandas DataFrame with all possible predictors and response\n\n response: string, name of response column in data\n\n Returns:\n --------\n model: an \"optimal\" fitted statsmodels linear model\n with an intercept\n selected by forward selection\n evaluated by adjusted R-squared\n \"\"\"\n remaining = set(data.columns)\n remaining.remove(response)\n selected = []\n current_score, best_new_score = 0.0, 0.0\n while remaining and current_score == best_new_score:\n scores_with_candidates = []\n for candidate in remaining:\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected +\n [candidate]))\n score = smf.ols(formula, data).fit().rsquared_adj\n scores_with_candidates.append((score, candidate))\n scores_with_candidates.sort()\n best_new_score, best_candidate = scores_with_candidates.pop()\n if current_score < best_new_score:\n remaining.remove(best_candidate)\n selected.append(best_candidate)\n current_score = best_new_score\n formula = '{} ~ {} + 1'.format(response, ' + '.join(selected))\n model = smf.ols(formula, data).fit()\n print(selected)\n return model\n\n\ndfBIG = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\Big12and10.csv')\ndfSEC = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\SEC.csv')\ndfPAC = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\AtlanticCoast.csv')\ndf_Predict = pd.read_csv('C:\\\\Users\\\\family\\\\Desktop\\\\PredictV2.csv')\nSecX = dfSEC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']]\nBigX = dfBIG[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS', 'ROOKIE_YDS_GAME']]\nPacX = dfPAC[['DP', 'CATCH_P', 'YAC', 'YAC_COMP', 'FORTYYD', 'REC', 'TD',\n 'YDS_TA', 'BroadJump', 'TARGETS']]\nPacY = dfPAC['AVG_YDS_SEASON']\nSecY = dfSEC['AVG_YDS_SEASON']\nBigY = dfBIG['AVG_YDS_SEASON']\nPacZ = dfPAC['YDS_GAME']\nBigZ = dfBIG['YDS_GAME']\nSecZ = dfSEC['YDS_GAME']\nPacJ = dfPAC['MAX_YDS_SEASON']\nSecJ = dfSEC['MAX_YDS_SEASON']\nBigJ = dfBIG['MAX_YDS_SEASON']\nPacK = dfPAC['ROOKIE_YDS_GAME']\nSecK = dfSEC['ROOKIE_YDS_GAME']\nBigK = dfBIG['ROOKIE_YDS_GAME']\nregPAC = sm.OLS(PacK, PacX)\nresultsPAC = regPAC.fit()\nSecX = SecX.to_numpy()\nSecY = SecY.to_numpy()\nmodel = backwardElimination(SecX, SecY, 0.05)\nprint(model)\n", "step-5": "import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport xlrd\nfrom enum import Enum\nfrom sklearn import linear_model\nfrom sklearn.decomposition import PCA\nfrom sklearn.preprocessing import StandardScaler\nimport statsmodels.formula.api as smf\nimport statsmodels.api as sm\nimport statsmodels.formula.api as smf\n\ndef forward_selected(data, response):\n \"\"\"Linear model designed by forward selection.\n\n Parameters:\n -----------\n data : pandas DataFrame with all possible predictors and response\n\n response: string, name of response column in data\n\n Returns:\n --------\n model: an \"optimal\" fitted statsmodels linear model\n with an intercept\n selected by forward selection\n evaluated by adjusted R-squared\n \"\"\"\n remaining = set(data.columns)\n remaining.remove(response)\n selected = []\n current_score, best_new_score = 0.0, 0.0\n while remaining and current_score == best_new_score:\n scores_with_candidates = []\n for candidate in remaining:\n formula = \"{} ~ {} + 1\".format(response,\n ' + '.join(selected + [candidate]))\n score = smf.ols(formula, data).fit().rsquared_adj\n scores_with_candidates.append((score, candidate))\n scores_with_candidates.sort()\n best_new_score, best_candidate = scores_with_candidates.pop()\n if current_score < best_new_score:\n remaining.remove(best_candidate)\n selected.append(best_candidate)\n current_score = best_new_score\n formula = \"{} ~ {} + 1\".format(response,\n ' + '.join(selected))\n model = smf.ols(formula, data).fit()\n\n print(selected)\n return model\n# def backwardElimination(x, y, sl):\n# numVars = len(x[0])\n# for i in range(0, numVars):\n# regressor_OLS = sm.OLS(y, x).fit()\n# maxVar = max(regressor_OLS.pvalues).astype(float)\n# if maxVar > sl:\n# for j in range(0, numVars - i):\n# if (regressor_OLS.pvalues[j].astype(float) == maxVar):\n# x = (x, j, 1)\n# regressor_OLS.summary()\n# return x\n \n\n\n\n\ndfBIG=pd.read_csv(\"C:\\\\Users\\\\family\\\\Desktop\\\\Big12and10.csv\")\ndfSEC=pd.read_csv(\"C:\\\\Users\\\\family\\\\Desktop\\\\SEC.csv\")#- For SEC data\ndfPAC=pd.read_csv(\"C:\\\\Users\\\\family\\\\Desktop\\\\AtlanticCoast.csv\")#- For Atlantic Coast and Pac12\n\ndf_Predict=pd.read_csv(\"C:\\\\Users\\\\family\\\\Desktop\\\\PredictV2.csv\")\n#plt.scatter(dfBIG['DP'],dfBIG['YDS/GAME'])\n \nSecX=dfSEC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']]# Works for SEC \nBigX=dfBIG[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']] #Works for AtlanticCoast/Pac12 and Big 10/12\n#PacX=dfPAC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS','ROOKIE_YDS_GAME']] #Works for AtlanticCoast/Pac12 and Big 10/12\nPacX=dfPAC[['DP','CATCH_P','YAC','YAC_COMP','FORTYYD','REC','TD','YDS_TA','BroadJump','TARGETS']] #Works for AtlanticCoast/Pac12 and Big 10/12\n\n#PacX=dfPAC[['DP','CATCH_%','40YD','REC','TD','YDS/TA','TARGETS']] #Works for AtlanticCoast/Pac12 and Big 10/12\n\n#PredictSecX=df_Predict[['DP','CATCH_%','YAC','YAC/COMP','40YD','REC','TARGETS','TD','YDS/TA','Broad Jump']]\nPacY=dfPAC['AVG_YDS_SEASON']\nSecY=dfSEC['AVG_YDS_SEASON']\nBigY=dfBIG['AVG_YDS_SEASON']\nPacZ=dfPAC['YDS_GAME']\nBigZ=dfBIG['YDS_GAME']\nSecZ=dfSEC['YDS_GAME']\nPacJ=dfPAC['MAX_YDS_SEASON']\nSecJ=dfSEC['MAX_YDS_SEASON']\nBigJ=dfBIG['MAX_YDS_SEASON']\nPacK=dfPAC['ROOKIE_YDS_GAME']\nSecK=dfSEC['ROOKIE_YDS_GAME']\nBigK=dfBIG['ROOKIE_YDS_GAME']\n# PacK=dfPAC['ROOKIE_YDS']\n# SecK=dfSEC['ROOKIE_YDS']\n# BigK=dfBIG['ROOKIE_YDS']\n# model=forward_selected(SecX,'ROOKIE_YDS')\n# print(model)\n# regrPac = linear_model.LinearRegression()\n# regrSec=linear_model.LinearRegression()\n# regrBig=linear_model.LinearRegression()\n# regPAC=regrPac.fit(PacX, PacK)\n# regSEC=regrSec.fit(SecX, SecK)\n# SecX=sm.add_constant(SecX)\n# regSEC=sm.OLS(SecK,SecX)\n# regBIG=sm.OLS(BigK,BigX)\nregPAC=sm.OLS(PacK,PacX)\n# resultsSEC=regSEC.fit()\nresultsPAC=regPAC.fit()\nSecX=SecX.to_numpy()\nSecY=SecY.to_numpy()\nmodel=backwardElimination(SecX,SecY,0.05)\nprint(model)\n# resultsBIG=regBIG.fit()\n#model=forward_selected(PacX,'ROOKIE_YDS_GAME')\n\n# for i in df_Predict.index:\n# print(df_Predict['Conference'][i])\n# if df_Predict['Conference'][i]=='Southeastern':\n# print(df_Predict['Player'][i])\n# pred=regrSec.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]])\n# if pred<0:\n# pred=0\n# print('Predicted AVG_YDS/SEASON: \\n', pred)\n# if df_Predict['Conference'][i]=='Big':\n# print(df_Predict['Player'][i])\n# print('Predicted AVG_YDS/SEASON: \\n', regrBig.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]]))\n# if df_Predict['Conference'][i]=='Pac-12':\n# print(df_Predict['Player'][i])\n# pred=regrPac.predict([[df_Predict['DP'][i],df_Predict['CATCH_P'][i],df_Predict['YAC'][i],df_Predict['YAC_COMP'][i],df_Predict['40YD'][i],df_Predict['REC'][i],df_Predict['TD'][i],df_Predict['YDS/TA'][i],df_Predict['Broad Jump'][i]]])\n# if pred<0:\n# pred=0\n# print('Predicted AVG_YDS/SEASON: \\n', pred)\n\n# print (resultsSEC.rsquared_adj)\n# print(resultsSEC.summary())\n#print (resultsPAC.rsquared_adj)\n# print (resultsBIG.rsquared_adj)\n# print(model.summary())\n#print(model.rsquared_adj)\n# print('AVG_YDS/GAME\\n')\n#print('Intercept: \\n', regrSec.intercept_)\n#print('Coefficients: \\n', regrSec.coef_)\n#print(\"R^2: \\n\",regSEC.score(pcaSecX,SecK))\n#print(\"R^2: \\n\",regSEC.score(SecX,SecK))\n# regPAC=regrPac.fit(PacX, PacZ)\n# regBIG=regrBig.fit(BigX,BigZ)\n# regSEC=regrSec.fit(SecX,SecY)\n# print('YDS/GAME\\n')\n# print('Intercept: \\n', regrPac.intercept_)\n# print('Coefficients: \\n', regrPac.coef_)\n# print(\"R^2: \\n\",regPAC.score(PacX,PacZ) )\n# regPAC=regrPac.fit(PacX,PacJ)\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def single_gpu_inference(sample, gpu): raw_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5' % sample) model_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights' ) out_file = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5' % sample) assert os.path.exists(out_file) offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu) with open(offset_file, 'r') as f: offset_list = json.load(f) input_shape = 40, 405, 405 output_shape = 32, 320, 320 prediction = InfernoPredict(model_path, crop=output_shape, gpu=0) postprocess = None t_predict = time.time() run_inference_n5(prediction, preprocess, postprocess, raw_path, out_file, offset_list, input_key='data', target_keys='full_affs', input_shape=input_shape, output_shape=output_shape, channel_order=[ list(range(19))]) t_predict = time.time() - t_predict with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f: f.write('Inference with gpu %i in %f s' % (gpu, t_predict)) return True <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def single_gpu_inference(sample, gpu): raw_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5' % sample) model_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights' ) out_file = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5' % sample) assert os.path.exists(out_file) offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu) with open(offset_file, 'r') as f: offset_list = json.load(f) input_shape = 40, 405, 405 output_shape = 32, 320, 320 prediction = InfernoPredict(model_path, crop=output_shape, gpu=0) postprocess = None t_predict = time.time() run_inference_n5(prediction, preprocess, postprocess, raw_path, out_file, offset_list, input_key='data', target_keys='full_affs', input_shape=input_shape, output_shape=output_shape, channel_order=[ list(range(19))]) t_predict = time.time() - t_predict with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f: f.write('Inference with gpu %i in %f s' % (gpu, t_predict)) return True if __name__ == '__main__': sample = sys.argv[1] gpu = int(sys.argv[2]) single_gpu_inference(sample, gpu) <|reserved_special_token_1|> import vigra import os import sys import time import json from simpleference.inference.inference import run_inference_n5 from simpleference.backends.pytorch import InfernoPredict from simpleference.backends.pytorch.preprocess import preprocess def single_gpu_inference(sample, gpu): raw_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5' % sample) model_path = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights' ) out_file = ( '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5' % sample) assert os.path.exists(out_file) offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu) with open(offset_file, 'r') as f: offset_list = json.load(f) input_shape = 40, 405, 405 output_shape = 32, 320, 320 prediction = InfernoPredict(model_path, crop=output_shape, gpu=0) postprocess = None t_predict = time.time() run_inference_n5(prediction, preprocess, postprocess, raw_path, out_file, offset_list, input_key='data', target_keys='full_affs', input_shape=input_shape, output_shape=output_shape, channel_order=[ list(range(19))]) t_predict = time.time() - t_predict with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f: f.write('Inference with gpu %i in %f s' % (gpu, t_predict)) return True if __name__ == '__main__': sample = sys.argv[1] gpu = int(sys.argv[2]) single_gpu_inference(sample, gpu) <|reserved_special_token_1|> import vigra import os import sys import time import json from simpleference.inference.inference import run_inference_n5 # from simpleference.backends.pytorch import PyTorchPredict from simpleference.backends.pytorch import InfernoPredict from simpleference.backends.pytorch.preprocess import preprocess def single_gpu_inference(sample, gpu): raw_path = '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5' % sample model_path = '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights' out_file = '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5' % sample assert os.path.exists(out_file) offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu) with open(offset_file, 'r') as f: offset_list = json.load(f) input_shape = (40, 405, 405) output_shape = (32, 320, 320) prediction = InfernoPredict(model_path, crop=output_shape, gpu=0) postprocess = None t_predict = time.time() run_inference_n5(prediction, preprocess, postprocess, raw_path, out_file, offset_list, input_key='data', target_keys='full_affs', input_shape=input_shape, output_shape=output_shape, channel_order=[list(range(19))]) t_predict = time.time() - t_predict with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f: f.write("Inference with gpu %i in %f s" % (gpu, t_predict)) return True if __name__ == '__main__': sample = sys.argv[1] gpu = int(sys.argv[2]) single_gpu_inference(sample, gpu)
flexible
{ "blob_id": "5ca990bdcbe9378747e438015beb46760b1e987b", "index": 7212, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef single_gpu_inference(sample, gpu):\n raw_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5'\n % sample)\n model_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights'\n )\n out_file = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5'\n % sample)\n assert os.path.exists(out_file)\n offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu)\n with open(offset_file, 'r') as f:\n offset_list = json.load(f)\n input_shape = 40, 405, 405\n output_shape = 32, 320, 320\n prediction = InfernoPredict(model_path, crop=output_shape, gpu=0)\n postprocess = None\n t_predict = time.time()\n run_inference_n5(prediction, preprocess, postprocess, raw_path,\n out_file, offset_list, input_key='data', target_keys='full_affs',\n input_shape=input_shape, output_shape=output_shape, channel_order=[\n list(range(19))])\n t_predict = time.time() - t_predict\n with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f:\n f.write('Inference with gpu %i in %f s' % (gpu, t_predict))\n return True\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef single_gpu_inference(sample, gpu):\n raw_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5'\n % sample)\n model_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights'\n )\n out_file = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5'\n % sample)\n assert os.path.exists(out_file)\n offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu)\n with open(offset_file, 'r') as f:\n offset_list = json.load(f)\n input_shape = 40, 405, 405\n output_shape = 32, 320, 320\n prediction = InfernoPredict(model_path, crop=output_shape, gpu=0)\n postprocess = None\n t_predict = time.time()\n run_inference_n5(prediction, preprocess, postprocess, raw_path,\n out_file, offset_list, input_key='data', target_keys='full_affs',\n input_shape=input_shape, output_shape=output_shape, channel_order=[\n list(range(19))])\n t_predict = time.time() - t_predict\n with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f:\n f.write('Inference with gpu %i in %f s' % (gpu, t_predict))\n return True\n\n\nif __name__ == '__main__':\n sample = sys.argv[1]\n gpu = int(sys.argv[2])\n single_gpu_inference(sample, gpu)\n", "step-4": "import vigra\nimport os\nimport sys\nimport time\nimport json\nfrom simpleference.inference.inference import run_inference_n5\nfrom simpleference.backends.pytorch import InfernoPredict\nfrom simpleference.backends.pytorch.preprocess import preprocess\n\n\ndef single_gpu_inference(sample, gpu):\n raw_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5'\n % sample)\n model_path = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights'\n )\n out_file = (\n '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5'\n % sample)\n assert os.path.exists(out_file)\n offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu)\n with open(offset_file, 'r') as f:\n offset_list = json.load(f)\n input_shape = 40, 405, 405\n output_shape = 32, 320, 320\n prediction = InfernoPredict(model_path, crop=output_shape, gpu=0)\n postprocess = None\n t_predict = time.time()\n run_inference_n5(prediction, preprocess, postprocess, raw_path,\n out_file, offset_list, input_key='data', target_keys='full_affs',\n input_shape=input_shape, output_shape=output_shape, channel_order=[\n list(range(19))])\n t_predict = time.time() - t_predict\n with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f:\n f.write('Inference with gpu %i in %f s' % (gpu, t_predict))\n return True\n\n\nif __name__ == '__main__':\n sample = sys.argv[1]\n gpu = int(sys.argv[2])\n single_gpu_inference(sample, gpu)\n", "step-5": "import vigra\n\nimport os\nimport sys\nimport time\nimport json\n\nfrom simpleference.inference.inference import run_inference_n5\n# from simpleference.backends.pytorch import PyTorchPredict\nfrom simpleference.backends.pytorch import InfernoPredict\nfrom simpleference.backends.pytorch.preprocess import preprocess\n\n\ndef single_gpu_inference(sample, gpu):\n raw_path = '/groups/saalfeld/home/papec/Work/neurodata_hdd/cremi_warped/sample%s_inference.n5' % sample\n model_path = '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Weights'\n out_file = '/groups/saalfeld/home/papec/Work/neurodata_hdd/networks/neurofire/mws/unet-1/Predictions/prediction_sample%s.n5' % sample\n assert os.path.exists(out_file)\n\n offset_file = './offsets_sample%s/list_gpu_%i.json' % (sample, gpu)\n with open(offset_file, 'r') as f:\n offset_list = json.load(f)\n\n input_shape = (40, 405, 405)\n output_shape = (32, 320, 320)\n prediction = InfernoPredict(model_path, crop=output_shape, gpu=0)\n postprocess = None\n\n t_predict = time.time()\n run_inference_n5(prediction,\n preprocess,\n postprocess,\n raw_path,\n out_file,\n offset_list,\n input_key='data',\n target_keys='full_affs',\n input_shape=input_shape,\n output_shape=output_shape,\n channel_order=[list(range(19))])\n t_predict = time.time() - t_predict\n\n with open(os.path.join(out_file, 't-inf_gpu%i.txt' % gpu), 'w') as f:\n f.write(\"Inference with gpu %i in %f s\" % (gpu, t_predict))\n return True\n\n\nif __name__ == '__main__':\n sample = sys.argv[1]\n gpu = int(sys.argv[2])\n single_gpu_inference(sample, gpu)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import unittest import achemkit.properties_wnx class TestDummy(unittest.TestCase): pass
normal
{ "blob_id": "5f0e6f6dc645996b486f1292fe05229a7fae9b17", "index": 2342, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass TestDummy(unittest.TestCase):\n pass\n", "step-3": "import unittest\nimport achemkit.properties_wnx\n\n\nclass TestDummy(unittest.TestCase):\n pass\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox <|reserved_special_token_0|> def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox <|reserved_special_token_1|> <|reserved_special_token_0|> def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox <|reserved_special_token_0|> def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox <|reserved_special_token_1|> <|reserved_special_token_0|> def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox <|reserved_special_token_1|> from ipywidgets import Text, VBox, HBox, Label, Password, RadioButtons, Button, Layout, Box, Tab, Output, Dropdown, FloatText, BoundedIntText, Combobox from cbm.utils import config, data_options from cbm.ipycbm.utils import settings from cbm.sources import database def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons(options=[('JRC RESTful API.', 0), ( 'Direct access to database and object storage.', 1)], value=source, layout={'width': 'max-content'}) sources_box = Box([Label(value='Data sources:'), sources]) info_api = Label('RESTful API Settings.') info_direct = Label('Direct access settings') view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border= '1px solid black')) info_general = Label(value='General settings:') wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text(value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False) wt_user = Text(value=values['api']['user'], placeholder='Username', description='API User:', disabled=False) wt_pass = Password(value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog('API information is updated') wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px')) dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][ 'years']], value=int(ds_dye), description='Dataset year:', disabled =False, layout=Layout(width='180px')) btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip= 'Configure this dataset') bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip= 'Add new dataset configuration') bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip= 'Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown(options=['1'], value='1', description='Database:', disabled=False, layout=Layout(width='140px')) try: with open(f"{config.get_value(['paths', 'temp'])}tb_prefix", 'r' ) as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox(value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()] + [''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width= '200px'), tooltip= 'Lowercase AOI code name for the dataset (5chr max).') ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout= Layout(width='180px')) ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False) info_map_text = ['Set default map view options. ', 'You can get automatically the dataset ', 'center coordinates.'] lat, lon = values['ds_conf'][dsc_value]['center'].split(',') map_cent_lat = FloatText(value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px')) map_cent_lon = FloatText(value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px')) map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom' ], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px')) bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.') ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""" ) db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['dias_catalog'], get_tb_list(), False), description= 'DIAS catalog:', disabled=False) tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['parcels'], get_tb_list(), False), description= 'Parcels:', disabled=False) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['parcels_id'], get_pr_columns(), False), description ='Parcels ID:', disabled=False, layout=Layout(width='180px')) tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_names'], get_pr_columns(), False), description ='Crop names:', disabled=False, layout=Layout(width='180px')) tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'columns']['crop_codes'], get_pr_columns(), False), description ='Crop codes:', disabled=False, layout=Layout(width='180px')) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['s2'], get_tb_list(), False), description= 'S2 signatures:', disabled=False) tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['bs'], get_tb_list(), False), description= 'Backscattering:', disabled=False) tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][str(ds_year.value)][ 'tables']['c6'], get_tb_list(), False), description= '6 day coherence:', disabled=False) wb_save = Button(description='Save', disabled=False, icon='save') @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads(database.getTableCentroid(tb_pr.value) ['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f'{map_cent_lat.value},{map_cent_lon.value}') config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog('The configurations are saved.') return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog('Can not remove last configuration.') @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value) ]['years']] else: outlog('Can not remove last configuration.') wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box, progress]) return wbox <|reserved_special_token_1|> #!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : Konstantinos Anastasakis # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD from ipywidgets import (Text, VBox, HBox, Label, Password, RadioButtons, Button, Layout, Box, Tab, Output, Dropdown, FloatText, BoundedIntText, Combobox) from cbm.utils import config, data_options from cbm.ipycbm.utils import settings from cbm.sources import database def widget_box(): source = int(config.get_value(['set', 'data_source'])) sources = RadioButtons( options=[ ("JRC RESTful API.", 0), ("Direct access to database and object storage.", 1) ], value=source, layout={'width': 'max-content'} ) sources_box = Box([ Label(value="Data sources:"), sources] ) info_api = Label("RESTful API Settings.") info_direct = Label("Direct access settings") view_options = VBox([info_direct]) if source == 0: view_options.children = [info_api, rest_api()] elif source == 1: view_options.children = [info_direct, direct()] def on_source_change(change): view_options.children = [] if sources.value == 0: view_options.children = [info_api, rest_api()] elif sources.value == 1: view_options.children = [info_direct, direct()] config.update(['set', 'data_source'], str(sources.value)) sources.observe(on_source_change, 'value') wbox_sources = VBox([sources_box, view_options], layout=Layout(border='1px solid black')) info_general = Label(value="General settings:") wbox = VBox([wbox_sources, info_general, settings.widget_box()]) return wbox def rest_api(mode=None): """""" values = config.read() wt_url = Text( value=values['api']['url'], placeholder='Add URL', description='API URL:', disabled=False ) wt_user = Text( value=values['api']['user'], placeholder='Username', description='API User:', disabled=False ) wt_pass = Password( value=values['api']['pass'], placeholder='******', description='API Password:', disabled=False ) wb_save = Button( description='Save', disabled=False, icon='save' ) progress = Output() def outlog(*text): with progress: print(*text) @wb_save.on_click def wb_save_on_click(b): config.update(['api', 'url'], str(wt_url.value)) config.update(['api', 'user'], str(wt_user.value)) if wt_pass.value != '': config.update(['api', 'pass'], str(wt_pass.value)) outlog("API information is updated") wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress]) return wbox def direct(): # try: tab_box = Tab(children=[settings.direct_conn(), direct_settings()]) tab_box.set_title(0, 'Connection') tab_box.set_title(1, 'db Configuration') # except: # tab_box = Tab(children=[direct_conn()]) # tab_box.set_title(0, 'Connection') # print("!WARNING! Can not load direct configuration settings.") return tab_box def direct_settings(): values = config.read() ds_def = values['set']['ds_conf'] ds_dye = values['set']['ds_year'] if ds_def not in [d for d in values['ds_conf']]: ds_def = [d for d in values['ds_conf']][0] dsc = Dropdown( options=[d for d in values['ds_conf']], value=ds_def, description='Default:', disabled=False, layout=Layout(width='200px') ) dsy = Dropdown( options=[int(y) for y in values['ds_conf'][dsc.value]['years']], value=int(ds_dye), description='Dataset year:', disabled=False, layout=Layout(width='180px') ) btn_refresh = Button( layout=Layout(width='35px'), icon='fa-refresh') @btn_refresh.on_click def btn_refresh_on_click(b): values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) def on_dsc_change(change): config.update(['set', 'ds_conf'], dsc.value) values = config.read() ds_c = values['set']['ds_conf'] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.observe(on_dsc_change, 'value') def on_dsy_change(change): config.update(['set', 'ds_year'], str(dsy.value)) dsy.observe(on_dsy_change, 'value') bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip="Configure this dataset") bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip="Add new dataset configuration") bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip='Delete dataset configuration') bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip='Delete only the selected year.') dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new]) progress = Output() def outlog(*text): with progress: print(*text) def dsc_config(dsc_value): values = config.read() ds_db = Dropdown( options=["1"], value="1", description='Database:', disabled=False, layout=Layout(width='140px') ) try: with open(f"{config.get_value(['paths','temp'])}tb_prefix", 'r') as f: code_value = f.read() except Exception: code_value = dsc_value ds_code = Combobox( value=code_value, placeholder='abc', options=[m for m in data_options.eu_ms()]+[''], description='AOI code:', ensure_option=False, disabled=False, layout=Layout(width='200px'), tooltip='Lowercase AOI code name for the dataset (5chr max).' ) ds_year = BoundedIntText( value=int(dsy.value), min=1980, max=2100, step=1, description='Dataset year:', disabled=False, layout=Layout(width='180px') ) ds_desc = Text( value=values['ds_conf'][dsc_value]['desc'], description='Description:', disabled=False ) info_map_text = ["Set default map view options. ", "You can get automatically the dataset ", "center coordinates."] lat, lon = values['ds_conf'][dsc_value]['center'].split(",") map_cent_lat = FloatText( value=float(lat), description='Lat:', disabled=False, layout=Layout(width='160px') ) map_cent_lon = FloatText( value=float(lon), description='Lon:', disabled=False, layout=Layout(width='160px') ) map_zoom = BoundedIntText( value=values['ds_conf'][dsc_value]['zoom'], min=0, max=20, step=1, description='Zoom:', disabled=False, layout=Layout(width='140px') ) bt_get_center = Button( layout=Layout(width='40px'), icon='bullseye', tooltip='Get center point from database.' ) ds_box = HBox([ds_code, ds_year, ds_desc]) map_box = HBox([Label("Map center: "), map_cent_lat, map_cent_lon, bt_get_center, map_zoom]) info_config = Label( """Change 'AOI code' value to create a new configuration set or leave the same 'AOI code' value to configure the selected one.""") db = int(values['ds_conf'][dsc_value]['db']) def get_tb_list(): tbls = database.tables(db, None, False) if tbls is None: return [] else: return tbls tb_dc = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['dias_catalog'], get_tb_list(), False), description='DIAS catalog:', disabled=False ) tb_pr = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['parcels'], get_tb_list(), False), description='Parcels:', disabled=False ) def get_pr_columns(): try: colms = database.table_columns(tb_pr.value, 1, None) if colms is None: return [] else: return colms except Exception: return [] tc_id = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['parcels_id'], get_pr_columns(), False), description='Parcels ID:', disabled=False, layout=Layout(width='180px') ) tc_cn = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['crop_names'], get_pr_columns(), False), description='Crop names:', disabled=False, layout=Layout(width='180px') ) tc_cc = Dropdown( options=get_pr_columns(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['columns']['crop_codes'], get_pr_columns(), False), description='Crop codes:', disabled=False, layout=Layout(width='180px') ) def on_tb_pr_change(change): tc_id.options = get_pr_columns() tc_cn.options = get_pr_columns() tc_cc.options = get_pr_columns() tb_pr.observe(on_tb_pr_change, 'value') parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc]) tb_s2 = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['s2'], get_tb_list(), False), description='S2 signatures:', disabled=False ) tb_bs = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['bs'], get_tb_list(), False), description='Backscattering:', disabled=False ) tb_6c = Dropdown( options=get_tb_list(), value=config.autoselect( values['ds_conf'][dsc_value]['years'][ str(ds_year.value)]['tables']['c6'], get_tb_list(), False), description='6 day coherence:', disabled=False ) wb_save = Button( description='Save', disabled=False, icon='save' ) @bt_get_center.on_click def bt_get_center_on_click(b): import json center_json = json.loads( database.getTableCentroid(tb_pr.value)['center'][0]) map_cent_lat.value = round(center_json['coordinates'][1], 2) map_cent_lon.value = round(center_json['coordinates'][0], 2) map_zoom.value = 10 @wb_save.on_click def wb_save_on_click(b): progress.clear_output() dscode = ds_code.value config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'dias_catalog'], str(tb_dc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'parcels'], str(tb_pr.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'parcels_id'], str(tc_id.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_names'], str(tc_cn.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'columns', 'crop_codes'], str(tc_cc.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 's2'], str(tb_s2.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'bs'], str(tb_bs.value)) config.update(['ds_conf', dscode, 'years', str(ds_year.value), 'tables', 'c6'], str(tb_6c.value)) config.update(['ds_conf', dscode, 'db'], str(ds_db.value)) config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value)) config.update(['ds_conf', dscode, 'center'], f"{map_cent_lat.value},{map_cent_lon.value}") config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value)) config.update(['set', 'ds_conf'], str(dscode)) config.update(['set', 'ds_year'], str(ds_year.value)) values = config.read() ds_c = values['set']['ds_conf'] ds_y = values['set']['ds_year'] dsc.options = [d for d in values['ds_conf']] dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']] dsc.value = ds_c dsy.value = int(ds_y) outlog("The configurations are saved.") return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs, tb_6c, Label(''.join(info_map_text)), map_box, wb_save]) dsc_new_box = HBox([]) @bt_set.on_click def bt_set_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_new.on_click def bt_new_on_click(b): if dsc_new_box.children == (): dsc_new_box.children = [dsc_config(dsc.value)] bt_set.icon = 'chevron-up' else: dsc_new_box.children = () bt_set.icon = 'cogs' @bt_rec.on_click def bt_rec_on_click(b): progress.clear_output() if len(dsc.options) > 1: config.delete(['ds_conf', dsc.value]) outlog(f"Dataset configuration '{dsc.value}' is deleted.") values = config.read() dsc.options = [d for d in values['ds_conf']] else: outlog("Can not remove last configuration.") @bt_rey.on_click def bt_rey_on_click(b): progress.clear_output() if len(dsy.options) > 1: config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)]) outlog(f"Year {dsy.value} of dataset '{dsc.value}' is deleted.") values = config.read() dsy.options = [int(y) for y in values['ds_conf'] [str(dsc.value)]['years']] else: outlog("Can not remove last configuration.") wbox = VBox([Label("Datasets configurations."), dsc_box, dsc_new_box, progress]) return wbox
flexible
{ "blob_id": "22afc6b9df87ef1eba284da20a807366278c24d4", "index": 1343, "step-1": "<mask token>\n\n\ndef rest_api(mode=None):\n \"\"\"\"\"\"\n values = config.read()\n wt_url = Text(value=values['api']['url'], placeholder='Add URL',\n description='API URL:', disabled=False)\n wt_user = Text(value=values['api']['user'], placeholder='Username',\n description='API User:', disabled=False)\n wt_pass = Password(value=values['api']['pass'], placeholder='******',\n description='API Password:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n @wb_save.on_click\n def wb_save_on_click(b):\n config.update(['api', 'url'], str(wt_url.value))\n config.update(['api', 'user'], str(wt_user.value))\n if wt_pass.value != '':\n config.update(['api', 'pass'], str(wt_pass.value))\n outlog('API information is updated')\n wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress])\n return wbox\n\n\n<mask token>\n\n\ndef direct_settings():\n values = config.read()\n ds_def = values['set']['ds_conf']\n ds_dye = values['set']['ds_year']\n if ds_def not in [d for d in values['ds_conf']]:\n ds_def = [d for d in values['ds_conf']][0]\n dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def,\n description='Default:', disabled=False, layout=Layout(width='200px'))\n dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][\n 'years']], value=int(ds_dye), description='Dataset year:', disabled\n =False, layout=Layout(width='180px'))\n btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh')\n\n @btn_refresh.on_click\n def btn_refresh_on_click(b):\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n\n def on_dsc_change(change):\n config.update(['set', 'ds_conf'], dsc.value)\n values = config.read()\n ds_c = values['set']['ds_conf']\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.observe(on_dsc_change, 'value')\n\n def on_dsy_change(change):\n config.update(['set', 'ds_year'], str(dsy.value))\n dsy.observe(on_dsy_change, 'value')\n bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip=\n 'Configure this dataset')\n bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip=\n 'Add new dataset configuration')\n bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete dataset configuration')\n bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete only the selected year.')\n dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new])\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n def dsc_config(dsc_value):\n values = config.read()\n ds_db = Dropdown(options=['1'], value='1', description='Database:',\n disabled=False, layout=Layout(width='140px'))\n try:\n with open(f\"{config.get_value(['paths', 'temp'])}tb_prefix\", 'r'\n ) as f:\n code_value = f.read()\n except Exception:\n code_value = dsc_value\n ds_code = Combobox(value=code_value, placeholder='abc', options=[m for\n m in data_options.eu_ms()] + [''], description='AOI code:',\n ensure_option=False, disabled=False, layout=Layout(width=\n '200px'), tooltip=\n 'Lowercase AOI code name for the dataset (5chr max).')\n ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100,\n step=1, description='Dataset year:', disabled=False, layout=\n Layout(width='180px'))\n ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'],\n description='Description:', disabled=False)\n info_map_text = ['Set default map view options. ',\n 'You can get automatically the dataset ', 'center coordinates.']\n lat, lon = values['ds_conf'][dsc_value]['center'].split(',')\n map_cent_lat = FloatText(value=float(lat), description='Lat:',\n disabled=False, layout=Layout(width='160px'))\n map_cent_lon = FloatText(value=float(lon), description='Lon:',\n disabled=False, layout=Layout(width='160px'))\n map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom'\n ], min=0, max=20, step=1, description='Zoom:', disabled=False,\n layout=Layout(width='140px'))\n bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye',\n tooltip='Get center point from database.')\n ds_box = HBox([ds_code, ds_year, ds_desc])\n map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon,\n bt_get_center, map_zoom])\n info_config = Label(\n \"\"\"Change 'AOI code' value to create a new configuration set or \n leave the same 'AOI code' value to configure the selected one.\"\"\"\n )\n db = int(values['ds_conf'][dsc_value]['db'])\n\n def get_tb_list():\n tbls = database.tables(db, None, False)\n if tbls is None:\n return []\n else:\n return tbls\n tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['dias_catalog'], get_tb_list(), False), description=\n 'DIAS catalog:', disabled=False)\n tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['parcels'], get_tb_list(), False), description=\n 'Parcels:', disabled=False)\n\n def get_pr_columns():\n try:\n colms = database.table_columns(tb_pr.value, 1, None)\n if colms is None:\n return []\n else:\n return colms\n except Exception:\n return []\n tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['parcels_id'], get_pr_columns(), False), description\n ='Parcels ID:', disabled=False, layout=Layout(width='180px'))\n tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_names'], get_pr_columns(), False), description\n ='Crop names:', disabled=False, layout=Layout(width='180px'))\n tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_codes'], get_pr_columns(), False), description\n ='Crop codes:', disabled=False, layout=Layout(width='180px'))\n\n def on_tb_pr_change(change):\n tc_id.options = get_pr_columns()\n tc_cn.options = get_pr_columns()\n tc_cc.options = get_pr_columns()\n tb_pr.observe(on_tb_pr_change, 'value')\n parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc])\n tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['s2'], get_tb_list(), False), description=\n 'S2 signatures:', disabled=False)\n tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['bs'], get_tb_list(), False), description=\n 'Backscattering:', disabled=False)\n tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['c6'], get_tb_list(), False), description=\n '6 day coherence:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n\n @bt_get_center.on_click\n def bt_get_center_on_click(b):\n import json\n center_json = json.loads(database.getTableCentroid(tb_pr.value)\n ['center'][0])\n map_cent_lat.value = round(center_json['coordinates'][1], 2)\n map_cent_lon.value = round(center_json['coordinates'][0], 2)\n map_zoom.value = 10\n\n @wb_save.on_click\n def wb_save_on_click(b):\n progress.clear_output()\n dscode = ds_code.value\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'dias_catalog'], str(tb_dc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'parcels'], str(tb_pr.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'parcels_id'], str(tc_id.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_names'], str(tc_cn.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_codes'], str(tc_cc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 's2'], str(tb_s2.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'bs'], str(tb_bs.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'c6'], str(tb_6c.value))\n config.update(['ds_conf', dscode, 'db'], str(ds_db.value))\n config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value))\n config.update(['ds_conf', dscode, 'center'],\n f'{map_cent_lat.value},{map_cent_lon.value}')\n config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value))\n config.update(['set', 'ds_conf'], str(dscode))\n config.update(['set', 'ds_year'], str(ds_year.value))\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n outlog('The configurations are saved.')\n return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs,\n tb_6c, Label(''.join(info_map_text)), map_box, wb_save])\n dsc_new_box = HBox([])\n\n @bt_set.on_click\n def bt_set_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_new.on_click\n def bt_new_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_rec.on_click\n def bt_rec_on_click(b):\n progress.clear_output()\n if len(dsc.options) > 1:\n config.delete(['ds_conf', dsc.value])\n outlog(f\"Dataset configuration '{dsc.value}' is deleted.\")\n values = config.read()\n dsc.options = [d for d in values['ds_conf']]\n else:\n outlog('Can not remove last configuration.')\n\n @bt_rey.on_click\n def bt_rey_on_click(b):\n progress.clear_output()\n if len(dsy.options) > 1:\n config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)])\n outlog(f\"Year {dsy.value} of dataset '{dsc.value}' is deleted.\")\n values = config.read()\n dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value)\n ]['years']]\n else:\n outlog('Can not remove last configuration.')\n wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box,\n progress])\n return wbox\n", "step-2": "<mask token>\n\n\ndef widget_box():\n source = int(config.get_value(['set', 'data_source']))\n sources = RadioButtons(options=[('JRC RESTful API.', 0), (\n 'Direct access to database and object storage.', 1)], value=source,\n layout={'width': 'max-content'})\n sources_box = Box([Label(value='Data sources:'), sources])\n info_api = Label('RESTful API Settings.')\n info_direct = Label('Direct access settings')\n view_options = VBox([info_direct])\n if source == 0:\n view_options.children = [info_api, rest_api()]\n elif source == 1:\n view_options.children = [info_direct, direct()]\n\n def on_source_change(change):\n view_options.children = []\n if sources.value == 0:\n view_options.children = [info_api, rest_api()]\n elif sources.value == 1:\n view_options.children = [info_direct, direct()]\n config.update(['set', 'data_source'], str(sources.value))\n sources.observe(on_source_change, 'value')\n wbox_sources = VBox([sources_box, view_options], layout=Layout(border=\n '1px solid black'))\n info_general = Label(value='General settings:')\n wbox = VBox([wbox_sources, info_general, settings.widget_box()])\n return wbox\n\n\ndef rest_api(mode=None):\n \"\"\"\"\"\"\n values = config.read()\n wt_url = Text(value=values['api']['url'], placeholder='Add URL',\n description='API URL:', disabled=False)\n wt_user = Text(value=values['api']['user'], placeholder='Username',\n description='API User:', disabled=False)\n wt_pass = Password(value=values['api']['pass'], placeholder='******',\n description='API Password:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n @wb_save.on_click\n def wb_save_on_click(b):\n config.update(['api', 'url'], str(wt_url.value))\n config.update(['api', 'user'], str(wt_user.value))\n if wt_pass.value != '':\n config.update(['api', 'pass'], str(wt_pass.value))\n outlog('API information is updated')\n wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress])\n return wbox\n\n\n<mask token>\n\n\ndef direct_settings():\n values = config.read()\n ds_def = values['set']['ds_conf']\n ds_dye = values['set']['ds_year']\n if ds_def not in [d for d in values['ds_conf']]:\n ds_def = [d for d in values['ds_conf']][0]\n dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def,\n description='Default:', disabled=False, layout=Layout(width='200px'))\n dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][\n 'years']], value=int(ds_dye), description='Dataset year:', disabled\n =False, layout=Layout(width='180px'))\n btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh')\n\n @btn_refresh.on_click\n def btn_refresh_on_click(b):\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n\n def on_dsc_change(change):\n config.update(['set', 'ds_conf'], dsc.value)\n values = config.read()\n ds_c = values['set']['ds_conf']\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.observe(on_dsc_change, 'value')\n\n def on_dsy_change(change):\n config.update(['set', 'ds_year'], str(dsy.value))\n dsy.observe(on_dsy_change, 'value')\n bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip=\n 'Configure this dataset')\n bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip=\n 'Add new dataset configuration')\n bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete dataset configuration')\n bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete only the selected year.')\n dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new])\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n def dsc_config(dsc_value):\n values = config.read()\n ds_db = Dropdown(options=['1'], value='1', description='Database:',\n disabled=False, layout=Layout(width='140px'))\n try:\n with open(f\"{config.get_value(['paths', 'temp'])}tb_prefix\", 'r'\n ) as f:\n code_value = f.read()\n except Exception:\n code_value = dsc_value\n ds_code = Combobox(value=code_value, placeholder='abc', options=[m for\n m in data_options.eu_ms()] + [''], description='AOI code:',\n ensure_option=False, disabled=False, layout=Layout(width=\n '200px'), tooltip=\n 'Lowercase AOI code name for the dataset (5chr max).')\n ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100,\n step=1, description='Dataset year:', disabled=False, layout=\n Layout(width='180px'))\n ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'],\n description='Description:', disabled=False)\n info_map_text = ['Set default map view options. ',\n 'You can get automatically the dataset ', 'center coordinates.']\n lat, lon = values['ds_conf'][dsc_value]['center'].split(',')\n map_cent_lat = FloatText(value=float(lat), description='Lat:',\n disabled=False, layout=Layout(width='160px'))\n map_cent_lon = FloatText(value=float(lon), description='Lon:',\n disabled=False, layout=Layout(width='160px'))\n map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom'\n ], min=0, max=20, step=1, description='Zoom:', disabled=False,\n layout=Layout(width='140px'))\n bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye',\n tooltip='Get center point from database.')\n ds_box = HBox([ds_code, ds_year, ds_desc])\n map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon,\n bt_get_center, map_zoom])\n info_config = Label(\n \"\"\"Change 'AOI code' value to create a new configuration set or \n leave the same 'AOI code' value to configure the selected one.\"\"\"\n )\n db = int(values['ds_conf'][dsc_value]['db'])\n\n def get_tb_list():\n tbls = database.tables(db, None, False)\n if tbls is None:\n return []\n else:\n return tbls\n tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['dias_catalog'], get_tb_list(), False), description=\n 'DIAS catalog:', disabled=False)\n tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['parcels'], get_tb_list(), False), description=\n 'Parcels:', disabled=False)\n\n def get_pr_columns():\n try:\n colms = database.table_columns(tb_pr.value, 1, None)\n if colms is None:\n return []\n else:\n return colms\n except Exception:\n return []\n tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['parcels_id'], get_pr_columns(), False), description\n ='Parcels ID:', disabled=False, layout=Layout(width='180px'))\n tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_names'], get_pr_columns(), False), description\n ='Crop names:', disabled=False, layout=Layout(width='180px'))\n tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_codes'], get_pr_columns(), False), description\n ='Crop codes:', disabled=False, layout=Layout(width='180px'))\n\n def on_tb_pr_change(change):\n tc_id.options = get_pr_columns()\n tc_cn.options = get_pr_columns()\n tc_cc.options = get_pr_columns()\n tb_pr.observe(on_tb_pr_change, 'value')\n parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc])\n tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['s2'], get_tb_list(), False), description=\n 'S2 signatures:', disabled=False)\n tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['bs'], get_tb_list(), False), description=\n 'Backscattering:', disabled=False)\n tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['c6'], get_tb_list(), False), description=\n '6 day coherence:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n\n @bt_get_center.on_click\n def bt_get_center_on_click(b):\n import json\n center_json = json.loads(database.getTableCentroid(tb_pr.value)\n ['center'][0])\n map_cent_lat.value = round(center_json['coordinates'][1], 2)\n map_cent_lon.value = round(center_json['coordinates'][0], 2)\n map_zoom.value = 10\n\n @wb_save.on_click\n def wb_save_on_click(b):\n progress.clear_output()\n dscode = ds_code.value\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'dias_catalog'], str(tb_dc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'parcels'], str(tb_pr.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'parcels_id'], str(tc_id.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_names'], str(tc_cn.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_codes'], str(tc_cc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 's2'], str(tb_s2.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'bs'], str(tb_bs.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'c6'], str(tb_6c.value))\n config.update(['ds_conf', dscode, 'db'], str(ds_db.value))\n config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value))\n config.update(['ds_conf', dscode, 'center'],\n f'{map_cent_lat.value},{map_cent_lon.value}')\n config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value))\n config.update(['set', 'ds_conf'], str(dscode))\n config.update(['set', 'ds_year'], str(ds_year.value))\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n outlog('The configurations are saved.')\n return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs,\n tb_6c, Label(''.join(info_map_text)), map_box, wb_save])\n dsc_new_box = HBox([])\n\n @bt_set.on_click\n def bt_set_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_new.on_click\n def bt_new_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_rec.on_click\n def bt_rec_on_click(b):\n progress.clear_output()\n if len(dsc.options) > 1:\n config.delete(['ds_conf', dsc.value])\n outlog(f\"Dataset configuration '{dsc.value}' is deleted.\")\n values = config.read()\n dsc.options = [d for d in values['ds_conf']]\n else:\n outlog('Can not remove last configuration.')\n\n @bt_rey.on_click\n def bt_rey_on_click(b):\n progress.clear_output()\n if len(dsy.options) > 1:\n config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)])\n outlog(f\"Year {dsy.value} of dataset '{dsc.value}' is deleted.\")\n values = config.read()\n dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value)\n ]['years']]\n else:\n outlog('Can not remove last configuration.')\n wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box,\n progress])\n return wbox\n", "step-3": "<mask token>\n\n\ndef widget_box():\n source = int(config.get_value(['set', 'data_source']))\n sources = RadioButtons(options=[('JRC RESTful API.', 0), (\n 'Direct access to database and object storage.', 1)], value=source,\n layout={'width': 'max-content'})\n sources_box = Box([Label(value='Data sources:'), sources])\n info_api = Label('RESTful API Settings.')\n info_direct = Label('Direct access settings')\n view_options = VBox([info_direct])\n if source == 0:\n view_options.children = [info_api, rest_api()]\n elif source == 1:\n view_options.children = [info_direct, direct()]\n\n def on_source_change(change):\n view_options.children = []\n if sources.value == 0:\n view_options.children = [info_api, rest_api()]\n elif sources.value == 1:\n view_options.children = [info_direct, direct()]\n config.update(['set', 'data_source'], str(sources.value))\n sources.observe(on_source_change, 'value')\n wbox_sources = VBox([sources_box, view_options], layout=Layout(border=\n '1px solid black'))\n info_general = Label(value='General settings:')\n wbox = VBox([wbox_sources, info_general, settings.widget_box()])\n return wbox\n\n\ndef rest_api(mode=None):\n \"\"\"\"\"\"\n values = config.read()\n wt_url = Text(value=values['api']['url'], placeholder='Add URL',\n description='API URL:', disabled=False)\n wt_user = Text(value=values['api']['user'], placeholder='Username',\n description='API User:', disabled=False)\n wt_pass = Password(value=values['api']['pass'], placeholder='******',\n description='API Password:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n @wb_save.on_click\n def wb_save_on_click(b):\n config.update(['api', 'url'], str(wt_url.value))\n config.update(['api', 'user'], str(wt_user.value))\n if wt_pass.value != '':\n config.update(['api', 'pass'], str(wt_pass.value))\n outlog('API information is updated')\n wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress])\n return wbox\n\n\ndef direct():\n tab_box = Tab(children=[settings.direct_conn(), direct_settings()])\n tab_box.set_title(0, 'Connection')\n tab_box.set_title(1, 'db Configuration')\n return tab_box\n\n\ndef direct_settings():\n values = config.read()\n ds_def = values['set']['ds_conf']\n ds_dye = values['set']['ds_year']\n if ds_def not in [d for d in values['ds_conf']]:\n ds_def = [d for d in values['ds_conf']][0]\n dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def,\n description='Default:', disabled=False, layout=Layout(width='200px'))\n dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][\n 'years']], value=int(ds_dye), description='Dataset year:', disabled\n =False, layout=Layout(width='180px'))\n btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh')\n\n @btn_refresh.on_click\n def btn_refresh_on_click(b):\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n\n def on_dsc_change(change):\n config.update(['set', 'ds_conf'], dsc.value)\n values = config.read()\n ds_c = values['set']['ds_conf']\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.observe(on_dsc_change, 'value')\n\n def on_dsy_change(change):\n config.update(['set', 'ds_year'], str(dsy.value))\n dsy.observe(on_dsy_change, 'value')\n bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip=\n 'Configure this dataset')\n bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip=\n 'Add new dataset configuration')\n bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete dataset configuration')\n bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete only the selected year.')\n dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new])\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n def dsc_config(dsc_value):\n values = config.read()\n ds_db = Dropdown(options=['1'], value='1', description='Database:',\n disabled=False, layout=Layout(width='140px'))\n try:\n with open(f\"{config.get_value(['paths', 'temp'])}tb_prefix\", 'r'\n ) as f:\n code_value = f.read()\n except Exception:\n code_value = dsc_value\n ds_code = Combobox(value=code_value, placeholder='abc', options=[m for\n m in data_options.eu_ms()] + [''], description='AOI code:',\n ensure_option=False, disabled=False, layout=Layout(width=\n '200px'), tooltip=\n 'Lowercase AOI code name for the dataset (5chr max).')\n ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100,\n step=1, description='Dataset year:', disabled=False, layout=\n Layout(width='180px'))\n ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'],\n description='Description:', disabled=False)\n info_map_text = ['Set default map view options. ',\n 'You can get automatically the dataset ', 'center coordinates.']\n lat, lon = values['ds_conf'][dsc_value]['center'].split(',')\n map_cent_lat = FloatText(value=float(lat), description='Lat:',\n disabled=False, layout=Layout(width='160px'))\n map_cent_lon = FloatText(value=float(lon), description='Lon:',\n disabled=False, layout=Layout(width='160px'))\n map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom'\n ], min=0, max=20, step=1, description='Zoom:', disabled=False,\n layout=Layout(width='140px'))\n bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye',\n tooltip='Get center point from database.')\n ds_box = HBox([ds_code, ds_year, ds_desc])\n map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon,\n bt_get_center, map_zoom])\n info_config = Label(\n \"\"\"Change 'AOI code' value to create a new configuration set or \n leave the same 'AOI code' value to configure the selected one.\"\"\"\n )\n db = int(values['ds_conf'][dsc_value]['db'])\n\n def get_tb_list():\n tbls = database.tables(db, None, False)\n if tbls is None:\n return []\n else:\n return tbls\n tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['dias_catalog'], get_tb_list(), False), description=\n 'DIAS catalog:', disabled=False)\n tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['parcels'], get_tb_list(), False), description=\n 'Parcels:', disabled=False)\n\n def get_pr_columns():\n try:\n colms = database.table_columns(tb_pr.value, 1, None)\n if colms is None:\n return []\n else:\n return colms\n except Exception:\n return []\n tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['parcels_id'], get_pr_columns(), False), description\n ='Parcels ID:', disabled=False, layout=Layout(width='180px'))\n tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_names'], get_pr_columns(), False), description\n ='Crop names:', disabled=False, layout=Layout(width='180px'))\n tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_codes'], get_pr_columns(), False), description\n ='Crop codes:', disabled=False, layout=Layout(width='180px'))\n\n def on_tb_pr_change(change):\n tc_id.options = get_pr_columns()\n tc_cn.options = get_pr_columns()\n tc_cc.options = get_pr_columns()\n tb_pr.observe(on_tb_pr_change, 'value')\n parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc])\n tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['s2'], get_tb_list(), False), description=\n 'S2 signatures:', disabled=False)\n tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['bs'], get_tb_list(), False), description=\n 'Backscattering:', disabled=False)\n tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['c6'], get_tb_list(), False), description=\n '6 day coherence:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n\n @bt_get_center.on_click\n def bt_get_center_on_click(b):\n import json\n center_json = json.loads(database.getTableCentroid(tb_pr.value)\n ['center'][0])\n map_cent_lat.value = round(center_json['coordinates'][1], 2)\n map_cent_lon.value = round(center_json['coordinates'][0], 2)\n map_zoom.value = 10\n\n @wb_save.on_click\n def wb_save_on_click(b):\n progress.clear_output()\n dscode = ds_code.value\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'dias_catalog'], str(tb_dc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'parcels'], str(tb_pr.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'parcels_id'], str(tc_id.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_names'], str(tc_cn.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_codes'], str(tc_cc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 's2'], str(tb_s2.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'bs'], str(tb_bs.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'c6'], str(tb_6c.value))\n config.update(['ds_conf', dscode, 'db'], str(ds_db.value))\n config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value))\n config.update(['ds_conf', dscode, 'center'],\n f'{map_cent_lat.value},{map_cent_lon.value}')\n config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value))\n config.update(['set', 'ds_conf'], str(dscode))\n config.update(['set', 'ds_year'], str(ds_year.value))\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n outlog('The configurations are saved.')\n return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs,\n tb_6c, Label(''.join(info_map_text)), map_box, wb_save])\n dsc_new_box = HBox([])\n\n @bt_set.on_click\n def bt_set_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_new.on_click\n def bt_new_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_rec.on_click\n def bt_rec_on_click(b):\n progress.clear_output()\n if len(dsc.options) > 1:\n config.delete(['ds_conf', dsc.value])\n outlog(f\"Dataset configuration '{dsc.value}' is deleted.\")\n values = config.read()\n dsc.options = [d for d in values['ds_conf']]\n else:\n outlog('Can not remove last configuration.')\n\n @bt_rey.on_click\n def bt_rey_on_click(b):\n progress.clear_output()\n if len(dsy.options) > 1:\n config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)])\n outlog(f\"Year {dsy.value} of dataset '{dsc.value}' is deleted.\")\n values = config.read()\n dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value)\n ]['years']]\n else:\n outlog('Can not remove last configuration.')\n wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box,\n progress])\n return wbox\n", "step-4": "from ipywidgets import Text, VBox, HBox, Label, Password, RadioButtons, Button, Layout, Box, Tab, Output, Dropdown, FloatText, BoundedIntText, Combobox\nfrom cbm.utils import config, data_options\nfrom cbm.ipycbm.utils import settings\nfrom cbm.sources import database\n\n\ndef widget_box():\n source = int(config.get_value(['set', 'data_source']))\n sources = RadioButtons(options=[('JRC RESTful API.', 0), (\n 'Direct access to database and object storage.', 1)], value=source,\n layout={'width': 'max-content'})\n sources_box = Box([Label(value='Data sources:'), sources])\n info_api = Label('RESTful API Settings.')\n info_direct = Label('Direct access settings')\n view_options = VBox([info_direct])\n if source == 0:\n view_options.children = [info_api, rest_api()]\n elif source == 1:\n view_options.children = [info_direct, direct()]\n\n def on_source_change(change):\n view_options.children = []\n if sources.value == 0:\n view_options.children = [info_api, rest_api()]\n elif sources.value == 1:\n view_options.children = [info_direct, direct()]\n config.update(['set', 'data_source'], str(sources.value))\n sources.observe(on_source_change, 'value')\n wbox_sources = VBox([sources_box, view_options], layout=Layout(border=\n '1px solid black'))\n info_general = Label(value='General settings:')\n wbox = VBox([wbox_sources, info_general, settings.widget_box()])\n return wbox\n\n\ndef rest_api(mode=None):\n \"\"\"\"\"\"\n values = config.read()\n wt_url = Text(value=values['api']['url'], placeholder='Add URL',\n description='API URL:', disabled=False)\n wt_user = Text(value=values['api']['user'], placeholder='Username',\n description='API User:', disabled=False)\n wt_pass = Password(value=values['api']['pass'], placeholder='******',\n description='API Password:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n @wb_save.on_click\n def wb_save_on_click(b):\n config.update(['api', 'url'], str(wt_url.value))\n config.update(['api', 'user'], str(wt_user.value))\n if wt_pass.value != '':\n config.update(['api', 'pass'], str(wt_pass.value))\n outlog('API information is updated')\n wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress])\n return wbox\n\n\ndef direct():\n tab_box = Tab(children=[settings.direct_conn(), direct_settings()])\n tab_box.set_title(0, 'Connection')\n tab_box.set_title(1, 'db Configuration')\n return tab_box\n\n\ndef direct_settings():\n values = config.read()\n ds_def = values['set']['ds_conf']\n ds_dye = values['set']['ds_year']\n if ds_def not in [d for d in values['ds_conf']]:\n ds_def = [d for d in values['ds_conf']][0]\n dsc = Dropdown(options=[d for d in values['ds_conf']], value=ds_def,\n description='Default:', disabled=False, layout=Layout(width='200px'))\n dsy = Dropdown(options=[int(y) for y in values['ds_conf'][dsc.value][\n 'years']], value=int(ds_dye), description='Dataset year:', disabled\n =False, layout=Layout(width='180px'))\n btn_refresh = Button(layout=Layout(width='35px'), icon='fa-refresh')\n\n @btn_refresh.on_click\n def btn_refresh_on_click(b):\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n\n def on_dsc_change(change):\n config.update(['set', 'ds_conf'], dsc.value)\n values = config.read()\n ds_c = values['set']['ds_conf']\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.observe(on_dsc_change, 'value')\n\n def on_dsy_change(change):\n config.update(['set', 'ds_year'], str(dsy.value))\n dsy.observe(on_dsy_change, 'value')\n bt_set = Button(layout=Layout(width='40px'), icon='cogs', tooltip=\n 'Configure this dataset')\n bt_new = Button(layout=Layout(width='40px'), icon='plus', tooltip=\n 'Add new dataset configuration')\n bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete dataset configuration')\n bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt', tooltip=\n 'Delete only the selected year.')\n dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new])\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n def dsc_config(dsc_value):\n values = config.read()\n ds_db = Dropdown(options=['1'], value='1', description='Database:',\n disabled=False, layout=Layout(width='140px'))\n try:\n with open(f\"{config.get_value(['paths', 'temp'])}tb_prefix\", 'r'\n ) as f:\n code_value = f.read()\n except Exception:\n code_value = dsc_value\n ds_code = Combobox(value=code_value, placeholder='abc', options=[m for\n m in data_options.eu_ms()] + [''], description='AOI code:',\n ensure_option=False, disabled=False, layout=Layout(width=\n '200px'), tooltip=\n 'Lowercase AOI code name for the dataset (5chr max).')\n ds_year = BoundedIntText(value=int(dsy.value), min=1980, max=2100,\n step=1, description='Dataset year:', disabled=False, layout=\n Layout(width='180px'))\n ds_desc = Text(value=values['ds_conf'][dsc_value]['desc'],\n description='Description:', disabled=False)\n info_map_text = ['Set default map view options. ',\n 'You can get automatically the dataset ', 'center coordinates.']\n lat, lon = values['ds_conf'][dsc_value]['center'].split(',')\n map_cent_lat = FloatText(value=float(lat), description='Lat:',\n disabled=False, layout=Layout(width='160px'))\n map_cent_lon = FloatText(value=float(lon), description='Lon:',\n disabled=False, layout=Layout(width='160px'))\n map_zoom = BoundedIntText(value=values['ds_conf'][dsc_value]['zoom'\n ], min=0, max=20, step=1, description='Zoom:', disabled=False,\n layout=Layout(width='140px'))\n bt_get_center = Button(layout=Layout(width='40px'), icon='bullseye',\n tooltip='Get center point from database.')\n ds_box = HBox([ds_code, ds_year, ds_desc])\n map_box = HBox([Label('Map center: '), map_cent_lat, map_cent_lon,\n bt_get_center, map_zoom])\n info_config = Label(\n \"\"\"Change 'AOI code' value to create a new configuration set or \n leave the same 'AOI code' value to configure the selected one.\"\"\"\n )\n db = int(values['ds_conf'][dsc_value]['db'])\n\n def get_tb_list():\n tbls = database.tables(db, None, False)\n if tbls is None:\n return []\n else:\n return tbls\n tb_dc = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['dias_catalog'], get_tb_list(), False), description=\n 'DIAS catalog:', disabled=False)\n tb_pr = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['parcels'], get_tb_list(), False), description=\n 'Parcels:', disabled=False)\n\n def get_pr_columns():\n try:\n colms = database.table_columns(tb_pr.value, 1, None)\n if colms is None:\n return []\n else:\n return colms\n except Exception:\n return []\n tc_id = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['parcels_id'], get_pr_columns(), False), description\n ='Parcels ID:', disabled=False, layout=Layout(width='180px'))\n tc_cn = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_names'], get_pr_columns(), False), description\n ='Crop names:', disabled=False, layout=Layout(width='180px'))\n tc_cc = Dropdown(options=get_pr_columns(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'columns']['crop_codes'], get_pr_columns(), False), description\n ='Crop codes:', disabled=False, layout=Layout(width='180px'))\n\n def on_tb_pr_change(change):\n tc_id.options = get_pr_columns()\n tc_cn.options = get_pr_columns()\n tc_cc.options = get_pr_columns()\n tb_pr.observe(on_tb_pr_change, 'value')\n parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc])\n tb_s2 = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['s2'], get_tb_list(), False), description=\n 'S2 signatures:', disabled=False)\n tb_bs = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['bs'], get_tb_list(), False), description=\n 'Backscattering:', disabled=False)\n tb_6c = Dropdown(options=get_tb_list(), value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][str(ds_year.value)][\n 'tables']['c6'], get_tb_list(), False), description=\n '6 day coherence:', disabled=False)\n wb_save = Button(description='Save', disabled=False, icon='save')\n\n @bt_get_center.on_click\n def bt_get_center_on_click(b):\n import json\n center_json = json.loads(database.getTableCentroid(tb_pr.value)\n ['center'][0])\n map_cent_lat.value = round(center_json['coordinates'][1], 2)\n map_cent_lon.value = round(center_json['coordinates'][0], 2)\n map_zoom.value = 10\n\n @wb_save.on_click\n def wb_save_on_click(b):\n progress.clear_output()\n dscode = ds_code.value\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'dias_catalog'], str(tb_dc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'parcels'], str(tb_pr.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'parcels_id'], str(tc_id.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_names'], str(tc_cn.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_codes'], str(tc_cc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 's2'], str(tb_s2.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'bs'], str(tb_bs.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'c6'], str(tb_6c.value))\n config.update(['ds_conf', dscode, 'db'], str(ds_db.value))\n config.update(['ds_conf', dscode, 'desc'], str(ds_desc.value))\n config.update(['ds_conf', dscode, 'center'],\n f'{map_cent_lat.value},{map_cent_lon.value}')\n config.update(['ds_conf', dscode, 'zoom'], str(map_zoom.value))\n config.update(['set', 'ds_conf'], str(dscode))\n config.update(['set', 'ds_year'], str(ds_year.value))\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n outlog('The configurations are saved.')\n return VBox([info_config, ds_box, parcel_box, tb_dc, tb_s2, tb_bs,\n tb_6c, Label(''.join(info_map_text)), map_box, wb_save])\n dsc_new_box = HBox([])\n\n @bt_set.on_click\n def bt_set_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_new.on_click\n def bt_new_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_rec.on_click\n def bt_rec_on_click(b):\n progress.clear_output()\n if len(dsc.options) > 1:\n config.delete(['ds_conf', dsc.value])\n outlog(f\"Dataset configuration '{dsc.value}' is deleted.\")\n values = config.read()\n dsc.options = [d for d in values['ds_conf']]\n else:\n outlog('Can not remove last configuration.')\n\n @bt_rey.on_click\n def bt_rey_on_click(b):\n progress.clear_output()\n if len(dsy.options) > 1:\n config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)])\n outlog(f\"Year {dsy.value} of dataset '{dsc.value}' is deleted.\")\n values = config.read()\n dsy.options = [int(y) for y in values['ds_conf'][str(dsc.value)\n ]['years']]\n else:\n outlog('Can not remove last configuration.')\n wbox = VBox([Label('Datasets configurations.'), dsc_box, dsc_new_box,\n progress])\n return wbox\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\n# This file is part of CbM (https://github.com/ec-jrc/cbm).\n# Author : Konstantinos Anastasakis\n# Credits : GTCAP Team\n# Copyright : 2021 European Commission, Joint Research Centre\n# License : 3-Clause BSD\n\n\nfrom ipywidgets import (Text, VBox, HBox, Label, Password, RadioButtons,\n Button, Layout, Box, Tab, Output, Dropdown,\n FloatText, BoundedIntText, Combobox)\n\nfrom cbm.utils import config, data_options\nfrom cbm.ipycbm.utils import settings\nfrom cbm.sources import database\n\n\ndef widget_box():\n\n source = int(config.get_value(['set', 'data_source']))\n\n sources = RadioButtons(\n options=[\n (\"JRC RESTful API.\", 0),\n (\"Direct access to database and object storage.\", 1)\n ],\n value=source,\n layout={'width': 'max-content'}\n )\n\n sources_box = Box([\n Label(value=\"Data sources:\"),\n sources]\n )\n\n info_api = Label(\"RESTful API Settings.\")\n info_direct = Label(\"Direct access settings\")\n\n view_options = VBox([info_direct])\n\n if source == 0:\n view_options.children = [info_api, rest_api()]\n elif source == 1:\n view_options.children = [info_direct, direct()]\n\n def on_source_change(change):\n view_options.children = []\n if sources.value == 0:\n view_options.children = [info_api, rest_api()]\n elif sources.value == 1:\n view_options.children = [info_direct, direct()]\n config.update(['set', 'data_source'], str(sources.value))\n\n sources.observe(on_source_change, 'value')\n\n wbox_sources = VBox([sources_box, view_options],\n layout=Layout(border='1px solid black'))\n\n info_general = Label(value=\"General settings:\")\n\n wbox = VBox([wbox_sources, info_general, settings.widget_box()])\n\n return wbox\n\n\ndef rest_api(mode=None):\n \"\"\"\"\"\"\n values = config.read()\n\n wt_url = Text(\n value=values['api']['url'],\n placeholder='Add URL',\n description='API URL:',\n disabled=False\n )\n wt_user = Text(\n value=values['api']['user'],\n placeholder='Username',\n description='API User:',\n disabled=False\n )\n wt_pass = Password(\n value=values['api']['pass'],\n placeholder='******',\n description='API Password:',\n disabled=False\n )\n\n wb_save = Button(\n description='Save',\n disabled=False,\n icon='save'\n )\n\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n @wb_save.on_click\n def wb_save_on_click(b):\n config.update(['api', 'url'], str(wt_url.value))\n config.update(['api', 'user'], str(wt_user.value))\n if wt_pass.value != '':\n config.update(['api', 'pass'], str(wt_pass.value))\n outlog(\"API information is updated\")\n\n wbox = VBox([wt_url, wt_user, wt_pass, wb_save, progress])\n\n return wbox\n\n\ndef direct():\n # try:\n tab_box = Tab(children=[settings.direct_conn(), direct_settings()])\n\n tab_box.set_title(0, 'Connection')\n tab_box.set_title(1, 'db Configuration')\n# except:\n# tab_box = Tab(children=[direct_conn()])\n# tab_box.set_title(0, 'Connection')\n# print(\"!WARNING! Can not load direct configuration settings.\")\n return tab_box\n\n\ndef direct_settings():\n values = config.read()\n ds_def = values['set']['ds_conf']\n ds_dye = values['set']['ds_year']\n if ds_def not in [d for d in values['ds_conf']]:\n ds_def = [d for d in values['ds_conf']][0]\n\n dsc = Dropdown(\n options=[d for d in values['ds_conf']],\n value=ds_def,\n description='Default:',\n disabled=False,\n layout=Layout(width='200px')\n )\n\n dsy = Dropdown(\n options=[int(y) for y in values['ds_conf'][dsc.value]['years']],\n value=int(ds_dye),\n description='Dataset year:',\n disabled=False,\n layout=Layout(width='180px')\n )\n\n btn_refresh = Button(\n layout=Layout(width='35px'),\n icon='fa-refresh')\n\n @btn_refresh.on_click\n def btn_refresh_on_click(b):\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n\n def on_dsc_change(change):\n config.update(['set', 'ds_conf'], dsc.value)\n values = config.read()\n ds_c = values['set']['ds_conf']\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.observe(on_dsc_change, 'value')\n\n def on_dsy_change(change):\n config.update(['set', 'ds_year'], str(dsy.value))\n dsy.observe(on_dsy_change, 'value')\n\n bt_set = Button(layout=Layout(width='40px'), icon='cogs',\n tooltip=\"Configure this dataset\")\n bt_new = Button(layout=Layout(width='40px'), icon='plus',\n tooltip=\"Add new dataset configuration\")\n bt_rec = Button(layout=Layout(width='40px'), icon='trash-alt',\n tooltip='Delete dataset configuration')\n bt_rey = Button(layout=Layout(width='40px'), icon='trash-alt',\n tooltip='Delete only the selected year.')\n dsc_box = HBox([dsc, btn_refresh, bt_rec, dsy, bt_set, bt_rey, bt_new])\n\n progress = Output()\n\n def outlog(*text):\n with progress:\n print(*text)\n\n def dsc_config(dsc_value):\n values = config.read()\n ds_db = Dropdown(\n options=[\"1\"],\n value=\"1\",\n description='Database:',\n disabled=False,\n layout=Layout(width='140px')\n )\n\n try:\n with open(f\"{config.get_value(['paths','temp'])}tb_prefix\", 'r') as f:\n code_value = f.read()\n except Exception:\n code_value = dsc_value\n\n ds_code = Combobox(\n value=code_value,\n placeholder='abc',\n options=[m for m in data_options.eu_ms()]+[''],\n description='AOI code:',\n ensure_option=False,\n disabled=False,\n layout=Layout(width='200px'),\n tooltip='Lowercase AOI code name for the dataset (5chr max).'\n )\n ds_year = BoundedIntText(\n value=int(dsy.value),\n min=1980,\n max=2100,\n step=1,\n description='Dataset year:',\n disabled=False,\n layout=Layout(width='180px')\n\n )\n ds_desc = Text(\n value=values['ds_conf'][dsc_value]['desc'],\n description='Description:',\n disabled=False\n )\n\n info_map_text = [\"Set default map view options. \",\n \"You can get automatically the dataset \",\n \"center coordinates.\"]\n\n lat, lon = values['ds_conf'][dsc_value]['center'].split(\",\")\n map_cent_lat = FloatText(\n value=float(lat),\n description='Lat:',\n disabled=False,\n layout=Layout(width='160px')\n )\n map_cent_lon = FloatText(\n value=float(lon),\n description='Lon:',\n disabled=False,\n layout=Layout(width='160px')\n )\n map_zoom = BoundedIntText(\n value=values['ds_conf'][dsc_value]['zoom'],\n min=0,\n max=20,\n step=1,\n description='Zoom:',\n disabled=False,\n layout=Layout(width='140px')\n )\n bt_get_center = Button(\n layout=Layout(width='40px'),\n icon='bullseye',\n tooltip='Get center point from database.'\n )\n\n ds_box = HBox([ds_code, ds_year, ds_desc])\n map_box = HBox([Label(\"Map center: \"), map_cent_lat,\n map_cent_lon, bt_get_center, map_zoom])\n\n info_config = Label(\n \"\"\"Change 'AOI code' value to create a new configuration set or \n leave the same 'AOI code' value to configure the selected one.\"\"\")\n\n db = int(values['ds_conf'][dsc_value]['db'])\n\n def get_tb_list():\n tbls = database.tables(db, None, False)\n if tbls is None:\n return []\n else:\n return tbls\n\n tb_dc = Dropdown(\n options=get_tb_list(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['tables']['dias_catalog'],\n get_tb_list(), False),\n description='DIAS catalog:',\n disabled=False\n )\n tb_pr = Dropdown(\n options=get_tb_list(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['tables']['parcels'],\n get_tb_list(), False),\n description='Parcels:',\n disabled=False\n )\n\n def get_pr_columns():\n try:\n colms = database.table_columns(tb_pr.value, 1, None)\n if colms is None:\n return []\n else:\n return colms\n except Exception:\n return []\n\n tc_id = Dropdown(\n options=get_pr_columns(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['columns']['parcels_id'],\n get_pr_columns(), False),\n description='Parcels ID:',\n disabled=False,\n layout=Layout(width='180px')\n )\n tc_cn = Dropdown(\n options=get_pr_columns(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['columns']['crop_names'],\n get_pr_columns(), False),\n description='Crop names:',\n disabled=False,\n layout=Layout(width='180px')\n )\n tc_cc = Dropdown(\n options=get_pr_columns(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['columns']['crop_codes'],\n get_pr_columns(), False),\n description='Crop codes:',\n disabled=False,\n layout=Layout(width='180px')\n )\n\n def on_tb_pr_change(change):\n tc_id.options = get_pr_columns()\n tc_cn.options = get_pr_columns()\n tc_cc.options = get_pr_columns()\n tb_pr.observe(on_tb_pr_change, 'value')\n\n parcel_box = HBox([tb_pr, tc_id, tc_cn, tc_cc])\n\n tb_s2 = Dropdown(\n options=get_tb_list(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['tables']['s2'],\n get_tb_list(), False),\n description='S2 signatures:',\n disabled=False\n )\n tb_bs = Dropdown(\n options=get_tb_list(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['tables']['bs'],\n get_tb_list(), False),\n description='Backscattering:',\n disabled=False\n )\n tb_6c = Dropdown(\n options=get_tb_list(),\n value=config.autoselect(\n values['ds_conf'][dsc_value]['years'][\n str(ds_year.value)]['tables']['c6'],\n get_tb_list(), False),\n description='6 day coherence:',\n disabled=False\n )\n\n wb_save = Button(\n description='Save',\n disabled=False,\n icon='save'\n )\n\n @bt_get_center.on_click\n def bt_get_center_on_click(b):\n import json\n center_json = json.loads(\n database.getTableCentroid(tb_pr.value)['center'][0])\n map_cent_lat.value = round(center_json['coordinates'][1], 2)\n map_cent_lon.value = round(center_json['coordinates'][0], 2)\n map_zoom.value = 10\n\n @wb_save.on_click\n def wb_save_on_click(b):\n progress.clear_output()\n dscode = ds_code.value\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'dias_catalog'], str(tb_dc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'parcels'], str(tb_pr.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'parcels_id'], str(tc_id.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_names'], str(tc_cn.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'columns', 'crop_codes'], str(tc_cc.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 's2'], str(tb_s2.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'bs'], str(tb_bs.value))\n config.update(['ds_conf', dscode, 'years', str(ds_year.value),\n 'tables', 'c6'], str(tb_6c.value))\n config.update(['ds_conf', dscode,\n 'db'], str(ds_db.value))\n config.update(['ds_conf', dscode,\n 'desc'], str(ds_desc.value))\n config.update(['ds_conf', dscode, 'center'],\n f\"{map_cent_lat.value},{map_cent_lon.value}\")\n config.update(['ds_conf', dscode,\n 'zoom'], str(map_zoom.value))\n config.update(['set', 'ds_conf'], str(dscode))\n config.update(['set', 'ds_year'], str(ds_year.value))\n values = config.read()\n ds_c = values['set']['ds_conf']\n ds_y = values['set']['ds_year']\n dsc.options = [d for d in values['ds_conf']]\n dsy.options = [int(y) for y in values['ds_conf'][ds_c]['years']]\n dsc.value = ds_c\n dsy.value = int(ds_y)\n outlog(\"The configurations are saved.\")\n\n return VBox([info_config, ds_box, parcel_box,\n tb_dc, tb_s2, tb_bs, tb_6c,\n Label(''.join(info_map_text)), map_box, wb_save])\n\n dsc_new_box = HBox([])\n\n @bt_set.on_click\n def bt_set_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_new.on_click\n def bt_new_on_click(b):\n if dsc_new_box.children == ():\n dsc_new_box.children = [dsc_config(dsc.value)]\n bt_set.icon = 'chevron-up'\n else:\n dsc_new_box.children = ()\n bt_set.icon = 'cogs'\n\n @bt_rec.on_click\n def bt_rec_on_click(b):\n progress.clear_output()\n if len(dsc.options) > 1:\n config.delete(['ds_conf', dsc.value])\n outlog(f\"Dataset configuration '{dsc.value}' is deleted.\")\n values = config.read()\n dsc.options = [d for d in values['ds_conf']]\n else:\n outlog(\"Can not remove last configuration.\")\n\n @bt_rey.on_click\n def bt_rey_on_click(b):\n progress.clear_output()\n if len(dsy.options) > 1:\n config.delete(['ds_conf', dsc.value, 'years', str(dsy.value)])\n outlog(f\"Year {dsy.value} of dataset '{dsc.value}' is deleted.\")\n values = config.read()\n dsy.options = [int(y) for y in values['ds_conf']\n [str(dsc.value)]['years']]\n else:\n outlog(\"Can not remove last configuration.\")\n\n wbox = VBox([Label(\"Datasets configurations.\"), dsc_box,\n dsc_new_box, progress])\n\n return wbox\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> log = logging.getLogger(__name__) dir_path = os.path.dirname(os.path.realpath(__file__)) TEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz') <|reserved_special_token_1|> <|reserved_special_token_0|> import logging import os log = logging.getLogger(__name__) dir_path = os.path.dirname(os.path.realpath(__file__)) TEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz') <|reserved_special_token_1|> # -*- coding: utf-8 -*- """Testing constants for Bio2BEL FlyBase.""" import logging import os log = logging.getLogger(__name__) dir_path = os.path.dirname(os.path.realpath(__file__)) TEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz')
flexible
{ "blob_id": "bad719d968b4e358f863b7ef13bc12127f726806", "index": 682, "step-1": "<mask token>\n", "step-2": "<mask token>\nlog = logging.getLogger(__name__)\ndir_path = os.path.dirname(os.path.realpath(__file__))\nTEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz')\n", "step-3": "<mask token>\nimport logging\nimport os\nlog = logging.getLogger(__name__)\ndir_path = os.path.dirname(os.path.realpath(__file__))\nTEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz')\n", "step-4": "# -*- coding: utf-8 -*-\n\n\"\"\"Testing constants for Bio2BEL FlyBase.\"\"\"\n\nimport logging\nimport os\n\nlog = logging.getLogger(__name__)\n\ndir_path = os.path.dirname(os.path.realpath(__file__))\n\nTEST_FILE = os.path.join(dir_path, 'test_gene_map_table.tsv.gz')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def some_func(): CFG.start_clock_module = datetime.datetime.now() LOG.write_me('\tSTART - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ')') my_root_dir = os.getcwd() list_output_dir = list() list_of_files = list() LOG.write_me("\t\tList of the files deleted from the 'OUTPUT' folders:") for root, dirs, files in os.walk(my_root_dir): if not str(root).endswith('ABACUS'): if 'OUTPUT_' in str(root): for file in files: if str(file).endswith('.txt'): rel_path_file = os.path.relpath(root, my_root_dir ) + '/' + file LOG.write_me('\t\t- ' + rel_path_file) path_file = root + '\\' + file os.remove(path_file) list_of_files.append(rel_path_file) if len(list_of_files) == 0: LOG.write_me('\t\t\t- No output file to clean') elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module) LOG.write_me('\tEND - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')') LOG.write_me('') LOG.write_me('') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def some_func(): CFG.start_clock_module = datetime.datetime.now() LOG.write_me('\tSTART - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ')') my_root_dir = os.getcwd() list_output_dir = list() list_of_files = list() LOG.write_me("\t\tList of the files deleted from the 'OUTPUT' folders:") for root, dirs, files in os.walk(my_root_dir): if not str(root).endswith('ABACUS'): if 'OUTPUT_' in str(root): for file in files: if str(file).endswith('.txt'): rel_path_file = os.path.relpath(root, my_root_dir ) + '/' + file LOG.write_me('\t\t- ' + rel_path_file) path_file = root + '\\' + file os.remove(path_file) list_of_files.append(rel_path_file) if len(list_of_files) == 0: LOG.write_me('\t\t\t- No output file to clean') elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module) LOG.write_me('\tEND - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')') LOG.write_me('') LOG.write_me('') if __name__ == '__main__': some_func() <|reserved_special_token_1|> import _cfg_GLOBAL as CFG import os import LOG import UTILITY as UTL import datetime def some_func(): CFG.start_clock_module = datetime.datetime.now() LOG.write_me('\tSTART - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ')') my_root_dir = os.getcwd() list_output_dir = list() list_of_files = list() LOG.write_me("\t\tList of the files deleted from the 'OUTPUT' folders:") for root, dirs, files in os.walk(my_root_dir): if not str(root).endswith('ABACUS'): if 'OUTPUT_' in str(root): for file in files: if str(file).endswith('.txt'): rel_path_file = os.path.relpath(root, my_root_dir ) + '/' + file LOG.write_me('\t\t- ' + rel_path_file) path_file = root + '\\' + file os.remove(path_file) list_of_files.append(rel_path_file) if len(list_of_files) == 0: LOG.write_me('\t\t\t- No output file to clean') elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module) LOG.write_me('\tEND - CLEAN.py (' + datetime.datetime.now().strftime( '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')') LOG.write_me('') LOG.write_me('') if __name__ == '__main__': some_func() <|reserved_special_token_1|> ############################################-############################################ ################################ F I L E A U T H O R S ################################ # MIKE - see contacts in _doc_PACKAGE_DESCRIPTION ####################################### A B O U T ####################################### # In this module: # I clean the out put directories ####################################### S T A R T ####################################### import _cfg_GLOBAL as CFG import os import LOG import UTILITY as UTL import datetime def some_func(): CFG.start_clock_module = datetime.datetime.now() LOG.write_me("\tSTART - CLEAN.py (" + datetime.datetime.now().strftime("%y-%m-%d | %H:%M") + ")") my_root_dir = os.getcwd() list_output_dir = list() list_of_files = list() LOG.write_me("\t\tList of the files deleted from the 'OUTPUT' folders:") for root, dirs, files in os.walk(my_root_dir): if not str(root).endswith("ABACUS"): if "OUTPUT_" in str(root): for file in files: if str(file).endswith(".txt"): rel_path_file = os.path.relpath(root, my_root_dir) + "/" + file LOG.write_me("\t\t- " + rel_path_file ) path_file = root + "\\" + file os.remove(path_file) list_of_files.append(rel_path_file) if len(list_of_files) == 0: LOG.write_me("\t\t\t- No output file to clean") elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module) LOG.write_me("\tEND - CLEAN.py (" + datetime.datetime.now().strftime("%y-%m-%d | %H:%M") + " | hh.mm.ss.ms " + elapsed_formatted + ")") LOG.write_me("") LOG.write_me("") if __name__ == '__main__': some_func()
flexible
{ "blob_id": "58667da8898c2277ecc3d9d738d6553dd3416436", "index": 7323, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef some_func():\n CFG.start_clock_module = datetime.datetime.now()\n LOG.write_me('\\tSTART - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ')')\n my_root_dir = os.getcwd()\n list_output_dir = list()\n list_of_files = list()\n LOG.write_me(\"\\t\\tList of the files deleted from the 'OUTPUT' folders:\")\n for root, dirs, files in os.walk(my_root_dir):\n if not str(root).endswith('ABACUS'):\n if 'OUTPUT_' in str(root):\n for file in files:\n if str(file).endswith('.txt'):\n rel_path_file = os.path.relpath(root, my_root_dir\n ) + '/' + file\n LOG.write_me('\\t\\t- ' + rel_path_file)\n path_file = root + '\\\\' + file\n os.remove(path_file)\n list_of_files.append(rel_path_file)\n if len(list_of_files) == 0:\n LOG.write_me('\\t\\t\\t- No output file to clean')\n elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module)\n LOG.write_me('\\tEND - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')')\n LOG.write_me('')\n LOG.write_me('')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef some_func():\n CFG.start_clock_module = datetime.datetime.now()\n LOG.write_me('\\tSTART - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ')')\n my_root_dir = os.getcwd()\n list_output_dir = list()\n list_of_files = list()\n LOG.write_me(\"\\t\\tList of the files deleted from the 'OUTPUT' folders:\")\n for root, dirs, files in os.walk(my_root_dir):\n if not str(root).endswith('ABACUS'):\n if 'OUTPUT_' in str(root):\n for file in files:\n if str(file).endswith('.txt'):\n rel_path_file = os.path.relpath(root, my_root_dir\n ) + '/' + file\n LOG.write_me('\\t\\t- ' + rel_path_file)\n path_file = root + '\\\\' + file\n os.remove(path_file)\n list_of_files.append(rel_path_file)\n if len(list_of_files) == 0:\n LOG.write_me('\\t\\t\\t- No output file to clean')\n elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module)\n LOG.write_me('\\tEND - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')')\n LOG.write_me('')\n LOG.write_me('')\n\n\nif __name__ == '__main__':\n some_func()\n", "step-4": "import _cfg_GLOBAL as CFG\nimport os\nimport LOG\nimport UTILITY as UTL\nimport datetime\n\n\ndef some_func():\n CFG.start_clock_module = datetime.datetime.now()\n LOG.write_me('\\tSTART - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ')')\n my_root_dir = os.getcwd()\n list_output_dir = list()\n list_of_files = list()\n LOG.write_me(\"\\t\\tList of the files deleted from the 'OUTPUT' folders:\")\n for root, dirs, files in os.walk(my_root_dir):\n if not str(root).endswith('ABACUS'):\n if 'OUTPUT_' in str(root):\n for file in files:\n if str(file).endswith('.txt'):\n rel_path_file = os.path.relpath(root, my_root_dir\n ) + '/' + file\n LOG.write_me('\\t\\t- ' + rel_path_file)\n path_file = root + '\\\\' + file\n os.remove(path_file)\n list_of_files.append(rel_path_file)\n if len(list_of_files) == 0:\n LOG.write_me('\\t\\t\\t- No output file to clean')\n elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module)\n LOG.write_me('\\tEND - CLEAN.py (' + datetime.datetime.now().strftime(\n '%y-%m-%d | %H:%M') + ' | hh.mm.ss.ms ' + elapsed_formatted + ')')\n LOG.write_me('')\n LOG.write_me('')\n\n\nif __name__ == '__main__':\n some_func()\n", "step-5": "############################################-############################################\n################################ F I L E A U T H O R S ################################\n# MIKE - see contacts in _doc_PACKAGE_DESCRIPTION\n\n####################################### A B O U T #######################################\n# In this module:\n# I clean the out put directories\n\n####################################### S T A R T #######################################\n\nimport _cfg_GLOBAL as CFG\nimport os\nimport LOG\nimport UTILITY as UTL\nimport datetime\n\n\ndef some_func():\n CFG.start_clock_module = datetime.datetime.now()\n LOG.write_me(\"\\tSTART - CLEAN.py (\" + datetime.datetime.now().strftime(\"%y-%m-%d | %H:%M\") + \")\")\n\n my_root_dir = os.getcwd()\n list_output_dir = list()\n list_of_files = list()\n\n LOG.write_me(\"\\t\\tList of the files deleted from the 'OUTPUT' folders:\")\n for root, dirs, files in os.walk(my_root_dir):\n if not str(root).endswith(\"ABACUS\"):\n if \"OUTPUT_\" in str(root):\n for file in files:\n if str(file).endswith(\".txt\"):\n rel_path_file = os.path.relpath(root, my_root_dir) + \"/\" + file\n LOG.write_me(\"\\t\\t- \" + rel_path_file )\n path_file = root + \"\\\\\" + file\n os.remove(path_file)\n list_of_files.append(rel_path_file)\n if len(list_of_files) == 0:\n LOG.write_me(\"\\t\\t\\t- No output file to clean\")\n elapsed_formatted = UTL.format_elapsed(CFG.start_clock_module)\n LOG.write_me(\"\\tEND - CLEAN.py (\" + datetime.datetime.now().strftime(\"%y-%m-%d | %H:%M\") + \" | hh.mm.ss.ms \" + elapsed_formatted + \")\")\n LOG.write_me(\"\")\n LOG.write_me(\"\")\nif __name__ == '__main__':\n some_func()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask import Flask, render_template, request import matplotlib.pyplot as plt import numpy as np import sympy from DerivTest import diff, diff2, trapz from sympy.parsing.sympy_parser import parse_expr from sympy import Symbol #from ParsingClass import Parser #from scitools.StringFunction import StringFunction #from wtforms import Form, TextField, TextAreaField, validators, StringField, SubmitField app = Flask(__name__) app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1 def functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2): print("printing user input from functionGraph - " + function) print(dVal1, dVal2, dVal3, dVal4) #parser = Parser() #x=np.array(range(10)) x1 = -5; x2 = 5; print("1st input:") y=function def f(x): return eval(y) '''print("Domain Val 1:") x1 = float(input()) print("Domain Val 2:") x2 = float(input()) print("Range Val 1:") y1 = float(input()) print("Range Val 2:") y2 = float(input()) ''' x1=int(dVal1) x2=int(dVal2) y1=int(dVal3) y2=int(dVal4) print("Processing...") xRange1 = np.arange(x1, x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 yParsed = parse_expr(y, evaluate=False) n, d = yParsed.as_numer_denom() #s = Symbol('s', real = True) undef = sympy.solve(d) numzero = sympy.solve(n) plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') plt.xlim(x1, x2) plt.ylim(y1, y2) plt.autoscale(False) for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count+1 xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2,2,1) ax1.plot(xVal1, yVal1, 'g') for x in undef: if x not in numzero: try: ax1.axvline(x=x, linestyle = '--') except: pass else: x=x+0.01 ax1.plot(x, eval(y), "o", markersize=7, markeredgewidth=1, markeredgecolor='g',markerfacecolor='None') count = 0 '''for zero in numzero: if zero in undef: ax1.plot(zero, f(zero), marker='s', color='green') count = count + 1''' #ax1.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) #plt.axis([0,6,0,30]) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png', bbox_inches = 'tight') ############################################# # Relative Extrema ############################################# xRange2 = np.arange(x1, x2, 0.01) count = 0 yRange2 = np.empty(xRange2.size) for x in np.nditer(xRange2): yRange2[count] = diff(y, x) count = count + 1 xVal2 = xRange2.tolist() yVal2 = yRange2.tolist() ax1.plot(xVal2, yVal2, 'r', alpha=0.2) # ax2.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') count = 1 limit = len(yVal2) - 1 for z in yVal2: if count == limit: break if (yVal2[count - 1]>0 and yVal2[count + 1]<0): ax1.plot(xVal1[count], yVal1[count], marker='s', color='c') ax1.axvline(x=xVal1[count], linestyle='--') count = count + 1 plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png', bbox_inches='tight') plt.clf() xRange1 = np.arange(x1, x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count + 1 plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2, 2, 1) ax1.plot(xVal1, yVal1,'g') # ax1.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange2 = np.arange(x1, x2, 0.01) count = 0 yRange2 = np.empty(xRange2.size) for x in np.nditer(xRange2): yRange2[count] = diff(y, x) count = count + 1 xVal2 = xRange2.tolist() yVal2 = yRange2.tolist() ax1.plot(xVal2, yVal2, 'r', alpha=0.2) # ax2.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') count = 1 limit = len(yVal2) - 1 for z in yVal2: if count == limit: break if (yVal2[count - 1] < 0 and yVal2[count + 1] > 0): ax1.plot(xVal1[count], yVal1[count], marker='s', color='c') ax1.axvline(x=xVal1[count], linestyle='--') count = count + 1 plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png', bbox_inches='tight') plt.clf() ############################################# # First Derivative ############################################# xRange1 = np.arange(x1,x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count+1 plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2,2,1) ax1.plot(xVal1, yVal1, 'g') #ax1.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange2 = np.arange(x1, x2, 0.01) count = 0 yRange2 = np.empty(xRange2.size) for x in np.nditer(xRange2): yRange2[count] = diff(y,x) count = count+1 xVal2 = xRange2.tolist() yVal2 = yRange2.tolist() ax1.plot(xVal2, yVal2, 'r') #ax2.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') if d == 1: plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png', bbox_inches = 'tight') ############################################# # SECOND DERIVATIVE ############################################# xRange1 = np.arange(x1, x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count + 1 plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2, 2, 1) ax1.plot(xVal1, yVal1, 'g') # ax1.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange2 = np.arange(x1, x2, 0.01) count = 0 yRange2 = np.empty(xRange2.size) for x in np.nditer(xRange2): yRange2[count] = diff(y, x) count = count + 1 xVal2 = xRange2.tolist() yVal2 = yRange2.tolist() ax1.plot(xVal2, yVal2, 'r') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange3 = np.arange(x1, x2, 0.01) yRange3 = np.empty(xRange3.size) '''for x in np.nditer(xRange3): yRange3[count] = diff2(y, x) count = count + 1''' count = 1 limit = yRange2.size-1 for x in np.nditer(xRange3): if count == limit: break yRange3[count] = diff2(yRange2[count-1], yRange2[count+1]) count = count + 1 np.delete(xRange3, -1) np.delete(yRange3, -1) xVal3 = xRange3.tolist() yVal3 = yRange3.tolist() print("XXXXXXXXXX") for x in xVal3: print (x) print("YYYYYYYYYY") for yVal in yVal3: print (yVal) ax1.plot(xVal3, yVal3, 'b') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') if d == 1: plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png', bbox_inches='tight') plt.clf ############################################# #POINTS OF INFLECTION ############################################# xRange1 = np.arange(x1, x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count + 1 plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2, 2, 1) ax1.plot(xVal1, yVal1, 'g') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange2 = np.arange(x1, x2, 0.01) count = 0 yRange2 = np.empty(xRange2.size) for x in np.nditer(xRange2): yRange2[count] = diff(y, x) count = count + 1 xVal2 = xRange2.tolist() yVal2 = yRange2.tolist() ax1.plot(xVal2, yVal2, 'r', alpha=0.2) ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') xRange3 = np.arange(x1, x2, 0.01) yRange3 = np.empty(xRange3.size) count = 1 limit = yRange2.size - 1 for x in np.nditer(xRange3): if count == limit: break yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1]) count = count + 1 np.delete(xRange3, -1) np.delete(yRange3, -1) xVal3 = xRange3.tolist() yVal3 = yRange3.tolist() ax1.plot(xVal3, yVal3, 'b', alpha=0.2) ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') if d == 1: plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) count = 1 limit = len(yVal2) - 1 for z in yVal3: if count == limit: break if yVal3[count - 1] < 0 and yVal3[count + 1] > 0: points1 = ax1.plot(xVal2[count], yVal1[count], marker='s', color='c') ax1.axvline(x=xVal2[count], linestyle='--') count = count + 1 count = 1 limit = len(yVal2) - 1 for z in yVal3: if count == limit: break if yVal3[count - 1] > 0 and yVal3[count + 1] < 0: points1 = ax1.plot(xVal2[count], yVal1[count], marker='s', color='c') ax1.axvline(x=xVal2[count], linestyle='--') count = count + 1 if d == 1: plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png', bbox_inches='tight') plt.clf() ############################################# # FTC ############################################# xRange1 = np.arange(x1, x2, 0.01) yRange1 = np.empty(xRange1.size) count = 0 n, d = yParsed.as_numer_denom() undef = sympy.solve(d) plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k') plt.xlim(x1, x2) plt.ylim(y1, y2) plt.autoscale(False) for x in np.nditer(xRange1): yRange1[count] = eval(y) count = count + 1 xVal1 = xRange1.tolist() yVal1 = yRange1.tolist() ax1 = plt.subplot(2, 2, 1) ax1.plot(xVal1, yVal1, 'g') n, d = yParsed.as_numer_denom() s = Symbol('s', real=True) undef = sympy.solve(d, s) for xc in undef: ax1.axvline(x=xc, linestyle='--') ''' print("Integration x1:") x1int = float(input()) print("Integration x2:") x2int = float(input()) ''' x1int = int(ftcVal1) x2int = int(ftcVal2) print("Processing...") sectionx = np.arange(x1int, x2int, 0.00001) sectiony = np.empty(sectionx.size) count = 0 for x in np.nditer(sectionx): sectiony[count] = eval(y) count = count+1 plt.fill_between(sectionx, sectiony) global area area = 0 count = 0 limit = sectionx.size-1 for x in np.nditer(sectionx): if(count == limit): break trapSum = trapz(sectiony[count], sectiony[count+1]) area = area + trapSum count = count + 1 print(area) # ax1.set_aspect('equal') ax1.grid(True, which='both') ax1.axhline(y=0, color='k') ax1.axvline(x=0, color='k') if d == 1: plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.xlim(left=x1, right=x2) plt.ylim(top=y2, bottom=y1) plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png', bbox_inches='tight') global area x1 = -5; x2 = 5; xRange1 = np.arange(x1,x2, 0.01) #print("1st input") #y=input() #yParsed = parse_expr(y, evaluate=False) #functionGraph(y) def testFunc(inp): print("printing user input from testFunc - " +inp) pass ############################################## #works on CHROME ONLY, caching issue in Safari ############################################## @app.route('/', methods=['GET', 'POST']) @app.route('/graph', methods=['GET', 'POST']) def graph(): if request.method == 'POST': func = request.form['Function'] dVal1 = request.form['dVal1'] dVal2 = request.form['dVal2'] dVal3 = request.form['dVal3'] dVal4 = request.form['dVal4'] ftcVal1 = request.form['ftcVal1'] ftcVal2 = request.form['ftcVal2'] functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2) print("user input = " +str(input)) #testFunc(input) return render_template("graph.html") #return render_template("graph.html", result=input) @app.route('/home', methods=['GET', 'POST']) def home(): return render_template('home.html') @app.route('/input', methods=['GET', 'POST']) def input(): return render_template('input.html') '''@app.route('/input', methods=['GET', 'POST']) def input_post(): if request.method == 'POST': result = request.form['Function'] print(result) return render_template("graph.html", result=result)''' @app.route('/der', methods=['GET', 'POST']) def derGraph(): return render_template('graph2.html') @app.route('/der2', methods=['GET', 'POST']) def der2Graph(): return render_template('graph3.html') @app.route('/relmax', methods=['GET', 'POST']) def relmax(): return render_template('relmax.html') @app.route('/relmin', methods=['GET', 'POST']) def relmin(): return render_template('relmin.html') @app.route('/poi', methods=['GET', 'POST']) def poi(): return render_template('poi.html') @app.route('/ftc', methods=['GET', 'POST']) def ftc(): global area return render_template('ftc.html', result = str(area)) @app.route('/in1', methods=['GET', 'POST']) def in1(): return render_template('in1.html') @app.route('/out1', methods=['GET', 'POST']) def out1(): return render_template('out1.html') @app.after_request def add_header(response): response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1' response.headers['Cache-Control'] = 'public, max-age=0' return response if __name__ == '__main__': app.run(host='0.0.0.0', port=8080, debug=False)
normal
{ "blob_id": "9dc8449bcc0c6c6ffb5ced5724ca632b6578bf1b", "index": 9170, "step-1": "<mask token>\n\n\ndef functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2):\n print('printing user input from functionGraph - ' + function)\n print(dVal1, dVal2, dVal3, dVal4)\n x1 = -5\n x2 = 5\n print('1st input:')\n y = function\n\n def f(x):\n return eval(y)\n \"\"\"print(\"Domain Val 1:\")\n x1 = float(input())\n print(\"Domain Val 2:\")\n x2 = float(input())\n print(\"Range Val 1:\")\n y1 = float(input())\n print(\"Range Val 2:\")\n y2 = float(input())\n \"\"\"\n x1 = int(dVal1)\n x2 = int(dVal2)\n y1 = int(dVal3)\n y2 = int(dVal4)\n print('Processing...')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n yParsed = parse_expr(y, evaluate=False)\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n numzero = sympy.solve(n)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n for x in undef:\n if x not in numzero:\n try:\n ax1.axvline(x=x, linestyle='--')\n except:\n pass\n else:\n x = x + 0.01\n ax1.plot(x, eval(y), 'o', markersize=7, markeredgewidth=1,\n markeredgecolor='g', markerfacecolor='None')\n count = 0\n \"\"\"for zero in numzero:\n if zero in undef:\n ax1.plot(zero, f(zero), marker='s', color='green')\n count = count + 1\"\"\"\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png'\n , bbox_inches='tight')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] > 0 and yVal2[count + 1] < 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] < 0 and yVal2[count + 1] > 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png'\n , bbox_inches='tight')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n \"\"\"for x in np.nditer(xRange3):\n yRange3[count] = diff2(y, x)\n count = count + 1\"\"\"\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n print('XXXXXXXXXX')\n for x in xVal3:\n print(x)\n print('YYYYYYYYYY')\n for yVal in yVal3:\n print(yVal)\n ax1.plot(xVal3, yVal3, 'b')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png'\n , bbox_inches='tight')\n plt.clf\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n ax1.plot(xVal3, yVal3, 'b', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] < 0 and yVal3[count + 1] > 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] > 0 and yVal3[count + 1] < 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n n, d = yParsed.as_numer_denom()\n s = Symbol('s', real=True)\n undef = sympy.solve(d, s)\n for xc in undef:\n ax1.axvline(x=xc, linestyle='--')\n \"\"\"\n print(\"Integration x1:\")\n x1int = float(input())\n print(\"Integration x2:\")\n x2int = float(input())\n \"\"\"\n x1int = int(ftcVal1)\n x2int = int(ftcVal2)\n print('Processing...')\n sectionx = np.arange(x1int, x2int, 1e-05)\n sectiony = np.empty(sectionx.size)\n count = 0\n for x in np.nditer(sectionx):\n sectiony[count] = eval(y)\n count = count + 1\n plt.fill_between(sectionx, sectiony)\n global area\n area = 0\n count = 0\n limit = sectionx.size - 1\n for x in np.nditer(sectionx):\n if count == limit:\n break\n trapSum = trapz(sectiony[count], sectiony[count + 1])\n area = area + trapSum\n count = count + 1\n print(area)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png'\n , bbox_inches='tight')\n\n\n<mask token>\n\n\ndef testFunc(inp):\n print('printing user input from testFunc - ' + inp)\n pass\n\n\[email protected]('/', methods=['GET', 'POST'])\[email protected]('/graph', methods=['GET', 'POST'])\ndef graph():\n if request.method == 'POST':\n func = request.form['Function']\n dVal1 = request.form['dVal1']\n dVal2 = request.form['dVal2']\n dVal3 = request.form['dVal3']\n dVal4 = request.form['dVal4']\n ftcVal1 = request.form['ftcVal1']\n ftcVal2 = request.form['ftcVal2']\n functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2)\n print('user input = ' + str(input))\n return render_template('graph.html')\n\n\n<mask token>\n\n\[email protected]('/input', methods=['GET', 'POST'])\ndef input():\n return render_template('input.html')\n\n\n<mask token>\n\n\[email protected]('/der2', methods=['GET', 'POST'])\ndef der2Graph():\n return render_template('graph3.html')\n\n\[email protected]('/relmax', methods=['GET', 'POST'])\ndef relmax():\n return render_template('relmax.html')\n\n\[email protected]('/relmin', methods=['GET', 'POST'])\ndef relmin():\n return render_template('relmin.html')\n\n\n<mask token>\n\n\[email protected]('/ftc', methods=['GET', 'POST'])\ndef ftc():\n global area\n return render_template('ftc.html', result=str(area))\n\n\[email protected]('/in1', methods=['GET', 'POST'])\ndef in1():\n return render_template('in1.html')\n\n\n<mask token>\n\n\[email protected]_request\ndef add_header(response):\n response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'\n response.headers['Cache-Control'] = 'public, max-age=0'\n return response\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2):\n print('printing user input from functionGraph - ' + function)\n print(dVal1, dVal2, dVal3, dVal4)\n x1 = -5\n x2 = 5\n print('1st input:')\n y = function\n\n def f(x):\n return eval(y)\n \"\"\"print(\"Domain Val 1:\")\n x1 = float(input())\n print(\"Domain Val 2:\")\n x2 = float(input())\n print(\"Range Val 1:\")\n y1 = float(input())\n print(\"Range Val 2:\")\n y2 = float(input())\n \"\"\"\n x1 = int(dVal1)\n x2 = int(dVal2)\n y1 = int(dVal3)\n y2 = int(dVal4)\n print('Processing...')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n yParsed = parse_expr(y, evaluate=False)\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n numzero = sympy.solve(n)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n for x in undef:\n if x not in numzero:\n try:\n ax1.axvline(x=x, linestyle='--')\n except:\n pass\n else:\n x = x + 0.01\n ax1.plot(x, eval(y), 'o', markersize=7, markeredgewidth=1,\n markeredgecolor='g', markerfacecolor='None')\n count = 0\n \"\"\"for zero in numzero:\n if zero in undef:\n ax1.plot(zero, f(zero), marker='s', color='green')\n count = count + 1\"\"\"\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png'\n , bbox_inches='tight')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] > 0 and yVal2[count + 1] < 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] < 0 and yVal2[count + 1] > 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png'\n , bbox_inches='tight')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n \"\"\"for x in np.nditer(xRange3):\n yRange3[count] = diff2(y, x)\n count = count + 1\"\"\"\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n print('XXXXXXXXXX')\n for x in xVal3:\n print(x)\n print('YYYYYYYYYY')\n for yVal in yVal3:\n print(yVal)\n ax1.plot(xVal3, yVal3, 'b')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png'\n , bbox_inches='tight')\n plt.clf\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n ax1.plot(xVal3, yVal3, 'b', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] < 0 and yVal3[count + 1] > 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] > 0 and yVal3[count + 1] < 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n n, d = yParsed.as_numer_denom()\n s = Symbol('s', real=True)\n undef = sympy.solve(d, s)\n for xc in undef:\n ax1.axvline(x=xc, linestyle='--')\n \"\"\"\n print(\"Integration x1:\")\n x1int = float(input())\n print(\"Integration x2:\")\n x2int = float(input())\n \"\"\"\n x1int = int(ftcVal1)\n x2int = int(ftcVal2)\n print('Processing...')\n sectionx = np.arange(x1int, x2int, 1e-05)\n sectiony = np.empty(sectionx.size)\n count = 0\n for x in np.nditer(sectionx):\n sectiony[count] = eval(y)\n count = count + 1\n plt.fill_between(sectionx, sectiony)\n global area\n area = 0\n count = 0\n limit = sectionx.size - 1\n for x in np.nditer(sectionx):\n if count == limit:\n break\n trapSum = trapz(sectiony[count], sectiony[count + 1])\n area = area + trapSum\n count = count + 1\n print(area)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png'\n , bbox_inches='tight')\n\n\n<mask token>\n\n\ndef testFunc(inp):\n print('printing user input from testFunc - ' + inp)\n pass\n\n\[email protected]('/', methods=['GET', 'POST'])\[email protected]('/graph', methods=['GET', 'POST'])\ndef graph():\n if request.method == 'POST':\n func = request.form['Function']\n dVal1 = request.form['dVal1']\n dVal2 = request.form['dVal2']\n dVal3 = request.form['dVal3']\n dVal4 = request.form['dVal4']\n ftcVal1 = request.form['ftcVal1']\n ftcVal2 = request.form['ftcVal2']\n functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2)\n print('user input = ' + str(input))\n return render_template('graph.html')\n\n\n<mask token>\n\n\[email protected]('/input', methods=['GET', 'POST'])\ndef input():\n return render_template('input.html')\n\n\n<mask token>\n\n\[email protected]('/der', methods=['GET', 'POST'])\ndef derGraph():\n return render_template('graph2.html')\n\n\[email protected]('/der2', methods=['GET', 'POST'])\ndef der2Graph():\n return render_template('graph3.html')\n\n\[email protected]('/relmax', methods=['GET', 'POST'])\ndef relmax():\n return render_template('relmax.html')\n\n\[email protected]('/relmin', methods=['GET', 'POST'])\ndef relmin():\n return render_template('relmin.html')\n\n\[email protected]('/poi', methods=['GET', 'POST'])\ndef poi():\n return render_template('poi.html')\n\n\[email protected]('/ftc', methods=['GET', 'POST'])\ndef ftc():\n global area\n return render_template('ftc.html', result=str(area))\n\n\[email protected]('/in1', methods=['GET', 'POST'])\ndef in1():\n return render_template('in1.html')\n\n\[email protected]('/out1', methods=['GET', 'POST'])\ndef out1():\n return render_template('out1.html')\n\n\[email protected]_request\ndef add_header(response):\n response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'\n response.headers['Cache-Control'] = 'public, max-age=0'\n return response\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2):\n print('printing user input from functionGraph - ' + function)\n print(dVal1, dVal2, dVal3, dVal4)\n x1 = -5\n x2 = 5\n print('1st input:')\n y = function\n\n def f(x):\n return eval(y)\n \"\"\"print(\"Domain Val 1:\")\n x1 = float(input())\n print(\"Domain Val 2:\")\n x2 = float(input())\n print(\"Range Val 1:\")\n y1 = float(input())\n print(\"Range Val 2:\")\n y2 = float(input())\n \"\"\"\n x1 = int(dVal1)\n x2 = int(dVal2)\n y1 = int(dVal3)\n y2 = int(dVal4)\n print('Processing...')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n yParsed = parse_expr(y, evaluate=False)\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n numzero = sympy.solve(n)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n for x in undef:\n if x not in numzero:\n try:\n ax1.axvline(x=x, linestyle='--')\n except:\n pass\n else:\n x = x + 0.01\n ax1.plot(x, eval(y), 'o', markersize=7, markeredgewidth=1,\n markeredgecolor='g', markerfacecolor='None')\n count = 0\n \"\"\"for zero in numzero:\n if zero in undef:\n ax1.plot(zero, f(zero), marker='s', color='green')\n count = count + 1\"\"\"\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png'\n , bbox_inches='tight')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] > 0 and yVal2[count + 1] < 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] < 0 and yVal2[count + 1] > 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png'\n , bbox_inches='tight')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n \"\"\"for x in np.nditer(xRange3):\n yRange3[count] = diff2(y, x)\n count = count + 1\"\"\"\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n print('XXXXXXXXXX')\n for x in xVal3:\n print(x)\n print('YYYYYYYYYY')\n for yVal in yVal3:\n print(yVal)\n ax1.plot(xVal3, yVal3, 'b')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png'\n , bbox_inches='tight')\n plt.clf\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n ax1.plot(xVal3, yVal3, 'b', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] < 0 and yVal3[count + 1] > 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] > 0 and yVal3[count + 1] < 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n n, d = yParsed.as_numer_denom()\n s = Symbol('s', real=True)\n undef = sympy.solve(d, s)\n for xc in undef:\n ax1.axvline(x=xc, linestyle='--')\n \"\"\"\n print(\"Integration x1:\")\n x1int = float(input())\n print(\"Integration x2:\")\n x2int = float(input())\n \"\"\"\n x1int = int(ftcVal1)\n x2int = int(ftcVal2)\n print('Processing...')\n sectionx = np.arange(x1int, x2int, 1e-05)\n sectiony = np.empty(sectionx.size)\n count = 0\n for x in np.nditer(sectionx):\n sectiony[count] = eval(y)\n count = count + 1\n plt.fill_between(sectionx, sectiony)\n global area\n area = 0\n count = 0\n limit = sectionx.size - 1\n for x in np.nditer(sectionx):\n if count == limit:\n break\n trapSum = trapz(sectiony[count], sectiony[count + 1])\n area = area + trapSum\n count = count + 1\n print(area)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png'\n , bbox_inches='tight')\n\n\nglobal area\n<mask token>\n\n\ndef testFunc(inp):\n print('printing user input from testFunc - ' + inp)\n pass\n\n\[email protected]('/', methods=['GET', 'POST'])\[email protected]('/graph', methods=['GET', 'POST'])\ndef graph():\n if request.method == 'POST':\n func = request.form['Function']\n dVal1 = request.form['dVal1']\n dVal2 = request.form['dVal2']\n dVal3 = request.form['dVal3']\n dVal4 = request.form['dVal4']\n ftcVal1 = request.form['ftcVal1']\n ftcVal2 = request.form['ftcVal2']\n functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2)\n print('user input = ' + str(input))\n return render_template('graph.html')\n\n\[email protected]('/home', methods=['GET', 'POST'])\ndef home():\n return render_template('home.html')\n\n\[email protected]('/input', methods=['GET', 'POST'])\ndef input():\n return render_template('input.html')\n\n\n<mask token>\n\n\[email protected]('/der', methods=['GET', 'POST'])\ndef derGraph():\n return render_template('graph2.html')\n\n\[email protected]('/der2', methods=['GET', 'POST'])\ndef der2Graph():\n return render_template('graph3.html')\n\n\[email protected]('/relmax', methods=['GET', 'POST'])\ndef relmax():\n return render_template('relmax.html')\n\n\[email protected]('/relmin', methods=['GET', 'POST'])\ndef relmin():\n return render_template('relmin.html')\n\n\[email protected]('/poi', methods=['GET', 'POST'])\ndef poi():\n return render_template('poi.html')\n\n\[email protected]('/ftc', methods=['GET', 'POST'])\ndef ftc():\n global area\n return render_template('ftc.html', result=str(area))\n\n\[email protected]('/in1', methods=['GET', 'POST'])\ndef in1():\n return render_template('in1.html')\n\n\[email protected]('/out1', methods=['GET', 'POST'])\ndef out1():\n return render_template('out1.html')\n\n\[email protected]_request\ndef add_header(response):\n response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'\n response.headers['Cache-Control'] = 'public, max-age=0'\n return response\n\n\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=8080, debug=False)\n", "step-4": "<mask token>\napp = Flask(__name__)\napp.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1\n\n\ndef functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2):\n print('printing user input from functionGraph - ' + function)\n print(dVal1, dVal2, dVal3, dVal4)\n x1 = -5\n x2 = 5\n print('1st input:')\n y = function\n\n def f(x):\n return eval(y)\n \"\"\"print(\"Domain Val 1:\")\n x1 = float(input())\n print(\"Domain Val 2:\")\n x2 = float(input())\n print(\"Range Val 1:\")\n y1 = float(input())\n print(\"Range Val 2:\")\n y2 = float(input())\n \"\"\"\n x1 = int(dVal1)\n x2 = int(dVal2)\n y1 = int(dVal3)\n y2 = int(dVal4)\n print('Processing...')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n yParsed = parse_expr(y, evaluate=False)\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n numzero = sympy.solve(n)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n for x in undef:\n if x not in numzero:\n try:\n ax1.axvline(x=x, linestyle='--')\n except:\n pass\n else:\n x = x + 0.01\n ax1.plot(x, eval(y), 'o', markersize=7, markeredgewidth=1,\n markeredgecolor='g', markerfacecolor='None')\n count = 0\n \"\"\"for zero in numzero:\n if zero in undef:\n ax1.plot(zero, f(zero), marker='s', color='green')\n count = count + 1\"\"\"\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png'\n , bbox_inches='tight')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] > 0 and yVal2[count + 1] < 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if yVal2[count - 1] < 0 and yVal2[count + 1] > 0:\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png'\n , bbox_inches='tight')\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n \"\"\"for x in np.nditer(xRange3):\n yRange3[count] = diff2(y, x)\n count = count + 1\"\"\"\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n print('XXXXXXXXXX')\n for x in xVal3:\n print(x)\n print('YYYYYYYYYY')\n for yVal in yVal3:\n print(yVal)\n ax1.plot(xVal3, yVal3, 'b')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png'\n , bbox_inches='tight')\n plt.clf\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n ax1.plot(xVal3, yVal3, 'b', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] < 0 and yVal3[count + 1] > 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] > 0 and yVal3[count + 1] < 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s',\n color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png'\n , bbox_inches='tight')\n plt.clf()\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k'\n )\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n n, d = yParsed.as_numer_denom()\n s = Symbol('s', real=True)\n undef = sympy.solve(d, s)\n for xc in undef:\n ax1.axvline(x=xc, linestyle='--')\n \"\"\"\n print(\"Integration x1:\")\n x1int = float(input())\n print(\"Integration x2:\")\n x2int = float(input())\n \"\"\"\n x1int = int(ftcVal1)\n x2int = int(ftcVal2)\n print('Processing...')\n sectionx = np.arange(x1int, x2int, 1e-05)\n sectiony = np.empty(sectionx.size)\n count = 0\n for x in np.nditer(sectionx):\n sectiony[count] = eval(y)\n count = count + 1\n plt.fill_between(sectionx, sectiony)\n global area\n area = 0\n count = 0\n limit = sectionx.size - 1\n for x in np.nditer(sectionx):\n if count == limit:\n break\n trapSum = trapz(sectiony[count], sectiony[count + 1])\n area = area + trapSum\n count = count + 1\n print(area)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig(\n '/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png'\n , bbox_inches='tight')\n\n\nglobal area\nx1 = -5\nx2 = 5\nxRange1 = np.arange(x1, x2, 0.01)\n\n\ndef testFunc(inp):\n print('printing user input from testFunc - ' + inp)\n pass\n\n\[email protected]('/', methods=['GET', 'POST'])\[email protected]('/graph', methods=['GET', 'POST'])\ndef graph():\n if request.method == 'POST':\n func = request.form['Function']\n dVal1 = request.form['dVal1']\n dVal2 = request.form['dVal2']\n dVal3 = request.form['dVal3']\n dVal4 = request.form['dVal4']\n ftcVal1 = request.form['ftcVal1']\n ftcVal2 = request.form['ftcVal2']\n functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2)\n print('user input = ' + str(input))\n return render_template('graph.html')\n\n\[email protected]('/home', methods=['GET', 'POST'])\ndef home():\n return render_template('home.html')\n\n\[email protected]('/input', methods=['GET', 'POST'])\ndef input():\n return render_template('input.html')\n\n\n<mask token>\n\n\[email protected]('/der', methods=['GET', 'POST'])\ndef derGraph():\n return render_template('graph2.html')\n\n\[email protected]('/der2', methods=['GET', 'POST'])\ndef der2Graph():\n return render_template('graph3.html')\n\n\[email protected]('/relmax', methods=['GET', 'POST'])\ndef relmax():\n return render_template('relmax.html')\n\n\[email protected]('/relmin', methods=['GET', 'POST'])\ndef relmin():\n return render_template('relmin.html')\n\n\[email protected]('/poi', methods=['GET', 'POST'])\ndef poi():\n return render_template('poi.html')\n\n\[email protected]('/ftc', methods=['GET', 'POST'])\ndef ftc():\n global area\n return render_template('ftc.html', result=str(area))\n\n\[email protected]('/in1', methods=['GET', 'POST'])\ndef in1():\n return render_template('in1.html')\n\n\[email protected]('/out1', methods=['GET', 'POST'])\ndef out1():\n return render_template('out1.html')\n\n\[email protected]_request\ndef add_header(response):\n response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'\n response.headers['Cache-Control'] = 'public, max-age=0'\n return response\n\n\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=8080, debug=False)\n", "step-5": "from flask import Flask, render_template, request\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport sympy\nfrom DerivTest import diff, diff2, trapz\nfrom sympy.parsing.sympy_parser import parse_expr\nfrom sympy import Symbol\n#from ParsingClass import Parser\n#from scitools.StringFunction import StringFunction\n#from wtforms import Form, TextField, TextAreaField, validators, StringField, SubmitField\n\napp = Flask(__name__)\napp.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1\n\ndef functionGraph(function, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2):\n print(\"printing user input from functionGraph - \" + function)\n print(dVal1, dVal2, dVal3, dVal4)\n #parser = Parser()\n #x=np.array(range(10))\n x1 = -5;\n x2 = 5;\n print(\"1st input:\")\n y=function\n def f(x):\n return eval(y)\n '''print(\"Domain Val 1:\")\n x1 = float(input())\n print(\"Domain Val 2:\")\n x2 = float(input())\n print(\"Range Val 1:\")\n y1 = float(input())\n print(\"Range Val 2:\")\n y2 = float(input())\n '''\n\n x1=int(dVal1)\n x2=int(dVal2)\n y1=int(dVal3)\n y2=int(dVal4)\n\n print(\"Processing...\")\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n yParsed = parse_expr(y, evaluate=False)\n n, d = yParsed.as_numer_denom()\n #s = Symbol('s', real = True)\n undef = sympy.solve(d)\n numzero = sympy.solve(n)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count+1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2,2,1)\n ax1.plot(xVal1, yVal1, 'g')\n for x in undef:\n if x not in numzero:\n try:\n ax1.axvline(x=x, linestyle = '--')\n except:\n pass\n else:\n x=x+0.01\n ax1.plot(x, eval(y), \"o\", markersize=7, markeredgewidth=1, markeredgecolor='g',markerfacecolor='None')\n count = 0\n '''for zero in numzero:\n if zero in undef:\n ax1.plot(zero, f(zero), marker='s', color='green')\n count = count + 1'''\n #ax1.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n #plt.axis([0,6,0,30])\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/graph.png', bbox_inches = 'tight')\n\n #############################################\n # Relative Extrema\n #############################################\n\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n # ax2.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if (yVal2[count - 1]>0 and yVal2[count + 1]<0):\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmax.png', bbox_inches='tight')\n plt.clf()\n\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1,'g')\n # ax1.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n # ax2.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n count = 1\n limit = len(yVal2) - 1\n for z in yVal2:\n if count == limit:\n break\n if (yVal2[count - 1] < 0 and yVal2[count + 1] > 0):\n ax1.plot(xVal1[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal1[count], linestyle='--')\n count = count + 1\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/relmin.png', bbox_inches='tight')\n plt.clf()\n\n\n #############################################\n # First Derivative\n #############################################\n\n xRange1 = np.arange(x1,x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count+1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2,2,1)\n ax1.plot(xVal1, yVal1, 'g')\n #ax1.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y,x)\n count = count+1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n #ax2.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv_graph.png', bbox_inches = 'tight')\n\n #############################################\n # SECOND DERIVATIVE\n #############################################\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n # ax1.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n '''for x in np.nditer(xRange3):\n yRange3[count] = diff2(y, x)\n count = count + 1'''\n count = 1\n limit = yRange2.size-1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count-1], yRange2[count+1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n print(\"XXXXXXXXXX\")\n for x in xVal3:\n print (x)\n print(\"YYYYYYYYYY\")\n for yVal in yVal3:\n print (yVal)\n ax1.plot(xVal3, yVal3, 'b')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/deriv2_graph.png', bbox_inches='tight')\n plt.clf\n #############################################\n #POINTS OF INFLECTION\n #############################################\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange2 = np.arange(x1, x2, 0.01)\n count = 0\n yRange2 = np.empty(xRange2.size)\n for x in np.nditer(xRange2):\n yRange2[count] = diff(y, x)\n count = count + 1\n xVal2 = xRange2.tolist()\n yVal2 = yRange2.tolist()\n ax1.plot(xVal2, yVal2, 'r', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n xRange3 = np.arange(x1, x2, 0.01)\n yRange3 = np.empty(xRange3.size)\n count = 1\n limit = yRange2.size - 1\n for x in np.nditer(xRange3):\n if count == limit:\n break\n yRange3[count] = diff2(yRange2[count - 1], yRange2[count + 1])\n count = count + 1\n np.delete(xRange3, -1)\n np.delete(yRange3, -1)\n xVal3 = xRange3.tolist()\n yVal3 = yRange3.tolist()\n ax1.plot(xVal3, yVal3, 'b', alpha=0.2)\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] < 0 and yVal3[count + 1] > 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n count = 1\n limit = len(yVal2) - 1\n for z in yVal3:\n if count == limit:\n break\n if yVal3[count - 1] > 0 and yVal3[count + 1] < 0:\n points1 = ax1.plot(xVal2[count], yVal1[count], marker='s', color='c')\n ax1.axvline(x=xVal2[count], linestyle='--')\n count = count + 1\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/poi.png', bbox_inches='tight')\n plt.clf()\n\n #############################################\n # FTC\n #############################################\n xRange1 = np.arange(x1, x2, 0.01)\n yRange1 = np.empty(xRange1.size)\n count = 0\n n, d = yParsed.as_numer_denom()\n undef = sympy.solve(d)\n plt.figure(num=None, figsize=(10, 10), dpi=80, facecolor='w', edgecolor='k')\n plt.xlim(x1, x2)\n plt.ylim(y1, y2)\n plt.autoscale(False)\n for x in np.nditer(xRange1):\n yRange1[count] = eval(y)\n count = count + 1\n xVal1 = xRange1.tolist()\n yVal1 = yRange1.tolist()\n ax1 = plt.subplot(2, 2, 1)\n ax1.plot(xVal1, yVal1, 'g')\n n, d = yParsed.as_numer_denom()\n s = Symbol('s', real=True)\n undef = sympy.solve(d, s)\n for xc in undef:\n ax1.axvline(x=xc, linestyle='--')\n '''\n print(\"Integration x1:\")\n x1int = float(input())\n print(\"Integration x2:\")\n x2int = float(input())\n '''\n x1int = int(ftcVal1)\n x2int = int(ftcVal2)\n print(\"Processing...\")\n sectionx = np.arange(x1int, x2int, 0.00001)\n sectiony = np.empty(sectionx.size)\n count = 0\n for x in np.nditer(sectionx):\n sectiony[count] = eval(y)\n count = count+1\n plt.fill_between(sectionx, sectiony)\n global area\n area = 0\n count = 0\n limit = sectionx.size-1\n for x in np.nditer(sectionx):\n if(count == limit):\n break\n trapSum = trapz(sectiony[count], sectiony[count+1])\n area = area + trapSum\n count = count + 1\n print(area)\n # ax1.set_aspect('equal')\n ax1.grid(True, which='both')\n ax1.axhline(y=0, color='k')\n ax1.axvline(x=0, color='k')\n if d == 1:\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.xlim(left=x1, right=x2)\n plt.ylim(top=y2, bottom=y1)\n plt.savefig('/Users/pranav/PycharmProjects/Main/GraphCalcImplementation/static/images/ftc.png', bbox_inches='tight')\n\nglobal area\n\nx1 = -5;\nx2 = 5;\nxRange1 = np.arange(x1,x2, 0.01)\n#print(\"1st input\")\n#y=input()\n#yParsed = parse_expr(y, evaluate=False)\n#functionGraph(y)\n\ndef testFunc(inp):\n print(\"printing user input from testFunc - \" +inp)\n pass\n\n##############################################\n#works on CHROME ONLY, caching issue in Safari\n##############################################\n\[email protected]('/', methods=['GET', 'POST'])\[email protected]('/graph', methods=['GET', 'POST'])\ndef graph():\n if request.method == 'POST':\n func = request.form['Function']\n dVal1 = request.form['dVal1']\n dVal2 = request.form['dVal2']\n dVal3 = request.form['dVal3']\n dVal4 = request.form['dVal4']\n\n ftcVal1 = request.form['ftcVal1']\n ftcVal2 = request.form['ftcVal2']\n\n functionGraph(func, dVal1, dVal2, dVal3, dVal4, ftcVal1, ftcVal2)\n\n print(\"user input = \" +str(input))\n\n\n #testFunc(input)\n return render_template(\"graph.html\")\n #return render_template(\"graph.html\", result=input)\n\n\[email protected]('/home', methods=['GET', 'POST'])\ndef home():\n return render_template('home.html')\n\[email protected]('/input', methods=['GET', 'POST'])\ndef input():\n return render_template('input.html')\n\n'''@app.route('/input', methods=['GET', 'POST'])\ndef input_post():\n if request.method == 'POST':\n result = request.form['Function']\n print(result)\n return render_template(\"graph.html\", result=result)'''\n\[email protected]('/der', methods=['GET', 'POST'])\ndef derGraph():\n return render_template('graph2.html')\n\[email protected]('/der2', methods=['GET', 'POST'])\ndef der2Graph():\n return render_template('graph3.html')\n\[email protected]('/relmax', methods=['GET', 'POST'])\ndef relmax():\n return render_template('relmax.html')\n\[email protected]('/relmin', methods=['GET', 'POST'])\ndef relmin():\n return render_template('relmin.html')\n\[email protected]('/poi', methods=['GET', 'POST'])\ndef poi():\n return render_template('poi.html')\n\[email protected]('/ftc', methods=['GET', 'POST'])\ndef ftc():\n global area\n return render_template('ftc.html', result = str(area))\n\[email protected]('/in1', methods=['GET', 'POST'])\ndef in1():\n return render_template('in1.html')\n\[email protected]('/out1', methods=['GET', 'POST'])\ndef out1():\n return render_template('out1.html')\n\[email protected]_request\ndef add_header(response):\n response.headers['X-UA-Compatible'] = 'IE=Edge,chrome=1'\n response.headers['Cache-Control'] = 'public, max-age=0'\n return response\n\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=8080, debug=False)\n\n\n", "step-ids": [ 10, 13, 15, 16, 18 ] }
[ 10, 13, 15, 16, 18 ]
# SPDX-License-Identifier: Apache-2.0 # Licensed to the Ed-Fi Alliance under one or more agreements. # The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0. # See the LICENSE and NOTICES files in the project root for more information. import json from typing import Dict from pandas import DataFrame, concat, Series from edfi_google_classroom_extractor.mapping.constants import SOURCE_SYSTEM ACTIVITY_TYPE_STATE = "Submission State Change" ACTIVITY_TYPE_GRADE = "Submission Grade Change" def submissions_to_user_submission_activities_dfs( submissions_df: DataFrame, ) -> Dict[str, DataFrame]: """ Convert a Submission API DataFrame to a Dict of UserActivity UDM DataFrames grouped by source system section id. Parameters ---------- submissions_df: DataFrame is a Submission API DataFrame Returns ------- Dict[str, DataFrame] LMS UDM UserActivity DataFrames grouped by source system section id Notes ----- UserActivity DataFrame columns are: ActivityDateTime: The date/time the activity occurred ActivityStatus: The activity status ActivityTimeInMinutes: The total activity time in minutes ActivityType: The type of activity, here "Submission" or "Grade" AssignmentIdentifier: A unique numeric identifier assigned to the assignment Content: Content associated with the activity LMSSectionIdentifier: A unique numeric identifier assigned to the section SourceSystem: The system code or name providing the user activity data SourceSystemIdentifier: A unique number or alphanumeric code assigned to a user activity by the source system LMSUserIdentifier: A unique numeric identifier assigned to the user CreateDate: Date this record was created in the extractor LastModifiedDate: Date this record was last updated in the extractor """ assert "submissionHistory" in submissions_df.columns assert "id" in submissions_df.columns assert "courseId" in submissions_df.columns assert "courseWorkId" in submissions_df.columns # convert json-like submissionHistory string to list of dicts submissions_df["submissionHistory"] = submissions_df["submissionHistory"].apply(lambda json_like: json.loads(json_like.replace("'", '"'))) submissions_df["AssignmentIdentifier"] = submissions_df[ ["courseId", "courseWorkId"] ].agg("-".join, axis=1) submissions_df = submissions_df[["id", "courseId", "courseWorkId", "submissionHistory", "AssignmentIdentifier", "CreateDate", "LastModifiedDate"]] # explode submissionHistory lists into rows with other columns duplicated history_df = submissions_df.explode(column="submissionHistory") # type: ignore # expand submissionHistory dicts (stateHistory and gradeHistory) into their own columns history_df = history_df["submissionHistory"].apply(Series).merge(history_df, left_index=True, right_index=True, how='outer') history_df.drop(columns=["submissionHistory"], inplace=True) # expand stateHistory (can assume exists, should always have at least one "CREATED" entry) user_submission_df = concat([history_df, history_df["stateHistory"].apply(Series)], axis=1) user_submission_df.dropna(subset=["stateHistory"], inplace=True) # enrich stateHistory user_submission_df["SourceSystemIdentifier"] = "S-" + user_submission_df[ ["courseId", "courseWorkId", "id", "stateTimestamp"] ].agg("-".join, axis=1) user_submission_df = user_submission_df[ [ "SourceSystemIdentifier", "AssignmentIdentifier", "stateTimestamp", "state", "courseId", "actorUserId", "CreateDate", "LastModifiedDate" ] ] user_submission_df = user_submission_df.rename( columns={ "stateTimestamp": "ActivityDateTime", "state": "ActivityStatus", "courseId": "LMSSectionIdentifier", "actorUserId": "LMSUserIdentifier", } ) user_submission_df["ActivityType"] = ACTIVITY_TYPE_STATE # expand gradeHistory if exists if "gradeHistory" in history_df: grade_history_df = concat([history_df, history_df["gradeHistory"].apply(Series)], axis=1) grade_history_df.dropna(subset=["gradeHistory"], inplace=True) # enrich gradeHistory grade_history_df["SourceSystemIdentifier"] = "G-" + grade_history_df[ ["courseId", "courseWorkId", "id", "gradeTimestamp"] ].agg("-".join, axis=1) grade_history_df = grade_history_df[ [ "SourceSystemIdentifier", "AssignmentIdentifier", "gradeTimestamp", "gradeChangeType", "courseId", "actorUserId", "CreateDate", "LastModifiedDate" ] ] grade_history_df = grade_history_df.rename( columns={ "gradeTimestamp": "ActivityDateTime", "gradeChangeType": "ActivityStatus", "courseId": "LMSSectionIdentifier", "actorUserId": "LMSUserIdentifier", } ) grade_history_df["ActivityType"] = ACTIVITY_TYPE_GRADE # combine with stateHistory user_submission_df = user_submission_df.append(grade_history_df) # teacher actions can show up on student histories and vice-versa user_submission_df.drop_duplicates(subset=["SourceSystemIdentifier"], inplace=True) # finish with common columns user_submission_df["ActivityTimeInMinutes"] = "" user_submission_df["Content"] = "" user_submission_df["SourceSystem"] = SOURCE_SYSTEM user_submission_df["SourceCreateDate"] = "" # No create date available from API user_submission_df["SourceLastModifiedDate"] = "" # No modified date available from API # group by section id as a Dict of DataFrames result: Dict[str, DataFrame] = dict( tuple(user_submission_df.groupby(["LMSSectionIdentifier"])) ) return result
normal
{ "blob_id": "d6a760774b45454c959c2932d7b28deee7f81872", "index": 318, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef submissions_to_user_submission_activities_dfs(submissions_df: DataFrame\n ) ->Dict[str, DataFrame]:\n \"\"\"\n Convert a Submission API DataFrame to a Dict of UserActivity\n UDM DataFrames grouped by source system section id.\n\n Parameters\n ----------\n submissions_df: DataFrame\n is a Submission API DataFrame\n\n Returns\n -------\n Dict[str, DataFrame] LMS UDM UserActivity DataFrames\n grouped by source system section id\n\n Notes\n -----\n UserActivity DataFrame columns are:\n ActivityDateTime: The date/time the activity occurred\n ActivityStatus: The activity status\n ActivityTimeInMinutes: The total activity time in minutes\n ActivityType: The type of activity, here \"Submission\" or \"Grade\"\n AssignmentIdentifier: A unique numeric identifier assigned to the assignment\n Content: Content associated with the activity\n LMSSectionIdentifier: A unique numeric identifier assigned to the section\n SourceSystem: The system code or name providing the user activity data\n SourceSystemIdentifier: A unique number or alphanumeric code assigned to a\n user activity by the source system\n LMSUserIdentifier: A unique numeric identifier assigned to the user\n CreateDate: Date this record was created in the extractor\n LastModifiedDate: Date this record was last updated in the extractor\n \"\"\"\n assert 'submissionHistory' in submissions_df.columns\n assert 'id' in submissions_df.columns\n assert 'courseId' in submissions_df.columns\n assert 'courseWorkId' in submissions_df.columns\n submissions_df['submissionHistory'] = submissions_df['submissionHistory'\n ].apply(lambda json_like: json.loads(json_like.replace(\"'\", '\"')))\n submissions_df['AssignmentIdentifier'] = submissions_df[['courseId',\n 'courseWorkId']].agg('-'.join, axis=1)\n submissions_df = submissions_df[['id', 'courseId', 'courseWorkId',\n 'submissionHistory', 'AssignmentIdentifier', 'CreateDate',\n 'LastModifiedDate']]\n history_df = submissions_df.explode(column='submissionHistory')\n history_df = history_df['submissionHistory'].apply(Series).merge(history_df\n , left_index=True, right_index=True, how='outer')\n history_df.drop(columns=['submissionHistory'], inplace=True)\n user_submission_df = concat([history_df, history_df['stateHistory'].\n apply(Series)], axis=1)\n user_submission_df.dropna(subset=['stateHistory'], inplace=True)\n user_submission_df['SourceSystemIdentifier'] = 'S-' + user_submission_df[[\n 'courseId', 'courseWorkId', 'id', 'stateTimestamp']].agg('-'.join,\n axis=1)\n user_submission_df = user_submission_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'stateTimestamp', 'state', 'courseId',\n 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n user_submission_df = user_submission_df.rename(columns={\n 'stateTimestamp': 'ActivityDateTime', 'state': 'ActivityStatus',\n 'courseId': 'LMSSectionIdentifier', 'actorUserId': 'LMSUserIdentifier'}\n )\n user_submission_df['ActivityType'] = ACTIVITY_TYPE_STATE\n if 'gradeHistory' in history_df:\n grade_history_df = concat([history_df, history_df['gradeHistory'].\n apply(Series)], axis=1)\n grade_history_df.dropna(subset=['gradeHistory'], inplace=True)\n grade_history_df['SourceSystemIdentifier'] = 'G-' + grade_history_df[[\n 'courseId', 'courseWorkId', 'id', 'gradeTimestamp']].agg('-'.\n join, axis=1)\n grade_history_df = grade_history_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'gradeTimestamp', 'gradeChangeType',\n 'courseId', 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n grade_history_df = grade_history_df.rename(columns={\n 'gradeTimestamp': 'ActivityDateTime', 'gradeChangeType':\n 'ActivityStatus', 'courseId': 'LMSSectionIdentifier',\n 'actorUserId': 'LMSUserIdentifier'})\n grade_history_df['ActivityType'] = ACTIVITY_TYPE_GRADE\n user_submission_df = user_submission_df.append(grade_history_df)\n user_submission_df.drop_duplicates(subset=['SourceSystemIdentifier'],\n inplace=True)\n user_submission_df['ActivityTimeInMinutes'] = ''\n user_submission_df['Content'] = ''\n user_submission_df['SourceSystem'] = SOURCE_SYSTEM\n user_submission_df['SourceCreateDate'] = ''\n user_submission_df['SourceLastModifiedDate'] = ''\n result: Dict[str, DataFrame] = dict(tuple(user_submission_df.groupby([\n 'LMSSectionIdentifier'])))\n return result\n", "step-3": "<mask token>\nACTIVITY_TYPE_STATE = 'Submission State Change'\nACTIVITY_TYPE_GRADE = 'Submission Grade Change'\n\n\ndef submissions_to_user_submission_activities_dfs(submissions_df: DataFrame\n ) ->Dict[str, DataFrame]:\n \"\"\"\n Convert a Submission API DataFrame to a Dict of UserActivity\n UDM DataFrames grouped by source system section id.\n\n Parameters\n ----------\n submissions_df: DataFrame\n is a Submission API DataFrame\n\n Returns\n -------\n Dict[str, DataFrame] LMS UDM UserActivity DataFrames\n grouped by source system section id\n\n Notes\n -----\n UserActivity DataFrame columns are:\n ActivityDateTime: The date/time the activity occurred\n ActivityStatus: The activity status\n ActivityTimeInMinutes: The total activity time in minutes\n ActivityType: The type of activity, here \"Submission\" or \"Grade\"\n AssignmentIdentifier: A unique numeric identifier assigned to the assignment\n Content: Content associated with the activity\n LMSSectionIdentifier: A unique numeric identifier assigned to the section\n SourceSystem: The system code or name providing the user activity data\n SourceSystemIdentifier: A unique number or alphanumeric code assigned to a\n user activity by the source system\n LMSUserIdentifier: A unique numeric identifier assigned to the user\n CreateDate: Date this record was created in the extractor\n LastModifiedDate: Date this record was last updated in the extractor\n \"\"\"\n assert 'submissionHistory' in submissions_df.columns\n assert 'id' in submissions_df.columns\n assert 'courseId' in submissions_df.columns\n assert 'courseWorkId' in submissions_df.columns\n submissions_df['submissionHistory'] = submissions_df['submissionHistory'\n ].apply(lambda json_like: json.loads(json_like.replace(\"'\", '\"')))\n submissions_df['AssignmentIdentifier'] = submissions_df[['courseId',\n 'courseWorkId']].agg('-'.join, axis=1)\n submissions_df = submissions_df[['id', 'courseId', 'courseWorkId',\n 'submissionHistory', 'AssignmentIdentifier', 'CreateDate',\n 'LastModifiedDate']]\n history_df = submissions_df.explode(column='submissionHistory')\n history_df = history_df['submissionHistory'].apply(Series).merge(history_df\n , left_index=True, right_index=True, how='outer')\n history_df.drop(columns=['submissionHistory'], inplace=True)\n user_submission_df = concat([history_df, history_df['stateHistory'].\n apply(Series)], axis=1)\n user_submission_df.dropna(subset=['stateHistory'], inplace=True)\n user_submission_df['SourceSystemIdentifier'] = 'S-' + user_submission_df[[\n 'courseId', 'courseWorkId', 'id', 'stateTimestamp']].agg('-'.join,\n axis=1)\n user_submission_df = user_submission_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'stateTimestamp', 'state', 'courseId',\n 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n user_submission_df = user_submission_df.rename(columns={\n 'stateTimestamp': 'ActivityDateTime', 'state': 'ActivityStatus',\n 'courseId': 'LMSSectionIdentifier', 'actorUserId': 'LMSUserIdentifier'}\n )\n user_submission_df['ActivityType'] = ACTIVITY_TYPE_STATE\n if 'gradeHistory' in history_df:\n grade_history_df = concat([history_df, history_df['gradeHistory'].\n apply(Series)], axis=1)\n grade_history_df.dropna(subset=['gradeHistory'], inplace=True)\n grade_history_df['SourceSystemIdentifier'] = 'G-' + grade_history_df[[\n 'courseId', 'courseWorkId', 'id', 'gradeTimestamp']].agg('-'.\n join, axis=1)\n grade_history_df = grade_history_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'gradeTimestamp', 'gradeChangeType',\n 'courseId', 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n grade_history_df = grade_history_df.rename(columns={\n 'gradeTimestamp': 'ActivityDateTime', 'gradeChangeType':\n 'ActivityStatus', 'courseId': 'LMSSectionIdentifier',\n 'actorUserId': 'LMSUserIdentifier'})\n grade_history_df['ActivityType'] = ACTIVITY_TYPE_GRADE\n user_submission_df = user_submission_df.append(grade_history_df)\n user_submission_df.drop_duplicates(subset=['SourceSystemIdentifier'],\n inplace=True)\n user_submission_df['ActivityTimeInMinutes'] = ''\n user_submission_df['Content'] = ''\n user_submission_df['SourceSystem'] = SOURCE_SYSTEM\n user_submission_df['SourceCreateDate'] = ''\n user_submission_df['SourceLastModifiedDate'] = ''\n result: Dict[str, DataFrame] = dict(tuple(user_submission_df.groupby([\n 'LMSSectionIdentifier'])))\n return result\n", "step-4": "import json\nfrom typing import Dict\nfrom pandas import DataFrame, concat, Series\nfrom edfi_google_classroom_extractor.mapping.constants import SOURCE_SYSTEM\nACTIVITY_TYPE_STATE = 'Submission State Change'\nACTIVITY_TYPE_GRADE = 'Submission Grade Change'\n\n\ndef submissions_to_user_submission_activities_dfs(submissions_df: DataFrame\n ) ->Dict[str, DataFrame]:\n \"\"\"\n Convert a Submission API DataFrame to a Dict of UserActivity\n UDM DataFrames grouped by source system section id.\n\n Parameters\n ----------\n submissions_df: DataFrame\n is a Submission API DataFrame\n\n Returns\n -------\n Dict[str, DataFrame] LMS UDM UserActivity DataFrames\n grouped by source system section id\n\n Notes\n -----\n UserActivity DataFrame columns are:\n ActivityDateTime: The date/time the activity occurred\n ActivityStatus: The activity status\n ActivityTimeInMinutes: The total activity time in minutes\n ActivityType: The type of activity, here \"Submission\" or \"Grade\"\n AssignmentIdentifier: A unique numeric identifier assigned to the assignment\n Content: Content associated with the activity\n LMSSectionIdentifier: A unique numeric identifier assigned to the section\n SourceSystem: The system code or name providing the user activity data\n SourceSystemIdentifier: A unique number or alphanumeric code assigned to a\n user activity by the source system\n LMSUserIdentifier: A unique numeric identifier assigned to the user\n CreateDate: Date this record was created in the extractor\n LastModifiedDate: Date this record was last updated in the extractor\n \"\"\"\n assert 'submissionHistory' in submissions_df.columns\n assert 'id' in submissions_df.columns\n assert 'courseId' in submissions_df.columns\n assert 'courseWorkId' in submissions_df.columns\n submissions_df['submissionHistory'] = submissions_df['submissionHistory'\n ].apply(lambda json_like: json.loads(json_like.replace(\"'\", '\"')))\n submissions_df['AssignmentIdentifier'] = submissions_df[['courseId',\n 'courseWorkId']].agg('-'.join, axis=1)\n submissions_df = submissions_df[['id', 'courseId', 'courseWorkId',\n 'submissionHistory', 'AssignmentIdentifier', 'CreateDate',\n 'LastModifiedDate']]\n history_df = submissions_df.explode(column='submissionHistory')\n history_df = history_df['submissionHistory'].apply(Series).merge(history_df\n , left_index=True, right_index=True, how='outer')\n history_df.drop(columns=['submissionHistory'], inplace=True)\n user_submission_df = concat([history_df, history_df['stateHistory'].\n apply(Series)], axis=1)\n user_submission_df.dropna(subset=['stateHistory'], inplace=True)\n user_submission_df['SourceSystemIdentifier'] = 'S-' + user_submission_df[[\n 'courseId', 'courseWorkId', 'id', 'stateTimestamp']].agg('-'.join,\n axis=1)\n user_submission_df = user_submission_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'stateTimestamp', 'state', 'courseId',\n 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n user_submission_df = user_submission_df.rename(columns={\n 'stateTimestamp': 'ActivityDateTime', 'state': 'ActivityStatus',\n 'courseId': 'LMSSectionIdentifier', 'actorUserId': 'LMSUserIdentifier'}\n )\n user_submission_df['ActivityType'] = ACTIVITY_TYPE_STATE\n if 'gradeHistory' in history_df:\n grade_history_df = concat([history_df, history_df['gradeHistory'].\n apply(Series)], axis=1)\n grade_history_df.dropna(subset=['gradeHistory'], inplace=True)\n grade_history_df['SourceSystemIdentifier'] = 'G-' + grade_history_df[[\n 'courseId', 'courseWorkId', 'id', 'gradeTimestamp']].agg('-'.\n join, axis=1)\n grade_history_df = grade_history_df[['SourceSystemIdentifier',\n 'AssignmentIdentifier', 'gradeTimestamp', 'gradeChangeType',\n 'courseId', 'actorUserId', 'CreateDate', 'LastModifiedDate']]\n grade_history_df = grade_history_df.rename(columns={\n 'gradeTimestamp': 'ActivityDateTime', 'gradeChangeType':\n 'ActivityStatus', 'courseId': 'LMSSectionIdentifier',\n 'actorUserId': 'LMSUserIdentifier'})\n grade_history_df['ActivityType'] = ACTIVITY_TYPE_GRADE\n user_submission_df = user_submission_df.append(grade_history_df)\n user_submission_df.drop_duplicates(subset=['SourceSystemIdentifier'],\n inplace=True)\n user_submission_df['ActivityTimeInMinutes'] = ''\n user_submission_df['Content'] = ''\n user_submission_df['SourceSystem'] = SOURCE_SYSTEM\n user_submission_df['SourceCreateDate'] = ''\n user_submission_df['SourceLastModifiedDate'] = ''\n result: Dict[str, DataFrame] = dict(tuple(user_submission_df.groupby([\n 'LMSSectionIdentifier'])))\n return result\n", "step-5": "# SPDX-License-Identifier: Apache-2.0\n# Licensed to the Ed-Fi Alliance under one or more agreements.\n# The Ed-Fi Alliance licenses this file to you under the Apache License, Version 2.0.\n# See the LICENSE and NOTICES files in the project root for more information.\n\nimport json\nfrom typing import Dict\nfrom pandas import DataFrame, concat, Series\nfrom edfi_google_classroom_extractor.mapping.constants import SOURCE_SYSTEM\n\nACTIVITY_TYPE_STATE = \"Submission State Change\"\nACTIVITY_TYPE_GRADE = \"Submission Grade Change\"\n\n\ndef submissions_to_user_submission_activities_dfs(\n submissions_df: DataFrame,\n) -> Dict[str, DataFrame]:\n \"\"\"\n Convert a Submission API DataFrame to a Dict of UserActivity\n UDM DataFrames grouped by source system section id.\n\n Parameters\n ----------\n submissions_df: DataFrame\n is a Submission API DataFrame\n\n Returns\n -------\n Dict[str, DataFrame] LMS UDM UserActivity DataFrames\n grouped by source system section id\n\n Notes\n -----\n UserActivity DataFrame columns are:\n ActivityDateTime: The date/time the activity occurred\n ActivityStatus: The activity status\n ActivityTimeInMinutes: The total activity time in minutes\n ActivityType: The type of activity, here \"Submission\" or \"Grade\"\n AssignmentIdentifier: A unique numeric identifier assigned to the assignment\n Content: Content associated with the activity\n LMSSectionIdentifier: A unique numeric identifier assigned to the section\n SourceSystem: The system code or name providing the user activity data\n SourceSystemIdentifier: A unique number or alphanumeric code assigned to a\n user activity by the source system\n LMSUserIdentifier: A unique numeric identifier assigned to the user\n CreateDate: Date this record was created in the extractor\n LastModifiedDate: Date this record was last updated in the extractor\n \"\"\"\n assert \"submissionHistory\" in submissions_df.columns\n assert \"id\" in submissions_df.columns\n assert \"courseId\" in submissions_df.columns\n assert \"courseWorkId\" in submissions_df.columns\n\n # convert json-like submissionHistory string to list of dicts\n submissions_df[\"submissionHistory\"] = submissions_df[\"submissionHistory\"].apply(lambda json_like: json.loads(json_like.replace(\"'\", '\"')))\n submissions_df[\"AssignmentIdentifier\"] = submissions_df[\n [\"courseId\", \"courseWorkId\"]\n ].agg(\"-\".join, axis=1)\n\n submissions_df = submissions_df[[\"id\", \"courseId\", \"courseWorkId\", \"submissionHistory\", \"AssignmentIdentifier\", \"CreateDate\", \"LastModifiedDate\"]]\n\n # explode submissionHistory lists into rows with other columns duplicated\n history_df = submissions_df.explode(column=\"submissionHistory\") # type: ignore\n\n # expand submissionHistory dicts (stateHistory and gradeHistory) into their own columns\n history_df = history_df[\"submissionHistory\"].apply(Series).merge(history_df, left_index=True, right_index=True, how='outer')\n history_df.drop(columns=[\"submissionHistory\"], inplace=True)\n\n # expand stateHistory (can assume exists, should always have at least one \"CREATED\" entry)\n user_submission_df = concat([history_df, history_df[\"stateHistory\"].apply(Series)], axis=1)\n user_submission_df.dropna(subset=[\"stateHistory\"], inplace=True)\n\n # enrich stateHistory\n user_submission_df[\"SourceSystemIdentifier\"] = \"S-\" + user_submission_df[\n [\"courseId\", \"courseWorkId\", \"id\", \"stateTimestamp\"]\n ].agg(\"-\".join, axis=1)\n\n user_submission_df = user_submission_df[\n [\n \"SourceSystemIdentifier\",\n \"AssignmentIdentifier\",\n \"stateTimestamp\",\n \"state\",\n \"courseId\",\n \"actorUserId\",\n \"CreateDate\",\n \"LastModifiedDate\"\n ]\n ]\n\n user_submission_df = user_submission_df.rename(\n columns={\n \"stateTimestamp\": \"ActivityDateTime\",\n \"state\": \"ActivityStatus\",\n \"courseId\": \"LMSSectionIdentifier\",\n \"actorUserId\": \"LMSUserIdentifier\",\n }\n )\n\n user_submission_df[\"ActivityType\"] = ACTIVITY_TYPE_STATE\n\n # expand gradeHistory if exists\n if \"gradeHistory\" in history_df:\n grade_history_df = concat([history_df, history_df[\"gradeHistory\"].apply(Series)], axis=1)\n grade_history_df.dropna(subset=[\"gradeHistory\"], inplace=True)\n\n # enrich gradeHistory\n grade_history_df[\"SourceSystemIdentifier\"] = \"G-\" + grade_history_df[\n [\"courseId\", \"courseWorkId\", \"id\", \"gradeTimestamp\"]\n ].agg(\"-\".join, axis=1)\n\n grade_history_df = grade_history_df[\n [\n \"SourceSystemIdentifier\",\n \"AssignmentIdentifier\",\n \"gradeTimestamp\",\n \"gradeChangeType\",\n \"courseId\",\n \"actorUserId\",\n \"CreateDate\",\n \"LastModifiedDate\"\n ]\n ]\n\n grade_history_df = grade_history_df.rename(\n columns={\n \"gradeTimestamp\": \"ActivityDateTime\",\n \"gradeChangeType\": \"ActivityStatus\",\n \"courseId\": \"LMSSectionIdentifier\",\n \"actorUserId\": \"LMSUserIdentifier\",\n }\n )\n\n grade_history_df[\"ActivityType\"] = ACTIVITY_TYPE_GRADE\n\n # combine with stateHistory\n user_submission_df = user_submission_df.append(grade_history_df)\n\n # teacher actions can show up on student histories and vice-versa\n user_submission_df.drop_duplicates(subset=[\"SourceSystemIdentifier\"], inplace=True)\n\n # finish with common columns\n user_submission_df[\"ActivityTimeInMinutes\"] = \"\"\n user_submission_df[\"Content\"] = \"\"\n user_submission_df[\"SourceSystem\"] = SOURCE_SYSTEM\n user_submission_df[\"SourceCreateDate\"] = \"\" # No create date available from API\n user_submission_df[\"SourceLastModifiedDate\"] = \"\" # No modified date available from API\n\n # group by section id as a Dict of DataFrames\n result: Dict[str, DataFrame] = dict(\n tuple(user_submission_df.groupby([\"LMSSectionIdentifier\"]))\n )\n\n return result\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class NVCComparator: """ NVC response comparator. Performs the evaluation based on NVC and non-NVC classes. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on their NVCness. Only returns true if both responses are in agreement with either responding NVC or not NVC. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True only if both objects agree on whether the response is NVC or not. """ return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC') <|reserved_special_token_1|> <|reserved_special_token_0|> class EqualityComparator: """ Equality comparator. Checks if both responses are equal. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on equality. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True if both objects are equal, false otherwise. """ return tuple_to_string(obj_a) == tuple_to_string(obj_b) class NVCComparator: """ NVC response comparator. Performs the evaluation based on NVC and non-NVC classes. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on their NVCness. Only returns true if both responses are in agreement with either responding NVC or not NVC. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True only if both objects agree on whether the response is NVC or not. """ return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC') <|reserved_special_token_1|> <|reserved_special_token_0|> class Comparator: <|reserved_special_token_0|> <|reserved_special_token_0|> class EqualityComparator: """ Equality comparator. Checks if both responses are equal. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on equality. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True if both objects are equal, false otherwise. """ return tuple_to_string(obj_a) == tuple_to_string(obj_b) class NVCComparator: """ NVC response comparator. Performs the evaluation based on NVC and non-NVC classes. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on their NVCness. Only returns true if both responses are in agreement with either responding NVC or not NVC. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True only if both objects agree on whether the response is NVC or not. """ return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC') <|reserved_special_token_1|> <|reserved_special_token_0|> def tuple_to_string(tuptup): """ Converts a tuple to its string representation. Uses different separators (;, /, |) for different depths of the representation. Parameters ---------- tuptup : list Tuple to convert to its string representation. Returns ------- str String representation of the input tuple. """ def join_deepest(tup, sep=';'): """ Recursive function to create the string representation for the deepest level of the tuptup list. Parameters ---------- tup : object Element to join if list or list of lists. sep : str, optional Separation character to join the list elements by. Returns ------- object List containing joined string in max depth. Str if input depth = 1. """ if not isinstance(tup, list): return tup if not isinstance(tup[0], list): return sep.join(tup) for idx, val in enumerate(tup): tup[idx] = join_deepest(val, sep) return tup tup = copy.deepcopy(tuptup) tup = join_deepest(tup, ';') tup = join_deepest(tup, '/') tup = join_deepest(tup, '|') return tup class Comparator: """ Comparator base class. """ def compare(self, obj_a, obj_b): """ Base comparison method. Parameters ---------- obj_a : object Object A for comparison. obj_b : object Object B for comparison. Returns ------- object Comparison result. """ raise NotImplementedError() class EqualityComparator: """ Equality comparator. Checks if both responses are equal. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on equality. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True if both objects are equal, false otherwise. """ return tuple_to_string(obj_a) == tuple_to_string(obj_b) class NVCComparator: """ NVC response comparator. Performs the evaluation based on NVC and non-NVC classes. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on their NVCness. Only returns true if both responses are in agreement with either responding NVC or not NVC. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True only if both objects agree on whether the response is NVC or not. """ return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC') <|reserved_special_token_1|> """ Contains different comparator classes for model output data structures. """ import copy def tuple_to_string(tuptup): """ Converts a tuple to its string representation. Uses different separators (;, /, |) for different depths of the representation. Parameters ---------- tuptup : list Tuple to convert to its string representation. Returns ------- str String representation of the input tuple. """ def join_deepest(tup, sep=';'): """ Recursive function to create the string representation for the deepest level of the tuptup list. Parameters ---------- tup : object Element to join if list or list of lists. sep : str, optional Separation character to join the list elements by. Returns ------- object List containing joined string in max depth. Str if input depth = 1. """ if not isinstance(tup, list): return tup if not isinstance(tup[0], list): return sep.join(tup) for idx, val in enumerate(tup): tup[idx] = join_deepest(val, sep) return tup tup = copy.deepcopy(tuptup) tup = join_deepest(tup, ';') tup = join_deepest(tup, '/') tup = join_deepest(tup, '|') return tup class Comparator(): """ Comparator base class. """ def compare(self, obj_a, obj_b): """ Base comparison method. Parameters ---------- obj_a : object Object A for comparison. obj_b : object Object B for comparison. Returns ------- object Comparison result. """ raise NotImplementedError() class EqualityComparator(): """ Equality comparator. Checks if both responses are equal. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on equality. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True if both objects are equal, false otherwise. """ return tuple_to_string(obj_a) == tuple_to_string(obj_b) class NVCComparator(): """ NVC response comparator. Performs the evaluation based on NVC and non-NVC classes. """ @staticmethod def compare(obj_a, obj_b): """ Compares two response objects based on their NVCness. Only returns true if both responses are in agreement with either responding NVC or not NVC. Parameters ---------- obj_a : tuple Response tuple A for comparison. obj_b : tuple Response tuple B for comparison. Returns ------- bool True only if both objects agree on whether the response is NVC or not. """ return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC')
flexible
{ "blob_id": "9c935e9ef298484d565256a420b867e800c3df55", "index": 3243, "step-1": "<mask token>\n\n\nclass NVCComparator:\n \"\"\" NVC response comparator. Performs the evaluation based on NVC and non-NVC classes.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on their NVCness. Only returns true if both\n responses are in agreement with either responding NVC or not NVC.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True only if both objects agree on whether the response is NVC or not.\n\n \"\"\"\n return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) ==\n 'NVC')\n", "step-2": "<mask token>\n\n\nclass EqualityComparator:\n \"\"\" Equality comparator. Checks if both responses are equal.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on equality.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True if both objects are equal, false otherwise.\n\n \"\"\"\n return tuple_to_string(obj_a) == tuple_to_string(obj_b)\n\n\nclass NVCComparator:\n \"\"\" NVC response comparator. Performs the evaluation based on NVC and non-NVC classes.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on their NVCness. Only returns true if both\n responses are in agreement with either responding NVC or not NVC.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True only if both objects agree on whether the response is NVC or not.\n\n \"\"\"\n return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) ==\n 'NVC')\n", "step-3": "<mask token>\n\n\nclass Comparator:\n <mask token>\n <mask token>\n\n\nclass EqualityComparator:\n \"\"\" Equality comparator. Checks if both responses are equal.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on equality.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True if both objects are equal, false otherwise.\n\n \"\"\"\n return tuple_to_string(obj_a) == tuple_to_string(obj_b)\n\n\nclass NVCComparator:\n \"\"\" NVC response comparator. Performs the evaluation based on NVC and non-NVC classes.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on their NVCness. Only returns true if both\n responses are in agreement with either responding NVC or not NVC.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True only if both objects agree on whether the response is NVC or not.\n\n \"\"\"\n return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) ==\n 'NVC')\n", "step-4": "<mask token>\n\n\ndef tuple_to_string(tuptup):\n \"\"\" Converts a tuple to its string representation. Uses different separators (;, /, |) for\n different depths of the representation.\n\n Parameters\n ----------\n tuptup : list\n Tuple to convert to its string representation.\n\n Returns\n -------\n str\n String representation of the input tuple.\n\n \"\"\"\n\n def join_deepest(tup, sep=';'):\n \"\"\" Recursive function to create the string representation for the deepest level of the\n tuptup list.\n\n Parameters\n ----------\n tup : object\n Element to join if list or list of lists.\n\n sep : str, optional\n Separation character to join the list elements by.\n\n Returns\n -------\n object\n List containing joined string in max depth. Str if input depth = 1.\n\n \"\"\"\n if not isinstance(tup, list):\n return tup\n if not isinstance(tup[0], list):\n return sep.join(tup)\n for idx, val in enumerate(tup):\n tup[idx] = join_deepest(val, sep)\n return tup\n tup = copy.deepcopy(tuptup)\n tup = join_deepest(tup, ';')\n tup = join_deepest(tup, '/')\n tup = join_deepest(tup, '|')\n return tup\n\n\nclass Comparator:\n \"\"\" Comparator base class.\n\n \"\"\"\n\n def compare(self, obj_a, obj_b):\n \"\"\" Base comparison method.\n\n Parameters\n ----------\n obj_a : object\n Object A for comparison.\n\n obj_b : object\n Object B for comparison.\n\n Returns\n -------\n object\n Comparison result.\n\n \"\"\"\n raise NotImplementedError()\n\n\nclass EqualityComparator:\n \"\"\" Equality comparator. Checks if both responses are equal.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on equality.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True if both objects are equal, false otherwise.\n\n \"\"\"\n return tuple_to_string(obj_a) == tuple_to_string(obj_b)\n\n\nclass NVCComparator:\n \"\"\" NVC response comparator. Performs the evaluation based on NVC and non-NVC classes.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on their NVCness. Only returns true if both\n responses are in agreement with either responding NVC or not NVC.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True only if both objects agree on whether the response is NVC or not.\n\n \"\"\"\n return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) ==\n 'NVC')\n", "step-5": "\"\"\" Contains different comparator classes for model output data structures.\n\n\"\"\"\n\nimport copy\n\ndef tuple_to_string(tuptup):\n \"\"\" Converts a tuple to its string representation. Uses different separators (;, /, |) for\n different depths of the representation.\n\n Parameters\n ----------\n tuptup : list\n Tuple to convert to its string representation.\n\n Returns\n -------\n str\n String representation of the input tuple.\n\n \"\"\"\n\n def join_deepest(tup, sep=';'):\n \"\"\" Recursive function to create the string representation for the deepest level of the\n tuptup list.\n\n Parameters\n ----------\n tup : object\n Element to join if list or list of lists.\n\n sep : str, optional\n Separation character to join the list elements by.\n\n Returns\n -------\n object\n List containing joined string in max depth. Str if input depth = 1.\n\n \"\"\"\n\n if not isinstance(tup, list):\n return tup\n if not isinstance(tup[0], list):\n return sep.join(tup)\n\n for idx, val in enumerate(tup):\n tup[idx] = join_deepest(val, sep)\n return tup\n\n tup = copy.deepcopy(tuptup)\n tup = join_deepest(tup, ';')\n tup = join_deepest(tup, '/')\n tup = join_deepest(tup, '|')\n return tup\n\nclass Comparator():\n \"\"\" Comparator base class.\n\n \"\"\"\n\n def compare(self, obj_a, obj_b):\n \"\"\" Base comparison method.\n\n Parameters\n ----------\n obj_a : object\n Object A for comparison.\n\n obj_b : object\n Object B for comparison.\n\n Returns\n -------\n object\n Comparison result.\n\n \"\"\"\n\n raise NotImplementedError()\n\nclass EqualityComparator():\n \"\"\" Equality comparator. Checks if both responses are equal.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on equality.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True if both objects are equal, false otherwise.\n\n \"\"\"\n\n return tuple_to_string(obj_a) == tuple_to_string(obj_b)\n\nclass NVCComparator():\n \"\"\" NVC response comparator. Performs the evaluation based on NVC and non-NVC classes.\n\n \"\"\"\n\n @staticmethod\n def compare(obj_a, obj_b):\n \"\"\" Compares two response objects based on their NVCness. Only returns true if both\n responses are in agreement with either responding NVC or not NVC.\n\n Parameters\n ----------\n obj_a : tuple\n Response tuple A for comparison.\n\n obj_b : tuple\n Response tuple B for comparison.\n\n Returns\n -------\n bool\n True only if both objects agree on whether the response is NVC or not.\n\n \"\"\"\n\n return (tuple_to_string(obj_a) == 'NVC') == (tuple_to_string(obj_b) == 'NVC')\n", "step-ids": [ 3, 6, 7, 10, 12 ] }
[ 3, 6, 7, 10, 12 ]
import math import random import pygame pygame.init() SCREEN_WIDTH = 800 SCREEN_HEIGHT = 600 screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT)) clock = pygame.time.Clock() pygame.display.set_caption('space invaders') background = pygame.image.load('background.png') score = 0 previous_score = 0 score_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32) textX = 10 testY = 10 # intro intro = True intro_text = "SpaceInvaders" intro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64) intro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64) # PlayButton play_button = pygame.image.load('play-button.png') play_button_X = (SCREEN_WIDTH / 2) - play_button.get_width() play_button_Y = (SCREEN_HEIGHT / (4 / 3)) - play_button.get_height() # GameOver gameover = False gameover_text = "Game Over" replay_button = pygame.image.load('replay.png') # player player_image = pygame.image.load('spaceship.png') player_X = 370 player_Y = 480 player_movement = 0 # bullet bullet_image = pygame.image.load('hot.png') bullet_X = [] bullet_Y = [] bullet_movement = 0.7 bullet_fired = [] num_bullet = 1 for i in range(num_bullet): bullet_X.append(0) bullet_Y.append(player_Y) bullet_fired.append(False) # enemy enemy_image = pygame.image.load('ufo.png') enemy_X = [] enemy_Y = [] enemy_X_movement = [] enemy_Y_movement = 40 num_enemies = 2 # gamespeedincrement gamespeed = 0 gamespeed_increment = 0.05 for i in range(num_enemies): enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(0.2) def player(x, y): screen.blit(player_image, (x, y)) def fire_bullet(x, y, n): global bullet_fired bullet_fired[n] = True screen.blit(bullet_image, (x + 16, y + 10)) def add_bullet(): global num_bullet num_bullet += 1 bullet_X.append(0) bullet_Y.append(player_Y) bullet_fired.append(False) def spawn_enemy(x, y): screen.blit(enemy_image, (x, y)) def add_enemy(): global num_enemies enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(0.2) num_enemies += 1 def reset_enemy(index): enemy_X[index] = random.randint(0, 736) enemy_Y[index] = random.randint(50, 150) enemy_X_movement[index] = 0.2 def reset_bullet(n): global bullet_fired, bullet_Y bullet_fired[n] = False bullet_Y[n] = player_Y def isCollion(eX, eY, bX, bY): distance = math.sqrt(math.pow(eX - bX, 2) + (math.pow(eY - bY, 2))) if distance < 27: return True else: return False def show_score(): text = score_font.render("Score: " + str(score), True, (255, 255, 255)) screen.blit(text, (textX, testY)) def show_intro(): show_big_text(intro_text) show_play_button() def show_big_text(s): text = intro_font.render(s, True, (89, 203, 255)) text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2)) screen.blit(text, text_rect) text2 = intro_font2.render(s, True, (250, 50, 183)) text_rect2 = text.get_rect(center=((SCREEN_WIDTH / 2) + 3, (SCREEN_HEIGHT / 2) + 3)) screen.blit(text2, text_rect2) def show_play_button(): screen.blit(play_button, (play_button_X, play_button_Y)) def show_replay_button(): screen.blit(replay_button, (play_button_X, play_button_Y)) def play_button_clicked(): click = pygame.mouse.get_pressed() if click[0] == 1: pos = pygame.mouse.get_pos() if play_button_X < pos[0] < play_button_X + play_button.get_width(): if play_button_Y < pos[1] < play_button_Y + play_button.get_height(): return True return False def game_over_screen(): show_big_text(gameover_text) show_score() show_replay_button() def reset(): global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y num_enemies = 2 enemy_X = [] enemy_Y = [] for i in range(num_enemies): enemy_X.append(random.randint(0, 736)) enemy_Y.append(random.randint(50, 150)) enemy_X_movement.append(2) player_X = 370 player_Y = 480 score = 0 bullet_fired = [] bullet_fired.append(False) gamespeed = 0 num_bullet = 1 bullet_X = [] bullet_X.append(0) bullet_Y = [] bullet_Y.append(player_Y) running = True while running: screen.fill((0, 0, 0)) screen.blit(background, (0, 0)) dt = clock.tick(60) while intro: show_intro() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if play_button_clicked(): intro = False pygame.display.update() while gameover: game_over_screen() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() quit() if play_button_clicked(): reset() gameover = False pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player_movement = -0.2 - gamespeed if event.key == pygame.K_RIGHT: player_movement = 0.2 + gamespeed if event.key == pygame.K_SPACE: for i in range(num_bullet): if not bullet_fired[i]: bullet_X[i] = player_X fire_bullet(bullet_X[i], bullet_Y[i], i) break if event.type == pygame.KEYUP: if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT: player_movement = 0 # playermovement player_X += player_movement * dt if player_X <= 1: player_X = 1 elif player_X >= 735: player_X = 735 # bulletmovement for i in range(num_bullet): if bullet_Y[i] <= 1: reset_bullet(i) if bullet_fired[i]: bullet_Y[i] -= bullet_movement * dt fire_bullet(bullet_X[i], bullet_Y[i], i) # enemy_movement for i in range(num_enemies): if enemy_Y[i] >= 440: gameover = True for j in range(num_bullet): if bullet_fired[j]: collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j], bullet_Y[j]) if collision: reset_enemy(i) reset_bullet(j) score += 1 if score != 0 and previous_score != score: if score % 3 == 0: add_enemy() print("added enemy") if score % 10 == 0: gamespeed += gamespeed_increment print("increased gamespeed") if score % 20 == 0: add_bullet() print("added bullet") previous_score = score if enemy_X_movement[i] < 0: enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt else: enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt if enemy_X[i] <= 1: enemy_X[i] = 2 enemy_X_movement[i] = -enemy_X_movement[i] enemy_Y[i] += (enemy_Y_movement + gamespeed) elif enemy_X[i] >= 735: enemy_X[i] = 734 enemy_X_movement[i] = -enemy_X_movement[i] enemy_Y[i] += (enemy_Y_movement + gamespeed) spawn_enemy(enemy_X[i], enemy_Y[i]) player(player_X, player_Y) show_score() pygame.display.update()
normal
{ "blob_id": "f5dffa3c22bb35ed07cb5ca28f2ba02ea3c07dda", "index": 1083, "step-1": "<mask token>\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\n<mask token>\n", "step-3": "<mask token>\npygame.init()\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\nclock = pygame.time.Clock()\npygame.display.set_caption('space invaders')\nbackground = pygame.image.load('background.png')\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\nintro = True\nintro_text = 'SpaceInvaders'\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = SCREEN_WIDTH / 2 - play_button.get_width()\nplay_button_Y = SCREEN_HEIGHT / (4 / 3) - play_button.get_height()\ngameover = False\ngameover_text = 'Game Over'\nreplay_button = pygame.image.load('replay.png')\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\ngamespeed = 0\ngamespeed_increment = 0.05\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n intro = False\n pygame.display.update()\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n reset()\n gameover = False\n pygame.display.update()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j],\n bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print('added enemy')\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print('increased gamespeed')\n if score % 20 == 0:\n add_bullet()\n print('added bullet')\n previous_score = score\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n spawn_enemy(enemy_X[i], enemy_Y[i])\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-4": "import math\nimport random\nimport pygame\npygame.init()\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\nclock = pygame.time.Clock()\npygame.display.set_caption('space invaders')\nbackground = pygame.image.load('background.png')\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\nintro = True\nintro_text = 'SpaceInvaders'\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = SCREEN_WIDTH / 2 - play_button.get_width()\nplay_button_Y = SCREEN_HEIGHT / (4 / 3) - play_button.get_height()\ngameover = False\ngameover_text = 'Game Over'\nreplay_button = pygame.image.load('replay.png')\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\ngamespeed = 0\ngamespeed_increment = 0.05\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + math.pow(eY - bY, 2))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render('Score: ' + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=(SCREEN_WIDTH / 2 + 3, SCREEN_HEIGHT /\n 2 + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height(\n ):\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n intro = False\n pygame.display.update()\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n if play_button_clicked():\n reset()\n gameover = False\n pygame.display.update()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j],\n bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print('added enemy')\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print('increased gamespeed')\n if score % 20 == 0:\n add_bullet()\n print('added bullet')\n previous_score = score\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += enemy_Y_movement + gamespeed\n spawn_enemy(enemy_X[i], enemy_Y[i])\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-5": "import math\nimport random\n\nimport pygame\n\npygame.init()\n\nSCREEN_WIDTH = 800\nSCREEN_HEIGHT = 600\nscreen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))\n\nclock = pygame.time.Clock()\n\npygame.display.set_caption('space invaders')\n\nbackground = pygame.image.load('background.png')\n\nscore = 0\nprevious_score = 0\nscore_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 32)\ntextX = 10\ntestY = 10\n\n# intro\nintro = True\nintro_text = \"SpaceInvaders\"\nintro_font = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\nintro_font2 = pygame.font.Font('arcade_weknow/ARCADE.otf', 64)\n\n# PlayButton\nplay_button = pygame.image.load('play-button.png')\nplay_button_X = (SCREEN_WIDTH / 2) - play_button.get_width()\nplay_button_Y = (SCREEN_HEIGHT / (4 / 3)) - play_button.get_height()\n\n# GameOver\ngameover = False\ngameover_text = \"Game Over\"\nreplay_button = pygame.image.load('replay.png')\n\n# player\nplayer_image = pygame.image.load('spaceship.png')\nplayer_X = 370\nplayer_Y = 480\nplayer_movement = 0\n\n# bullet\nbullet_image = pygame.image.load('hot.png')\nbullet_X = []\nbullet_Y = []\nbullet_movement = 0.7\nbullet_fired = []\nnum_bullet = 1\nfor i in range(num_bullet):\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n# enemy\nenemy_image = pygame.image.load('ufo.png')\nenemy_X = []\nenemy_Y = []\nenemy_X_movement = []\nenemy_Y_movement = 40\nnum_enemies = 2\n\n# gamespeedincrement\ngamespeed = 0\ngamespeed_increment = 0.05\n\nfor i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n\n\ndef player(x, y):\n screen.blit(player_image, (x, y))\n\n\ndef fire_bullet(x, y, n):\n global bullet_fired\n bullet_fired[n] = True\n screen.blit(bullet_image, (x + 16, y + 10))\n\n\ndef add_bullet():\n global num_bullet\n num_bullet += 1\n bullet_X.append(0)\n bullet_Y.append(player_Y)\n bullet_fired.append(False)\n\n\ndef spawn_enemy(x, y):\n screen.blit(enemy_image, (x, y))\n\n\ndef add_enemy():\n global num_enemies\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(0.2)\n num_enemies += 1\n\n\ndef reset_enemy(index):\n enemy_X[index] = random.randint(0, 736)\n enemy_Y[index] = random.randint(50, 150)\n enemy_X_movement[index] = 0.2\n\n\ndef reset_bullet(n):\n global bullet_fired, bullet_Y\n bullet_fired[n] = False\n bullet_Y[n] = player_Y\n\n\ndef isCollion(eX, eY, bX, bY):\n distance = math.sqrt(math.pow(eX - bX, 2) + (math.pow(eY - bY, 2)))\n if distance < 27:\n return True\n else:\n return False\n\n\ndef show_score():\n text = score_font.render(\"Score: \" + str(score), True, (255, 255, 255))\n screen.blit(text, (textX, testY))\n\n\ndef show_intro():\n show_big_text(intro_text)\n show_play_button()\n\n\ndef show_big_text(s):\n text = intro_font.render(s, True, (89, 203, 255))\n text_rect = text.get_rect(center=(SCREEN_WIDTH / 2, SCREEN_HEIGHT / 2))\n screen.blit(text, text_rect)\n text2 = intro_font2.render(s, True, (250, 50, 183))\n text_rect2 = text.get_rect(center=((SCREEN_WIDTH / 2) + 3, (SCREEN_HEIGHT / 2) + 3))\n screen.blit(text2, text_rect2)\n\n\ndef show_play_button():\n screen.blit(play_button, (play_button_X, play_button_Y))\n\n\ndef show_replay_button():\n screen.blit(replay_button, (play_button_X, play_button_Y))\n\n\ndef play_button_clicked():\n click = pygame.mouse.get_pressed()\n if click[0] == 1:\n pos = pygame.mouse.get_pos()\n if play_button_X < pos[0] < play_button_X + play_button.get_width():\n if play_button_Y < pos[1] < play_button_Y + play_button.get_height():\n return True\n return False\n\n\ndef game_over_screen():\n show_big_text(gameover_text)\n show_score()\n show_replay_button()\n\n\ndef reset():\n global num_enemies, enemy_X, enemy_Y, player_X, player_Y, score, bullet_fired, gamespeed, num_bullet, bullet_X, bullet_Y\n num_enemies = 2\n enemy_X = []\n enemy_Y = []\n for i in range(num_enemies):\n enemy_X.append(random.randint(0, 736))\n enemy_Y.append(random.randint(50, 150))\n enemy_X_movement.append(2)\n player_X = 370\n player_Y = 480\n score = 0\n bullet_fired = []\n bullet_fired.append(False)\n gamespeed = 0\n num_bullet = 1\n bullet_X = []\n bullet_X.append(0)\n bullet_Y = []\n bullet_Y.append(player_Y)\n\n\nrunning = True\nwhile running:\n\n screen.fill((0, 0, 0))\n screen.blit(background, (0, 0))\n dt = clock.tick(60)\n\n while intro:\n show_intro()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n\n if play_button_clicked():\n intro = False\n\n pygame.display.update()\n\n while gameover:\n game_over_screen()\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n pygame.quit()\n quit()\n\n if play_button_clicked():\n reset()\n gameover = False\n\n pygame.display.update()\n\n for event in pygame.event.get():\n if event.type == pygame.QUIT:\n running = False\n if event.type == pygame.KEYDOWN:\n if event.key == pygame.K_LEFT:\n player_movement = -0.2 - gamespeed\n if event.key == pygame.K_RIGHT:\n player_movement = 0.2 + gamespeed\n if event.key == pygame.K_SPACE:\n for i in range(num_bullet):\n if not bullet_fired[i]:\n bullet_X[i] = player_X\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n break\n if event.type == pygame.KEYUP:\n if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT:\n player_movement = 0\n\n # playermovement\n player_X += player_movement * dt\n if player_X <= 1:\n player_X = 1\n elif player_X >= 735:\n player_X = 735\n\n # bulletmovement\n for i in range(num_bullet):\n if bullet_Y[i] <= 1:\n reset_bullet(i)\n if bullet_fired[i]:\n bullet_Y[i] -= bullet_movement * dt\n fire_bullet(bullet_X[i], bullet_Y[i], i)\n\n # enemy_movement\n for i in range(num_enemies):\n if enemy_Y[i] >= 440:\n gameover = True\n\n for j in range(num_bullet):\n if bullet_fired[j]:\n collision = isCollion(enemy_X[i], enemy_Y[i], bullet_X[j], bullet_Y[j])\n if collision:\n reset_enemy(i)\n reset_bullet(j)\n score += 1\n\n if score != 0 and previous_score != score:\n if score % 3 == 0:\n add_enemy()\n print(\"added enemy\")\n if score % 10 == 0:\n gamespeed += gamespeed_increment\n print(\"increased gamespeed\")\n if score % 20 == 0:\n add_bullet()\n print(\"added bullet\")\n previous_score = score\n\n if enemy_X_movement[i] < 0:\n enemy_X[i] += (enemy_X_movement[i] - gamespeed) * dt\n else:\n enemy_X[i] += (enemy_X_movement[i] + gamespeed) * dt\n if enemy_X[i] <= 1:\n enemy_X[i] = 2\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += (enemy_Y_movement + gamespeed)\n elif enemy_X[i] >= 735:\n enemy_X[i] = 734\n enemy_X_movement[i] = -enemy_X_movement[i]\n enemy_Y[i] += (enemy_Y_movement + gamespeed)\n\n spawn_enemy(enemy_X[i], enemy_Y[i])\n\n player(player_X, player_Y)\n show_score()\n pygame.display.update()\n", "step-ids": [ 15, 16, 18, 19, 20 ] }
[ 15, 16, 18, 19, 20 ]
from collections import Counter N = int(input()) lst = list(map(int, input().split())) ans = [] for i in range(N): ans.append(abs(i + 1 - lst[i])) s = Counter(ans) rst = [] for i in s: rst.append([i, s[i]]) rst.sort(key=lambda x: x[0], reverse=True) for i in rst: if i[1] > 1: print(i[0], i[1])
normal
{ "blob_id": "decd5d50025fc3b639be2f803d917ff313cf7219", "index": 8838, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(N):\n ans.append(abs(i + 1 - lst[i]))\n<mask token>\nfor i in s:\n rst.append([i, s[i]])\nrst.sort(key=lambda x: x[0], reverse=True)\nfor i in rst:\n if i[1] > 1:\n print(i[0], i[1])\n", "step-3": "<mask token>\nN = int(input())\nlst = list(map(int, input().split()))\nans = []\nfor i in range(N):\n ans.append(abs(i + 1 - lst[i]))\ns = Counter(ans)\nrst = []\nfor i in s:\n rst.append([i, s[i]])\nrst.sort(key=lambda x: x[0], reverse=True)\nfor i in rst:\n if i[1] > 1:\n print(i[0], i[1])\n", "step-4": "from collections import Counter\nN = int(input())\nlst = list(map(int, input().split()))\nans = []\nfor i in range(N):\n ans.append(abs(i + 1 - lst[i]))\ns = Counter(ans)\nrst = []\nfor i in s:\n rst.append([i, s[i]])\nrst.sort(key=lambda x: x[0], reverse=True)\nfor i in rst:\n if i[1] > 1:\n print(i[0], i[1])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
RANGES = { # Intervalles de la gamme majeure 0: [1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], # Intervalles de la gamme mineure naturelle 1: [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0], # Intervalles de la gamme mineure harmonique 2: [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1] } RANGES_NAMES = { 'fr': ['Majeur', 'Mineur naturel', 'Mineur harmonique'] } # Nombre total de notes N = 12 # Nombre de nombre par gamme N_T = 7 NOTES = { 'fr': ['DO', 'DO#', 'RE', 'RE#', 'MI', 'FA', 'FA#', 'SOL', 'SOL#', 'LA', 'LA#', 'SI'] } CHORDS = { 'fr': { 0: ['', 'm', 'm', '', '', 'm', 'dim'], 1: ['m', 'dim', '', 'm', 'm', '', ''], 2: ['', 'm', 'm', '', '', 'm', 'dim'] } } def get_notes_from_range(r, t): """ Return all notes from a given range""" # calcul du tableau de notes tab = [] for i in range(N): n = (i - t)%N tab.append(RANGES[r][n]) return tab def get_range_chords(r): return [] def export_range(res, lg): notes = [NOTES[lg][(n + res['keynote'] )% 12] for n in range(N) if res['notes'][(n + res['keynote'] )% 12]] return { 'keynote': NOTES[lg][res['keynote']], 'range': RANGES_NAMES[lg][res['range']], 'notes': notes, 'pourcentage': res['pourcentage'] # 'Accords': [notes[i] + CHORDS[lg][res['range']][i] for i in range(N_T)] } def print_range(r): print r['Tonique'] + ' ' + r['Gamme'] print r['Accords'] print ## traitement def range_ranking(given_notes): result = [] # pour chaque tonique: for t in range(N): # pour chaque mode: #for m in range(0, 12): # pour chaque gamme: for r in range(len(RANGES)): # re-initialisation du pourcentage pourcentage = 0.0 # obtention de toutes les notes de la gamme consideree range_notes = get_notes_from_range(r, t) # pour chaque note connue: for i in given_notes: # si la note connue est dans la gamme: if range_notes[i] == 1: #alors pourcentage += 1 pourcentage += 1 else: pourcentage -= 1 pourcentage = (pourcentage/len(given_notes)) * 100 result.append({'keynote': t, # 'mode': m, 'range': r, 'notes': range_notes, 'pourcentage': pourcentage}) return result def main(notes, lg): # Compute pourcentage for every registered ranges unsorted_ranking = range_ranking(notes) sorted_ranking = sorted(unsorted_ranking, key=lambda g: g['pourcentage'], reverse=True) best_results = [r for r in sorted_ranking if r['pourcentage'] == sorted_ranking[0]['pourcentage']] return best_results def get_ranges(given_notes, lg='fr'): errors = {} results = [] # Clean user entry print 'g' + str(given_notes) notes = [NOTES['fr'].index(n) for n in given_notes] print 'n' + str(notes) try: best_results = main(notes, lg) except Exception as e: errors['status'] = 'error' errors['message'] = e return errors errors['status'] = 'success' errors['message'] = '' errors['result'] = [export_range(r, lg) for r in best_results] return errors if __name__ == '__main__': #TODO: Test that arrays have consistents length # Get entry from user notes = [0, 2, 4, 5, 7, 9, 11] lg = 'fr' print [NOTES[lg][i] for i in notes] print print "Ces notes correspondent a la gamme:" #TODO: Clean user entry best_results = main(notes, lg) for r in best_results: print export_range(r, lg)
normal
{ "blob_id": "18bad56ff6d230e63e83174672b8aa8625c1ebb4", "index": 994, "step-1": "\nRANGES = {\n # Intervalles de la gamme majeure\n 0: [1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1], \n # Intervalles de la gamme mineure naturelle\n 1: [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0],\n # Intervalles de la gamme mineure harmonique \n 2: [1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1] \n}\n\nRANGES_NAMES = {\n 'fr': ['Majeur', 'Mineur naturel', 'Mineur harmonique']\n}\n\n# Nombre total de notes\nN = 12\n\n# Nombre de nombre par gamme\nN_T = 7\n\nNOTES = {\n 'fr': ['DO', 'DO#', 'RE', 'RE#', 'MI', 'FA', 'FA#', 'SOL', 'SOL#', 'LA', 'LA#', 'SI']\n}\n\nCHORDS = {\n 'fr': {\n 0: ['', 'm', 'm', '', '', 'm', 'dim'],\n 1: ['m', 'dim', '', 'm', 'm', '', ''], \n 2: ['', 'm', 'm', '', '', 'm', 'dim']\n }\n}\n\ndef get_notes_from_range(r, t):\n \"\"\" Return all notes from a given range\"\"\"\n # calcul du tableau de notes\n tab = []\n for i in range(N): \n n = (i - t)%N\n tab.append(RANGES[r][n])\n \n return tab \n \ndef get_range_chords(r):\n return []\n \n\ndef export_range(res, lg):\n notes = [NOTES[lg][(n + res['keynote'] )% 12] for n in range(N) if res['notes'][(n + res['keynote'] )% 12]]\n return {\n 'keynote': NOTES[lg][res['keynote']], \n 'range': RANGES_NAMES[lg][res['range']], \n 'notes': notes, \n 'pourcentage': res['pourcentage']\n # 'Accords': [notes[i] + CHORDS[lg][res['range']][i] for i in range(N_T)]\n }\n \n \ndef print_range(r):\n print r['Tonique'] + ' ' + r['Gamme']\n print r['Accords']\n print \n \n\n## traitement\ndef range_ranking(given_notes):\n result = []\n\n # pour chaque tonique:\n for t in range(N):\n # pour chaque mode:\n #for m in range(0, 12):\n # pour chaque gamme:\n for r in range(len(RANGES)):\n # re-initialisation du pourcentage\n pourcentage = 0.0\n # obtention de toutes les notes de la gamme consideree\n range_notes = get_notes_from_range(r, t) \n # pour chaque note connue:\n for i in given_notes:\n # si la note connue est dans la gamme:\n if range_notes[i] == 1:\n #alors pourcentage += 1\n pourcentage += 1\n else:\n pourcentage -= 1\n \n pourcentage = (pourcentage/len(given_notes)) * 100\n result.append({'keynote': t, \n # 'mode': m,\n 'range': r,\n 'notes': range_notes,\n 'pourcentage': pourcentage})\n\n return result\n\ndef main(notes, lg):\n # Compute pourcentage for every registered ranges\n unsorted_ranking = range_ranking(notes)\n sorted_ranking = sorted(unsorted_ranking, key=lambda g: g['pourcentage'], reverse=True)\n \n best_results = [r for r in sorted_ranking if r['pourcentage'] == sorted_ranking[0]['pourcentage']]\n return best_results\n\n\ndef get_ranges(given_notes, lg='fr'):\n \n errors = {}\n results = []\n # Clean user entry\n print 'g' + str(given_notes)\n notes = [NOTES['fr'].index(n) for n in given_notes]\n\n print 'n' + str(notes)\n\n try:\n best_results = main(notes, lg)\n except Exception as e:\n errors['status'] = 'error'\n errors['message'] = e\n return errors\n\n errors['status'] = 'success'\n errors['message'] = ''\n errors['result'] = [export_range(r, lg) for r in best_results]\n\n return errors\n\n\nif __name__ == '__main__':\n\n #TODO: Test that arrays have consistents length\n \n # Get entry from user\n notes = [0, 2, 4, 5, 7, 9, 11]\n lg = 'fr'\n print [NOTES[lg][i] for i in notes]\n print\n print \"Ces notes correspondent a la gamme:\"\n \n #TODO: Clean user entry\n\n best_results = main(notes, lg)\n \n for r in best_results:\n print export_range(r, lg)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/python """ demo_mininet_topo.py Sample topology class with Mininet. G = {V, E} V = {h1, h2, h3, h4, h51, h52, s0, s1, s4, s5} # of hosts = 6 # of switches = 4 E = { (h1, s1), (h2, s1), (h3, s1), (h4, s4), (h51, s5), (h52, s5), (s0, s1), (s0, s4), (s5, s4) } """ from mininet.topo import Topo class DemoTopology(Topo): def __init__(self): Topo.__init__(self) # Add some hosts h1 = self.h1 = self.addHost('h1') h2 = self.h2 = self.addHost('h2') h3 = self.h3 = self.addHost('h3') h4 = self.h4 = self.addHost('h4') h51 = self.h51 = self.addHost('h51') h52 = self.h52 = self.addHost('h52') # Add switches s0 = self.s0 = self.addSwitch('s0') s1 = self.s1 = self.addSwitch('s1') s4 = self.s4 = self.addSwitch('s4') s5 = self.s5 = self.addSwitch('s5') # Link hosts with switches self.addLink(h1, s1) self.addLink(h2, s1) self.addLink(h3, s1) self.addLink(h4, s4) self.addLink(h51, s5) self.addLink(h52, s5) # Link switches with switches self.addLink(s0, s1) self.addLink(s0, s4) self.addLink(s5, s4) topos = { 'demo': lambda: DemoTopology() }
normal
{ "blob_id": "8c69813bc576a56c25c828fe24e2707e65ac0d0d", "index": 5628, "step-1": "<mask token>\n\n\nclass DemoTopology(Topo):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass DemoTopology(Topo):\n\n def __init__(self):\n Topo.__init__(self)\n h1 = self.h1 = self.addHost('h1')\n h2 = self.h2 = self.addHost('h2')\n h3 = self.h3 = self.addHost('h3')\n h4 = self.h4 = self.addHost('h4')\n h51 = self.h51 = self.addHost('h51')\n h52 = self.h52 = self.addHost('h52')\n s0 = self.s0 = self.addSwitch('s0')\n s1 = self.s1 = self.addSwitch('s1')\n s4 = self.s4 = self.addSwitch('s4')\n s5 = self.s5 = self.addSwitch('s5')\n self.addLink(h1, s1)\n self.addLink(h2, s1)\n self.addLink(h3, s1)\n self.addLink(h4, s4)\n self.addLink(h51, s5)\n self.addLink(h52, s5)\n self.addLink(s0, s1)\n self.addLink(s0, s4)\n self.addLink(s5, s4)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass DemoTopology(Topo):\n\n def __init__(self):\n Topo.__init__(self)\n h1 = self.h1 = self.addHost('h1')\n h2 = self.h2 = self.addHost('h2')\n h3 = self.h3 = self.addHost('h3')\n h4 = self.h4 = self.addHost('h4')\n h51 = self.h51 = self.addHost('h51')\n h52 = self.h52 = self.addHost('h52')\n s0 = self.s0 = self.addSwitch('s0')\n s1 = self.s1 = self.addSwitch('s1')\n s4 = self.s4 = self.addSwitch('s4')\n s5 = self.s5 = self.addSwitch('s5')\n self.addLink(h1, s1)\n self.addLink(h2, s1)\n self.addLink(h3, s1)\n self.addLink(h4, s4)\n self.addLink(h51, s5)\n self.addLink(h52, s5)\n self.addLink(s0, s1)\n self.addLink(s0, s4)\n self.addLink(s5, s4)\n\n\ntopos = {'demo': lambda : DemoTopology()}\n", "step-4": "<mask token>\nfrom mininet.topo import Topo\n\n\nclass DemoTopology(Topo):\n\n def __init__(self):\n Topo.__init__(self)\n h1 = self.h1 = self.addHost('h1')\n h2 = self.h2 = self.addHost('h2')\n h3 = self.h3 = self.addHost('h3')\n h4 = self.h4 = self.addHost('h4')\n h51 = self.h51 = self.addHost('h51')\n h52 = self.h52 = self.addHost('h52')\n s0 = self.s0 = self.addSwitch('s0')\n s1 = self.s1 = self.addSwitch('s1')\n s4 = self.s4 = self.addSwitch('s4')\n s5 = self.s5 = self.addSwitch('s5')\n self.addLink(h1, s1)\n self.addLink(h2, s1)\n self.addLink(h3, s1)\n self.addLink(h4, s4)\n self.addLink(h51, s5)\n self.addLink(h52, s5)\n self.addLink(s0, s1)\n self.addLink(s0, s4)\n self.addLink(s5, s4)\n\n\ntopos = {'demo': lambda : DemoTopology()}\n", "step-5": "#!/usr/bin/python\n\n\"\"\"\ndemo_mininet_topo.py\n\nSample topology class with Mininet.\n\nG = {V, E}\nV = {h1, h2, h3, h4, h51, h52, s0, s1, s4, s5}\n\t# of hosts = 6\n\t# of switches = 4\nE = {\n\t\t(h1, s1), (h2, s1), (h3, s1), \n\t \t(h4, s4), \n\t\t(h51, s5), (h52, s5), \n\t\t(s0, s1), (s0, s4), (s5, s4)\n\t}\n\"\"\"\n\nfrom mininet.topo import Topo\n\nclass DemoTopology(Topo):\n\t\n\tdef __init__(self):\n\t\t\n\t\tTopo.__init__(self)\n\t\t\n\t\t# Add some hosts\n\t\th1 = self.h1 = self.addHost('h1')\n\t\th2 = self.h2 = self.addHost('h2')\n\t\th3 = self.h3 = self.addHost('h3')\n\t\th4 = self.h4 = self.addHost('h4')\n\t\th51 = self.h51 = self.addHost('h51')\n\t\th52 = self.h52 = self.addHost('h52')\n\t\t\n\t\t# Add switches\n\t\ts0 = self.s0 = self.addSwitch('s0')\n\t\ts1 = self.s1 = self.addSwitch('s1')\n\t\ts4 = self.s4 = self.addSwitch('s4')\n\t\ts5 = self.s5 = self.addSwitch('s5')\n\t\t\n\t\t# Link hosts with switches\n\t\tself.addLink(h1, s1)\n\t\tself.addLink(h2, s1)\n\t\tself.addLink(h3, s1)\n\t\tself.addLink(h4, s4)\n\t\tself.addLink(h51, s5)\n\t\tself.addLink(h52, s5)\n\t\t\n\t\t# Link switches with switches\n\t\tself.addLink(s0, s1)\n\t\tself.addLink(s0, s4)\n\t\tself.addLink(s5, s4)\n\t\ntopos = {\n\t'demo': lambda: DemoTopology()\n}\t", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> class ChatRoomScreen(Screen): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def schedule_update_display_info(self, *args): Clock.schedule_interval(self.update_display_info, 1) <|reserved_special_token_0|> <|reserved_special_token_0|> def update_display_info(self, *args): if (self.chat_history != self.parent.client_protocol.chat_history. history_string): self.chat_history = (self.parent.client_protocol.chat_history. history_string) if self.user_list != self.parent.client_protocol.user_list: print('User List mismatch') self.user_list = self.parent.client_protocol.user_list self.update_user_list_buttons() if self.parent.client_protocol.server_shutdown: self.server_shutdown() def next_message_private(self, user): current_text = self.ids.message.text self.ids.message.text = '' current_text = '@{}, '.format(user) + current_text self.ids.message.text = current_text def server_shutdown(self): print('SERVER SHUTDOWN') self.popup = ServerShutdownPopup() self.popup.open() def schedule_clear_input_box(self): Clock.schedule_once(self.clear_input_box, 0.25) def clear_input_box(self, *args): self.ids.message.text = '' <|reserved_special_token_1|> <|reserved_special_token_0|> class StartScreen(Screen): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class ChatRoomScreen(Screen): chat_history = StringProperty('') user_list = StringProperty('') def on_enter(self): Clock.schedule_once(self.schedule_update_display_info) def schedule_update_display_info(self, *args): Clock.schedule_interval(self.update_display_info, 1) def update_user_list_buttons(self): self.clear_user_list_display() for user in self.user_list.split('\n'): button = ModalPopupButton(text=user) self.ids.user_list.add_widget(button) self.ids.user_list.add_widget(Widget()) def clear_user_list_display(self): self.ids.user_list.clear_widgets() def update_display_info(self, *args): if (self.chat_history != self.parent.client_protocol.chat_history. history_string): self.chat_history = (self.parent.client_protocol.chat_history. history_string) if self.user_list != self.parent.client_protocol.user_list: print('User List mismatch') self.user_list = self.parent.client_protocol.user_list self.update_user_list_buttons() if self.parent.client_protocol.server_shutdown: self.server_shutdown() def next_message_private(self, user): current_text = self.ids.message.text self.ids.message.text = '' current_text = '@{}, '.format(user) + current_text self.ids.message.text = current_text def server_shutdown(self): print('SERVER SHUTDOWN') self.popup = ServerShutdownPopup() self.popup.open() def schedule_clear_input_box(self): Clock.schedule_once(self.clear_input_box, 0.25) def clear_input_box(self, *args): self.ids.message.text = '' <|reserved_special_token_1|> <|reserved_special_token_0|> class StartScreen(Screen): def attempt_to_connect(self, server_ip, username, password): self.parent.client_protocol.start_connection(server_ip, username, password) self.open_connecting_popup() self.timeout = 0 self.wait_For_server_response_event = Clock.schedule_interval(self. wait_for_server_response, 1) def wait_for_server_response(self, *args): print(self.timeout) if self.parent.client_protocol.login_success: self.popup.dismiss() self.wait_For_server_response_event.cancel() self.parent.current = 'ChatRoomScreen' elif self.timeout == 5: self.failed_to_connect(message= 'Failed to connect to server. Please try again or check your network connection.' ) elif self.parent.client_protocol.invalid_credentials: self.parent.client_protocol.invalid_credentials = False self.failed_to_connect(message= 'Invalid username/password combination. Please try again.') else: self.timeout += 1 def failed_to_connect(self, message): print('FAILED TO CONNECT') self.popup.dismiss() self.open_failed_popup(message=message) self.wait_For_server_response_event.cancel() def open_connecting_popup(self): self.popup = SubmissionPopup() self.popup.open() def open_failed_popup(self, message): self.popup = FailedSubmissionPopup(message=message) self.popup.open() class ChatRoomScreen(Screen): chat_history = StringProperty('') user_list = StringProperty('') def on_enter(self): Clock.schedule_once(self.schedule_update_display_info) def schedule_update_display_info(self, *args): Clock.schedule_interval(self.update_display_info, 1) def update_user_list_buttons(self): self.clear_user_list_display() for user in self.user_list.split('\n'): button = ModalPopupButton(text=user) self.ids.user_list.add_widget(button) self.ids.user_list.add_widget(Widget()) def clear_user_list_display(self): self.ids.user_list.clear_widgets() def update_display_info(self, *args): if (self.chat_history != self.parent.client_protocol.chat_history. history_string): self.chat_history = (self.parent.client_protocol.chat_history. history_string) if self.user_list != self.parent.client_protocol.user_list: print('User List mismatch') self.user_list = self.parent.client_protocol.user_list self.update_user_list_buttons() if self.parent.client_protocol.server_shutdown: self.server_shutdown() def next_message_private(self, user): current_text = self.ids.message.text self.ids.message.text = '' current_text = '@{}, '.format(user) + current_text self.ids.message.text = current_text def server_shutdown(self): print('SERVER SHUTDOWN') self.popup = ServerShutdownPopup() self.popup.open() def schedule_clear_input_box(self): Clock.schedule_once(self.clear_input_box, 0.25) def clear_input_box(self, *args): self.ids.message.text = '' <|reserved_special_token_1|> <|reserved_special_token_0|> PORT = 1776 TIME_UNIT = 'MINUTES' class RootScreen(ScreenManager): def __init__(self, client_protocol, **kwargs): super().__init__(**kwargs) self.client_protocol = client_protocol class StartScreen(Screen): def attempt_to_connect(self, server_ip, username, password): self.parent.client_protocol.start_connection(server_ip, username, password) self.open_connecting_popup() self.timeout = 0 self.wait_For_server_response_event = Clock.schedule_interval(self. wait_for_server_response, 1) def wait_for_server_response(self, *args): print(self.timeout) if self.parent.client_protocol.login_success: self.popup.dismiss() self.wait_For_server_response_event.cancel() self.parent.current = 'ChatRoomScreen' elif self.timeout == 5: self.failed_to_connect(message= 'Failed to connect to server. Please try again or check your network connection.' ) elif self.parent.client_protocol.invalid_credentials: self.parent.client_protocol.invalid_credentials = False self.failed_to_connect(message= 'Invalid username/password combination. Please try again.') else: self.timeout += 1 def failed_to_connect(self, message): print('FAILED TO CONNECT') self.popup.dismiss() self.open_failed_popup(message=message) self.wait_For_server_response_event.cancel() def open_connecting_popup(self): self.popup = SubmissionPopup() self.popup.open() def open_failed_popup(self, message): self.popup = FailedSubmissionPopup(message=message) self.popup.open() class ChatRoomScreen(Screen): chat_history = StringProperty('') user_list = StringProperty('') def on_enter(self): Clock.schedule_once(self.schedule_update_display_info) def schedule_update_display_info(self, *args): Clock.schedule_interval(self.update_display_info, 1) def update_user_list_buttons(self): self.clear_user_list_display() for user in self.user_list.split('\n'): button = ModalPopupButton(text=user) self.ids.user_list.add_widget(button) self.ids.user_list.add_widget(Widget()) def clear_user_list_display(self): self.ids.user_list.clear_widgets() def update_display_info(self, *args): if (self.chat_history != self.parent.client_protocol.chat_history. history_string): self.chat_history = (self.parent.client_protocol.chat_history. history_string) if self.user_list != self.parent.client_protocol.user_list: print('User List mismatch') self.user_list = self.parent.client_protocol.user_list self.update_user_list_buttons() if self.parent.client_protocol.server_shutdown: self.server_shutdown() def next_message_private(self, user): current_text = self.ids.message.text self.ids.message.text = '' current_text = '@{}, '.format(user) + current_text self.ids.message.text = current_text def server_shutdown(self): print('SERVER SHUTDOWN') self.popup = ServerShutdownPopup() self.popup.open() def schedule_clear_input_box(self): Clock.schedule_once(self.clear_input_box, 0.25) def clear_input_box(self, *args): self.ids.message.text = '' <|reserved_special_token_1|> # Standard Library Imports # Third Party Imports from kivy.clock import Clock from kivy.properties import StringProperty from kivy.uix.screenmanager import Screen, ScreenManager from kivy.uix.widget import Widget # Local Imports from client.source.ui.kv_widgets import ModalPopupButton, SubmissionPopup, FailedSubmissionPopup, ServerShutdownPopup # ==================================== # CONSTANTS # ==================================== PORT = 1776 # ==================================== # PARAMETERS # ==================================== TIME_UNIT = 'MINUTES' class RootScreen(ScreenManager): def __init__(self, client_protocol, **kwargs): super().__init__(**kwargs) self.client_protocol = client_protocol class StartScreen(Screen): def attempt_to_connect(self, server_ip, username, password): self.parent.client_protocol.start_connection(server_ip, username, password) self.open_connecting_popup() self.timeout = 0 self.wait_For_server_response_event = Clock.schedule_interval(self.wait_for_server_response, 1) def wait_for_server_response(self, *args): print(self.timeout) # Login success if self.parent.client_protocol.login_success: self.popup.dismiss() self.wait_For_server_response_event.cancel() self.parent.current = 'ChatRoomScreen' # Timeout elif self.timeout == 5: self.failed_to_connect(message='Failed to connect to server. Please try again or check your network connection.') # Invalid credentials elif self.parent.client_protocol.invalid_credentials: self.parent.client_protocol.invalid_credentials = False self.failed_to_connect(message='Invalid username/password combination. Please try again.') else: self.timeout += 1 def failed_to_connect(self, message): print("FAILED TO CONNECT") self.popup.dismiss() self.open_failed_popup(message=message) self.wait_For_server_response_event.cancel() def open_connecting_popup(self): self.popup = SubmissionPopup() self.popup.open() def open_failed_popup(self, message): self.popup = FailedSubmissionPopup(message=message) self.popup.open() class ChatRoomScreen(Screen): chat_history = StringProperty('') user_list = StringProperty('') def on_enter(self): Clock.schedule_once(self.schedule_update_display_info) def schedule_update_display_info(self, *args): Clock.schedule_interval(self.update_display_info, 1) def update_user_list_buttons(self): self.clear_user_list_display() for user in self.user_list.split("\n"): button = ModalPopupButton(text=user) self.ids.user_list.add_widget(button) self.ids.user_list.add_widget(Widget()) def clear_user_list_display(self): self.ids.user_list.clear_widgets() def update_display_info(self, *args): if self.chat_history != self.parent.client_protocol.chat_history.history_string: self.chat_history = self.parent.client_protocol.chat_history.history_string if self.user_list != self.parent.client_protocol.user_list: print("User List mismatch") self.user_list = self.parent.client_protocol.user_list self.update_user_list_buttons() if self.parent.client_protocol.server_shutdown: self.server_shutdown() def next_message_private(self, user): current_text = self.ids.message.text self.ids.message.text = '' current_text = "@{}, ".format(user) + current_text self.ids.message.text = current_text def server_shutdown(self): print("SERVER SHUTDOWN") self.popup = ServerShutdownPopup() self.popup.open() def schedule_clear_input_box(self): Clock.schedule_once(self.clear_input_box, 0.25) def clear_input_box(self, *args): self.ids.message.text = ''
flexible
{ "blob_id": "327e9dcba49419b8a8c320940e333765c1d9b980", "index": 5997, "step-1": "<mask token>\n\n\nclass ChatRoomScreen(Screen):\n <mask token>\n <mask token>\n <mask token>\n\n def schedule_update_display_info(self, *args):\n Clock.schedule_interval(self.update_display_info, 1)\n <mask token>\n <mask token>\n\n def update_display_info(self, *args):\n if (self.chat_history != self.parent.client_protocol.chat_history.\n history_string):\n self.chat_history = (self.parent.client_protocol.chat_history.\n history_string)\n if self.user_list != self.parent.client_protocol.user_list:\n print('User List mismatch')\n self.user_list = self.parent.client_protocol.user_list\n self.update_user_list_buttons()\n if self.parent.client_protocol.server_shutdown:\n self.server_shutdown()\n\n def next_message_private(self, user):\n current_text = self.ids.message.text\n self.ids.message.text = ''\n current_text = '@{}, '.format(user) + current_text\n self.ids.message.text = current_text\n\n def server_shutdown(self):\n print('SERVER SHUTDOWN')\n self.popup = ServerShutdownPopup()\n self.popup.open()\n\n def schedule_clear_input_box(self):\n Clock.schedule_once(self.clear_input_box, 0.25)\n\n def clear_input_box(self, *args):\n self.ids.message.text = ''\n", "step-2": "<mask token>\n\n\nclass StartScreen(Screen):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass ChatRoomScreen(Screen):\n chat_history = StringProperty('')\n user_list = StringProperty('')\n\n def on_enter(self):\n Clock.schedule_once(self.schedule_update_display_info)\n\n def schedule_update_display_info(self, *args):\n Clock.schedule_interval(self.update_display_info, 1)\n\n def update_user_list_buttons(self):\n self.clear_user_list_display()\n for user in self.user_list.split('\\n'):\n button = ModalPopupButton(text=user)\n self.ids.user_list.add_widget(button)\n self.ids.user_list.add_widget(Widget())\n\n def clear_user_list_display(self):\n self.ids.user_list.clear_widgets()\n\n def update_display_info(self, *args):\n if (self.chat_history != self.parent.client_protocol.chat_history.\n history_string):\n self.chat_history = (self.parent.client_protocol.chat_history.\n history_string)\n if self.user_list != self.parent.client_protocol.user_list:\n print('User List mismatch')\n self.user_list = self.parent.client_protocol.user_list\n self.update_user_list_buttons()\n if self.parent.client_protocol.server_shutdown:\n self.server_shutdown()\n\n def next_message_private(self, user):\n current_text = self.ids.message.text\n self.ids.message.text = ''\n current_text = '@{}, '.format(user) + current_text\n self.ids.message.text = current_text\n\n def server_shutdown(self):\n print('SERVER SHUTDOWN')\n self.popup = ServerShutdownPopup()\n self.popup.open()\n\n def schedule_clear_input_box(self):\n Clock.schedule_once(self.clear_input_box, 0.25)\n\n def clear_input_box(self, *args):\n self.ids.message.text = ''\n", "step-3": "<mask token>\n\n\nclass StartScreen(Screen):\n\n def attempt_to_connect(self, server_ip, username, password):\n self.parent.client_protocol.start_connection(server_ip, username,\n password)\n self.open_connecting_popup()\n self.timeout = 0\n self.wait_For_server_response_event = Clock.schedule_interval(self.\n wait_for_server_response, 1)\n\n def wait_for_server_response(self, *args):\n print(self.timeout)\n if self.parent.client_protocol.login_success:\n self.popup.dismiss()\n self.wait_For_server_response_event.cancel()\n self.parent.current = 'ChatRoomScreen'\n elif self.timeout == 5:\n self.failed_to_connect(message=\n 'Failed to connect to server. Please try again or check your network connection.'\n )\n elif self.parent.client_protocol.invalid_credentials:\n self.parent.client_protocol.invalid_credentials = False\n self.failed_to_connect(message=\n 'Invalid username/password combination. Please try again.')\n else:\n self.timeout += 1\n\n def failed_to_connect(self, message):\n print('FAILED TO CONNECT')\n self.popup.dismiss()\n self.open_failed_popup(message=message)\n self.wait_For_server_response_event.cancel()\n\n def open_connecting_popup(self):\n self.popup = SubmissionPopup()\n self.popup.open()\n\n def open_failed_popup(self, message):\n self.popup = FailedSubmissionPopup(message=message)\n self.popup.open()\n\n\nclass ChatRoomScreen(Screen):\n chat_history = StringProperty('')\n user_list = StringProperty('')\n\n def on_enter(self):\n Clock.schedule_once(self.schedule_update_display_info)\n\n def schedule_update_display_info(self, *args):\n Clock.schedule_interval(self.update_display_info, 1)\n\n def update_user_list_buttons(self):\n self.clear_user_list_display()\n for user in self.user_list.split('\\n'):\n button = ModalPopupButton(text=user)\n self.ids.user_list.add_widget(button)\n self.ids.user_list.add_widget(Widget())\n\n def clear_user_list_display(self):\n self.ids.user_list.clear_widgets()\n\n def update_display_info(self, *args):\n if (self.chat_history != self.parent.client_protocol.chat_history.\n history_string):\n self.chat_history = (self.parent.client_protocol.chat_history.\n history_string)\n if self.user_list != self.parent.client_protocol.user_list:\n print('User List mismatch')\n self.user_list = self.parent.client_protocol.user_list\n self.update_user_list_buttons()\n if self.parent.client_protocol.server_shutdown:\n self.server_shutdown()\n\n def next_message_private(self, user):\n current_text = self.ids.message.text\n self.ids.message.text = ''\n current_text = '@{}, '.format(user) + current_text\n self.ids.message.text = current_text\n\n def server_shutdown(self):\n print('SERVER SHUTDOWN')\n self.popup = ServerShutdownPopup()\n self.popup.open()\n\n def schedule_clear_input_box(self):\n Clock.schedule_once(self.clear_input_box, 0.25)\n\n def clear_input_box(self, *args):\n self.ids.message.text = ''\n", "step-4": "<mask token>\nPORT = 1776\nTIME_UNIT = 'MINUTES'\n\n\nclass RootScreen(ScreenManager):\n\n def __init__(self, client_protocol, **kwargs):\n super().__init__(**kwargs)\n self.client_protocol = client_protocol\n\n\nclass StartScreen(Screen):\n\n def attempt_to_connect(self, server_ip, username, password):\n self.parent.client_protocol.start_connection(server_ip, username,\n password)\n self.open_connecting_popup()\n self.timeout = 0\n self.wait_For_server_response_event = Clock.schedule_interval(self.\n wait_for_server_response, 1)\n\n def wait_for_server_response(self, *args):\n print(self.timeout)\n if self.parent.client_protocol.login_success:\n self.popup.dismiss()\n self.wait_For_server_response_event.cancel()\n self.parent.current = 'ChatRoomScreen'\n elif self.timeout == 5:\n self.failed_to_connect(message=\n 'Failed to connect to server. Please try again or check your network connection.'\n )\n elif self.parent.client_protocol.invalid_credentials:\n self.parent.client_protocol.invalid_credentials = False\n self.failed_to_connect(message=\n 'Invalid username/password combination. Please try again.')\n else:\n self.timeout += 1\n\n def failed_to_connect(self, message):\n print('FAILED TO CONNECT')\n self.popup.dismiss()\n self.open_failed_popup(message=message)\n self.wait_For_server_response_event.cancel()\n\n def open_connecting_popup(self):\n self.popup = SubmissionPopup()\n self.popup.open()\n\n def open_failed_popup(self, message):\n self.popup = FailedSubmissionPopup(message=message)\n self.popup.open()\n\n\nclass ChatRoomScreen(Screen):\n chat_history = StringProperty('')\n user_list = StringProperty('')\n\n def on_enter(self):\n Clock.schedule_once(self.schedule_update_display_info)\n\n def schedule_update_display_info(self, *args):\n Clock.schedule_interval(self.update_display_info, 1)\n\n def update_user_list_buttons(self):\n self.clear_user_list_display()\n for user in self.user_list.split('\\n'):\n button = ModalPopupButton(text=user)\n self.ids.user_list.add_widget(button)\n self.ids.user_list.add_widget(Widget())\n\n def clear_user_list_display(self):\n self.ids.user_list.clear_widgets()\n\n def update_display_info(self, *args):\n if (self.chat_history != self.parent.client_protocol.chat_history.\n history_string):\n self.chat_history = (self.parent.client_protocol.chat_history.\n history_string)\n if self.user_list != self.parent.client_protocol.user_list:\n print('User List mismatch')\n self.user_list = self.parent.client_protocol.user_list\n self.update_user_list_buttons()\n if self.parent.client_protocol.server_shutdown:\n self.server_shutdown()\n\n def next_message_private(self, user):\n current_text = self.ids.message.text\n self.ids.message.text = ''\n current_text = '@{}, '.format(user) + current_text\n self.ids.message.text = current_text\n\n def server_shutdown(self):\n print('SERVER SHUTDOWN')\n self.popup = ServerShutdownPopup()\n self.popup.open()\n\n def schedule_clear_input_box(self):\n Clock.schedule_once(self.clear_input_box, 0.25)\n\n def clear_input_box(self, *args):\n self.ids.message.text = ''\n", "step-5": "# Standard Library Imports\n\n# Third Party Imports\nfrom kivy.clock import Clock\nfrom kivy.properties import StringProperty\nfrom kivy.uix.screenmanager import Screen, ScreenManager\nfrom kivy.uix.widget import Widget\n\n# Local Imports\nfrom client.source.ui.kv_widgets import ModalPopupButton, SubmissionPopup, FailedSubmissionPopup, ServerShutdownPopup\n\n# ====================================\n# CONSTANTS\n# ====================================\nPORT = 1776\n\n# ====================================\n# PARAMETERS\n# ====================================\nTIME_UNIT = 'MINUTES'\n\n\nclass RootScreen(ScreenManager):\n def __init__(self, client_protocol, **kwargs):\n super().__init__(**kwargs)\n self.client_protocol = client_protocol\n\n\nclass StartScreen(Screen):\n\n def attempt_to_connect(self, server_ip, username, password):\n self.parent.client_protocol.start_connection(server_ip, username, password)\n self.open_connecting_popup()\n self.timeout = 0\n self.wait_For_server_response_event = Clock.schedule_interval(self.wait_for_server_response, 1)\n\n def wait_for_server_response(self, *args):\n print(self.timeout)\n # Login success\n if self.parent.client_protocol.login_success:\n self.popup.dismiss()\n self.wait_For_server_response_event.cancel()\n self.parent.current = 'ChatRoomScreen'\n # Timeout\n elif self.timeout == 5:\n self.failed_to_connect(message='Failed to connect to server. Please try again or check your network connection.')\n # Invalid credentials\n elif self.parent.client_protocol.invalid_credentials:\n self.parent.client_protocol.invalid_credentials = False\n self.failed_to_connect(message='Invalid username/password combination. Please try again.')\n else:\n self.timeout += 1\n\n def failed_to_connect(self, message):\n print(\"FAILED TO CONNECT\")\n self.popup.dismiss()\n self.open_failed_popup(message=message)\n self.wait_For_server_response_event.cancel()\n\n def open_connecting_popup(self):\n self.popup = SubmissionPopup()\n self.popup.open()\n\n def open_failed_popup(self, message):\n self.popup = FailedSubmissionPopup(message=message)\n self.popup.open()\n\n\nclass ChatRoomScreen(Screen):\n chat_history = StringProperty('')\n user_list = StringProperty('')\n\n def on_enter(self):\n Clock.schedule_once(self.schedule_update_display_info)\n\n def schedule_update_display_info(self, *args):\n Clock.schedule_interval(self.update_display_info, 1)\n\n def update_user_list_buttons(self):\n self.clear_user_list_display()\n for user in self.user_list.split(\"\\n\"):\n button = ModalPopupButton(text=user)\n self.ids.user_list.add_widget(button)\n self.ids.user_list.add_widget(Widget())\n\n def clear_user_list_display(self):\n self.ids.user_list.clear_widgets()\n\n def update_display_info(self, *args):\n if self.chat_history != self.parent.client_protocol.chat_history.history_string:\n self.chat_history = self.parent.client_protocol.chat_history.history_string\n\n if self.user_list != self.parent.client_protocol.user_list:\n print(\"User List mismatch\")\n self.user_list = self.parent.client_protocol.user_list\n self.update_user_list_buttons()\n\n if self.parent.client_protocol.server_shutdown:\n self.server_shutdown()\n\n def next_message_private(self, user):\n current_text = self.ids.message.text\n self.ids.message.text = ''\n current_text = \"@{}, \".format(user) + current_text\n self.ids.message.text = current_text\n\n def server_shutdown(self):\n print(\"SERVER SHUTDOWN\")\n self.popup = ServerShutdownPopup()\n self.popup.open()\n\n def schedule_clear_input_box(self):\n Clock.schedule_once(self.clear_input_box, 0.25)\n\n def clear_input_box(self, *args):\n self.ids.message.text = ''\n", "step-ids": [ 7, 12, 17, 20, 22 ] }
[ 7, 12, 17, 20, 22 ]
import face_recognition from glob import glob import os.path as osp class FaceRecognitionLib(object): """ face_recognition library を利用した顔認証検証 """ # クラス変数設定 __data_set_dir = './../../dataset/japanese' # データ・セットディレクトリ __known_image_idx = (1,) # 既存画像のインデックス __unknown_image_idx = (2, 3, 4, 5) # 検証画像のインデックス __tolerance = 0.4 # Recognitionの距離threshold def __init__(self): # get sub directory sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/') # get list of name self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs] # 既存画像と検証画像のファイルリストを生成する。 known_images_path = [] unknown_images_path = [] for img_idx in self.__known_image_idx: known_images_path.extend( [osp.join(sub_dir, sub_dir.split('/')[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs]) for img_idx in self.__unknown_image_idx: unknown_images_path.extend( [osp.join(sub_dir, sub_dir.split('/')[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs]) self.__unknown_images_paths = unknown_images_path # set face encodings for known faces self.__known_face_encodings = self.__make_face_encodings(images_path=known_images_path) print('shape of known_face_encodings = ({}, {})'.format(len(self.__known_face_encodings), len(self.__known_face_encodings[0]))) @staticmethod def __make_face_encodings(images_path): """ face encode情報を生成する。 """ face_encodings = [] for img_path in images_path: img = face_recognition.load_image_file(img_path) face_encodings.append(face_recognition.face_encodings(img)[0]) return face_encodings def recognition(self): """ Recognition """ unknown_face_encodings = self.__make_face_encodings(images_path=self.__unknown_images_paths) print('shape of unknown_face_encodings = ({}, {})'.format(len(unknown_face_encodings), len(unknown_face_encodings[0]))) accuracy = 0 wrong = 0 for face_to_compare in self.__known_face_encodings: print(face_recognition.face_distance(unknown_face_encodings, face_to_compare)) for i, unknown_face_encoding in enumerate(unknown_face_encodings): img_file = osp.basename(self.__unknown_images_paths[i]) results = face_recognition.compare_faces(self.__known_face_encodings, unknown_face_encoding, tolerance=FaceRecognitionLib.__tolerance) name = "Unknown" for person in range(len(self.__people)): if results[person]: name = self.__people[person] break if name in img_file: accuracy += 1 else: wrong += 1 print("Found {} in the photo {}".format(name, img_file)) print('accuracy = {}, wrong = {}'.format(accuracy, wrong)) if __name__ == "__main__": face_recognition_lib = FaceRecognitionLib() face_recognition_lib.recognition()
normal
{ "blob_id": "2d69a39be3931aa4c62cadff4cdfad76f6b32c59", "index": 6473, "step-1": "<mask token>\n\n\nclass FaceRecognitionLib(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self):\n sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/')\n self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs]\n known_images_path = []\n unknown_images_path = []\n for img_idx in self.__known_image_idx:\n known_images_path.extend([osp.join(sub_dir, sub_dir.split('/')[\n -2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n for img_idx in self.__unknown_image_idx:\n unknown_images_path.extend([osp.join(sub_dir, sub_dir.split('/'\n )[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n self.__unknown_images_paths = unknown_images_path\n self.__known_face_encodings = self.__make_face_encodings(images_path\n =known_images_path)\n print('shape of known_face_encodings = ({}, {})'.format(len(self.\n __known_face_encodings), len(self.__known_face_encodings[0])))\n <mask token>\n\n def recognition(self):\n \"\"\"\n Recognition\n \"\"\"\n unknown_face_encodings = self.__make_face_encodings(images_path=\n self.__unknown_images_paths)\n print('shape of unknown_face_encodings = ({}, {})'.format(len(\n unknown_face_encodings), len(unknown_face_encodings[0])))\n accuracy = 0\n wrong = 0\n for face_to_compare in self.__known_face_encodings:\n print(face_recognition.face_distance(unknown_face_encodings,\n face_to_compare))\n for i, unknown_face_encoding in enumerate(unknown_face_encodings):\n img_file = osp.basename(self.__unknown_images_paths[i])\n results = face_recognition.compare_faces(self.\n __known_face_encodings, unknown_face_encoding, tolerance=\n FaceRecognitionLib.__tolerance)\n name = 'Unknown'\n for person in range(len(self.__people)):\n if results[person]:\n name = self.__people[person]\n break\n if name in img_file:\n accuracy += 1\n else:\n wrong += 1\n print('Found {} in the photo {}'.format(name, img_file))\n print('accuracy = {}, wrong = {}'.format(accuracy, wrong))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass FaceRecognitionLib(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self):\n sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/')\n self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs]\n known_images_path = []\n unknown_images_path = []\n for img_idx in self.__known_image_idx:\n known_images_path.extend([osp.join(sub_dir, sub_dir.split('/')[\n -2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n for img_idx in self.__unknown_image_idx:\n unknown_images_path.extend([osp.join(sub_dir, sub_dir.split('/'\n )[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n self.__unknown_images_paths = unknown_images_path\n self.__known_face_encodings = self.__make_face_encodings(images_path\n =known_images_path)\n print('shape of known_face_encodings = ({}, {})'.format(len(self.\n __known_face_encodings), len(self.__known_face_encodings[0])))\n\n @staticmethod\n def __make_face_encodings(images_path):\n \"\"\"\n face encode情報を生成する。\n \"\"\"\n face_encodings = []\n for img_path in images_path:\n img = face_recognition.load_image_file(img_path)\n face_encodings.append(face_recognition.face_encodings(img)[0])\n return face_encodings\n\n def recognition(self):\n \"\"\"\n Recognition\n \"\"\"\n unknown_face_encodings = self.__make_face_encodings(images_path=\n self.__unknown_images_paths)\n print('shape of unknown_face_encodings = ({}, {})'.format(len(\n unknown_face_encodings), len(unknown_face_encodings[0])))\n accuracy = 0\n wrong = 0\n for face_to_compare in self.__known_face_encodings:\n print(face_recognition.face_distance(unknown_face_encodings,\n face_to_compare))\n for i, unknown_face_encoding in enumerate(unknown_face_encodings):\n img_file = osp.basename(self.__unknown_images_paths[i])\n results = face_recognition.compare_faces(self.\n __known_face_encodings, unknown_face_encoding, tolerance=\n FaceRecognitionLib.__tolerance)\n name = 'Unknown'\n for person in range(len(self.__people)):\n if results[person]:\n name = self.__people[person]\n break\n if name in img_file:\n accuracy += 1\n else:\n wrong += 1\n print('Found {} in the photo {}'.format(name, img_file))\n print('accuracy = {}, wrong = {}'.format(accuracy, wrong))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass FaceRecognitionLib(object):\n <mask token>\n __data_set_dir = './../../dataset/japanese'\n __known_image_idx = 1,\n __unknown_image_idx = 2, 3, 4, 5\n __tolerance = 0.4\n\n def __init__(self):\n sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/')\n self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs]\n known_images_path = []\n unknown_images_path = []\n for img_idx in self.__known_image_idx:\n known_images_path.extend([osp.join(sub_dir, sub_dir.split('/')[\n -2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n for img_idx in self.__unknown_image_idx:\n unknown_images_path.extend([osp.join(sub_dir, sub_dir.split('/'\n )[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n self.__unknown_images_paths = unknown_images_path\n self.__known_face_encodings = self.__make_face_encodings(images_path\n =known_images_path)\n print('shape of known_face_encodings = ({}, {})'.format(len(self.\n __known_face_encodings), len(self.__known_face_encodings[0])))\n\n @staticmethod\n def __make_face_encodings(images_path):\n \"\"\"\n face encode情報を生成する。\n \"\"\"\n face_encodings = []\n for img_path in images_path:\n img = face_recognition.load_image_file(img_path)\n face_encodings.append(face_recognition.face_encodings(img)[0])\n return face_encodings\n\n def recognition(self):\n \"\"\"\n Recognition\n \"\"\"\n unknown_face_encodings = self.__make_face_encodings(images_path=\n self.__unknown_images_paths)\n print('shape of unknown_face_encodings = ({}, {})'.format(len(\n unknown_face_encodings), len(unknown_face_encodings[0])))\n accuracy = 0\n wrong = 0\n for face_to_compare in self.__known_face_encodings:\n print(face_recognition.face_distance(unknown_face_encodings,\n face_to_compare))\n for i, unknown_face_encoding in enumerate(unknown_face_encodings):\n img_file = osp.basename(self.__unknown_images_paths[i])\n results = face_recognition.compare_faces(self.\n __known_face_encodings, unknown_face_encoding, tolerance=\n FaceRecognitionLib.__tolerance)\n name = 'Unknown'\n for person in range(len(self.__people)):\n if results[person]:\n name = self.__people[person]\n break\n if name in img_file:\n accuracy += 1\n else:\n wrong += 1\n print('Found {} in the photo {}'.format(name, img_file))\n print('accuracy = {}, wrong = {}'.format(accuracy, wrong))\n\n\n<mask token>\n", "step-4": "import face_recognition\nfrom glob import glob\nimport os.path as osp\n\n\nclass FaceRecognitionLib(object):\n \"\"\"\n face_recognition library を利用した顔認証検証\n \"\"\"\n __data_set_dir = './../../dataset/japanese'\n __known_image_idx = 1,\n __unknown_image_idx = 2, 3, 4, 5\n __tolerance = 0.4\n\n def __init__(self):\n sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/')\n self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs]\n known_images_path = []\n unknown_images_path = []\n for img_idx in self.__known_image_idx:\n known_images_path.extend([osp.join(sub_dir, sub_dir.split('/')[\n -2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n for img_idx in self.__unknown_image_idx:\n unknown_images_path.extend([osp.join(sub_dir, sub_dir.split('/'\n )[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\n self.__unknown_images_paths = unknown_images_path\n self.__known_face_encodings = self.__make_face_encodings(images_path\n =known_images_path)\n print('shape of known_face_encodings = ({}, {})'.format(len(self.\n __known_face_encodings), len(self.__known_face_encodings[0])))\n\n @staticmethod\n def __make_face_encodings(images_path):\n \"\"\"\n face encode情報を生成する。\n \"\"\"\n face_encodings = []\n for img_path in images_path:\n img = face_recognition.load_image_file(img_path)\n face_encodings.append(face_recognition.face_encodings(img)[0])\n return face_encodings\n\n def recognition(self):\n \"\"\"\n Recognition\n \"\"\"\n unknown_face_encodings = self.__make_face_encodings(images_path=\n self.__unknown_images_paths)\n print('shape of unknown_face_encodings = ({}, {})'.format(len(\n unknown_face_encodings), len(unknown_face_encodings[0])))\n accuracy = 0\n wrong = 0\n for face_to_compare in self.__known_face_encodings:\n print(face_recognition.face_distance(unknown_face_encodings,\n face_to_compare))\n for i, unknown_face_encoding in enumerate(unknown_face_encodings):\n img_file = osp.basename(self.__unknown_images_paths[i])\n results = face_recognition.compare_faces(self.\n __known_face_encodings, unknown_face_encoding, tolerance=\n FaceRecognitionLib.__tolerance)\n name = 'Unknown'\n for person in range(len(self.__people)):\n if results[person]:\n name = self.__people[person]\n break\n if name in img_file:\n accuracy += 1\n else:\n wrong += 1\n print('Found {} in the photo {}'.format(name, img_file))\n print('accuracy = {}, wrong = {}'.format(accuracy, wrong))\n\n\nif __name__ == '__main__':\n face_recognition_lib = FaceRecognitionLib()\n face_recognition_lib.recognition()\n", "step-5": "import face_recognition\r\nfrom glob import glob\r\nimport os.path as osp\r\n\r\n\r\nclass FaceRecognitionLib(object):\r\n \"\"\"\r\n face_recognition library を利用した顔認証検証\r\n \"\"\"\r\n # クラス変数設定\r\n __data_set_dir = './../../dataset/japanese' # データ・セットディレクトリ\r\n __known_image_idx = (1,) # 既存画像のインデックス\r\n __unknown_image_idx = (2, 3, 4, 5) # 検証画像のインデックス\r\n __tolerance = 0.4 # Recognitionの距離threshold\r\n\r\n def __init__(self):\r\n # get sub directory\r\n sub_dirs = glob(FaceRecognitionLib.__data_set_dir + '/*/')\r\n\r\n # get list of name\r\n self.__people = [sub_dir.split('/')[-2] for sub_dir in sub_dirs]\r\n\r\n # 既存画像と検証画像のファイルリストを生成する。\r\n known_images_path = []\r\n unknown_images_path = []\r\n for img_idx in self.__known_image_idx:\r\n known_images_path.extend(\r\n [osp.join(sub_dir, sub_dir.split('/')[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\r\n\r\n for img_idx in self.__unknown_image_idx:\r\n unknown_images_path.extend(\r\n [osp.join(sub_dir, sub_dir.split('/')[-2] + str(img_idx) + '.jpg') for sub_dir in sub_dirs])\r\n\r\n self.__unknown_images_paths = unknown_images_path\r\n\r\n # set face encodings for known faces\r\n self.__known_face_encodings = self.__make_face_encodings(images_path=known_images_path)\r\n print('shape of known_face_encodings = ({}, {})'.format(len(self.__known_face_encodings),\r\n len(self.__known_face_encodings[0])))\r\n\r\n @staticmethod\r\n def __make_face_encodings(images_path):\r\n \"\"\"\r\n face encode情報を生成する。\r\n \"\"\"\r\n face_encodings = []\r\n\r\n for img_path in images_path:\r\n img = face_recognition.load_image_file(img_path)\r\n face_encodings.append(face_recognition.face_encodings(img)[0])\r\n\r\n return face_encodings\r\n\r\n def recognition(self):\r\n \"\"\"\r\n Recognition\r\n \"\"\"\r\n unknown_face_encodings = self.__make_face_encodings(images_path=self.__unknown_images_paths)\r\n print('shape of unknown_face_encodings = ({}, {})'.format(len(unknown_face_encodings),\r\n len(unknown_face_encodings[0])))\r\n\r\n accuracy = 0\r\n wrong = 0\r\n\r\n for face_to_compare in self.__known_face_encodings:\r\n print(face_recognition.face_distance(unknown_face_encodings, face_to_compare))\r\n\r\n for i, unknown_face_encoding in enumerate(unknown_face_encodings):\r\n img_file = osp.basename(self.__unknown_images_paths[i])\r\n results = face_recognition.compare_faces(self.__known_face_encodings,\r\n unknown_face_encoding,\r\n tolerance=FaceRecognitionLib.__tolerance)\r\n\r\n name = \"Unknown\"\r\n\r\n for person in range(len(self.__people)):\r\n if results[person]:\r\n name = self.__people[person]\r\n break\r\n\r\n if name in img_file:\r\n accuracy += 1\r\n else:\r\n wrong += 1\r\n\r\n print(\"Found {} in the photo {}\".format(name, img_file))\r\n\r\n print('accuracy = {}, wrong = {}'.format(accuracy, wrong))\r\n\r\n\r\nif __name__ == \"__main__\":\r\n face_recognition_lib = FaceRecognitionLib()\r\n face_recognition_lib.recognition()\r\n\r\n\r\n\r\n", "step-ids": [ 3, 4, 5, 8, 9 ] }
[ 3, 4, 5, 8, 9 ]
from keras.preprocessing.text import text_to_word_sequence import os # keras NLP tools filter out certain tokens by default # this function replaces the default with a smaller set of things to filter out def filter_not_punctuation(): return '"#$%&()*+-/:;<=>@[\\]^_`{|}~\t\n' def get_first_n_words(text, n): string_sequence = text_to_word_sequence(text, filters=filter_not_punctuation()) truncated_string = '' for word in string_sequence[:n]: truncated_string = truncated_string + word + ' ' return truncated_string # gets text data from files with only maxlen words from each file. Gets whole file if maxlen is None def get_labelled_data_from_directories(data_dir, maxlen=None): texts = [] # list of text samples labels_index = {} # dictionary mapping label name to numeric id labels = [] # list of label ids for name in sorted(os.listdir(data_dir)): path = os.path.join(data_dir, name) if os.path.isdir(path): label_id = len(labels_index) labels_index[name] = label_id for fname in os.listdir(path): fpath = os.path.join(path, fname) f = open(fpath) t = f.read() if maxlen is not None: t = get_first_n_words(t, maxlen) texts.append(t) f.close() labels.append(label_id) return texts, labels_index, labels
normal
{ "blob_id": "365e2059d5ed3d7f8d9dbb4e44f563b79d68b087", "index": 1856, "step-1": "<mask token>\n\n\ndef get_labelled_data_from_directories(data_dir, maxlen=None):\n texts = []\n labels_index = {}\n labels = []\n for name in sorted(os.listdir(data_dir)):\n path = os.path.join(data_dir, name)\n if os.path.isdir(path):\n label_id = len(labels_index)\n labels_index[name] = label_id\n for fname in os.listdir(path):\n fpath = os.path.join(path, fname)\n f = open(fpath)\n t = f.read()\n if maxlen is not None:\n t = get_first_n_words(t, maxlen)\n texts.append(t)\n f.close()\n labels.append(label_id)\n return texts, labels_index, labels\n", "step-2": "<mask token>\n\n\ndef filter_not_punctuation():\n return '\"#$%&()*+-/:;<=>@[\\\\]^_`{|}~\\t\\n'\n\n\n<mask token>\n\n\ndef get_labelled_data_from_directories(data_dir, maxlen=None):\n texts = []\n labels_index = {}\n labels = []\n for name in sorted(os.listdir(data_dir)):\n path = os.path.join(data_dir, name)\n if os.path.isdir(path):\n label_id = len(labels_index)\n labels_index[name] = label_id\n for fname in os.listdir(path):\n fpath = os.path.join(path, fname)\n f = open(fpath)\n t = f.read()\n if maxlen is not None:\n t = get_first_n_words(t, maxlen)\n texts.append(t)\n f.close()\n labels.append(label_id)\n return texts, labels_index, labels\n", "step-3": "<mask token>\n\n\ndef filter_not_punctuation():\n return '\"#$%&()*+-/:;<=>@[\\\\]^_`{|}~\\t\\n'\n\n\ndef get_first_n_words(text, n):\n string_sequence = text_to_word_sequence(text, filters=\n filter_not_punctuation())\n truncated_string = ''\n for word in string_sequence[:n]:\n truncated_string = truncated_string + word + ' '\n return truncated_string\n\n\ndef get_labelled_data_from_directories(data_dir, maxlen=None):\n texts = []\n labels_index = {}\n labels = []\n for name in sorted(os.listdir(data_dir)):\n path = os.path.join(data_dir, name)\n if os.path.isdir(path):\n label_id = len(labels_index)\n labels_index[name] = label_id\n for fname in os.listdir(path):\n fpath = os.path.join(path, fname)\n f = open(fpath)\n t = f.read()\n if maxlen is not None:\n t = get_first_n_words(t, maxlen)\n texts.append(t)\n f.close()\n labels.append(label_id)\n return texts, labels_index, labels\n", "step-4": "from keras.preprocessing.text import text_to_word_sequence\nimport os\n\n\ndef filter_not_punctuation():\n return '\"#$%&()*+-/:;<=>@[\\\\]^_`{|}~\\t\\n'\n\n\ndef get_first_n_words(text, n):\n string_sequence = text_to_word_sequence(text, filters=\n filter_not_punctuation())\n truncated_string = ''\n for word in string_sequence[:n]:\n truncated_string = truncated_string + word + ' '\n return truncated_string\n\n\ndef get_labelled_data_from_directories(data_dir, maxlen=None):\n texts = []\n labels_index = {}\n labels = []\n for name in sorted(os.listdir(data_dir)):\n path = os.path.join(data_dir, name)\n if os.path.isdir(path):\n label_id = len(labels_index)\n labels_index[name] = label_id\n for fname in os.listdir(path):\n fpath = os.path.join(path, fname)\n f = open(fpath)\n t = f.read()\n if maxlen is not None:\n t = get_first_n_words(t, maxlen)\n texts.append(t)\n f.close()\n labels.append(label_id)\n return texts, labels_index, labels\n", "step-5": "from keras.preprocessing.text import text_to_word_sequence\nimport os\n\n\n# keras NLP tools filter out certain tokens by default\n# this function replaces the default with a smaller set of things to filter out\ndef filter_not_punctuation():\n return '\"#$%&()*+-/:;<=>@[\\\\]^_`{|}~\\t\\n'\n\n\ndef get_first_n_words(text, n):\n string_sequence = text_to_word_sequence(text, filters=filter_not_punctuation())\n truncated_string = ''\n for word in string_sequence[:n]:\n truncated_string = truncated_string + word + ' '\n return truncated_string\n\n\n\n\n# gets text data from files with only maxlen words from each file. Gets whole file if maxlen is None\ndef get_labelled_data_from_directories(data_dir, maxlen=None):\n texts = [] # list of text samples\n labels_index = {} # dictionary mapping label name to numeric id\n labels = [] # list of label ids\n for name in sorted(os.listdir(data_dir)):\n path = os.path.join(data_dir, name)\n if os.path.isdir(path):\n label_id = len(labels_index)\n labels_index[name] = label_id\n for fname in os.listdir(path):\n fpath = os.path.join(path, fname)\n f = open(fpath)\n t = f.read()\n if maxlen is not None:\n t = get_first_n_words(t, maxlen)\n texts.append(t)\n f.close()\n labels.append(label_id)\n return texts, labels_index, labels\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import datetime import time import rfc822 from django.conf import settings from urllib2 import Request, urlopen, URLError, HTTPError from urllib import urlencode import re import string try: import django.utils.simplejson as json except: import json from django.core.cache import cache from tagging.models import Tag from foodtruck.models import * from foodtruck.tokens import * import oauth2 as oauth def fetch_json(url, service, list_key=None): fetched = urlopen(url).read() data = json.loads(fetched) if list_key: data = data[list_key] return data def oauth_req(url, key, secret, http_method="GET", post_body=None,http_headers=None): consumer = oauth.Consumer(key=CONSUMER_KEY, secret=CONSUMER_SECRET) token = oauth.Token(key=key, secret=secret) client = oauth.Client(consumer, token) resp, content = client.request( url, method=http_method, body=post_body, headers=http_headers, force_auth_header=True ) return content def get_all_tweets(): from dateutil.parser import parse, tz url = LIST_URL HERE = tz.tzlocal() if cache.get('truck_tweets'): tweets = cache.get('truck_tweets') else: tweets = [] all_tweets = oauth_req(url, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) data = json.loads(all_tweets) for t in data: m = dict( name = t['user']['screen_name'], pic_url = t['user']['profile_image_url'], text = t['text'], timestamp = parse(t['created_at']).astimezone(HERE), url = 'http://twitter.com/'+t['user']['screen_name']+'/statuses/'+str(t['id']), ) tweets += [m] cache.set('truck_tweets',tweets, 62) return tweets def filter_trucks(hood): tweets = get_all_tweets() n = Hood.objects.get(id=hood) tags = n.tags.all() filtered = {'hood':n.name, 'tags':tags} filtered['tweets'] = [] for t in tweets: for w in tags: if string.find(t['text'].lower(), w.name.lower()) > 0: filtered['tweets'] += [t] break cache.set((('filtered_%s' % hood)), filtered, 62) return filtered def get_truck_names(): p = open('truck.cursor','r') try: last_cursor = int(p.read()) except: last_cursor=1353949495935930905 # this is just the last cursor number i looked up, to save on API calls -- can change. p.close() url = LIST_MEMBERS_URL get_truck_list = oauth_req(url, OAUTH_TOKEN, OAUTH_TOKEN_SECRET) truck_list = json.loads(get_truck_list) all_trucks = truck_list['users'] cursor = truck_list['next_cursor'] f = open('truck.cursor','w') f.write(str(cursor)) f.close while cursor > last_cursor: truck_url = LIST_MEMBERS_URL +'?cursor=' + str(cursor) get_truck_list = oauth_req(truck_url,OAUTH_TOKEN,OAUTH_TOKEN_SECRET) truck_list = json.loads(get_truck_list) all_trucks += truck_list['users'] cursor = truck_list['next_cursor'] for truck in all_trucks: description=truck['description'] or '' truck_url= truck['url'] or 'http://twitter.com/'+truck['screen_name'] profile_icon= truck['profile_image_url'] or '' real_name=truck['name'] or truck['screen_name'] t = Truck.objects.get_or_create(id_str__exact=truck['id_str'], defaults = {'name':truck['screen_name'], 'description':description, 'profile_icon':profile_icon, 'truck_url':truck_url, 'geo_enabled':truck['geo_enabled'], 'real_name':real_name, 'id_str':truck['id_str']}) if __name__=='__main__': import sys try: func = sys.argv[1] except: func = None if func: try: exec 'print %s' % func except: print "Error: incorrect syntax '%s'" % func else: print "Please name your function"
normal
{ "blob_id": "f720eaf1ea96ccc70730e8ba1513e1a2bb95d29d", "index": 4842, "step-1": "import datetime\nimport time\nimport rfc822\nfrom django.conf import settings\nfrom urllib2 import Request, urlopen, URLError, HTTPError\nfrom urllib import urlencode\nimport re \nimport string\ntry:\n import django.utils.simplejson as json\nexcept:\n import json\nfrom django.core.cache import cache\n\nfrom tagging.models import Tag\n\nfrom foodtruck.models import *\nfrom foodtruck.tokens import *\n\nimport oauth2 as oauth\n\ndef fetch_json(url, service, list_key=None):\n fetched = urlopen(url).read()\n data = json.loads(fetched)\n if list_key:\n data = data[list_key]\n return data\n \ndef oauth_req(url, key, secret, http_method=\"GET\", post_body=None,http_headers=None):\n\tconsumer = oauth.Consumer(key=CONSUMER_KEY, secret=CONSUMER_SECRET)\n\ttoken = oauth.Token(key=key, secret=secret)\n\tclient = oauth.Client(consumer, token)\n\tresp, content = client.request(\n\t\turl,\n\t\tmethod=http_method,\n\t\tbody=post_body,\n\t\theaders=http_headers,\n\t\tforce_auth_header=True\n\t)\n\treturn content\n\ndef get_all_tweets():\n from dateutil.parser import parse, tz\n url = LIST_URL\n HERE = tz.tzlocal()\n if cache.get('truck_tweets'):\n tweets = cache.get('truck_tweets')\n else:\n tweets = []\n all_tweets = oauth_req(url, OAUTH_TOKEN, OAUTH_TOKEN_SECRET)\n data = json.loads(all_tweets)\n for t in data:\n m = dict(\n name = t['user']['screen_name'],\n pic_url = t['user']['profile_image_url'],\n text = t['text'],\n timestamp = parse(t['created_at']).astimezone(HERE),\n url = 'http://twitter.com/'+t['user']['screen_name']+'/statuses/'+str(t['id']),\n ) \n tweets += [m]\n cache.set('truck_tweets',tweets, 62)\n return tweets \n\n\ndef filter_trucks(hood):\n tweets = get_all_tweets() \n n = Hood.objects.get(id=hood)\n tags = n.tags.all()\n filtered = {'hood':n.name, 'tags':tags}\n filtered['tweets'] = []\n for t in tweets:\n for w in tags:\n if string.find(t['text'].lower(), w.name.lower()) > 0: \n filtered['tweets'] += [t]\n break\n cache.set((('filtered_%s' % hood)), filtered, 62)\n return filtered\n \n \ndef get_truck_names():\n p = open('truck.cursor','r')\n try: last_cursor = int(p.read())\n except: last_cursor=1353949495935930905 # this is just the last cursor number i looked up, to save on API calls -- can change.\n p.close()\n\n url = LIST_MEMBERS_URL\n get_truck_list = oauth_req(url, OAUTH_TOKEN, OAUTH_TOKEN_SECRET)\n truck_list = json.loads(get_truck_list)\n all_trucks = truck_list['users']\n cursor = truck_list['next_cursor']\n f = open('truck.cursor','w')\n f.write(str(cursor))\n f.close\n\n while cursor > last_cursor:\n truck_url = LIST_MEMBERS_URL +'?cursor=' + str(cursor)\n get_truck_list = oauth_req(truck_url,OAUTH_TOKEN,OAUTH_TOKEN_SECRET)\n truck_list = json.loads(get_truck_list)\n all_trucks += truck_list['users']\n cursor = truck_list['next_cursor']\n for truck in all_trucks:\n description=truck['description'] or ''\n truck_url= truck['url'] or 'http://twitter.com/'+truck['screen_name']\n profile_icon= truck['profile_image_url'] or ''\n real_name=truck['name'] or truck['screen_name']\n t = Truck.objects.get_or_create(id_str__exact=truck['id_str'], defaults = {'name':truck['screen_name'], 'description':description, 'profile_icon':profile_icon, 'truck_url':truck_url, 'geo_enabled':truck['geo_enabled'], 'real_name':real_name, 'id_str':truck['id_str']})\n\n\nif __name__=='__main__':\n import sys\n try:\n func = sys.argv[1]\n except: func = None\n if func:\n try:\n exec 'print %s' % func\n except:\n print \"Error: incorrect syntax '%s'\" % func\n else: print \"Please name your function\"\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # Copyright (c) 2019, University of Stuttgart # All rights reserved. # # Permission to use, copy, modify, and distribute this software for any purpose # with or without fee is hereby granted, provided that the above copyright # notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR # OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. # # Jim Mainprice on Wed January 22 2019 from demos_common_imports import * from pyrieef.geometry.workspace import * from pyrieef.geometry import heat_diffusion from pyrieef.rendering.workspace_planar import WorkspaceDrawer import matplotlib.pyplot as plt ROWS = 1 COLS = 2 heat_diffusion.NB_POINTS = 101 heat_diffusion.TIME_FACTOR = 50 heat_diffusion.ALGORITHM = "forward" iterations = 10 workspace = Workspace() source = [0, 0] renderer = WorkspaceDrawer(workspace, rows=ROWS, cols=COLS) U = heat_diffusion.heat_diffusion(workspace, source, iterations) U_e = heat_diffusion.compare_with_kernel(U[-1], 9.020E-03, workspace) for i in range(2): renderer.set_drawing_axis(i) renderer.draw_ws_obstacles() renderer.draw_ws_point(source, color='k', shape='o') renderer.background_matrix_eval = False renderer.draw_ws_img( U[-1] if i == 0 else U_e, interpolate="none", color_style=plt.cm.gray) renderer.show()
normal
{ "blob_id": "007cce815f3ad4e47593ff00ff2e73d5d9961d9e", "index": 3211, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(2):\n renderer.set_drawing_axis(i)\n renderer.draw_ws_obstacles()\n renderer.draw_ws_point(source, color='k', shape='o')\n renderer.background_matrix_eval = False\n renderer.draw_ws_img(U[-1] if i == 0 else U_e, interpolate='none',\n color_style=plt.cm.gray)\nrenderer.show()\n", "step-3": "<mask token>\nROWS = 1\nCOLS = 2\nheat_diffusion.NB_POINTS = 101\nheat_diffusion.TIME_FACTOR = 50\nheat_diffusion.ALGORITHM = 'forward'\niterations = 10\nworkspace = Workspace()\nsource = [0, 0]\nrenderer = WorkspaceDrawer(workspace, rows=ROWS, cols=COLS)\nU = heat_diffusion.heat_diffusion(workspace, source, iterations)\nU_e = heat_diffusion.compare_with_kernel(U[-1], 0.00902, workspace)\nfor i in range(2):\n renderer.set_drawing_axis(i)\n renderer.draw_ws_obstacles()\n renderer.draw_ws_point(source, color='k', shape='o')\n renderer.background_matrix_eval = False\n renderer.draw_ws_img(U[-1] if i == 0 else U_e, interpolate='none',\n color_style=plt.cm.gray)\nrenderer.show()\n", "step-4": "from demos_common_imports import *\nfrom pyrieef.geometry.workspace import *\nfrom pyrieef.geometry import heat_diffusion\nfrom pyrieef.rendering.workspace_planar import WorkspaceDrawer\nimport matplotlib.pyplot as plt\nROWS = 1\nCOLS = 2\nheat_diffusion.NB_POINTS = 101\nheat_diffusion.TIME_FACTOR = 50\nheat_diffusion.ALGORITHM = 'forward'\niterations = 10\nworkspace = Workspace()\nsource = [0, 0]\nrenderer = WorkspaceDrawer(workspace, rows=ROWS, cols=COLS)\nU = heat_diffusion.heat_diffusion(workspace, source, iterations)\nU_e = heat_diffusion.compare_with_kernel(U[-1], 0.00902, workspace)\nfor i in range(2):\n renderer.set_drawing_axis(i)\n renderer.draw_ws_obstacles()\n renderer.draw_ws_point(source, color='k', shape='o')\n renderer.background_matrix_eval = False\n renderer.draw_ws_img(U[-1] if i == 0 else U_e, interpolate='none',\n color_style=plt.cm.gray)\nrenderer.show()\n", "step-5": "#!/usr/bin/env python\n\n# Copyright (c) 2019, University of Stuttgart\n# All rights reserved.\n#\n# Permission to use, copy, modify, and distribute this software for any purpose\n# with or without fee is hereby granted, provided that the above copyright\n# notice and this permission notice appear in all copies.\n#\n# THE SOFTWARE IS PROVIDED \"AS IS\" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH\n# REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY\n# AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,\n# INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM\n# LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR\n# OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR\n# PERFORMANCE OF THIS SOFTWARE.\n#\n# Jim Mainprice on Wed January 22 2019\n\nfrom demos_common_imports import *\nfrom pyrieef.geometry.workspace import *\nfrom pyrieef.geometry import heat_diffusion\nfrom pyrieef.rendering.workspace_planar import WorkspaceDrawer\nimport matplotlib.pyplot as plt\n\nROWS = 1\nCOLS = 2\nheat_diffusion.NB_POINTS = 101\nheat_diffusion.TIME_FACTOR = 50\nheat_diffusion.ALGORITHM = \"forward\"\niterations = 10\nworkspace = Workspace()\nsource = [0, 0]\nrenderer = WorkspaceDrawer(workspace, rows=ROWS, cols=COLS)\nU = heat_diffusion.heat_diffusion(workspace, source, iterations)\nU_e = heat_diffusion.compare_with_kernel(U[-1], 9.020E-03, workspace)\nfor i in range(2):\n renderer.set_drawing_axis(i)\n renderer.draw_ws_obstacles()\n renderer.draw_ws_point(source, color='k', shape='o')\n renderer.background_matrix_eval = False\n renderer.draw_ws_img(\n U[-1] if i == 0 else U_e,\n interpolate=\"none\", color_style=plt.cm.gray)\nrenderer.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) if __name__ == '__main__': main() <|reserved_special_token_1|> import random def get_all_words(): words = [] with open('poem.txt') as poem: for line in poem: line = line.strip().split(' ') for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = ''.join(word_as_list) print( f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}' ) answer = input( 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ') if answer.strip().upper() == 'Q': print( """მადლობა თამაშისთვის და გახსოვდეს: 'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'""" ) break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print( f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!" ) def main(): words_to_play = get_all_words() print( """ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული. შენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. """ ) game(words_to_play) if __name__ == '__main__': main() <|reserved_special_token_1|> # ეს არის კოდი, რომელიც ქმნის აბსურდს import random def get_all_words(): words = [] # ეს არის ლისტი ყველა ისეთი სიტყვის with open("poem.txt") as poem: # რომლის ასოების სიმრავლეც 6-ზე ნაკლებია for line in poem: # გრძელ სიტყვებთან თამაში რთული აღმოჩნდა line = line.strip().split(" ") for word in line: if len(word) < 6: words.append(word) return words def game(words): while True: # რენდომად ავარჩიოთ სიტყვა, რომელსაც მომხმარებელი გამოიცნობს random_word_index = random.randint(0, len(words)) word_as_list = [] random_word_normal = words[random_word_index] # რენდომად არჩეული სიტყვა გადავაქციოთ ლისტად და ლისტში შემავალი ელემენტები რენდომად დავაგენერიროთ for x in random_word_normal: word_as_list.insert(random.randint(0, len(word_as_list)), x) random_word_funky = "".join(word_as_list) print(f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}') answer = input("შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ") if answer.strip().upper() == "Q": print("მადლობა თამაშისთვის და გახსოვდეს:" "\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'") break if random_word_normal == answer.strip(): print(f"ყოჩაღ, '{answer}' სწორი პასუხია!") else: print(f"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!") def main(): words_to_play = get_all_words() print('ეკრანზე გამოისახება "ვეფხისტყაოსნიდან" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.' '\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \n') game(words_to_play) if __name__ == '__main__': main()
flexible
{ "blob_id": "881d0c0808d8c0e656cdbf49450367553c100630", "index": 2100, "step-1": "<mask token>\n\n\ndef get_all_words():\n words = []\n with open('poem.txt') as poem:\n for line in poem:\n line = line.strip().split(' ')\n for word in line:\n if len(word) < 6:\n words.append(word)\n return words\n\n\ndef game(words):\n while True:\n random_word_index = random.randint(0, len(words))\n word_as_list = []\n random_word_normal = words[random_word_index]\n for x in random_word_normal:\n word_as_list.insert(random.randint(0, len(word_as_list)), x)\n random_word_funky = ''.join(word_as_list)\n print(\n f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}'\n )\n answer = input(\n 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ')\n if answer.strip().upper() == 'Q':\n print(\n \"\"\"მადლობა თამაშისთვის და გახსოვდეს:\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'\"\"\"\n )\n break\n if random_word_normal == answer.strip():\n print(f\"ყოჩაღ, '{answer}' სწორი პასუხია!\")\n else:\n print(\n f\"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!\"\n )\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_all_words():\n words = []\n with open('poem.txt') as poem:\n for line in poem:\n line = line.strip().split(' ')\n for word in line:\n if len(word) < 6:\n words.append(word)\n return words\n\n\ndef game(words):\n while True:\n random_word_index = random.randint(0, len(words))\n word_as_list = []\n random_word_normal = words[random_word_index]\n for x in random_word_normal:\n word_as_list.insert(random.randint(0, len(word_as_list)), x)\n random_word_funky = ''.join(word_as_list)\n print(\n f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}'\n )\n answer = input(\n 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ')\n if answer.strip().upper() == 'Q':\n print(\n \"\"\"მადლობა თამაშისთვის და გახსოვდეს:\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'\"\"\"\n )\n break\n if random_word_normal == answer.strip():\n print(f\"ყოჩაღ, '{answer}' სწორი პასუხია!\")\n else:\n print(\n f\"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!\"\n )\n\n\ndef main():\n words_to_play = get_all_words()\n print(\n \"\"\"ეკრანზე გამოისახება \"ვეფხისტყაოსნიდან\" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \n\"\"\"\n )\n game(words_to_play)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_all_words():\n words = []\n with open('poem.txt') as poem:\n for line in poem:\n line = line.strip().split(' ')\n for word in line:\n if len(word) < 6:\n words.append(word)\n return words\n\n\ndef game(words):\n while True:\n random_word_index = random.randint(0, len(words))\n word_as_list = []\n random_word_normal = words[random_word_index]\n for x in random_word_normal:\n word_as_list.insert(random.randint(0, len(word_as_list)), x)\n random_word_funky = ''.join(word_as_list)\n print(\n f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}'\n )\n answer = input(\n 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ')\n if answer.strip().upper() == 'Q':\n print(\n \"\"\"მადლობა თამაშისთვის და გახსოვდეს:\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'\"\"\"\n )\n break\n if random_word_normal == answer.strip():\n print(f\"ყოჩაღ, '{answer}' სწორი პასუხია!\")\n else:\n print(\n f\"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!\"\n )\n\n\ndef main():\n words_to_play = get_all_words()\n print(\n \"\"\"ეკრანზე გამოისახება \"ვეფხისტყაოსნიდან\" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \n\"\"\"\n )\n game(words_to_play)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import random\n\n\ndef get_all_words():\n words = []\n with open('poem.txt') as poem:\n for line in poem:\n line = line.strip().split(' ')\n for word in line:\n if len(word) < 6:\n words.append(word)\n return words\n\n\ndef game(words):\n while True:\n random_word_index = random.randint(0, len(words))\n word_as_list = []\n random_word_normal = words[random_word_index]\n for x in random_word_normal:\n word_as_list.insert(random.randint(0, len(word_as_list)), x)\n random_word_funky = ''.join(word_as_list)\n print(\n f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}'\n )\n answer = input(\n 'შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: ')\n if answer.strip().upper() == 'Q':\n print(\n \"\"\"მადლობა თამაშისთვის და გახსოვდეს:\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'\"\"\"\n )\n break\n if random_word_normal == answer.strip():\n print(f\"ყოჩაღ, '{answer}' სწორი პასუხია!\")\n else:\n print(\n f\"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!\"\n )\n\n\ndef main():\n words_to_play = get_all_words()\n print(\n \"\"\"ეკრანზე გამოისახება \"ვეფხისტყაოსნიდან\" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \n\"\"\"\n )\n game(words_to_play)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "# ეს არის კოდი, რომელიც ქმნის აბსურდს\nimport random\n\n\ndef get_all_words():\n words = [] # ეს არის ლისტი ყველა ისეთი სიტყვის\n with open(\"poem.txt\") as poem: # რომლის ასოების სიმრავლეც 6-ზე ნაკლებია\n for line in poem: # გრძელ სიტყვებთან თამაში რთული აღმოჩნდა\n line = line.strip().split(\" \")\n for word in line:\n if len(word) < 6:\n words.append(word)\n return words\n\n\ndef game(words):\n while True:\n # რენდომად ავარჩიოთ სიტყვა, რომელსაც მომხმარებელი გამოიცნობს\n random_word_index = random.randint(0, len(words))\n word_as_list = []\n random_word_normal = words[random_word_index]\n\n # რენდომად არჩეული სიტყვა გადავაქციოთ ლისტად და ლისტში შემავალი ელემენტები რენდომად დავაგენერიროთ\n for x in random_word_normal:\n word_as_list.insert(random.randint(0, len(word_as_list)), x)\n random_word_funky = \"\".join(word_as_list)\n\n print(f'გამოიცანიი სიტყვა, რომელიც შედგება შემდეგი ასოებისგან: {random_word_funky}')\n answer = input(\"შეიყვანეთ სწორი ვერსია ან აკრიფე Q თამაშის შესაწყეტად: \")\n\n if answer.strip().upper() == \"Q\":\n print(\"მადლობა თამაშისთვის და გახსოვდეს:\"\n \"\\n'თუ თავი შენი შენ გახლავს, ღარიბად არ იხსენები!'\")\n break\n if random_word_normal == answer.strip():\n print(f\"ყოჩაღ, '{answer}' სწორი პასუხია!\")\n else:\n print(f\"'{answer}' არასწორი პასუხია, სწორი პასუხია '{random_word_normal}'!\")\n\n\ndef main():\n words_to_play = get_all_words()\n print('ეკრანზე გამოისახება \"ვეფხისტყაოსნიდან\" სიტყვები, სადაც ასოები შემთხვევითად არის განაწილებული.'\n '\\nშენი მისიაა, გამოიცნო რა სიტყვა დაწერა შოთამ ამ ასოებით. \\n')\n game(words_to_play)\n\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def lambda_handler(event, context): if event['function'] == 'tasklist': msg = tasklist(name) if event['function'] == 'activity': msg = activity(name) return <|reserved_special_token_0|> def tasklist(name): pjts = TDIAPI.state['projects'] items = TDIAPI.state['items'] labels = TDIAPI.state['labels'] sects = TDIAPI.state['sections'] inbox_list = [] doing_list = [] review_list = [] any_list = [] for projects_id in list: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break try: tasks_project_id except NameError: print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。') return print(labels) sys.exit() for item in items: l_content = item['content'] l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] == pjt['id']] l_sec_name = [sect['name'] for sect in sects if item['section_id'] == sect['id']] if l_sec_name is not None and l_sec_name[0] == 'ToDo': print(l_sec_name) return def slack_notify(): title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\n' slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:', 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{ 'value': msg}]}]} <|reserved_special_token_1|> <|reserved_special_token_0|> TDIAPI.sync() <|reserved_special_token_0|> def lambda_handler(event, context): if event['function'] == 'tasklist': msg = tasklist(name) if event['function'] == 'activity': msg = activity(name) return def activity(name): actlogs = TDIAPI.activity.get() pjts = TDIAPI.state['projects'] for projects_id in pjts: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break else: print('[INFO] Not match project name') event_list = [] for events in actlogs['events']: today = datetime.datetime.now().strftime('%Y-%m-%d') """ todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック """ todoist_times = datetime.datetime.strptime(events['event_date'], '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9) todoist_date = str(todoist_times.strftime('%Y-%m-%d')) if events['event_type' ] == 'completed' and todoist_date == today and events[ 'parent_project_id'] == tasks_project_id: event_list.append(events['extra_data']['content']) print(event_list) return event_list def tasklist(name): pjts = TDIAPI.state['projects'] items = TDIAPI.state['items'] labels = TDIAPI.state['labels'] sects = TDIAPI.state['sections'] inbox_list = [] doing_list = [] review_list = [] any_list = [] for projects_id in list: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break try: tasks_project_id except NameError: print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。') return print(labels) sys.exit() for item in items: l_content = item['content'] l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] == pjt['id']] l_sec_name = [sect['name'] for sect in sects if item['section_id'] == sect['id']] if l_sec_name is not None and l_sec_name[0] == 'ToDo': print(l_sec_name) return def slack_notify(): title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\n' slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:', 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{ 'value': msg}]}]} <|reserved_special_token_1|> <|reserved_special_token_0|> TDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False) TDIAPI.sync() name = os.environ['TODOIST_PJT'] def lambda_handler(event, context): if event['function'] == 'tasklist': msg = tasklist(name) if event['function'] == 'activity': msg = activity(name) return def activity(name): actlogs = TDIAPI.activity.get() pjts = TDIAPI.state['projects'] for projects_id in pjts: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break else: print('[INFO] Not match project name') event_list = [] for events in actlogs['events']: today = datetime.datetime.now().strftime('%Y-%m-%d') """ todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック """ todoist_times = datetime.datetime.strptime(events['event_date'], '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9) todoist_date = str(todoist_times.strftime('%Y-%m-%d')) if events['event_type' ] == 'completed' and todoist_date == today and events[ 'parent_project_id'] == tasks_project_id: event_list.append(events['extra_data']['content']) print(event_list) return event_list def tasklist(name): pjts = TDIAPI.state['projects'] items = TDIAPI.state['items'] labels = TDIAPI.state['labels'] sects = TDIAPI.state['sections'] inbox_list = [] doing_list = [] review_list = [] any_list = [] for projects_id in list: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break try: tasks_project_id except NameError: print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。') return print(labels) sys.exit() for item in items: l_content = item['content'] l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] == pjt['id']] l_sec_name = [sect['name'] for sect in sects if item['section_id'] == sect['id']] if l_sec_name is not None and l_sec_name[0] == 'ToDo': print(l_sec_name) return def slack_notify(): title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\n' slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:', 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{ 'value': msg}]}]} <|reserved_special_token_1|> import datetime import json import requests import os import re import sys from todoist.api import TodoistAPI TDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False) TDIAPI.sync() name = os.environ['TODOIST_PJT'] def lambda_handler(event, context): if event['function'] == 'tasklist': msg = tasklist(name) if event['function'] == 'activity': msg = activity(name) return def activity(name): actlogs = TDIAPI.activity.get() pjts = TDIAPI.state['projects'] for projects_id in pjts: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break else: print('[INFO] Not match project name') event_list = [] for events in actlogs['events']: today = datetime.datetime.now().strftime('%Y-%m-%d') """ todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック """ todoist_times = datetime.datetime.strptime(events['event_date'], '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9) todoist_date = str(todoist_times.strftime('%Y-%m-%d')) if events['event_type' ] == 'completed' and todoist_date == today and events[ 'parent_project_id'] == tasks_project_id: event_list.append(events['extra_data']['content']) print(event_list) return event_list def tasklist(name): pjts = TDIAPI.state['projects'] items = TDIAPI.state['items'] labels = TDIAPI.state['labels'] sects = TDIAPI.state['sections'] inbox_list = [] doing_list = [] review_list = [] any_list = [] for projects_id in list: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break try: tasks_project_id except NameError: print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。') return print(labels) sys.exit() for item in items: l_content = item['content'] l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] == pjt['id']] l_sec_name = [sect['name'] for sect in sects if item['section_id'] == sect['id']] if l_sec_name is not None and l_sec_name[0] == 'ToDo': print(l_sec_name) return def slack_notify(): title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\n' slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:', 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{ 'value': msg}]}]} <|reserved_special_token_1|> # coding: utf-8 import datetime import json import requests import os import re import sys from todoist.api import TodoistAPI #SLACK_CHANNEL = os.environ['SLACK_CHANNEL'] #SLACK_POSTURL = os.environ['SLACK_POSTURL'] TDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False) TDIAPI.sync() name = os.environ['TODOIST_PJT'] def lambda_handler(event, context): if event["function"] == 'tasklist': msg = tasklist(name) if event["function"] == 'activity': msg = activity(name) return def activity(name): actlogs = TDIAPI.activity.get() pjts = TDIAPI.state['projects'] for projects_id in pjts: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break else: print('[INFO] Not match project name') event_list = [] for events in actlogs['events']: today = datetime.datetime.now().strftime("%Y-%m-%d") ''' todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック ''' todoist_times = datetime.datetime.strptime(events['event_date'], '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours = 9) todoist_date = str(todoist_times.strftime("%Y-%m-%d")) if events['event_type'] == 'completed' and todoist_date == today and events['parent_project_id'] == tasks_project_id: event_list.append(events['extra_data']['content']) print(event_list) return event_list def tasklist(name): pjts = TDIAPI.state['projects'] items = TDIAPI.state['items'] labels = TDIAPI.state['labels'] sects = TDIAPI.state['sections'] inbox_list = [] doing_list = [] review_list = [] any_list = [] for projects_id in list: if projects_id['name'] == name: tasks_project_id = projects_id['id'] break try: tasks_project_id except NameError: print("プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。") return print(labels) sys.exit() for item in items: l_content = item['content'] l_pjt_name = [ pjt['name'] for pjt in pjts if item['project_id'] == pjt['id'] ] l_sec_name = [ sect['name'] for sect in sects if item['section_id'] == sect['id']] #print('+++') #print(l_pjt_id) #print(l_content) #print(l_sec_name[0]) if l_sec_name is not None and l_sec_name[0] == 'ToDo': print(l_sec_name) #if item['checked'] == 0 and item['project_id'] == tasks_project_id: #taskcontent = '- ' + item['content'] #slackmessage.append(taskcontent) #print(taskcontent) #print(slackmessage) #message = '\n'.join(slackmessage) return def slack_notify(): title = "*[定期通知] プロジェクト " + name + " のタスクリスト*\n" slack_message = { 'channel': SLACK_CHANNEL, 'icon_emoji': ":todoist:", 'text': title, "attachments": [ { "color": "#36a64f", "fields": [ { "value": msg, }, ], } ] } #requests.post(SLACK_POSTURL, data=json.dumps(slack_message))
flexible
{ "blob_id": "3c3d45f0844496b8d623286b36a4935a154f410a", "index": 4133, "step-1": "<mask token>\n\n\ndef lambda_handler(event, context):\n if event['function'] == 'tasklist':\n msg = tasklist(name)\n if event['function'] == 'activity':\n msg = activity(name)\n return\n\n\n<mask token>\n\n\ndef tasklist(name):\n pjts = TDIAPI.state['projects']\n items = TDIAPI.state['items']\n labels = TDIAPI.state['labels']\n sects = TDIAPI.state['sections']\n inbox_list = []\n doing_list = []\n review_list = []\n any_list = []\n for projects_id in list:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n try:\n tasks_project_id\n except NameError:\n print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。')\n return\n print(labels)\n sys.exit()\n for item in items:\n l_content = item['content']\n l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] ==\n pjt['id']]\n l_sec_name = [sect['name'] for sect in sects if item['section_id'] ==\n sect['id']]\n if l_sec_name is not None and l_sec_name[0] == 'ToDo':\n print(l_sec_name)\n return\n\n\ndef slack_notify():\n title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\\n'\n slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:',\n 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{\n 'value': msg}]}]}\n", "step-2": "<mask token>\nTDIAPI.sync()\n<mask token>\n\n\ndef lambda_handler(event, context):\n if event['function'] == 'tasklist':\n msg = tasklist(name)\n if event['function'] == 'activity':\n msg = activity(name)\n return\n\n\ndef activity(name):\n actlogs = TDIAPI.activity.get()\n pjts = TDIAPI.state['projects']\n for projects_id in pjts:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n else:\n print('[INFO] Not match project name')\n event_list = []\n for events in actlogs['events']:\n today = datetime.datetime.now().strftime('%Y-%m-%d')\n \"\"\"\n todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する\n そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック\n \"\"\"\n todoist_times = datetime.datetime.strptime(events['event_date'],\n '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9)\n todoist_date = str(todoist_times.strftime('%Y-%m-%d'))\n if events['event_type'\n ] == 'completed' and todoist_date == today and events[\n 'parent_project_id'] == tasks_project_id:\n event_list.append(events['extra_data']['content'])\n print(event_list)\n return event_list\n\n\ndef tasklist(name):\n pjts = TDIAPI.state['projects']\n items = TDIAPI.state['items']\n labels = TDIAPI.state['labels']\n sects = TDIAPI.state['sections']\n inbox_list = []\n doing_list = []\n review_list = []\n any_list = []\n for projects_id in list:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n try:\n tasks_project_id\n except NameError:\n print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。')\n return\n print(labels)\n sys.exit()\n for item in items:\n l_content = item['content']\n l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] ==\n pjt['id']]\n l_sec_name = [sect['name'] for sect in sects if item['section_id'] ==\n sect['id']]\n if l_sec_name is not None and l_sec_name[0] == 'ToDo':\n print(l_sec_name)\n return\n\n\ndef slack_notify():\n title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\\n'\n slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:',\n 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{\n 'value': msg}]}]}\n", "step-3": "<mask token>\nTDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False)\nTDIAPI.sync()\nname = os.environ['TODOIST_PJT']\n\n\ndef lambda_handler(event, context):\n if event['function'] == 'tasklist':\n msg = tasklist(name)\n if event['function'] == 'activity':\n msg = activity(name)\n return\n\n\ndef activity(name):\n actlogs = TDIAPI.activity.get()\n pjts = TDIAPI.state['projects']\n for projects_id in pjts:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n else:\n print('[INFO] Not match project name')\n event_list = []\n for events in actlogs['events']:\n today = datetime.datetime.now().strftime('%Y-%m-%d')\n \"\"\"\n todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する\n そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック\n \"\"\"\n todoist_times = datetime.datetime.strptime(events['event_date'],\n '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9)\n todoist_date = str(todoist_times.strftime('%Y-%m-%d'))\n if events['event_type'\n ] == 'completed' and todoist_date == today and events[\n 'parent_project_id'] == tasks_project_id:\n event_list.append(events['extra_data']['content'])\n print(event_list)\n return event_list\n\n\ndef tasklist(name):\n pjts = TDIAPI.state['projects']\n items = TDIAPI.state['items']\n labels = TDIAPI.state['labels']\n sects = TDIAPI.state['sections']\n inbox_list = []\n doing_list = []\n review_list = []\n any_list = []\n for projects_id in list:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n try:\n tasks_project_id\n except NameError:\n print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。')\n return\n print(labels)\n sys.exit()\n for item in items:\n l_content = item['content']\n l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] ==\n pjt['id']]\n l_sec_name = [sect['name'] for sect in sects if item['section_id'] ==\n sect['id']]\n if l_sec_name is not None and l_sec_name[0] == 'ToDo':\n print(l_sec_name)\n return\n\n\ndef slack_notify():\n title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\\n'\n slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:',\n 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{\n 'value': msg}]}]}\n", "step-4": "import datetime\nimport json\nimport requests\nimport os\nimport re\nimport sys\nfrom todoist.api import TodoistAPI\nTDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False)\nTDIAPI.sync()\nname = os.environ['TODOIST_PJT']\n\n\ndef lambda_handler(event, context):\n if event['function'] == 'tasklist':\n msg = tasklist(name)\n if event['function'] == 'activity':\n msg = activity(name)\n return\n\n\ndef activity(name):\n actlogs = TDIAPI.activity.get()\n pjts = TDIAPI.state['projects']\n for projects_id in pjts:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n else:\n print('[INFO] Not match project name')\n event_list = []\n for events in actlogs['events']:\n today = datetime.datetime.now().strftime('%Y-%m-%d')\n \"\"\"\n todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する\n そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック\n \"\"\"\n todoist_times = datetime.datetime.strptime(events['event_date'],\n '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours=9)\n todoist_date = str(todoist_times.strftime('%Y-%m-%d'))\n if events['event_type'\n ] == 'completed' and todoist_date == today and events[\n 'parent_project_id'] == tasks_project_id:\n event_list.append(events['extra_data']['content'])\n print(event_list)\n return event_list\n\n\ndef tasklist(name):\n pjts = TDIAPI.state['projects']\n items = TDIAPI.state['items']\n labels = TDIAPI.state['labels']\n sects = TDIAPI.state['sections']\n inbox_list = []\n doing_list = []\n review_list = []\n any_list = []\n for projects_id in list:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n try:\n tasks_project_id\n except NameError:\n print('プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。')\n return\n print(labels)\n sys.exit()\n for item in items:\n l_content = item['content']\n l_pjt_name = [pjt['name'] for pjt in pjts if item['project_id'] ==\n pjt['id']]\n l_sec_name = [sect['name'] for sect in sects if item['section_id'] ==\n sect['id']]\n if l_sec_name is not None and l_sec_name[0] == 'ToDo':\n print(l_sec_name)\n return\n\n\ndef slack_notify():\n title = '*[定期通知] プロジェクト ' + name + ' のタスクリスト*\\n'\n slack_message = {'channel': SLACK_CHANNEL, 'icon_emoji': ':todoist:',\n 'text': title, 'attachments': [{'color': '#36a64f', 'fields': [{\n 'value': msg}]}]}\n", "step-5": "# coding: utf-8\n\nimport datetime\nimport json\nimport requests\nimport os\nimport re\nimport sys\nfrom todoist.api import TodoistAPI\n\n#SLACK_CHANNEL = os.environ['SLACK_CHANNEL']\n#SLACK_POSTURL = os.environ['SLACK_POSTURL']\nTDIAPI = TodoistAPI(os.environ['TODOISTAPITOKEN'], cache=False)\nTDIAPI.sync()\nname = os.environ['TODOIST_PJT']\n\ndef lambda_handler(event, context):\n if event[\"function\"] == 'tasklist':\n msg = tasklist(name)\n if event[\"function\"] == 'activity':\n msg = activity(name)\n return\n\ndef activity(name):\n actlogs = TDIAPI.activity.get()\n pjts = TDIAPI.state['projects']\n\n for projects_id in pjts:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n else:\n print('[INFO] Not match project name')\n\n event_list = []\n for events in actlogs['events']:\n today = datetime.datetime.now().strftime(\"%Y-%m-%d\")\n\n '''\n todoistのevent_dateはUTCで且つstringなので一度datetime型に変換して、+9時間する\n そこから年月日だけにして、stringに戻して日本時間の今日のデータかをチェック\n '''\n todoist_times = datetime.datetime.strptime(events['event_date'], '%Y-%m-%dT%H:%M:%SZ') + datetime.timedelta(hours = 9)\n todoist_date = str(todoist_times.strftime(\"%Y-%m-%d\"))\n\n if events['event_type'] == 'completed' and todoist_date == today and events['parent_project_id'] == tasks_project_id:\n event_list.append(events['extra_data']['content'])\n\n print(event_list)\n return event_list\n\ndef tasklist(name):\n\n pjts = TDIAPI.state['projects']\n items = TDIAPI.state['items']\n labels = TDIAPI.state['labels']\n sects = TDIAPI.state['sections']\n\n inbox_list = []\n doing_list = []\n review_list = []\n any_list = []\n\n for projects_id in list:\n if projects_id['name'] == name:\n tasks_project_id = projects_id['id']\n break\n\n try:\n tasks_project_id\n except NameError:\n print(\"プロジェクト名が正しくありません。プロジェクト名を正しく入力してください。\")\n return\n\n print(labels)\n sys.exit()\n\n for item in items:\n l_content = item['content']\n l_pjt_name = [ pjt['name'] for pjt in pjts if item['project_id'] == pjt['id'] ]\n l_sec_name = [ sect['name'] for sect in sects if item['section_id'] == sect['id']]\n #print('+++')\n #print(l_pjt_id)\n #print(l_content)\n #print(l_sec_name[0])\n\n if l_sec_name is not None and l_sec_name[0] == 'ToDo':\n print(l_sec_name)\n #if item['checked'] == 0 and item['project_id'] == tasks_project_id:\n\n #taskcontent = '- ' + item['content']\n #slackmessage.append(taskcontent)\n #print(taskcontent)\n #print(slackmessage)\n #message = '\\n'.join(slackmessage)\n return\n\ndef slack_notify():\n title = \"*[定期通知] プロジェクト \" + name + \" のタスクリスト*\\n\"\n slack_message = {\n 'channel': SLACK_CHANNEL,\n 'icon_emoji': \":todoist:\",\n 'text': title,\n \"attachments\": [\n {\n \"color\": \"#36a64f\",\n \"fields\": [\n {\n \"value\": msg,\n },\n ],\n }\n ]\n }\n #requests.post(SLACK_POSTURL, data=json.dumps(slack_message))\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
import pandas as pd import numpy as np import math from sklearn.datasets import load_digits, load_iris, load_boston, load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.metrics import pairwise_distances class KMeans(): def __init__(self, k = 5, max_iters = 100, random_seed = 42): self.k = k self.max_iters = max_iters # Set random seed np.random.seed(random_seed) def _initialise_centroids(self, X): random_indices = np.random.permutation(X.shape[0]) random_indices = random_indices[:self.k] self.centroids = X[random_indices] def _euclidien_distance(self, x): return np.sum((x - self.centroids)**2, axis = 1) def _assign_clusters(self, X): cluster_distances = pairwise_distances(X, self.centroids, metric = 'euclidean') cluster_labels = np.argmin(cluster_distances, axis = 1) return cluster_labels def _update_centroids(self, X, cluster_labels): for cluster in range(self.k): # Get all data points of a cluster X_cluster = X[cluster_labels == cluster] # Update the cluster's centroid cluster_mean = np.mean(X_cluster, axis = 0) self.centroids[cluster] = cluster_mean def fit(self, X): # Initialise random centroids self._initialise_centroids(X) iterations = 0 while iterations <= self.max_iters: iterations += 1 # Assign clusters to data cluster_labels = self._assign_clusters(X) # Update centroids self._update_centroids(X, cluster_labels) def predict(self, X): return self._assign_clusters(X) # Load data data = load_breast_cancer() X, y = data.data, data.target X_train, X_test = train_test_split(X, test_size = 0.1) # Fit model model = KMeans(k = 5) model.fit(X_train) # Predict y_pred = model.predict(X_test) print(y_pred)
normal
{ "blob_id": "d267c8cbe51fb1bacc9404a1385f1daa4a0db7f2", "index": 884, "step-1": "<mask token>\n\n\nclass KMeans:\n\n def __init__(self, k=5, max_iters=100, random_seed=42):\n self.k = k\n self.max_iters = max_iters\n np.random.seed(random_seed)\n\n def _initialise_centroids(self, X):\n random_indices = np.random.permutation(X.shape[0])\n random_indices = random_indices[:self.k]\n self.centroids = X[random_indices]\n\n def _euclidien_distance(self, x):\n return np.sum((x - self.centroids) ** 2, axis=1)\n <mask token>\n\n def _update_centroids(self, X, cluster_labels):\n for cluster in range(self.k):\n X_cluster = X[cluster_labels == cluster]\n cluster_mean = np.mean(X_cluster, axis=0)\n self.centroids[cluster] = cluster_mean\n <mask token>\n\n def predict(self, X):\n return self._assign_clusters(X)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass KMeans:\n\n def __init__(self, k=5, max_iters=100, random_seed=42):\n self.k = k\n self.max_iters = max_iters\n np.random.seed(random_seed)\n\n def _initialise_centroids(self, X):\n random_indices = np.random.permutation(X.shape[0])\n random_indices = random_indices[:self.k]\n self.centroids = X[random_indices]\n\n def _euclidien_distance(self, x):\n return np.sum((x - self.centroids) ** 2, axis=1)\n <mask token>\n\n def _update_centroids(self, X, cluster_labels):\n for cluster in range(self.k):\n X_cluster = X[cluster_labels == cluster]\n cluster_mean = np.mean(X_cluster, axis=0)\n self.centroids[cluster] = cluster_mean\n\n def fit(self, X):\n self._initialise_centroids(X)\n iterations = 0\n while iterations <= self.max_iters:\n iterations += 1\n cluster_labels = self._assign_clusters(X)\n self._update_centroids(X, cluster_labels)\n\n def predict(self, X):\n return self._assign_clusters(X)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass KMeans:\n\n def __init__(self, k=5, max_iters=100, random_seed=42):\n self.k = k\n self.max_iters = max_iters\n np.random.seed(random_seed)\n\n def _initialise_centroids(self, X):\n random_indices = np.random.permutation(X.shape[0])\n random_indices = random_indices[:self.k]\n self.centroids = X[random_indices]\n\n def _euclidien_distance(self, x):\n return np.sum((x - self.centroids) ** 2, axis=1)\n\n def _assign_clusters(self, X):\n cluster_distances = pairwise_distances(X, self.centroids, metric=\n 'euclidean')\n cluster_labels = np.argmin(cluster_distances, axis=1)\n return cluster_labels\n\n def _update_centroids(self, X, cluster_labels):\n for cluster in range(self.k):\n X_cluster = X[cluster_labels == cluster]\n cluster_mean = np.mean(X_cluster, axis=0)\n self.centroids[cluster] = cluster_mean\n\n def fit(self, X):\n self._initialise_centroids(X)\n iterations = 0\n while iterations <= self.max_iters:\n iterations += 1\n cluster_labels = self._assign_clusters(X)\n self._update_centroids(X, cluster_labels)\n\n def predict(self, X):\n return self._assign_clusters(X)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass KMeans:\n\n def __init__(self, k=5, max_iters=100, random_seed=42):\n self.k = k\n self.max_iters = max_iters\n np.random.seed(random_seed)\n\n def _initialise_centroids(self, X):\n random_indices = np.random.permutation(X.shape[0])\n random_indices = random_indices[:self.k]\n self.centroids = X[random_indices]\n\n def _euclidien_distance(self, x):\n return np.sum((x - self.centroids) ** 2, axis=1)\n\n def _assign_clusters(self, X):\n cluster_distances = pairwise_distances(X, self.centroids, metric=\n 'euclidean')\n cluster_labels = np.argmin(cluster_distances, axis=1)\n return cluster_labels\n\n def _update_centroids(self, X, cluster_labels):\n for cluster in range(self.k):\n X_cluster = X[cluster_labels == cluster]\n cluster_mean = np.mean(X_cluster, axis=0)\n self.centroids[cluster] = cluster_mean\n\n def fit(self, X):\n self._initialise_centroids(X)\n iterations = 0\n while iterations <= self.max_iters:\n iterations += 1\n cluster_labels = self._assign_clusters(X)\n self._update_centroids(X, cluster_labels)\n\n def predict(self, X):\n return self._assign_clusters(X)\n\n\ndata = load_breast_cancer()\nX, y = data.data, data.target\nX_train, X_test = train_test_split(X, test_size=0.1)\nmodel = KMeans(k=5)\nmodel.fit(X_train)\ny_pred = model.predict(X_test)\nprint(y_pred)\n", "step-5": "import pandas as pd\nimport numpy as np\nimport math\nfrom sklearn.datasets import load_digits, load_iris, load_boston, load_breast_cancer\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import pairwise_distances\n\n\nclass KMeans():\n\n def __init__(self, k = 5, max_iters = 100, random_seed = 42):\n self.k = k\n self.max_iters = max_iters\n\n # Set random seed\n np.random.seed(random_seed)\n\n def _initialise_centroids(self, X):\n random_indices = np.random.permutation(X.shape[0])\n random_indices = random_indices[:self.k]\n self.centroids = X[random_indices]\n\n def _euclidien_distance(self, x):\n return np.sum((x - self.centroids)**2, axis = 1)\n\n def _assign_clusters(self, X):\n cluster_distances = pairwise_distances(X, self.centroids, metric = 'euclidean')\n cluster_labels = np.argmin(cluster_distances, axis = 1)\n return cluster_labels\n\n def _update_centroids(self, X, cluster_labels):\n for cluster in range(self.k):\n\n # Get all data points of a cluster\n X_cluster = X[cluster_labels == cluster]\n\n # Update the cluster's centroid\n cluster_mean = np.mean(X_cluster, axis = 0)\n self.centroids[cluster] = cluster_mean\n\n def fit(self, X):\n\n # Initialise random centroids\n self._initialise_centroids(X)\n\n iterations = 0\n while iterations <= self.max_iters:\n iterations += 1\n\n # Assign clusters to data\n cluster_labels = self._assign_clusters(X)\n\n # Update centroids\n self._update_centroids(X, cluster_labels)\n\n def predict(self, X):\n return self._assign_clusters(X)\n\n\n# Load data\ndata = load_breast_cancer()\nX, y = data.data, data.target\nX_train, X_test = train_test_split(X, test_size = 0.1)\n\n# Fit model\nmodel = KMeans(k = 5)\nmodel.fit(X_train)\n\n# Predict\ny_pred = model.predict(X_test)\nprint(y_pred)\n", "step-ids": [ 6, 7, 8, 10, 12 ] }
[ 6, 7, 8, 10, 12 ]
from Smooth import smoothing def n_grams(unigramsFile, bigramsFile, parameterization, sentences): words = [] param = [] unigrams = [] bigrams = [] with open(parameterization) as p: #Parametrization file data = p.read().split() word = data[0] param.append(data[1]) param.append(data[2]) param.append(data[4]) #print("PARAM: ", param)# Debug print with open(unigramsFile) as u: #Unigrams and respective values file for line in u.readlines(): values = line.split() if (values[0] in param): unigrams.append(values) #print("UNIGRAMS: ", unigrams)# Debug print with open(bigramsFile) as b: #Bigrams and respective values file for line in b.readlines(): values = line.split() if (values[0] in param or values[1] in param): bigrams.append(values) #print("BIGRAMS: ", bigrams)# Debug print with open(sentences) as f: #Text with sentences file for line in f.readlines(): sentence = line.split() index = sentence.index(word) aux = [] if (index > 0): aux.append(sentence[index-1]) aux.append(sentence[index]) if (index + 1 < len(sentences)): aux.append(sentence[index+1]) words.append(aux) #print("WORDS: ", words)# Debug print for w in words: bigram1 = 0 bigram2 = 0 option1 = w print(w) index = option1.index(word) option1[index] = param[1] option2 = w index = option2.index(word) option2[index] = param[2] for unigram in unigrams: if((option1[0] or option1[1] or option1[2]) in unigram): unigram1 += float(unigram[1]) elif((option2[0] or option2[1] or option2[2]) in unigram): unigram2 += float(unigram[1]) for bigram in bigrams: if ((option1[0:1] or option1[1:2]) in bigram): bigram1 += float(bigram[2]) elif (option2[0:1] in bigram or option2[1:2] in bigram): bigram2 += float(bigram[2]) if (((unigram1 > unigram2) and (unigram1 > bigram2)) or ((bigram1 > unigram2) and (bigram1 > bigram2))): lema = option1 elif (((unigram2 > unigram1) and (unigram2 > bigram1)) or ((bigram2 > unigram1) and (bigram2 > bigram1))): lema = option2 print("O lema mais provavel para" + str(w) + "e: " + str(lema)) #lema #print("SENTENCE: ", sentence)# Debug print
normal
{ "blob_id": "87c200796e1fac508a43e899c0ed53878b8c1d88", "index": 5244, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef n_grams(unigramsFile, bigramsFile, parameterization, sentences):\n words = []\n param = []\n unigrams = []\n bigrams = []\n with open(parameterization) as p:\n data = p.read().split()\n word = data[0]\n param.append(data[1])\n param.append(data[2])\n param.append(data[4])\n with open(unigramsFile) as u:\n for line in u.readlines():\n values = line.split()\n if values[0] in param:\n unigrams.append(values)\n with open(bigramsFile) as b:\n for line in b.readlines():\n values = line.split()\n if values[0] in param or values[1] in param:\n bigrams.append(values)\n with open(sentences) as f:\n for line in f.readlines():\n sentence = line.split()\n index = sentence.index(word)\n aux = []\n if index > 0:\n aux.append(sentence[index - 1])\n aux.append(sentence[index])\n if index + 1 < len(sentences):\n aux.append(sentence[index + 1])\n words.append(aux)\n for w in words:\n bigram1 = 0\n bigram2 = 0\n option1 = w\n print(w)\n index = option1.index(word)\n option1[index] = param[1]\n option2 = w\n index = option2.index(word)\n option2[index] = param[2]\n for unigram in unigrams:\n if (option1[0] or option1[1] or option1[2]) in unigram:\n unigram1 += float(unigram[1])\n elif (option2[0] or option2[1] or option2[2]) in unigram:\n unigram2 += float(unigram[1])\n for bigram in bigrams:\n if (option1[0:1] or option1[1:2]) in bigram:\n bigram1 += float(bigram[2])\n elif option2[0:1] in bigram or option2[1:2] in bigram:\n bigram2 += float(bigram[2])\n if (unigram1 > unigram2 and unigram1 > bigram2 or bigram1 >\n unigram2 and bigram1 > bigram2):\n lema = option1\n elif unigram2 > unigram1 and unigram2 > bigram1 or bigram2 > unigram1 and bigram2 > bigram1:\n lema = option2\n print('O lema mais provavel para' + str(w) + 'e: ' + str(lema))\n", "step-3": "from Smooth import smoothing\n\n\ndef n_grams(unigramsFile, bigramsFile, parameterization, sentences):\n words = []\n param = []\n unigrams = []\n bigrams = []\n with open(parameterization) as p:\n data = p.read().split()\n word = data[0]\n param.append(data[1])\n param.append(data[2])\n param.append(data[4])\n with open(unigramsFile) as u:\n for line in u.readlines():\n values = line.split()\n if values[0] in param:\n unigrams.append(values)\n with open(bigramsFile) as b:\n for line in b.readlines():\n values = line.split()\n if values[0] in param or values[1] in param:\n bigrams.append(values)\n with open(sentences) as f:\n for line in f.readlines():\n sentence = line.split()\n index = sentence.index(word)\n aux = []\n if index > 0:\n aux.append(sentence[index - 1])\n aux.append(sentence[index])\n if index + 1 < len(sentences):\n aux.append(sentence[index + 1])\n words.append(aux)\n for w in words:\n bigram1 = 0\n bigram2 = 0\n option1 = w\n print(w)\n index = option1.index(word)\n option1[index] = param[1]\n option2 = w\n index = option2.index(word)\n option2[index] = param[2]\n for unigram in unigrams:\n if (option1[0] or option1[1] or option1[2]) in unigram:\n unigram1 += float(unigram[1])\n elif (option2[0] or option2[1] or option2[2]) in unigram:\n unigram2 += float(unigram[1])\n for bigram in bigrams:\n if (option1[0:1] or option1[1:2]) in bigram:\n bigram1 += float(bigram[2])\n elif option2[0:1] in bigram or option2[1:2] in bigram:\n bigram2 += float(bigram[2])\n if (unigram1 > unigram2 and unigram1 > bigram2 or bigram1 >\n unigram2 and bigram1 > bigram2):\n lema = option1\n elif unigram2 > unigram1 and unigram2 > bigram1 or bigram2 > unigram1 and bigram2 > bigram1:\n lema = option2\n print('O lema mais provavel para' + str(w) + 'e: ' + str(lema))\n", "step-4": "from Smooth import smoothing\n\ndef n_grams(unigramsFile, bigramsFile, parameterization, sentences):\n words = []\n param = []\n unigrams = []\n bigrams = []\n\n with open(parameterization) as p: #Parametrization file\n data = p.read().split()\n word = data[0]\n param.append(data[1])\n param.append(data[2])\n param.append(data[4])\n #print(\"PARAM: \", param)# Debug print\n\n with open(unigramsFile) as u: #Unigrams and respective values file\n for line in u.readlines():\n values = line.split()\n if (values[0] in param):\n unigrams.append(values)\n #print(\"UNIGRAMS: \", unigrams)# Debug print\n\n with open(bigramsFile) as b: #Bigrams and respective values file\n for line in b.readlines():\n values = line.split()\n if (values[0] in param or values[1] in param):\n bigrams.append(values)\n #print(\"BIGRAMS: \", bigrams)# Debug print\n\n with open(sentences) as f: #Text with sentences file\n for line in f.readlines():\n sentence = line.split()\n index = sentence.index(word)\n aux = []\n if (index > 0):\n aux.append(sentence[index-1])\n aux.append(sentence[index])\n if (index + 1 < len(sentences)):\n aux.append(sentence[index+1])\n words.append(aux)\n #print(\"WORDS: \", words)# Debug print\n\n for w in words:\n bigram1 = 0\n bigram2 = 0\n option1 = w\n print(w)\n index = option1.index(word)\n option1[index] = param[1]\n option2 = w\n index = option2.index(word)\n option2[index] = param[2]\n for unigram in unigrams:\n if((option1[0] or option1[1] or option1[2]) in unigram):\n unigram1 += float(unigram[1])\n elif((option2[0] or option2[1] or option2[2]) in unigram):\n unigram2 += float(unigram[1])\n for bigram in bigrams:\n if ((option1[0:1] or option1[1:2]) in bigram):\n bigram1 += float(bigram[2])\n elif (option2[0:1] in bigram or option2[1:2] in bigram):\n bigram2 += float(bigram[2])\n if (((unigram1 > unigram2) and (unigram1 > bigram2)) or ((bigram1 > unigram2) and (bigram1 > bigram2))):\n lema = option1\n elif (((unigram2 > unigram1) and (unigram2 > bigram1)) or ((bigram2 > unigram1) and (bigram2 > bigram1))):\n lema = option2\n print(\"O lema mais provavel para\" + str(w) + \"e: \" + str(lema)) #lema\n #print(\"SENTENCE: \", sentence)# Debug print\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Goal: Let's Review # Enter your code here. Read input from STDIN. Print output to STDOUT T = int(input()) # Iterate through each inputted string for i in range(T): even = '' odd = '' s = str(input()) for i in range(len(s)): if (i % 2 == 0): even = even + s[i] else: odd = odd + s[i] print(even, odd)
normal
{ "blob_id": "f45313e4e8f3ecba0c7dc0288d9d5ec4e26f0ba6", "index": 5284, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(T):\n even = ''\n odd = ''\n s = str(input())\n for i in range(len(s)):\n if i % 2 == 0:\n even = even + s[i]\n else:\n odd = odd + s[i]\n print(even, odd)\n", "step-3": "T = int(input())\nfor i in range(T):\n even = ''\n odd = ''\n s = str(input())\n for i in range(len(s)):\n if i % 2 == 0:\n even = even + s[i]\n else:\n odd = odd + s[i]\n print(even, odd)\n", "step-4": "# Goal: Let's Review\n\n# Enter your code here. Read input from STDIN. Print output to STDOUT\n\nT = int(input())\n\n# Iterate through each inputted string\n\nfor i in range(T):\n even = ''\n odd = ''\n s = str(input())\n\n for i in range(len(s)):\n if (i % 2 == 0):\n even = even + s[i]\n else:\n odd = odd + s[i]\n\n print(even, odd)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from asgiref.sync import async_to_sync from channels.layers import get_channel_layer from django.dispatch import Signal from djangochannelsrestframework.observer.base_observer import BaseObserver class Observer(BaseObserver): def __init__(self, func, signal: Signal = None, kwargs=None): super().__init__(func) if kwargs is None: kwargs = {} self.signal = signal self.signal_kwargs = kwargs self._serializer = None self.signal.connect(self.handle, **self.signal_kwargs) def handle(self, signal, *args, **kwargs): message = self.serialize(signal, *args, **kwargs) channel_layer = get_channel_layer() for group_name in self.group_names_for_signal(*args, message=message, **kwargs): async_to_sync(channel_layer.group_send)(group_name, message) def group_names(self, *args, **kwargs): yield "{}-{}-signal-{}".format( self._uuid, self.func.__name__.replace("_", "."), ".".join( arg.lower().replace("_", ".") for arg in self.signal.providing_args ), )
normal
{ "blob_id": "66e93295d2797ca9e08100a0a1f28619acb72aa4", "index": 3397, "step-1": "<mask token>\n\n\nclass Observer(BaseObserver):\n <mask token>\n\n def handle(self, signal, *args, **kwargs):\n message = self.serialize(signal, *args, **kwargs)\n channel_layer = get_channel_layer()\n for group_name in self.group_names_for_signal(*args, message=\n message, **kwargs):\n async_to_sync(channel_layer.group_send)(group_name, message)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Observer(BaseObserver):\n\n def __init__(self, func, signal: Signal=None, kwargs=None):\n super().__init__(func)\n if kwargs is None:\n kwargs = {}\n self.signal = signal\n self.signal_kwargs = kwargs\n self._serializer = None\n self.signal.connect(self.handle, **self.signal_kwargs)\n\n def handle(self, signal, *args, **kwargs):\n message = self.serialize(signal, *args, **kwargs)\n channel_layer = get_channel_layer()\n for group_name in self.group_names_for_signal(*args, message=\n message, **kwargs):\n async_to_sync(channel_layer.group_send)(group_name, message)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Observer(BaseObserver):\n\n def __init__(self, func, signal: Signal=None, kwargs=None):\n super().__init__(func)\n if kwargs is None:\n kwargs = {}\n self.signal = signal\n self.signal_kwargs = kwargs\n self._serializer = None\n self.signal.connect(self.handle, **self.signal_kwargs)\n\n def handle(self, signal, *args, **kwargs):\n message = self.serialize(signal, *args, **kwargs)\n channel_layer = get_channel_layer()\n for group_name in self.group_names_for_signal(*args, message=\n message, **kwargs):\n async_to_sync(channel_layer.group_send)(group_name, message)\n\n def group_names(self, *args, **kwargs):\n yield '{}-{}-signal-{}'.format(self._uuid, self.func.__name__.\n replace('_', '.'), '.'.join(arg.lower().replace('_', '.') for\n arg in self.signal.providing_args))\n", "step-4": "from asgiref.sync import async_to_sync\nfrom channels.layers import get_channel_layer\nfrom django.dispatch import Signal\nfrom djangochannelsrestframework.observer.base_observer import BaseObserver\n\n\nclass Observer(BaseObserver):\n\n def __init__(self, func, signal: Signal=None, kwargs=None):\n super().__init__(func)\n if kwargs is None:\n kwargs = {}\n self.signal = signal\n self.signal_kwargs = kwargs\n self._serializer = None\n self.signal.connect(self.handle, **self.signal_kwargs)\n\n def handle(self, signal, *args, **kwargs):\n message = self.serialize(signal, *args, **kwargs)\n channel_layer = get_channel_layer()\n for group_name in self.group_names_for_signal(*args, message=\n message, **kwargs):\n async_to_sync(channel_layer.group_send)(group_name, message)\n\n def group_names(self, *args, **kwargs):\n yield '{}-{}-signal-{}'.format(self._uuid, self.func.__name__.\n replace('_', '.'), '.'.join(arg.lower().replace('_', '.') for\n arg in self.signal.providing_args))\n", "step-5": "from asgiref.sync import async_to_sync\nfrom channels.layers import get_channel_layer\nfrom django.dispatch import Signal\n\nfrom djangochannelsrestframework.observer.base_observer import BaseObserver\n\n\nclass Observer(BaseObserver):\n def __init__(self, func, signal: Signal = None, kwargs=None):\n super().__init__(func)\n if kwargs is None:\n kwargs = {}\n self.signal = signal\n self.signal_kwargs = kwargs\n self._serializer = None\n self.signal.connect(self.handle, **self.signal_kwargs)\n\n def handle(self, signal, *args, **kwargs):\n message = self.serialize(signal, *args, **kwargs)\n channel_layer = get_channel_layer()\n for group_name in self.group_names_for_signal(*args, message=message, **kwargs):\n async_to_sync(channel_layer.group_send)(group_name, message)\n\n def group_names(self, *args, **kwargs):\n yield \"{}-{}-signal-{}\".format(\n self._uuid,\n self.func.__name__.replace(\"_\", \".\"),\n \".\".join(\n arg.lower().replace(\"_\", \".\") for arg in self.signal.providing_args\n ),\n )\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def play_file(name, loop=0, time=0.0): try: file = 'data/audio/' + name pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: print('AudioLoading: failed to load ' + name) try: file = 'data/audio/error.aud' pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: print('Can not load file: ' + name) raise SystemExit() <|reserved_special_token_1|> import pygame def play_file(name, loop=0, time=0.0): try: file = 'data/audio/' + name pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: print('AudioLoading: failed to load ' + name) try: file = 'data/audio/error.aud' pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: print('Can not load file: ' + name) raise SystemExit() <|reserved_special_token_1|> import pygame def play_file(name,loop=0,time=0.0): try: #if image exists file='data/audio/'+name pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: #if image doesn't exist print('AudioLoading: failed to load ' + name) try: file = 'data/audio/error.aud' pygame.mixer.music.load(file) pygame.mixer.music.play(loop, time) except ZeroDivisionError: print( 'Can not load file: '+name) raise SystemExit()
flexible
{ "blob_id": "98940c898d58917e652fe1514ea758768b048dbc", "index": 9601, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef play_file(name, loop=0, time=0.0):\n try:\n file = 'data/audio/' + name\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError:\n print('AudioLoading: failed to load ' + name)\n try:\n file = 'data/audio/error.aud'\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError:\n print('Can not load file: ' + name)\n raise SystemExit()\n", "step-3": "import pygame\n\n\ndef play_file(name, loop=0, time=0.0):\n try:\n file = 'data/audio/' + name\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError:\n print('AudioLoading: failed to load ' + name)\n try:\n file = 'data/audio/error.aud'\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError:\n print('Can not load file: ' + name)\n raise SystemExit()\n", "step-4": "import pygame\n\n\ndef play_file(name,loop=0,time=0.0):\n try: #if image exists\n file='data/audio/'+name\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError: #if image doesn't exist\n print('AudioLoading: failed to load ' + name)\n try:\n file = 'data/audio/error.aud'\n pygame.mixer.music.load(file)\n pygame.mixer.music.play(loop, time)\n except ZeroDivisionError:\n print( 'Can not load file: '+name)\n raise SystemExit()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import sys import vector import matrix def convert_arg_to_list(arg): try: return [float(elem) for elem in arg] except: sys.exit("Invalid content inside {}".format(arg)) if __name__ == "__main__": try: vector1 = sys.argv[1].split(' ') vector2 = sys.argv[2].split(' ') except: sys.exit("Invalid vectors") try: matrix1 = sys.argv[1].split(' ') matrix2 = sys.argv[2].split(' ') except: sys.exit("Invalid Matricies") print("\nVector tests : ", end='\n\n') v = vector.Vector(convert_arg_to_list(vector1)) v2 = vector.Vector(convert_arg_to_list(vector2)) #--------------------------------------------# # Vector part # v.add(v2) print("Add :", v) v.sub(v2) print("Sub :",v) v.scale(v2) print("Scale :",v) # # #--------------------------------------------# print("\nMatrix tests : ", end='\n\n') #--------------------------------------------# # Matrix part # m = matrix.Matrix(convert_arg_to_list(matrix1)) m2 = matrix.Matrix(convert_arg_to_list(matrix2)) m.add(m2) print("Add :\n", m) m.sub(m2) print("\nSub :\n", m) m.scale(m2) print("\nScale :\n", m) #--------------------------------------------#
normal
{ "blob_id": "347bfb2d8809b55046f698620a690099cc83fb56", "index": 6433, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef convert_arg_to_list(arg):\n try:\n return [float(elem) for elem in arg]\n except:\n sys.exit('Invalid content inside {}'.format(arg))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef convert_arg_to_list(arg):\n try:\n return [float(elem) for elem in arg]\n except:\n sys.exit('Invalid content inside {}'.format(arg))\n\n\nif __name__ == '__main__':\n try:\n vector1 = sys.argv[1].split(' ')\n vector2 = sys.argv[2].split(' ')\n except:\n sys.exit('Invalid vectors')\n try:\n matrix1 = sys.argv[1].split(' ')\n matrix2 = sys.argv[2].split(' ')\n except:\n sys.exit('Invalid Matricies')\n print('\\nVector tests : ', end='\\n\\n')\n v = vector.Vector(convert_arg_to_list(vector1))\n v2 = vector.Vector(convert_arg_to_list(vector2))\n v.add(v2)\n print('Add :', v)\n v.sub(v2)\n print('Sub :', v)\n v.scale(v2)\n print('Scale :', v)\n print('\\nMatrix tests : ', end='\\n\\n')\n m = matrix.Matrix(convert_arg_to_list(matrix1))\n m2 = matrix.Matrix(convert_arg_to_list(matrix2))\n m.add(m2)\n print('Add :\\n', m)\n m.sub(m2)\n print('\\nSub :\\n', m)\n m.scale(m2)\n print('\\nScale :\\n', m)\n", "step-4": "import sys\nimport vector\nimport matrix\n\n\ndef convert_arg_to_list(arg):\n try:\n return [float(elem) for elem in arg]\n except:\n sys.exit('Invalid content inside {}'.format(arg))\n\n\nif __name__ == '__main__':\n try:\n vector1 = sys.argv[1].split(' ')\n vector2 = sys.argv[2].split(' ')\n except:\n sys.exit('Invalid vectors')\n try:\n matrix1 = sys.argv[1].split(' ')\n matrix2 = sys.argv[2].split(' ')\n except:\n sys.exit('Invalid Matricies')\n print('\\nVector tests : ', end='\\n\\n')\n v = vector.Vector(convert_arg_to_list(vector1))\n v2 = vector.Vector(convert_arg_to_list(vector2))\n v.add(v2)\n print('Add :', v)\n v.sub(v2)\n print('Sub :', v)\n v.scale(v2)\n print('Scale :', v)\n print('\\nMatrix tests : ', end='\\n\\n')\n m = matrix.Matrix(convert_arg_to_list(matrix1))\n m2 = matrix.Matrix(convert_arg_to_list(matrix2))\n m.add(m2)\n print('Add :\\n', m)\n m.sub(m2)\n print('\\nSub :\\n', m)\n m.scale(m2)\n print('\\nScale :\\n', m)\n", "step-5": "import sys\nimport vector\nimport matrix\n\ndef convert_arg_to_list(arg):\n try:\n return [float(elem) for elem in arg]\n except:\n sys.exit(\"Invalid content inside {}\".format(arg))\n\nif __name__ == \"__main__\":\n try:\n vector1 = sys.argv[1].split(' ')\n vector2 = sys.argv[2].split(' ')\n except:\n sys.exit(\"Invalid vectors\")\n try:\n matrix1 = sys.argv[1].split(' ')\n matrix2 = sys.argv[2].split(' ')\n except:\n sys.exit(\"Invalid Matricies\")\n\n print(\"\\nVector tests : \", end='\\n\\n')\n v = vector.Vector(convert_arg_to_list(vector1))\n v2 = vector.Vector(convert_arg_to_list(vector2))\n\n #--------------------------------------------#\n # Vector part #\n v.add(v2)\n print(\"Add :\", v)\n v.sub(v2)\n print(\"Sub :\",v)\n v.scale(v2)\n print(\"Scale :\",v)\n # #\n #--------------------------------------------#\n\n print(\"\\nMatrix tests : \", end='\\n\\n')\n #--------------------------------------------#\n # Matrix part #\n m = matrix.Matrix(convert_arg_to_list(matrix1))\n m2 = matrix.Matrix(convert_arg_to_list(matrix2))\n m.add(m2)\n print(\"Add :\\n\", m)\n m.sub(m2)\n print(\"\\nSub :\\n\", m)\n m.scale(m2)\n print(\"\\nScale :\\n\", m)\n\n #--------------------------------------------#\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""API - Files endpoints.""" import os import click import cloudsmith_api import requests from requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor from .. import ratelimits from ..rest import create_requests_session from ..utils import calculate_file_md5 from .exceptions import ApiException, catch_raise_api_exception from .init import get_api_client def get_files_api(): """Get the files API client.""" return get_api_client(cloudsmith_api.FilesApi) def validate_request_file_upload(owner, repo, filepath, md5_checksum=None): """Validate parameters for requesting a file upload.""" client = get_files_api() md5_checksum = md5_checksum or calculate_file_md5(filepath) with catch_raise_api_exception(): _, _, headers = client.files_validate_with_http_info( owner=owner, repo=repo, data={"filename": os.path.basename(filepath), "md5_checksum": md5_checksum}, ) ratelimits.maybe_rate_limit(client, headers) return md5_checksum def request_file_upload(owner, repo, filepath, md5_checksum=None): """Request a new package file upload (for creating packages).""" client = get_files_api() md5_checksum = md5_checksum or calculate_file_md5(filepath) with catch_raise_api_exception(): data, _, headers = client.files_create_with_http_info( owner=owner, repo=repo, data={"filename": os.path.basename(filepath), "md5_checksum": md5_checksum}, ) # pylint: disable=no-member # Pylint detects the returned value as a tuple ratelimits.maybe_rate_limit(client, headers) return data.identifier, data.upload_url, data.upload_fields def upload_file(upload_url, upload_fields, filepath, callback=None): """Upload a pre-signed file to Cloudsmith.""" upload_fields = list(upload_fields.items()) upload_fields.append( ("file", (os.path.basename(filepath), click.open_file(filepath, "rb"))) ) encoder = MultipartEncoder(upload_fields) monitor = MultipartEncoderMonitor(encoder, callback=callback) config = cloudsmith_api.Configuration() if config.proxy: proxies = {"http": config.proxy, "https": config.proxy} else: proxies = None headers = {"content-type": monitor.content_type} client = get_files_api() headers["user-agent"] = client.api_client.user_agent session = create_requests_session() resp = session.post(upload_url, data=monitor, headers=headers, proxies=proxies) try: resp.raise_for_status() except requests.RequestException as exc: raise ApiException( resp.status_code, headers=exc.response.headers, body=exc.response.content )
normal
{ "blob_id": "ee03263d92372899ec1feaf3a8ea48677b053676", "index": 6281, "step-1": "<mask token>\n\n\ndef get_files_api():\n \"\"\"Get the files API client.\"\"\"\n return get_api_client(cloudsmith_api.FilesApi)\n\n\ndef validate_request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Validate parameters for requesting a file upload.\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n _, _, headers = client.files_validate_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return md5_checksum\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_files_api():\n \"\"\"Get the files API client.\"\"\"\n return get_api_client(cloudsmith_api.FilesApi)\n\n\ndef validate_request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Validate parameters for requesting a file upload.\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n _, _, headers = client.files_validate_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return md5_checksum\n\n\n<mask token>\n\n\ndef upload_file(upload_url, upload_fields, filepath, callback=None):\n \"\"\"Upload a pre-signed file to Cloudsmith.\"\"\"\n upload_fields = list(upload_fields.items())\n upload_fields.append(('file', (os.path.basename(filepath), click.\n open_file(filepath, 'rb'))))\n encoder = MultipartEncoder(upload_fields)\n monitor = MultipartEncoderMonitor(encoder, callback=callback)\n config = cloudsmith_api.Configuration()\n if config.proxy:\n proxies = {'http': config.proxy, 'https': config.proxy}\n else:\n proxies = None\n headers = {'content-type': monitor.content_type}\n client = get_files_api()\n headers['user-agent'] = client.api_client.user_agent\n session = create_requests_session()\n resp = session.post(upload_url, data=monitor, headers=headers, proxies=\n proxies)\n try:\n resp.raise_for_status()\n except requests.RequestException as exc:\n raise ApiException(resp.status_code, headers=exc.response.headers,\n body=exc.response.content)\n", "step-3": "<mask token>\n\n\ndef get_files_api():\n \"\"\"Get the files API client.\"\"\"\n return get_api_client(cloudsmith_api.FilesApi)\n\n\ndef validate_request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Validate parameters for requesting a file upload.\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n _, _, headers = client.files_validate_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return md5_checksum\n\n\ndef request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Request a new package file upload (for creating packages).\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n data, _, headers = client.files_create_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return data.identifier, data.upload_url, data.upload_fields\n\n\ndef upload_file(upload_url, upload_fields, filepath, callback=None):\n \"\"\"Upload a pre-signed file to Cloudsmith.\"\"\"\n upload_fields = list(upload_fields.items())\n upload_fields.append(('file', (os.path.basename(filepath), click.\n open_file(filepath, 'rb'))))\n encoder = MultipartEncoder(upload_fields)\n monitor = MultipartEncoderMonitor(encoder, callback=callback)\n config = cloudsmith_api.Configuration()\n if config.proxy:\n proxies = {'http': config.proxy, 'https': config.proxy}\n else:\n proxies = None\n headers = {'content-type': monitor.content_type}\n client = get_files_api()\n headers['user-agent'] = client.api_client.user_agent\n session = create_requests_session()\n resp = session.post(upload_url, data=monitor, headers=headers, proxies=\n proxies)\n try:\n resp.raise_for_status()\n except requests.RequestException as exc:\n raise ApiException(resp.status_code, headers=exc.response.headers,\n body=exc.response.content)\n", "step-4": "<mask token>\nimport os\nimport click\nimport cloudsmith_api\nimport requests\nfrom requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor\nfrom .. import ratelimits\nfrom ..rest import create_requests_session\nfrom ..utils import calculate_file_md5\nfrom .exceptions import ApiException, catch_raise_api_exception\nfrom .init import get_api_client\n\n\ndef get_files_api():\n \"\"\"Get the files API client.\"\"\"\n return get_api_client(cloudsmith_api.FilesApi)\n\n\ndef validate_request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Validate parameters for requesting a file upload.\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n _, _, headers = client.files_validate_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return md5_checksum\n\n\ndef request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Request a new package file upload (for creating packages).\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n with catch_raise_api_exception():\n data, _, headers = client.files_create_with_http_info(owner=owner,\n repo=repo, data={'filename': os.path.basename(filepath),\n 'md5_checksum': md5_checksum})\n ratelimits.maybe_rate_limit(client, headers)\n return data.identifier, data.upload_url, data.upload_fields\n\n\ndef upload_file(upload_url, upload_fields, filepath, callback=None):\n \"\"\"Upload a pre-signed file to Cloudsmith.\"\"\"\n upload_fields = list(upload_fields.items())\n upload_fields.append(('file', (os.path.basename(filepath), click.\n open_file(filepath, 'rb'))))\n encoder = MultipartEncoder(upload_fields)\n monitor = MultipartEncoderMonitor(encoder, callback=callback)\n config = cloudsmith_api.Configuration()\n if config.proxy:\n proxies = {'http': config.proxy, 'https': config.proxy}\n else:\n proxies = None\n headers = {'content-type': monitor.content_type}\n client = get_files_api()\n headers['user-agent'] = client.api_client.user_agent\n session = create_requests_session()\n resp = session.post(upload_url, data=monitor, headers=headers, proxies=\n proxies)\n try:\n resp.raise_for_status()\n except requests.RequestException as exc:\n raise ApiException(resp.status_code, headers=exc.response.headers,\n body=exc.response.content)\n", "step-5": "\"\"\"API - Files endpoints.\"\"\"\n\nimport os\n\nimport click\nimport cloudsmith_api\nimport requests\nfrom requests_toolbelt import MultipartEncoder, MultipartEncoderMonitor\n\nfrom .. import ratelimits\nfrom ..rest import create_requests_session\nfrom ..utils import calculate_file_md5\nfrom .exceptions import ApiException, catch_raise_api_exception\nfrom .init import get_api_client\n\n\ndef get_files_api():\n \"\"\"Get the files API client.\"\"\"\n return get_api_client(cloudsmith_api.FilesApi)\n\n\ndef validate_request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Validate parameters for requesting a file upload.\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n\n with catch_raise_api_exception():\n _, _, headers = client.files_validate_with_http_info(\n owner=owner,\n repo=repo,\n data={\"filename\": os.path.basename(filepath), \"md5_checksum\": md5_checksum},\n )\n\n ratelimits.maybe_rate_limit(client, headers)\n return md5_checksum\n\n\ndef request_file_upload(owner, repo, filepath, md5_checksum=None):\n \"\"\"Request a new package file upload (for creating packages).\"\"\"\n client = get_files_api()\n md5_checksum = md5_checksum or calculate_file_md5(filepath)\n\n with catch_raise_api_exception():\n data, _, headers = client.files_create_with_http_info(\n owner=owner,\n repo=repo,\n data={\"filename\": os.path.basename(filepath), \"md5_checksum\": md5_checksum},\n )\n\n # pylint: disable=no-member\n # Pylint detects the returned value as a tuple\n ratelimits.maybe_rate_limit(client, headers)\n return data.identifier, data.upload_url, data.upload_fields\n\n\ndef upload_file(upload_url, upload_fields, filepath, callback=None):\n \"\"\"Upload a pre-signed file to Cloudsmith.\"\"\"\n upload_fields = list(upload_fields.items())\n upload_fields.append(\n (\"file\", (os.path.basename(filepath), click.open_file(filepath, \"rb\")))\n )\n encoder = MultipartEncoder(upload_fields)\n monitor = MultipartEncoderMonitor(encoder, callback=callback)\n\n config = cloudsmith_api.Configuration()\n if config.proxy:\n proxies = {\"http\": config.proxy, \"https\": config.proxy}\n else:\n proxies = None\n\n headers = {\"content-type\": monitor.content_type}\n\n client = get_files_api()\n headers[\"user-agent\"] = client.api_client.user_agent\n\n session = create_requests_session()\n resp = session.post(upload_url, data=monitor, headers=headers, proxies=proxies)\n\n try:\n resp.raise_for_status()\n except requests.RequestException as exc:\n raise ApiException(\n resp.status_code, headers=exc.response.headers, body=exc.response.content\n )\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def fromTen(): global fin fin = num nnum = num base = base2 if count == 1: nnum = sum(milst) + sum(mdlst) Ipart = int(nnum) Dpart = Decimal(nnum - Ipart) strDpart = str(Dpart) Ilist = [] Dlist = [] print('digits before . (dot) is {} '.format(Ipart)) if strDpart == '0': print('digits after . (dot) is 0') else: print('digits after . (dot) is {}'.format(strDpart[2:])) print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') print(' {}|_{}'.format(base, Ipart)) while nnum >= base: rem = int(nnum % base) srem = str(rem) nnum = int(nnum / base) Ilist.append(rem) if nnum >= base: print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem) ) else: print(' ' + str(nnum) + ' --->{}'.format(srem)) Ilist.append(nnum) print(' --------------------------------------------------') IIlist = Ilist for i in range(len(IIlist)): try: a = int(IIlist[i]) + 55 if a > 64: IIlist[i] = chr(a) except: pass print(Ilist[::-1]) print() print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') k = 0 while k < (len(strDpart) - 2) * 2: print('{} x {} = '.format(Dpart, base), end='') a = Dpart * base Dpart = a - int(a) print(a) a1 = int(a) Dlist.append(a1) k = k + 1 print(' --------------------------------------------------') print('integer part:') print(Ilist[::-1]) print('decimal part:') print(Dlist) dot = ['.'] y = Ilist[::-1] y1 = y + dot + Dlist for i in range(len(y1)): y1[i] = str(y1[i]) print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2) <|reserved_special_token_0|> def forBoth(): toTen() global count count = 1 fromTen() def main(): global num, base1, base2, count, fin count = 0 num = Decimal(input('Enter a number :')) base1 = int(input('Enter base of {} :'.format(num))) base2 = int(input('Enter the base of resulting number:')) print(num) if base1 == 10: fromTen() elif base2 == 10: toTen() else: forBoth() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def fromTen(): global fin fin = num nnum = num base = base2 if count == 1: nnum = sum(milst) + sum(mdlst) Ipart = int(nnum) Dpart = Decimal(nnum - Ipart) strDpart = str(Dpart) Ilist = [] Dlist = [] print('digits before . (dot) is {} '.format(Ipart)) if strDpart == '0': print('digits after . (dot) is 0') else: print('digits after . (dot) is {}'.format(strDpart[2:])) print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') print(' {}|_{}'.format(base, Ipart)) while nnum >= base: rem = int(nnum % base) srem = str(rem) nnum = int(nnum / base) Ilist.append(rem) if nnum >= base: print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem) ) else: print(' ' + str(nnum) + ' --->{}'.format(srem)) Ilist.append(nnum) print(' --------------------------------------------------') IIlist = Ilist for i in range(len(IIlist)): try: a = int(IIlist[i]) + 55 if a > 64: IIlist[i] = chr(a) except: pass print(Ilist[::-1]) print() print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') k = 0 while k < (len(strDpart) - 2) * 2: print('{} x {} = '.format(Dpart, base), end='') a = Dpart * base Dpart = a - int(a) print(a) a1 = int(a) Dlist.append(a1) k = k + 1 print(' --------------------------------------------------') print('integer part:') print(Ilist[::-1]) print('decimal part:') print(Dlist) dot = ['.'] y = Ilist[::-1] y1 = y + dot + Dlist for i in range(len(y1)): y1[i] = str(y1[i]) print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2) def toTen(): mnum = num mbase = base1 global fin mdnum = mnum - int(mnum) minum = int(mnum) strmdnum = str(mdnum)[2:] mdlen = len(strmdnum) strminum = str(minum)[::-1] milen = len(strminum) strnum = strmdnum + strminum con = 0 for i in range(len(strnum)): a = int(strnum[i]) if a >= mbase: con = con + 1 if con == 0: p = 0 global milst, mdlst milst = [] mdlst = [] print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') for ii in range(milen): minum = int(strminum[ii]) power1 = pow(mbase, p) print('{} power {} is "{}" '.format(mbase, p, power1), ' --> {} x {} = {}'.format(power1, minum, minum * power1) ) p = p + 1 milst.append(minum * power1) print('___________________________________________________') print() print('ADDITION OF INTEGRAL PART ===> ', end='') for i in range(milen): if i + 1 < milen: print(' {} +'.format(milst[i]), end='') if i + 1 == milen: print('{} = '.format(milst[i]), end='') print(sum(milst)) print() print('___________________________________________________') print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') print() mbase = Decimal(mbase) for jj in range(mdlen): q = Decimal(pow(mbase, -(jj + 1))) print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q) ) print(' ', strmdnum[jj], ' x ', q, ' = ', q * int(strmdnum[jj])) mdlst.append(float(q * int(strmdnum[jj]))) print(' --------------------------------------------------') print(sum(mdlst)) print('___________________________________________________') print() print('ADDITION OF DECIMAL PART ===> ', end='') for i in range(mdlen): if i + 1 < mdlen: print(' {} +'.format(mdlst[i]), end='') if i + 1 == mdlen: print('{} = '.format(mdlst[i]), end='') print(sum(mdlst)) print('___________________________________________________') print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format( sum(milst), sum(mdlst)), sum(milst) + sum(mdlst)) print(' --------------------------------------------------') else: try: print(' --------------------------------------------------') print(' ---------------------') print(' | INVALID |') print(' ---------------------') print() print('all the digits should be less than the base ') print('The base of {} should not be {}'.format(mnum, mbase)) print() main() except: pass def forBoth(): toTen() global count count = 1 fromTen() def main(): global num, base1, base2, count, fin count = 0 num = Decimal(input('Enter a number :')) base1 = int(input('Enter base of {} :'.format(num))) base2 = int(input('Enter the base of resulting number:')) print(num) if base1 == 10: fromTen() elif base2 == 10: toTen() else: forBoth() <|reserved_special_token_0|> if s == 1: main() s = s + 1 while True: print('\n') condition = input('Do you want to continue ? (y/n):') if condition == 'y': main() elif condition == 'n': print() quit() else: print('Invalid input') <|reserved_special_token_1|> <|reserved_special_token_0|> def fromTen(): global fin fin = num nnum = num base = base2 if count == 1: nnum = sum(milst) + sum(mdlst) Ipart = int(nnum) Dpart = Decimal(nnum - Ipart) strDpart = str(Dpart) Ilist = [] Dlist = [] print('digits before . (dot) is {} '.format(Ipart)) if strDpart == '0': print('digits after . (dot) is 0') else: print('digits after . (dot) is {}'.format(strDpart[2:])) print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') print(' {}|_{}'.format(base, Ipart)) while nnum >= base: rem = int(nnum % base) srem = str(rem) nnum = int(nnum / base) Ilist.append(rem) if nnum >= base: print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem) ) else: print(' ' + str(nnum) + ' --->{}'.format(srem)) Ilist.append(nnum) print(' --------------------------------------------------') IIlist = Ilist for i in range(len(IIlist)): try: a = int(IIlist[i]) + 55 if a > 64: IIlist[i] = chr(a) except: pass print(Ilist[::-1]) print() print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') k = 0 while k < (len(strDpart) - 2) * 2: print('{} x {} = '.format(Dpart, base), end='') a = Dpart * base Dpart = a - int(a) print(a) a1 = int(a) Dlist.append(a1) k = k + 1 print(' --------------------------------------------------') print('integer part:') print(Ilist[::-1]) print('decimal part:') print(Dlist) dot = ['.'] y = Ilist[::-1] y1 = y + dot + Dlist for i in range(len(y1)): y1[i] = str(y1[i]) print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2) def toTen(): mnum = num mbase = base1 global fin mdnum = mnum - int(mnum) minum = int(mnum) strmdnum = str(mdnum)[2:] mdlen = len(strmdnum) strminum = str(minum)[::-1] milen = len(strminum) strnum = strmdnum + strminum con = 0 for i in range(len(strnum)): a = int(strnum[i]) if a >= mbase: con = con + 1 if con == 0: p = 0 global milst, mdlst milst = [] mdlst = [] print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') for ii in range(milen): minum = int(strminum[ii]) power1 = pow(mbase, p) print('{} power {} is "{}" '.format(mbase, p, power1), ' --> {} x {} = {}'.format(power1, minum, minum * power1) ) p = p + 1 milst.append(minum * power1) print('___________________________________________________') print() print('ADDITION OF INTEGRAL PART ===> ', end='') for i in range(milen): if i + 1 < milen: print(' {} +'.format(milst[i]), end='') if i + 1 == milen: print('{} = '.format(milst[i]), end='') print(sum(milst)) print() print('___________________________________________________') print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') print() mbase = Decimal(mbase) for jj in range(mdlen): q = Decimal(pow(mbase, -(jj + 1))) print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q) ) print(' ', strmdnum[jj], ' x ', q, ' = ', q * int(strmdnum[jj])) mdlst.append(float(q * int(strmdnum[jj]))) print(' --------------------------------------------------') print(sum(mdlst)) print('___________________________________________________') print() print('ADDITION OF DECIMAL PART ===> ', end='') for i in range(mdlen): if i + 1 < mdlen: print(' {} +'.format(mdlst[i]), end='') if i + 1 == mdlen: print('{} = '.format(mdlst[i]), end='') print(sum(mdlst)) print('___________________________________________________') print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format( sum(milst), sum(mdlst)), sum(milst) + sum(mdlst)) print(' --------------------------------------------------') else: try: print(' --------------------------------------------------') print(' ---------------------') print(' | INVALID |') print(' ---------------------') print() print('all the digits should be less than the base ') print('The base of {} should not be {}'.format(mnum, mbase)) print() main() except: pass def forBoth(): toTen() global count count = 1 fromTen() def main(): global num, base1, base2, count, fin count = 0 num = Decimal(input('Enter a number :')) base1 = int(input('Enter base of {} :'.format(num))) base2 = int(input('Enter the base of resulting number:')) print(num) if base1 == 10: fromTen() elif base2 == 10: toTen() else: forBoth() s = 1 if s == 1: main() s = s + 1 while True: print('\n') condition = input('Do you want to continue ? (y/n):') if condition == 'y': main() elif condition == 'n': print() quit() else: print('Invalid input') <|reserved_special_token_1|> from decimal import Decimal def fromTen(): global fin fin = num nnum = num base = base2 if count == 1: nnum = sum(milst) + sum(mdlst) Ipart = int(nnum) Dpart = Decimal(nnum - Ipart) strDpart = str(Dpart) Ilist = [] Dlist = [] print('digits before . (dot) is {} '.format(Ipart)) if strDpart == '0': print('digits after . (dot) is 0') else: print('digits after . (dot) is {}'.format(strDpart[2:])) print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') print(' {}|_{}'.format(base, Ipart)) while nnum >= base: rem = int(nnum % base) srem = str(rem) nnum = int(nnum / base) Ilist.append(rem) if nnum >= base: print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem) ) else: print(' ' + str(nnum) + ' --->{}'.format(srem)) Ilist.append(nnum) print(' --------------------------------------------------') IIlist = Ilist for i in range(len(IIlist)): try: a = int(IIlist[i]) + 55 if a > 64: IIlist[i] = chr(a) except: pass print(Ilist[::-1]) print() print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') k = 0 while k < (len(strDpart) - 2) * 2: print('{} x {} = '.format(Dpart, base), end='') a = Dpart * base Dpart = a - int(a) print(a) a1 = int(a) Dlist.append(a1) k = k + 1 print(' --------------------------------------------------') print('integer part:') print(Ilist[::-1]) print('decimal part:') print(Dlist) dot = ['.'] y = Ilist[::-1] y1 = y + dot + Dlist for i in range(len(y1)): y1[i] = str(y1[i]) print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2) def toTen(): mnum = num mbase = base1 global fin mdnum = mnum - int(mnum) minum = int(mnum) strmdnum = str(mdnum)[2:] mdlen = len(strmdnum) strminum = str(minum)[::-1] milen = len(strminum) strnum = strmdnum + strminum con = 0 for i in range(len(strnum)): a = int(strnum[i]) if a >= mbase: con = con + 1 if con == 0: p = 0 global milst, mdlst milst = [] mdlst = [] print(' --------------------------------------------------') print('| INTEGRAL PART |') print(' --------------------------------------------------') for ii in range(milen): minum = int(strminum[ii]) power1 = pow(mbase, p) print('{} power {} is "{}" '.format(mbase, p, power1), ' --> {} x {} = {}'.format(power1, minum, minum * power1) ) p = p + 1 milst.append(minum * power1) print('___________________________________________________') print() print('ADDITION OF INTEGRAL PART ===> ', end='') for i in range(milen): if i + 1 < milen: print(' {} +'.format(milst[i]), end='') if i + 1 == milen: print('{} = '.format(milst[i]), end='') print(sum(milst)) print() print('___________________________________________________') print(' --------------------------------------------------') print('| DECIMAL PART |') print(' --------------------------------------------------') print() mbase = Decimal(mbase) for jj in range(mdlen): q = Decimal(pow(mbase, -(jj + 1))) print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q) ) print(' ', strmdnum[jj], ' x ', q, ' = ', q * int(strmdnum[jj])) mdlst.append(float(q * int(strmdnum[jj]))) print(' --------------------------------------------------') print(sum(mdlst)) print('___________________________________________________') print() print('ADDITION OF DECIMAL PART ===> ', end='') for i in range(mdlen): if i + 1 < mdlen: print(' {} +'.format(mdlst[i]), end='') if i + 1 == mdlen: print('{} = '.format(mdlst[i]), end='') print(sum(mdlst)) print('___________________________________________________') print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format( sum(milst), sum(mdlst)), sum(milst) + sum(mdlst)) print(' --------------------------------------------------') else: try: print(' --------------------------------------------------') print(' ---------------------') print(' | INVALID |') print(' ---------------------') print() print('all the digits should be less than the base ') print('The base of {} should not be {}'.format(mnum, mbase)) print() main() except: pass def forBoth(): toTen() global count count = 1 fromTen() def main(): global num, base1, base2, count, fin count = 0 num = Decimal(input('Enter a number :')) base1 = int(input('Enter base of {} :'.format(num))) base2 = int(input('Enter the base of resulting number:')) print(num) if base1 == 10: fromTen() elif base2 == 10: toTen() else: forBoth() s = 1 if s == 1: main() s = s + 1 while True: print('\n') condition = input('Do you want to continue ? (y/n):') if condition == 'y': main() elif condition == 'n': print() quit() else: print('Invalid input') <|reserved_special_token_1|> # created by ahmad on 17-07-2019 # last updated on 21-07-2019 #recommended font size of console in pydroid is 12 from decimal import Decimal def fromTen(): global fin fin = num nnum = num base = base2 if count == 1: nnum = sum(milst) + sum(mdlst) Ipart = int(nnum) Dpart = Decimal(nnum - Ipart) strDpart = str(Dpart) Ilist = [] Dlist = [] print("digits before . (dot) is {} ".format(Ipart)) if strDpart == "0": print("digits after . (dot) is 0") else: print("digits after . (dot) is {}".format(strDpart[2:])) print(" --------------------------------------------------") print("| INTEGRAL PART |") print(" --------------------------------------------------") print(" {}|_{}".format(base, Ipart)) while nnum >= base: rem = int(nnum % base) srem = str(rem) nnum = int(nnum / base) Ilist.append(rem) if nnum >= base: print(" {}|_".format(base) + str(nnum) + " --->{}".format(srem)) else: print(" " + str(nnum) + " --->{}".format(srem)) Ilist.append(nnum) print(" --------------------------------------------------") IIlist = Ilist for i in range(len(IIlist)): try: a = int(IIlist[i]) + 55 if a > 64: IIlist[i] = chr(a) except: pass print(Ilist[::-1]) print() print(" --------------------------------------------------") print("| DECIMAL PART |") print(" --------------------------------------------------") k = 0 while k < (len(strDpart) - 2) * 2: print("{} x {} = ".format(Dpart, base), end='') a = Dpart * base Dpart = a - int(a) print(a) a1 = int(a) Dlist.append(a1) k = k + 1 print(" --------------------------------------------------") print("integer part:") print(Ilist[::-1]) print("decimal part:") print(Dlist) dot = ["."] y=Ilist[::-1] y1=y+dot+ Dlist for i in range(len(y1)): y1[i]=str(y1[i]) print("Final Answer = ",'(' ,''.join(y1),')','base',base2) def toTen(): mnum = num mbase = base1 global fin mdnum = mnum - int(mnum) minum = int(mnum) strmdnum = str(mdnum)[2:] mdlen = len(strmdnum) strminum = str(minum)[::-1] milen = len(strminum) strnum = strmdnum + strminum con = 0 for i in range(len(strnum)): a = int(strnum[i]) if a >= mbase: con = con + 1 if con == 0: p = 0 global milst, mdlst milst = [] mdlst = [] print(" --------------------------------------------------") print("| INTEGRAL PART |") print(" --------------------------------------------------") for ii in range(milen): minum = int(strminum[ii]) power1 = pow(mbase, p) print("""{} power {} is "{}" """.format(mbase, p, power1), " --> {} x {} = {}".format(power1, minum, minum * power1)) p = p + 1 milst.append(minum * power1) print("___________________________________________________") print() print("ADDITION OF INTEGRAL PART ===> ", end='') for i in range(milen): if (i + 1) < (milen): print(" {} +".format(milst[i]), end='') if i + 1 == milen: print("{} = ".format(milst[i]), end='') print(sum(milst)) print() print("___________________________________________________") print(" --------------------------------------------------") print("| DECIMAL PART |") print(" --------------------------------------------------") print() mbase = Decimal(mbase) for jj in range(mdlen): q = Decimal(pow(mbase, -(jj + 1))) print("{} power {} = {} ---> ".format(mbase, -(jj + 1), q)) # ,end='') print(" ", strmdnum[jj], " x ", q, " = ", q * int(strmdnum[jj])) mdlst.append(float(q * int(strmdnum[jj]))) print(" --------------------------------------------------") print(sum(mdlst)) print("___________________________________________________") print() print("ADDITION OF DECIMAL PART ===> ", end='') for i in range(mdlen): if (i + 1) < (mdlen): print(" {} +".format(mdlst[i]), end='') if i + 1 == mdlen: print("{} = ".format(mdlst[i]), end='') print(sum(mdlst)) print("___________________________________________________") # print("---------------------------------------------------------------") print("SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = ".format(sum(milst), sum(mdlst)), sum(milst) + sum(mdlst)) print(" --------------------------------------------------") else: try: print(" --------------------------------------------------") print(" ---------------------") print(" | INVALID |") print(" ---------------------") print() print("all the digits should be less than the base ") print("The base of {} should not be {}".format(mnum, mbase)) print() main() except: pass def forBoth(): toTen() global count count = 1 fromTen() def main(): global num, base1, base2, count, fin count = 0 num = Decimal(input("Enter a number :")) base1 = int(input("Enter base of {} :".format(num))) base2 = int(input("Enter the base of resulting number:")) print(num) if base1 == 10: fromTen() elif base2 == 10: toTen() else: forBoth() s = 1 if s == 1: main() s = s + 1 while True: print("\n") condition = input("Do you want to continue ? (y/n):") if condition == "y": main() elif condition == "n": print() quit() else: print("Invalid input")
flexible
{ "blob_id": "9cf32e127664cb4c3290e665e35245acc936e064", "index": 4090, "step-1": "<mask token>\n\n\ndef fromTen():\n global fin\n fin = num\n nnum = num\n base = base2\n if count == 1:\n nnum = sum(milst) + sum(mdlst)\n Ipart = int(nnum)\n Dpart = Decimal(nnum - Ipart)\n strDpart = str(Dpart)\n Ilist = []\n Dlist = []\n print('digits before . (dot) is {} '.format(Ipart))\n if strDpart == '0':\n print('digits after . (dot) is 0')\n else:\n print('digits after . (dot) is {}'.format(strDpart[2:]))\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n print(' {}|_{}'.format(base, Ipart))\n while nnum >= base:\n rem = int(nnum % base)\n srem = str(rem)\n nnum = int(nnum / base)\n Ilist.append(rem)\n if nnum >= base:\n print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem)\n )\n else:\n print(' ' + str(nnum) + ' --->{}'.format(srem))\n Ilist.append(nnum)\n print(' --------------------------------------------------')\n IIlist = Ilist\n for i in range(len(IIlist)):\n try:\n a = int(IIlist[i]) + 55\n if a > 64:\n IIlist[i] = chr(a)\n except:\n pass\n print(Ilist[::-1])\n print()\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n k = 0\n while k < (len(strDpart) - 2) * 2:\n print('{} x {} = '.format(Dpart, base), end='')\n a = Dpart * base\n Dpart = a - int(a)\n print(a)\n a1 = int(a)\n Dlist.append(a1)\n k = k + 1\n print(' --------------------------------------------------')\n print('integer part:')\n print(Ilist[::-1])\n print('decimal part:')\n print(Dlist)\n dot = ['.']\n y = Ilist[::-1]\n y1 = y + dot + Dlist\n for i in range(len(y1)):\n y1[i] = str(y1[i])\n print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2)\n\n\n<mask token>\n\n\ndef forBoth():\n toTen()\n global count\n count = 1\n fromTen()\n\n\ndef main():\n global num, base1, base2, count, fin\n count = 0\n num = Decimal(input('Enter a number :'))\n base1 = int(input('Enter base of {} :'.format(num)))\n base2 = int(input('Enter the base of resulting number:'))\n print(num)\n if base1 == 10:\n fromTen()\n elif base2 == 10:\n toTen()\n else:\n forBoth()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef fromTen():\n global fin\n fin = num\n nnum = num\n base = base2\n if count == 1:\n nnum = sum(milst) + sum(mdlst)\n Ipart = int(nnum)\n Dpart = Decimal(nnum - Ipart)\n strDpart = str(Dpart)\n Ilist = []\n Dlist = []\n print('digits before . (dot) is {} '.format(Ipart))\n if strDpart == '0':\n print('digits after . (dot) is 0')\n else:\n print('digits after . (dot) is {}'.format(strDpart[2:]))\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n print(' {}|_{}'.format(base, Ipart))\n while nnum >= base:\n rem = int(nnum % base)\n srem = str(rem)\n nnum = int(nnum / base)\n Ilist.append(rem)\n if nnum >= base:\n print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem)\n )\n else:\n print(' ' + str(nnum) + ' --->{}'.format(srem))\n Ilist.append(nnum)\n print(' --------------------------------------------------')\n IIlist = Ilist\n for i in range(len(IIlist)):\n try:\n a = int(IIlist[i]) + 55\n if a > 64:\n IIlist[i] = chr(a)\n except:\n pass\n print(Ilist[::-1])\n print()\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n k = 0\n while k < (len(strDpart) - 2) * 2:\n print('{} x {} = '.format(Dpart, base), end='')\n a = Dpart * base\n Dpart = a - int(a)\n print(a)\n a1 = int(a)\n Dlist.append(a1)\n k = k + 1\n print(' --------------------------------------------------')\n print('integer part:')\n print(Ilist[::-1])\n print('decimal part:')\n print(Dlist)\n dot = ['.']\n y = Ilist[::-1]\n y1 = y + dot + Dlist\n for i in range(len(y1)):\n y1[i] = str(y1[i])\n print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2)\n\n\ndef toTen():\n mnum = num\n mbase = base1\n global fin\n mdnum = mnum - int(mnum)\n minum = int(mnum)\n strmdnum = str(mdnum)[2:]\n mdlen = len(strmdnum)\n strminum = str(minum)[::-1]\n milen = len(strminum)\n strnum = strmdnum + strminum\n con = 0\n for i in range(len(strnum)):\n a = int(strnum[i])\n if a >= mbase:\n con = con + 1\n if con == 0:\n p = 0\n global milst, mdlst\n milst = []\n mdlst = []\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n for ii in range(milen):\n minum = int(strminum[ii])\n power1 = pow(mbase, p)\n print('{} power {} is \"{}\" '.format(mbase, p, power1),\n ' --> {} x {} = {}'.format(power1, minum, minum * power1)\n )\n p = p + 1\n milst.append(minum * power1)\n print('___________________________________________________')\n print()\n print('ADDITION OF INTEGRAL PART ===> ', end='')\n for i in range(milen):\n if i + 1 < milen:\n print(' {} +'.format(milst[i]), end='')\n if i + 1 == milen:\n print('{} = '.format(milst[i]), end='')\n print(sum(milst))\n print()\n print('___________________________________________________')\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n print()\n mbase = Decimal(mbase)\n for jj in range(mdlen):\n q = Decimal(pow(mbase, -(jj + 1)))\n print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q)\n )\n print(' ', strmdnum[jj], ' x ', q,\n ' = ', q * int(strmdnum[jj]))\n mdlst.append(float(q * int(strmdnum[jj])))\n print(' --------------------------------------------------')\n print(sum(mdlst))\n print('___________________________________________________')\n print()\n print('ADDITION OF DECIMAL PART ===> ', end='')\n for i in range(mdlen):\n if i + 1 < mdlen:\n print(' {} +'.format(mdlst[i]), end='')\n if i + 1 == mdlen:\n print('{} = '.format(mdlst[i]), end='')\n print(sum(mdlst))\n print('___________________________________________________')\n print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format(\n sum(milst), sum(mdlst)), sum(milst) + sum(mdlst))\n print(' --------------------------------------------------')\n else:\n try:\n print(' --------------------------------------------------')\n print(' ---------------------')\n print(' | INVALID |')\n print(' ---------------------')\n print()\n print('all the digits should be less than the base ')\n print('The base of {} should not be {}'.format(mnum, mbase))\n print()\n main()\n except:\n pass\n\n\ndef forBoth():\n toTen()\n global count\n count = 1\n fromTen()\n\n\ndef main():\n global num, base1, base2, count, fin\n count = 0\n num = Decimal(input('Enter a number :'))\n base1 = int(input('Enter base of {} :'.format(num)))\n base2 = int(input('Enter the base of resulting number:'))\n print(num)\n if base1 == 10:\n fromTen()\n elif base2 == 10:\n toTen()\n else:\n forBoth()\n\n\n<mask token>\nif s == 1:\n main()\n s = s + 1\nwhile True:\n print('\\n')\n condition = input('Do you want to continue ? (y/n):')\n if condition == 'y':\n main()\n elif condition == 'n':\n print()\n quit()\n else:\n print('Invalid input')\n", "step-3": "<mask token>\n\n\ndef fromTen():\n global fin\n fin = num\n nnum = num\n base = base2\n if count == 1:\n nnum = sum(milst) + sum(mdlst)\n Ipart = int(nnum)\n Dpart = Decimal(nnum - Ipart)\n strDpart = str(Dpart)\n Ilist = []\n Dlist = []\n print('digits before . (dot) is {} '.format(Ipart))\n if strDpart == '0':\n print('digits after . (dot) is 0')\n else:\n print('digits after . (dot) is {}'.format(strDpart[2:]))\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n print(' {}|_{}'.format(base, Ipart))\n while nnum >= base:\n rem = int(nnum % base)\n srem = str(rem)\n nnum = int(nnum / base)\n Ilist.append(rem)\n if nnum >= base:\n print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem)\n )\n else:\n print(' ' + str(nnum) + ' --->{}'.format(srem))\n Ilist.append(nnum)\n print(' --------------------------------------------------')\n IIlist = Ilist\n for i in range(len(IIlist)):\n try:\n a = int(IIlist[i]) + 55\n if a > 64:\n IIlist[i] = chr(a)\n except:\n pass\n print(Ilist[::-1])\n print()\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n k = 0\n while k < (len(strDpart) - 2) * 2:\n print('{} x {} = '.format(Dpart, base), end='')\n a = Dpart * base\n Dpart = a - int(a)\n print(a)\n a1 = int(a)\n Dlist.append(a1)\n k = k + 1\n print(' --------------------------------------------------')\n print('integer part:')\n print(Ilist[::-1])\n print('decimal part:')\n print(Dlist)\n dot = ['.']\n y = Ilist[::-1]\n y1 = y + dot + Dlist\n for i in range(len(y1)):\n y1[i] = str(y1[i])\n print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2)\n\n\ndef toTen():\n mnum = num\n mbase = base1\n global fin\n mdnum = mnum - int(mnum)\n minum = int(mnum)\n strmdnum = str(mdnum)[2:]\n mdlen = len(strmdnum)\n strminum = str(minum)[::-1]\n milen = len(strminum)\n strnum = strmdnum + strminum\n con = 0\n for i in range(len(strnum)):\n a = int(strnum[i])\n if a >= mbase:\n con = con + 1\n if con == 0:\n p = 0\n global milst, mdlst\n milst = []\n mdlst = []\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n for ii in range(milen):\n minum = int(strminum[ii])\n power1 = pow(mbase, p)\n print('{} power {} is \"{}\" '.format(mbase, p, power1),\n ' --> {} x {} = {}'.format(power1, minum, minum * power1)\n )\n p = p + 1\n milst.append(minum * power1)\n print('___________________________________________________')\n print()\n print('ADDITION OF INTEGRAL PART ===> ', end='')\n for i in range(milen):\n if i + 1 < milen:\n print(' {} +'.format(milst[i]), end='')\n if i + 1 == milen:\n print('{} = '.format(milst[i]), end='')\n print(sum(milst))\n print()\n print('___________________________________________________')\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n print()\n mbase = Decimal(mbase)\n for jj in range(mdlen):\n q = Decimal(pow(mbase, -(jj + 1)))\n print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q)\n )\n print(' ', strmdnum[jj], ' x ', q,\n ' = ', q * int(strmdnum[jj]))\n mdlst.append(float(q * int(strmdnum[jj])))\n print(' --------------------------------------------------')\n print(sum(mdlst))\n print('___________________________________________________')\n print()\n print('ADDITION OF DECIMAL PART ===> ', end='')\n for i in range(mdlen):\n if i + 1 < mdlen:\n print(' {} +'.format(mdlst[i]), end='')\n if i + 1 == mdlen:\n print('{} = '.format(mdlst[i]), end='')\n print(sum(mdlst))\n print('___________________________________________________')\n print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format(\n sum(milst), sum(mdlst)), sum(milst) + sum(mdlst))\n print(' --------------------------------------------------')\n else:\n try:\n print(' --------------------------------------------------')\n print(' ---------------------')\n print(' | INVALID |')\n print(' ---------------------')\n print()\n print('all the digits should be less than the base ')\n print('The base of {} should not be {}'.format(mnum, mbase))\n print()\n main()\n except:\n pass\n\n\ndef forBoth():\n toTen()\n global count\n count = 1\n fromTen()\n\n\ndef main():\n global num, base1, base2, count, fin\n count = 0\n num = Decimal(input('Enter a number :'))\n base1 = int(input('Enter base of {} :'.format(num)))\n base2 = int(input('Enter the base of resulting number:'))\n print(num)\n if base1 == 10:\n fromTen()\n elif base2 == 10:\n toTen()\n else:\n forBoth()\n\n\ns = 1\nif s == 1:\n main()\n s = s + 1\nwhile True:\n print('\\n')\n condition = input('Do you want to continue ? (y/n):')\n if condition == 'y':\n main()\n elif condition == 'n':\n print()\n quit()\n else:\n print('Invalid input')\n", "step-4": "from decimal import Decimal\n\n\ndef fromTen():\n global fin\n fin = num\n nnum = num\n base = base2\n if count == 1:\n nnum = sum(milst) + sum(mdlst)\n Ipart = int(nnum)\n Dpart = Decimal(nnum - Ipart)\n strDpart = str(Dpart)\n Ilist = []\n Dlist = []\n print('digits before . (dot) is {} '.format(Ipart))\n if strDpart == '0':\n print('digits after . (dot) is 0')\n else:\n print('digits after . (dot) is {}'.format(strDpart[2:]))\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n print(' {}|_{}'.format(base, Ipart))\n while nnum >= base:\n rem = int(nnum % base)\n srem = str(rem)\n nnum = int(nnum / base)\n Ilist.append(rem)\n if nnum >= base:\n print(' {}|_'.format(base) + str(nnum) + ' --->{}'.format(srem)\n )\n else:\n print(' ' + str(nnum) + ' --->{}'.format(srem))\n Ilist.append(nnum)\n print(' --------------------------------------------------')\n IIlist = Ilist\n for i in range(len(IIlist)):\n try:\n a = int(IIlist[i]) + 55\n if a > 64:\n IIlist[i] = chr(a)\n except:\n pass\n print(Ilist[::-1])\n print()\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n k = 0\n while k < (len(strDpart) - 2) * 2:\n print('{} x {} = '.format(Dpart, base), end='')\n a = Dpart * base\n Dpart = a - int(a)\n print(a)\n a1 = int(a)\n Dlist.append(a1)\n k = k + 1\n print(' --------------------------------------------------')\n print('integer part:')\n print(Ilist[::-1])\n print('decimal part:')\n print(Dlist)\n dot = ['.']\n y = Ilist[::-1]\n y1 = y + dot + Dlist\n for i in range(len(y1)):\n y1[i] = str(y1[i])\n print('Final Answer = ', '(', ''.join(y1), ')', 'base', base2)\n\n\ndef toTen():\n mnum = num\n mbase = base1\n global fin\n mdnum = mnum - int(mnum)\n minum = int(mnum)\n strmdnum = str(mdnum)[2:]\n mdlen = len(strmdnum)\n strminum = str(minum)[::-1]\n milen = len(strminum)\n strnum = strmdnum + strminum\n con = 0\n for i in range(len(strnum)):\n a = int(strnum[i])\n if a >= mbase:\n con = con + 1\n if con == 0:\n p = 0\n global milst, mdlst\n milst = []\n mdlst = []\n print(' --------------------------------------------------')\n print('| INTEGRAL PART |')\n print(' --------------------------------------------------')\n for ii in range(milen):\n minum = int(strminum[ii])\n power1 = pow(mbase, p)\n print('{} power {} is \"{}\" '.format(mbase, p, power1),\n ' --> {} x {} = {}'.format(power1, minum, minum * power1)\n )\n p = p + 1\n milst.append(minum * power1)\n print('___________________________________________________')\n print()\n print('ADDITION OF INTEGRAL PART ===> ', end='')\n for i in range(milen):\n if i + 1 < milen:\n print(' {} +'.format(milst[i]), end='')\n if i + 1 == milen:\n print('{} = '.format(milst[i]), end='')\n print(sum(milst))\n print()\n print('___________________________________________________')\n print(' --------------------------------------------------')\n print('| DECIMAL PART |')\n print(' --------------------------------------------------')\n print()\n mbase = Decimal(mbase)\n for jj in range(mdlen):\n q = Decimal(pow(mbase, -(jj + 1)))\n print('{} power {} = {} ---> '.format(mbase, -(jj + 1), q)\n )\n print(' ', strmdnum[jj], ' x ', q,\n ' = ', q * int(strmdnum[jj]))\n mdlst.append(float(q * int(strmdnum[jj])))\n print(' --------------------------------------------------')\n print(sum(mdlst))\n print('___________________________________________________')\n print()\n print('ADDITION OF DECIMAL PART ===> ', end='')\n for i in range(mdlen):\n if i + 1 < mdlen:\n print(' {} +'.format(mdlst[i]), end='')\n if i + 1 == mdlen:\n print('{} = '.format(mdlst[i]), end='')\n print(sum(mdlst))\n print('___________________________________________________')\n print('SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = '.format(\n sum(milst), sum(mdlst)), sum(milst) + sum(mdlst))\n print(' --------------------------------------------------')\n else:\n try:\n print(' --------------------------------------------------')\n print(' ---------------------')\n print(' | INVALID |')\n print(' ---------------------')\n print()\n print('all the digits should be less than the base ')\n print('The base of {} should not be {}'.format(mnum, mbase))\n print()\n main()\n except:\n pass\n\n\ndef forBoth():\n toTen()\n global count\n count = 1\n fromTen()\n\n\ndef main():\n global num, base1, base2, count, fin\n count = 0\n num = Decimal(input('Enter a number :'))\n base1 = int(input('Enter base of {} :'.format(num)))\n base2 = int(input('Enter the base of resulting number:'))\n print(num)\n if base1 == 10:\n fromTen()\n elif base2 == 10:\n toTen()\n else:\n forBoth()\n\n\ns = 1\nif s == 1:\n main()\n s = s + 1\nwhile True:\n print('\\n')\n condition = input('Do you want to continue ? (y/n):')\n if condition == 'y':\n main()\n elif condition == 'n':\n print()\n quit()\n else:\n print('Invalid input')\n", "step-5": "# created by ahmad on 17-07-2019\n# last updated on 21-07-2019\n#recommended font size of console in pydroid is 12\n\nfrom decimal import Decimal\n\n\ndef fromTen():\n global fin\n fin = num\n nnum = num\n base = base2\n if count == 1:\n nnum = sum(milst) + sum(mdlst)\n \n Ipart = int(nnum)\n Dpart = Decimal(nnum - Ipart)\n strDpart = str(Dpart)\n Ilist = []\n Dlist = []\n print(\"digits before . (dot) is {} \".format(Ipart))\n if strDpart == \"0\":\n print(\"digits after . (dot) is 0\")\n else:\n print(\"digits after . (dot) is {}\".format(strDpart[2:])) \n print(\" --------------------------------------------------\")\n print(\"| INTEGRAL PART |\")\n print(\" --------------------------------------------------\")\n print(\" {}|_{}\".format(base, Ipart))\n while nnum >= base:\n rem = int(nnum % base)\n srem = str(rem)\n nnum = int(nnum / base)\n Ilist.append(rem)\n if nnum >= base:\n print(\" {}|_\".format(base) + str(nnum) + \" --->{}\".format(srem))\n else:\n print(\" \" + str(nnum) + \" --->{}\".format(srem))\n Ilist.append(nnum)\n print(\" --------------------------------------------------\")\n IIlist = Ilist\n for i in range(len(IIlist)):\n try:\n a = int(IIlist[i]) + 55\n if a > 64:\n IIlist[i] = chr(a)\n except:\n pass\n \n print(Ilist[::-1])\n print()\n print(\" --------------------------------------------------\")\n print(\"| DECIMAL PART |\")\n print(\" --------------------------------------------------\")\n k = 0\n while k < (len(strDpart) - 2) * 2:\n print(\"{} x {} = \".format(Dpart, base), end='')\n a = Dpart * base\n Dpart = a - int(a)\n print(a)\n a1 = int(a)\n Dlist.append(a1)\n k = k + 1\n\n print(\" --------------------------------------------------\")\n print(\"integer part:\")\n print(Ilist[::-1])\n print(\"decimal part:\")\n print(Dlist)\n dot = [\".\"]\n y=Ilist[::-1]\n y1=y+dot+ Dlist\n for i in range(len(y1)):\n \ty1[i]=str(y1[i])\n \n print(\"Final Answer = \",'(' ,''.join(y1),')','base',base2)\n\n\n\ndef toTen():\n mnum = num\n mbase = base1\n global fin\n mdnum = mnum - int(mnum)\n minum = int(mnum)\n\n strmdnum = str(mdnum)[2:]\n mdlen = len(strmdnum)\n\n strminum = str(minum)[::-1]\n milen = len(strminum)\n strnum = strmdnum + strminum\n con = 0\n for i in range(len(strnum)):\n a = int(strnum[i])\n if a >= mbase:\n con = con + 1\n if con == 0:\n p = 0\n global milst, mdlst\n milst = []\n mdlst = []\n print(\" --------------------------------------------------\")\n print(\"| INTEGRAL PART |\")\n print(\" --------------------------------------------------\")\n for ii in range(milen):\n minum = int(strminum[ii])\n power1 = pow(mbase, p)\n print(\"\"\"{} power {} is \"{}\" \"\"\".format(mbase, p, power1),\n \" --> {} x {} = {}\".format(power1, minum, minum * power1))\n p = p + 1\n milst.append(minum * power1)\n print(\"___________________________________________________\")\n print()\n print(\"ADDITION OF INTEGRAL PART ===> \", end='')\n for i in range(milen):\n if (i + 1) < (milen):\n print(\" {} +\".format(milst[i]), end='')\n if i + 1 == milen:\n print(\"{} = \".format(milst[i]), end='')\n print(sum(milst))\n print()\n print(\"___________________________________________________\")\n\n print(\" --------------------------------------------------\")\n print(\"| DECIMAL PART |\")\n print(\" --------------------------------------------------\")\n print()\n mbase = Decimal(mbase)\n \n for jj in range(mdlen):\n q = Decimal(pow(mbase, -(jj + 1)))\n print(\"{} power {} = {} ---> \".format(mbase, -(jj + 1), q)) # ,end='')\n print(\" \", strmdnum[jj], \" x \", q, \" = \", q * int(strmdnum[jj]))\n mdlst.append(float(q * int(strmdnum[jj])))\n print(\" --------------------------------------------------\")\n print(sum(mdlst))\n print(\"___________________________________________________\")\n print()\n print(\"ADDITION OF DECIMAL PART ===> \", end='')\n for i in range(mdlen):\n if (i + 1) < (mdlen):\n print(\" {} +\".format(mdlst[i]), end='')\n if i + 1 == mdlen:\n print(\"{} = \".format(mdlst[i]), end='')\n print(sum(mdlst))\n print(\"___________________________________________________\")\n # print(\"---------------------------------------------------------------\")\n print(\"SUM OF DECIMAL SUM AND INTEGRAL SUM ===> {} + {} = \".format(sum(milst), sum(mdlst)), sum(milst) + sum(mdlst))\n print(\" --------------------------------------------------\")\n else:\n\n \ttry:\n \tprint(\" --------------------------------------------------\")\n \tprint(\" ---------------------\")\n \tprint(\" | INVALID |\")\n \tprint(\" ---------------------\")\n \tprint()\n \tprint(\"all the digits should be less than the base \")\n \tprint(\"The base of {} should not be {}\".format(mnum, mbase))\n \tprint()\n \tmain()\n \texcept:\n \tpass\n\n\ndef forBoth():\n toTen()\n global count\n count = 1\n fromTen()\n\n\ndef main():\n global num, base1, base2, count, fin\n count = 0\n \n num = Decimal(input(\"Enter a number :\"))\n base1 = int(input(\"Enter base of {} :\".format(num)))\n base2 = int(input(\"Enter the base of resulting number:\"))\n print(num)\n \n if base1 == 10:\n fromTen()\n elif base2 == 10:\n toTen()\n else:\n forBoth()\n\n\ns = 1\nif s == 1:\n main()\n s = s + 1\nwhile True:\n print(\"\\n\")\n condition = input(\"Do you want to continue ? (y/n):\")\n if condition == \"y\":\n main()\n elif condition == \"n\":\n print()\n \n quit()\n else:\n print(\"Invalid input\")\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
<|reserved_special_token_0|> @app.task def generate_static_index_html(): """产生首页静态页面""" types = GoodsType.objects.all() goods_banners = IndexGoodsBanner.objects.all().order_by('index') promotion_banners = IndexPromotionBanner.objects.all().order_by('index') for type in types: image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index') title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index') type.image_banners = image_banners type.title_banners = title_banners context = {'types': types, 'goods_banners': goods_banners, 'promotion_banners': promotion_banners} temp = loader.get_template('static_index.html') statoc_index_html = temp.render(context) save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html') with open(save_path, 'w', encoding='utf-8') as f: f.write(statoc_index_html) <|reserved_special_token_1|> <|reserved_special_token_0|> @app.task def send_register_active_email(to_email, username, token): """发送激活邮件""" subject = '天天生鲜欢迎信息' message = '' sender = settings.EMAIL_FROM receiver = [to_email] html_message = ( '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href="http://127.0.0.1:8000/user/active/%s">http://127.0.0.1:8000/user/active/%s</a>' % (username, token, token)) send_mail(subject, message, sender, receiver, html_message=html_message) @app.task def generate_static_index_html(): """产生首页静态页面""" types = GoodsType.objects.all() goods_banners = IndexGoodsBanner.objects.all().order_by('index') promotion_banners = IndexPromotionBanner.objects.all().order_by('index') for type in types: image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index') title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index') type.image_banners = image_banners type.title_banners = title_banners context = {'types': types, 'goods_banners': goods_banners, 'promotion_banners': promotion_banners} temp = loader.get_template('static_index.html') statoc_index_html = temp.render(context) save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html') with open(save_path, 'w', encoding='utf-8') as f: f.write(statoc_index_html) <|reserved_special_token_1|> <|reserved_special_token_0|> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dailyfresh.settings') django.setup() <|reserved_special_token_0|> app = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8') @app.task def send_register_active_email(to_email, username, token): """发送激活邮件""" subject = '天天生鲜欢迎信息' message = '' sender = settings.EMAIL_FROM receiver = [to_email] html_message = ( '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href="http://127.0.0.1:8000/user/active/%s">http://127.0.0.1:8000/user/active/%s</a>' % (username, token, token)) send_mail(subject, message, sender, receiver, html_message=html_message) @app.task def generate_static_index_html(): """产生首页静态页面""" types = GoodsType.objects.all() goods_banners = IndexGoodsBanner.objects.all().order_by('index') promotion_banners = IndexPromotionBanner.objects.all().order_by('index') for type in types: image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index') title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index') type.image_banners = image_banners type.title_banners = title_banners context = {'types': types, 'goods_banners': goods_banners, 'promotion_banners': promotion_banners} temp = loader.get_template('static_index.html') statoc_index_html = temp.render(context) save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html') with open(save_path, 'w', encoding='utf-8') as f: f.write(statoc_index_html) <|reserved_special_token_1|> from django.conf import settings from django.core.mail import send_mail from django.template import loader, RequestContext from celery import Celery import time import os import django os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dailyfresh.settings') django.setup() from goods.models import GoodsType, IndexGoodsBanner, IndexPromotionBanner, IndexTypeGoodsBanner app = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8') @app.task def send_register_active_email(to_email, username, token): """发送激活邮件""" subject = '天天生鲜欢迎信息' message = '' sender = settings.EMAIL_FROM receiver = [to_email] html_message = ( '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href="http://127.0.0.1:8000/user/active/%s">http://127.0.0.1:8000/user/active/%s</a>' % (username, token, token)) send_mail(subject, message, sender, receiver, html_message=html_message) @app.task def generate_static_index_html(): """产生首页静态页面""" types = GoodsType.objects.all() goods_banners = IndexGoodsBanner.objects.all().order_by('index') promotion_banners = IndexPromotionBanner.objects.all().order_by('index') for type in types: image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index') title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index') type.image_banners = image_banners type.title_banners = title_banners context = {'types': types, 'goods_banners': goods_banners, 'promotion_banners': promotion_banners} temp = loader.get_template('static_index.html') statoc_index_html = temp.render(context) save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html') with open(save_path, 'w', encoding='utf-8') as f: f.write(statoc_index_html) <|reserved_special_token_1|> # 使用celery from django.conf import settings from django.core.mail import send_mail from django.template import loader,RequestContext from celery import Celery import time # 在任务处理者一 # # 端加的代码 import os import django os.environ.setdefault("DJANGO_SETTINGS_MODULE", "dailyfresh.settings") django.setup() from goods.models import GoodsType, IndexGoodsBanner, IndexPromotionBanner, IndexTypeGoodsBanner # 创建一个实例对象 app = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8') # 定义任务函数,发邮件函数 @app.task def send_register_active_email(to_email, username, token): '''发送激活邮件''' # 组织邮件信息 subject = '天天生鲜欢迎信息' message = '' sender = settings.EMAIL_FROM receiver = [to_email] html_message = '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href="http://127.0.0.1:8000/user/active/%s">http://127.0.0.1:8000/user/active/%s</a>'%(username, token, token) send_mail(subject, message, sender, receiver, html_message=html_message) @app.task def generate_static_index_html(): '''产生首页静态页面''' types = GoodsType.objects.all() # 获取首页轮播图信息 goods_banners = IndexGoodsBanner.objects.all().order_by('index') # 获取首页促销信息 promotion_banners = IndexPromotionBanner.objects.all().order_by('index') # 获取首页分类商品展示信息 #type_goods_banners = IndexTypeGoodsBanner.objects.all() for type in types: # 获取type种类首页分类商品图片信息 image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index') # 获取type种类首页分类商品的文字展示信息 title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index') # 将查出来的数据动态添加到type中 type.image_banners = image_banners type.title_banners = title_banners # 获取用户购物车中商品信息 # 组织模范上下文 context = {'types': types, 'goods_banners': goods_banners, 'promotion_banners': promotion_banners} # 加载模板文件 temp = loader.get_template('static_index.html') # 定义模板上下文 # 模板渲染 statoc_index_html = temp.render(context) save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html') with open(save_path,'w',encoding='utf-8') as f: f.write(statoc_index_html)
flexible
{ "blob_id": "7f7d087b7001cd7df01d4f22e056809be5a35568", "index": 9584, "step-1": "<mask token>\n\n\[email protected]\ndef generate_static_index_html():\n \"\"\"产生首页静态页面\"\"\"\n types = GoodsType.objects.all()\n goods_banners = IndexGoodsBanner.objects.all().order_by('index')\n promotion_banners = IndexPromotionBanner.objects.all().order_by('index')\n for type in types:\n image_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=1).order_by('index')\n title_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=0).order_by('index')\n type.image_banners = image_banners\n type.title_banners = title_banners\n context = {'types': types, 'goods_banners': goods_banners,\n 'promotion_banners': promotion_banners}\n temp = loader.get_template('static_index.html')\n statoc_index_html = temp.render(context)\n save_path = os.path.join(settings.BASE_DIR,\n 'static/static_index/index.html')\n with open(save_path, 'w', encoding='utf-8') as f:\n f.write(statoc_index_html)\n", "step-2": "<mask token>\n\n\[email protected]\ndef send_register_active_email(to_email, username, token):\n \"\"\"发送激活邮件\"\"\"\n subject = '天天生鲜欢迎信息'\n message = ''\n sender = settings.EMAIL_FROM\n receiver = [to_email]\n html_message = (\n '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href=\"http://127.0.0.1:8000/user/active/%s\">http://127.0.0.1:8000/user/active/%s</a>'\n % (username, token, token))\n send_mail(subject, message, sender, receiver, html_message=html_message)\n\n\[email protected]\ndef generate_static_index_html():\n \"\"\"产生首页静态页面\"\"\"\n types = GoodsType.objects.all()\n goods_banners = IndexGoodsBanner.objects.all().order_by('index')\n promotion_banners = IndexPromotionBanner.objects.all().order_by('index')\n for type in types:\n image_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=1).order_by('index')\n title_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=0).order_by('index')\n type.image_banners = image_banners\n type.title_banners = title_banners\n context = {'types': types, 'goods_banners': goods_banners,\n 'promotion_banners': promotion_banners}\n temp = loader.get_template('static_index.html')\n statoc_index_html = temp.render(context)\n save_path = os.path.join(settings.BASE_DIR,\n 'static/static_index/index.html')\n with open(save_path, 'w', encoding='utf-8') as f:\n f.write(statoc_index_html)\n", "step-3": "<mask token>\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dailyfresh.settings')\ndjango.setup()\n<mask token>\napp = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8')\n\n\[email protected]\ndef send_register_active_email(to_email, username, token):\n \"\"\"发送激活邮件\"\"\"\n subject = '天天生鲜欢迎信息'\n message = ''\n sender = settings.EMAIL_FROM\n receiver = [to_email]\n html_message = (\n '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href=\"http://127.0.0.1:8000/user/active/%s\">http://127.0.0.1:8000/user/active/%s</a>'\n % (username, token, token))\n send_mail(subject, message, sender, receiver, html_message=html_message)\n\n\[email protected]\ndef generate_static_index_html():\n \"\"\"产生首页静态页面\"\"\"\n types = GoodsType.objects.all()\n goods_banners = IndexGoodsBanner.objects.all().order_by('index')\n promotion_banners = IndexPromotionBanner.objects.all().order_by('index')\n for type in types:\n image_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=1).order_by('index')\n title_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=0).order_by('index')\n type.image_banners = image_banners\n type.title_banners = title_banners\n context = {'types': types, 'goods_banners': goods_banners,\n 'promotion_banners': promotion_banners}\n temp = loader.get_template('static_index.html')\n statoc_index_html = temp.render(context)\n save_path = os.path.join(settings.BASE_DIR,\n 'static/static_index/index.html')\n with open(save_path, 'w', encoding='utf-8') as f:\n f.write(statoc_index_html)\n", "step-4": "from django.conf import settings\nfrom django.core.mail import send_mail\nfrom django.template import loader, RequestContext\nfrom celery import Celery\nimport time\nimport os\nimport django\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'dailyfresh.settings')\ndjango.setup()\nfrom goods.models import GoodsType, IndexGoodsBanner, IndexPromotionBanner, IndexTypeGoodsBanner\napp = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8')\n\n\[email protected]\ndef send_register_active_email(to_email, username, token):\n \"\"\"发送激活邮件\"\"\"\n subject = '天天生鲜欢迎信息'\n message = ''\n sender = settings.EMAIL_FROM\n receiver = [to_email]\n html_message = (\n '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href=\"http://127.0.0.1:8000/user/active/%s\">http://127.0.0.1:8000/user/active/%s</a>'\n % (username, token, token))\n send_mail(subject, message, sender, receiver, html_message=html_message)\n\n\[email protected]\ndef generate_static_index_html():\n \"\"\"产生首页静态页面\"\"\"\n types = GoodsType.objects.all()\n goods_banners = IndexGoodsBanner.objects.all().order_by('index')\n promotion_banners = IndexPromotionBanner.objects.all().order_by('index')\n for type in types:\n image_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=1).order_by('index')\n title_banners = IndexTypeGoodsBanner.objects.filter(type=type,\n display_type=0).order_by('index')\n type.image_banners = image_banners\n type.title_banners = title_banners\n context = {'types': types, 'goods_banners': goods_banners,\n 'promotion_banners': promotion_banners}\n temp = loader.get_template('static_index.html')\n statoc_index_html = temp.render(context)\n save_path = os.path.join(settings.BASE_DIR,\n 'static/static_index/index.html')\n with open(save_path, 'w', encoding='utf-8') as f:\n f.write(statoc_index_html)\n", "step-5": "# 使用celery\nfrom django.conf import settings\nfrom django.core.mail import send_mail\nfrom django.template import loader,RequestContext\nfrom celery import Celery\nimport time\n# 在任务处理者一\n#\n# 端加的代码\nimport os\nimport django\nos.environ.setdefault(\"DJANGO_SETTINGS_MODULE\", \"dailyfresh.settings\")\ndjango.setup()\n\nfrom goods.models import GoodsType, IndexGoodsBanner, IndexPromotionBanner, IndexTypeGoodsBanner\n\n# 创建一个实例对象\napp = Celery('celery_tasks.tasks', broker='redis://127.0.0.1:6379/8')\n# 定义任务函数,发邮件函数\[email protected]\ndef send_register_active_email(to_email, username, token):\n '''发送激活邮件'''\n # 组织邮件信息\n subject = '天天生鲜欢迎信息'\n message = ''\n sender = settings.EMAIL_FROM\n receiver = [to_email]\n html_message = '<h1>%s,欢迎</h1><br>请点击以下链接激活<br><a href=\"http://127.0.0.1:8000/user/active/%s\">http://127.0.0.1:8000/user/active/%s</a>'%(username, token, token)\n send_mail(subject, message, sender, receiver, html_message=html_message)\n\[email protected]\ndef generate_static_index_html():\n '''产生首页静态页面'''\n types = GoodsType.objects.all()\n # 获取首页轮播图信息\n goods_banners = IndexGoodsBanner.objects.all().order_by('index')\n # 获取首页促销信息\n promotion_banners = IndexPromotionBanner.objects.all().order_by('index')\n # 获取首页分类商品展示信息\n #type_goods_banners = IndexTypeGoodsBanner.objects.all()\n for type in types:\n\n # 获取type种类首页分类商品图片信息\n image_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=1).order_by('index')\n # 获取type种类首页分类商品的文字展示信息\n title_banners = IndexTypeGoodsBanner.objects.filter(type=type, display_type=0).order_by('index')\n # 将查出来的数据动态添加到type中\n type.image_banners = image_banners\n type.title_banners = title_banners\n # 获取用户购物车中商品信息\n # 组织模范上下文\n context = {'types': types,\n 'goods_banners': goods_banners,\n 'promotion_banners': promotion_banners}\n\n # 加载模板文件\n temp = loader.get_template('static_index.html')\n # 定义模板上下文\n # 模板渲染\n statoc_index_html = temp.render(context)\n\n save_path = os.path.join(settings.BASE_DIR, 'static/static_index/index.html')\n with open(save_path,'w',encoding='utf-8') as f:\n f.write(statoc_index_html)\n\n\n\n\n\n\n\n\n\n\n", "step-ids": [ 1, 2, 4, 5, 6 ] }
[ 1, 2, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class QuoteListPagination(PageNumberPagination): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class QuoteListPagination(PageNumberPagination): page_size = 30 <|reserved_special_token_1|> from rest_framework.pagination import PageNumberPagination class QuoteListPagination(PageNumberPagination): page_size = 30
flexible
{ "blob_id": "4245da12eb7f9dd08c863e368efbd0bcf0b8fa04", "index": 6816, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass QuoteListPagination(PageNumberPagination):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass QuoteListPagination(PageNumberPagination):\n page_size = 30\n", "step-4": "from rest_framework.pagination import PageNumberPagination\n\n\nclass QuoteListPagination(PageNumberPagination):\n page_size = 30\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import itertools def odds(upper_limit): return [i for i in range(1,upper_limit,2)] def evens(upper_limit): return [i for i in range(0,upper_limit,2)] nested = [i**j for i in range(1,10) for j in range(1,4)] vowels = ['a', 'e', 'i', 'o', 'u'] consonants = [chr(i) for i in range(97,123) if chr(i) not in vowels] ascii_table = {i:chr(i) for i in itertools.chain(range(65,91), range(97,123))} ascii_lowercase = {i:chr(i) for i in ascii_table.keys() if chr(i) == chr(i).lower()} if __name__ == "__main__": print('odds', odds(12)) print('evens', evens(11)) print('nested', nested) print('consonants', consonants) print('ord of vowels', [ord(char) for char in vowels])
normal
{ "blob_id": "a2e4e4a0c49c319df2adb073b11107d3f520aa6e", "index": 1883, "step-1": "<mask token>\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\n<mask token>\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-3": "<mask token>\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\nnested = [(i ** j) for i in range(1, 10) for j in range(1, 4)]\nvowels = ['a', 'e', 'i', 'o', 'u']\nconsonants = [chr(i) for i in range(97, 123) if chr(i) not in vowels]\nascii_table = {i: chr(i) for i in itertools.chain(range(65, 91), range(97, \n 123))}\nascii_lowercase = {i: chr(i) for i in ascii_table.keys() if chr(i) == chr(i\n ).lower()}\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-4": "import itertools\n\n\ndef odds(upper_limit):\n return [i for i in range(1, upper_limit, 2)]\n\n\ndef evens(upper_limit):\n return [i for i in range(0, upper_limit, 2)]\n\n\nnested = [(i ** j) for i in range(1, 10) for j in range(1, 4)]\nvowels = ['a', 'e', 'i', 'o', 'u']\nconsonants = [chr(i) for i in range(97, 123) if chr(i) not in vowels]\nascii_table = {i: chr(i) for i in itertools.chain(range(65, 91), range(97, \n 123))}\nascii_lowercase = {i: chr(i) for i in ascii_table.keys() if chr(i) == chr(i\n ).lower()}\nif __name__ == '__main__':\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested)\n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels])\n", "step-5": "import itertools\n\ndef odds(upper_limit):\n return [i for i in range(1,upper_limit,2)]\n\ndef evens(upper_limit):\n return [i for i in range(0,upper_limit,2)]\n\nnested = [i**j for i in range(1,10) for j in range(1,4)]\n\nvowels = ['a', 'e', 'i', 'o', 'u']\n\nconsonants = [chr(i) for i in range(97,123) if chr(i) not in vowels]\n\nascii_table = {i:chr(i) for i in itertools.chain(range(65,91), range(97,123))}\n\nascii_lowercase = {i:chr(i) for i in ascii_table.keys() if chr(i) == chr(i).lower()}\n\n\n\nif __name__ == \"__main__\":\n print('odds', odds(12))\n print('evens', evens(11))\n print('nested', nested) \n print('consonants', consonants)\n print('ord of vowels', [ord(char) for char in vowels]) \n \n\n\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
#!/usr/bin/env python3 """ Main chat API module """ import json import os import signal import traceback import tornado.escape import tornado.gen import tornado.httpserver import tornado.ioloop import tornado.locks import tornado.web from jsonschema.exceptions import ValidationError from db import DB, DatabaseError from logging_utils import get_logger, init_logging from messages import MessagesNewAPI from messages import MessagesUpdatesAPI from users import UsersAPI from chats import ChatsAPI, ChatsUserAPI from contacts import ContactsAPI LOGGER = get_logger(__name__) SERVER_VERSION = os.getenv('VERSION', 'unknown') PUBLIC_API_PORT = 8888 DATABASE_LOCATION = os.getenv('DATABASE_LOCATION', '/tmp/cryptochat_db.json') _SHUTDOWN_TIMEOUT = 3 class BaseHandler(tornado.web.RequestHandler): """Base handler setting CORS headers.""" messages_new_api = None messages_updates_api = None users_api = None chats_api = None chats_user_api = None contacts_new_api = None def data_received(self, chunk): pass def set_default_headers(self): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "Content-Type") def options(self): """Answer OPTIONS request.""" self.finish() def get_post_data(self): """extract input JSON from POST request""" json_data = '' # check if JSON is passed as a file or as a body of POST request if self.request.files: json_data = self.request.files['file'][0][ 'body'] # pick up only first file (index 0) elif self.request.body: json_data = self.request.body try: data = json.loads(json_data) except ValueError: data = None return data async def handle_request(self, api_endpoint, api_version): """Takes care of validation of input and execution of POST and GET methods.""" code = 400 data = self.get_post_data() request_method = self.request.method.lower() if data: try: # will call process_get or process_post methods for the given API res = await getattr(api_endpoint, 'process_' + request_method)(api_version, data) code = 200 except ValidationError as validerr: if validerr.absolute_path: res = '%s : %s' % ( validerr.absolute_path.pop(), validerr.message) else: res = '%s' % validerr.message LOGGER.error('ValidationError: %s', res) raise tornado.web.HTTPError(reason=res) except ValueError as valuerr: res = str(valuerr) LOGGER.error('ValueError: %s', res) raise tornado.web.HTTPError(reason=res) except DatabaseError as dberr: err_id = dberr.__hash__() res = str(dberr.reason) LOGGER.error(res) LOGGER.info("Input data for <%s>: %s", err_id, data) raise dberr except Exception as err: # pylint: disable=broad-except err_id = err.__hash__() res = 'Internal server error <%s>:' \ 'please include this error id in bug report.' % err_id code = 500 LOGGER.exception(res) LOGGER.info("Input data for <%s>: %s", err_id, data) raise tornado.web.HTTPError(reason=res) else: res = 'Error: malformed input JSON.' LOGGER.error(res) raise tornado.web.HTTPError(reason=res) # raise tornado.web.HTTPError(status_code=444, reason='error happened') self.set_status(code) self.write(res) def write_error(self, status_code, **kwargs): self.set_header('Content-Type', 'application/json') if self.settings.get("serve_traceback") and "exc_info" in kwargs: # in debug mode, try to send a traceback lines = [] for line in traceback.format_exception(*kwargs["exc_info"]): lines.append(line) self.finish(json.dumps({ 'error': { 'code': status_code, 'message': self._reason, 'traceback': lines, } })) else: self.finish(json.dumps({ 'error': { 'code': status_code, 'message': self._reason, } })) class MainHandler(BaseHandler): """Handler for the API root.""" def get(self): """Returns the root endpoint of the API.""" self.write( '{"error": "cryptochat-server main page, ' 'please refer to /api/message/new or /api/message/updates"}') class MessageNewHandler(BaseHandler): """Post a new message to the chat room.""" async def post(self): """ Add a new message to the server. """ await self.handle_request(self.messages_new_api, 1) class MessageUpdatesHandler(BaseHandler): """Long-polling request for new messages. Waits until new messages are available before returning anything. """ async def post(self): """Checks for the new message updates, waits until new messages are available.""" await self.handle_request(self.messages_updates_api, 1) # def on_connection_close(self): # self.wait_future.cancel() class UsersHandler(BaseHandler): """Handler class providing /users POST requests.""" async def post(self): """Adds a new user to the database.""" await self.handle_request(self.users_api, 1) async def get(self): """Returns details of particular user.""" await self.handle_request(self.users_api, 1) class ChatsHandler(BaseHandler): """Handler providing /chats POST requests""" async def post(self): """Adds a new chat to the database.""" await self.handle_request(self.chats_api, 1) async def get(self): """Returns details of particular chat.""" await self.handle_request(self.chats_api, 1) class ChatsUserHandler(BaseHandler): """Handler providing /chats/user GET requests""" async def get(self): """Returns chats for the given user.""" await self.handle_request(self.chats_user_api, 1) class ContactsNewHandler(BaseHandler): """Handler providing /contacts POST requests""" async def post(self): """Adds a new contact to the database""" await self.handle_request(self.contacts_new_api, 1) async def get(self): """Returns details of particular contact.""" await self.handle_request(self.contacts_new_api, 1) class Application(tornado.web.Application): """ main cryptochat application class """ def __init__(self): handlers = [ (r"/", MainHandler), (r"/api/message/new", MessageNewHandler), (r"/api/message/updates", MessageUpdatesHandler), (r"/api/users", UsersHandler), (r"/api/chats", ChatsHandler), (r"/api/chats/user", ChatsUserHandler), (r"/api/contacts", ContactsNewHandler), ] tornado.web.Application.__init__(self, handlers, debug=True, serve_traceback=False) def main(): """ The main function. It creates cryptochat application, run everything.""" async def shutdown(): server.stop() await tornado.gen.sleep(_SHUTDOWN_TIMEOUT) tornado.ioloop.IOLoop.current().stop() LOGGER.info("Server was successfully shut down.") def exit_handler(sig, frame): # pylint: disable=unused-argument def get_sig_name(sig): return dict((k, v) for v, k in reversed(sorted(signal.__dict__.items())) if v.startswith('SIG') and not v.startswith('SIG_')).pop(sig) LOGGER.warning("Registered %s, shutting down.", get_sig_name(sig)) tornado.ioloop.IOLoop.instance().add_callback_from_signal(shutdown) signal.signal(signal.SIGTERM, exit_handler) signal.signal(signal.SIGINT, exit_handler) init_logging() cryptochat_db = DB(DATABASE_LOCATION) cryptochat_app = Application() server = tornado.httpserver.HTTPServer(cryptochat_app) server.bind(PUBLIC_API_PORT) server.start() LOGGER.info("Starting cryptochat (version %s).", SERVER_VERSION) BaseHandler.messages_new_api = MessagesNewAPI(cryptochat_db) BaseHandler.messages_updates_api = MessagesUpdatesAPI(cryptochat_db) BaseHandler.users_api = UsersAPI(cryptochat_db) BaseHandler.chats_api = ChatsAPI(cryptochat_db) BaseHandler.chats_user_api = ChatsUserAPI(cryptochat_db) BaseHandler.contacts_new_api = ContactsAPI(cryptochat_db) tornado.ioloop.IOLoop.current().start() if __name__ == "__main__": main()
normal
{ "blob_id": "9f8d79d141d414c1256e39f58e59f97711acfee4", "index": 4915, "step-1": "<mask token>\n\n\nclass MainHandler(BaseHandler):\n <mask token>\n\n def get(self):\n \"\"\"Returns the root endpoint of the API.\"\"\"\n self.write(\n '{\"error\": \"cryptochat-server main page, please refer to /api/message/new or /api/message/updates\"}'\n )\n\n\nclass MessageNewHandler(BaseHandler):\n \"\"\"Post a new message to the chat room.\"\"\"\n\n async def post(self):\n \"\"\"\n Add a new message to the server.\n \"\"\"\n await self.handle_request(self.messages_new_api, 1)\n\n\nclass MessageUpdatesHandler(BaseHandler):\n \"\"\"Long-polling request for new messages.\n\n Waits until new messages are available before returning anything.\n \"\"\"\n\n async def post(self):\n \"\"\"Checks for the new message updates, waits until\n new messages are available.\"\"\"\n await self.handle_request(self.messages_updates_api, 1)\n\n\nclass UsersHandler(BaseHandler):\n \"\"\"Handler class providing /users POST requests.\"\"\"\n\n async def post(self):\n \"\"\"Adds a new user to the database.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular user.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n\nclass ChatsHandler(BaseHandler):\n \"\"\"Handler providing /chats POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new chat to the database.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular chat.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n\nclass ChatsUserHandler(BaseHandler):\n \"\"\"Handler providing /chats/user GET requests\"\"\"\n\n async def get(self):\n \"\"\"Returns chats for the given user.\"\"\"\n await self.handle_request(self.chats_user_api, 1)\n\n\nclass ContactsNewHandler(BaseHandler):\n \"\"\"Handler providing /contacts POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new contact to the database\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular contact.\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n\nclass Application(tornado.web.Application):\n \"\"\" main cryptochat application class \"\"\"\n\n def __init__(self):\n handlers = [('/', MainHandler), ('/api/message/new',\n MessageNewHandler), ('/api/message/updates',\n MessageUpdatesHandler), ('/api/users', UsersHandler), (\n '/api/chats', ChatsHandler), ('/api/chats/user',\n ChatsUserHandler), ('/api/contacts', ContactsNewHandler)]\n tornado.web.Application.__init__(self, handlers, debug=True,\n serve_traceback=False)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass BaseHandler(tornado.web.RequestHandler):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n async def handle_request(self, api_endpoint, api_version):\n \"\"\"Takes care of validation of input and execution of POST and GET methods.\"\"\"\n code = 400\n data = self.get_post_data()\n request_method = self.request.method.lower()\n if data:\n try:\n res = await getattr(api_endpoint, 'process_' + request_method)(\n api_version, data)\n code = 200\n except ValidationError as validerr:\n if validerr.absolute_path:\n res = '%s : %s' % (validerr.absolute_path.pop(),\n validerr.message)\n else:\n res = '%s' % validerr.message\n LOGGER.error('ValidationError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except ValueError as valuerr:\n res = str(valuerr)\n LOGGER.error('ValueError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except DatabaseError as dberr:\n err_id = dberr.__hash__()\n res = str(dberr.reason)\n LOGGER.error(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise dberr\n except Exception as err:\n err_id = err.__hash__()\n res = (\n 'Internal server error <%s>:please include this error id in bug report.'\n % err_id)\n code = 500\n LOGGER.exception(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise tornado.web.HTTPError(reason=res)\n else:\n res = 'Error: malformed input JSON.'\n LOGGER.error(res)\n raise tornado.web.HTTPError(reason=res)\n self.set_status(code)\n self.write(res)\n <mask token>\n\n\nclass MainHandler(BaseHandler):\n \"\"\"Handler for the API root.\"\"\"\n\n def get(self):\n \"\"\"Returns the root endpoint of the API.\"\"\"\n self.write(\n '{\"error\": \"cryptochat-server main page, please refer to /api/message/new or /api/message/updates\"}'\n )\n\n\nclass MessageNewHandler(BaseHandler):\n \"\"\"Post a new message to the chat room.\"\"\"\n\n async def post(self):\n \"\"\"\n Add a new message to the server.\n \"\"\"\n await self.handle_request(self.messages_new_api, 1)\n\n\nclass MessageUpdatesHandler(BaseHandler):\n \"\"\"Long-polling request for new messages.\n\n Waits until new messages are available before returning anything.\n \"\"\"\n\n async def post(self):\n \"\"\"Checks for the new message updates, waits until\n new messages are available.\"\"\"\n await self.handle_request(self.messages_updates_api, 1)\n\n\nclass UsersHandler(BaseHandler):\n \"\"\"Handler class providing /users POST requests.\"\"\"\n\n async def post(self):\n \"\"\"Adds a new user to the database.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular user.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n\nclass ChatsHandler(BaseHandler):\n \"\"\"Handler providing /chats POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new chat to the database.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular chat.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n\nclass ChatsUserHandler(BaseHandler):\n \"\"\"Handler providing /chats/user GET requests\"\"\"\n\n async def get(self):\n \"\"\"Returns chats for the given user.\"\"\"\n await self.handle_request(self.chats_user_api, 1)\n\n\nclass ContactsNewHandler(BaseHandler):\n \"\"\"Handler providing /contacts POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new contact to the database\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular contact.\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n\nclass Application(tornado.web.Application):\n \"\"\" main cryptochat application class \"\"\"\n\n def __init__(self):\n handlers = [('/', MainHandler), ('/api/message/new',\n MessageNewHandler), ('/api/message/updates',\n MessageUpdatesHandler), ('/api/users', UsersHandler), (\n '/api/chats', ChatsHandler), ('/api/chats/user',\n ChatsUserHandler), ('/api/contacts', ContactsNewHandler)]\n tornado.web.Application.__init__(self, handlers, debug=True,\n serve_traceback=False)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass BaseHandler(tornado.web.RequestHandler):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def data_received(self, chunk):\n pass\n\n def set_default_headers(self):\n self.set_header('Access-Control-Allow-Origin', '*')\n self.set_header('Access-Control-Allow-Headers', 'Content-Type')\n <mask token>\n\n def get_post_data(self):\n \"\"\"extract input JSON from POST request\"\"\"\n json_data = ''\n if self.request.files:\n json_data = self.request.files['file'][0]['body']\n elif self.request.body:\n json_data = self.request.body\n try:\n data = json.loads(json_data)\n except ValueError:\n data = None\n return data\n\n async def handle_request(self, api_endpoint, api_version):\n \"\"\"Takes care of validation of input and execution of POST and GET methods.\"\"\"\n code = 400\n data = self.get_post_data()\n request_method = self.request.method.lower()\n if data:\n try:\n res = await getattr(api_endpoint, 'process_' + request_method)(\n api_version, data)\n code = 200\n except ValidationError as validerr:\n if validerr.absolute_path:\n res = '%s : %s' % (validerr.absolute_path.pop(),\n validerr.message)\n else:\n res = '%s' % validerr.message\n LOGGER.error('ValidationError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except ValueError as valuerr:\n res = str(valuerr)\n LOGGER.error('ValueError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except DatabaseError as dberr:\n err_id = dberr.__hash__()\n res = str(dberr.reason)\n LOGGER.error(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise dberr\n except Exception as err:\n err_id = err.__hash__()\n res = (\n 'Internal server error <%s>:please include this error id in bug report.'\n % err_id)\n code = 500\n LOGGER.exception(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise tornado.web.HTTPError(reason=res)\n else:\n res = 'Error: malformed input JSON.'\n LOGGER.error(res)\n raise tornado.web.HTTPError(reason=res)\n self.set_status(code)\n self.write(res)\n <mask token>\n\n\nclass MainHandler(BaseHandler):\n \"\"\"Handler for the API root.\"\"\"\n\n def get(self):\n \"\"\"Returns the root endpoint of the API.\"\"\"\n self.write(\n '{\"error\": \"cryptochat-server main page, please refer to /api/message/new or /api/message/updates\"}'\n )\n\n\nclass MessageNewHandler(BaseHandler):\n \"\"\"Post a new message to the chat room.\"\"\"\n\n async def post(self):\n \"\"\"\n Add a new message to the server.\n \"\"\"\n await self.handle_request(self.messages_new_api, 1)\n\n\nclass MessageUpdatesHandler(BaseHandler):\n \"\"\"Long-polling request for new messages.\n\n Waits until new messages are available before returning anything.\n \"\"\"\n\n async def post(self):\n \"\"\"Checks for the new message updates, waits until\n new messages are available.\"\"\"\n await self.handle_request(self.messages_updates_api, 1)\n\n\nclass UsersHandler(BaseHandler):\n \"\"\"Handler class providing /users POST requests.\"\"\"\n\n async def post(self):\n \"\"\"Adds a new user to the database.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular user.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n\nclass ChatsHandler(BaseHandler):\n \"\"\"Handler providing /chats POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new chat to the database.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular chat.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n\nclass ChatsUserHandler(BaseHandler):\n \"\"\"Handler providing /chats/user GET requests\"\"\"\n\n async def get(self):\n \"\"\"Returns chats for the given user.\"\"\"\n await self.handle_request(self.chats_user_api, 1)\n\n\nclass ContactsNewHandler(BaseHandler):\n \"\"\"Handler providing /contacts POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new contact to the database\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular contact.\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n\nclass Application(tornado.web.Application):\n \"\"\" main cryptochat application class \"\"\"\n\n def __init__(self):\n handlers = [('/', MainHandler), ('/api/message/new',\n MessageNewHandler), ('/api/message/updates',\n MessageUpdatesHandler), ('/api/users', UsersHandler), (\n '/api/chats', ChatsHandler), ('/api/chats/user',\n ChatsUserHandler), ('/api/contacts', ContactsNewHandler)]\n tornado.web.Application.__init__(self, handlers, debug=True,\n serve_traceback=False)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass BaseHandler(tornado.web.RequestHandler):\n <mask token>\n messages_new_api = None\n messages_updates_api = None\n users_api = None\n chats_api = None\n chats_user_api = None\n contacts_new_api = None\n\n def data_received(self, chunk):\n pass\n\n def set_default_headers(self):\n self.set_header('Access-Control-Allow-Origin', '*')\n self.set_header('Access-Control-Allow-Headers', 'Content-Type')\n\n def options(self):\n \"\"\"Answer OPTIONS request.\"\"\"\n self.finish()\n\n def get_post_data(self):\n \"\"\"extract input JSON from POST request\"\"\"\n json_data = ''\n if self.request.files:\n json_data = self.request.files['file'][0]['body']\n elif self.request.body:\n json_data = self.request.body\n try:\n data = json.loads(json_data)\n except ValueError:\n data = None\n return data\n\n async def handle_request(self, api_endpoint, api_version):\n \"\"\"Takes care of validation of input and execution of POST and GET methods.\"\"\"\n code = 400\n data = self.get_post_data()\n request_method = self.request.method.lower()\n if data:\n try:\n res = await getattr(api_endpoint, 'process_' + request_method)(\n api_version, data)\n code = 200\n except ValidationError as validerr:\n if validerr.absolute_path:\n res = '%s : %s' % (validerr.absolute_path.pop(),\n validerr.message)\n else:\n res = '%s' % validerr.message\n LOGGER.error('ValidationError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except ValueError as valuerr:\n res = str(valuerr)\n LOGGER.error('ValueError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except DatabaseError as dberr:\n err_id = dberr.__hash__()\n res = str(dberr.reason)\n LOGGER.error(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise dberr\n except Exception as err:\n err_id = err.__hash__()\n res = (\n 'Internal server error <%s>:please include this error id in bug report.'\n % err_id)\n code = 500\n LOGGER.exception(res)\n LOGGER.info('Input data for <%s>: %s', err_id, data)\n raise tornado.web.HTTPError(reason=res)\n else:\n res = 'Error: malformed input JSON.'\n LOGGER.error(res)\n raise tornado.web.HTTPError(reason=res)\n self.set_status(code)\n self.write(res)\n\n def write_error(self, status_code, **kwargs):\n self.set_header('Content-Type', 'application/json')\n if self.settings.get('serve_traceback') and 'exc_info' in kwargs:\n lines = []\n for line in traceback.format_exception(*kwargs['exc_info']):\n lines.append(line)\n self.finish(json.dumps({'error': {'code': status_code,\n 'message': self._reason, 'traceback': lines}}))\n else:\n self.finish(json.dumps({'error': {'code': status_code,\n 'message': self._reason}}))\n\n\nclass MainHandler(BaseHandler):\n \"\"\"Handler for the API root.\"\"\"\n\n def get(self):\n \"\"\"Returns the root endpoint of the API.\"\"\"\n self.write(\n '{\"error\": \"cryptochat-server main page, please refer to /api/message/new or /api/message/updates\"}'\n )\n\n\nclass MessageNewHandler(BaseHandler):\n \"\"\"Post a new message to the chat room.\"\"\"\n\n async def post(self):\n \"\"\"\n Add a new message to the server.\n \"\"\"\n await self.handle_request(self.messages_new_api, 1)\n\n\nclass MessageUpdatesHandler(BaseHandler):\n \"\"\"Long-polling request for new messages.\n\n Waits until new messages are available before returning anything.\n \"\"\"\n\n async def post(self):\n \"\"\"Checks for the new message updates, waits until\n new messages are available.\"\"\"\n await self.handle_request(self.messages_updates_api, 1)\n\n\nclass UsersHandler(BaseHandler):\n \"\"\"Handler class providing /users POST requests.\"\"\"\n\n async def post(self):\n \"\"\"Adds a new user to the database.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular user.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n\nclass ChatsHandler(BaseHandler):\n \"\"\"Handler providing /chats POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new chat to the database.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular chat.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n\nclass ChatsUserHandler(BaseHandler):\n \"\"\"Handler providing /chats/user GET requests\"\"\"\n\n async def get(self):\n \"\"\"Returns chats for the given user.\"\"\"\n await self.handle_request(self.chats_user_api, 1)\n\n\nclass ContactsNewHandler(BaseHandler):\n \"\"\"Handler providing /contacts POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new contact to the database\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular contact.\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n\nclass Application(tornado.web.Application):\n \"\"\" main cryptochat application class \"\"\"\n\n def __init__(self):\n handlers = [('/', MainHandler), ('/api/message/new',\n MessageNewHandler), ('/api/message/updates',\n MessageUpdatesHandler), ('/api/users', UsersHandler), (\n '/api/chats', ChatsHandler), ('/api/chats/user',\n ChatsUserHandler), ('/api/contacts', ContactsNewHandler)]\n tornado.web.Application.__init__(self, handlers, debug=True,\n serve_traceback=False)\n\n\n<mask token>\n", "step-5": "#!/usr/bin/env python3\n\"\"\"\nMain chat API module\n\"\"\"\n\nimport json\nimport os\nimport signal\nimport traceback\n\nimport tornado.escape\nimport tornado.gen\nimport tornado.httpserver\nimport tornado.ioloop\nimport tornado.locks\nimport tornado.web\nfrom jsonschema.exceptions import ValidationError\n\nfrom db import DB, DatabaseError\nfrom logging_utils import get_logger, init_logging\nfrom messages import MessagesNewAPI\nfrom messages import MessagesUpdatesAPI\nfrom users import UsersAPI\nfrom chats import ChatsAPI, ChatsUserAPI\nfrom contacts import ContactsAPI\n\nLOGGER = get_logger(__name__)\nSERVER_VERSION = os.getenv('VERSION', 'unknown')\nPUBLIC_API_PORT = 8888\nDATABASE_LOCATION = os.getenv('DATABASE_LOCATION', '/tmp/cryptochat_db.json')\n_SHUTDOWN_TIMEOUT = 3\n\n\nclass BaseHandler(tornado.web.RequestHandler):\n \"\"\"Base handler setting CORS headers.\"\"\"\n\n messages_new_api = None\n messages_updates_api = None\n users_api = None\n chats_api = None\n chats_user_api = None\n contacts_new_api = None\n\n def data_received(self, chunk):\n pass\n\n def set_default_headers(self):\n self.set_header(\"Access-Control-Allow-Origin\", \"*\")\n self.set_header(\"Access-Control-Allow-Headers\", \"Content-Type\")\n\n def options(self):\n \"\"\"Answer OPTIONS request.\"\"\"\n self.finish()\n\n def get_post_data(self):\n \"\"\"extract input JSON from POST request\"\"\"\n json_data = ''\n\n # check if JSON is passed as a file or as a body of POST request\n if self.request.files:\n json_data = self.request.files['file'][0][\n 'body'] # pick up only first file (index 0)\n elif self.request.body:\n json_data = self.request.body\n\n try:\n data = json.loads(json_data)\n except ValueError:\n data = None\n return data\n\n async def handle_request(self, api_endpoint, api_version):\n \"\"\"Takes care of validation of input and execution of POST and GET methods.\"\"\"\n code = 400\n data = self.get_post_data()\n request_method = self.request.method.lower()\n if data:\n try:\n # will call process_get or process_post methods for the given API\n res = await getattr(api_endpoint, 'process_' + request_method)(api_version, data)\n code = 200\n except ValidationError as validerr:\n if validerr.absolute_path:\n res = '%s : %s' % (\n validerr.absolute_path.pop(), validerr.message)\n else:\n res = '%s' % validerr.message\n LOGGER.error('ValidationError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except ValueError as valuerr:\n res = str(valuerr)\n LOGGER.error('ValueError: %s', res)\n raise tornado.web.HTTPError(reason=res)\n except DatabaseError as dberr:\n err_id = dberr.__hash__()\n res = str(dberr.reason)\n LOGGER.error(res)\n LOGGER.info(\"Input data for <%s>: %s\", err_id, data)\n raise dberr\n except Exception as err: # pylint: disable=broad-except\n err_id = err.__hash__()\n res = 'Internal server error <%s>:' \\\n 'please include this error id in bug report.' % err_id\n code = 500\n LOGGER.exception(res)\n LOGGER.info(\"Input data for <%s>: %s\", err_id, data)\n raise tornado.web.HTTPError(reason=res)\n else:\n res = 'Error: malformed input JSON.'\n LOGGER.error(res)\n raise tornado.web.HTTPError(reason=res)\n\n # raise tornado.web.HTTPError(status_code=444, reason='error happened')\n self.set_status(code)\n self.write(res)\n\n def write_error(self, status_code, **kwargs):\n\n self.set_header('Content-Type', 'application/json')\n if self.settings.get(\"serve_traceback\") and \"exc_info\" in kwargs:\n # in debug mode, try to send a traceback\n lines = []\n for line in traceback.format_exception(*kwargs[\"exc_info\"]):\n lines.append(line)\n self.finish(json.dumps({\n 'error': {\n 'code': status_code,\n 'message': self._reason,\n 'traceback': lines,\n }\n }))\n else:\n self.finish(json.dumps({\n 'error': {\n 'code': status_code,\n 'message': self._reason,\n }\n }))\n\n\nclass MainHandler(BaseHandler):\n \"\"\"Handler for the API root.\"\"\"\n\n def get(self):\n \"\"\"Returns the root endpoint of the API.\"\"\"\n self.write(\n '{\"error\": \"cryptochat-server main page, '\n 'please refer to /api/message/new or /api/message/updates\"}')\n\n\nclass MessageNewHandler(BaseHandler):\n \"\"\"Post a new message to the chat room.\"\"\"\n\n async def post(self):\n \"\"\"\n Add a new message to the server.\n \"\"\"\n await self.handle_request(self.messages_new_api, 1)\n\n\nclass MessageUpdatesHandler(BaseHandler):\n \"\"\"Long-polling request for new messages.\n\n Waits until new messages are available before returning anything.\n \"\"\"\n\n async def post(self):\n \"\"\"Checks for the new message updates, waits until\n new messages are available.\"\"\"\n await self.handle_request(self.messages_updates_api, 1)\n\n # def on_connection_close(self):\n # self.wait_future.cancel()\n\n\nclass UsersHandler(BaseHandler):\n \"\"\"Handler class providing /users POST requests.\"\"\"\n\n async def post(self):\n \"\"\"Adds a new user to the database.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular user.\"\"\"\n await self.handle_request(self.users_api, 1)\n\n\nclass ChatsHandler(BaseHandler):\n \"\"\"Handler providing /chats POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new chat to the database.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular chat.\"\"\"\n await self.handle_request(self.chats_api, 1)\n\n\nclass ChatsUserHandler(BaseHandler):\n \"\"\"Handler providing /chats/user GET requests\"\"\"\n\n async def get(self):\n \"\"\"Returns chats for the given user.\"\"\"\n await self.handle_request(self.chats_user_api, 1)\n\n\nclass ContactsNewHandler(BaseHandler):\n \"\"\"Handler providing /contacts POST requests\"\"\"\n\n async def post(self):\n \"\"\"Adds a new contact to the database\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n async def get(self):\n \"\"\"Returns details of particular contact.\"\"\"\n await self.handle_request(self.contacts_new_api, 1)\n\n\nclass Application(tornado.web.Application):\n \"\"\" main cryptochat application class \"\"\"\n\n def __init__(self):\n handlers = [\n (r\"/\", MainHandler),\n (r\"/api/message/new\", MessageNewHandler),\n (r\"/api/message/updates\", MessageUpdatesHandler),\n (r\"/api/users\", UsersHandler),\n (r\"/api/chats\", ChatsHandler),\n (r\"/api/chats/user\", ChatsUserHandler),\n (r\"/api/contacts\", ContactsNewHandler),\n ]\n\n tornado.web.Application.__init__(self, handlers, debug=True, serve_traceback=False)\n\n\ndef main():\n \"\"\" The main function. It creates cryptochat application, run everything.\"\"\"\n\n async def shutdown():\n server.stop()\n await tornado.gen.sleep(_SHUTDOWN_TIMEOUT)\n tornado.ioloop.IOLoop.current().stop()\n LOGGER.info(\"Server was successfully shut down.\")\n\n def exit_handler(sig, frame): # pylint: disable=unused-argument\n def get_sig_name(sig):\n return dict((k, v) for v, k in reversed(sorted(signal.__dict__.items()))\n if v.startswith('SIG') and not v.startswith('SIG_')).pop(sig)\n\n LOGGER.warning(\"Registered %s, shutting down.\", get_sig_name(sig))\n tornado.ioloop.IOLoop.instance().add_callback_from_signal(shutdown)\n\n signal.signal(signal.SIGTERM, exit_handler)\n signal.signal(signal.SIGINT, exit_handler)\n\n init_logging()\n cryptochat_db = DB(DATABASE_LOCATION)\n\n cryptochat_app = Application()\n server = tornado.httpserver.HTTPServer(cryptochat_app)\n server.bind(PUBLIC_API_PORT)\n server.start()\n LOGGER.info(\"Starting cryptochat (version %s).\", SERVER_VERSION)\n\n BaseHandler.messages_new_api = MessagesNewAPI(cryptochat_db)\n BaseHandler.messages_updates_api = MessagesUpdatesAPI(cryptochat_db)\n BaseHandler.users_api = UsersAPI(cryptochat_db)\n BaseHandler.chats_api = ChatsAPI(cryptochat_db)\n BaseHandler.chats_user_api = ChatsUserAPI(cryptochat_db)\n BaseHandler.contacts_new_api = ContactsAPI(cryptochat_db)\n\n tornado.ioloop.IOLoop.current().start()\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 17, 19, 22, 25, 31 ] }
[ 17, 19, 22, 25, 31 ]
#!/usr/bin/python import socket, os, datetime, time, re, sys import numpy as np import matplotlib.pyplot as plt from baseband import vdif import astropy.units as u from scipy.signal import resample_poly import matplotlib.patches as patches def fbcmd(message): sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect((ip, int(port))) sock.send(message.encode()) # convert message to bytestring if DEBUG: print('INFO: sent to '+ip+':'+port + ':' + message) data = sock.recv(1024) if DEBUG: print('INFO: answer: ', data.decode()) sock.close() return data.decode() def get_singlefile_data(vbsname): # TODO: Thread/IF selection in vmux step disk2fileout = scriptdir+"/checkdata.vdif" vmuxedfile = disk2fileout +".vmuxed" ss = fbcmd("scan_set="+vbsname+":+2.0s:+"+extractiontime) if " does not exist" in ss: return [False, -1, 0, -1] # No single file data found sc = fbcmd("scan_check?") nbbcs = int(int(sc.split(":")[4])/2) fbcmd("disk2file=" + disk2fileout + ":::w") nwait = 0 time.sleep(0.25) # Wait for disk2file while True: stat = fbcmd("disk2file?") if "inactive" in stat: break if nwait>5: print("ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...") sys.exit(1) time.sleep(1) # Wait for disk2file nwait+=1 vmuxcmd = "vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}".format(disk2fileout, vmuxedfile) os.system(vmuxcmd) time.sleep(5) # Wait for vmux # Read file fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate*u.MHz) # Need to specify sample rate, too short to autodetect. start_time = fh.info()['start_time'] # Ensure file pointer is at beginning of file fh.seek(0) # Read all data until end ifdata = fh.read() # Close infile fh.close() return [True, nbbcs, ifdata, start_time] def get_multifile_data(vbs, nif): vbsname = vbs+"_"+str(nif) disk2fileout = scriptdir+"/checkdata.vdif" ss = fbcmd("scan_set="+vbsname+":+2.0s:+"+extractiontime) if " does not exist" in ss: return [-1, 0, -1] sc = fbcmd("scan_check?") nbbcs = int(int(sc.split(":")[4])/2) fbcmd("disk2file=" + disk2fileout + ":::w") nwait = 0 time.sleep(0.25) # Wait for disk2file while True: stat = fbcmd("disk2file?") if "inactive" in stat: break if nwait>5: print("ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...") sys.exit(1) time.sleep(1) # Wait for disk2file nwait+=1 # Read file fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate*u.MHz) # Need to specify sample rate, too short to autodetect. start_time = fh.info()['start_time'] # Ensure file pointer is at beginning of file fh.seek(0) # Read all data until end ifdata = fh.read() # Close infile fh.close() return [nbbcs, ifdata, start_time] def plot_bbc(bbcdata, bbc, nif): row=(nrows-1)-nif col=bbc-nif*bbcsperIF # Assume nbbcs always the same nfft = bbcdata.size states = np.unique(bbcdata, return_counts=True) sampler_stats = states[1]/nfft ps = np.abs(np.fft.fft(bbcdata))**2 time_step = 1.0/sample_rate freqs = np.fft.fftfreq(nfft, time_step) idx = np.argsort(freqs) # Spectrum is conjugate from - to +, only plot half... nplot = int(nfft/2) ps2plot = ps[idx][nplot:] # Decimate signal to 128 points down = int(nplot/nspec) ps2plot_dec = resample_poly(ps2plot, 1, down) fr2plot = np.linspace(0,bbcw, nspec) # Plot if nif%2==0: color = "black" else: color= "red" ax = axs[row][col] ax.plot(fr2plot, ps2plot_dec, color=color) if col==0: ax.set_ylabel("IF "+ str(iflabels[nif]) + "\n"+str(start_time)[:-5].replace("T","\n"), rotation=0, ha='right', va="center") ax.text(0.5, 0.35, "BBC{0:03d}".format(bbc+1), transform=ax.transAxes, ha="center") #print("BBC{0:03d} sampler stats: {1} %".format(bbc+1, np.round(100*sampler_stats,1))) start=0 for i,stat in enumerate(sampler_stats): #if i%2==0: if i in [0,3]: scol = "blue" else: scol = "green" ax.add_patch(patches.Rectangle( (start,0), width=stat, height=0.25, edgecolor="black", facecolor = scol, fill=True, transform=ax.transAxes)) start +=stat itot = 0 for i in [0.18,0.33,0.33]: # last 0.18 not necessary itot+=i ax.axvline(x=itot*bbcw) ax.set_xlim([0,bbcw]) ip = sys.argv[1] #ip = "localhost" port = sys.argv[2] #port = "2621" # jive5ab control port bbcw = int(sys.argv[3]) #bbcw = 32 # MHz, width of BBC nspec = int(sys.argv[4]) #nspec = 256 # number of points in final spectrum bbcsperIF = int(sys.argv[5]) #bbcsperIF = 8 DEBUG=False# Print jive5ab return messages, which are parsed for results ifs2plot = [0,1,2,3,4,5,6,7] # List IFs to plot, starting from 0. #Plot design nrows = 8 ncols = bbcsperIF extractiontime = "0.01s" # At least 0.01s iflabels = ["A", "B", "C", "D", "E", "F", "G", "H"] plt.rcParams.update({'font.size': 8}) sample_rate = 2*bbcw # MHz scriptdir=os.path.dirname(os.path.realpath(__file__)) scres = fbcmd("scan_check?") if "does not exist" in scres: vbsfile = scres.split(":")[1].split("'")[1].strip() else: vbsfile = scres.split(":")[2].strip() # ignore spaces around filename if vbsfile[-2]=="_": # Multi-file name, ignore the suffix for the initial pattern vbsfile = vbsfile[:-2] print("Processing VBS name " + vbsfile) #vbsname = "testrec_freja_210526_161523" # Prepare plot f,axs = plt.subplots(nrows, ncols, sharex=True, figsize=(8,4), dpi=300) for a in axs: for b in a: b.set_yscale("log") b.yaxis.set_major_locator(plt.NullLocator()) b.yaxis.set_minor_locator(plt.NullLocator()) b.xaxis.set_major_locator(plt.NullLocator()) b.xaxis.set_minor_locator(plt.NullLocator()) # Remove top double line except from top row if not b in axs[0]: b.spines["top"].set_visible(False) plt.subplots_adjust(left=0.125, right=0.975, top=0.925, bottom=0.05, hspace=0, wspace=0) # Check if dealing with single-file. If so, vmux, then read all data sequentially and split singlefile, nbbcs, data, start_time = get_singlefile_data(vbsfile) if not singlefile: recmode = "multifile" # Failed single-file, try multi-file: for nif in ifs2plot: nbbcs, data, start_time = get_multifile_data(vbsfile, nif) if nbbcs>0: #Check if data was found for i in range(nbbcs): bbc = nbbcs*nif + i # Slice out bbc from all data bbcdata = data[:, i].astype(int) # bbc, converted to 4 integer states (2-bit): -3, -1, +1, +3 plot_bbc(bbcdata, bbc, nif) else: # Singlefile, so step through all BBCs, assuming bbcperif BBCs for each IF recmode = "vmuxed" for bbc in range(nbbcs): nif = int(bbc/bbcsperIF) # Slice out bbc from all data bbcdata = data[:, bbc].astype(int) # bbc, converted to 4 integer states (2-bit): -3, -1, +1, +3 plot_bbc(bbcdata, bbc, nif) f.suptitle(vbsfile+": " + recmode + ", "+extractiontime + ". log10 spectra: {} points per {} MHz. Blue/green = sampler stats.".format(nspec,bbcw)) f.savefig(scriptdir+"/bandpass.pdf",dpi=300)
normal
{ "blob_id": "8eb08fa497ccf3ddc8f4d2b886c9e5a9bdb2e052", "index": 8006, "step-1": "<mask token>\n\n\ndef fbcmd(message):\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.connect((ip, int(port)))\n sock.send(message.encode())\n if DEBUG:\n print('INFO: sent to ' + ip + ':' + port + ':' + message)\n data = sock.recv(1024)\n if DEBUG:\n print('INFO: answer: ', data.decode())\n sock.close()\n return data.decode()\n\n\ndef get_singlefile_data(vbsname):\n disk2fileout = scriptdir + '/checkdata.vdif'\n vmuxedfile = disk2fileout + '.vmuxed'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [False, -1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n vmuxcmd = 'vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}'.format(disk2fileout,\n vmuxedfile)\n os.system(vmuxcmd)\n time.sleep(5)\n fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [True, nbbcs, ifdata, start_time]\n\n\ndef get_multifile_data(vbs, nif):\n vbsname = vbs + '_' + str(nif)\n disk2fileout = scriptdir + '/checkdata.vdif'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [-1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [nbbcs, ifdata, start_time]\n\n\ndef plot_bbc(bbcdata, bbc, nif):\n row = nrows - 1 - nif\n col = bbc - nif * bbcsperIF\n nfft = bbcdata.size\n states = np.unique(bbcdata, return_counts=True)\n sampler_stats = states[1] / nfft\n ps = np.abs(np.fft.fft(bbcdata)) ** 2\n time_step = 1.0 / sample_rate\n freqs = np.fft.fftfreq(nfft, time_step)\n idx = np.argsort(freqs)\n nplot = int(nfft / 2)\n ps2plot = ps[idx][nplot:]\n down = int(nplot / nspec)\n ps2plot_dec = resample_poly(ps2plot, 1, down)\n fr2plot = np.linspace(0, bbcw, nspec)\n if nif % 2 == 0:\n color = 'black'\n else:\n color = 'red'\n ax = axs[row][col]\n ax.plot(fr2plot, ps2plot_dec, color=color)\n if col == 0:\n ax.set_ylabel('IF ' + str(iflabels[nif]) + '\\n' + str(start_time)[:\n -5].replace('T', '\\n'), rotation=0, ha='right', va='center')\n ax.text(0.5, 0.35, 'BBC{0:03d}'.format(bbc + 1), transform=ax.transAxes,\n ha='center')\n start = 0\n for i, stat in enumerate(sampler_stats):\n if i in [0, 3]:\n scol = 'blue'\n else:\n scol = 'green'\n ax.add_patch(patches.Rectangle((start, 0), width=stat, height=0.25,\n edgecolor='black', facecolor=scol, fill=True, transform=ax.\n transAxes))\n start += stat\n itot = 0\n for i in [0.18, 0.33, 0.33]:\n itot += i\n ax.axvline(x=itot * bbcw)\n ax.set_xlim([0, bbcw])\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef fbcmd(message):\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.connect((ip, int(port)))\n sock.send(message.encode())\n if DEBUG:\n print('INFO: sent to ' + ip + ':' + port + ':' + message)\n data = sock.recv(1024)\n if DEBUG:\n print('INFO: answer: ', data.decode())\n sock.close()\n return data.decode()\n\n\ndef get_singlefile_data(vbsname):\n disk2fileout = scriptdir + '/checkdata.vdif'\n vmuxedfile = disk2fileout + '.vmuxed'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [False, -1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n vmuxcmd = 'vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}'.format(disk2fileout,\n vmuxedfile)\n os.system(vmuxcmd)\n time.sleep(5)\n fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [True, nbbcs, ifdata, start_time]\n\n\ndef get_multifile_data(vbs, nif):\n vbsname = vbs + '_' + str(nif)\n disk2fileout = scriptdir + '/checkdata.vdif'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [-1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [nbbcs, ifdata, start_time]\n\n\ndef plot_bbc(bbcdata, bbc, nif):\n row = nrows - 1 - nif\n col = bbc - nif * bbcsperIF\n nfft = bbcdata.size\n states = np.unique(bbcdata, return_counts=True)\n sampler_stats = states[1] / nfft\n ps = np.abs(np.fft.fft(bbcdata)) ** 2\n time_step = 1.0 / sample_rate\n freqs = np.fft.fftfreq(nfft, time_step)\n idx = np.argsort(freqs)\n nplot = int(nfft / 2)\n ps2plot = ps[idx][nplot:]\n down = int(nplot / nspec)\n ps2plot_dec = resample_poly(ps2plot, 1, down)\n fr2plot = np.linspace(0, bbcw, nspec)\n if nif % 2 == 0:\n color = 'black'\n else:\n color = 'red'\n ax = axs[row][col]\n ax.plot(fr2plot, ps2plot_dec, color=color)\n if col == 0:\n ax.set_ylabel('IF ' + str(iflabels[nif]) + '\\n' + str(start_time)[:\n -5].replace('T', '\\n'), rotation=0, ha='right', va='center')\n ax.text(0.5, 0.35, 'BBC{0:03d}'.format(bbc + 1), transform=ax.transAxes,\n ha='center')\n start = 0\n for i, stat in enumerate(sampler_stats):\n if i in [0, 3]:\n scol = 'blue'\n else:\n scol = 'green'\n ax.add_patch(patches.Rectangle((start, 0), width=stat, height=0.25,\n edgecolor='black', facecolor=scol, fill=True, transform=ax.\n transAxes))\n start += stat\n itot = 0\n for i in [0.18, 0.33, 0.33]:\n itot += i\n ax.axvline(x=itot * bbcw)\n ax.set_xlim([0, bbcw])\n\n\n<mask token>\nplt.rcParams.update({'font.size': 8})\n<mask token>\nif 'does not exist' in scres:\n vbsfile = scres.split(':')[1].split(\"'\")[1].strip()\nelse:\n vbsfile = scres.split(':')[2].strip()\nif vbsfile[-2] == '_':\n vbsfile = vbsfile[:-2]\nprint('Processing VBS name ' + vbsfile)\n<mask token>\nfor a in axs:\n for b in a:\n b.set_yscale('log')\n b.yaxis.set_major_locator(plt.NullLocator())\n b.yaxis.set_minor_locator(plt.NullLocator())\n b.xaxis.set_major_locator(plt.NullLocator())\n b.xaxis.set_minor_locator(plt.NullLocator())\n if not b in axs[0]:\n b.spines['top'].set_visible(False)\nplt.subplots_adjust(left=0.125, right=0.975, top=0.925, bottom=0.05, hspace\n =0, wspace=0)\n<mask token>\nif not singlefile:\n recmode = 'multifile'\n for nif in ifs2plot:\n nbbcs, data, start_time = get_multifile_data(vbsfile, nif)\n if nbbcs > 0:\n for i in range(nbbcs):\n bbc = nbbcs * nif + i\n bbcdata = data[:, i].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nelse:\n recmode = 'vmuxed'\n for bbc in range(nbbcs):\n nif = int(bbc / bbcsperIF)\n bbcdata = data[:, bbc].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nf.suptitle(vbsfile + ': ' + recmode + ', ' + extractiontime +\n '. log10 spectra: {} points per {} MHz. Blue/green = sampler stats.'.\n format(nspec, bbcw))\nf.savefig(scriptdir + '/bandpass.pdf', dpi=300)\n", "step-3": "<mask token>\n\n\ndef fbcmd(message):\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.connect((ip, int(port)))\n sock.send(message.encode())\n if DEBUG:\n print('INFO: sent to ' + ip + ':' + port + ':' + message)\n data = sock.recv(1024)\n if DEBUG:\n print('INFO: answer: ', data.decode())\n sock.close()\n return data.decode()\n\n\ndef get_singlefile_data(vbsname):\n disk2fileout = scriptdir + '/checkdata.vdif'\n vmuxedfile = disk2fileout + '.vmuxed'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [False, -1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n vmuxcmd = 'vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}'.format(disk2fileout,\n vmuxedfile)\n os.system(vmuxcmd)\n time.sleep(5)\n fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [True, nbbcs, ifdata, start_time]\n\n\ndef get_multifile_data(vbs, nif):\n vbsname = vbs + '_' + str(nif)\n disk2fileout = scriptdir + '/checkdata.vdif'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [-1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [nbbcs, ifdata, start_time]\n\n\ndef plot_bbc(bbcdata, bbc, nif):\n row = nrows - 1 - nif\n col = bbc - nif * bbcsperIF\n nfft = bbcdata.size\n states = np.unique(bbcdata, return_counts=True)\n sampler_stats = states[1] / nfft\n ps = np.abs(np.fft.fft(bbcdata)) ** 2\n time_step = 1.0 / sample_rate\n freqs = np.fft.fftfreq(nfft, time_step)\n idx = np.argsort(freqs)\n nplot = int(nfft / 2)\n ps2plot = ps[idx][nplot:]\n down = int(nplot / nspec)\n ps2plot_dec = resample_poly(ps2plot, 1, down)\n fr2plot = np.linspace(0, bbcw, nspec)\n if nif % 2 == 0:\n color = 'black'\n else:\n color = 'red'\n ax = axs[row][col]\n ax.plot(fr2plot, ps2plot_dec, color=color)\n if col == 0:\n ax.set_ylabel('IF ' + str(iflabels[nif]) + '\\n' + str(start_time)[:\n -5].replace('T', '\\n'), rotation=0, ha='right', va='center')\n ax.text(0.5, 0.35, 'BBC{0:03d}'.format(bbc + 1), transform=ax.transAxes,\n ha='center')\n start = 0\n for i, stat in enumerate(sampler_stats):\n if i in [0, 3]:\n scol = 'blue'\n else:\n scol = 'green'\n ax.add_patch(patches.Rectangle((start, 0), width=stat, height=0.25,\n edgecolor='black', facecolor=scol, fill=True, transform=ax.\n transAxes))\n start += stat\n itot = 0\n for i in [0.18, 0.33, 0.33]:\n itot += i\n ax.axvline(x=itot * bbcw)\n ax.set_xlim([0, bbcw])\n\n\nip = sys.argv[1]\nport = sys.argv[2]\nbbcw = int(sys.argv[3])\nnspec = int(sys.argv[4])\nbbcsperIF = int(sys.argv[5])\nDEBUG = False\nifs2plot = [0, 1, 2, 3, 4, 5, 6, 7]\nnrows = 8\nncols = bbcsperIF\nextractiontime = '0.01s'\niflabels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']\nplt.rcParams.update({'font.size': 8})\nsample_rate = 2 * bbcw\nscriptdir = os.path.dirname(os.path.realpath(__file__))\nscres = fbcmd('scan_check?')\nif 'does not exist' in scres:\n vbsfile = scres.split(':')[1].split(\"'\")[1].strip()\nelse:\n vbsfile = scres.split(':')[2].strip()\nif vbsfile[-2] == '_':\n vbsfile = vbsfile[:-2]\nprint('Processing VBS name ' + vbsfile)\nf, axs = plt.subplots(nrows, ncols, sharex=True, figsize=(8, 4), dpi=300)\nfor a in axs:\n for b in a:\n b.set_yscale('log')\n b.yaxis.set_major_locator(plt.NullLocator())\n b.yaxis.set_minor_locator(plt.NullLocator())\n b.xaxis.set_major_locator(plt.NullLocator())\n b.xaxis.set_minor_locator(plt.NullLocator())\n if not b in axs[0]:\n b.spines['top'].set_visible(False)\nplt.subplots_adjust(left=0.125, right=0.975, top=0.925, bottom=0.05, hspace\n =0, wspace=0)\nsinglefile, nbbcs, data, start_time = get_singlefile_data(vbsfile)\nif not singlefile:\n recmode = 'multifile'\n for nif in ifs2plot:\n nbbcs, data, start_time = get_multifile_data(vbsfile, nif)\n if nbbcs > 0:\n for i in range(nbbcs):\n bbc = nbbcs * nif + i\n bbcdata = data[:, i].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nelse:\n recmode = 'vmuxed'\n for bbc in range(nbbcs):\n nif = int(bbc / bbcsperIF)\n bbcdata = data[:, bbc].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nf.suptitle(vbsfile + ': ' + recmode + ', ' + extractiontime +\n '. log10 spectra: {} points per {} MHz. Blue/green = sampler stats.'.\n format(nspec, bbcw))\nf.savefig(scriptdir + '/bandpass.pdf', dpi=300)\n", "step-4": "import socket, os, datetime, time, re, sys\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom baseband import vdif\nimport astropy.units as u\nfrom scipy.signal import resample_poly\nimport matplotlib.patches as patches\n\n\ndef fbcmd(message):\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.connect((ip, int(port)))\n sock.send(message.encode())\n if DEBUG:\n print('INFO: sent to ' + ip + ':' + port + ':' + message)\n data = sock.recv(1024)\n if DEBUG:\n print('INFO: answer: ', data.decode())\n sock.close()\n return data.decode()\n\n\ndef get_singlefile_data(vbsname):\n disk2fileout = scriptdir + '/checkdata.vdif'\n vmuxedfile = disk2fileout + '.vmuxed'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [False, -1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n vmuxcmd = 'vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}'.format(disk2fileout,\n vmuxedfile)\n os.system(vmuxcmd)\n time.sleep(5)\n fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [True, nbbcs, ifdata, start_time]\n\n\ndef get_multifile_data(vbs, nif):\n vbsname = vbs + '_' + str(nif)\n disk2fileout = scriptdir + '/checkdata.vdif'\n ss = fbcmd('scan_set=' + vbsname + ':+2.0s:+' + extractiontime)\n if ' does not exist' in ss:\n return [-1, 0, -1]\n sc = fbcmd('scan_check?')\n nbbcs = int(int(sc.split(':')[4]) / 2)\n fbcmd('disk2file=' + disk2fileout + ':::w')\n nwait = 0\n time.sleep(0.25)\n while True:\n stat = fbcmd('disk2file?')\n if 'inactive' in stat:\n break\n if nwait > 5:\n print(\n 'ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...'\n )\n sys.exit(1)\n time.sleep(1)\n nwait += 1\n fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate * u.MHz)\n start_time = fh.info()['start_time']\n fh.seek(0)\n ifdata = fh.read()\n fh.close()\n return [nbbcs, ifdata, start_time]\n\n\ndef plot_bbc(bbcdata, bbc, nif):\n row = nrows - 1 - nif\n col = bbc - nif * bbcsperIF\n nfft = bbcdata.size\n states = np.unique(bbcdata, return_counts=True)\n sampler_stats = states[1] / nfft\n ps = np.abs(np.fft.fft(bbcdata)) ** 2\n time_step = 1.0 / sample_rate\n freqs = np.fft.fftfreq(nfft, time_step)\n idx = np.argsort(freqs)\n nplot = int(nfft / 2)\n ps2plot = ps[idx][nplot:]\n down = int(nplot / nspec)\n ps2plot_dec = resample_poly(ps2plot, 1, down)\n fr2plot = np.linspace(0, bbcw, nspec)\n if nif % 2 == 0:\n color = 'black'\n else:\n color = 'red'\n ax = axs[row][col]\n ax.plot(fr2plot, ps2plot_dec, color=color)\n if col == 0:\n ax.set_ylabel('IF ' + str(iflabels[nif]) + '\\n' + str(start_time)[:\n -5].replace('T', '\\n'), rotation=0, ha='right', va='center')\n ax.text(0.5, 0.35, 'BBC{0:03d}'.format(bbc + 1), transform=ax.transAxes,\n ha='center')\n start = 0\n for i, stat in enumerate(sampler_stats):\n if i in [0, 3]:\n scol = 'blue'\n else:\n scol = 'green'\n ax.add_patch(patches.Rectangle((start, 0), width=stat, height=0.25,\n edgecolor='black', facecolor=scol, fill=True, transform=ax.\n transAxes))\n start += stat\n itot = 0\n for i in [0.18, 0.33, 0.33]:\n itot += i\n ax.axvline(x=itot * bbcw)\n ax.set_xlim([0, bbcw])\n\n\nip = sys.argv[1]\nport = sys.argv[2]\nbbcw = int(sys.argv[3])\nnspec = int(sys.argv[4])\nbbcsperIF = int(sys.argv[5])\nDEBUG = False\nifs2plot = [0, 1, 2, 3, 4, 5, 6, 7]\nnrows = 8\nncols = bbcsperIF\nextractiontime = '0.01s'\niflabels = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']\nplt.rcParams.update({'font.size': 8})\nsample_rate = 2 * bbcw\nscriptdir = os.path.dirname(os.path.realpath(__file__))\nscres = fbcmd('scan_check?')\nif 'does not exist' in scres:\n vbsfile = scres.split(':')[1].split(\"'\")[1].strip()\nelse:\n vbsfile = scres.split(':')[2].strip()\nif vbsfile[-2] == '_':\n vbsfile = vbsfile[:-2]\nprint('Processing VBS name ' + vbsfile)\nf, axs = plt.subplots(nrows, ncols, sharex=True, figsize=(8, 4), dpi=300)\nfor a in axs:\n for b in a:\n b.set_yscale('log')\n b.yaxis.set_major_locator(plt.NullLocator())\n b.yaxis.set_minor_locator(plt.NullLocator())\n b.xaxis.set_major_locator(plt.NullLocator())\n b.xaxis.set_minor_locator(plt.NullLocator())\n if not b in axs[0]:\n b.spines['top'].set_visible(False)\nplt.subplots_adjust(left=0.125, right=0.975, top=0.925, bottom=0.05, hspace\n =0, wspace=0)\nsinglefile, nbbcs, data, start_time = get_singlefile_data(vbsfile)\nif not singlefile:\n recmode = 'multifile'\n for nif in ifs2plot:\n nbbcs, data, start_time = get_multifile_data(vbsfile, nif)\n if nbbcs > 0:\n for i in range(nbbcs):\n bbc = nbbcs * nif + i\n bbcdata = data[:, i].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nelse:\n recmode = 'vmuxed'\n for bbc in range(nbbcs):\n nif = int(bbc / bbcsperIF)\n bbcdata = data[:, bbc].astype(int)\n plot_bbc(bbcdata, bbc, nif)\nf.suptitle(vbsfile + ': ' + recmode + ', ' + extractiontime +\n '. log10 spectra: {} points per {} MHz. Blue/green = sampler stats.'.\n format(nspec, bbcw))\nf.savefig(scriptdir + '/bandpass.pdf', dpi=300)\n", "step-5": "#!/usr/bin/python\nimport socket, os, datetime, time, re, sys\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom baseband import vdif\nimport astropy.units as u\nfrom scipy.signal import resample_poly\nimport matplotlib.patches as patches\n\ndef fbcmd(message):\n sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n sock.connect((ip, int(port)))\n sock.send(message.encode()) # convert message to bytestring\n if DEBUG:\n print('INFO: sent to '+ip+':'+port + ':' + message)\n data = sock.recv(1024)\n if DEBUG:\n print('INFO: answer: ', data.decode())\n sock.close()\n return data.decode()\n\ndef get_singlefile_data(vbsname):\n # TODO: Thread/IF selection in vmux step\n disk2fileout = scriptdir+\"/checkdata.vdif\"\n vmuxedfile = disk2fileout +\".vmuxed\"\n ss = fbcmd(\"scan_set=\"+vbsname+\":+2.0s:+\"+extractiontime)\n if \" does not exist\" in ss:\n return [False, -1, 0, -1] # No single file data found\n sc = fbcmd(\"scan_check?\")\n nbbcs = int(int(sc.split(\":\")[4])/2)\n fbcmd(\"disk2file=\" + disk2fileout + \":::w\")\n nwait = 0\n time.sleep(0.25) # Wait for disk2file\n while True:\n stat = fbcmd(\"disk2file?\")\n if \"inactive\" in stat:\n break\n if nwait>5:\n print(\"ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...\")\n sys.exit(1)\n time.sleep(1) # Wait for disk2file\n nwait+=1\n vmuxcmd = \"vmux -v {0} 8224 15625 0,1,2,3,4,5,6,7 {1}\".format(disk2fileout, vmuxedfile)\n os.system(vmuxcmd)\n time.sleep(5) # Wait for vmux\n # Read file\n fh = vdif.open(vmuxedfile, 'rs', sample_rate=sample_rate*u.MHz) # Need to specify sample rate, too short to autodetect.\n start_time = fh.info()['start_time']\n # Ensure file pointer is at beginning of file\n fh.seek(0)\n # Read all data until end\n ifdata = fh.read()\n # Close infile\n fh.close()\n return [True, nbbcs, ifdata, start_time]\n\ndef get_multifile_data(vbs, nif):\n vbsname = vbs+\"_\"+str(nif)\n disk2fileout = scriptdir+\"/checkdata.vdif\"\n ss = fbcmd(\"scan_set=\"+vbsname+\":+2.0s:+\"+extractiontime)\n if \" does not exist\" in ss:\n return [-1, 0, -1]\n sc = fbcmd(\"scan_check?\")\n nbbcs = int(int(sc.split(\":\")[4])/2)\n fbcmd(\"disk2file=\" + disk2fileout + \":::w\")\n nwait = 0\n time.sleep(0.25) # Wait for disk2file\n while True:\n stat = fbcmd(\"disk2file?\")\n if \"inactive\" in stat:\n break\n if nwait>5:\n print(\"ERROR: Waited more than 5 sec for disk2file! Something is wrong, exiting...\")\n sys.exit(1)\n time.sleep(1) # Wait for disk2file\n nwait+=1\n # Read file\n fh = vdif.open(disk2fileout, 'rs', sample_rate=sample_rate*u.MHz) # Need to specify sample rate, too short to autodetect.\n start_time = fh.info()['start_time']\n # Ensure file pointer is at beginning of file\n fh.seek(0)\n # Read all data until end\n ifdata = fh.read()\n # Close infile\n fh.close()\n return [nbbcs, ifdata, start_time]\n\ndef plot_bbc(bbcdata, bbc, nif):\n row=(nrows-1)-nif\n col=bbc-nif*bbcsperIF # Assume nbbcs always the same\n nfft = bbcdata.size\n states = np.unique(bbcdata, return_counts=True)\n sampler_stats = states[1]/nfft\n \n ps = np.abs(np.fft.fft(bbcdata))**2\n time_step = 1.0/sample_rate\n freqs = np.fft.fftfreq(nfft, time_step)\n idx = np.argsort(freqs)\n \n # Spectrum is conjugate from - to +, only plot half...\n nplot = int(nfft/2) \n ps2plot = ps[idx][nplot:]\n \n # Decimate signal to 128 points\n down = int(nplot/nspec)\n ps2plot_dec = resample_poly(ps2plot, 1, down)\n fr2plot = np.linspace(0,bbcw, nspec)\n \n # Plot\n if nif%2==0:\n color = \"black\"\n else:\n color= \"red\"\n ax = axs[row][col]\n ax.plot(fr2plot, ps2plot_dec, color=color)\n if col==0:\n ax.set_ylabel(\"IF \"+ str(iflabels[nif]) + \"\\n\"+str(start_time)[:-5].replace(\"T\",\"\\n\"), rotation=0, ha='right', va=\"center\")\n ax.text(0.5, 0.35, \"BBC{0:03d}\".format(bbc+1), transform=ax.transAxes, ha=\"center\")\n #print(\"BBC{0:03d} sampler stats: {1} %\".format(bbc+1, np.round(100*sampler_stats,1)))\n start=0\n for i,stat in enumerate(sampler_stats):\n #if i%2==0:\n if i in [0,3]:\n scol = \"blue\"\n else:\n scol = \"green\"\n ax.add_patch(patches.Rectangle( (start,0), width=stat, height=0.25, edgecolor=\"black\", facecolor = scol, fill=True, transform=ax.transAxes))\n start +=stat\n itot = 0\n for i in [0.18,0.33,0.33]: # last 0.18 not necessary\n itot+=i\n ax.axvline(x=itot*bbcw)\n ax.set_xlim([0,bbcw])\n\nip = sys.argv[1] #ip = \"localhost\"\nport = sys.argv[2] #port = \"2621\" # jive5ab control port\nbbcw = int(sys.argv[3]) #bbcw = 32 # MHz, width of BBC\nnspec = int(sys.argv[4]) #nspec = 256 # number of points in final spectrum\nbbcsperIF = int(sys.argv[5]) #bbcsperIF = 8\n\nDEBUG=False# Print jive5ab return messages, which are parsed for results\n\nifs2plot = [0,1,2,3,4,5,6,7] # List IFs to plot, starting from 0. \n#Plot design\nnrows = 8\nncols = bbcsperIF\nextractiontime = \"0.01s\" # At least 0.01s\niflabels = [\"A\", \"B\", \"C\", \"D\", \"E\", \"F\", \"G\", \"H\"]\n\nplt.rcParams.update({'font.size': 8})\nsample_rate = 2*bbcw # MHz\nscriptdir=os.path.dirname(os.path.realpath(__file__))\n\nscres = fbcmd(\"scan_check?\")\nif \"does not exist\" in scres:\n vbsfile = scres.split(\":\")[1].split(\"'\")[1].strip()\nelse:\n vbsfile = scres.split(\":\")[2].strip() # ignore spaces around filename\nif vbsfile[-2]==\"_\":\n # Multi-file name, ignore the suffix for the initial pattern\n vbsfile = vbsfile[:-2]\nprint(\"Processing VBS name \" + vbsfile)\n\n#vbsname = \"testrec_freja_210526_161523\"\n# Prepare plot\nf,axs = plt.subplots(nrows, ncols, sharex=True, figsize=(8,4), dpi=300)\nfor a in axs:\n for b in a:\n b.set_yscale(\"log\")\n b.yaxis.set_major_locator(plt.NullLocator())\n b.yaxis.set_minor_locator(plt.NullLocator())\n b.xaxis.set_major_locator(plt.NullLocator())\n b.xaxis.set_minor_locator(plt.NullLocator())\n # Remove top double line except from top row\n if not b in axs[0]:\n b.spines[\"top\"].set_visible(False)\nplt.subplots_adjust(left=0.125, right=0.975, top=0.925, bottom=0.05, hspace=0, wspace=0)\n\n# Check if dealing with single-file. If so, vmux, then read all data sequentially and split\nsinglefile, nbbcs, data, start_time = get_singlefile_data(vbsfile)\nif not singlefile:\n recmode = \"multifile\"\n # Failed single-file, try multi-file:\n for nif in ifs2plot:\n nbbcs, data, start_time = get_multifile_data(vbsfile, nif)\n if nbbcs>0: #Check if data was found\n for i in range(nbbcs):\n bbc = nbbcs*nif + i\n # Slice out bbc from all data\n bbcdata = data[:, i].astype(int) # bbc, converted to 4 integer states (2-bit): -3, -1, +1, +3\n plot_bbc(bbcdata, bbc, nif)\nelse:\n # Singlefile, so step through all BBCs, assuming bbcperif BBCs for each IF\n recmode = \"vmuxed\"\n for bbc in range(nbbcs):\n nif = int(bbc/bbcsperIF)\n # Slice out bbc from all data\n bbcdata = data[:, bbc].astype(int) # bbc, converted to 4 integer states (2-bit): -3, -1, +1, +3\n plot_bbc(bbcdata, bbc, nif)\n\nf.suptitle(vbsfile+\": \" + recmode + \", \"+extractiontime + \". log10 spectra: {} points per {} MHz. Blue/green = sampler stats.\".format(nspec,bbcw))\nf.savefig(scriptdir+\"/bandpass.pdf\",dpi=300)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# Generated by Django 3.0.8 on 2020-08-28 17:37 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0003_auto_20200828_1836'), ] operations = [ migrations.AddField( model_name='order', name='total', field=models.CharField(default=0, max_length=200), preserve_default=False, ), migrations.AlterField( model_name='order', name='items', field=models.CharField(max_length=300), ), ]
normal
{ "blob_id": "1f7d770106ea8e7d1c0bb90e1fc576b7ee2f0220", "index": 381, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('shop', '0003_auto_20200828_1836')]\n operations = [migrations.AddField(model_name='order', name='total',\n field=models.CharField(default=0, max_length=200), preserve_default\n =False), migrations.AlterField(model_name='order', name='items',\n field=models.CharField(max_length=300))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('shop', '0003_auto_20200828_1836')]\n operations = [migrations.AddField(model_name='order', name='total',\n field=models.CharField(default=0, max_length=200), preserve_default\n =False), migrations.AlterField(model_name='order', name='items',\n field=models.CharField(max_length=300))]\n", "step-5": "# Generated by Django 3.0.8 on 2020-08-28 17:37\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('shop', '0003_auto_20200828_1836'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='order',\n name='total',\n field=models.CharField(default=0, max_length=200),\n preserve_default=False,\n ),\n migrations.AlterField(\n model_name='order',\n name='items',\n field=models.CharField(max_length=300),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import math as m def calcula_elongacao(A, ϕ, ω, t): x = A * m.cos(ϕ + ϕ * t ) return x
normal
{ "blob_id": "225687729b64f455bcc841e83105c7444efdfad3", "index": 5545, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef calcula_elongacao(A, φ, ω, t):\n x = A * m.cos(φ + φ * t)\n return x\n", "step-3": "import math as m\n\n\ndef calcula_elongacao(A, φ, ω, t):\n x = A * m.cos(φ + φ * t)\n return x\n", "step-4": "import math as m\n\ndef calcula_elongacao(A, ϕ, ω, t):\n x = A * m.cos(ϕ + ϕ * t )\n return x", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',') tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',') tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',') te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',') te_exp = te_exp[:, -1] return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) for i in range(training_data.shape[0]): predicted = sigmoid(w, training_data[i]) diff = np.subtract(predicted, training_expected[i]) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add(gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy(w, training_data, training_expected)) testing_accuracies.append(check_accuracy(w, testing_data, testing_expected)) return training_accuracies, testing_accuracies <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',') tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',') tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',') te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',') te_exp = te_exp[:, -1] return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) for i in range(training_data.shape[0]): predicted = sigmoid(w, training_data[i]) diff = np.subtract(predicted, training_expected[i]) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add(gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy(w, training_data, training_expected)) testing_accuracies.append(check_accuracy(w, testing_data, testing_expected)) return training_accuracies, testing_accuracies <|reserved_special_token_0|> if len(args) < 2: print( 'You must include a training and testing dataset, as well as a learning rate' , file=sys.stderr) print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate' ) exit(1) <|reserved_special_token_0|> for i in range(0, 100): iterations.append(i + 1) <|reserved_special_token_0|> plt.ylabel('Accuracy') plt.xlabel('Iteration') plt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}') plt.plot(iterations, training_accuracies, 'b', label='training') plt.plot(iterations, testing_accuracies, 'r', label='testing') plt.legend() plt.show() plt.savefig(f'graph_results.png') <|reserved_special_token_1|> <|reserved_special_token_0|> def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',') tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',') tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',') te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',') te_exp = te_exp[:, -1] return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) for i in range(training_data.shape[0]): predicted = sigmoid(w, training_data[i]) diff = np.subtract(predicted, training_expected[i]) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add(gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy(w, training_data, training_expected)) testing_accuracies.append(check_accuracy(w, testing_data, testing_expected)) return training_accuracies, testing_accuracies args = sys.argv[1:] if len(args) < 2: print( 'You must include a training and testing dataset, as well as a learning rate' , file=sys.stderr) print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate' ) exit(1) iterations = [] for i in range(0, 100): iterations.append(i + 1) training_features, training_expected, test_features, test_expected = ( load_files(args[0], args[1])) training_accuracies, testing_accuracies = gradient(training_features, training_expected, test_features, test_expected, learning_rate=float( args[2])) plt.ylabel('Accuracy') plt.xlabel('Iteration') plt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}') plt.plot(iterations, training_accuracies, 'b', label='training') plt.plot(iterations, testing_accuracies, 'r', label='testing') plt.legend() plt.show() plt.savefig(f'graph_results.png') <|reserved_special_token_1|> import sys import numpy as np import math import matplotlib.pyplot as plt import random def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',') tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',') tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',') te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',') te_exp = te_exp[:, -1] return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) for i in range(training_data.shape[0]): predicted = sigmoid(w, training_data[i]) diff = np.subtract(predicted, training_expected[i]) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add(gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy(w, training_data, training_expected)) testing_accuracies.append(check_accuracy(w, testing_data, testing_expected)) return training_accuracies, testing_accuracies args = sys.argv[1:] if len(args) < 2: print( 'You must include a training and testing dataset, as well as a learning rate' , file=sys.stderr) print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate' ) exit(1) iterations = [] for i in range(0, 100): iterations.append(i + 1) training_features, training_expected, test_features, test_expected = ( load_files(args[0], args[1])) training_accuracies, testing_accuracies = gradient(training_features, training_expected, test_features, test_expected, learning_rate=float( args[2])) plt.ylabel('Accuracy') plt.xlabel('Iteration') plt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}') plt.plot(iterations, training_accuracies, 'b', label='training') plt.plot(iterations, testing_accuracies, 'r', label='testing') plt.legend() plt.show() plt.savefig(f'graph_results.png') <|reserved_special_token_1|> import sys import numpy as np import math import matplotlib.pyplot as plt import random def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=",") tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=",") tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=",") te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=",") te_exp = te_exp[:, -1] # for i in tr_feat: # if i > 1 or i < 0: # raise ValueError("WHY") # for i in te_feat: # if i > 1 or i < 0: # raise ValueError("WHY") return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): # try: exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) # If you've gotten this far you've noticed that the last two accuracies are always 50% # I couldn't tell you why, seeing as our weights look correct # And return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=0.00005): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) # Feature count for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) # Feature count for i in range(training_data.shape[0]): # Example count predicted = sigmoid(w, training_data[i]) diff = (np.subtract( predicted, training_expected[i])) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add( gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy( w, training_data, training_expected)) testing_accuracies.append(check_accuracy( w, testing_data, testing_expected)) return training_accuracies, testing_accuracies args = sys.argv[1:] if len(args) < 2: print("You must include a training and testing dataset, as well as a learning rate", file=sys.stderr) print("Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate") exit(1) iterations = [] for i in range(0, 100): iterations.append(i+1) training_features, training_expected, test_features, test_expected = load_files( args[0], args[1]) training_accuracies, testing_accuracies = gradient( training_features, training_expected, test_features, test_expected, learning_rate=float(args[2])) plt.ylabel("Accuracy") plt.xlabel("Iteration") plt.title(f"Accuracy as Function of Iteration Learing Rate = {args[2]}") plt.plot(iterations, training_accuracies, 'b', label='training') plt.plot(iterations, testing_accuracies, 'r', label='testing') plt.legend() plt.show() plt.savefig(f"graph_results.png")
flexible
{ "blob_id": "4af05a13264c249be69071447101d684ff97063e", "index": 6725, "step-1": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\n<mask token>\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\n<mask token>\nfor i in range(0, 100):\n iterations.append(i + 1)\n<mask token>\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-3": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\niterations = []\nfor i in range(0, 100):\n iterations.append(i + 1)\ntraining_features, training_expected, test_features, test_expected = (\n load_files(args[0], args[1]))\ntraining_accuracies, testing_accuracies = gradient(training_features,\n training_expected, test_features, test_expected, learning_rate=float(\n args[2]))\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-4": "import sys\nimport numpy as np\nimport math\nimport matplotlib.pyplot as plt\nimport random\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\niterations = []\nfor i in range(0, 100):\n iterations.append(i + 1)\ntraining_features, training_expected, test_features, test_expected = (\n load_files(args[0], args[1]))\ntraining_accuracies, testing_accuracies = gradient(training_features,\n training_expected, test_features, test_expected, learning_rate=float(\n args[2]))\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-5": "import sys\nimport numpy as np\nimport math\nimport matplotlib.pyplot as plt\nimport random\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=\",\")\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=\",\")\n tr_exp = tr_exp[:, -1]\n\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=\",\")\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=\",\")\n te_exp = te_exp[:, -1]\n\n # for i in tr_feat:\n # if i > 1 or i < 0:\n # raise ValueError(\"WHY\")\n # for i in te_feat:\n # if i > 1 or i < 0:\n # raise ValueError(\"WHY\")\n\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n # try:\n exponent = -np.dot(weight.T, case)\n\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n # If you've gotten this far you've noticed that the last two accuracies are always 50%\n # I couldn't tell you why, seeing as our weights look correct\n # And\n\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=0.00005):\n training_accuracies = []\n testing_accuracies = []\n\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n\n w = np.zeros(training_data.shape[1]) # Feature count\n\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1]) # Feature count\n for i in range(training_data.shape[0]): # Example count\n predicted = sigmoid(w, training_data[i])\n diff = (np.subtract(\n predicted, training_expected[i]))\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(\n gradient_batch, np.multiply(normalized, reg_strength))\n\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n\n training_accuracies.append(check_accuracy(\n w, training_data, training_expected))\n testing_accuracies.append(check_accuracy(\n w, testing_data, testing_expected))\n\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\"You must include a training and testing dataset, as well as a learning rate\", file=sys.stderr)\n print(\"Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate\")\n exit(1)\n\niterations = []\nfor i in range(0, 100):\n iterations.append(i+1)\n\ntraining_features, training_expected, test_features, test_expected = load_files(\n args[0], args[1])\ntraining_accuracies, testing_accuracies = gradient(\n training_features, training_expected, test_features, test_expected, learning_rate=float(args[2]))\nplt.ylabel(\"Accuracy\")\nplt.xlabel(\"Iteration\")\nplt.title(f\"Accuracy as Function of Iteration Learing Rate = {args[2]}\")\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f\"graph_results.png\")\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
import sys max = sys.maxsize print(" sys.maxsize -> ", max)
normal
{ "blob_id": "c1c79e5adc620690e4e386f7f1cd9f781eeec0ce", "index": 6843, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(' sys.maxsize -> ', max)\n", "step-3": "<mask token>\nmax = sys.maxsize\nprint(' sys.maxsize -> ', max)\n", "step-4": "import sys\nmax = sys.maxsize\nprint(' sys.maxsize -> ', max)\n", "step-5": "import sys\n\nmax = sys.maxsize\nprint(\" sys.maxsize -> \", max)\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def return_major(Y): label_count = {} for i in Y: label_count[i] = label_count.get(i, 0) + 1 sorted_class = sorted(label_count.items(), key=operator.itemgetter(1), reverse=True) return sorted_class[0][0] def splitDataSet(X, fea, value): y = [] tem = copy.deepcopy(X) for i in tem: if i[fea] == value: del i[fea] y.append(i) return y <|reserved_special_token_0|> def calcEnt(X): labelCount = {} for i in X: i = i[-1] labelCount[i] = labelCount.get(i, 0) + 1 tem = np.array(list(labelCount.values())) tem = tem / len(X) return np.sum(-np.log(tem) * tem) <|reserved_special_token_1|> <|reserved_special_token_0|> def return_major(Y): label_count = {} for i in Y: label_count[i] = label_count.get(i, 0) + 1 sorted_class = sorted(label_count.items(), key=operator.itemgetter(1), reverse=True) return sorted_class[0][0] def splitDataSet(X, fea, value): y = [] tem = copy.deepcopy(X) for i in tem: if i[fea] == value: del i[fea] y.append(i) return y def bestdived(X): baseEnt = calcEnt(X) tem0 = 0 for i in range(len(X[0]) - 1): feaValue = [x[i] for x in X] uniqueValue = set(feaValue) tem1 = 0 for j in uniqueValue: subDataset = splitDataSet(X, i, j) prob = len(subDataset) / len(X) tem1 = tem1 + prob * calcEnt(subDataset) infoGain = baseEnt - tem1 if infoGain > tem0: tem0 = infoGain bestFea = i return bestFea def calcEnt(X): labelCount = {} for i in X: i = i[-1] labelCount[i] = labelCount.get(i, 0) + 1 tem = np.array(list(labelCount.values())) tem = tem / len(X) return np.sum(-np.log(tem) * tem) <|reserved_special_token_1|> <|reserved_special_token_0|> def construct_tree(X, label): classList = [sample[-1] for sample in X] if classList.count(classList[0]) == len(classList): return classList[0] if len(X[0]) == 1: return return_major(classList) bestFea = bestdived(X) bestFeaName = label[bestFea] feaValue = [x[bestFea] for x in X] uniqueValue = set(feaValue) myTree = {bestFeaName: {}} del label[bestFea] for i in uniqueValue: myTree[bestFeaName][i] = construct_tree(splitDataSet(X, bestFea, i), label) return myTree def return_major(Y): label_count = {} for i in Y: label_count[i] = label_count.get(i, 0) + 1 sorted_class = sorted(label_count.items(), key=operator.itemgetter(1), reverse=True) return sorted_class[0][0] def splitDataSet(X, fea, value): y = [] tem = copy.deepcopy(X) for i in tem: if i[fea] == value: del i[fea] y.append(i) return y def bestdived(X): baseEnt = calcEnt(X) tem0 = 0 for i in range(len(X[0]) - 1): feaValue = [x[i] for x in X] uniqueValue = set(feaValue) tem1 = 0 for j in uniqueValue: subDataset = splitDataSet(X, i, j) prob = len(subDataset) / len(X) tem1 = tem1 + prob * calcEnt(subDataset) infoGain = baseEnt - tem1 if infoGain > tem0: tem0 = infoGain bestFea = i return bestFea def calcEnt(X): labelCount = {} for i in X: i = i[-1] labelCount[i] = labelCount.get(i, 0) + 1 tem = np.array(list(labelCount.values())) tem = tem / len(X) return np.sum(-np.log(tem) * tem) <|reserved_special_token_1|> import numpy as np import copy <|reserved_special_token_0|> def construct_tree(X, label): classList = [sample[-1] for sample in X] if classList.count(classList[0]) == len(classList): return classList[0] if len(X[0]) == 1: return return_major(classList) bestFea = bestdived(X) bestFeaName = label[bestFea] feaValue = [x[bestFea] for x in X] uniqueValue = set(feaValue) myTree = {bestFeaName: {}} del label[bestFea] for i in uniqueValue: myTree[bestFeaName][i] = construct_tree(splitDataSet(X, bestFea, i), label) return myTree def return_major(Y): label_count = {} for i in Y: label_count[i] = label_count.get(i, 0) + 1 sorted_class = sorted(label_count.items(), key=operator.itemgetter(1), reverse=True) return sorted_class[0][0] def splitDataSet(X, fea, value): y = [] tem = copy.deepcopy(X) for i in tem: if i[fea] == value: del i[fea] y.append(i) return y def bestdived(X): baseEnt = calcEnt(X) tem0 = 0 for i in range(len(X[0]) - 1): feaValue = [x[i] for x in X] uniqueValue = set(feaValue) tem1 = 0 for j in uniqueValue: subDataset = splitDataSet(X, i, j) prob = len(subDataset) / len(X) tem1 = tem1 + prob * calcEnt(subDataset) infoGain = baseEnt - tem1 if infoGain > tem0: tem0 = infoGain bestFea = i return bestFea def calcEnt(X): labelCount = {} for i in X: i = i[-1] labelCount[i] = labelCount.get(i, 0) + 1 tem = np.array(list(labelCount.values())) tem = tem / len(X) return np.sum(-np.log(tem) * tem) <|reserved_special_token_1|> import numpy as np import copy ''' 本脚本主要用来实现决策树的相关内容。 constrcut_tree:该函数是构建决策树的主要函数 其输入:数据集X:n*p n:样本数,p-1维特征,p为样本类别, 以及属性信息label:属性名称,p-1一维数组,label表示的是此时X每一列对应的属性名称 决策结构用字典来表示,例如{attribution1:{0:{attribution2:{}},1:{attribution3:{}}} ''' def construct_tree(X,label): classList = [sample[-1] for sample in X] #如果此时所有的样本的类别相同,返回该类别。 if classList.count(classList[0]) == len(classList): return classList[0] #如果此时对应属性已经划分完毕 if len(X[0])==1: return return_major(classList) #如果此时划分之后的子集为空,但是显然这是不可能的,对于这种情况来说, #因为我们后面的编程过程中,我的属性划分的个数是根据,此时样本的属性数 #得到的,而不是一开始默认的,注意于西瓜书上算法的区别 #选择最优划分属性: bestFea = bestdived(X) bestFeaName = label[bestFea] feaValue = [x[bestFea] for x in X] uniqueValue = set(feaValue) myTree = {bestFeaName:{}} del(label[bestFea]) for i in uniqueValue: myTree[bestFeaName][i]=construct_tree(splitDataSet(X,bestFea,i),label) return myTree #统计一组数据中,出现次数最多的时候用以下代码 def return_major(Y): #给定一组类别,返回这组数据中,最大的类别 label_count={} for i in Y: label_count[i] = label_count.get(i,0)+1 sorted_class = sorted(label_count.items(),key=operator.itemgetter(1),reverse=True) return sorted_class[0][0] def splitDataSet(X,fea,value): #根据属性的某个值得到相应的数据集 y = [] tem = copy.deepcopy(X) for i in tem: if i[fea] == value: del(i[fea]) y.append(i) return y def bestdived(X): #对任何一个特征进行划分,计算得到的数据集的熵。然后计算 #这个特征对应的信息增益 baseEnt = calcEnt(X) tem0 = 0#记录最大的信息增益 for i in range(len(X[0])-1): #fea 循环 feaValue = [x[i] for x in X] uniqueValue = set(feaValue) tem1 = 0#记录该特征划分的子集熵的总和 for j in uniqueValue: subDataset = splitDataSet(X,i,j) prob = len(subDataset)/len(X) tem1 = tem1 + prob*calcEnt(subDataset) infoGain = baseEnt - tem1 if infoGain > tem0: tem0 = infoGain bestFea = i return bestFea def calcEnt(X): #计算数据即X的熵,此时的熵是当对于类别信息来的。 labelCount = {} for i in X: i = i[-1] labelCount[i] = labelCount.get(i,0)+1; tem = np.array(list(labelCount.values())) tem = tem/len(X) return np.sum(-np.log(tem)*tem)
flexible
{ "blob_id": "ff66b33a133b627ba2329434d6c1649c94b6ec78", "index": 8188, "step-1": "<mask token>\n\n\ndef return_major(Y):\n label_count = {}\n for i in Y:\n label_count[i] = label_count.get(i, 0) + 1\n sorted_class = sorted(label_count.items(), key=operator.itemgetter(1),\n reverse=True)\n return sorted_class[0][0]\n\n\ndef splitDataSet(X, fea, value):\n y = []\n tem = copy.deepcopy(X)\n for i in tem:\n if i[fea] == value:\n del i[fea]\n y.append(i)\n return y\n\n\n<mask token>\n\n\ndef calcEnt(X):\n labelCount = {}\n for i in X:\n i = i[-1]\n labelCount[i] = labelCount.get(i, 0) + 1\n tem = np.array(list(labelCount.values()))\n tem = tem / len(X)\n return np.sum(-np.log(tem) * tem)\n", "step-2": "<mask token>\n\n\ndef return_major(Y):\n label_count = {}\n for i in Y:\n label_count[i] = label_count.get(i, 0) + 1\n sorted_class = sorted(label_count.items(), key=operator.itemgetter(1),\n reverse=True)\n return sorted_class[0][0]\n\n\ndef splitDataSet(X, fea, value):\n y = []\n tem = copy.deepcopy(X)\n for i in tem:\n if i[fea] == value:\n del i[fea]\n y.append(i)\n return y\n\n\ndef bestdived(X):\n baseEnt = calcEnt(X)\n tem0 = 0\n for i in range(len(X[0]) - 1):\n feaValue = [x[i] for x in X]\n uniqueValue = set(feaValue)\n tem1 = 0\n for j in uniqueValue:\n subDataset = splitDataSet(X, i, j)\n prob = len(subDataset) / len(X)\n tem1 = tem1 + prob * calcEnt(subDataset)\n infoGain = baseEnt - tem1\n if infoGain > tem0:\n tem0 = infoGain\n bestFea = i\n return bestFea\n\n\ndef calcEnt(X):\n labelCount = {}\n for i in X:\n i = i[-1]\n labelCount[i] = labelCount.get(i, 0) + 1\n tem = np.array(list(labelCount.values()))\n tem = tem / len(X)\n return np.sum(-np.log(tem) * tem)\n", "step-3": "<mask token>\n\n\ndef construct_tree(X, label):\n classList = [sample[-1] for sample in X]\n if classList.count(classList[0]) == len(classList):\n return classList[0]\n if len(X[0]) == 1:\n return return_major(classList)\n bestFea = bestdived(X)\n bestFeaName = label[bestFea]\n feaValue = [x[bestFea] for x in X]\n uniqueValue = set(feaValue)\n myTree = {bestFeaName: {}}\n del label[bestFea]\n for i in uniqueValue:\n myTree[bestFeaName][i] = construct_tree(splitDataSet(X, bestFea, i),\n label)\n return myTree\n\n\ndef return_major(Y):\n label_count = {}\n for i in Y:\n label_count[i] = label_count.get(i, 0) + 1\n sorted_class = sorted(label_count.items(), key=operator.itemgetter(1),\n reverse=True)\n return sorted_class[0][0]\n\n\ndef splitDataSet(X, fea, value):\n y = []\n tem = copy.deepcopy(X)\n for i in tem:\n if i[fea] == value:\n del i[fea]\n y.append(i)\n return y\n\n\ndef bestdived(X):\n baseEnt = calcEnt(X)\n tem0 = 0\n for i in range(len(X[0]) - 1):\n feaValue = [x[i] for x in X]\n uniqueValue = set(feaValue)\n tem1 = 0\n for j in uniqueValue:\n subDataset = splitDataSet(X, i, j)\n prob = len(subDataset) / len(X)\n tem1 = tem1 + prob * calcEnt(subDataset)\n infoGain = baseEnt - tem1\n if infoGain > tem0:\n tem0 = infoGain\n bestFea = i\n return bestFea\n\n\ndef calcEnt(X):\n labelCount = {}\n for i in X:\n i = i[-1]\n labelCount[i] = labelCount.get(i, 0) + 1\n tem = np.array(list(labelCount.values()))\n tem = tem / len(X)\n return np.sum(-np.log(tem) * tem)\n", "step-4": "import numpy as np\nimport copy\n<mask token>\n\n\ndef construct_tree(X, label):\n classList = [sample[-1] for sample in X]\n if classList.count(classList[0]) == len(classList):\n return classList[0]\n if len(X[0]) == 1:\n return return_major(classList)\n bestFea = bestdived(X)\n bestFeaName = label[bestFea]\n feaValue = [x[bestFea] for x in X]\n uniqueValue = set(feaValue)\n myTree = {bestFeaName: {}}\n del label[bestFea]\n for i in uniqueValue:\n myTree[bestFeaName][i] = construct_tree(splitDataSet(X, bestFea, i),\n label)\n return myTree\n\n\ndef return_major(Y):\n label_count = {}\n for i in Y:\n label_count[i] = label_count.get(i, 0) + 1\n sorted_class = sorted(label_count.items(), key=operator.itemgetter(1),\n reverse=True)\n return sorted_class[0][0]\n\n\ndef splitDataSet(X, fea, value):\n y = []\n tem = copy.deepcopy(X)\n for i in tem:\n if i[fea] == value:\n del i[fea]\n y.append(i)\n return y\n\n\ndef bestdived(X):\n baseEnt = calcEnt(X)\n tem0 = 0\n for i in range(len(X[0]) - 1):\n feaValue = [x[i] for x in X]\n uniqueValue = set(feaValue)\n tem1 = 0\n for j in uniqueValue:\n subDataset = splitDataSet(X, i, j)\n prob = len(subDataset) / len(X)\n tem1 = tem1 + prob * calcEnt(subDataset)\n infoGain = baseEnt - tem1\n if infoGain > tem0:\n tem0 = infoGain\n bestFea = i\n return bestFea\n\n\ndef calcEnt(X):\n labelCount = {}\n for i in X:\n i = i[-1]\n labelCount[i] = labelCount.get(i, 0) + 1\n tem = np.array(list(labelCount.values()))\n tem = tem / len(X)\n return np.sum(-np.log(tem) * tem)\n", "step-5": "import numpy as np\nimport copy\n'''\n本脚本主要用来实现决策树的相关内容。\nconstrcut_tree:该函数是构建决策树的主要函数\n其输入:数据集X:n*p n:样本数,p-1维特征,p为样本类别,\n以及属性信息label:属性名称,p-1一维数组,label表示的是此时X每一列对应的属性名称\n决策结构用字典来表示,例如{attribution1:{0:{attribution2:{}},1:{attribution3:{}}}\n'''\n\ndef construct_tree(X,label):\n \n classList = [sample[-1] for sample in X]\n #如果此时所有的样本的类别相同,返回该类别。\n if classList.count(classList[0]) == len(classList):\n return classList[0]\n #如果此时对应属性已经划分完毕\n if len(X[0])==1:\n return return_major(classList)\n #如果此时划分之后的子集为空,但是显然这是不可能的,对于这种情况来说,\n #因为我们后面的编程过程中,我的属性划分的个数是根据,此时样本的属性数\n #得到的,而不是一开始默认的,注意于西瓜书上算法的区别\n\n #选择最优划分属性:\n bestFea = bestdived(X)\n bestFeaName = label[bestFea]\n feaValue = [x[bestFea] for x in X]\n uniqueValue = set(feaValue)\n myTree = {bestFeaName:{}}\n del(label[bestFea])\n for i in uniqueValue:\n myTree[bestFeaName][i]=construct_tree(splitDataSet(X,bestFea,i),label)\n return myTree\n\n\n\n\n#统计一组数据中,出现次数最多的时候用以下代码\ndef return_major(Y):\n #给定一组类别,返回这组数据中,最大的类别\n label_count={}\n for i in Y:\n label_count[i] = label_count.get(i,0)+1\n sorted_class = sorted(label_count.items(),key=operator.itemgetter(1),reverse=True)\n return sorted_class[0][0]\n\ndef splitDataSet(X,fea,value):\n #根据属性的某个值得到相应的数据集\n y = []\n tem = copy.deepcopy(X)\n for i in tem:\n if i[fea] == value:\n del(i[fea])\n y.append(i)\n return y\n\ndef bestdived(X):\n #对任何一个特征进行划分,计算得到的数据集的熵。然后计算\n #这个特征对应的信息增益\n baseEnt = calcEnt(X)\n tem0 = 0#记录最大的信息增益\n for i in range(len(X[0])-1):\n #fea 循环\n feaValue = [x[i] for x in X]\n uniqueValue = set(feaValue)\n tem1 = 0#记录该特征划分的子集熵的总和\n for j in uniqueValue:\n subDataset = splitDataSet(X,i,j)\n prob = len(subDataset)/len(X)\n tem1 = tem1 + prob*calcEnt(subDataset)\n infoGain = baseEnt - tem1\n if infoGain > tem0:\n tem0 = infoGain\n bestFea = i\n return bestFea\n\ndef calcEnt(X):\n #计算数据即X的熵,此时的熵是当对于类别信息来的。\n labelCount = {}\n for i in X:\n i = i[-1]\n labelCount[i] = labelCount.get(i,0)+1;\n tem = np.array(list(labelCount.values()))\n tem = tem/len(X)\n return np.sum(-np.log(tem)*tem)\n\n\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import sys def ler (t): i =0 for s in sys.stdin: l=s.split(" ") t.append(l) def melhor (t): i=1 x=int(t[0][0].strip("\n")) n=len(t) while(i<n): u=int((t[i][2]).strip()) if(u<x) i+=1 def vendedor(): t=[] ler(t) melhor(t) vendedor()
normal
{ "blob_id": "76664114382bdeb0bffb996e4dd4448b6c87520d", "index": 9719, "step-1": "import sys \n\ndef ler (t):\n\ti =0\n\tfor s in sys.stdin:\n\t\tl=s.split(\" \")\n\t\tt.append(l)\n\ndef melhor (t):\n\ti=1\n\tx=int(t[0][0].strip(\"\\n\"))\n\tn=len(t)\n\twhile(i<n):\n\t\tu=int((t[i][2]).strip())\n\t\tif(u<x)\n\t\ti+=1\n\n\n\n\ndef vendedor():\n\tt=[]\n\tler(t)\n\tmelhor(t)\nvendedor()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class TestNonMiscView: <|reserved_special_token_0|> <|reserved_special_token_0|> def test_get_term_of_user(self, rf, db): mommy.make('Use_Term', term='EULA Test', final_date=datetime.now( pytz.UTC) + timedelta(days=1)) request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'EULA Test'} <|reserved_special_token_0|> def test_get_featured_challenges(self, db): challenges = {(active, discarted): mommy.make('Challenge', active= active, discarted=discarted) for active, discarted in product(( False, True), repeat=2)} response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == challenges[True, False] def test_get_authors_empty(self, db): response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_authors(self, db): staff_options = False, True email_options = '', '[email protected]', '[email protected]' authors = {(staff, email): mommy.make('UserProfile', user__is_staff =staff, user__email=email) for staff, email in product( staff_options, email_options)} response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == authors[False, '[email protected]'] <|reserved_special_token_1|> <|reserved_special_token_0|> class TestNonMiscView: <|reserved_special_token_0|> <|reserved_special_token_0|> def test_get_term_of_user(self, rf, db): mommy.make('Use_Term', term='EULA Test', final_date=datetime.now( pytz.UTC) + timedelta(days=1)) request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'EULA Test'} def test_get_featured_challenges_empty(self, db): response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_featured_challenges(self, db): challenges = {(active, discarted): mommy.make('Challenge', active= active, discarted=discarted) for active, discarted in product(( False, True), repeat=2)} response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == challenges[True, False] def test_get_authors_empty(self, db): response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_authors(self, db): staff_options = False, True email_options = '', '[email protected]', '[email protected]' authors = {(staff, email): mommy.make('UserProfile', user__is_staff =staff, user__email=email) for staff, email in product( staff_options, email_options)} response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == authors[False, '[email protected]'] <|reserved_special_token_1|> <|reserved_special_token_0|> class TestNonMiscView: <|reserved_special_token_0|> def test_get_term_of_user_empty(self, rf, db): request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'No Term of Use found'} def test_get_term_of_user(self, rf, db): mommy.make('Use_Term', term='EULA Test', final_date=datetime.now( pytz.UTC) + timedelta(days=1)) request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'EULA Test'} def test_get_featured_challenges_empty(self, db): response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_featured_challenges(self, db): challenges = {(active, discarted): mommy.make('Challenge', active= active, discarted=discarted) for active, discarted in product(( False, True), repeat=2)} response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == challenges[True, False] def test_get_authors_empty(self, db): response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_authors(self, db): staff_options = False, True email_options = '', '[email protected]', '[email protected]' authors = {(staff, email): mommy.make('UserProfile', user__is_staff =staff, user__email=email) for staff, email in product( staff_options, email_options)} response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == authors[False, '[email protected]'] <|reserved_special_token_1|> import json from datetime import datetime, timedelta from itertools import product from django.db.models import QuerySet import pytz from model_mommy import mommy from ...views import get_authors, get_featured_challenges, get_term_of_user class TestNonMiscView: """Test for non view functions in ideax.views (for refactor)""" def test_get_term_of_user_empty(self, rf, db): request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'No Term of Use found'} def test_get_term_of_user(self, rf, db): mommy.make('Use_Term', term='EULA Test', final_date=datetime.now( pytz.UTC) + timedelta(days=1)) request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'EULA Test'} def test_get_featured_challenges_empty(self, db): response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_featured_challenges(self, db): challenges = {(active, discarted): mommy.make('Challenge', active= active, discarted=discarted) for active, discarted in product(( False, True), repeat=2)} response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == challenges[True, False] def test_get_authors_empty(self, db): response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_authors(self, db): staff_options = False, True email_options = '', '[email protected]', '[email protected]' authors = {(staff, email): mommy.make('UserProfile', user__is_staff =staff, user__email=email) for staff, email in product( staff_options, email_options)} response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == authors[False, '[email protected]'] <|reserved_special_token_1|> import json from datetime import datetime, timedelta from itertools import product from django.db.models import QuerySet import pytz from model_mommy import mommy from ...views import get_authors, get_featured_challenges, get_term_of_user class TestNonMiscView: """Test for non view functions in ideax.views (for refactor)""" def test_get_term_of_user_empty(self, rf, db): request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'No Term of Use found'} def test_get_term_of_user(self, rf, db): mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(pytz.UTC) + timedelta(days=1)) request = rf.get('/') response = get_term_of_user(request) assert response.status_code == 200 assert json.loads(response.content) == {'term': 'EULA Test'} def test_get_featured_challenges_empty(self, db): response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_featured_challenges(self, db): challenges = { (active, discarted): mommy.make('Challenge', active=active, discarted=discarted) for active, discarted in product((False, True), repeat=2) } response = get_featured_challenges() assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == challenges[(True, False)] def test_get_authors_empty(self, db): response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 0 def test_get_authors(self, db): staff_options = (False, True) # User e-mail cannot be null (refactor get_authors) email_options = ('', '[email protected]', '[email protected]') authors = { (staff, email): mommy.make('UserProfile', user__is_staff=staff, user__email=email) for staff, email in product(staff_options, email_options) } response = get_authors('[email protected]') assert isinstance(response, QuerySet) assert response.count() == 1 assert response.first() == authors[(False, '[email protected]')]
flexible
{ "blob_id": "8d6e4d06e390b4a45e576239189745c2e37217c5", "index": 2699, "step-1": "<mask token>\n\n\nclass TestNonMiscView:\n <mask token>\n <mask token>\n\n def test_get_term_of_user(self, rf, db):\n mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(\n pytz.UTC) + timedelta(days=1))\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'EULA Test'}\n <mask token>\n\n def test_get_featured_challenges(self, db):\n challenges = {(active, discarted): mommy.make('Challenge', active=\n active, discarted=discarted) for active, discarted in product((\n False, True), repeat=2)}\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == challenges[True, False]\n\n def test_get_authors_empty(self, db):\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_authors(self, db):\n staff_options = False, True\n email_options = '', '[email protected]', '[email protected]'\n authors = {(staff, email): mommy.make('UserProfile', user__is_staff\n =staff, user__email=email) for staff, email in product(\n staff_options, email_options)}\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == authors[False, '[email protected]']\n", "step-2": "<mask token>\n\n\nclass TestNonMiscView:\n <mask token>\n <mask token>\n\n def test_get_term_of_user(self, rf, db):\n mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(\n pytz.UTC) + timedelta(days=1))\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'EULA Test'}\n\n def test_get_featured_challenges_empty(self, db):\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_featured_challenges(self, db):\n challenges = {(active, discarted): mommy.make('Challenge', active=\n active, discarted=discarted) for active, discarted in product((\n False, True), repeat=2)}\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == challenges[True, False]\n\n def test_get_authors_empty(self, db):\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_authors(self, db):\n staff_options = False, True\n email_options = '', '[email protected]', '[email protected]'\n authors = {(staff, email): mommy.make('UserProfile', user__is_staff\n =staff, user__email=email) for staff, email in product(\n staff_options, email_options)}\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == authors[False, '[email protected]']\n", "step-3": "<mask token>\n\n\nclass TestNonMiscView:\n <mask token>\n\n def test_get_term_of_user_empty(self, rf, db):\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'No Term of Use found'}\n\n def test_get_term_of_user(self, rf, db):\n mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(\n pytz.UTC) + timedelta(days=1))\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'EULA Test'}\n\n def test_get_featured_challenges_empty(self, db):\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_featured_challenges(self, db):\n challenges = {(active, discarted): mommy.make('Challenge', active=\n active, discarted=discarted) for active, discarted in product((\n False, True), repeat=2)}\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == challenges[True, False]\n\n def test_get_authors_empty(self, db):\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_authors(self, db):\n staff_options = False, True\n email_options = '', '[email protected]', '[email protected]'\n authors = {(staff, email): mommy.make('UserProfile', user__is_staff\n =staff, user__email=email) for staff, email in product(\n staff_options, email_options)}\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == authors[False, '[email protected]']\n", "step-4": "import json\nfrom datetime import datetime, timedelta\nfrom itertools import product\nfrom django.db.models import QuerySet\nimport pytz\nfrom model_mommy import mommy\nfrom ...views import get_authors, get_featured_challenges, get_term_of_user\n\n\nclass TestNonMiscView:\n \"\"\"Test for non view functions in ideax.views (for refactor)\"\"\"\n\n def test_get_term_of_user_empty(self, rf, db):\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'No Term of Use found'}\n\n def test_get_term_of_user(self, rf, db):\n mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(\n pytz.UTC) + timedelta(days=1))\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'EULA Test'}\n\n def test_get_featured_challenges_empty(self, db):\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_featured_challenges(self, db):\n challenges = {(active, discarted): mommy.make('Challenge', active=\n active, discarted=discarted) for active, discarted in product((\n False, True), repeat=2)}\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == challenges[True, False]\n\n def test_get_authors_empty(self, db):\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_authors(self, db):\n staff_options = False, True\n email_options = '', '[email protected]', '[email protected]'\n authors = {(staff, email): mommy.make('UserProfile', user__is_staff\n =staff, user__email=email) for staff, email in product(\n staff_options, email_options)}\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == authors[False, '[email protected]']\n", "step-5": "import json\n\nfrom datetime import datetime, timedelta\nfrom itertools import product\n\nfrom django.db.models import QuerySet\n\nimport pytz\n\nfrom model_mommy import mommy\n\nfrom ...views import get_authors, get_featured_challenges, get_term_of_user\n\n\nclass TestNonMiscView:\n \"\"\"Test for non view functions in ideax.views (for refactor)\"\"\"\n def test_get_term_of_user_empty(self, rf, db):\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'No Term of Use found'}\n\n def test_get_term_of_user(self, rf, db):\n mommy.make('Use_Term', term='EULA Test', final_date=datetime.now(pytz.UTC) + timedelta(days=1))\n request = rf.get('/')\n response = get_term_of_user(request)\n assert response.status_code == 200\n assert json.loads(response.content) == {'term': 'EULA Test'}\n\n def test_get_featured_challenges_empty(self, db):\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_featured_challenges(self, db):\n challenges = {\n (active, discarted): mommy.make('Challenge', active=active, discarted=discarted)\n for active, discarted in product((False, True), repeat=2)\n }\n response = get_featured_challenges()\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == challenges[(True, False)]\n\n def test_get_authors_empty(self, db):\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 0\n\n def test_get_authors(self, db):\n staff_options = (False, True)\n # User e-mail cannot be null (refactor get_authors)\n email_options = ('', '[email protected]', '[email protected]')\n\n authors = {\n (staff, email): mommy.make('UserProfile', user__is_staff=staff, user__email=email)\n for staff, email in product(staff_options, email_options)\n }\n response = get_authors('[email protected]')\n assert isinstance(response, QuerySet)\n assert response.count() == 1\n assert response.first() == authors[(False, '[email protected]')]\n", "step-ids": [ 5, 6, 7, 9, 10 ] }
[ 5, 6, 7, 9, 10 ]
from .tacotron_v2_synthesizer import Tacotron2Synthesizer
normal
{ "blob_id": "cf2fcd013c3e9992da36806ca93aacb4b5399396", "index": 3172, "step-1": "<mask token>\n", "step-2": "from .tacotron_v2_synthesizer import Tacotron2Synthesizer\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> class OperationLog(MethodView): decorators = [login_required, admin_required] def get(self, page): per_page = 10 count = UserOperation.query.count() query = UserOperation.query.order_by(UserOperation.id.desc()).paginate( page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) return render_template('main/log.html', records=query.items, page= page, per_page=per_page, pagination=foot_bar, Operation=Operation) class KeywordBan(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = BanKeywordForm def get(self, page): per_page = 10 count = BanList.query.filter_by(deleted=False).count() pagination = BanList.query.filter_by(deleted=False).paginate(page= page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) template_param = {'keywords': pagination.items, 'page': page, 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()} return render_template('main/ban.html', **template_param) def post(self, page): data = request.get_json() if data: keyword = data['keyword'] result = BanList.query.filter_by(rule=keyword).first() if result: if result.status: result.status.delete() result.delete() flash(u'成功删除关键词') else: flash(u'该关键词不存在') return jsonify({'status': 302, 'location': url_for('main.ban')}) elif request.form: form = self.form(request.form) if form.validate(): exist = BanList.query.filter_by(rule=form.keyword.data).first() if not exist: ban = BanList(rule=form.keyword.data, time_limit=form. time_limit.data) ban.save() status = RulePushCount(rule_id=ban.id, count=ban.time_limit ) status.save() flash(u'添加关键词成功') elif exist.deleted is True: exist.deleted = False exist.time_limit = form.time_limit.data exist.save() status = RulePushCount(rule_id=exist.id, count=exist. time_limit) status.save() else: flash(u'重复添加关键词') return redirect(url_for('main.ban')) class WeiboAuthCallback(MethodView): decorators = [login_required, admin_required] def get(self): self.auth_code = request.args.get('code') result = self.fresh_access() if result is True: return render_template('main/success.html') else: return render_template('main/failed.html', e=result) def fresh_access(self): try: pass except BaseException as e: return e return True class Cookie(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = CookieForm def get(self): return render_template('main/cookie.html', form=self.form(), pushtime=10) def post(self): form = self.form(request.form) if not form.validate(): flash(u'表单不合法') cookie = form.cookie.data env = Env() env.set('COOKIE', cookie) flash(u'设置 Cookie 成功') return redirect(url_for('main.cookie')) <|reserved_special_token_1|> <|reserved_special_token_0|> class UserList(MethodView): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class EditProfile(MethodView): decorators = [login_required] def __init__(self): self.form = EditProfileForm self.admin_form = AdminEditProfileForm def get(self, username): if not username: form = self.form() form.email.data = current_user.email form.about_me.data = current_user.aboutme elif current_user.can(Permission.ADMINISTER): user_info = User.query.filter_by(username=username, deleted=False ).first() if user_info: form = self.admin_form() form.email.data = user_info.email form.about_me.data = user_info.aboutme form.role.data = user_info.role.name else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) return render_template('main/edit_profile.html', form=form, u= current_user) def post(self, username): if not username: form = self.form(request.form) user = current_user elif current_user.can(Permission.ADMINISTER): form = self.form(request.form) user = User.query.filter_by(username=username, deleted=False ).first() if user: if not current_user.verify_password(form.oripassword.data): flash(u'管理员密码输入错误') return redirect(url_for('main.editprofile', username= username)) else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) self.change_profile(user, form, True if username else False) return redirect(url_for('main.user', username=username)) @staticmethod def change_profile(user, form, admin=False): user.password = form.password.data user.email = form.email.data user.aboutme = form.about_me.data if admin: new_role = Role.query.filter_by(name=form.role.data) if new_role: user.role = new_role user.save() class OperationLog(MethodView): decorators = [login_required, admin_required] def get(self, page): per_page = 10 count = UserOperation.query.count() query = UserOperation.query.order_by(UserOperation.id.desc()).paginate( page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) return render_template('main/log.html', records=query.items, page= page, per_page=per_page, pagination=foot_bar, Operation=Operation) class KeywordBan(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = BanKeywordForm def get(self, page): per_page = 10 count = BanList.query.filter_by(deleted=False).count() pagination = BanList.query.filter_by(deleted=False).paginate(page= page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) template_param = {'keywords': pagination.items, 'page': page, 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()} return render_template('main/ban.html', **template_param) def post(self, page): data = request.get_json() if data: keyword = data['keyword'] result = BanList.query.filter_by(rule=keyword).first() if result: if result.status: result.status.delete() result.delete() flash(u'成功删除关键词') else: flash(u'该关键词不存在') return jsonify({'status': 302, 'location': url_for('main.ban')}) elif request.form: form = self.form(request.form) if form.validate(): exist = BanList.query.filter_by(rule=form.keyword.data).first() if not exist: ban = BanList(rule=form.keyword.data, time_limit=form. time_limit.data) ban.save() status = RulePushCount(rule_id=ban.id, count=ban.time_limit ) status.save() flash(u'添加关键词成功') elif exist.deleted is True: exist.deleted = False exist.time_limit = form.time_limit.data exist.save() status = RulePushCount(rule_id=exist.id, count=exist. time_limit) status.save() else: flash(u'重复添加关键词') return redirect(url_for('main.ban')) class WeiboAuthCallback(MethodView): decorators = [login_required, admin_required] def get(self): self.auth_code = request.args.get('code') result = self.fresh_access() if result is True: return render_template('main/success.html') else: return render_template('main/failed.html', e=result) def fresh_access(self): try: pass except BaseException as e: return e return True class Cookie(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = CookieForm def get(self): return render_template('main/cookie.html', form=self.form(), pushtime=10) def post(self): form = self.form(request.form) if not form.validate(): flash(u'表单不合法') cookie = form.cookie.data env = Env() env.set('COOKIE', cookie) flash(u'设置 Cookie 成功') return redirect(url_for('main.cookie')) <|reserved_special_token_1|> <|reserved_special_token_0|> class UserList(MethodView): <|reserved_special_token_0|> def __init__(self): self.form = AddUserForm <|reserved_special_token_0|> def post(self): data = request.get_json() if data: if data['action'] == 'edit': username = data['username'] else: username = data['username'] try: User.query.filter_by(username=username, deleted=False ).first().delete() except: flash(u'用户不存在') return jsonify({'status': 302, 'location': url_for( 'main.editprofile', username=username)}) elif request.form: self.add_user() return redirect('userlist') def add_user(self): form = self.form(request.form) if form.validate(): role = Role.query.filter_by(name=form.role.data).first() if role: if not User.query.filter_by(email=form.email.data).first(): user = User(email=form.email.data, username=form. username.data, role=role, password=form.password.data) user.save() else: flash(u'已经存在该用户') else: flash(u'不存在该用户组') return redirect(url_for('main.userlist')) class EditProfile(MethodView): decorators = [login_required] def __init__(self): self.form = EditProfileForm self.admin_form = AdminEditProfileForm def get(self, username): if not username: form = self.form() form.email.data = current_user.email form.about_me.data = current_user.aboutme elif current_user.can(Permission.ADMINISTER): user_info = User.query.filter_by(username=username, deleted=False ).first() if user_info: form = self.admin_form() form.email.data = user_info.email form.about_me.data = user_info.aboutme form.role.data = user_info.role.name else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) return render_template('main/edit_profile.html', form=form, u= current_user) def post(self, username): if not username: form = self.form(request.form) user = current_user elif current_user.can(Permission.ADMINISTER): form = self.form(request.form) user = User.query.filter_by(username=username, deleted=False ).first() if user: if not current_user.verify_password(form.oripassword.data): flash(u'管理员密码输入错误') return redirect(url_for('main.editprofile', username= username)) else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) self.change_profile(user, form, True if username else False) return redirect(url_for('main.user', username=username)) @staticmethod def change_profile(user, form, admin=False): user.password = form.password.data user.email = form.email.data user.aboutme = form.about_me.data if admin: new_role = Role.query.filter_by(name=form.role.data) if new_role: user.role = new_role user.save() class OperationLog(MethodView): decorators = [login_required, admin_required] def get(self, page): per_page = 10 count = UserOperation.query.count() query = UserOperation.query.order_by(UserOperation.id.desc()).paginate( page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) return render_template('main/log.html', records=query.items, page= page, per_page=per_page, pagination=foot_bar, Operation=Operation) class KeywordBan(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = BanKeywordForm def get(self, page): per_page = 10 count = BanList.query.filter_by(deleted=False).count() pagination = BanList.query.filter_by(deleted=False).paginate(page= page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) template_param = {'keywords': pagination.items, 'page': page, 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()} return render_template('main/ban.html', **template_param) def post(self, page): data = request.get_json() if data: keyword = data['keyword'] result = BanList.query.filter_by(rule=keyword).first() if result: if result.status: result.status.delete() result.delete() flash(u'成功删除关键词') else: flash(u'该关键词不存在') return jsonify({'status': 302, 'location': url_for('main.ban')}) elif request.form: form = self.form(request.form) if form.validate(): exist = BanList.query.filter_by(rule=form.keyword.data).first() if not exist: ban = BanList(rule=form.keyword.data, time_limit=form. time_limit.data) ban.save() status = RulePushCount(rule_id=ban.id, count=ban.time_limit ) status.save() flash(u'添加关键词成功') elif exist.deleted is True: exist.deleted = False exist.time_limit = form.time_limit.data exist.save() status = RulePushCount(rule_id=exist.id, count=exist. time_limit) status.save() else: flash(u'重复添加关键词') return redirect(url_for('main.ban')) class WeiboAuthCallback(MethodView): decorators = [login_required, admin_required] def get(self): self.auth_code = request.args.get('code') result = self.fresh_access() if result is True: return render_template('main/success.html') else: return render_template('main/failed.html', e=result) def fresh_access(self): try: pass except BaseException as e: return e return True class Cookie(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = CookieForm def get(self): return render_template('main/cookie.html', form=self.form(), pushtime=10) def post(self): form = self.form(request.form) if not form.validate(): flash(u'表单不合法') cookie = form.cookie.data env = Env() env.set('COOKIE', cookie) flash(u'设置 Cookie 成功') return redirect(url_for('main.cookie')) <|reserved_special_token_1|> <|reserved_special_token_0|> class ManualUpdate(MethodView): <|reserved_special_token_0|> def __init__(self): self.form = PushForm def get(self): return render_template('main/mupdate.html', form=self.form(), pushtime=10) def post(self): if not current_user.can(Permission.MANUAL_PUSH): flash(u'你没有权限') form = self.form(request.form) if not form.validate(): flash(u'条目格式有问题,请检查并重新填写') title = form.pushtitle.data result = self.check_push_validate(title.encode('utf-8')) if not result: flash(u'推送条目被ban,或者已经在24小时之内推送过,或者已经进入待推送列表') try: image = MoegirlImage(title) except HTTPError as e: flash(u'请求萌百错误,错误码如下{},请联系管理员'.format(e)) return redirect(url_for('main.mupdate')) if not image.path: flash(u'无法取得图片,请重试') entry = WaitingQueue(title=title, image=image.path) env = Env() current_weight = env.get('CUTTING_WEIGHT_INIT') entry.cutting_weight = current_weight + 1 entry.save() env.set('CUTTING_WEIGHT_INIT', entry.cutting_weight) UserOperation(user_id=current_user.id, title=title, operation= Operation.PUSH).save() if form.industry.data: try: from koushihime.crontab import push push() except Exception as e: flash(u'推送失败: {}'.format(str(e))) flash(u'操作成功,词条将立即推送') return redirect(url_for('main.mupdate')) @staticmethod def check_push_validate(title): moegirl_entry = MoegirlQuery(title) namespace = moegirl_entry.get_namespace() if namespace is 0: baned_from_moegirl = moegirl_entry.banned_moegirl_category() baned_from_regex = moegirl_entry.ban_from_regex() has_pushed = recent_have_pushed(title.decode('utf-8')) has_catched = have_auto_catched(title.decode('utf-8')) result = (baned_from_moegirl is False and has_pushed is False and has_catched is False and baned_from_regex is False) return result else: return False class UserInfo(MethodView): decorators = [login_required] def get(self, username): is_admin = current_user.can(Permission.ADMINISTER) if current_user.username == username or is_admin is True: user_info = User.query.filter_by(username=username, deleted=False ).first() if not user_info: abort(404) return render_template('main/user.html', u=user_info, username= user_info.username) else: abort(403) class UserList(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = AddUserForm def get(self): userlist = User.query.filter_by(deleted=False).all() return render_template('main/userlist.html', userlist=userlist, form=self.form()) def post(self): data = request.get_json() if data: if data['action'] == 'edit': username = data['username'] else: username = data['username'] try: User.query.filter_by(username=username, deleted=False ).first().delete() except: flash(u'用户不存在') return jsonify({'status': 302, 'location': url_for( 'main.editprofile', username=username)}) elif request.form: self.add_user() return redirect('userlist') def add_user(self): form = self.form(request.form) if form.validate(): role = Role.query.filter_by(name=form.role.data).first() if role: if not User.query.filter_by(email=form.email.data).first(): user = User(email=form.email.data, username=form. username.data, role=role, password=form.password.data) user.save() else: flash(u'已经存在该用户') else: flash(u'不存在该用户组') return redirect(url_for('main.userlist')) class EditProfile(MethodView): decorators = [login_required] def __init__(self): self.form = EditProfileForm self.admin_form = AdminEditProfileForm def get(self, username): if not username: form = self.form() form.email.data = current_user.email form.about_me.data = current_user.aboutme elif current_user.can(Permission.ADMINISTER): user_info = User.query.filter_by(username=username, deleted=False ).first() if user_info: form = self.admin_form() form.email.data = user_info.email form.about_me.data = user_info.aboutme form.role.data = user_info.role.name else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) return render_template('main/edit_profile.html', form=form, u= current_user) def post(self, username): if not username: form = self.form(request.form) user = current_user elif current_user.can(Permission.ADMINISTER): form = self.form(request.form) user = User.query.filter_by(username=username, deleted=False ).first() if user: if not current_user.verify_password(form.oripassword.data): flash(u'管理员密码输入错误') return redirect(url_for('main.editprofile', username= username)) else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) self.change_profile(user, form, True if username else False) return redirect(url_for('main.user', username=username)) @staticmethod def change_profile(user, form, admin=False): user.password = form.password.data user.email = form.email.data user.aboutme = form.about_me.data if admin: new_role = Role.query.filter_by(name=form.role.data) if new_role: user.role = new_role user.save() class OperationLog(MethodView): decorators = [login_required, admin_required] def get(self, page): per_page = 10 count = UserOperation.query.count() query = UserOperation.query.order_by(UserOperation.id.desc()).paginate( page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) return render_template('main/log.html', records=query.items, page= page, per_page=per_page, pagination=foot_bar, Operation=Operation) class KeywordBan(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = BanKeywordForm def get(self, page): per_page = 10 count = BanList.query.filter_by(deleted=False).count() pagination = BanList.query.filter_by(deleted=False).paginate(page= page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total= count, format_total=True, format_number=True) template_param = {'keywords': pagination.items, 'page': page, 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()} return render_template('main/ban.html', **template_param) def post(self, page): data = request.get_json() if data: keyword = data['keyword'] result = BanList.query.filter_by(rule=keyword).first() if result: if result.status: result.status.delete() result.delete() flash(u'成功删除关键词') else: flash(u'该关键词不存在') return jsonify({'status': 302, 'location': url_for('main.ban')}) elif request.form: form = self.form(request.form) if form.validate(): exist = BanList.query.filter_by(rule=form.keyword.data).first() if not exist: ban = BanList(rule=form.keyword.data, time_limit=form. time_limit.data) ban.save() status = RulePushCount(rule_id=ban.id, count=ban.time_limit ) status.save() flash(u'添加关键词成功') elif exist.deleted is True: exist.deleted = False exist.time_limit = form.time_limit.data exist.save() status = RulePushCount(rule_id=exist.id, count=exist. time_limit) status.save() else: flash(u'重复添加关键词') return redirect(url_for('main.ban')) class WeiboAuthCallback(MethodView): decorators = [login_required, admin_required] def get(self): self.auth_code = request.args.get('code') result = self.fresh_access() if result is True: return render_template('main/success.html') else: return render_template('main/failed.html', e=result) def fresh_access(self): try: pass except BaseException as e: return e return True class Cookie(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = CookieForm def get(self): return render_template('main/cookie.html', form=self.form(), pushtime=10) def post(self): form = self.form(request.form) if not form.validate(): flash(u'表单不合法') cookie = form.cookie.data env = Env() env.set('COOKIE', cookie) flash(u'设置 Cookie 成功') return redirect(url_for('main.cookie')) <|reserved_special_token_1|> # -*- coding: utf-8 -*- import urllib from urllib2 import HTTPError from datetime import datetime from flask.views import MethodView from flask.ext.login import current_user, login_required from flask.ext.paginate import Pagination as PaginationBar from flask import render_template, redirect, url_for, request, jsonify, flash, current_app, abort from koushihime.auth.models import UserOperation, User, Role from koushihime.auth.constants import Permission, Operation from koushihime.utils import Pagination, admin_required, Env from koushihime.utils.moegirl import MoegirlQuery, MoegirlImage from . import main from utils import recent_have_pushed, have_auto_catched from models import WaitingQueue, BanList, RulePushCount from forms import PushForm, AddUserForm, EditProfileForm, AdminEditProfileForm, BanKeywordForm, CookieForm @main.before_request def before_request(): if current_user.is_anonymous: return redirect(url_for('auth.login')) elif current_user.is_blocked: return render_template('main/auth/block.html') else: current_user.last_seen = datetime.utcnow() current_user.save() class Index(MethodView): def get(self): if not current_user: return redirect(url_for("auth.login")) config = current_app.config["WEIBO_AUTH_CONFIG"] callback = urllib.quote(config["CALLBACK"]) app_key = config["APP_KEY"] return render_template('main/index.html', callback=callback, app_key=app_key) class Update(MethodView): decorators = [login_required] def get(self, page): per_page = 10 unpushed_entry = WaitingQueue.query.order_by(WaitingQueue.cutting_weight.desc()).all() pagination = Pagination(unpushed_entry, per_page) current_page = pagination.page(page) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=True, page=page, per_page=per_page, total=len(unpushed_entry), format_total=True, format_number=True) result = { "titles": current_page, "current_time": datetime.utcnow(), "pushtime": 10, "deltime": 999, "page": page, "per_page": per_page, "pagination": foot_bar } return render_template('main/update.html', **result) def post(self, page): data = request.get_json() if data['action'] == 'post': title = data["title"] env = Env() current_weight = env.get("CUTTING_WEIGHT_INIT") entry = WaitingQueue.query.filter_by(title=title).first() if entry: entry.cutting_weight = current_weight + 1 # FIXME: 即使条目处于权重最高状态亦可增加权限 entry.save() env.set("CUTTING_WEIGHT_INIT", entry.cutting_weight) elif data['action'] == 'del': title = data['title'] UserOperation(user_id=current_user.id, operation=Operation.DELETE, title=title).save() query = WaitingQueue.query.filter_by(title=data['title']).first() if query: query.delete() response = jsonify({'result': True}) return response class ManualUpdate(MethodView): decorators = [login_required] def __init__(self): self.form = PushForm def get(self): return render_template('main/mupdate.html', form=self.form(), pushtime=10) def post(self): if not current_user.can(Permission.MANUAL_PUSH): flash(u"你没有权限") form = self.form(request.form) if not form.validate(): flash(u"条目格式有问题,请检查并重新填写") title = form.pushtitle.data result = self.check_push_validate(title.encode("utf-8")) if not result: flash(u"推送条目被ban,或者已经在24小时之内推送过,或者已经进入待推送列表") try: image = MoegirlImage(title) except HTTPError as e: flash(u"请求萌百错误,错误码如下{},请联系管理员".format(e)) return redirect(url_for('main.mupdate')) if not image.path: flash(u"无法取得图片,请重试") entry = WaitingQueue(title=title, image=image.path) env = Env() current_weight = env.get("CUTTING_WEIGHT_INIT") entry.cutting_weight = current_weight + 1 entry.save() env.set("CUTTING_WEIGHT_INIT", entry.cutting_weight) UserOperation(user_id=current_user.id, title=title, operation=Operation.PUSH).save() if form.industry.data: try: from koushihime.crontab import push push() except Exception as e: flash(u"推送失败: {}".format(str(e))) flash(u"操作成功,词条将立即推送") return redirect(url_for('main.mupdate')) @staticmethod def check_push_validate(title): moegirl_entry = MoegirlQuery(title) namespace = moegirl_entry.get_namespace() if namespace is 0: baned_from_moegirl = moegirl_entry.banned_moegirl_category() baned_from_regex = moegirl_entry.ban_from_regex() has_pushed = recent_have_pushed(title.decode("utf-8")) # TODO: 改成自动冒泡 has_catched = have_auto_catched(title.decode("utf-8")) result = baned_from_moegirl is False \ and has_pushed is False \ and has_catched is False \ and baned_from_regex is False return result else: return False class UserInfo(MethodView): decorators = [login_required] def get(self, username): is_admin = current_user.can(Permission.ADMINISTER) if current_user.username == username or is_admin is True: user_info = User.query.filter_by(username=username, deleted=False).first() if not user_info: abort(404) return render_template('main/user.html', u=user_info, username=user_info.username) else: abort(403) class UserList(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = AddUserForm def get(self): userlist = User.query.filter_by(deleted=False).all() return render_template('main/userlist.html', userlist=userlist, form=self.form()) def post(self): data = request.get_json() if data: if data['action'] == 'edit': username = data['username'] else: username = data['username'] try: User.query.filter_by(username=username, deleted=False).first().delete() except: flash(u'用户不存在') return jsonify({"status": 302, "location": url_for('main.editprofile', username=username)}) elif request.form: self.add_user() return redirect('userlist') def add_user(self): form = self.form(request.form) if form.validate(): role = Role.query.filter_by(name=form.role.data).first() if role: if not User.query.filter_by(email=form.email.data).first(): user = User(email=form.email.data, username=form.username.data, role=role, password=form.password.data) user.save() else: flash(u'已经存在该用户') else: flash(u'不存在该用户组') return redirect(url_for('main.userlist')) class EditProfile(MethodView): decorators = [login_required] def __init__(self): self.form = EditProfileForm self.admin_form = AdminEditProfileForm def get(self, username): if not username: # 用户访问自己的个人信息编辑页 form = self.form() form.email.data = current_user.email form.about_me.data = current_user.aboutme else: if current_user.can(Permission.ADMINISTER): user_info = User.query.filter_by(username=username, deleted=False).first() if user_info: form = self.admin_form() form.email.data = user_info.email form.about_me.data = user_info.aboutme form.role.data = user_info.role.name else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) return render_template('main/edit_profile.html', form=form, u=current_user) def post(self, username): if not username: form = self.form(request.form) user = current_user else: if current_user.can(Permission.ADMINISTER): form = self.form(request.form) user = User.query.filter_by(username=username, deleted=False).first() if user: if not current_user.verify_password(form.oripassword.data): flash(u'管理员密码输入错误') return redirect(url_for('main.editprofile', username=username)) else: flash(u'用户不存在') return redirect(url_for('main.index')) else: abort(403) self.change_profile(user, form, True if username else False) return redirect(url_for('main.user', username=username)) @staticmethod def change_profile(user, form, admin=False): user.password = form.password.data user.email = form.email.data user.aboutme = form.about_me.data if admin: new_role = Role.query.filter_by(name=form.role.data) if new_role: user.role = new_role user.save() class OperationLog(MethodView): decorators = [login_required, admin_required] def get(self, page): per_page = 10 count = UserOperation.query.count() query = UserOperation.query.order_by(UserOperation.id.desc())\ .paginate(page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total=count, format_total=True, format_number=True) return render_template('main/log.html', records=query.items, page=page, per_page=per_page, pagination=foot_bar, Operation=Operation) class KeywordBan(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = BanKeywordForm def get(self, page): per_page = 10 count = BanList.query.filter_by(deleted=False).count() # TODO: 把关键词读入配置减少查询次数 pagination = BanList.query.filter_by(deleted=False)\ .paginate(page=page, per_page=per_page, error_out=False) foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm', show_single_page=False, page=page, per_page=per_page, total=count, format_total=True, format_number=True) template_param = { 'keywords': pagination.items, 'page': page, 'per_page': per_page, 'pagination': foot_bar, 'form': self.form() } return render_template('main/ban.html', **template_param) def post(self, page): data = request.get_json() if data: keyword = data['keyword'] result = BanList.query.filter_by(rule=keyword).first() if result: if result.status: result.status.delete() result.delete() flash(u'成功删除关键词') else: flash(u'该关键词不存在') return jsonify({"status": 302, "location": url_for('main.ban')}) elif request.form: form = self.form(request.form) if form.validate(): exist = BanList.query.filter_by(rule=form.keyword.data).first() if not exist: ban = BanList(rule=form.keyword.data, time_limit=form.time_limit.data) ban.save() status = RulePushCount(rule_id=ban.id, count=ban.time_limit) status.save() flash(u'添加关键词成功') else: if exist.deleted is True: exist.deleted = False exist.time_limit = form.time_limit.data exist.save() status = RulePushCount(rule_id=exist.id, count=exist.time_limit) status.save() else: flash(u'重复添加关键词') return redirect(url_for('main.ban')) # TODO: deprecated class WeiboAuthCallback(MethodView): decorators = [login_required, admin_required] def get(self): self.auth_code = request.args.get("code") result = self.fresh_access() if result is True: return render_template('main/success.html') else: return render_template('main/failed.html', e=result) def fresh_access(self): # config = current_app.config["WEIBO_AUTH_CONFIG"] # callback = config["CALLBACK"] # app_key = config["APP_KEY"] # app_secret_key = config["APP_SECRET"] try: pass # client = APIClient(app_key=app_key, app_secret=app_secret_key, redirect_uri=callback) # token_data = client.request_access_token(self.auth_code) # access_token, expires_in = token_data.access_token, token_data.expires_in except BaseException as e: return e # config["ACCESS_TOKEN"] = access_token # config["EXPIRE_TIME"] = expires_in # env = Env() # env.set("ACCESS_TOKEN", access_token) # env = Env() # env.set("EXPIRE_TIME", expires_in) return True class Cookie(MethodView): decorators = [login_required, admin_required] def __init__(self): self.form = CookieForm def get(self): return render_template('main/cookie.html', form=self.form(), pushtime=10) def post(self): form = self.form(request.form) if not form.validate(): flash(u"表单不合法") cookie = form.cookie.data env = Env() env.set("COOKIE", cookie) flash(u"设置 Cookie 成功") return redirect(url_for('main.cookie'))
flexible
{ "blob_id": "1a561ca0268d084c8fdde5de65ce0c7e68154eec", "index": 4993, "step-1": "<mask token>\n\n\nclass OperationLog(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self, page):\n per_page = 10\n count = UserOperation.query.count()\n query = UserOperation.query.order_by(UserOperation.id.desc()).paginate(\n page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n return render_template('main/log.html', records=query.items, page=\n page, per_page=per_page, pagination=foot_bar, Operation=Operation)\n\n\nclass KeywordBan(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = BanKeywordForm\n\n def get(self, page):\n per_page = 10\n count = BanList.query.filter_by(deleted=False).count()\n pagination = BanList.query.filter_by(deleted=False).paginate(page=\n page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n template_param = {'keywords': pagination.items, 'page': page,\n 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()}\n return render_template('main/ban.html', **template_param)\n\n def post(self, page):\n data = request.get_json()\n if data:\n keyword = data['keyword']\n result = BanList.query.filter_by(rule=keyword).first()\n if result:\n if result.status:\n result.status.delete()\n result.delete()\n flash(u'成功删除关键词')\n else:\n flash(u'该关键词不存在')\n return jsonify({'status': 302, 'location': url_for('main.ban')})\n elif request.form:\n form = self.form(request.form)\n if form.validate():\n exist = BanList.query.filter_by(rule=form.keyword.data).first()\n if not exist:\n ban = BanList(rule=form.keyword.data, time_limit=form.\n time_limit.data)\n ban.save()\n status = RulePushCount(rule_id=ban.id, count=ban.time_limit\n )\n status.save()\n flash(u'添加关键词成功')\n elif exist.deleted is True:\n exist.deleted = False\n exist.time_limit = form.time_limit.data\n exist.save()\n status = RulePushCount(rule_id=exist.id, count=exist.\n time_limit)\n status.save()\n else:\n flash(u'重复添加关键词')\n return redirect(url_for('main.ban'))\n\n\nclass WeiboAuthCallback(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self):\n self.auth_code = request.args.get('code')\n result = self.fresh_access()\n if result is True:\n return render_template('main/success.html')\n else:\n return render_template('main/failed.html', e=result)\n\n def fresh_access(self):\n try:\n pass\n except BaseException as e:\n return e\n return True\n\n\nclass Cookie(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = CookieForm\n\n def get(self):\n return render_template('main/cookie.html', form=self.form(),\n pushtime=10)\n\n def post(self):\n form = self.form(request.form)\n if not form.validate():\n flash(u'表单不合法')\n cookie = form.cookie.data\n env = Env()\n env.set('COOKIE', cookie)\n flash(u'设置 Cookie 成功')\n return redirect(url_for('main.cookie'))\n", "step-2": "<mask token>\n\n\nclass UserList(MethodView):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass EditProfile(MethodView):\n decorators = [login_required]\n\n def __init__(self):\n self.form = EditProfileForm\n self.admin_form = AdminEditProfileForm\n\n def get(self, username):\n if not username:\n form = self.form()\n form.email.data = current_user.email\n form.about_me.data = current_user.aboutme\n elif current_user.can(Permission.ADMINISTER):\n user_info = User.query.filter_by(username=username, deleted=False\n ).first()\n if user_info:\n form = self.admin_form()\n form.email.data = user_info.email\n form.about_me.data = user_info.aboutme\n form.role.data = user_info.role.name\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n return render_template('main/edit_profile.html', form=form, u=\n current_user)\n\n def post(self, username):\n if not username:\n form = self.form(request.form)\n user = current_user\n elif current_user.can(Permission.ADMINISTER):\n form = self.form(request.form)\n user = User.query.filter_by(username=username, deleted=False\n ).first()\n if user:\n if not current_user.verify_password(form.oripassword.data):\n flash(u'管理员密码输入错误')\n return redirect(url_for('main.editprofile', username=\n username))\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n self.change_profile(user, form, True if username else False)\n return redirect(url_for('main.user', username=username))\n\n @staticmethod\n def change_profile(user, form, admin=False):\n user.password = form.password.data\n user.email = form.email.data\n user.aboutme = form.about_me.data\n if admin:\n new_role = Role.query.filter_by(name=form.role.data)\n if new_role:\n user.role = new_role\n user.save()\n\n\nclass OperationLog(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self, page):\n per_page = 10\n count = UserOperation.query.count()\n query = UserOperation.query.order_by(UserOperation.id.desc()).paginate(\n page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n return render_template('main/log.html', records=query.items, page=\n page, per_page=per_page, pagination=foot_bar, Operation=Operation)\n\n\nclass KeywordBan(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = BanKeywordForm\n\n def get(self, page):\n per_page = 10\n count = BanList.query.filter_by(deleted=False).count()\n pagination = BanList.query.filter_by(deleted=False).paginate(page=\n page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n template_param = {'keywords': pagination.items, 'page': page,\n 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()}\n return render_template('main/ban.html', **template_param)\n\n def post(self, page):\n data = request.get_json()\n if data:\n keyword = data['keyword']\n result = BanList.query.filter_by(rule=keyword).first()\n if result:\n if result.status:\n result.status.delete()\n result.delete()\n flash(u'成功删除关键词')\n else:\n flash(u'该关键词不存在')\n return jsonify({'status': 302, 'location': url_for('main.ban')})\n elif request.form:\n form = self.form(request.form)\n if form.validate():\n exist = BanList.query.filter_by(rule=form.keyword.data).first()\n if not exist:\n ban = BanList(rule=form.keyword.data, time_limit=form.\n time_limit.data)\n ban.save()\n status = RulePushCount(rule_id=ban.id, count=ban.time_limit\n )\n status.save()\n flash(u'添加关键词成功')\n elif exist.deleted is True:\n exist.deleted = False\n exist.time_limit = form.time_limit.data\n exist.save()\n status = RulePushCount(rule_id=exist.id, count=exist.\n time_limit)\n status.save()\n else:\n flash(u'重复添加关键词')\n return redirect(url_for('main.ban'))\n\n\nclass WeiboAuthCallback(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self):\n self.auth_code = request.args.get('code')\n result = self.fresh_access()\n if result is True:\n return render_template('main/success.html')\n else:\n return render_template('main/failed.html', e=result)\n\n def fresh_access(self):\n try:\n pass\n except BaseException as e:\n return e\n return True\n\n\nclass Cookie(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = CookieForm\n\n def get(self):\n return render_template('main/cookie.html', form=self.form(),\n pushtime=10)\n\n def post(self):\n form = self.form(request.form)\n if not form.validate():\n flash(u'表单不合法')\n cookie = form.cookie.data\n env = Env()\n env.set('COOKIE', cookie)\n flash(u'设置 Cookie 成功')\n return redirect(url_for('main.cookie'))\n", "step-3": "<mask token>\n\n\nclass UserList(MethodView):\n <mask token>\n\n def __init__(self):\n self.form = AddUserForm\n <mask token>\n\n def post(self):\n data = request.get_json()\n if data:\n if data['action'] == 'edit':\n username = data['username']\n else:\n username = data['username']\n try:\n User.query.filter_by(username=username, deleted=False\n ).first().delete()\n except:\n flash(u'用户不存在')\n return jsonify({'status': 302, 'location': url_for(\n 'main.editprofile', username=username)})\n elif request.form:\n self.add_user()\n return redirect('userlist')\n\n def add_user(self):\n form = self.form(request.form)\n if form.validate():\n role = Role.query.filter_by(name=form.role.data).first()\n if role:\n if not User.query.filter_by(email=form.email.data).first():\n user = User(email=form.email.data, username=form.\n username.data, role=role, password=form.password.data)\n user.save()\n else:\n flash(u'已经存在该用户')\n else:\n flash(u'不存在该用户组')\n return redirect(url_for('main.userlist'))\n\n\nclass EditProfile(MethodView):\n decorators = [login_required]\n\n def __init__(self):\n self.form = EditProfileForm\n self.admin_form = AdminEditProfileForm\n\n def get(self, username):\n if not username:\n form = self.form()\n form.email.data = current_user.email\n form.about_me.data = current_user.aboutme\n elif current_user.can(Permission.ADMINISTER):\n user_info = User.query.filter_by(username=username, deleted=False\n ).first()\n if user_info:\n form = self.admin_form()\n form.email.data = user_info.email\n form.about_me.data = user_info.aboutme\n form.role.data = user_info.role.name\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n return render_template('main/edit_profile.html', form=form, u=\n current_user)\n\n def post(self, username):\n if not username:\n form = self.form(request.form)\n user = current_user\n elif current_user.can(Permission.ADMINISTER):\n form = self.form(request.form)\n user = User.query.filter_by(username=username, deleted=False\n ).first()\n if user:\n if not current_user.verify_password(form.oripassword.data):\n flash(u'管理员密码输入错误')\n return redirect(url_for('main.editprofile', username=\n username))\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n self.change_profile(user, form, True if username else False)\n return redirect(url_for('main.user', username=username))\n\n @staticmethod\n def change_profile(user, form, admin=False):\n user.password = form.password.data\n user.email = form.email.data\n user.aboutme = form.about_me.data\n if admin:\n new_role = Role.query.filter_by(name=form.role.data)\n if new_role:\n user.role = new_role\n user.save()\n\n\nclass OperationLog(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self, page):\n per_page = 10\n count = UserOperation.query.count()\n query = UserOperation.query.order_by(UserOperation.id.desc()).paginate(\n page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n return render_template('main/log.html', records=query.items, page=\n page, per_page=per_page, pagination=foot_bar, Operation=Operation)\n\n\nclass KeywordBan(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = BanKeywordForm\n\n def get(self, page):\n per_page = 10\n count = BanList.query.filter_by(deleted=False).count()\n pagination = BanList.query.filter_by(deleted=False).paginate(page=\n page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n template_param = {'keywords': pagination.items, 'page': page,\n 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()}\n return render_template('main/ban.html', **template_param)\n\n def post(self, page):\n data = request.get_json()\n if data:\n keyword = data['keyword']\n result = BanList.query.filter_by(rule=keyword).first()\n if result:\n if result.status:\n result.status.delete()\n result.delete()\n flash(u'成功删除关键词')\n else:\n flash(u'该关键词不存在')\n return jsonify({'status': 302, 'location': url_for('main.ban')})\n elif request.form:\n form = self.form(request.form)\n if form.validate():\n exist = BanList.query.filter_by(rule=form.keyword.data).first()\n if not exist:\n ban = BanList(rule=form.keyword.data, time_limit=form.\n time_limit.data)\n ban.save()\n status = RulePushCount(rule_id=ban.id, count=ban.time_limit\n )\n status.save()\n flash(u'添加关键词成功')\n elif exist.deleted is True:\n exist.deleted = False\n exist.time_limit = form.time_limit.data\n exist.save()\n status = RulePushCount(rule_id=exist.id, count=exist.\n time_limit)\n status.save()\n else:\n flash(u'重复添加关键词')\n return redirect(url_for('main.ban'))\n\n\nclass WeiboAuthCallback(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self):\n self.auth_code = request.args.get('code')\n result = self.fresh_access()\n if result is True:\n return render_template('main/success.html')\n else:\n return render_template('main/failed.html', e=result)\n\n def fresh_access(self):\n try:\n pass\n except BaseException as e:\n return e\n return True\n\n\nclass Cookie(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = CookieForm\n\n def get(self):\n return render_template('main/cookie.html', form=self.form(),\n pushtime=10)\n\n def post(self):\n form = self.form(request.form)\n if not form.validate():\n flash(u'表单不合法')\n cookie = form.cookie.data\n env = Env()\n env.set('COOKIE', cookie)\n flash(u'设置 Cookie 成功')\n return redirect(url_for('main.cookie'))\n", "step-4": "<mask token>\n\n\nclass ManualUpdate(MethodView):\n <mask token>\n\n def __init__(self):\n self.form = PushForm\n\n def get(self):\n return render_template('main/mupdate.html', form=self.form(),\n pushtime=10)\n\n def post(self):\n if not current_user.can(Permission.MANUAL_PUSH):\n flash(u'你没有权限')\n form = self.form(request.form)\n if not form.validate():\n flash(u'条目格式有问题,请检查并重新填写')\n title = form.pushtitle.data\n result = self.check_push_validate(title.encode('utf-8'))\n if not result:\n flash(u'推送条目被ban,或者已经在24小时之内推送过,或者已经进入待推送列表')\n try:\n image = MoegirlImage(title)\n except HTTPError as e:\n flash(u'请求萌百错误,错误码如下{},请联系管理员'.format(e))\n return redirect(url_for('main.mupdate'))\n if not image.path:\n flash(u'无法取得图片,请重试')\n entry = WaitingQueue(title=title, image=image.path)\n env = Env()\n current_weight = env.get('CUTTING_WEIGHT_INIT')\n entry.cutting_weight = current_weight + 1\n entry.save()\n env.set('CUTTING_WEIGHT_INIT', entry.cutting_weight)\n UserOperation(user_id=current_user.id, title=title, operation=\n Operation.PUSH).save()\n if form.industry.data:\n try:\n from koushihime.crontab import push\n push()\n except Exception as e:\n flash(u'推送失败: {}'.format(str(e)))\n flash(u'操作成功,词条将立即推送')\n return redirect(url_for('main.mupdate'))\n\n @staticmethod\n def check_push_validate(title):\n moegirl_entry = MoegirlQuery(title)\n namespace = moegirl_entry.get_namespace()\n if namespace is 0:\n baned_from_moegirl = moegirl_entry.banned_moegirl_category()\n baned_from_regex = moegirl_entry.ban_from_regex()\n has_pushed = recent_have_pushed(title.decode('utf-8'))\n has_catched = have_auto_catched(title.decode('utf-8'))\n result = (baned_from_moegirl is False and has_pushed is False and\n has_catched is False and baned_from_regex is False)\n return result\n else:\n return False\n\n\nclass UserInfo(MethodView):\n decorators = [login_required]\n\n def get(self, username):\n is_admin = current_user.can(Permission.ADMINISTER)\n if current_user.username == username or is_admin is True:\n user_info = User.query.filter_by(username=username, deleted=False\n ).first()\n if not user_info:\n abort(404)\n return render_template('main/user.html', u=user_info, username=\n user_info.username)\n else:\n abort(403)\n\n\nclass UserList(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = AddUserForm\n\n def get(self):\n userlist = User.query.filter_by(deleted=False).all()\n return render_template('main/userlist.html', userlist=userlist,\n form=self.form())\n\n def post(self):\n data = request.get_json()\n if data:\n if data['action'] == 'edit':\n username = data['username']\n else:\n username = data['username']\n try:\n User.query.filter_by(username=username, deleted=False\n ).first().delete()\n except:\n flash(u'用户不存在')\n return jsonify({'status': 302, 'location': url_for(\n 'main.editprofile', username=username)})\n elif request.form:\n self.add_user()\n return redirect('userlist')\n\n def add_user(self):\n form = self.form(request.form)\n if form.validate():\n role = Role.query.filter_by(name=form.role.data).first()\n if role:\n if not User.query.filter_by(email=form.email.data).first():\n user = User(email=form.email.data, username=form.\n username.data, role=role, password=form.password.data)\n user.save()\n else:\n flash(u'已经存在该用户')\n else:\n flash(u'不存在该用户组')\n return redirect(url_for('main.userlist'))\n\n\nclass EditProfile(MethodView):\n decorators = [login_required]\n\n def __init__(self):\n self.form = EditProfileForm\n self.admin_form = AdminEditProfileForm\n\n def get(self, username):\n if not username:\n form = self.form()\n form.email.data = current_user.email\n form.about_me.data = current_user.aboutme\n elif current_user.can(Permission.ADMINISTER):\n user_info = User.query.filter_by(username=username, deleted=False\n ).first()\n if user_info:\n form = self.admin_form()\n form.email.data = user_info.email\n form.about_me.data = user_info.aboutme\n form.role.data = user_info.role.name\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n return render_template('main/edit_profile.html', form=form, u=\n current_user)\n\n def post(self, username):\n if not username:\n form = self.form(request.form)\n user = current_user\n elif current_user.can(Permission.ADMINISTER):\n form = self.form(request.form)\n user = User.query.filter_by(username=username, deleted=False\n ).first()\n if user:\n if not current_user.verify_password(form.oripassword.data):\n flash(u'管理员密码输入错误')\n return redirect(url_for('main.editprofile', username=\n username))\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n self.change_profile(user, form, True if username else False)\n return redirect(url_for('main.user', username=username))\n\n @staticmethod\n def change_profile(user, form, admin=False):\n user.password = form.password.data\n user.email = form.email.data\n user.aboutme = form.about_me.data\n if admin:\n new_role = Role.query.filter_by(name=form.role.data)\n if new_role:\n user.role = new_role\n user.save()\n\n\nclass OperationLog(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self, page):\n per_page = 10\n count = UserOperation.query.count()\n query = UserOperation.query.order_by(UserOperation.id.desc()).paginate(\n page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n return render_template('main/log.html', records=query.items, page=\n page, per_page=per_page, pagination=foot_bar, Operation=Operation)\n\n\nclass KeywordBan(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = BanKeywordForm\n\n def get(self, page):\n per_page = 10\n count = BanList.query.filter_by(deleted=False).count()\n pagination = BanList.query.filter_by(deleted=False).paginate(page=\n page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page, total=\n count, format_total=True, format_number=True)\n template_param = {'keywords': pagination.items, 'page': page,\n 'per_page': per_page, 'pagination': foot_bar, 'form': self.form()}\n return render_template('main/ban.html', **template_param)\n\n def post(self, page):\n data = request.get_json()\n if data:\n keyword = data['keyword']\n result = BanList.query.filter_by(rule=keyword).first()\n if result:\n if result.status:\n result.status.delete()\n result.delete()\n flash(u'成功删除关键词')\n else:\n flash(u'该关键词不存在')\n return jsonify({'status': 302, 'location': url_for('main.ban')})\n elif request.form:\n form = self.form(request.form)\n if form.validate():\n exist = BanList.query.filter_by(rule=form.keyword.data).first()\n if not exist:\n ban = BanList(rule=form.keyword.data, time_limit=form.\n time_limit.data)\n ban.save()\n status = RulePushCount(rule_id=ban.id, count=ban.time_limit\n )\n status.save()\n flash(u'添加关键词成功')\n elif exist.deleted is True:\n exist.deleted = False\n exist.time_limit = form.time_limit.data\n exist.save()\n status = RulePushCount(rule_id=exist.id, count=exist.\n time_limit)\n status.save()\n else:\n flash(u'重复添加关键词')\n return redirect(url_for('main.ban'))\n\n\nclass WeiboAuthCallback(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self):\n self.auth_code = request.args.get('code')\n result = self.fresh_access()\n if result is True:\n return render_template('main/success.html')\n else:\n return render_template('main/failed.html', e=result)\n\n def fresh_access(self):\n try:\n pass\n except BaseException as e:\n return e\n return True\n\n\nclass Cookie(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = CookieForm\n\n def get(self):\n return render_template('main/cookie.html', form=self.form(),\n pushtime=10)\n\n def post(self):\n form = self.form(request.form)\n if not form.validate():\n flash(u'表单不合法')\n cookie = form.cookie.data\n env = Env()\n env.set('COOKIE', cookie)\n flash(u'设置 Cookie 成功')\n return redirect(url_for('main.cookie'))\n", "step-5": "# -*- coding: utf-8 -*-\n\nimport urllib\nfrom urllib2 import HTTPError\nfrom datetime import datetime\nfrom flask.views import MethodView\nfrom flask.ext.login import current_user, login_required\nfrom flask.ext.paginate import Pagination as PaginationBar\nfrom flask import render_template, redirect, url_for, request, jsonify, flash, current_app, abort\nfrom koushihime.auth.models import UserOperation, User, Role\nfrom koushihime.auth.constants import Permission, Operation\nfrom koushihime.utils import Pagination, admin_required, Env\nfrom koushihime.utils.moegirl import MoegirlQuery, MoegirlImage\nfrom . import main\nfrom utils import recent_have_pushed, have_auto_catched\nfrom models import WaitingQueue, BanList, RulePushCount\nfrom forms import PushForm, AddUserForm, EditProfileForm, AdminEditProfileForm, BanKeywordForm, CookieForm\n\n\[email protected]_request\ndef before_request():\n if current_user.is_anonymous:\n return redirect(url_for('auth.login'))\n elif current_user.is_blocked:\n return render_template('main/auth/block.html')\n else:\n current_user.last_seen = datetime.utcnow()\n current_user.save()\n\n\nclass Index(MethodView):\n\n def get(self):\n if not current_user:\n return redirect(url_for(\"auth.login\"))\n config = current_app.config[\"WEIBO_AUTH_CONFIG\"]\n callback = urllib.quote(config[\"CALLBACK\"])\n app_key = config[\"APP_KEY\"]\n return render_template('main/index.html', callback=callback, app_key=app_key)\n\n\nclass Update(MethodView):\n decorators = [login_required]\n\n def get(self, page):\n per_page = 10\n unpushed_entry = WaitingQueue.query.order_by(WaitingQueue.cutting_weight.desc()).all()\n pagination = Pagination(unpushed_entry, per_page)\n current_page = pagination.page(page)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=True, page=page,\n per_page=per_page, total=len(unpushed_entry),\n format_total=True, format_number=True)\n result = {\n \"titles\": current_page,\n \"current_time\": datetime.utcnow(),\n \"pushtime\": 10,\n \"deltime\": 999,\n \"page\": page,\n \"per_page\": per_page,\n \"pagination\": foot_bar\n }\n return render_template('main/update.html', **result)\n\n def post(self, page):\n data = request.get_json()\n if data['action'] == 'post':\n title = data[\"title\"]\n env = Env()\n current_weight = env.get(\"CUTTING_WEIGHT_INIT\")\n entry = WaitingQueue.query.filter_by(title=title).first()\n if entry:\n entry.cutting_weight = current_weight + 1 # FIXME: 即使条目处于权重最高状态亦可增加权限\n entry.save()\n env.set(\"CUTTING_WEIGHT_INIT\", entry.cutting_weight)\n elif data['action'] == 'del':\n title = data['title']\n UserOperation(user_id=current_user.id, operation=Operation.DELETE, title=title).save()\n query = WaitingQueue.query.filter_by(title=data['title']).first()\n if query:\n query.delete()\n response = jsonify({'result': True})\n return response\n\n\nclass ManualUpdate(MethodView):\n decorators = [login_required]\n\n def __init__(self):\n self.form = PushForm\n\n def get(self):\n return render_template('main/mupdate.html', form=self.form(), pushtime=10)\n\n def post(self):\n if not current_user.can(Permission.MANUAL_PUSH):\n flash(u\"你没有权限\")\n\n form = self.form(request.form)\n if not form.validate():\n flash(u\"条目格式有问题,请检查并重新填写\")\n\n title = form.pushtitle.data\n result = self.check_push_validate(title.encode(\"utf-8\"))\n if not result:\n flash(u\"推送条目被ban,或者已经在24小时之内推送过,或者已经进入待推送列表\")\n\n try:\n image = MoegirlImage(title)\n except HTTPError as e:\n flash(u\"请求萌百错误,错误码如下{},请联系管理员\".format(e))\n return redirect(url_for('main.mupdate'))\n if not image.path:\n flash(u\"无法取得图片,请重试\")\n\n entry = WaitingQueue(title=title, image=image.path)\n env = Env()\n current_weight = env.get(\"CUTTING_WEIGHT_INIT\")\n entry.cutting_weight = current_weight + 1\n entry.save()\n env.set(\"CUTTING_WEIGHT_INIT\", entry.cutting_weight)\n UserOperation(user_id=current_user.id, title=title, operation=Operation.PUSH).save()\n if form.industry.data:\n try:\n from koushihime.crontab import push\n push()\n except Exception as e:\n flash(u\"推送失败: {}\".format(str(e)))\n flash(u\"操作成功,词条将立即推送\")\n return redirect(url_for('main.mupdate'))\n\n @staticmethod\n def check_push_validate(title):\n moegirl_entry = MoegirlQuery(title)\n namespace = moegirl_entry.get_namespace()\n if namespace is 0:\n baned_from_moegirl = moegirl_entry.banned_moegirl_category()\n baned_from_regex = moegirl_entry.ban_from_regex()\n has_pushed = recent_have_pushed(title.decode(\"utf-8\")) # TODO: 改成自动冒泡\n has_catched = have_auto_catched(title.decode(\"utf-8\"))\n result = baned_from_moegirl is False \\\n and has_pushed is False \\\n and has_catched is False \\\n and baned_from_regex is False\n return result\n else:\n return False\n\n\nclass UserInfo(MethodView):\n decorators = [login_required]\n\n def get(self, username):\n is_admin = current_user.can(Permission.ADMINISTER)\n if current_user.username == username or is_admin is True:\n user_info = User.query.filter_by(username=username, deleted=False).first()\n if not user_info:\n abort(404)\n return render_template('main/user.html', u=user_info, username=user_info.username)\n else:\n abort(403)\n\n\nclass UserList(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = AddUserForm\n\n def get(self):\n userlist = User.query.filter_by(deleted=False).all()\n return render_template('main/userlist.html', userlist=userlist, form=self.form())\n\n def post(self):\n data = request.get_json()\n if data:\n if data['action'] == 'edit':\n username = data['username']\n else:\n username = data['username']\n try:\n User.query.filter_by(username=username, deleted=False).first().delete()\n except:\n flash(u'用户不存在')\n return jsonify({\"status\": 302, \"location\": url_for('main.editprofile', username=username)})\n elif request.form:\n self.add_user()\n return redirect('userlist')\n\n def add_user(self):\n form = self.form(request.form)\n if form.validate():\n role = Role.query.filter_by(name=form.role.data).first()\n if role:\n if not User.query.filter_by(email=form.email.data).first():\n user = User(email=form.email.data, username=form.username.data,\n role=role, password=form.password.data)\n user.save()\n else:\n flash(u'已经存在该用户')\n else:\n flash(u'不存在该用户组')\n return redirect(url_for('main.userlist'))\n\n\nclass EditProfile(MethodView):\n decorators = [login_required]\n\n def __init__(self):\n self.form = EditProfileForm\n self.admin_form = AdminEditProfileForm\n\n def get(self, username):\n if not username: # 用户访问自己的个人信息编辑页\n form = self.form()\n form.email.data = current_user.email\n form.about_me.data = current_user.aboutme\n else:\n if current_user.can(Permission.ADMINISTER):\n user_info = User.query.filter_by(username=username, deleted=False).first()\n if user_info:\n form = self.admin_form()\n form.email.data = user_info.email\n form.about_me.data = user_info.aboutme\n form.role.data = user_info.role.name\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n return render_template('main/edit_profile.html', form=form, u=current_user)\n\n def post(self, username):\n if not username:\n form = self.form(request.form)\n user = current_user\n else:\n if current_user.can(Permission.ADMINISTER):\n form = self.form(request.form)\n user = User.query.filter_by(username=username, deleted=False).first()\n if user:\n if not current_user.verify_password(form.oripassword.data):\n flash(u'管理员密码输入错误')\n return redirect(url_for('main.editprofile', username=username))\n else:\n flash(u'用户不存在')\n return redirect(url_for('main.index'))\n else:\n abort(403)\n\n self.change_profile(user, form, True if username else False)\n return redirect(url_for('main.user', username=username))\n\n @staticmethod\n def change_profile(user, form, admin=False):\n user.password = form.password.data\n user.email = form.email.data\n user.aboutme = form.about_me.data\n if admin:\n new_role = Role.query.filter_by(name=form.role.data)\n if new_role:\n user.role = new_role\n user.save()\n\n\nclass OperationLog(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self, page):\n per_page = 10\n count = UserOperation.query.count()\n query = UserOperation.query.order_by(UserOperation.id.desc())\\\n .paginate(page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page,\n total=count, format_total=True, format_number=True)\n return render_template('main/log.html', records=query.items,\n page=page, per_page=per_page, pagination=foot_bar, Operation=Operation)\n\n\nclass KeywordBan(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = BanKeywordForm\n\n def get(self, page):\n per_page = 10\n count = BanList.query.filter_by(deleted=False).count()\n # TODO: 把关键词读入配置减少查询次数\n pagination = BanList.query.filter_by(deleted=False)\\\n .paginate(page=page, per_page=per_page, error_out=False)\n foot_bar = PaginationBar(css_framework='bootstrap3', link_size='sm',\n show_single_page=False, page=page, per_page=per_page,\n total=count, format_total=True, format_number=True)\n template_param = {\n 'keywords': pagination.items,\n 'page': page,\n 'per_page': per_page,\n 'pagination': foot_bar,\n 'form': self.form()\n }\n return render_template('main/ban.html', **template_param)\n\n def post(self, page):\n data = request.get_json()\n if data:\n keyword = data['keyword']\n result = BanList.query.filter_by(rule=keyword).first()\n if result:\n if result.status:\n result.status.delete()\n result.delete()\n flash(u'成功删除关键词')\n else:\n flash(u'该关键词不存在')\n return jsonify({\"status\": 302, \"location\": url_for('main.ban')})\n elif request.form:\n form = self.form(request.form)\n if form.validate():\n exist = BanList.query.filter_by(rule=form.keyword.data).first()\n if not exist:\n ban = BanList(rule=form.keyword.data, time_limit=form.time_limit.data)\n ban.save()\n status = RulePushCount(rule_id=ban.id, count=ban.time_limit)\n status.save()\n flash(u'添加关键词成功')\n else:\n if exist.deleted is True:\n exist.deleted = False\n exist.time_limit = form.time_limit.data\n exist.save()\n status = RulePushCount(rule_id=exist.id, count=exist.time_limit)\n status.save()\n else:\n flash(u'重复添加关键词')\n return redirect(url_for('main.ban'))\n\n\n# TODO: deprecated\nclass WeiboAuthCallback(MethodView):\n decorators = [login_required, admin_required]\n\n def get(self):\n self.auth_code = request.args.get(\"code\")\n result = self.fresh_access()\n if result is True:\n return render_template('main/success.html')\n else:\n return render_template('main/failed.html', e=result)\n\n def fresh_access(self):\n # config = current_app.config[\"WEIBO_AUTH_CONFIG\"]\n # callback = config[\"CALLBACK\"]\n # app_key = config[\"APP_KEY\"]\n # app_secret_key = config[\"APP_SECRET\"]\n try:\n pass\n # client = APIClient(app_key=app_key, app_secret=app_secret_key, redirect_uri=callback)\n # token_data = client.request_access_token(self.auth_code)\n # access_token, expires_in = token_data.access_token, token_data.expires_in\n except BaseException as e:\n return e\n # config[\"ACCESS_TOKEN\"] = access_token\n # config[\"EXPIRE_TIME\"] = expires_in\n # env = Env()\n # env.set(\"ACCESS_TOKEN\", access_token)\n # env = Env()\n # env.set(\"EXPIRE_TIME\", expires_in)\n return True\n\n\nclass Cookie(MethodView):\n decorators = [login_required, admin_required]\n\n def __init__(self):\n self.form = CookieForm\n\n def get(self):\n return render_template('main/cookie.html', form=self.form(), pushtime=10)\n\n def post(self):\n form = self.form(request.form)\n if not form.validate():\n flash(u\"表单不合法\")\n cookie = form.cookie.data\n env = Env()\n env.set(\"COOKIE\", cookie)\n flash(u\"设置 Cookie 成功\")\n return redirect(url_for('main.cookie'))\n", "step-ids": [ 17, 24, 27, 37, 47 ] }
[ 17, 24, 27, 37, 47 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> cv2.namedWindow('Measure Angle with centerline') <|reserved_special_token_0|> while True: ret, frame = vidCapture.read() if ret == True: out.write(frame) cv2.imshow('frame', frame) if cv2.waitKey(1) & 255 == ord('q'): break else: break vidCapture.release() out.release() cv2.destroyAllWindows() <|reserved_special_token_1|> <|reserved_special_token_0|> FRAME_WIDTH = 320 FRAME_HEIGHT = 240 cv2.namedWindow('Measure Angle with centerline') vidCapture = cv2.VideoCapture(1) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480)) while True: ret, frame = vidCapture.read() if ret == True: out.write(frame) cv2.imshow('frame', frame) if cv2.waitKey(1) & 255 == ord('q'): break else: break vidCapture.release() out.release() cv2.destroyAllWindows() <|reserved_special_token_1|> import numpy as np import cv2 FRAME_WIDTH = 320 FRAME_HEIGHT = 240 cv2.namedWindow('Measure Angle with centerline') vidCapture = cv2.VideoCapture(1) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480)) while True: ret, frame = vidCapture.read() if ret == True: out.write(frame) cv2.imshow('frame', frame) if cv2.waitKey(1) & 255 == ord('q'): break else: break vidCapture.release() out.release() cv2.destroyAllWindows() <|reserved_special_token_1|> import numpy as np import cv2 FRAME_WIDTH = 320 FRAME_HEIGHT = 240 cv2.namedWindow('Measure Angle with centerline') # WebCam Initialize vidCapture = cv2.VideoCapture(1) fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480)) while True: # key = cv2.waitKey(1) & 0xFF # if key == 27: # break ret, frame = vidCapture.read() if ret==True: # frame = cv2.flip(frame,0) # write the flipped frame out.write(frame) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # img = np.zeros((512, 512, 3), np.uint8) # cv2.line(frame, (160, 0), (160, 240), (255, 0, 0), 2) # cv2.line(frame, (0, 120), (320, 120), (255, 0, 0), 2) # cv2.imshow('frame', frame) vidCapture.release() out.release() cv2.destroyAllWindows()
flexible
{ "blob_id": "500d6f473f07b35bf2d075d3061ac2e54eab702a", "index": 4156, "step-1": "<mask token>\n", "step-2": "<mask token>\ncv2.namedWindow('Measure Angle with centerline')\n<mask token>\nwhile True:\n ret, frame = vidCapture.read()\n if ret == True:\n out.write(frame)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\nvidCapture.release()\nout.release()\ncv2.destroyAllWindows()\n", "step-3": "<mask token>\nFRAME_WIDTH = 320\nFRAME_HEIGHT = 240\ncv2.namedWindow('Measure Angle with centerline')\nvidCapture = cv2.VideoCapture(1)\nfourcc = cv2.VideoWriter_fourcc(*'XVID')\nout = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480))\nwhile True:\n ret, frame = vidCapture.read()\n if ret == True:\n out.write(frame)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\nvidCapture.release()\nout.release()\ncv2.destroyAllWindows()\n", "step-4": "import numpy as np\nimport cv2\nFRAME_WIDTH = 320\nFRAME_HEIGHT = 240\ncv2.namedWindow('Measure Angle with centerline')\nvidCapture = cv2.VideoCapture(1)\nfourcc = cv2.VideoWriter_fourcc(*'XVID')\nout = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480))\nwhile True:\n ret, frame = vidCapture.read()\n if ret == True:\n out.write(frame)\n cv2.imshow('frame', frame)\n if cv2.waitKey(1) & 255 == ord('q'):\n break\n else:\n break\nvidCapture.release()\nout.release()\ncv2.destroyAllWindows()\n", "step-5": "import numpy as np\r\nimport cv2\r\n\r\nFRAME_WIDTH = 320\r\nFRAME_HEIGHT = 240\r\n\r\ncv2.namedWindow('Measure Angle with centerline')\r\n\r\n# WebCam Initialize\r\nvidCapture = cv2.VideoCapture(1)\r\n\r\nfourcc = cv2.VideoWriter_fourcc(*'XVID') \r\nout = cv2.VideoWriter('webcam_record.avi', fourcc, 20.0, (640, 480)) \r\n\r\nwhile True:\r\n\r\n\t# key = cv2.waitKey(1) & 0xFF\r\n\t# if key == 27:\r\n\t# \tbreak\r\n\r\n\tret, frame = vidCapture.read()\r\n\t\r\n\tif ret==True:\r\n\t\t# frame = cv2.flip(frame,0)\r\n\r\n # write the flipped frame\r\n\t\tout.write(frame)\r\n\r\n\t\tcv2.imshow('frame',frame)\r\n\t\tif cv2.waitKey(1) & 0xFF == ord('q'):\r\n\t\t\tbreak\r\n\telse:\r\n\t\tbreak\r\n\t# img = np.zeros((512, 512, 3), np.uint8)\r\n\t# cv2.line(frame, (160, 0), (160, 240), (255, 0, 0), 2)\r\n\t# cv2.line(frame, (0, 120), (320, 120), (255, 0, 0), 2)\r\n\r\n\t# cv2.imshow('frame', frame)\r\n\r\nvidCapture.release()\r\nout.release()\r\ncv2.destroyAllWindows()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def get_prob_age(uids, prob_age) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = prob_age.setdefault(uid, 0) return res def get_grads_count(uids, grads_count) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = grads_count.setdefault(uid, 0) return res def get_groups_count(uids, usersGroups): tmp = usersGroups.groupby('uid').count() groups_count = [0] * len(uids) for i, uid in enumerate(uids): try: groups_count[i] = tmp.at[uid, 'gid'] except: continue return groups_count def get_mean_and_median_group(uids, gid2age, uid_groups): mean_group = [0.0] * len(uids) median_group = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [gid2age[x] for x in uid_groups[uid]] mean_group[i] = sum(tmp) / len(tmp) median_group[i] = np.median(tmp) except: continue return mean_group, median_group def get_mean_and_median_friends(uids, uid2age, uid_friends): mean_friends = [0.0] * len(uids) median_friends = [0.0] * len(uids) mean_friends2 = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [] if uid in uid_friends and len(uid_friends[uid]) < 42: for friend in uid_friends[uid]: if friend in uid_friends: for f2 in uid_friends[friend]: if f2 != uid and f2 in uid2age: tmp.append(uid2age[f2]) mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0 tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age] mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0 median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0 except: continue return mean_friends, median_friends, mean_friends2 <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_prob_age(uids, prob_age) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = prob_age.setdefault(uid, 0) return res def get_grads_count(uids, grads_count) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = grads_count.setdefault(uid, 0) return res def get_groups_count(uids, usersGroups): tmp = usersGroups.groupby('uid').count() groups_count = [0] * len(uids) for i, uid in enumerate(uids): try: groups_count[i] = tmp.at[uid, 'gid'] except: continue return groups_count def get_mean_and_median_group(uids, gid2age, uid_groups): mean_group = [0.0] * len(uids) median_group = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [gid2age[x] for x in uid_groups[uid]] mean_group[i] = sum(tmp) / len(tmp) median_group[i] = np.median(tmp) except: continue return mean_group, median_group def get_mean_and_median_friends(uids, uid2age, uid_friends): mean_friends = [0.0] * len(uids) median_friends = [0.0] * len(uids) mean_friends2 = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [] if uid in uid_friends and len(uid_friends[uid]) < 42: for friend in uid_friends[uid]: if friend in uid_friends: for f2 in uid_friends[friend]: if f2 != uid and f2 in uid2age: tmp.append(uid2age[f2]) mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0 tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age] mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0 median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0 except: continue return mean_friends, median_friends, mean_friends2 def main(): with open('gid2age.pkl', 'rb') as fin: gid2age = pickle.load(fin) with open('uid2age.pkl', 'rb') as fin: uid2age = pickle.load(fin) with open('uid_friends.pkl', 'rb') as fin: uid_friends = pickle.load(fin) with open('scaler.pkl', 'rb') as fin: scaler = pickle.load(fin) model = CatBoostRegressor() model.load_model('model') test = pd.read_csv('/tmp/data/test.csv') testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv') testGroups = pd.read_csv('/tmp/data/testGroups.csv') test['cfriends'] = 0 for index in test.index: uid = test.at[index, 'uid'] if uid in uid_friends: test.at[index, 'cfriends'] = len(uid_friends[uid]) else: test.at[index, 'cfriends'] = 0 prob_age, grads_count = calculate_probable_age(testEducationFeatures) test['prob_age'] = get_prob_age(test.uid, prob_age) test['grads_count'] = get_grads_count(test.uid, grads_count) test['groups_count'] = get_groups_count(test.uid, testGroups) uid_groups = {} for index in testGroups.index: uid = testGroups.at[index, 'uid'] uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[ index, 'gid']] test['mean_group_age'], test['median_group_age' ] = get_mean_and_median_group(test.uid, gid2age, uid_groups) test['mean_friends_age'], test['median_friends_age'], test[ 'mean_friends2_age'] = get_mean_and_median_friends(test.uid, uid2age, uid_friends) test['is_prob_age'] = test.prob_age != 0 test['is_group_age'] = test.mean_group_age != 0 test['is_friends_age'] = test.mean_friends_age != 0 X_test = scaler.transform(test.drop(['uid'], axis=1)) y_pred = model.predict(X_test) res = pd.DataFrame({'uid': test.uid, 'age': y_pred}) res.to_csv('/var/log/result', header=True, index=False) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def calculate_probable_age(usersEducationFeatures): prob_age = {} grads_count = {} age_diff1 = 17 age_diff2 = 22 for index in usersEducationFeatures.index: count = 0 skip = False if not pd.isnull(usersEducationFeatures.at[index, 'school_education']): prob_age[usersEducationFeatures.at[index, 'uid'] ] = 2021 + age_diff1 - usersEducationFeatures.at[index, 'school_education'] skip = True for i in range(1, 8): if skip: break if not pd.isnull(usersEducationFeatures.at[index, f'graduation_{i}']): prob_age[usersEducationFeatures.at[index, 'uid'] ] = 2021 + age_diff2 - usersEducationFeatures.at[index, f'graduation_{i}'] skip = True if not pd.isnull(usersEducationFeatures.at[index, 'school_education']): count += 1 for i in range(1, 8): if not pd.isnull(usersEducationFeatures.at[index, f'graduation_{i}']): count += 1 grads_count[usersEducationFeatures.at[index, 'uid']] = count return prob_age, grads_count def get_prob_age(uids, prob_age) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = prob_age.setdefault(uid, 0) return res def get_grads_count(uids, grads_count) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = grads_count.setdefault(uid, 0) return res def get_groups_count(uids, usersGroups): tmp = usersGroups.groupby('uid').count() groups_count = [0] * len(uids) for i, uid in enumerate(uids): try: groups_count[i] = tmp.at[uid, 'gid'] except: continue return groups_count def get_mean_and_median_group(uids, gid2age, uid_groups): mean_group = [0.0] * len(uids) median_group = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [gid2age[x] for x in uid_groups[uid]] mean_group[i] = sum(tmp) / len(tmp) median_group[i] = np.median(tmp) except: continue return mean_group, median_group def get_mean_and_median_friends(uids, uid2age, uid_friends): mean_friends = [0.0] * len(uids) median_friends = [0.0] * len(uids) mean_friends2 = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [] if uid in uid_friends and len(uid_friends[uid]) < 42: for friend in uid_friends[uid]: if friend in uid_friends: for f2 in uid_friends[friend]: if f2 != uid and f2 in uid2age: tmp.append(uid2age[f2]) mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0 tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age] mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0 median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0 except: continue return mean_friends, median_friends, mean_friends2 def main(): with open('gid2age.pkl', 'rb') as fin: gid2age = pickle.load(fin) with open('uid2age.pkl', 'rb') as fin: uid2age = pickle.load(fin) with open('uid_friends.pkl', 'rb') as fin: uid_friends = pickle.load(fin) with open('scaler.pkl', 'rb') as fin: scaler = pickle.load(fin) model = CatBoostRegressor() model.load_model('model') test = pd.read_csv('/tmp/data/test.csv') testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv') testGroups = pd.read_csv('/tmp/data/testGroups.csv') test['cfriends'] = 0 for index in test.index: uid = test.at[index, 'uid'] if uid in uid_friends: test.at[index, 'cfriends'] = len(uid_friends[uid]) else: test.at[index, 'cfriends'] = 0 prob_age, grads_count = calculate_probable_age(testEducationFeatures) test['prob_age'] = get_prob_age(test.uid, prob_age) test['grads_count'] = get_grads_count(test.uid, grads_count) test['groups_count'] = get_groups_count(test.uid, testGroups) uid_groups = {} for index in testGroups.index: uid = testGroups.at[index, 'uid'] uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[ index, 'gid']] test['mean_group_age'], test['median_group_age' ] = get_mean_and_median_group(test.uid, gid2age, uid_groups) test['mean_friends_age'], test['median_friends_age'], test[ 'mean_friends2_age'] = get_mean_and_median_friends(test.uid, uid2age, uid_friends) test['is_prob_age'] = test.prob_age != 0 test['is_group_age'] = test.mean_group_age != 0 test['is_friends_age'] = test.mean_friends_age != 0 X_test = scaler.transform(test.drop(['uid'], axis=1)) y_pred = model.predict(X_test) res = pd.DataFrame({'uid': test.uid, 'age': y_pred}) res.to_csv('/var/log/result', header=True, index=False) <|reserved_special_token_0|> <|reserved_special_token_1|> from typing import List import pandas as pd import numpy as np import pickle from catboost import CatBoostRegressor from sklearn.preprocessing import MinMaxScaler def calculate_probable_age(usersEducationFeatures): prob_age = {} grads_count = {} age_diff1 = 17 age_diff2 = 22 for index in usersEducationFeatures.index: count = 0 skip = False if not pd.isnull(usersEducationFeatures.at[index, 'school_education']): prob_age[usersEducationFeatures.at[index, 'uid'] ] = 2021 + age_diff1 - usersEducationFeatures.at[index, 'school_education'] skip = True for i in range(1, 8): if skip: break if not pd.isnull(usersEducationFeatures.at[index, f'graduation_{i}']): prob_age[usersEducationFeatures.at[index, 'uid'] ] = 2021 + age_diff2 - usersEducationFeatures.at[index, f'graduation_{i}'] skip = True if not pd.isnull(usersEducationFeatures.at[index, 'school_education']): count += 1 for i in range(1, 8): if not pd.isnull(usersEducationFeatures.at[index, f'graduation_{i}']): count += 1 grads_count[usersEducationFeatures.at[index, 'uid']] = count return prob_age, grads_count def get_prob_age(uids, prob_age) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = prob_age.setdefault(uid, 0) return res def get_grads_count(uids, grads_count) ->List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = grads_count.setdefault(uid, 0) return res def get_groups_count(uids, usersGroups): tmp = usersGroups.groupby('uid').count() groups_count = [0] * len(uids) for i, uid in enumerate(uids): try: groups_count[i] = tmp.at[uid, 'gid'] except: continue return groups_count def get_mean_and_median_group(uids, gid2age, uid_groups): mean_group = [0.0] * len(uids) median_group = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [gid2age[x] for x in uid_groups[uid]] mean_group[i] = sum(tmp) / len(tmp) median_group[i] = np.median(tmp) except: continue return mean_group, median_group def get_mean_and_median_friends(uids, uid2age, uid_friends): mean_friends = [0.0] * len(uids) median_friends = [0.0] * len(uids) mean_friends2 = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [] if uid in uid_friends and len(uid_friends[uid]) < 42: for friend in uid_friends[uid]: if friend in uid_friends: for f2 in uid_friends[friend]: if f2 != uid and f2 in uid2age: tmp.append(uid2age[f2]) mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0 tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age] mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0 median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0 except: continue return mean_friends, median_friends, mean_friends2 def main(): with open('gid2age.pkl', 'rb') as fin: gid2age = pickle.load(fin) with open('uid2age.pkl', 'rb') as fin: uid2age = pickle.load(fin) with open('uid_friends.pkl', 'rb') as fin: uid_friends = pickle.load(fin) with open('scaler.pkl', 'rb') as fin: scaler = pickle.load(fin) model = CatBoostRegressor() model.load_model('model') test = pd.read_csv('/tmp/data/test.csv') testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv') testGroups = pd.read_csv('/tmp/data/testGroups.csv') test['cfriends'] = 0 for index in test.index: uid = test.at[index, 'uid'] if uid in uid_friends: test.at[index, 'cfriends'] = len(uid_friends[uid]) else: test.at[index, 'cfriends'] = 0 prob_age, grads_count = calculate_probable_age(testEducationFeatures) test['prob_age'] = get_prob_age(test.uid, prob_age) test['grads_count'] = get_grads_count(test.uid, grads_count) test['groups_count'] = get_groups_count(test.uid, testGroups) uid_groups = {} for index in testGroups.index: uid = testGroups.at[index, 'uid'] uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[ index, 'gid']] test['mean_group_age'], test['median_group_age' ] = get_mean_and_median_group(test.uid, gid2age, uid_groups) test['mean_friends_age'], test['median_friends_age'], test[ 'mean_friends2_age'] = get_mean_and_median_friends(test.uid, uid2age, uid_friends) test['is_prob_age'] = test.prob_age != 0 test['is_group_age'] = test.mean_group_age != 0 test['is_friends_age'] = test.mean_friends_age != 0 X_test = scaler.transform(test.drop(['uid'], axis=1)) y_pred = model.predict(X_test) res = pd.DataFrame({'uid': test.uid, 'age': y_pred}) res.to_csv('/var/log/result', header=True, index=False) if __name__ == '__main__': main() <|reserved_special_token_1|> from typing import List import pandas as pd import numpy as np import pickle from catboost import CatBoostRegressor from sklearn.preprocessing import MinMaxScaler def calculate_probable_age(usersEducationFeatures): prob_age = {} grads_count = {} age_diff1 = 17 # age difference for school age_diff2 = 22 # age difference for university for index in usersEducationFeatures.index: count = 0 skip = False if not pd.isnull(usersEducationFeatures.at[index, "school_education"]): prob_age[usersEducationFeatures.at[index, "uid"]] = ( 2021 + age_diff1 - usersEducationFeatures.at[index, "school_education"] ) skip = True for i in range(1, 8): if skip: break if not pd.isnull(usersEducationFeatures.at[index, f"graduation_{i}"]): prob_age[usersEducationFeatures.at[index, "uid"]] = ( 2021 + age_diff2 - usersEducationFeatures.at[index, f"graduation_{i}"] ) skip = True if not pd.isnull(usersEducationFeatures.at[index, "school_education"]): count += 1 for i in range(1, 8): if not pd.isnull(usersEducationFeatures.at[index, f"graduation_{i}"]): count += 1 grads_count[usersEducationFeatures.at[index, "uid"]] = count return prob_age, grads_count def get_prob_age(uids, prob_age) -> List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = prob_age.setdefault(uid, 0) return res def get_grads_count(uids, grads_count) -> List[int]: res = [0] * len(uids) for i, uid in enumerate(uids): res[i] = grads_count.setdefault(uid, 0) return res def get_groups_count(uids, usersGroups): tmp = usersGroups.groupby("uid").count() groups_count = [0] * len(uids) for i, uid in enumerate(uids): try: groups_count[i] = tmp.at[uid, "gid"] except: continue return groups_count def get_mean_and_median_group(uids, gid2age, uid_groups): mean_group = [0.0] * len(uids) median_group = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [gid2age[x] for x in uid_groups[uid]] mean_group[i] = sum(tmp) / len(tmp) median_group[i] = np.median(tmp) except: continue return mean_group, median_group def get_mean_and_median_friends(uids, uid2age, uid_friends): mean_friends = [0.0] * len(uids) median_friends = [0.0] * len(uids) mean_friends2 = [0.0] * len(uids) for i, uid in enumerate(uids): try: tmp = [] if uid in uid_friends and len(uid_friends[uid]) < 42: for friend in uid_friends[uid]: if friend in uid_friends: for f2 in uid_friends[friend]: if f2 != uid and f2 in uid2age: tmp.append(uid2age[f2]) mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0 tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age] mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0 median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0 except: continue return mean_friends, median_friends, mean_friends2 def main(): with open("gid2age.pkl", "rb") as fin: gid2age = pickle.load(fin) with open("uid2age.pkl", "rb") as fin: uid2age = pickle.load(fin) with open("uid_friends.pkl", "rb") as fin: uid_friends = pickle.load(fin) with open("scaler.pkl", "rb") as fin: scaler = pickle.load(fin) model = CatBoostRegressor() model.load_model("model") test = pd.read_csv("/tmp/data/test.csv") testEducationFeatures = pd.read_csv("/tmp/data/testEducationFeatures.csv") testGroups = pd.read_csv("/tmp/data/testGroups.csv") test["cfriends"] = 0 for index in test.index: uid = test.at[index, "uid"] if uid in uid_friends: test.at[index, "cfriends"] = len(uid_friends[uid]) else: test.at[index, "cfriends"] = 0 prob_age, grads_count = calculate_probable_age(testEducationFeatures) test["prob_age"] = get_prob_age(test.uid, prob_age) test["grads_count"] = get_grads_count(test.uid, grads_count) test["groups_count"] = get_groups_count(test.uid, testGroups) uid_groups = {} for index in testGroups.index: uid = testGroups.at[index, "uid"] uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[index, "gid"]] test["mean_group_age"], test["median_group_age"] = get_mean_and_median_group(test.uid, gid2age, uid_groups) test["mean_friends_age"], test["median_friends_age"], test["mean_friends2_age"] = get_mean_and_median_friends( test.uid, uid2age, uid_friends ) test["is_prob_age"] = test.prob_age != 0 test["is_group_age"] = test.mean_group_age != 0 test["is_friends_age"] = test.mean_friends_age != 0 X_test = scaler.transform(test.drop(["uid"], axis=1)) y_pred = model.predict(X_test) res = pd.DataFrame({"uid": test.uid, "age": y_pred}) res.to_csv("/var/log/result", header=True, index=False) if __name__ == "__main__": main()
flexible
{ "blob_id": "ee0ed255b6851696dc57c01100cd67f5f959cf01", "index": 7437, "step-1": "<mask token>\n\n\ndef get_prob_age(uids, prob_age) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = prob_age.setdefault(uid, 0)\n return res\n\n\ndef get_grads_count(uids, grads_count) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = grads_count.setdefault(uid, 0)\n return res\n\n\ndef get_groups_count(uids, usersGroups):\n tmp = usersGroups.groupby('uid').count()\n groups_count = [0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n groups_count[i] = tmp.at[uid, 'gid']\n except:\n continue\n return groups_count\n\n\ndef get_mean_and_median_group(uids, gid2age, uid_groups):\n mean_group = [0.0] * len(uids)\n median_group = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = [gid2age[x] for x in uid_groups[uid]]\n mean_group[i] = sum(tmp) / len(tmp)\n median_group[i] = np.median(tmp)\n except:\n continue\n return mean_group, median_group\n\n\ndef get_mean_and_median_friends(uids, uid2age, uid_friends):\n mean_friends = [0.0] * len(uids)\n median_friends = [0.0] * len(uids)\n mean_friends2 = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = []\n if uid in uid_friends and len(uid_friends[uid]) < 42:\n for friend in uid_friends[uid]:\n if friend in uid_friends:\n for f2 in uid_friends[friend]:\n if f2 != uid and f2 in uid2age:\n tmp.append(uid2age[f2])\n mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0\n tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age]\n mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0\n median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0\n except:\n continue\n return mean_friends, median_friends, mean_friends2\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_prob_age(uids, prob_age) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = prob_age.setdefault(uid, 0)\n return res\n\n\ndef get_grads_count(uids, grads_count) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = grads_count.setdefault(uid, 0)\n return res\n\n\ndef get_groups_count(uids, usersGroups):\n tmp = usersGroups.groupby('uid').count()\n groups_count = [0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n groups_count[i] = tmp.at[uid, 'gid']\n except:\n continue\n return groups_count\n\n\ndef get_mean_and_median_group(uids, gid2age, uid_groups):\n mean_group = [0.0] * len(uids)\n median_group = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = [gid2age[x] for x in uid_groups[uid]]\n mean_group[i] = sum(tmp) / len(tmp)\n median_group[i] = np.median(tmp)\n except:\n continue\n return mean_group, median_group\n\n\ndef get_mean_and_median_friends(uids, uid2age, uid_friends):\n mean_friends = [0.0] * len(uids)\n median_friends = [0.0] * len(uids)\n mean_friends2 = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = []\n if uid in uid_friends and len(uid_friends[uid]) < 42:\n for friend in uid_friends[uid]:\n if friend in uid_friends:\n for f2 in uid_friends[friend]:\n if f2 != uid and f2 in uid2age:\n tmp.append(uid2age[f2])\n mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0\n tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age]\n mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0\n median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0\n except:\n continue\n return mean_friends, median_friends, mean_friends2\n\n\ndef main():\n with open('gid2age.pkl', 'rb') as fin:\n gid2age = pickle.load(fin)\n with open('uid2age.pkl', 'rb') as fin:\n uid2age = pickle.load(fin)\n with open('uid_friends.pkl', 'rb') as fin:\n uid_friends = pickle.load(fin)\n with open('scaler.pkl', 'rb') as fin:\n scaler = pickle.load(fin)\n model = CatBoostRegressor()\n model.load_model('model')\n test = pd.read_csv('/tmp/data/test.csv')\n testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv')\n testGroups = pd.read_csv('/tmp/data/testGroups.csv')\n test['cfriends'] = 0\n for index in test.index:\n uid = test.at[index, 'uid']\n if uid in uid_friends:\n test.at[index, 'cfriends'] = len(uid_friends[uid])\n else:\n test.at[index, 'cfriends'] = 0\n prob_age, grads_count = calculate_probable_age(testEducationFeatures)\n test['prob_age'] = get_prob_age(test.uid, prob_age)\n test['grads_count'] = get_grads_count(test.uid, grads_count)\n test['groups_count'] = get_groups_count(test.uid, testGroups)\n uid_groups = {}\n for index in testGroups.index:\n uid = testGroups.at[index, 'uid']\n uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[\n index, 'gid']]\n test['mean_group_age'], test['median_group_age'\n ] = get_mean_and_median_group(test.uid, gid2age, uid_groups)\n test['mean_friends_age'], test['median_friends_age'], test[\n 'mean_friends2_age'] = get_mean_and_median_friends(test.uid,\n uid2age, uid_friends)\n test['is_prob_age'] = test.prob_age != 0\n test['is_group_age'] = test.mean_group_age != 0\n test['is_friends_age'] = test.mean_friends_age != 0\n X_test = scaler.transform(test.drop(['uid'], axis=1))\n y_pred = model.predict(X_test)\n res = pd.DataFrame({'uid': test.uid, 'age': y_pred})\n res.to_csv('/var/log/result', header=True, index=False)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef calculate_probable_age(usersEducationFeatures):\n prob_age = {}\n grads_count = {}\n age_diff1 = 17\n age_diff2 = 22\n for index in usersEducationFeatures.index:\n count = 0\n skip = False\n if not pd.isnull(usersEducationFeatures.at[index, 'school_education']):\n prob_age[usersEducationFeatures.at[index, 'uid']\n ] = 2021 + age_diff1 - usersEducationFeatures.at[index,\n 'school_education']\n skip = True\n for i in range(1, 8):\n if skip:\n break\n if not pd.isnull(usersEducationFeatures.at[index,\n f'graduation_{i}']):\n prob_age[usersEducationFeatures.at[index, 'uid']\n ] = 2021 + age_diff2 - usersEducationFeatures.at[index,\n f'graduation_{i}']\n skip = True\n if not pd.isnull(usersEducationFeatures.at[index, 'school_education']):\n count += 1\n for i in range(1, 8):\n if not pd.isnull(usersEducationFeatures.at[index,\n f'graduation_{i}']):\n count += 1\n grads_count[usersEducationFeatures.at[index, 'uid']] = count\n return prob_age, grads_count\n\n\ndef get_prob_age(uids, prob_age) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = prob_age.setdefault(uid, 0)\n return res\n\n\ndef get_grads_count(uids, grads_count) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = grads_count.setdefault(uid, 0)\n return res\n\n\ndef get_groups_count(uids, usersGroups):\n tmp = usersGroups.groupby('uid').count()\n groups_count = [0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n groups_count[i] = tmp.at[uid, 'gid']\n except:\n continue\n return groups_count\n\n\ndef get_mean_and_median_group(uids, gid2age, uid_groups):\n mean_group = [0.0] * len(uids)\n median_group = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = [gid2age[x] for x in uid_groups[uid]]\n mean_group[i] = sum(tmp) / len(tmp)\n median_group[i] = np.median(tmp)\n except:\n continue\n return mean_group, median_group\n\n\ndef get_mean_and_median_friends(uids, uid2age, uid_friends):\n mean_friends = [0.0] * len(uids)\n median_friends = [0.0] * len(uids)\n mean_friends2 = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = []\n if uid in uid_friends and len(uid_friends[uid]) < 42:\n for friend in uid_friends[uid]:\n if friend in uid_friends:\n for f2 in uid_friends[friend]:\n if f2 != uid and f2 in uid2age:\n tmp.append(uid2age[f2])\n mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0\n tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age]\n mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0\n median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0\n except:\n continue\n return mean_friends, median_friends, mean_friends2\n\n\ndef main():\n with open('gid2age.pkl', 'rb') as fin:\n gid2age = pickle.load(fin)\n with open('uid2age.pkl', 'rb') as fin:\n uid2age = pickle.load(fin)\n with open('uid_friends.pkl', 'rb') as fin:\n uid_friends = pickle.load(fin)\n with open('scaler.pkl', 'rb') as fin:\n scaler = pickle.load(fin)\n model = CatBoostRegressor()\n model.load_model('model')\n test = pd.read_csv('/tmp/data/test.csv')\n testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv')\n testGroups = pd.read_csv('/tmp/data/testGroups.csv')\n test['cfriends'] = 0\n for index in test.index:\n uid = test.at[index, 'uid']\n if uid in uid_friends:\n test.at[index, 'cfriends'] = len(uid_friends[uid])\n else:\n test.at[index, 'cfriends'] = 0\n prob_age, grads_count = calculate_probable_age(testEducationFeatures)\n test['prob_age'] = get_prob_age(test.uid, prob_age)\n test['grads_count'] = get_grads_count(test.uid, grads_count)\n test['groups_count'] = get_groups_count(test.uid, testGroups)\n uid_groups = {}\n for index in testGroups.index:\n uid = testGroups.at[index, 'uid']\n uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[\n index, 'gid']]\n test['mean_group_age'], test['median_group_age'\n ] = get_mean_and_median_group(test.uid, gid2age, uid_groups)\n test['mean_friends_age'], test['median_friends_age'], test[\n 'mean_friends2_age'] = get_mean_and_median_friends(test.uid,\n uid2age, uid_friends)\n test['is_prob_age'] = test.prob_age != 0\n test['is_group_age'] = test.mean_group_age != 0\n test['is_friends_age'] = test.mean_friends_age != 0\n X_test = scaler.transform(test.drop(['uid'], axis=1))\n y_pred = model.predict(X_test)\n res = pd.DataFrame({'uid': test.uid, 'age': y_pred})\n res.to_csv('/var/log/result', header=True, index=False)\n\n\n<mask token>\n", "step-4": "from typing import List\nimport pandas as pd\nimport numpy as np\nimport pickle\nfrom catboost import CatBoostRegressor\nfrom sklearn.preprocessing import MinMaxScaler\n\n\ndef calculate_probable_age(usersEducationFeatures):\n prob_age = {}\n grads_count = {}\n age_diff1 = 17\n age_diff2 = 22\n for index in usersEducationFeatures.index:\n count = 0\n skip = False\n if not pd.isnull(usersEducationFeatures.at[index, 'school_education']):\n prob_age[usersEducationFeatures.at[index, 'uid']\n ] = 2021 + age_diff1 - usersEducationFeatures.at[index,\n 'school_education']\n skip = True\n for i in range(1, 8):\n if skip:\n break\n if not pd.isnull(usersEducationFeatures.at[index,\n f'graduation_{i}']):\n prob_age[usersEducationFeatures.at[index, 'uid']\n ] = 2021 + age_diff2 - usersEducationFeatures.at[index,\n f'graduation_{i}']\n skip = True\n if not pd.isnull(usersEducationFeatures.at[index, 'school_education']):\n count += 1\n for i in range(1, 8):\n if not pd.isnull(usersEducationFeatures.at[index,\n f'graduation_{i}']):\n count += 1\n grads_count[usersEducationFeatures.at[index, 'uid']] = count\n return prob_age, grads_count\n\n\ndef get_prob_age(uids, prob_age) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = prob_age.setdefault(uid, 0)\n return res\n\n\ndef get_grads_count(uids, grads_count) ->List[int]:\n res = [0] * len(uids)\n for i, uid in enumerate(uids):\n res[i] = grads_count.setdefault(uid, 0)\n return res\n\n\ndef get_groups_count(uids, usersGroups):\n tmp = usersGroups.groupby('uid').count()\n groups_count = [0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n groups_count[i] = tmp.at[uid, 'gid']\n except:\n continue\n return groups_count\n\n\ndef get_mean_and_median_group(uids, gid2age, uid_groups):\n mean_group = [0.0] * len(uids)\n median_group = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = [gid2age[x] for x in uid_groups[uid]]\n mean_group[i] = sum(tmp) / len(tmp)\n median_group[i] = np.median(tmp)\n except:\n continue\n return mean_group, median_group\n\n\ndef get_mean_and_median_friends(uids, uid2age, uid_friends):\n mean_friends = [0.0] * len(uids)\n median_friends = [0.0] * len(uids)\n mean_friends2 = [0.0] * len(uids)\n for i, uid in enumerate(uids):\n try:\n tmp = []\n if uid in uid_friends and len(uid_friends[uid]) < 42:\n for friend in uid_friends[uid]:\n if friend in uid_friends:\n for f2 in uid_friends[friend]:\n if f2 != uid and f2 in uid2age:\n tmp.append(uid2age[f2])\n mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0\n tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age]\n mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0\n median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0\n except:\n continue\n return mean_friends, median_friends, mean_friends2\n\n\ndef main():\n with open('gid2age.pkl', 'rb') as fin:\n gid2age = pickle.load(fin)\n with open('uid2age.pkl', 'rb') as fin:\n uid2age = pickle.load(fin)\n with open('uid_friends.pkl', 'rb') as fin:\n uid_friends = pickle.load(fin)\n with open('scaler.pkl', 'rb') as fin:\n scaler = pickle.load(fin)\n model = CatBoostRegressor()\n model.load_model('model')\n test = pd.read_csv('/tmp/data/test.csv')\n testEducationFeatures = pd.read_csv('/tmp/data/testEducationFeatures.csv')\n testGroups = pd.read_csv('/tmp/data/testGroups.csv')\n test['cfriends'] = 0\n for index in test.index:\n uid = test.at[index, 'uid']\n if uid in uid_friends:\n test.at[index, 'cfriends'] = len(uid_friends[uid])\n else:\n test.at[index, 'cfriends'] = 0\n prob_age, grads_count = calculate_probable_age(testEducationFeatures)\n test['prob_age'] = get_prob_age(test.uid, prob_age)\n test['grads_count'] = get_grads_count(test.uid, grads_count)\n test['groups_count'] = get_groups_count(test.uid, testGroups)\n uid_groups = {}\n for index in testGroups.index:\n uid = testGroups.at[index, 'uid']\n uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[\n index, 'gid']]\n test['mean_group_age'], test['median_group_age'\n ] = get_mean_and_median_group(test.uid, gid2age, uid_groups)\n test['mean_friends_age'], test['median_friends_age'], test[\n 'mean_friends2_age'] = get_mean_and_median_friends(test.uid,\n uid2age, uid_friends)\n test['is_prob_age'] = test.prob_age != 0\n test['is_group_age'] = test.mean_group_age != 0\n test['is_friends_age'] = test.mean_friends_age != 0\n X_test = scaler.transform(test.drop(['uid'], axis=1))\n y_pred = model.predict(X_test)\n res = pd.DataFrame({'uid': test.uid, 'age': y_pred})\n res.to_csv('/var/log/result', header=True, index=False)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from typing import List\r\n\r\nimport pandas as pd\r\nimport numpy as np\r\nimport pickle\r\nfrom catboost import CatBoostRegressor\r\nfrom sklearn.preprocessing import MinMaxScaler\r\n\r\n\r\ndef calculate_probable_age(usersEducationFeatures):\r\n prob_age = {}\r\n grads_count = {}\r\n age_diff1 = 17 # age difference for school\r\n age_diff2 = 22 # age difference for university\r\n for index in usersEducationFeatures.index:\r\n count = 0\r\n skip = False\r\n\r\n if not pd.isnull(usersEducationFeatures.at[index, \"school_education\"]):\r\n prob_age[usersEducationFeatures.at[index, \"uid\"]] = (\r\n 2021 + age_diff1 - usersEducationFeatures.at[index, \"school_education\"]\r\n )\r\n skip = True\r\n for i in range(1, 8):\r\n if skip:\r\n break\r\n if not pd.isnull(usersEducationFeatures.at[index, f\"graduation_{i}\"]):\r\n prob_age[usersEducationFeatures.at[index, \"uid\"]] = (\r\n 2021 + age_diff2 - usersEducationFeatures.at[index, f\"graduation_{i}\"]\r\n )\r\n skip = True\r\n\r\n if not pd.isnull(usersEducationFeatures.at[index, \"school_education\"]):\r\n count += 1\r\n for i in range(1, 8):\r\n if not pd.isnull(usersEducationFeatures.at[index, f\"graduation_{i}\"]):\r\n count += 1\r\n\r\n grads_count[usersEducationFeatures.at[index, \"uid\"]] = count\r\n return prob_age, grads_count\r\n\r\n\r\ndef get_prob_age(uids, prob_age) -> List[int]:\r\n res = [0] * len(uids)\r\n for i, uid in enumerate(uids):\r\n res[i] = prob_age.setdefault(uid, 0)\r\n return res\r\n\r\n\r\ndef get_grads_count(uids, grads_count) -> List[int]:\r\n res = [0] * len(uids)\r\n for i, uid in enumerate(uids):\r\n res[i] = grads_count.setdefault(uid, 0)\r\n return res\r\n\r\n\r\ndef get_groups_count(uids, usersGroups):\r\n tmp = usersGroups.groupby(\"uid\").count()\r\n groups_count = [0] * len(uids)\r\n for i, uid in enumerate(uids):\r\n try:\r\n groups_count[i] = tmp.at[uid, \"gid\"]\r\n except:\r\n continue\r\n return groups_count\r\n\r\n\r\ndef get_mean_and_median_group(uids, gid2age, uid_groups):\r\n mean_group = [0.0] * len(uids)\r\n median_group = [0.0] * len(uids)\r\n for i, uid in enumerate(uids):\r\n try:\r\n tmp = [gid2age[x] for x in uid_groups[uid]]\r\n mean_group[i] = sum(tmp) / len(tmp)\r\n median_group[i] = np.median(tmp)\r\n except:\r\n continue\r\n return mean_group, median_group\r\n\r\n\r\ndef get_mean_and_median_friends(uids, uid2age, uid_friends):\r\n mean_friends = [0.0] * len(uids)\r\n median_friends = [0.0] * len(uids)\r\n mean_friends2 = [0.0] * len(uids)\r\n for i, uid in enumerate(uids):\r\n try:\r\n tmp = []\r\n if uid in uid_friends and len(uid_friends[uid]) < 42:\r\n for friend in uid_friends[uid]:\r\n if friend in uid_friends:\r\n for f2 in uid_friends[friend]:\r\n if f2 != uid and f2 in uid2age:\r\n tmp.append(uid2age[f2])\r\n mean_friends2[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0\r\n tmp = [uid2age[x] for x in uid_friends[uid] if x in uid2age]\r\n mean_friends[i] = sum(tmp) / len(tmp) if len(tmp) != 0 else 0.0\r\n median_friends[i] = np.median(tmp) if len(tmp) != 0 else 0.0\r\n except:\r\n continue\r\n return mean_friends, median_friends, mean_friends2\r\n\r\n\r\ndef main():\r\n with open(\"gid2age.pkl\", \"rb\") as fin:\r\n gid2age = pickle.load(fin)\r\n with open(\"uid2age.pkl\", \"rb\") as fin:\r\n uid2age = pickle.load(fin)\r\n with open(\"uid_friends.pkl\", \"rb\") as fin:\r\n uid_friends = pickle.load(fin)\r\n with open(\"scaler.pkl\", \"rb\") as fin:\r\n scaler = pickle.load(fin)\r\n model = CatBoostRegressor()\r\n model.load_model(\"model\")\r\n\r\n test = pd.read_csv(\"/tmp/data/test.csv\")\r\n testEducationFeatures = pd.read_csv(\"/tmp/data/testEducationFeatures.csv\")\r\n testGroups = pd.read_csv(\"/tmp/data/testGroups.csv\")\r\n\r\n test[\"cfriends\"] = 0\r\n for index in test.index:\r\n uid = test.at[index, \"uid\"]\r\n if uid in uid_friends:\r\n test.at[index, \"cfriends\"] = len(uid_friends[uid])\r\n else:\r\n test.at[index, \"cfriends\"] = 0\r\n\r\n prob_age, grads_count = calculate_probable_age(testEducationFeatures)\r\n test[\"prob_age\"] = get_prob_age(test.uid, prob_age)\r\n test[\"grads_count\"] = get_grads_count(test.uid, grads_count)\r\n\r\n test[\"groups_count\"] = get_groups_count(test.uid, testGroups)\r\n\r\n uid_groups = {}\r\n for index in testGroups.index:\r\n uid = testGroups.at[index, \"uid\"]\r\n uid_groups[uid] = uid_groups.setdefault(uid, []) + [testGroups.at[index, \"gid\"]]\r\n\r\n test[\"mean_group_age\"], test[\"median_group_age\"] = get_mean_and_median_group(test.uid, gid2age, uid_groups)\r\n\r\n test[\"mean_friends_age\"], test[\"median_friends_age\"], test[\"mean_friends2_age\"] = get_mean_and_median_friends(\r\n test.uid, uid2age, uid_friends\r\n )\r\n\r\n test[\"is_prob_age\"] = test.prob_age != 0\r\n test[\"is_group_age\"] = test.mean_group_age != 0\r\n test[\"is_friends_age\"] = test.mean_friends_age != 0\r\n\r\n X_test = scaler.transform(test.drop([\"uid\"], axis=1))\r\n\r\n y_pred = model.predict(X_test)\r\n\r\n res = pd.DataFrame({\"uid\": test.uid, \"age\": y_pred})\r\n\r\n res.to_csv(\"/var/log/result\", header=True, index=False)\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n", "step-ids": [ 5, 6, 7, 9, 10 ] }
[ 5, 6, 7, 9, 10 ]
# i change it for change1 # change 1.py in master i = 1 # fix bug for boss
normal
{ "blob_id": "92f4f1c8a4e04b07ed7c05d5bb733c0b9c28bd05", "index": 5325, "step-1": "<mask token>\n", "step-2": "i = 1\n", "step-3": "# i change it for change1\n# change 1.py in master\ni = 1\n# fix bug for boss\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#anand python problem 2:29 #Write a function array to create an 2-dimensional array. The function should take both dimensions as arguments. Value of each element can be initialized to None: # def array_imp(row,col): res=[[None]*col for i in range(row) ] return res if __name__=='__main__': outs=array_imp(2,3) print outs
normal
{ "blob_id": "b5835b676eb8ac814086f7482f172f48e2ad5a0a", "index": 8189, "step-1": "#anand python problem 2:29\n#Write a function array to create an 2-dimensional array. The function should take both dimensions as arguments. Value of each element can be initialized to None:\n#\n\ndef array_imp(row,col):\n\tres=[[None]*col for i in range(row) ]\n\treturn res\n\n\n\n\nif __name__=='__main__':\n\touts=array_imp(2,3)\n\tprint outs\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import pandas as pd import math import json import html import bs4 import re import dateparser from bs4 import BeautifulSoup from dataclasses import dataclass, field from datetime import datetime from typing import Any, List, Dict, ClassVar, Union from urllib.parse import urlparse from .markdown import MarkdownData, MarkdownDocument Url = str @dataclass class Action: """ The class for an action we want to track. This class is used to manage the data of an individual Action. It is used to perform the following: - set mandatory/optional fields - set meta fields - cast an validate data so that it knows how to read datafields from markdown and dataframes - output actions as for dataframes and markdown - create and populate action instances from markdown and dataframes """ date: str sources: List[Url] action: str struggles: List[str] description: str locations: List[str] = None companies: List[str] = None workers: int = None tags: List[str] = None author: str = None _meta_fields: ClassVar = ["author"] _valid_struggles: ClassVar = [ "ethics", "pay_and_benefits", "working_conditions", "discrimination", "unfair_labor_practices", "job_security", ] _valid_actions: ClassVar = [ "strike", "protest", "open_letter", "legal_action", "union_drive", "union_representation", ] @staticmethod def is_none(field: Any) -> bool: if field is None: return True elif isinstance(field, float) and math.isnan(field): return True elif isinstance(field, str) and field.lower() == "none": return True elif isinstance(field, (list,)) and len(field) == 0: return True else: return False def listify(self, field: Union[List[Any], Any]) -> List[Any]: if self.is_none(field): return None else: if isinstance(field, (list,)): return field else: return [s.strip().lower() for s in field.split(",")] def __post_init__(self): """ Used to validate fields. """ # self.date = datetime.strptime(self.date, "%Y-%m-%d").date() self.date = dateparser.parse(self.date).date() self.sources = self.listify(self.sources) self.struggles = self.listify(self.struggles) self.action = self.action.strip().lower() self.companies = self.listify(self.companies) self.tags = self.listify(self.tags) self.locations = self.listify(self.locations) self.workers = None if self.is_none(self.workers) else int(self.workers) # make sure action is a valid action assert ( self.action in self._valid_actions ), f"'{self.action}' is not a valid input. Valid inputs are: {self._valid_actions}" # make sure all struggles are valid struggles for struggle in self.struggles: assert ( struggle in self._valid_struggles ), f"'{struggle}' is not a valid input. Valid inputs are: {self._valid_struggles}" # make sure source is either a url or a html link tag <a> for source in self.sources: assert ( BeautifulSoup(source, "html.parser").a is not None or urlparse(source).netloc is not "" ), f"'{source}' is in valid. source must be a valid url or an html link tag element" # if html, extract only href from sources self.sources = [ BeautifulSoup(source, "html.parser").a["href"] if "href" in source else source for source in self.sources ] def __lt__(self, other): """ Used to make Actions sortable. """ return self.date < other.date def __eq__(self, other): """ Overrides the default implementation for equality. """ if isinstance(other, Action): return self.__dict__.items() == other.__dict__.items() return False def to_df(self) -> Dict[str, Any]: """ Return dict of all fields serialized to string """ return {key: self.render_df(key) for key, value in self.__dict__.items()} def render_df(self, field: str) -> str: """ Return the value of the field rendered for df. """ value = self.__getattribute__(field) if field in ["date", "workers"]: return str(value) elif field in ["locations", "struggles", "companies", "tags", "sources"]: return str(value).strip("[").strip("]").replace("'", "").replace('"', "") else: return value def to_md(self, field: str, td: bs4.element.Tag) -> str: """ Convert field for markdown Takes a td BeautifulSoup object and updates it according to the field type so that it renders correctly in markdown. """ assert ( field in self.__dataclass_fields__ ), f"Cannot serialize {field}. Not a valid field in Action." value = self.__getattribute__(field) if field in ["date", "workers"]: td.string = str(value) elif field in ["locations", "struggles", "companies", "tags"]: td.string = ( str(value).strip("[").strip("]").replace("'", "").replace('"', "") ) elif field == "sources": ret = [] for source in value: tag = ( f"<a href='{source}' target='_blank'>{urlparse(source).netloc}</a>" ) ret.append(tag) td.append(BeautifulSoup(html.unescape(", ".join(ret)), "html.parser")) else: td.string = value return td @classmethod def create_from_md(cls, table: bs4.element.Tag) -> "Action": """ Create an Action instance from a md table. """ a = {} trs = table.find_all("tr") for key, val in table.attrs.items(): if key != "class": a[key] = val for i, tr in enumerate(trs): td_key = tr.find("td", class_="field-key") td_val = tr.find("td", class_="field-value") val = "".join(str(e) for e in td_val.contents).strip() key = "".join(str(e) for e in td_key.contents).strip() a[key] = val return cls(**a) @classmethod def create_from_row(cls, row: pd.Series) -> "Action": """ Create an Action instance from a dataframe row. """ fields = [ key for key, value in cls.__dataclass_fields__.items() if value.type != ClassVar ] d = {key: value for key, value in row.to_dict().items() if key in fields} return cls(**d) @dataclass class Actions: """ The class for a set of actions. This class is a collection of actions. It is used to for the four primary usecases: - to serialize the list of actions into a dataframe - to serialize the list of actions into a markdown/html table - to create and populate an Actions instance from a dataframe - to create and populate an Actions instance from a markdown document """ action_id: ClassVar = "actions" actions: List[Action] = field(default_factory=lambda: []) fields: List[str] = field( default_factory=lambda: [ key for key, value in Action.__dataclass_fields__.items() if value.type != ClassVar ] ) def __len__(self) -> int: """ Get the number of actions. """ return len(self.actions) def __eq__(self, other): """ Overrides the default implementation for equality. """ if isinstance(other, Actions): return self.actions == other.actions return False def sort(self, *args, **kwargs) -> "Actions": """ Sorts the list of actions. """ self.actions.sort(*args, **kwargs) return self def append(self, action: Action): """ Append an action onto this instance of Actions. """ self.actions.append(action) def to_df(self) -> pd.DataFrame: """ Converts this instance of Actions to a df. """ data = [] for action in self.actions: data.append(action.to_df()) df = pd.read_json(json.dumps(data), orient="list") return df[self.fields] def to_md(self): """ Convert this instance of Actions to markdown/HTML. """ soup = BeautifulSoup(f"<div id={self.action_id}></div>", "html.parser") for action in self.actions: table = soup.new_tag("table") soup.div.append(table) for meta_field in Action._meta_fields: table[meta_field] = action.__getattribute__(meta_field) for field in self.fields: if action.__getattribute__(field) is None: continue if field in Action._meta_fields: continue tr = soup.new_tag("tr") td_key = soup.new_tag("td", attrs={"class": "field-key"}) td_val = soup.new_tag("td", attrs={"class": "field-value"}) td_key.string = field td_val = action.to_md(field, td_val) tr.append(td_key) tr.append(td_val) table.append(tr) return soup.prettify() @classmethod def read_from_md(cls, md_doc: MarkdownDocument) -> "Actions": """ Create and populate an Actions instance from a Markdown Document. """ md_data = re.findall(fr'<div id="{cls.action_id}">+[\s\S]+<\/div>', md_doc) assert len(md_data) == 1, f"multiple divs with id={cls.action_id} were found" md_data = md_data[0] soup = BeautifulSoup(md_data, "html.parser") tables = soup.div.find_all("table") actions = Actions() for table in tables: action = Action.create_from_md(table) actions.append(action) return actions @staticmethod def read_from_df(df: pd.DataFrame) -> "Actions": """ Create and populate an Actions instance from a dataframe. """ actions = Actions() for i, row in df.iterrows(): action = Action.create_from_row(row) actions.append(action) return actions
normal
{ "blob_id": "4d0f612c74dc175766f489580fc4a492e1bfd085", "index": 4345, "step-1": "<mask token>\n\n\n@dataclass\nclass Actions:\n \"\"\" The class for a set of actions.\n\n This class is a collection of actions. It is used to for the four primary\n usecases:\n - to serialize the list of actions into a dataframe\n - to serialize the list of actions into a markdown/html table\n - to create and populate an Actions instance from a dataframe\n - to create and populate an Actions instance from a markdown document\n \"\"\"\n action_id: ClassVar = 'actions'\n actions: List[Action] = field(default_factory=lambda : [])\n fields: List[str] = field(default_factory=lambda : [key for key, value in\n Action.__dataclass_fields__.items() if value.type != ClassVar])\n\n def __len__(self) ->int:\n \"\"\" Get the number of actions. \"\"\"\n return len(self.actions)\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Actions):\n return self.actions == other.actions\n return False\n\n def sort(self, *args, **kwargs) ->'Actions':\n \"\"\" Sorts the list of actions. \"\"\"\n self.actions.sort(*args, **kwargs)\n return self\n\n def append(self, action: Action):\n \"\"\" Append an action onto this instance of Actions. \"\"\"\n self.actions.append(action)\n\n def to_df(self) ->pd.DataFrame:\n \"\"\" Converts this instance of Actions to a df. \"\"\"\n data = []\n for action in self.actions:\n data.append(action.to_df())\n df = pd.read_json(json.dumps(data), orient='list')\n return df[self.fields]\n\n def to_md(self):\n \"\"\" Convert this instance of Actions to markdown/HTML. \"\"\"\n soup = BeautifulSoup(f'<div id={self.action_id}></div>', 'html.parser')\n for action in self.actions:\n table = soup.new_tag('table')\n soup.div.append(table)\n for meta_field in Action._meta_fields:\n table[meta_field] = action.__getattribute__(meta_field)\n for field in self.fields:\n if action.__getattribute__(field) is None:\n continue\n if field in Action._meta_fields:\n continue\n tr = soup.new_tag('tr')\n td_key = soup.new_tag('td', attrs={'class': 'field-key'})\n td_val = soup.new_tag('td', attrs={'class': 'field-value'})\n td_key.string = field\n td_val = action.to_md(field, td_val)\n tr.append(td_key)\n tr.append(td_val)\n table.append(tr)\n return soup.prettify()\n\n @classmethod\n def read_from_md(cls, md_doc: MarkdownDocument) ->'Actions':\n \"\"\" Create and populate an Actions instance from a Markdown Document. \"\"\"\n md_data = re.findall(f'<div id=\"{cls.action_id}\">+[\\\\s\\\\S]+<\\\\/div>',\n md_doc)\n assert len(md_data\n ) == 1, f'multiple divs with id={cls.action_id} were found'\n md_data = md_data[0]\n soup = BeautifulSoup(md_data, 'html.parser')\n tables = soup.div.find_all('table')\n actions = Actions()\n for table in tables:\n action = Action.create_from_md(table)\n actions.append(action)\n return actions\n\n @staticmethod\n def read_from_df(df: pd.DataFrame) ->'Actions':\n \"\"\" Create and populate an Actions instance from a dataframe. \"\"\"\n actions = Actions()\n for i, row in df.iterrows():\n action = Action.create_from_row(row)\n actions.append(action)\n return actions\n", "step-2": "<mask token>\n\n\n@dataclass\nclass Action:\n <mask token>\n date: str\n sources: List[Url]\n action: str\n struggles: List[str]\n description: str\n locations: List[str] = None\n companies: List[str] = None\n workers: int = None\n tags: List[str] = None\n author: str = None\n _meta_fields: ClassVar = ['author']\n _valid_struggles: ClassVar = ['ethics', 'pay_and_benefits',\n 'working_conditions', 'discrimination', 'unfair_labor_practices',\n 'job_security']\n _valid_actions: ClassVar = ['strike', 'protest', 'open_letter',\n 'legal_action', 'union_drive', 'union_representation']\n\n @staticmethod\n def is_none(field: Any) ->bool:\n if field is None:\n return True\n elif isinstance(field, float) and math.isnan(field):\n return True\n elif isinstance(field, str) and field.lower() == 'none':\n return True\n elif isinstance(field, (list,)) and len(field) == 0:\n return True\n else:\n return False\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def to_md(self, field: str, td: bs4.element.Tag) ->str:\n \"\"\" Convert field for markdown\n\n Takes a td BeautifulSoup object and updates it according to the field\n type so that it renders correctly in markdown.\n \"\"\"\n assert field in self.__dataclass_fields__, f'Cannot serialize {field}. Not a valid field in Action.'\n value = self.__getattribute__(field)\n if field in ['date', 'workers']:\n td.string = str(value)\n elif field in ['locations', 'struggles', 'companies', 'tags']:\n td.string = str(value).strip('[').strip(']').replace(\"'\", ''\n ).replace('\"', '')\n elif field == 'sources':\n ret = []\n for source in value:\n tag = (\n f\"<a href='{source}' target='_blank'>{urlparse(source).netloc}</a>\"\n )\n ret.append(tag)\n td.append(BeautifulSoup(html.unescape(', '.join(ret)),\n 'html.parser'))\n else:\n td.string = value\n return td\n <mask token>\n <mask token>\n\n\n@dataclass\nclass Actions:\n \"\"\" The class for a set of actions.\n\n This class is a collection of actions. It is used to for the four primary\n usecases:\n - to serialize the list of actions into a dataframe\n - to serialize the list of actions into a markdown/html table\n - to create and populate an Actions instance from a dataframe\n - to create and populate an Actions instance from a markdown document\n \"\"\"\n action_id: ClassVar = 'actions'\n actions: List[Action] = field(default_factory=lambda : [])\n fields: List[str] = field(default_factory=lambda : [key for key, value in\n Action.__dataclass_fields__.items() if value.type != ClassVar])\n\n def __len__(self) ->int:\n \"\"\" Get the number of actions. \"\"\"\n return len(self.actions)\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Actions):\n return self.actions == other.actions\n return False\n\n def sort(self, *args, **kwargs) ->'Actions':\n \"\"\" Sorts the list of actions. \"\"\"\n self.actions.sort(*args, **kwargs)\n return self\n\n def append(self, action: Action):\n \"\"\" Append an action onto this instance of Actions. \"\"\"\n self.actions.append(action)\n\n def to_df(self) ->pd.DataFrame:\n \"\"\" Converts this instance of Actions to a df. \"\"\"\n data = []\n for action in self.actions:\n data.append(action.to_df())\n df = pd.read_json(json.dumps(data), orient='list')\n return df[self.fields]\n\n def to_md(self):\n \"\"\" Convert this instance of Actions to markdown/HTML. \"\"\"\n soup = BeautifulSoup(f'<div id={self.action_id}></div>', 'html.parser')\n for action in self.actions:\n table = soup.new_tag('table')\n soup.div.append(table)\n for meta_field in Action._meta_fields:\n table[meta_field] = action.__getattribute__(meta_field)\n for field in self.fields:\n if action.__getattribute__(field) is None:\n continue\n if field in Action._meta_fields:\n continue\n tr = soup.new_tag('tr')\n td_key = soup.new_tag('td', attrs={'class': 'field-key'})\n td_val = soup.new_tag('td', attrs={'class': 'field-value'})\n td_key.string = field\n td_val = action.to_md(field, td_val)\n tr.append(td_key)\n tr.append(td_val)\n table.append(tr)\n return soup.prettify()\n\n @classmethod\n def read_from_md(cls, md_doc: MarkdownDocument) ->'Actions':\n \"\"\" Create and populate an Actions instance from a Markdown Document. \"\"\"\n md_data = re.findall(f'<div id=\"{cls.action_id}\">+[\\\\s\\\\S]+<\\\\/div>',\n md_doc)\n assert len(md_data\n ) == 1, f'multiple divs with id={cls.action_id} were found'\n md_data = md_data[0]\n soup = BeautifulSoup(md_data, 'html.parser')\n tables = soup.div.find_all('table')\n actions = Actions()\n for table in tables:\n action = Action.create_from_md(table)\n actions.append(action)\n return actions\n\n @staticmethod\n def read_from_df(df: pd.DataFrame) ->'Actions':\n \"\"\" Create and populate an Actions instance from a dataframe. \"\"\"\n actions = Actions()\n for i, row in df.iterrows():\n action = Action.create_from_row(row)\n actions.append(action)\n return actions\n", "step-3": "<mask token>\n\n\n@dataclass\nclass Action:\n <mask token>\n date: str\n sources: List[Url]\n action: str\n struggles: List[str]\n description: str\n locations: List[str] = None\n companies: List[str] = None\n workers: int = None\n tags: List[str] = None\n author: str = None\n _meta_fields: ClassVar = ['author']\n _valid_struggles: ClassVar = ['ethics', 'pay_and_benefits',\n 'working_conditions', 'discrimination', 'unfair_labor_practices',\n 'job_security']\n _valid_actions: ClassVar = ['strike', 'protest', 'open_letter',\n 'legal_action', 'union_drive', 'union_representation']\n\n @staticmethod\n def is_none(field: Any) ->bool:\n if field is None:\n return True\n elif isinstance(field, float) and math.isnan(field):\n return True\n elif isinstance(field, str) and field.lower() == 'none':\n return True\n elif isinstance(field, (list,)) and len(field) == 0:\n return True\n else:\n return False\n <mask token>\n\n def __post_init__(self):\n \"\"\" Used to validate fields. \"\"\"\n self.date = dateparser.parse(self.date).date()\n self.sources = self.listify(self.sources)\n self.struggles = self.listify(self.struggles)\n self.action = self.action.strip().lower()\n self.companies = self.listify(self.companies)\n self.tags = self.listify(self.tags)\n self.locations = self.listify(self.locations)\n self.workers = None if self.is_none(self.workers) else int(self.workers\n )\n assert self.action in self._valid_actions, f\"'{self.action}' is not a valid input. Valid inputs are: {self._valid_actions}\"\n for struggle in self.struggles:\n assert struggle in self._valid_struggles, f\"'{struggle}' is not a valid input. Valid inputs are: {self._valid_struggles}\"\n for source in self.sources:\n assert BeautifulSoup(source, 'html.parser'\n ).a is not None or urlparse(source\n ).netloc is not '', f\"'{source}' is in valid. source must be a valid url or an html link tag element\"\n self.sources = [(BeautifulSoup(source, 'html.parser').a['href'] if \n 'href' in source else source) for source in self.sources]\n\n def __lt__(self, other):\n \"\"\" Used to make Actions sortable. \"\"\"\n return self.date < other.date\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Action):\n return self.__dict__.items() == other.__dict__.items()\n return False\n\n def to_df(self) ->Dict[str, Any]:\n \"\"\" Return dict of all fields serialized to string \"\"\"\n return {key: self.render_df(key) for key, value in self.__dict__.\n items()}\n\n def render_df(self, field: str) ->str:\n \"\"\" Return the value of the field rendered for df. \"\"\"\n value = self.__getattribute__(field)\n if field in ['date', 'workers']:\n return str(value)\n elif field in ['locations', 'struggles', 'companies', 'tags', 'sources'\n ]:\n return str(value).strip('[').strip(']').replace(\"'\", '').replace(\n '\"', '')\n else:\n return value\n\n def to_md(self, field: str, td: bs4.element.Tag) ->str:\n \"\"\" Convert field for markdown\n\n Takes a td BeautifulSoup object and updates it according to the field\n type so that it renders correctly in markdown.\n \"\"\"\n assert field in self.__dataclass_fields__, f'Cannot serialize {field}. Not a valid field in Action.'\n value = self.__getattribute__(field)\n if field in ['date', 'workers']:\n td.string = str(value)\n elif field in ['locations', 'struggles', 'companies', 'tags']:\n td.string = str(value).strip('[').strip(']').replace(\"'\", ''\n ).replace('\"', '')\n elif field == 'sources':\n ret = []\n for source in value:\n tag = (\n f\"<a href='{source}' target='_blank'>{urlparse(source).netloc}</a>\"\n )\n ret.append(tag)\n td.append(BeautifulSoup(html.unescape(', '.join(ret)),\n 'html.parser'))\n else:\n td.string = value\n return td\n <mask token>\n\n @classmethod\n def create_from_row(cls, row: pd.Series) ->'Action':\n \"\"\" Create an Action instance from a dataframe row. \"\"\"\n fields = [key for key, value in cls.__dataclass_fields__.items() if\n value.type != ClassVar]\n d = {key: value for key, value in row.to_dict().items() if key in\n fields}\n return cls(**d)\n\n\n@dataclass\nclass Actions:\n \"\"\" The class for a set of actions.\n\n This class is a collection of actions. It is used to for the four primary\n usecases:\n - to serialize the list of actions into a dataframe\n - to serialize the list of actions into a markdown/html table\n - to create and populate an Actions instance from a dataframe\n - to create and populate an Actions instance from a markdown document\n \"\"\"\n action_id: ClassVar = 'actions'\n actions: List[Action] = field(default_factory=lambda : [])\n fields: List[str] = field(default_factory=lambda : [key for key, value in\n Action.__dataclass_fields__.items() if value.type != ClassVar])\n\n def __len__(self) ->int:\n \"\"\" Get the number of actions. \"\"\"\n return len(self.actions)\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Actions):\n return self.actions == other.actions\n return False\n\n def sort(self, *args, **kwargs) ->'Actions':\n \"\"\" Sorts the list of actions. \"\"\"\n self.actions.sort(*args, **kwargs)\n return self\n\n def append(self, action: Action):\n \"\"\" Append an action onto this instance of Actions. \"\"\"\n self.actions.append(action)\n\n def to_df(self) ->pd.DataFrame:\n \"\"\" Converts this instance of Actions to a df. \"\"\"\n data = []\n for action in self.actions:\n data.append(action.to_df())\n df = pd.read_json(json.dumps(data), orient='list')\n return df[self.fields]\n\n def to_md(self):\n \"\"\" Convert this instance of Actions to markdown/HTML. \"\"\"\n soup = BeautifulSoup(f'<div id={self.action_id}></div>', 'html.parser')\n for action in self.actions:\n table = soup.new_tag('table')\n soup.div.append(table)\n for meta_field in Action._meta_fields:\n table[meta_field] = action.__getattribute__(meta_field)\n for field in self.fields:\n if action.__getattribute__(field) is None:\n continue\n if field in Action._meta_fields:\n continue\n tr = soup.new_tag('tr')\n td_key = soup.new_tag('td', attrs={'class': 'field-key'})\n td_val = soup.new_tag('td', attrs={'class': 'field-value'})\n td_key.string = field\n td_val = action.to_md(field, td_val)\n tr.append(td_key)\n tr.append(td_val)\n table.append(tr)\n return soup.prettify()\n\n @classmethod\n def read_from_md(cls, md_doc: MarkdownDocument) ->'Actions':\n \"\"\" Create and populate an Actions instance from a Markdown Document. \"\"\"\n md_data = re.findall(f'<div id=\"{cls.action_id}\">+[\\\\s\\\\S]+<\\\\/div>',\n md_doc)\n assert len(md_data\n ) == 1, f'multiple divs with id={cls.action_id} were found'\n md_data = md_data[0]\n soup = BeautifulSoup(md_data, 'html.parser')\n tables = soup.div.find_all('table')\n actions = Actions()\n for table in tables:\n action = Action.create_from_md(table)\n actions.append(action)\n return actions\n\n @staticmethod\n def read_from_df(df: pd.DataFrame) ->'Actions':\n \"\"\" Create and populate an Actions instance from a dataframe. \"\"\"\n actions = Actions()\n for i, row in df.iterrows():\n action = Action.create_from_row(row)\n actions.append(action)\n return actions\n", "step-4": "<mask token>\nUrl = str\n\n\n@dataclass\nclass Action:\n \"\"\" The class for an action we want to track.\n\n This class is used to manage the data of an individual Action. It is used\n to perform the following:\n - set mandatory/optional fields\n - set meta fields\n - cast an validate data so that it knows how to read datafields from\n markdown and dataframes\n - output actions as for dataframes and markdown\n - create and populate action instances from markdown and dataframes\n \"\"\"\n date: str\n sources: List[Url]\n action: str\n struggles: List[str]\n description: str\n locations: List[str] = None\n companies: List[str] = None\n workers: int = None\n tags: List[str] = None\n author: str = None\n _meta_fields: ClassVar = ['author']\n _valid_struggles: ClassVar = ['ethics', 'pay_and_benefits',\n 'working_conditions', 'discrimination', 'unfair_labor_practices',\n 'job_security']\n _valid_actions: ClassVar = ['strike', 'protest', 'open_letter',\n 'legal_action', 'union_drive', 'union_representation']\n\n @staticmethod\n def is_none(field: Any) ->bool:\n if field is None:\n return True\n elif isinstance(field, float) and math.isnan(field):\n return True\n elif isinstance(field, str) and field.lower() == 'none':\n return True\n elif isinstance(field, (list,)) and len(field) == 0:\n return True\n else:\n return False\n\n def listify(self, field: Union[List[Any], Any]) ->List[Any]:\n if self.is_none(field):\n return None\n elif isinstance(field, (list,)):\n return field\n else:\n return [s.strip().lower() for s in field.split(',')]\n\n def __post_init__(self):\n \"\"\" Used to validate fields. \"\"\"\n self.date = dateparser.parse(self.date).date()\n self.sources = self.listify(self.sources)\n self.struggles = self.listify(self.struggles)\n self.action = self.action.strip().lower()\n self.companies = self.listify(self.companies)\n self.tags = self.listify(self.tags)\n self.locations = self.listify(self.locations)\n self.workers = None if self.is_none(self.workers) else int(self.workers\n )\n assert self.action in self._valid_actions, f\"'{self.action}' is not a valid input. Valid inputs are: {self._valid_actions}\"\n for struggle in self.struggles:\n assert struggle in self._valid_struggles, f\"'{struggle}' is not a valid input. Valid inputs are: {self._valid_struggles}\"\n for source in self.sources:\n assert BeautifulSoup(source, 'html.parser'\n ).a is not None or urlparse(source\n ).netloc is not '', f\"'{source}' is in valid. source must be a valid url or an html link tag element\"\n self.sources = [(BeautifulSoup(source, 'html.parser').a['href'] if \n 'href' in source else source) for source in self.sources]\n\n def __lt__(self, other):\n \"\"\" Used to make Actions sortable. \"\"\"\n return self.date < other.date\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Action):\n return self.__dict__.items() == other.__dict__.items()\n return False\n\n def to_df(self) ->Dict[str, Any]:\n \"\"\" Return dict of all fields serialized to string \"\"\"\n return {key: self.render_df(key) for key, value in self.__dict__.\n items()}\n\n def render_df(self, field: str) ->str:\n \"\"\" Return the value of the field rendered for df. \"\"\"\n value = self.__getattribute__(field)\n if field in ['date', 'workers']:\n return str(value)\n elif field in ['locations', 'struggles', 'companies', 'tags', 'sources'\n ]:\n return str(value).strip('[').strip(']').replace(\"'\", '').replace(\n '\"', '')\n else:\n return value\n\n def to_md(self, field: str, td: bs4.element.Tag) ->str:\n \"\"\" Convert field for markdown\n\n Takes a td BeautifulSoup object and updates it according to the field\n type so that it renders correctly in markdown.\n \"\"\"\n assert field in self.__dataclass_fields__, f'Cannot serialize {field}. Not a valid field in Action.'\n value = self.__getattribute__(field)\n if field in ['date', 'workers']:\n td.string = str(value)\n elif field in ['locations', 'struggles', 'companies', 'tags']:\n td.string = str(value).strip('[').strip(']').replace(\"'\", ''\n ).replace('\"', '')\n elif field == 'sources':\n ret = []\n for source in value:\n tag = (\n f\"<a href='{source}' target='_blank'>{urlparse(source).netloc}</a>\"\n )\n ret.append(tag)\n td.append(BeautifulSoup(html.unescape(', '.join(ret)),\n 'html.parser'))\n else:\n td.string = value\n return td\n\n @classmethod\n def create_from_md(cls, table: bs4.element.Tag) ->'Action':\n \"\"\" Create an Action instance from a md table. \"\"\"\n a = {}\n trs = table.find_all('tr')\n for key, val in table.attrs.items():\n if key != 'class':\n a[key] = val\n for i, tr in enumerate(trs):\n td_key = tr.find('td', class_='field-key')\n td_val = tr.find('td', class_='field-value')\n val = ''.join(str(e) for e in td_val.contents).strip()\n key = ''.join(str(e) for e in td_key.contents).strip()\n a[key] = val\n return cls(**a)\n\n @classmethod\n def create_from_row(cls, row: pd.Series) ->'Action':\n \"\"\" Create an Action instance from a dataframe row. \"\"\"\n fields = [key for key, value in cls.__dataclass_fields__.items() if\n value.type != ClassVar]\n d = {key: value for key, value in row.to_dict().items() if key in\n fields}\n return cls(**d)\n\n\n@dataclass\nclass Actions:\n \"\"\" The class for a set of actions.\n\n This class is a collection of actions. It is used to for the four primary\n usecases:\n - to serialize the list of actions into a dataframe\n - to serialize the list of actions into a markdown/html table\n - to create and populate an Actions instance from a dataframe\n - to create and populate an Actions instance from a markdown document\n \"\"\"\n action_id: ClassVar = 'actions'\n actions: List[Action] = field(default_factory=lambda : [])\n fields: List[str] = field(default_factory=lambda : [key for key, value in\n Action.__dataclass_fields__.items() if value.type != ClassVar])\n\n def __len__(self) ->int:\n \"\"\" Get the number of actions. \"\"\"\n return len(self.actions)\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Actions):\n return self.actions == other.actions\n return False\n\n def sort(self, *args, **kwargs) ->'Actions':\n \"\"\" Sorts the list of actions. \"\"\"\n self.actions.sort(*args, **kwargs)\n return self\n\n def append(self, action: Action):\n \"\"\" Append an action onto this instance of Actions. \"\"\"\n self.actions.append(action)\n\n def to_df(self) ->pd.DataFrame:\n \"\"\" Converts this instance of Actions to a df. \"\"\"\n data = []\n for action in self.actions:\n data.append(action.to_df())\n df = pd.read_json(json.dumps(data), orient='list')\n return df[self.fields]\n\n def to_md(self):\n \"\"\" Convert this instance of Actions to markdown/HTML. \"\"\"\n soup = BeautifulSoup(f'<div id={self.action_id}></div>', 'html.parser')\n for action in self.actions:\n table = soup.new_tag('table')\n soup.div.append(table)\n for meta_field in Action._meta_fields:\n table[meta_field] = action.__getattribute__(meta_field)\n for field in self.fields:\n if action.__getattribute__(field) is None:\n continue\n if field in Action._meta_fields:\n continue\n tr = soup.new_tag('tr')\n td_key = soup.new_tag('td', attrs={'class': 'field-key'})\n td_val = soup.new_tag('td', attrs={'class': 'field-value'})\n td_key.string = field\n td_val = action.to_md(field, td_val)\n tr.append(td_key)\n tr.append(td_val)\n table.append(tr)\n return soup.prettify()\n\n @classmethod\n def read_from_md(cls, md_doc: MarkdownDocument) ->'Actions':\n \"\"\" Create and populate an Actions instance from a Markdown Document. \"\"\"\n md_data = re.findall(f'<div id=\"{cls.action_id}\">+[\\\\s\\\\S]+<\\\\/div>',\n md_doc)\n assert len(md_data\n ) == 1, f'multiple divs with id={cls.action_id} were found'\n md_data = md_data[0]\n soup = BeautifulSoup(md_data, 'html.parser')\n tables = soup.div.find_all('table')\n actions = Actions()\n for table in tables:\n action = Action.create_from_md(table)\n actions.append(action)\n return actions\n\n @staticmethod\n def read_from_df(df: pd.DataFrame) ->'Actions':\n \"\"\" Create and populate an Actions instance from a dataframe. \"\"\"\n actions = Actions()\n for i, row in df.iterrows():\n action = Action.create_from_row(row)\n actions.append(action)\n return actions\n", "step-5": "import pandas as pd\nimport math\nimport json\nimport html\nimport bs4\nimport re\nimport dateparser\nfrom bs4 import BeautifulSoup\nfrom dataclasses import dataclass, field\nfrom datetime import datetime\nfrom typing import Any, List, Dict, ClassVar, Union\nfrom urllib.parse import urlparse\nfrom .markdown import MarkdownData, MarkdownDocument\n\nUrl = str\n\n\n@dataclass\nclass Action:\n \"\"\" The class for an action we want to track.\n\n This class is used to manage the data of an individual Action. It is used\n to perform the following:\n - set mandatory/optional fields\n - set meta fields\n - cast an validate data so that it knows how to read datafields from\n markdown and dataframes\n - output actions as for dataframes and markdown\n - create and populate action instances from markdown and dataframes\n \"\"\"\n\n date: str\n sources: List[Url]\n action: str\n struggles: List[str]\n description: str\n\n locations: List[str] = None\n companies: List[str] = None\n workers: int = None\n tags: List[str] = None\n author: str = None\n\n _meta_fields: ClassVar = [\"author\"]\n\n _valid_struggles: ClassVar = [\n \"ethics\",\n \"pay_and_benefits\",\n \"working_conditions\",\n \"discrimination\",\n \"unfair_labor_practices\",\n \"job_security\",\n ]\n\n _valid_actions: ClassVar = [\n \"strike\",\n \"protest\",\n \"open_letter\",\n \"legal_action\",\n \"union_drive\",\n \"union_representation\",\n ]\n\n @staticmethod\n def is_none(field: Any) -> bool:\n if field is None:\n return True\n elif isinstance(field, float) and math.isnan(field):\n return True\n elif isinstance(field, str) and field.lower() == \"none\":\n return True\n elif isinstance(field, (list,)) and len(field) == 0:\n return True\n else:\n return False\n\n def listify(self, field: Union[List[Any], Any]) -> List[Any]:\n if self.is_none(field):\n return None\n else:\n if isinstance(field, (list,)):\n return field\n else:\n return [s.strip().lower() for s in field.split(\",\")]\n\n def __post_init__(self):\n \"\"\" Used to validate fields. \"\"\"\n # self.date = datetime.strptime(self.date, \"%Y-%m-%d\").date()\n self.date = dateparser.parse(self.date).date()\n self.sources = self.listify(self.sources)\n self.struggles = self.listify(self.struggles)\n self.action = self.action.strip().lower()\n\n self.companies = self.listify(self.companies)\n self.tags = self.listify(self.tags)\n self.locations = self.listify(self.locations)\n\n self.workers = None if self.is_none(self.workers) else int(self.workers)\n\n # make sure action is a valid action\n assert (\n self.action in self._valid_actions\n ), f\"'{self.action}' is not a valid input. Valid inputs are: {self._valid_actions}\"\n\n # make sure all struggles are valid struggles\n for struggle in self.struggles:\n assert (\n struggle in self._valid_struggles\n ), f\"'{struggle}' is not a valid input. Valid inputs are: {self._valid_struggles}\"\n\n # make sure source is either a url or a html link tag <a>\n for source in self.sources:\n assert (\n BeautifulSoup(source, \"html.parser\").a is not None\n or urlparse(source).netloc is not \"\"\n ), f\"'{source}' is in valid. source must be a valid url or an html link tag element\"\n\n # if html, extract only href from sources\n self.sources = [\n BeautifulSoup(source, \"html.parser\").a[\"href\"]\n if \"href\" in source\n else source\n for source in self.sources\n ]\n\n def __lt__(self, other):\n \"\"\" Used to make Actions sortable. \"\"\"\n return self.date < other.date\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Action):\n return self.__dict__.items() == other.__dict__.items()\n return False\n\n def to_df(self) -> Dict[str, Any]:\n \"\"\" Return dict of all fields serialized to string \"\"\"\n return {key: self.render_df(key) for key, value in self.__dict__.items()}\n\n def render_df(self, field: str) -> str:\n \"\"\" Return the value of the field rendered for df. \"\"\"\n value = self.__getattribute__(field)\n if field in [\"date\", \"workers\"]:\n return str(value)\n elif field in [\"locations\", \"struggles\", \"companies\", \"tags\", \"sources\"]:\n return str(value).strip(\"[\").strip(\"]\").replace(\"'\", \"\").replace('\"', \"\")\n else:\n return value\n\n def to_md(self, field: str, td: bs4.element.Tag) -> str:\n \"\"\" Convert field for markdown\n\n Takes a td BeautifulSoup object and updates it according to the field\n type so that it renders correctly in markdown.\n \"\"\"\n assert (\n field in self.__dataclass_fields__\n ), f\"Cannot serialize {field}. Not a valid field in Action.\"\n\n value = self.__getattribute__(field)\n\n if field in [\"date\", \"workers\"]:\n td.string = str(value)\n elif field in [\"locations\", \"struggles\", \"companies\", \"tags\"]:\n td.string = (\n str(value).strip(\"[\").strip(\"]\").replace(\"'\", \"\").replace('\"', \"\")\n )\n elif field == \"sources\":\n ret = []\n for source in value:\n tag = (\n f\"<a href='{source}' target='_blank'>{urlparse(source).netloc}</a>\"\n )\n ret.append(tag)\n td.append(BeautifulSoup(html.unescape(\", \".join(ret)), \"html.parser\"))\n else:\n td.string = value\n\n return td\n\n @classmethod\n def create_from_md(cls, table: bs4.element.Tag) -> \"Action\":\n \"\"\" Create an Action instance from a md table. \"\"\"\n a = {}\n trs = table.find_all(\"tr\")\n for key, val in table.attrs.items():\n if key != \"class\":\n a[key] = val\n for i, tr in enumerate(trs):\n td_key = tr.find(\"td\", class_=\"field-key\")\n td_val = tr.find(\"td\", class_=\"field-value\")\n val = \"\".join(str(e) for e in td_val.contents).strip()\n key = \"\".join(str(e) for e in td_key.contents).strip()\n a[key] = val\n return cls(**a)\n\n @classmethod\n def create_from_row(cls, row: pd.Series) -> \"Action\":\n \"\"\" Create an Action instance from a dataframe row. \"\"\"\n fields = [\n key\n for key, value in cls.__dataclass_fields__.items()\n if value.type != ClassVar\n ]\n d = {key: value for key, value in row.to_dict().items() if key in fields}\n return cls(**d)\n\n\n@dataclass\nclass Actions:\n \"\"\" The class for a set of actions.\n\n This class is a collection of actions. It is used to for the four primary\n usecases:\n - to serialize the list of actions into a dataframe\n - to serialize the list of actions into a markdown/html table\n - to create and populate an Actions instance from a dataframe\n - to create and populate an Actions instance from a markdown document\n \"\"\"\n\n action_id: ClassVar = \"actions\"\n actions: List[Action] = field(default_factory=lambda: [])\n fields: List[str] = field(\n default_factory=lambda: [\n key\n for key, value in Action.__dataclass_fields__.items()\n if value.type != ClassVar\n ]\n )\n\n def __len__(self) -> int:\n \"\"\" Get the number of actions. \"\"\"\n return len(self.actions)\n\n def __eq__(self, other):\n \"\"\" Overrides the default implementation for equality. \"\"\"\n if isinstance(other, Actions):\n return self.actions == other.actions\n return False\n\n def sort(self, *args, **kwargs) -> \"Actions\":\n \"\"\" Sorts the list of actions. \"\"\"\n self.actions.sort(*args, **kwargs)\n return self\n\n def append(self, action: Action):\n \"\"\" Append an action onto this instance of Actions. \"\"\"\n self.actions.append(action)\n\n def to_df(self) -> pd.DataFrame:\n \"\"\" Converts this instance of Actions to a df. \"\"\"\n data = []\n for action in self.actions:\n data.append(action.to_df())\n df = pd.read_json(json.dumps(data), orient=\"list\")\n return df[self.fields]\n\n def to_md(self):\n \"\"\" Convert this instance of Actions to markdown/HTML. \"\"\"\n soup = BeautifulSoup(f\"<div id={self.action_id}></div>\", \"html.parser\")\n for action in self.actions:\n table = soup.new_tag(\"table\")\n soup.div.append(table)\n for meta_field in Action._meta_fields:\n table[meta_field] = action.__getattribute__(meta_field)\n for field in self.fields:\n if action.__getattribute__(field) is None:\n continue\n if field in Action._meta_fields:\n continue\n tr = soup.new_tag(\"tr\")\n td_key = soup.new_tag(\"td\", attrs={\"class\": \"field-key\"})\n td_val = soup.new_tag(\"td\", attrs={\"class\": \"field-value\"})\n td_key.string = field\n td_val = action.to_md(field, td_val)\n tr.append(td_key)\n tr.append(td_val)\n table.append(tr)\n return soup.prettify()\n\n @classmethod\n def read_from_md(cls, md_doc: MarkdownDocument) -> \"Actions\":\n \"\"\" Create and populate an Actions instance from a Markdown Document. \"\"\"\n md_data = re.findall(fr'<div id=\"{cls.action_id}\">+[\\s\\S]+<\\/div>', md_doc)\n assert len(md_data) == 1, f\"multiple divs with id={cls.action_id} were found\"\n md_data = md_data[0]\n soup = BeautifulSoup(md_data, \"html.parser\")\n tables = soup.div.find_all(\"table\")\n actions = Actions()\n for table in tables:\n action = Action.create_from_md(table)\n actions.append(action)\n return actions\n\n @staticmethod\n def read_from_df(df: pd.DataFrame) -> \"Actions\":\n \"\"\" Create and populate an Actions instance from a dataframe. \"\"\"\n actions = Actions()\n for i, row in df.iterrows():\n action = Action.create_from_row(row)\n actions.append(action)\n return actions\n", "step-ids": [ 10, 13, 19, 23, 25 ] }
[ 10, 13, 19, 23, 25 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('sms_consumer', '0006_auto_20210923_0733')] operations = [migrations.RemoveField(model_name='smslogmodel', name= 'hello')] <|reserved_special_token_1|> from django.db import migrations class Migration(migrations.Migration): dependencies = [('sms_consumer', '0006_auto_20210923_0733')] operations = [migrations.RemoveField(model_name='smslogmodel', name= 'hello')] <|reserved_special_token_1|> # Generated by Django 3.2.7 on 2021-09-23 07:33 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('sms_consumer', '0006_auto_20210923_0733'), ] operations = [ migrations.RemoveField( model_name='smslogmodel', name='hello', ), ]
flexible
{ "blob_id": "fc9742ceb3c38a5f8c1ad1f030d76103ba0a7a81", "index": 3857, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('sms_consumer', '0006_auto_20210923_0733')]\n operations = [migrations.RemoveField(model_name='smslogmodel', name=\n 'hello')]\n", "step-4": "from django.db import migrations\n\n\nclass Migration(migrations.Migration):\n dependencies = [('sms_consumer', '0006_auto_20210923_0733')]\n operations = [migrations.RemoveField(model_name='smslogmodel', name=\n 'hello')]\n", "step-5": "# Generated by Django 3.2.7 on 2021-09-23 07:33\n\nfrom django.db import migrations\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('sms_consumer', '0006_auto_20210923_0733'),\n ]\n\n operations = [\n migrations.RemoveField(\n model_name='smslogmodel',\n name='hello',\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class ItemEffect(AbstractItemEffect): <|reserved_special_token_0|> class BuffedByHealingWand(StatModifyingBuffEffect): def __init__(self): super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS} ) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ItemEffect(AbstractItemEffect): def item_handle_event(self, event: Event, game_state: GameState): if isinstance(event, PlayerDamagedEnemy): game_state.player_state.gain_buff_effect(get_buff_effect( BUFF_TYPE), BUFF_DURATION) class BuffedByHealingWand(StatModifyingBuffEffect): def __init__(self): super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS} ) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> BUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND HEALTH_REGEN_BONUS = 1 BUFF_DURATION = Millis(5000) class ItemEffect(AbstractItemEffect): def item_handle_event(self, event: Event, game_state: GameState): if isinstance(event, PlayerDamagedEnemy): game_state.player_state.gain_buff_effect(get_buff_effect( BUFF_TYPE), BUFF_DURATION) class BuffedByHealingWand(StatModifyingBuffEffect): def __init__(self): super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS} ) def register_healing_wand_item(): item_type = ItemType.HEALING_WAND register_custom_effect_item(item_type=item_type, item_level=4, ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND, sprite=Sprite. ITEM_HEALING_WAND, image_file_path= 'resources/graphics/item_healing_wand.png', item_equipment_category =ItemEquipmentCategory.MAIN_HAND, name='Healing wand', custom_description=['When you damage an enemy, gain +' + str( HEALTH_REGEN_BONUS) + ' health regen for ' + '{:.0f}'.format( BUFF_DURATION / 1000) + 's'], stat_modifier_intervals=[], custom_effect=ItemEffect()) register_buff_effect(BUFF_TYPE, BuffedByHealingWand) register_buff_text(BUFF_TYPE, 'Healing wand') <|reserved_special_token_1|> from pythongame.core.buff_effects import get_buff_effect, register_buff_effect, StatModifyingBuffEffect from pythongame.core.common import ItemType, Sprite, BuffType, Millis, HeroStat from pythongame.core.game_data import UiIconSprite, register_buff_text from pythongame.core.game_state import Event, PlayerDamagedEnemy, GameState from pythongame.core.item_effects import AbstractItemEffect from pythongame.core.item_inventory import ItemEquipmentCategory from pythongame.game_data.items.register_items_util import register_custom_effect_item BUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND HEALTH_REGEN_BONUS = 1 BUFF_DURATION = Millis(5000) class ItemEffect(AbstractItemEffect): def item_handle_event(self, event: Event, game_state: GameState): if isinstance(event, PlayerDamagedEnemy): game_state.player_state.gain_buff_effect(get_buff_effect( BUFF_TYPE), BUFF_DURATION) class BuffedByHealingWand(StatModifyingBuffEffect): def __init__(self): super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS} ) def register_healing_wand_item(): item_type = ItemType.HEALING_WAND register_custom_effect_item(item_type=item_type, item_level=4, ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND, sprite=Sprite. ITEM_HEALING_WAND, image_file_path= 'resources/graphics/item_healing_wand.png', item_equipment_category =ItemEquipmentCategory.MAIN_HAND, name='Healing wand', custom_description=['When you damage an enemy, gain +' + str( HEALTH_REGEN_BONUS) + ' health regen for ' + '{:.0f}'.format( BUFF_DURATION / 1000) + 's'], stat_modifier_intervals=[], custom_effect=ItemEffect()) register_buff_effect(BUFF_TYPE, BuffedByHealingWand) register_buff_text(BUFF_TYPE, 'Healing wand') <|reserved_special_token_1|> from pythongame.core.buff_effects import get_buff_effect, register_buff_effect, StatModifyingBuffEffect from pythongame.core.common import ItemType, Sprite, BuffType, Millis, HeroStat from pythongame.core.game_data import UiIconSprite, register_buff_text from pythongame.core.game_state import Event, PlayerDamagedEnemy, GameState from pythongame.core.item_effects import AbstractItemEffect from pythongame.core.item_inventory import ItemEquipmentCategory from pythongame.game_data.items.register_items_util import register_custom_effect_item BUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND HEALTH_REGEN_BONUS = 1 BUFF_DURATION = Millis(5000) class ItemEffect(AbstractItemEffect): def item_handle_event(self, event: Event, game_state: GameState): if isinstance(event, PlayerDamagedEnemy): game_state.player_state.gain_buff_effect(get_buff_effect(BUFF_TYPE), BUFF_DURATION) class BuffedByHealingWand(StatModifyingBuffEffect): def __init__(self): super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS}) def register_healing_wand_item(): item_type = ItemType.HEALING_WAND register_custom_effect_item( item_type=item_type, item_level=4, ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND, sprite=Sprite.ITEM_HEALING_WAND, image_file_path="resources/graphics/item_healing_wand.png", item_equipment_category=ItemEquipmentCategory.MAIN_HAND, name="Healing wand", custom_description=["When you damage an enemy, gain +" + str(HEALTH_REGEN_BONUS) + " health regen for " + "{:.0f}".format(BUFF_DURATION / 1000) + "s"], stat_modifier_intervals=[], custom_effect=ItemEffect() ) register_buff_effect(BUFF_TYPE, BuffedByHealingWand) register_buff_text(BUFF_TYPE, "Healing wand")
flexible
{ "blob_id": "61454a3d6b5b17bff871ededc6ddfe8384043884", "index": 59, "step-1": "<mask token>\n\n\nclass ItemEffect(AbstractItemEffect):\n <mask token>\n\n\nclass BuffedByHealingWand(StatModifyingBuffEffect):\n\n def __init__(self):\n super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS}\n )\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ItemEffect(AbstractItemEffect):\n\n def item_handle_event(self, event: Event, game_state: GameState):\n if isinstance(event, PlayerDamagedEnemy):\n game_state.player_state.gain_buff_effect(get_buff_effect(\n BUFF_TYPE), BUFF_DURATION)\n\n\nclass BuffedByHealingWand(StatModifyingBuffEffect):\n\n def __init__(self):\n super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS}\n )\n\n\n<mask token>\n", "step-3": "<mask token>\nBUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND\nHEALTH_REGEN_BONUS = 1\nBUFF_DURATION = Millis(5000)\n\n\nclass ItemEffect(AbstractItemEffect):\n\n def item_handle_event(self, event: Event, game_state: GameState):\n if isinstance(event, PlayerDamagedEnemy):\n game_state.player_state.gain_buff_effect(get_buff_effect(\n BUFF_TYPE), BUFF_DURATION)\n\n\nclass BuffedByHealingWand(StatModifyingBuffEffect):\n\n def __init__(self):\n super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS}\n )\n\n\ndef register_healing_wand_item():\n item_type = ItemType.HEALING_WAND\n register_custom_effect_item(item_type=item_type, item_level=4,\n ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND, sprite=Sprite.\n ITEM_HEALING_WAND, image_file_path=\n 'resources/graphics/item_healing_wand.png', item_equipment_category\n =ItemEquipmentCategory.MAIN_HAND, name='Healing wand',\n custom_description=['When you damage an enemy, gain +' + str(\n HEALTH_REGEN_BONUS) + ' health regen for ' + '{:.0f}'.format(\n BUFF_DURATION / 1000) + 's'], stat_modifier_intervals=[],\n custom_effect=ItemEffect())\n register_buff_effect(BUFF_TYPE, BuffedByHealingWand)\n register_buff_text(BUFF_TYPE, 'Healing wand')\n", "step-4": "from pythongame.core.buff_effects import get_buff_effect, register_buff_effect, StatModifyingBuffEffect\nfrom pythongame.core.common import ItemType, Sprite, BuffType, Millis, HeroStat\nfrom pythongame.core.game_data import UiIconSprite, register_buff_text\nfrom pythongame.core.game_state import Event, PlayerDamagedEnemy, GameState\nfrom pythongame.core.item_effects import AbstractItemEffect\nfrom pythongame.core.item_inventory import ItemEquipmentCategory\nfrom pythongame.game_data.items.register_items_util import register_custom_effect_item\nBUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND\nHEALTH_REGEN_BONUS = 1\nBUFF_DURATION = Millis(5000)\n\n\nclass ItemEffect(AbstractItemEffect):\n\n def item_handle_event(self, event: Event, game_state: GameState):\n if isinstance(event, PlayerDamagedEnemy):\n game_state.player_state.gain_buff_effect(get_buff_effect(\n BUFF_TYPE), BUFF_DURATION)\n\n\nclass BuffedByHealingWand(StatModifyingBuffEffect):\n\n def __init__(self):\n super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS}\n )\n\n\ndef register_healing_wand_item():\n item_type = ItemType.HEALING_WAND\n register_custom_effect_item(item_type=item_type, item_level=4,\n ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND, sprite=Sprite.\n ITEM_HEALING_WAND, image_file_path=\n 'resources/graphics/item_healing_wand.png', item_equipment_category\n =ItemEquipmentCategory.MAIN_HAND, name='Healing wand',\n custom_description=['When you damage an enemy, gain +' + str(\n HEALTH_REGEN_BONUS) + ' health regen for ' + '{:.0f}'.format(\n BUFF_DURATION / 1000) + 's'], stat_modifier_intervals=[],\n custom_effect=ItemEffect())\n register_buff_effect(BUFF_TYPE, BuffedByHealingWand)\n register_buff_text(BUFF_TYPE, 'Healing wand')\n", "step-5": "from pythongame.core.buff_effects import get_buff_effect, register_buff_effect, StatModifyingBuffEffect\nfrom pythongame.core.common import ItemType, Sprite, BuffType, Millis, HeroStat\nfrom pythongame.core.game_data import UiIconSprite, register_buff_text\nfrom pythongame.core.game_state import Event, PlayerDamagedEnemy, GameState\nfrom pythongame.core.item_effects import AbstractItemEffect\nfrom pythongame.core.item_inventory import ItemEquipmentCategory\nfrom pythongame.game_data.items.register_items_util import register_custom_effect_item\n\nBUFF_TYPE = BuffType.BUFFED_BY_HEALING_WAND\nHEALTH_REGEN_BONUS = 1\nBUFF_DURATION = Millis(5000)\n\n\nclass ItemEffect(AbstractItemEffect):\n\n def item_handle_event(self, event: Event, game_state: GameState):\n if isinstance(event, PlayerDamagedEnemy):\n game_state.player_state.gain_buff_effect(get_buff_effect(BUFF_TYPE), BUFF_DURATION)\n\n\nclass BuffedByHealingWand(StatModifyingBuffEffect):\n def __init__(self):\n super().__init__(BUFF_TYPE, {HeroStat.HEALTH_REGEN: HEALTH_REGEN_BONUS})\n\n\ndef register_healing_wand_item():\n item_type = ItemType.HEALING_WAND\n register_custom_effect_item(\n item_type=item_type,\n item_level=4,\n ui_icon_sprite=UiIconSprite.ITEM_HEALING_WAND,\n sprite=Sprite.ITEM_HEALING_WAND,\n image_file_path=\"resources/graphics/item_healing_wand.png\",\n item_equipment_category=ItemEquipmentCategory.MAIN_HAND,\n name=\"Healing wand\",\n custom_description=[\"When you damage an enemy, gain +\" + str(HEALTH_REGEN_BONUS) + \" health regen for \" +\n \"{:.0f}\".format(BUFF_DURATION / 1000) + \"s\"],\n stat_modifier_intervals=[],\n custom_effect=ItemEffect()\n )\n\n register_buff_effect(BUFF_TYPE, BuffedByHealingWand)\n register_buff_text(BUFF_TYPE, \"Healing wand\")\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> admin.site.register(Category, MPTTModelAdmin) admin.site.register(Item) admin.site.register(Product) <|reserved_special_token_1|> from django.contrib import admin from mptt.admin import MPTTModelAdmin from product.models import Item, Product, Category admin.site.register(Category, MPTTModelAdmin) admin.site.register(Item) admin.site.register(Product) <|reserved_special_token_1|> from django.contrib import admin from mptt.admin import MPTTModelAdmin from product.models import Item,Product,Category # Register your models here. admin.site.register(Category,MPTTModelAdmin) admin.site.register(Item) admin.site.register(Product)
flexible
{ "blob_id": "fcd3e4c0d42649833e6c5ff6414c993654691d16", "index": 188, "step-1": "<mask token>\n", "step-2": "<mask token>\nadmin.site.register(Category, MPTTModelAdmin)\nadmin.site.register(Item)\nadmin.site.register(Product)\n", "step-3": "from django.contrib import admin\nfrom mptt.admin import MPTTModelAdmin\nfrom product.models import Item, Product, Category\nadmin.site.register(Category, MPTTModelAdmin)\nadmin.site.register(Item)\nadmin.site.register(Product)\n", "step-4": "from django.contrib import admin\nfrom mptt.admin import MPTTModelAdmin\nfrom product.models import Item,Product,Category\n# Register your models here.\nadmin.site.register(Category,MPTTModelAdmin)\nadmin.site.register(Item)\nadmin.site.register(Product)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) <|reserved_special_token_0|> if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 <|reserved_special_token_0|> print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc) <|reserved_special_token_1|> <|reserved_special_token_0|> my_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1] <|reserved_special_token_0|> path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) <|reserved_special_token_0|> comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1]) * 10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) fq = Fourier_Quad(12, 123) n = numpy.ones((source_num,)) source = numpy.random.normal(signals[rank], sigma_1, source_num ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc) <|reserved_special_token_1|> import os my_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1] import numpy from sys import path, argv path.append('D:/Github/astrophy-research/mylib') path.append('D:/Github/astrophy-research/multi_shear_detect') path.append('%s/work/mylib' % my_home) from Fourier_Quad import Fourier_Quad import tool_box from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1]) * 10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: nbytes = 2 * signal_num * itemsize else: nbytes = 0 win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) fq = Fourier_Quad(12, 123) n = numpy.ones((source_num,)) source = numpy.random.normal(signals[rank], sigma_1, source_num ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc) <|reserved_special_token_1|> import os my_home = os.popen("echo $MYWORK_DIR").readlines()[0][:-1] import numpy from sys import path, argv path.append("D:/Github/astrophy-research/mylib") path.append("D:/Github/astrophy-research/multi_shear_detect") path.append('%s/work/mylib' % my_home) from Fourier_Quad import Fourier_Quad # import h5py # from plot_tool import Image_Plot import tool_box from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() numprocs = comm.Get_size() source_num = int(argv[1])*10000 sigma_1 = float(argv[2]) sigma_2 = float(argv[3]) signal_num = numprocs signals = numpy.linspace(-0.05, 0.05, signal_num) itemsize = MPI.DOUBLE.Get_size() if rank == 0: # bytes for 10 double elements nbytes = 2*signal_num*itemsize else: nbytes = 0 # on rank 0 of comm, create the contiguous shared block win1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm) buf1, itemsize = win1.Shared_query(0) result = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) # array filled with zero fq = Fourier_Quad(12,123) n = numpy.ones((source_num, )) # for i in range(signal_num): source = numpy.random.normal(signals[rank], sigma_1, source_num) + numpy.random.normal(-signals[rank]/100, sigma_2, source_num) signal_est = fq.find_shear(source, n, 8,scale=100, left=-0.08, right=0.08)[:2] result[:, rank] = signal_est print(rank, signal_est) comm.Barrier() if rank == 0: # result[2] = signals print(signals) print(result) mc = numpy.array(tool_box.data_fit(signals, result[0], result[1])) mc[0] = mc[0] - 1 print(mc) # img = Image_Plot() # img.subplots(1,1) # img.axs[0][0].errorbar(signals, result[0], result[1]) # img.axs[0][0].plot([-0.06,0.06],[-0.06, 0.06]) # img.show_img()
flexible
{ "blob_id": "1ffdc2845bc503c0a30407de444a152f8cc68d57", "index": 1370, "step-1": "<mask token>\n", "step-2": "<mask token>\npath.append('D:/Github/astrophy-research/mylib')\npath.append('D:/Github/astrophy-research/multi_shear_detect')\npath.append('%s/work/mylib' % my_home)\n<mask token>\nif rank == 0:\n nbytes = 2 * signal_num * itemsize\nelse:\n nbytes = 0\n<mask token>\nprint(rank, signal_est)\ncomm.Barrier()\nif rank == 0:\n print(signals)\n print(result)\n mc = numpy.array(tool_box.data_fit(signals, result[0], result[1]))\n mc[0] = mc[0] - 1\n print(mc)\n", "step-3": "<mask token>\nmy_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1]\n<mask token>\npath.append('D:/Github/astrophy-research/mylib')\npath.append('D:/Github/astrophy-research/multi_shear_detect')\npath.append('%s/work/mylib' % my_home)\n<mask token>\ncomm = MPI.COMM_WORLD\nrank = comm.Get_rank()\nnumprocs = comm.Get_size()\nsource_num = int(argv[1]) * 10000\nsigma_1 = float(argv[2])\nsigma_2 = float(argv[3])\nsignal_num = numprocs\nsignals = numpy.linspace(-0.05, 0.05, signal_num)\nitemsize = MPI.DOUBLE.Get_size()\nif rank == 0:\n nbytes = 2 * signal_num * itemsize\nelse:\n nbytes = 0\nwin1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm)\nbuf1, itemsize = win1.Shared_query(0)\nresult = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num))\nfq = Fourier_Quad(12, 123)\nn = numpy.ones((source_num,))\nsource = numpy.random.normal(signals[rank], sigma_1, source_num\n ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num)\nsignal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2]\nresult[:, rank] = signal_est\nprint(rank, signal_est)\ncomm.Barrier()\nif rank == 0:\n print(signals)\n print(result)\n mc = numpy.array(tool_box.data_fit(signals, result[0], result[1]))\n mc[0] = mc[0] - 1\n print(mc)\n", "step-4": "import os\nmy_home = os.popen('echo $MYWORK_DIR').readlines()[0][:-1]\nimport numpy\nfrom sys import path, argv\npath.append('D:/Github/astrophy-research/mylib')\npath.append('D:/Github/astrophy-research/multi_shear_detect')\npath.append('%s/work/mylib' % my_home)\nfrom Fourier_Quad import Fourier_Quad\nimport tool_box\nfrom mpi4py import MPI\ncomm = MPI.COMM_WORLD\nrank = comm.Get_rank()\nnumprocs = comm.Get_size()\nsource_num = int(argv[1]) * 10000\nsigma_1 = float(argv[2])\nsigma_2 = float(argv[3])\nsignal_num = numprocs\nsignals = numpy.linspace(-0.05, 0.05, signal_num)\nitemsize = MPI.DOUBLE.Get_size()\nif rank == 0:\n nbytes = 2 * signal_num * itemsize\nelse:\n nbytes = 0\nwin1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm)\nbuf1, itemsize = win1.Shared_query(0)\nresult = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num))\nfq = Fourier_Quad(12, 123)\nn = numpy.ones((source_num,))\nsource = numpy.random.normal(signals[rank], sigma_1, source_num\n ) + numpy.random.normal(-signals[rank] / 100, sigma_2, source_num)\nsignal_est = fq.find_shear(source, n, 8, scale=100, left=-0.08, right=0.08)[:2]\nresult[:, rank] = signal_est\nprint(rank, signal_est)\ncomm.Barrier()\nif rank == 0:\n print(signals)\n print(result)\n mc = numpy.array(tool_box.data_fit(signals, result[0], result[1]))\n mc[0] = mc[0] - 1\n print(mc)\n", "step-5": "import os\nmy_home = os.popen(\"echo $MYWORK_DIR\").readlines()[0][:-1]\nimport numpy\nfrom sys import path, argv\npath.append(\"D:/Github/astrophy-research/mylib\")\npath.append(\"D:/Github/astrophy-research/multi_shear_detect\")\npath.append('%s/work/mylib' % my_home)\nfrom Fourier_Quad import Fourier_Quad\n# import h5py\n# from plot_tool import Image_Plot\nimport tool_box\nfrom mpi4py import MPI\n\ncomm = MPI.COMM_WORLD\nrank = comm.Get_rank()\nnumprocs = comm.Get_size()\n\nsource_num = int(argv[1])*10000\nsigma_1 = float(argv[2])\nsigma_2 = float(argv[3])\nsignal_num = numprocs\nsignals = numpy.linspace(-0.05, 0.05, signal_num)\n\nitemsize = MPI.DOUBLE.Get_size()\nif rank == 0:\n # bytes for 10 double elements\n nbytes = 2*signal_num*itemsize\nelse:\n nbytes = 0\n\n# on rank 0 of comm, create the contiguous shared block\nwin1 = MPI.Win.Allocate_shared(nbytes, itemsize, comm=comm)\nbuf1, itemsize = win1.Shared_query(0)\nresult = numpy.ndarray(buffer=buf1, dtype='d', shape=(2, signal_num)) # array filled with zero\n\nfq = Fourier_Quad(12,123)\nn = numpy.ones((source_num, ))\n# for i in range(signal_num):\nsource = numpy.random.normal(signals[rank], sigma_1, source_num) + numpy.random.normal(-signals[rank]/100, sigma_2, source_num)\nsignal_est = fq.find_shear(source, n, 8,scale=100, left=-0.08, right=0.08)[:2]\nresult[:, rank] = signal_est\nprint(rank, signal_est)\ncomm.Barrier()\nif rank == 0:\n # result[2] = signals\n print(signals)\n print(result)\n mc = numpy.array(tool_box.data_fit(signals, result[0], result[1]))\n mc[0] = mc[0] - 1\n print(mc)\n# img = Image_Plot()\n# img.subplots(1,1)\n# img.axs[0][0].errorbar(signals, result[0], result[1])\n# img.axs[0][0].plot([-0.06,0.06],[-0.06, 0.06])\n# img.show_img()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from datetime import datetime import httplib2 from apiclient.discovery import build from flask_login import UserMixin from flask_migrate import Migrate from flask_sqlalchemy import SQLAlchemy from oauth2client.client import OAuth2Credentials from sqlalchemy.dialects.postgresql import JSONB from sqlalchemy.types import ARRAY from app import app db = SQLAlchemy(app) migrate = Migrate(app, db) class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) email = db.Column(db.Text) history_id = db.Column(db.Integer) customer_label_id = db.Column(db.Text) credentials_json = db.Column(JSONB) threads = db.relationship('Thread', backref='user', lazy='dynamic') def __repr__(self): return '<User {}>'.format(self.email) @property def credentials(self): if self.credentials_json: return OAuth2Credentials.from_json(self.credentials_json) else: return None @credentials.setter def credentials(self, cred): if type(cred) is OAuth2Credentials: self.credentials_json = cred.to_json() else: self.credentials_json = cred @property def gmail(self): http = self.credentials.authorize(httplib2.Http()) return build('gmail', 'v1', http=http) def sync_inbox(self): labels = self.gmail.users().labels().list(userId='me').execute()['labels'] if len([label for label in labels if label['name'] == 'Growth']) == 0: raise Exception('No Growth label found') for label in labels: if label['name'] == 'Growth': self.customer_label_id = label['id'] db.session.add(self) db.session.commit() next_page_token = None while True: thread_result = self.gmail.users().threads().list(userId='me', labelIds=self.customer_label_id, pageToken=next_page_token).execute() for thread in thread_result['threads']: for message in self.gmail.users().threads().get(userId='me', id=thread['id']).execute()['messages']: data = self.gmail.users().messages().get(userId='me', id=message['id'], format='metadata').execute() msg = Message( gmail_id=data['id'], internal_date=datetime.fromtimestamp(int(data['internalDate']) / 1e3), snippet=data['snippet'], subject=[x for x in data['payload']['headers'] if x['name'] == 'Subject'][0]['value'], sender=[x for x in data['payload']['headers'] if x['name'] == 'From'][0]['value'], recipient=[x for x in data['payload']['headers'] if x['name'] == 'To'][0]['value'], ) thread = Thread.query.filter_by(gmail_id=data['threadId']).first() if not thread: thread = Thread(gmail_id=data['threadId'], user_id=self.id,) msg.thread = thread db.session.add(msg) db.session.add(thread) if thread_result.get('nextPageToken'): next_page_token = thread_result['nextPageToken'] else: db.session.commit() break # pull history_id # save latest # setup notifications class Message(db.Model): id = db.Column(db.Integer, primary_key=True) gmail_id = db.Column(db.Text) internal_date = db.Column(db.DateTime, nullable=False) snippet = db.Column(db.Text) sender = db.Column(db.Text) recipient = db.Column(db.Text) cc = db.Column(db.Text) bcc = db.Column(db.Text) subject = db.Column(db.Text) thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=False) class Thread(db.Model): id = db.Column(db.Integer, primary_key=True) gmail_id = db.Column(db.Text) snippet = db.Column(db.Text) user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) messages = db.relationship('Message', backref='thread', lazy='dynamic')
normal
{ "blob_id": "866ec11f6fe13fb2283709128376080afc7493bf", "index": 5040, "step-1": "<mask token>\n\n\nclass User(db.Model, UserMixin):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self):\n return '<User {}>'.format(self.email)\n\n @property\n def credentials(self):\n if self.credentials_json:\n return OAuth2Credentials.from_json(self.credentials_json)\n else:\n return None\n <mask token>\n\n @property\n def gmail(self):\n http = self.credentials.authorize(httplib2.Http())\n return build('gmail', 'v1', http=http)\n <mask token>\n\n\nclass Message(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n internal_date = db.Column(db.DateTime, nullable=False)\n snippet = db.Column(db.Text)\n sender = db.Column(db.Text)\n recipient = db.Column(db.Text)\n cc = db.Column(db.Text)\n bcc = db.Column(db.Text)\n subject = db.Column(db.Text)\n thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=\n False)\n\n\nclass Thread(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n snippet = db.Column(db.Text)\n user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)\n messages = db.relationship('Message', backref='thread', lazy='dynamic')\n", "step-2": "<mask token>\n\n\nclass User(db.Model, UserMixin):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self):\n return '<User {}>'.format(self.email)\n\n @property\n def credentials(self):\n if self.credentials_json:\n return OAuth2Credentials.from_json(self.credentials_json)\n else:\n return None\n\n @credentials.setter\n def credentials(self, cred):\n if type(cred) is OAuth2Credentials:\n self.credentials_json = cred.to_json()\n else:\n self.credentials_json = cred\n\n @property\n def gmail(self):\n http = self.credentials.authorize(httplib2.Http())\n return build('gmail', 'v1', http=http)\n\n def sync_inbox(self):\n labels = self.gmail.users().labels().list(userId='me').execute()[\n 'labels']\n if len([label for label in labels if label['name'] == 'Growth']) == 0:\n raise Exception('No Growth label found')\n for label in labels:\n if label['name'] == 'Growth':\n self.customer_label_id = label['id']\n db.session.add(self)\n db.session.commit()\n next_page_token = None\n while True:\n thread_result = self.gmail.users().threads().list(userId='me',\n labelIds=self.customer_label_id, pageToken=next_page_token\n ).execute()\n for thread in thread_result['threads']:\n for message in self.gmail.users().threads().get(userId='me',\n id=thread['id']).execute()['messages']:\n data = self.gmail.users().messages().get(userId='me',\n id=message['id'], format='metadata').execute()\n msg = Message(gmail_id=data['id'], internal_date=\n datetime.fromtimestamp(int(data['internalDate']) / \n 1000.0), snippet=data['snippet'], subject=[x for x in\n data['payload']['headers'] if x['name'] ==\n 'Subject'][0]['value'], sender=[x for x in data[\n 'payload']['headers'] if x['name'] == 'From'][0][\n 'value'], recipient=[x for x in data['payload'][\n 'headers'] if x['name'] == 'To'][0]['value'])\n thread = Thread.query.filter_by(gmail_id=data['threadId']\n ).first()\n if not thread:\n thread = Thread(gmail_id=data['threadId'], user_id=\n self.id)\n msg.thread = thread\n db.session.add(msg)\n db.session.add(thread)\n if thread_result.get('nextPageToken'):\n next_page_token = thread_result['nextPageToken']\n else:\n db.session.commit()\n break\n\n\nclass Message(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n internal_date = db.Column(db.DateTime, nullable=False)\n snippet = db.Column(db.Text)\n sender = db.Column(db.Text)\n recipient = db.Column(db.Text)\n cc = db.Column(db.Text)\n bcc = db.Column(db.Text)\n subject = db.Column(db.Text)\n thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=\n False)\n\n\nclass Thread(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n snippet = db.Column(db.Text)\n user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)\n messages = db.relationship('Message', backref='thread', lazy='dynamic')\n", "step-3": "<mask token>\n\n\nclass User(db.Model, UserMixin):\n id = db.Column(db.Integer, primary_key=True)\n email = db.Column(db.Text)\n history_id = db.Column(db.Integer)\n customer_label_id = db.Column(db.Text)\n credentials_json = db.Column(JSONB)\n threads = db.relationship('Thread', backref='user', lazy='dynamic')\n\n def __repr__(self):\n return '<User {}>'.format(self.email)\n\n @property\n def credentials(self):\n if self.credentials_json:\n return OAuth2Credentials.from_json(self.credentials_json)\n else:\n return None\n\n @credentials.setter\n def credentials(self, cred):\n if type(cred) is OAuth2Credentials:\n self.credentials_json = cred.to_json()\n else:\n self.credentials_json = cred\n\n @property\n def gmail(self):\n http = self.credentials.authorize(httplib2.Http())\n return build('gmail', 'v1', http=http)\n\n def sync_inbox(self):\n labels = self.gmail.users().labels().list(userId='me').execute()[\n 'labels']\n if len([label for label in labels if label['name'] == 'Growth']) == 0:\n raise Exception('No Growth label found')\n for label in labels:\n if label['name'] == 'Growth':\n self.customer_label_id = label['id']\n db.session.add(self)\n db.session.commit()\n next_page_token = None\n while True:\n thread_result = self.gmail.users().threads().list(userId='me',\n labelIds=self.customer_label_id, pageToken=next_page_token\n ).execute()\n for thread in thread_result['threads']:\n for message in self.gmail.users().threads().get(userId='me',\n id=thread['id']).execute()['messages']:\n data = self.gmail.users().messages().get(userId='me',\n id=message['id'], format='metadata').execute()\n msg = Message(gmail_id=data['id'], internal_date=\n datetime.fromtimestamp(int(data['internalDate']) / \n 1000.0), snippet=data['snippet'], subject=[x for x in\n data['payload']['headers'] if x['name'] ==\n 'Subject'][0]['value'], sender=[x for x in data[\n 'payload']['headers'] if x['name'] == 'From'][0][\n 'value'], recipient=[x for x in data['payload'][\n 'headers'] if x['name'] == 'To'][0]['value'])\n thread = Thread.query.filter_by(gmail_id=data['threadId']\n ).first()\n if not thread:\n thread = Thread(gmail_id=data['threadId'], user_id=\n self.id)\n msg.thread = thread\n db.session.add(msg)\n db.session.add(thread)\n if thread_result.get('nextPageToken'):\n next_page_token = thread_result['nextPageToken']\n else:\n db.session.commit()\n break\n\n\nclass Message(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n internal_date = db.Column(db.DateTime, nullable=False)\n snippet = db.Column(db.Text)\n sender = db.Column(db.Text)\n recipient = db.Column(db.Text)\n cc = db.Column(db.Text)\n bcc = db.Column(db.Text)\n subject = db.Column(db.Text)\n thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=\n False)\n\n\nclass Thread(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n snippet = db.Column(db.Text)\n user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)\n messages = db.relationship('Message', backref='thread', lazy='dynamic')\n", "step-4": "from datetime import datetime\nimport httplib2\nfrom apiclient.discovery import build\nfrom flask_login import UserMixin\nfrom flask_migrate import Migrate\nfrom flask_sqlalchemy import SQLAlchemy\nfrom oauth2client.client import OAuth2Credentials\nfrom sqlalchemy.dialects.postgresql import JSONB\nfrom sqlalchemy.types import ARRAY\nfrom app import app\ndb = SQLAlchemy(app)\nmigrate = Migrate(app, db)\n\n\nclass User(db.Model, UserMixin):\n id = db.Column(db.Integer, primary_key=True)\n email = db.Column(db.Text)\n history_id = db.Column(db.Integer)\n customer_label_id = db.Column(db.Text)\n credentials_json = db.Column(JSONB)\n threads = db.relationship('Thread', backref='user', lazy='dynamic')\n\n def __repr__(self):\n return '<User {}>'.format(self.email)\n\n @property\n def credentials(self):\n if self.credentials_json:\n return OAuth2Credentials.from_json(self.credentials_json)\n else:\n return None\n\n @credentials.setter\n def credentials(self, cred):\n if type(cred) is OAuth2Credentials:\n self.credentials_json = cred.to_json()\n else:\n self.credentials_json = cred\n\n @property\n def gmail(self):\n http = self.credentials.authorize(httplib2.Http())\n return build('gmail', 'v1', http=http)\n\n def sync_inbox(self):\n labels = self.gmail.users().labels().list(userId='me').execute()[\n 'labels']\n if len([label for label in labels if label['name'] == 'Growth']) == 0:\n raise Exception('No Growth label found')\n for label in labels:\n if label['name'] == 'Growth':\n self.customer_label_id = label['id']\n db.session.add(self)\n db.session.commit()\n next_page_token = None\n while True:\n thread_result = self.gmail.users().threads().list(userId='me',\n labelIds=self.customer_label_id, pageToken=next_page_token\n ).execute()\n for thread in thread_result['threads']:\n for message in self.gmail.users().threads().get(userId='me',\n id=thread['id']).execute()['messages']:\n data = self.gmail.users().messages().get(userId='me',\n id=message['id'], format='metadata').execute()\n msg = Message(gmail_id=data['id'], internal_date=\n datetime.fromtimestamp(int(data['internalDate']) / \n 1000.0), snippet=data['snippet'], subject=[x for x in\n data['payload']['headers'] if x['name'] ==\n 'Subject'][0]['value'], sender=[x for x in data[\n 'payload']['headers'] if x['name'] == 'From'][0][\n 'value'], recipient=[x for x in data['payload'][\n 'headers'] if x['name'] == 'To'][0]['value'])\n thread = Thread.query.filter_by(gmail_id=data['threadId']\n ).first()\n if not thread:\n thread = Thread(gmail_id=data['threadId'], user_id=\n self.id)\n msg.thread = thread\n db.session.add(msg)\n db.session.add(thread)\n if thread_result.get('nextPageToken'):\n next_page_token = thread_result['nextPageToken']\n else:\n db.session.commit()\n break\n\n\nclass Message(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n internal_date = db.Column(db.DateTime, nullable=False)\n snippet = db.Column(db.Text)\n sender = db.Column(db.Text)\n recipient = db.Column(db.Text)\n cc = db.Column(db.Text)\n bcc = db.Column(db.Text)\n subject = db.Column(db.Text)\n thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=\n False)\n\n\nclass Thread(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n snippet = db.Column(db.Text)\n user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)\n messages = db.relationship('Message', backref='thread', lazy='dynamic')\n", "step-5": "from datetime import datetime\nimport httplib2\n\nfrom apiclient.discovery import build\nfrom flask_login import UserMixin\nfrom flask_migrate import Migrate\nfrom flask_sqlalchemy import SQLAlchemy\nfrom oauth2client.client import OAuth2Credentials\nfrom sqlalchemy.dialects.postgresql import JSONB\nfrom sqlalchemy.types import ARRAY\n\nfrom app import app\n\ndb = SQLAlchemy(app)\nmigrate = Migrate(app, db)\n\nclass User(db.Model, UserMixin):\n id = db.Column(db.Integer, primary_key=True)\n email = db.Column(db.Text)\n history_id = db.Column(db.Integer)\n customer_label_id = db.Column(db.Text)\n credentials_json = db.Column(JSONB)\n\n threads = db.relationship('Thread', backref='user', lazy='dynamic')\n\n def __repr__(self):\n return '<User {}>'.format(self.email)\n\n @property\n def credentials(self):\n if self.credentials_json:\n return OAuth2Credentials.from_json(self.credentials_json)\n else:\n return None\n\n @credentials.setter\n def credentials(self, cred):\n if type(cred) is OAuth2Credentials:\n self.credentials_json = cred.to_json()\n else:\n self.credentials_json = cred\n\n @property\n def gmail(self):\n http = self.credentials.authorize(httplib2.Http())\n return build('gmail', 'v1', http=http)\n\n def sync_inbox(self):\n labels = self.gmail.users().labels().list(userId='me').execute()['labels']\n if len([label for label in labels if label['name'] == 'Growth']) == 0:\n raise Exception('No Growth label found')\n\n for label in labels:\n if label['name'] == 'Growth':\n self.customer_label_id = label['id']\n\n db.session.add(self)\n db.session.commit()\n\n next_page_token = None\n while True:\n thread_result = self.gmail.users().threads().list(userId='me', labelIds=self.customer_label_id, pageToken=next_page_token).execute()\n for thread in thread_result['threads']:\n\n for message in self.gmail.users().threads().get(userId='me', id=thread['id']).execute()['messages']:\n data = self.gmail.users().messages().get(userId='me', id=message['id'], format='metadata').execute()\n\n msg = Message(\n gmail_id=data['id'],\n internal_date=datetime.fromtimestamp(int(data['internalDate']) / 1e3),\n snippet=data['snippet'],\n subject=[x for x in data['payload']['headers'] if x['name'] == 'Subject'][0]['value'],\n sender=[x for x in data['payload']['headers'] if x['name'] == 'From'][0]['value'],\n recipient=[x for x in data['payload']['headers'] if x['name'] == 'To'][0]['value'],\n )\n thread = Thread.query.filter_by(gmail_id=data['threadId']).first()\n if not thread:\n thread = Thread(gmail_id=data['threadId'], user_id=self.id,)\n msg.thread = thread\n db.session.add(msg)\n db.session.add(thread)\n\n if thread_result.get('nextPageToken'):\n next_page_token = thread_result['nextPageToken']\n else:\n db.session.commit()\n break\n\n # pull history_id\n # save latest\n # setup notifications\n\n\nclass Message(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n internal_date = db.Column(db.DateTime, nullable=False)\n snippet = db.Column(db.Text)\n\n sender = db.Column(db.Text)\n recipient = db.Column(db.Text)\n cc = db.Column(db.Text)\n bcc = db.Column(db.Text)\n subject = db.Column(db.Text)\n\n thread_id = db.Column(db.Integer, db.ForeignKey('thread.id'), nullable=False)\n\n\nclass Thread(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n gmail_id = db.Column(db.Text)\n snippet = db.Column(db.Text)\n\n user_id = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False)\n\n messages = db.relationship('Message', backref='thread', lazy='dynamic')\n", "step-ids": [ 8, 10, 11, 13, 14 ] }
[ 8, 10, 11, 13, 14 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(model.summary()) <|reserved_special_token_0|> plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('MSE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_error']) plt.plot(history.history['val_mean_absolute_error']) plt.title('MAE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_percentage_error']) plt.plot(history.history['val_mean_absolute_percentage_error']) plt.title('MAPE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> X, y = dataset_maker(window=5, forecast_day=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) model = model_3((5, 8, 20, 6)) print(model.summary()) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=5, epochs=30, verbose=2, shuffle=False) y_pred = model.predict(X_test) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('MSE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_error']) plt.plot(history.history['val_mean_absolute_error']) plt.title('MAE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_percentage_error']) plt.plot(history.history['val_mean_absolute_percentage_error']) plt.title('MAPE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() <|reserved_special_token_1|> import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from WeatherDL.data_maker import dataset_maker from WeatherDL.model_maker import model_3 X, y = dataset_maker(window=5, forecast_day=1) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False) model = model_3((5, 8, 20, 6)) print(model.summary()) history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=5, epochs=30, verbose=2, shuffle=False) y_pred = model.predict(X_test) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('MSE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_error']) plt.plot(history.history['val_mean_absolute_error']) plt.title('MAE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_percentage_error']) plt.plot(history.history['val_mean_absolute_percentage_error']) plt.title('MAPE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() <|reserved_special_token_1|> import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from WeatherDL.data_maker import dataset_maker from WeatherDL.model_maker import model_3 # Extract data from data_maker X, y = dataset_maker(window=5, forecast_day=1) (X_train, X_test, y_train, y_test) = train_test_split(X, y, test_size=0.2, shuffle=False) # Open model from model_maker model = model_3((5, 8, 20, 6)) print(model.summary()) # Fit model, and extract training & validation metrics history = model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=5, epochs=30, verbose=2, shuffle=False) # Prediction y_pred = model.predict(X_test) # Data Visualization plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('MSE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_error']) plt.plot(history.history['val_mean_absolute_error']) plt.title('MAE') plt.legend(['Train', 'Test'], loc='upper right') plt.show() plt.plot(history.history['mean_absolute_percentage_error']) plt.plot(history.history['val_mean_absolute_percentage_error']) plt.title('MAPE') plt.legend(['Train', 'Test'], loc='upper right') plt.show()
flexible
{ "blob_id": "011dd579bb076ec094e9e3085aa321883c484f1c", "index": 5296, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(model.summary())\n<mask token>\nplt.plot(history.history['loss'])\nplt.plot(history.history['val_loss'])\nplt.title('MSE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_error'])\nplt.plot(history.history['val_mean_absolute_error'])\nplt.title('MAE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_percentage_error'])\nplt.plot(history.history['val_mean_absolute_percentage_error'])\nplt.title('MAPE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\n", "step-3": "<mask token>\nX, y = dataset_maker(window=5, forecast_day=1)\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,\n shuffle=False)\nmodel = model_3((5, 8, 20, 6))\nprint(model.summary())\nhistory = model.fit(X_train, y_train, validation_data=(X_test, y_test),\n batch_size=5, epochs=30, verbose=2, shuffle=False)\ny_pred = model.predict(X_test)\nplt.plot(history.history['loss'])\nplt.plot(history.history['val_loss'])\nplt.title('MSE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_error'])\nplt.plot(history.history['val_mean_absolute_error'])\nplt.title('MAE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_percentage_error'])\nplt.plot(history.history['val_mean_absolute_percentage_error'])\nplt.title('MAPE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\n", "step-4": "import matplotlib.pyplot as plt\nfrom sklearn.model_selection import train_test_split\nfrom WeatherDL.data_maker import dataset_maker\nfrom WeatherDL.model_maker import model_3\nX, y = dataset_maker(window=5, forecast_day=1)\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,\n shuffle=False)\nmodel = model_3((5, 8, 20, 6))\nprint(model.summary())\nhistory = model.fit(X_train, y_train, validation_data=(X_test, y_test),\n batch_size=5, epochs=30, verbose=2, shuffle=False)\ny_pred = model.predict(X_test)\nplt.plot(history.history['loss'])\nplt.plot(history.history['val_loss'])\nplt.title('MSE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_error'])\nplt.plot(history.history['val_mean_absolute_error'])\nplt.title('MAE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_percentage_error'])\nplt.plot(history.history['val_mean_absolute_percentage_error'])\nplt.title('MAPE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\n", "step-5": "import matplotlib.pyplot as plt\nfrom sklearn.model_selection import train_test_split\n\nfrom WeatherDL.data_maker import dataset_maker\nfrom WeatherDL.model_maker import model_3\n\n# Extract data from data_maker\nX, y = dataset_maker(window=5, forecast_day=1)\n(X_train, X_test, y_train, y_test) = train_test_split(X, y, test_size=0.2, shuffle=False)\n\n# Open model from model_maker\nmodel = model_3((5, 8, 20, 6))\nprint(model.summary())\n\n# Fit model, and extract training & validation metrics\nhistory = model.fit(X_train, y_train,\n validation_data=(X_test, y_test),\n batch_size=5,\n epochs=30,\n verbose=2,\n shuffle=False)\n\n# Prediction\ny_pred = model.predict(X_test)\n\n# Data Visualization\nplt.plot(history.history['loss'])\nplt.plot(history.history['val_loss'])\nplt.title('MSE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_error'])\nplt.plot(history.history['val_mean_absolute_error'])\nplt.title('MAE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\nplt.plot(history.history['mean_absolute_percentage_error'])\nplt.plot(history.history['val_mean_absolute_percentage_error'])\nplt.title('MAPE')\nplt.legend(['Train', 'Test'], loc='upper right')\nplt.show()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import json import os import uuid from django.core.files.uploadedfile import SimpleUploadedFile from django.conf import settings from django.contrib.contenttypes.models import ContentType from nautobot.dcim.models import Site from nautobot.extras.choices import JobResultStatusChoices from nautobot.extras.jobs import get_job, run_job from nautobot.extras.models import FileAttachment, FileProxy, JobResult from nautobot.utilities.testing import TestCase class JobTest(TestCase): """ Test basic jobs to ensure importing works. """ maxDiff = None @classmethod def setUpTestData(cls): cls.job_content_type = ContentType.objects.get(app_label="extras", model="job") def test_job_pass(self): """ Job test with pass result. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_pass" name = "TestPass" job_class = get_job(f"local/{module}/{name}") job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED) def test_job_fail(self): """ Job test with fail result. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_fail" name = "TestFail" job_class = get_job(f"local/{module}/{name}") job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_ERRORED) def test_field_order(self): """ Job test with field order. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_field_order" name = "TestFieldOrder" job_class = get_job(f"local/{module}/{name}") form = job_class().as_form() self.assertHTMLEqual( form.as_table(), """<tr><th><label for="id_var2">Var2:</label></th><td> <input class="form-control form-control" id="id_var2" name="var2" placeholder="None" required type="text"> <br><span class="helptext">Hello</span></td></tr> <tr><th><label for="id_var23">Var23:</label></th><td> <input class="form-control form-control" id="id_var23" name="var23" placeholder="None" required type="text"> <br><span class="helptext">I want to be second</span></td></tr> <tr><th><label for="id__commit">Commit changes:</label></th><td> <input checked id="id__commit" name="_commit" placeholder="Commit changes" type="checkbox"> <br><span class="helptext">Commit changes to the database (uncheck for a dry-run)</span></td></tr>""", ) def test_no_field_order(self): """ Job test without field_order. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_no_field_order" name = "TestNoFieldOrder" job_class = get_job(f"local/{module}/{name}") form = job_class().as_form() self.assertHTMLEqual( form.as_table(), """<tr><th><label for="id_var23">Var23:</label></th><td> <input class="form-control form-control" id="id_var23" name="var23" placeholder="None" required type="text"> <br><span class="helptext">I want to be second</span></td></tr> <tr><th><label for="id_var2">Var2:</label></th><td> <input class="form-control form-control" id="id_var2" name="var2" placeholder="None" required type="text"> <br><span class="helptext">Hello</span></td></tr> <tr><th><label for="id__commit">Commit changes:</label></th><td> <input checked id="id__commit" name="_commit" placeholder="Commit changes" type="checkbox"> <br><span class="helptext">Commit changes to the database (uncheck for a dry-run)</span></td></tr>""", ) def test_ready_only_job_pass(self): """ Job read only test with pass result. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_read_only_pass" name = "TestReadOnlyPass" job_class = get_job(f"local/{module}/{name}") job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED) self.assertEqual(Site.objects.count(), 0) # Ensure DB transaction was aborted def test_read_only_job_fail(self): """ Job read only test with fail result. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_read_only_fail" name = "TestReadOnlyFail" job_class = get_job(f"local/{module}/{name}") job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_ERRORED) self.assertEqual(Site.objects.count(), 0) # Ensure DB transaction was aborted # Also ensure the standard log message about aborting the transaction is *not* present self.assertNotEqual( job_result.data["run"]["log"][-1][-1], "Database changes have been reverted due to error." ) def test_read_only_no_commit_field(self): """ Job read only test commit field is not shown. """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_read_only_no_commit_field" name = "TestReadOnlyNoCommitField" job_class = get_job(f"local/{module}/{name}") form = job_class().as_form() self.assertHTMLEqual( form.as_table(), """<tr><th><label for="id_var">Var:</label></th><td> <input class="form-control form-control" id="id_var" name="var" placeholder="None" required type="text"> <br><span class="helptext">Hello</span><input id="id__commit" name="_commit" type="hidden" value="False"></td></tr>""", ) def test_ip_address_vars(self): """ Test that IPAddress variable fields behave as expected. This test case exercises the following types for both IPv4 and IPv6: - IPAddressVar - IPAddressWithMaskVar - IPNetworkVar """ with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): module = "test_ipaddress_vars" name = "TestIPAddresses" job_class = get_job(f"local/{module}/{name}") # Fill out the form form_data = dict( ipv4_address="1.2.3.4", ipv4_with_mask="1.2.3.4/32", ipv4_network="1.2.3.0/24", ipv6_address="2001:db8::1", ipv6_with_mask="2001:db8::1/64", ipv6_network="2001:db8::/64", ) form = job_class().as_form(form_data) self.assertTrue(form.is_valid()) # Prepare the job data job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) data = job_class.serialize_data(form.cleaned_data) # Run the job and extract the job payload data run_job(data=data, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() job_payload = job_result.data["run"]["log"][0][2] # Indexing makes me sad. job_result_data = json.loads(job_payload) # Assert stuff self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED) self.assertEqual(form_data, job_result_data) class JobFileUploadTest(TestCase): """Test a job that uploads/deletes files.""" @classmethod def setUpTestData(cls): cls.file_contents = b"I am content.\n" cls.dummy_file = SimpleUploadedFile(name="dummy.txt", content=cls.file_contents) cls.job_content_type = ContentType.objects.get(app_label="extras", model="job") def setUp(self): self.dummy_file.seek(0) # Reset cursor so we can read it again. def test_run_job_pass(self): """Test that file upload succeeds; job SUCCEEDS; and files are deleted.""" with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): job_name = "local/test_file_upload_pass/TestFileUploadPass" job_class = get_job(job_name) job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) # Serialize the file to FileProxy data = {"file": self.dummy_file} form = job_class().as_form(files=data) self.assertTrue(form.is_valid()) serialized_data = job_class.serialize_data(form.cleaned_data) # Assert that the file was serialized to a FileProxy self.assertTrue(isinstance(serialized_data["file"], uuid.UUID)) self.assertEqual(serialized_data["file"], FileProxy.objects.latest().pk) self.assertEqual(FileProxy.objects.count(), 1) # Run the job run_job(data=serialized_data, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() # Assert that file contents were correctly read self.assertEqual( job_result.data["run"]["log"][0][2], f"File contents: {self.file_contents}" # "File contents: ..." ) # Assert that FileProxy was cleaned up self.assertEqual(FileProxy.objects.count(), 0) def test_run_job_fail(self): """Test that file upload succeeds; job FAILS; files deleted.""" with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, "extras/tests/dummy_jobs")): job_name = "local/test_file_upload_fail/TestFileUploadFail" job_class = get_job(job_name) job_result = JobResult.objects.create( name=job_class.class_path, obj_type=self.job_content_type, user=None, job_id=uuid.uuid4(), ) # Serialize the file to FileProxy data = {"file": self.dummy_file} form = job_class().as_form(files=data) self.assertTrue(form.is_valid()) serialized_data = job_class.serialize_data(form.cleaned_data) # Assert that the file was serialized to a FileProxy self.assertTrue(isinstance(serialized_data["file"], uuid.UUID)) self.assertEqual(serialized_data["file"], FileProxy.objects.latest().pk) self.assertEqual(FileProxy.objects.count(), 1) # Run the job run_job(data=serialized_data, request=None, commit=False, job_result_pk=job_result.pk) job_result.refresh_from_db() # Assert that file contents were correctly read self.assertEqual( job_result.data["run"]["log"][0][2], f"File contents: {self.file_contents}" # "File contents: ..." ) # Also ensure the standard log message about aborting the transaction is present self.assertEqual(job_result.data["run"]["log"][-1][-1], "Database changes have been reverted due to error.") # Assert that FileProxy was cleaned up self.assertEqual(FileProxy.objects.count(), 0)
normal
{ "blob_id": "d2298ad1e4737b983ba6d1f2fff59750137510b5", "index": 904, "step-1": "<mask token>\n\n\nclass JobTest(TestCase):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_field_order(self):\n \"\"\"\n Job test with field order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_field_order'\n name = 'TestFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n <mask token>\n\n def test_ready_only_job_pass(self):\n \"\"\"\n Job read only test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_pass'\n name = 'TestReadOnlyPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(Site.objects.count(), 0)\n <mask token>\n\n def test_read_only_no_commit_field(self):\n \"\"\"\n Job read only test commit field is not shown.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_no_commit_field'\n name = 'TestReadOnlyNoCommitField'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var\">Var:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var\" name=\"var\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span><input id=\"id__commit\" name=\"_commit\" type=\"hidden\" value=\"False\"></td></tr>\"\"\"\n )\n <mask token>\n\n\nclass JobFileUploadTest(TestCase):\n \"\"\"Test a job that uploads/deletes files.\"\"\"\n\n @classmethod\n def setUpTestData(cls):\n cls.file_contents = b'I am content.\\n'\n cls.dummy_file = SimpleUploadedFile(name='dummy.txt', content=cls.\n file_contents)\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def setUp(self):\n self.dummy_file.seek(0)\n\n def test_run_job_pass(self):\n \"\"\"Test that file upload succeeds; job SUCCEEDS; and files are deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_pass/TestFileUploadPass'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(FileProxy.objects.count(), 0)\n\n def test_run_job_fail(self):\n \"\"\"Test that file upload succeeds; job FAILS; files deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_fail/TestFileUploadFail'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n self.assertEqual(FileProxy.objects.count(), 0)\n", "step-2": "<mask token>\n\n\nclass JobTest(TestCase):\n <mask token>\n <mask token>\n\n @classmethod\n def setUpTestData(cls):\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def test_job_pass(self):\n \"\"\"\n Job test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_pass'\n name = 'TestPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n <mask token>\n\n def test_field_order(self):\n \"\"\"\n Job test with field order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_field_order'\n name = 'TestFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_no_field_order(self):\n \"\"\"\n Job test without field_order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_no_field_order'\n name = 'TestNoFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_ready_only_job_pass(self):\n \"\"\"\n Job read only test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_pass'\n name = 'TestReadOnlyPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(Site.objects.count(), 0)\n\n def test_read_only_job_fail(self):\n \"\"\"\n Job read only test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_fail'\n name = 'TestReadOnlyFail'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_ERRORED)\n self.assertEqual(Site.objects.count(), 0)\n self.assertNotEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n\n def test_read_only_no_commit_field(self):\n \"\"\"\n Job read only test commit field is not shown.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_no_commit_field'\n name = 'TestReadOnlyNoCommitField'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var\">Var:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var\" name=\"var\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span><input id=\"id__commit\" name=\"_commit\" type=\"hidden\" value=\"False\"></td></tr>\"\"\"\n )\n\n def test_ip_address_vars(self):\n \"\"\"\n Test that IPAddress variable fields behave as expected.\n\n This test case exercises the following types for both IPv4 and IPv6:\n\n - IPAddressVar\n - IPAddressWithMaskVar\n - IPNetworkVar\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_ipaddress_vars'\n name = 'TestIPAddresses'\n job_class = get_job(f'local/{module}/{name}')\n form_data = dict(ipv4_address='1.2.3.4', ipv4_with_mask=\n '1.2.3.4/32', ipv4_network='1.2.3.0/24', ipv6_address=\n '2001:db8::1', ipv6_with_mask='2001:db8::1/64',\n ipv6_network='2001:db8::/64')\n form = job_class().as_form(form_data)\n self.assertTrue(form.is_valid())\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = job_class.serialize_data(form.cleaned_data)\n run_job(data=data, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n job_payload = job_result.data['run']['log'][0][2]\n job_result_data = json.loads(job_payload)\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(form_data, job_result_data)\n\n\nclass JobFileUploadTest(TestCase):\n \"\"\"Test a job that uploads/deletes files.\"\"\"\n\n @classmethod\n def setUpTestData(cls):\n cls.file_contents = b'I am content.\\n'\n cls.dummy_file = SimpleUploadedFile(name='dummy.txt', content=cls.\n file_contents)\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def setUp(self):\n self.dummy_file.seek(0)\n\n def test_run_job_pass(self):\n \"\"\"Test that file upload succeeds; job SUCCEEDS; and files are deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_pass/TestFileUploadPass'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(FileProxy.objects.count(), 0)\n\n def test_run_job_fail(self):\n \"\"\"Test that file upload succeeds; job FAILS; files deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_fail/TestFileUploadFail'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n self.assertEqual(FileProxy.objects.count(), 0)\n", "step-3": "<mask token>\n\n\nclass JobTest(TestCase):\n <mask token>\n <mask token>\n\n @classmethod\n def setUpTestData(cls):\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def test_job_pass(self):\n \"\"\"\n Job test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_pass'\n name = 'TestPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n\n def test_job_fail(self):\n \"\"\"\n Job test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_fail'\n name = 'TestFail'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_ERRORED)\n\n def test_field_order(self):\n \"\"\"\n Job test with field order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_field_order'\n name = 'TestFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_no_field_order(self):\n \"\"\"\n Job test without field_order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_no_field_order'\n name = 'TestNoFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_ready_only_job_pass(self):\n \"\"\"\n Job read only test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_pass'\n name = 'TestReadOnlyPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(Site.objects.count(), 0)\n\n def test_read_only_job_fail(self):\n \"\"\"\n Job read only test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_fail'\n name = 'TestReadOnlyFail'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_ERRORED)\n self.assertEqual(Site.objects.count(), 0)\n self.assertNotEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n\n def test_read_only_no_commit_field(self):\n \"\"\"\n Job read only test commit field is not shown.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_no_commit_field'\n name = 'TestReadOnlyNoCommitField'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var\">Var:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var\" name=\"var\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span><input id=\"id__commit\" name=\"_commit\" type=\"hidden\" value=\"False\"></td></tr>\"\"\"\n )\n\n def test_ip_address_vars(self):\n \"\"\"\n Test that IPAddress variable fields behave as expected.\n\n This test case exercises the following types for both IPv4 and IPv6:\n\n - IPAddressVar\n - IPAddressWithMaskVar\n - IPNetworkVar\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_ipaddress_vars'\n name = 'TestIPAddresses'\n job_class = get_job(f'local/{module}/{name}')\n form_data = dict(ipv4_address='1.2.3.4', ipv4_with_mask=\n '1.2.3.4/32', ipv4_network='1.2.3.0/24', ipv6_address=\n '2001:db8::1', ipv6_with_mask='2001:db8::1/64',\n ipv6_network='2001:db8::/64')\n form = job_class().as_form(form_data)\n self.assertTrue(form.is_valid())\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = job_class.serialize_data(form.cleaned_data)\n run_job(data=data, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n job_payload = job_result.data['run']['log'][0][2]\n job_result_data = json.loads(job_payload)\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(form_data, job_result_data)\n\n\nclass JobFileUploadTest(TestCase):\n \"\"\"Test a job that uploads/deletes files.\"\"\"\n\n @classmethod\n def setUpTestData(cls):\n cls.file_contents = b'I am content.\\n'\n cls.dummy_file = SimpleUploadedFile(name='dummy.txt', content=cls.\n file_contents)\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def setUp(self):\n self.dummy_file.seek(0)\n\n def test_run_job_pass(self):\n \"\"\"Test that file upload succeeds; job SUCCEEDS; and files are deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_pass/TestFileUploadPass'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(FileProxy.objects.count(), 0)\n\n def test_run_job_fail(self):\n \"\"\"Test that file upload succeeds; job FAILS; files deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_fail/TestFileUploadFail'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n self.assertEqual(FileProxy.objects.count(), 0)\n", "step-4": "<mask token>\n\n\nclass JobTest(TestCase):\n <mask token>\n maxDiff = None\n\n @classmethod\n def setUpTestData(cls):\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def test_job_pass(self):\n \"\"\"\n Job test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_pass'\n name = 'TestPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n\n def test_job_fail(self):\n \"\"\"\n Job test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_fail'\n name = 'TestFail'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_ERRORED)\n\n def test_field_order(self):\n \"\"\"\n Job test with field order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_field_order'\n name = 'TestFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_no_field_order(self):\n \"\"\"\n Job test without field_order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_no_field_order'\n name = 'TestNoFieldOrder'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\"\n )\n\n def test_ready_only_job_pass(self):\n \"\"\"\n Job read only test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_pass'\n name = 'TestReadOnlyPass'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(Site.objects.count(), 0)\n\n def test_read_only_job_fail(self):\n \"\"\"\n Job read only test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_fail'\n name = 'TestReadOnlyFail'\n job_class = get_job(f'local/{module}/{name}')\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n run_job(data={}, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_ERRORED)\n self.assertEqual(Site.objects.count(), 0)\n self.assertNotEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n\n def test_read_only_no_commit_field(self):\n \"\"\"\n Job read only test commit field is not shown.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_read_only_no_commit_field'\n name = 'TestReadOnlyNoCommitField'\n job_class = get_job(f'local/{module}/{name}')\n form = job_class().as_form()\n self.assertHTMLEqual(form.as_table(),\n \"\"\"<tr><th><label for=\"id_var\">Var:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var\" name=\"var\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span><input id=\"id__commit\" name=\"_commit\" type=\"hidden\" value=\"False\"></td></tr>\"\"\"\n )\n\n def test_ip_address_vars(self):\n \"\"\"\n Test that IPAddress variable fields behave as expected.\n\n This test case exercises the following types for both IPv4 and IPv6:\n\n - IPAddressVar\n - IPAddressWithMaskVar\n - IPNetworkVar\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n module = 'test_ipaddress_vars'\n name = 'TestIPAddresses'\n job_class = get_job(f'local/{module}/{name}')\n form_data = dict(ipv4_address='1.2.3.4', ipv4_with_mask=\n '1.2.3.4/32', ipv4_network='1.2.3.0/24', ipv6_address=\n '2001:db8::1', ipv6_with_mask='2001:db8::1/64',\n ipv6_network='2001:db8::/64')\n form = job_class().as_form(form_data)\n self.assertTrue(form.is_valid())\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = job_class.serialize_data(form.cleaned_data)\n run_job(data=data, request=None, commit=False, job_result_pk=\n job_result.pk)\n job_result.refresh_from_db()\n job_payload = job_result.data['run']['log'][0][2]\n job_result_data = json.loads(job_payload)\n self.assertEqual(job_result.status, JobResultStatusChoices.\n STATUS_COMPLETED)\n self.assertEqual(form_data, job_result_data)\n\n\nclass JobFileUploadTest(TestCase):\n \"\"\"Test a job that uploads/deletes files.\"\"\"\n\n @classmethod\n def setUpTestData(cls):\n cls.file_contents = b'I am content.\\n'\n cls.dummy_file = SimpleUploadedFile(name='dummy.txt', content=cls.\n file_contents)\n cls.job_content_type = ContentType.objects.get(app_label='extras',\n model='job')\n\n def setUp(self):\n self.dummy_file.seek(0)\n\n def test_run_job_pass(self):\n \"\"\"Test that file upload succeeds; job SUCCEEDS; and files are deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_pass/TestFileUploadPass'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(FileProxy.objects.count(), 0)\n\n def test_run_job_fail(self):\n \"\"\"Test that file upload succeeds; job FAILS; files deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR,\n 'extras/tests/dummy_jobs')):\n job_name = 'local/test_file_upload_fail/TestFileUploadFail'\n job_class = get_job(job_name)\n job_result = JobResult.objects.create(name=job_class.class_path,\n obj_type=self.job_content_type, user=None, job_id=uuid.uuid4())\n data = {'file': self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n self.assertTrue(isinstance(serialized_data['file'], uuid.UUID))\n self.assertEqual(serialized_data['file'], FileProxy.objects.\n latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n run_job(data=serialized_data, request=None, commit=False,\n job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.data['run']['log'][0][2],\n f'File contents: {self.file_contents}')\n self.assertEqual(job_result.data['run']['log'][-1][-1],\n 'Database changes have been reverted due to error.')\n self.assertEqual(FileProxy.objects.count(), 0)\n", "step-5": "import json\nimport os\nimport uuid\n\nfrom django.core.files.uploadedfile import SimpleUploadedFile\nfrom django.conf import settings\nfrom django.contrib.contenttypes.models import ContentType\n\nfrom nautobot.dcim.models import Site\nfrom nautobot.extras.choices import JobResultStatusChoices\nfrom nautobot.extras.jobs import get_job, run_job\nfrom nautobot.extras.models import FileAttachment, FileProxy, JobResult\nfrom nautobot.utilities.testing import TestCase\n\n\nclass JobTest(TestCase):\n \"\"\"\n Test basic jobs to ensure importing works.\n \"\"\"\n\n maxDiff = None\n\n @classmethod\n def setUpTestData(cls):\n cls.job_content_type = ContentType.objects.get(app_label=\"extras\", model=\"job\")\n\n def test_job_pass(self):\n \"\"\"\n Job test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_pass\"\n name = \"TestPass\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n\n run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED)\n\n def test_job_fail(self):\n \"\"\"\n Job test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_fail\"\n name = \"TestFail\"\n job_class = get_job(f\"local/{module}/{name}\")\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_ERRORED)\n\n def test_field_order(self):\n \"\"\"\n Job test with field order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_field_order\"\n name = \"TestFieldOrder\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n form = job_class().as_form()\n\n self.assertHTMLEqual(\n form.as_table(),\n \"\"\"<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\",\n )\n\n def test_no_field_order(self):\n \"\"\"\n Job test without field_order.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_no_field_order\"\n name = \"TestNoFieldOrder\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n form = job_class().as_form()\n\n self.assertHTMLEqual(\n form.as_table(),\n \"\"\"<tr><th><label for=\"id_var23\">Var23:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var23\" name=\"var23\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">I want to be second</span></td></tr>\n<tr><th><label for=\"id_var2\">Var2:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var2\" name=\"var2\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span></td></tr>\n<tr><th><label for=\"id__commit\">Commit changes:</label></th><td>\n<input checked id=\"id__commit\" name=\"_commit\" placeholder=\"Commit changes\" type=\"checkbox\">\n<br><span class=\"helptext\">Commit changes to the database (uncheck for a dry-run)</span></td></tr>\"\"\",\n )\n\n def test_ready_only_job_pass(self):\n \"\"\"\n Job read only test with pass result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_read_only_pass\"\n name = \"TestReadOnlyPass\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n\n run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED)\n self.assertEqual(Site.objects.count(), 0) # Ensure DB transaction was aborted\n\n def test_read_only_job_fail(self):\n \"\"\"\n Job read only test with fail result.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_read_only_fail\"\n name = \"TestReadOnlyFail\"\n job_class = get_job(f\"local/{module}/{name}\")\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n run_job(data={}, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_ERRORED)\n self.assertEqual(Site.objects.count(), 0) # Ensure DB transaction was aborted\n # Also ensure the standard log message about aborting the transaction is *not* present\n self.assertNotEqual(\n job_result.data[\"run\"][\"log\"][-1][-1], \"Database changes have been reverted due to error.\"\n )\n\n def test_read_only_no_commit_field(self):\n \"\"\"\n Job read only test commit field is not shown.\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_read_only_no_commit_field\"\n name = \"TestReadOnlyNoCommitField\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n form = job_class().as_form()\n\n self.assertHTMLEqual(\n form.as_table(),\n \"\"\"<tr><th><label for=\"id_var\">Var:</label></th><td>\n<input class=\"form-control form-control\" id=\"id_var\" name=\"var\" placeholder=\"None\" required type=\"text\">\n<br><span class=\"helptext\">Hello</span><input id=\"id__commit\" name=\"_commit\" type=\"hidden\" value=\"False\"></td></tr>\"\"\",\n )\n\n def test_ip_address_vars(self):\n \"\"\"\n Test that IPAddress variable fields behave as expected.\n\n This test case exercises the following types for both IPv4 and IPv6:\n\n - IPAddressVar\n - IPAddressWithMaskVar\n - IPNetworkVar\n \"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n\n module = \"test_ipaddress_vars\"\n name = \"TestIPAddresses\"\n job_class = get_job(f\"local/{module}/{name}\")\n\n # Fill out the form\n form_data = dict(\n ipv4_address=\"1.2.3.4\",\n ipv4_with_mask=\"1.2.3.4/32\",\n ipv4_network=\"1.2.3.0/24\",\n ipv6_address=\"2001:db8::1\",\n ipv6_with_mask=\"2001:db8::1/64\",\n ipv6_network=\"2001:db8::/64\",\n )\n form = job_class().as_form(form_data)\n self.assertTrue(form.is_valid())\n\n # Prepare the job data\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n data = job_class.serialize_data(form.cleaned_data)\n\n # Run the job and extract the job payload data\n run_job(data=data, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n job_payload = job_result.data[\"run\"][\"log\"][0][2] # Indexing makes me sad.\n job_result_data = json.loads(job_payload)\n\n # Assert stuff\n self.assertEqual(job_result.status, JobResultStatusChoices.STATUS_COMPLETED)\n self.assertEqual(form_data, job_result_data)\n\n\nclass JobFileUploadTest(TestCase):\n \"\"\"Test a job that uploads/deletes files.\"\"\"\n\n @classmethod\n def setUpTestData(cls):\n cls.file_contents = b\"I am content.\\n\"\n cls.dummy_file = SimpleUploadedFile(name=\"dummy.txt\", content=cls.file_contents)\n cls.job_content_type = ContentType.objects.get(app_label=\"extras\", model=\"job\")\n\n def setUp(self):\n self.dummy_file.seek(0) # Reset cursor so we can read it again.\n\n def test_run_job_pass(self):\n \"\"\"Test that file upload succeeds; job SUCCEEDS; and files are deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n job_name = \"local/test_file_upload_pass/TestFileUploadPass\"\n job_class = get_job(job_name)\n\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n\n # Serialize the file to FileProxy\n data = {\"file\": self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n\n # Assert that the file was serialized to a FileProxy\n self.assertTrue(isinstance(serialized_data[\"file\"], uuid.UUID))\n self.assertEqual(serialized_data[\"file\"], FileProxy.objects.latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n\n # Run the job\n run_job(data=serialized_data, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n\n # Assert that file contents were correctly read\n self.assertEqual(\n job_result.data[\"run\"][\"log\"][0][2], f\"File contents: {self.file_contents}\" # \"File contents: ...\"\n )\n\n # Assert that FileProxy was cleaned up\n self.assertEqual(FileProxy.objects.count(), 0)\n\n def test_run_job_fail(self):\n \"\"\"Test that file upload succeeds; job FAILS; files deleted.\"\"\"\n with self.settings(JOBS_ROOT=os.path.join(settings.BASE_DIR, \"extras/tests/dummy_jobs\")):\n job_name = \"local/test_file_upload_fail/TestFileUploadFail\"\n job_class = get_job(job_name)\n\n job_result = JobResult.objects.create(\n name=job_class.class_path,\n obj_type=self.job_content_type,\n user=None,\n job_id=uuid.uuid4(),\n )\n\n # Serialize the file to FileProxy\n data = {\"file\": self.dummy_file}\n form = job_class().as_form(files=data)\n self.assertTrue(form.is_valid())\n serialized_data = job_class.serialize_data(form.cleaned_data)\n\n # Assert that the file was serialized to a FileProxy\n self.assertTrue(isinstance(serialized_data[\"file\"], uuid.UUID))\n self.assertEqual(serialized_data[\"file\"], FileProxy.objects.latest().pk)\n self.assertEqual(FileProxy.objects.count(), 1)\n\n # Run the job\n run_job(data=serialized_data, request=None, commit=False, job_result_pk=job_result.pk)\n job_result.refresh_from_db()\n\n # Assert that file contents were correctly read\n self.assertEqual(\n job_result.data[\"run\"][\"log\"][0][2], f\"File contents: {self.file_contents}\" # \"File contents: ...\"\n )\n # Also ensure the standard log message about aborting the transaction is present\n self.assertEqual(job_result.data[\"run\"][\"log\"][-1][-1], \"Database changes have been reverted due to error.\")\n\n # Assert that FileProxy was cleaned up\n self.assertEqual(FileProxy.objects.count(), 0)\n", "step-ids": [ 10, 15, 16, 17, 20 ] }
[ 10, 15, 16, 17, 20 ]
# © MNELAB developers # # License: BSD (3-clause) from .dependencies import have from .syntax import PythonHighlighter from .utils import count_locations, image_path, interface_style, natural_sort
normal
{ "blob_id": "837534ebc953dae966154921709398ab2b2e0b33", "index": 578, "step-1": "<mask token>\n", "step-2": "from .dependencies import have\nfrom .syntax import PythonHighlighter\nfrom .utils import count_locations, image_path, interface_style, natural_sort\n", "step-3": "# © MNELAB developers\n#\n# License: BSD (3-clause)\n\nfrom .dependencies import have\nfrom .syntax import PythonHighlighter\nfrom .utils import count_locations, image_path, interface_style, natural_sort\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
tej="votary" for i in range(5): print(tej[i])
normal
{ "blob_id": "1f385fda1bdc0008ff91b935998c95c8ffcbd297", "index": 2797, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(5):\n print(tej[i])\n", "step-3": "tej = 'votary'\nfor i in range(5):\n print(tej[i])\n", "step-4": "tej=\"votary\"\nfor i in range(5):\n\tprint(tej[i])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django import forms class ListingForm(forms.Form): text = forms.CharField( max_length=50, widget=forms.TextInput( attrs={"class": "form-control", "placeholder": "Things to Buy"} ), )
normal
{ "blob_id": "3f23a50f44ba17c9b0241a4e3b0e939afeb1f5f0", "index": 3092, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ListingForm(forms.Form):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ListingForm(forms.Form):\n text = forms.CharField(max_length=50, widget=forms.TextInput(attrs={\n 'class': 'form-control', 'placeholder': 'Things to Buy'}))\n", "step-4": "from django import forms\n\n\nclass ListingForm(forms.Form):\n text = forms.CharField(max_length=50, widget=forms.TextInput(attrs={\n 'class': 'form-control', 'placeholder': 'Things to Buy'}))\n", "step-5": "from django import forms\n\n\nclass ListingForm(forms.Form):\n text = forms.CharField(\n max_length=50,\n widget=forms.TextInput(\n attrs={\"class\": \"form-control\", \"placeholder\": \"Things to Buy\"}\n ),\n )\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> for x in data: if x < min: min = x print(min) <|reserved_special_token_1|> data = [5, 6, 2, 8, 9, 1] min = 10 for x in data: if x < min: min = x print(min) <|reserved_special_token_1|> #딕셔너리로 데이터 표현 # sales = {'hong':0,'lee':0,'park':0} # d = {'z':10, 'b':20,'c':30} # print(d) # d.pop('b') # print(d) # d['f']=40 # print(d) # d.pop('z') # d['z'] = 40 # print(d.keys()) #반복문(while) #조건이 참일동안 수행 #while True: # print('python!!!') # a = 0 # while a < 10: # a += 1 # print(a) # a = 0 # while True: # a +=1 # print(a) # if a>=10: # break #1부터 1씩증가하는 숫자의 합이 1000초과시 숫자 출력 # a = 0 #1씩 증가하는 수 # s = 0 #합계를 저장할 변수 # while True: # a +=1 # s +=a # if s>=1000: break # # print('누적값:' , s) # print('마지막숫자:', a) #실습)사용자에게 숫자를 입력을 받아서 출력 #사용자가 0을 입력하면 프로그램 종료 #1) # while True: # num=int(input('숫자는?')) # if num ==0: break # print('입력숫자:', num) # # #2) # #num = 1 # # #사용자가 q를 입력하면 반복문 종료 # s=0 # while True: # num = input('숫자는(q:종료)?') # if num=='q': break # s +=int(num) # # print('누적합계', s) #실습4 #숫자 두 개와 기호를 입력 받아 계산기 프로그램을 만들어 봅시다. #단, 사용자가 q를 입력하면 계산기 종료 # while True: # num = input('첫 번째 숫자 입력(q:종료)') # if num=='num': break # num1 = input('두 번째 숫자 입력(q:종료)') # sign = input('기호는?') # if sign =='+': # print('더하기',num+num1) # elif sign =='-': # print('빼기:',num-num1) # elif sign == '*': # print('곱하기:', num * num1) # elif sign == '/': # print('나누기:', num / num1) # else: # print('잘못된 기호') # while True: # a = input('first:') # b = input('second:') # sign = input('sign:') # if sign == '+': # print('더하기:', a+b) # # if sign == '-': # print('빼기:', a-b) #2) # while True: # cal = input('계산식은?').split() # #print(cal) # if cal[0]=='q': break # a,sign,b = cal #언패킹 # a=int(a); b =int(b) # if sign == '+': # print('더하기', a + b) # elif sign == '-': # print('빼기:', a - b) # elif sign == '*': # print('곱하기:', a * b) # elif sign == '/': # print('나누기:', a / b) # else: # print('잘못된 기호') #실습) 가장 큰수 찾기 # data=[5,6,2,8,9,1] # max = 0 # for x in data: # if x > max: # max=x # # print(max) #실습) 가장 작은수 찾기 data=[5,6,2,8,9,1] min=10 for x in data: if x < min: min=x print(min)
flexible
{ "blob_id": "38bd18e9c1d17f25c10321ab561372eed58e8abc", "index": 4243, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor x in data:\n if x < min:\n min = x\nprint(min)\n", "step-3": "data = [5, 6, 2, 8, 9, 1]\nmin = 10\nfor x in data:\n if x < min:\n min = x\nprint(min)\n", "step-4": "#딕셔너리로 데이터 표현\n# sales = {'hong':0,'lee':0,'park':0}\n# d = {'z':10, 'b':20,'c':30}\n# print(d)\n# d.pop('b')\n# print(d)\n# d['f']=40\n# print(d)\n# d.pop('z')\n# d['z'] = 40\n# print(d.keys())\n#반복문(while)\n#조건이 참일동안 수행\n#while True:\n# print('python!!!')\n\n\n# a = 0\n# while a < 10:\n# a += 1\n# print(a)\n\n# a = 0\n# while True:\n# a +=1\n# print(a)\n# if a>=10:\n# break\n\n#1부터 1씩증가하는 숫자의 합이 1000초과시 숫자 출력\n# a = 0 #1씩 증가하는 수\n# s = 0 #합계를 저장할 변수\n# while True:\n# a +=1\n# s +=a\n# if s>=1000: break\n#\n# print('누적값:' , s)\n# print('마지막숫자:', a)\n\n#실습)사용자에게 숫자를 입력을 받아서 출력\n\n#사용자가 0을 입력하면 프로그램 종료\n#1)\n# while True:\n# num=int(input('숫자는?'))\n# if num ==0: break\n# print('입력숫자:', num)\n#\n# #2)\n# #num = 1\n#\n# #사용자가 q를 입력하면 반복문 종료\n# s=0\n# while True:\n# num = input('숫자는(q:종료)?')\n# if num=='q': break\n# s +=int(num)\n#\n# print('누적합계', s)\n\n#실습4\n#숫자 두 개와 기호를 입력 받아 계산기 프로그램을 만들어 봅시다.\n#단, 사용자가 q를 입력하면 계산기 종료\n# while True:\n# num = input('첫 번째 숫자 입력(q:종료)')\n# if num=='num': break\n# num1 = input('두 번째 숫자 입력(q:종료)')\n# sign = input('기호는?')\n# if sign =='+':\n# print('더하기',num+num1)\n# elif sign =='-':\n# print('빼기:',num-num1)\n# elif sign == '*':\n# print('곱하기:', num * num1)\n# elif sign == '/':\n# print('나누기:', num / num1)\n# else:\n# print('잘못된 기호')\n\n\n # while True:\n# a = input('first:')\n# b = input('second:')\n# sign = input('sign:')\n# if sign == '+':\n# print('더하기:', a+b)\n#\n# if sign == '-':\n# print('빼기:', a-b)\n\n#2)\n# while True:\n# cal = input('계산식은?').split()\n# #print(cal)\n# if cal[0]=='q': break\n# a,sign,b = cal #언패킹\n# a=int(a); b =int(b)\n# if sign == '+':\n# print('더하기', a + b)\n# elif sign == '-':\n# print('빼기:', a - b)\n# elif sign == '*':\n# print('곱하기:', a * b)\n# elif sign == '/':\n# print('나누기:', a / b)\n# else:\n# print('잘못된 기호')\n\n#실습) 가장 큰수 찾기\n# data=[5,6,2,8,9,1]\n# max = 0\n# for x in data:\n# if x > max:\n# max=x\n#\n# print(max)\n\n#실습) 가장 작은수 찾기\ndata=[5,6,2,8,9,1]\nmin=10\nfor x in data:\n if x < min:\n min=x\nprint(min)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def parse_cave_details(details): aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW' ) | Literal('NW') aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4') aliquotHalfString = oneOf('N E S W') + Suppress('1/2') aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString) ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0]) ) sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.')) sectionNumber = Word(nums) section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or' ) + sectionNumber)).setResultsName('section') afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString | sectionToken) caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) townshipDirection = oneOf('N S').setResultsName('direction') townshipNumber = Word(nums).setResultsName('number') township = Suppress('T.') + Group(townshipNumber + townshipDirection ).setResultsName('township') + Suppress('.') rangeDirection = oneOf('E W').setResultsName('direction') rangeNumber = Word(nums).setResultsName('number') range_info = Suppress('R.') + Group(rangeNumber + rangeDirection ).setResultsName('range') + Suppress('.') countyKeyword = Literal('County') countyName = Group(OneOrMore(~countyKeyword + Word(alphas + "-'.")) ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0])) county = countyName + Suppress('County') notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda x: False) shownOnQuad = Literal('S').setParseAction(lambda x: True) onKeyword = Literal('on') mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction( lambda alias: ' '.join(alias[0])).setResultsName('alias') quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName( 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias ) + Suppress(onKeyword) quadrangleKeyword = Literal('Quadrangle') + Literal('map') quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + "-'.")) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad' ) + Suppress(quadrangleKeyword) description = Group(ZeroOrMore(Word(alphanums + printables)) ).setResultsName('description').setParseAction(lambda desc: ' '. join(desc[0])) location = caveName + aliquotPart + section + Suppress(',' ) + township + Suppress(',') + range_info + Suppress(',' ) + county + quadrangle + description return location.parseString(details) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def parse_cave_details(details): aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW' ) | Literal('NW') aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4') aliquotHalfString = oneOf('N E S W') + Suppress('1/2') aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString) ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0]) ) sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.')) sectionNumber = Word(nums) section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or' ) + sectionNumber)).setResultsName('section') afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString | sectionToken) caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) townshipDirection = oneOf('N S').setResultsName('direction') townshipNumber = Word(nums).setResultsName('number') township = Suppress('T.') + Group(townshipNumber + townshipDirection ).setResultsName('township') + Suppress('.') rangeDirection = oneOf('E W').setResultsName('direction') rangeNumber = Word(nums).setResultsName('number') range_info = Suppress('R.') + Group(rangeNumber + rangeDirection ).setResultsName('range') + Suppress('.') countyKeyword = Literal('County') countyName = Group(OneOrMore(~countyKeyword + Word(alphas + "-'.")) ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0])) county = countyName + Suppress('County') notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda x: False) shownOnQuad = Literal('S').setParseAction(lambda x: True) onKeyword = Literal('on') mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction( lambda alias: ' '.join(alias[0])).setResultsName('alias') quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName( 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias ) + Suppress(onKeyword) quadrangleKeyword = Literal('Quadrangle') + Literal('map') quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + "-'.")) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad' ) + Suppress(quadrangleKeyword) description = Group(ZeroOrMore(Word(alphanums + printables)) ).setResultsName('description').setParseAction(lambda desc: ' '. join(desc[0])) location = caveName + aliquotPart + section + Suppress(',' ) + township + Suppress(',') + range_info + Suppress(',' ) + county + quadrangle + description return location.parseString(details) if __name__ == '__main__': if len(sys.argv) < 2: print('ERROR: pass in the filename as the second argument.') print(' $ python {0} /path/to/file.txt'.format(sys.argv[0])) exit() filepath = sys.argv[1] with open(filepath) as f: raw_text = f.read() raw_caves = raw_text.split('\n') caves = [] for raw_cave_text in raw_caves: raw_cave_text = raw_cave_text.strip() if raw_cave_text: try: cave = parse_cave_details(raw_cave_text) caves.append({'Cave name': cave.name, 'Alias': cave.quad. alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad .name, 'County': cave.county, 'State': 'MO', 'Principal Meridian Code': 5, 'Township Number': cave. township.number, 'Township Fraction': 0, 'Township Direction': cave.township.direction, 'Range Number': cave.range.number, 'Range Fraction': 0, 'Range Direction': cave.range.direction, 'Section': cave.section[0], 'Section Division': ''.join(cave. aliquot), 'Township Duplicate': 0, 'Description': raw_cave_text}) except: print('=' * 80) print('ERROR: unexpected format for {0}'.format(cave.name)) print(raw_cave_text) import traceback print(traceback.format_exc()) print('\t' + '\n\t'.join([str(x) for x in sys.exc_info()])) print('Skipping this cave for the next one') else: sections = ' or '.join(cave.section) output_path = os.path.basename(filepath).split('.')[0] + '.csv' print('#' * 80) print("{0} caves processed! Saving to '{1}'.".format(len(caves), output_path)) with open(output_path, 'wb') as f: cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys()) try: cave_csv.writeheader() except: header = {} for k in caves[0].keys(): header[k] = k cave_csv.writerow(header) cave_csv.writerows(caves) <|reserved_special_token_1|> import sys import os from pyparsing import * import csv def parse_cave_details(details): aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW' ) | Literal('NW') aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4') aliquotHalfString = oneOf('N E S W') + Suppress('1/2') aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString) ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0]) ) sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.')) sectionNumber = Word(nums) section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or' ) + sectionNumber)).setResultsName('section') afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString | sectionToken) caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) townshipDirection = oneOf('N S').setResultsName('direction') townshipNumber = Word(nums).setResultsName('number') township = Suppress('T.') + Group(townshipNumber + townshipDirection ).setResultsName('township') + Suppress('.') rangeDirection = oneOf('E W').setResultsName('direction') rangeNumber = Word(nums).setResultsName('number') range_info = Suppress('R.') + Group(rangeNumber + rangeDirection ).setResultsName('range') + Suppress('.') countyKeyword = Literal('County') countyName = Group(OneOrMore(~countyKeyword + Word(alphas + "-'.")) ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0])) county = countyName + Suppress('County') notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda x: False) shownOnQuad = Literal('S').setParseAction(lambda x: True) onKeyword = Literal('on') mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction( lambda alias: ' '.join(alias[0])).setResultsName('alias') quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName( 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias ) + Suppress(onKeyword) quadrangleKeyword = Literal('Quadrangle') + Literal('map') quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + "-'.")) ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0])) quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad' ) + Suppress(quadrangleKeyword) description = Group(ZeroOrMore(Word(alphanums + printables)) ).setResultsName('description').setParseAction(lambda desc: ' '. join(desc[0])) location = caveName + aliquotPart + section + Suppress(',' ) + township + Suppress(',') + range_info + Suppress(',' ) + county + quadrangle + description return location.parseString(details) if __name__ == '__main__': if len(sys.argv) < 2: print('ERROR: pass in the filename as the second argument.') print(' $ python {0} /path/to/file.txt'.format(sys.argv[0])) exit() filepath = sys.argv[1] with open(filepath) as f: raw_text = f.read() raw_caves = raw_text.split('\n') caves = [] for raw_cave_text in raw_caves: raw_cave_text = raw_cave_text.strip() if raw_cave_text: try: cave = parse_cave_details(raw_cave_text) caves.append({'Cave name': cave.name, 'Alias': cave.quad. alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad .name, 'County': cave.county, 'State': 'MO', 'Principal Meridian Code': 5, 'Township Number': cave. township.number, 'Township Fraction': 0, 'Township Direction': cave.township.direction, 'Range Number': cave.range.number, 'Range Fraction': 0, 'Range Direction': cave.range.direction, 'Section': cave.section[0], 'Section Division': ''.join(cave. aliquot), 'Township Duplicate': 0, 'Description': raw_cave_text}) except: print('=' * 80) print('ERROR: unexpected format for {0}'.format(cave.name)) print(raw_cave_text) import traceback print(traceback.format_exc()) print('\t' + '\n\t'.join([str(x) for x in sys.exc_info()])) print('Skipping this cave for the next one') else: sections = ' or '.join(cave.section) output_path = os.path.basename(filepath).split('.')[0] + '.csv' print('#' * 80) print("{0} caves processed! Saving to '{1}'.".format(len(caves), output_path)) with open(output_path, 'wb') as f: cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys()) try: cave_csv.writeheader() except: header = {} for k in caves[0].keys(): header[k] = k cave_csv.writerow(header) cave_csv.writerows(caves) <|reserved_special_token_1|> import sys import os from pyparsing import * import csv def parse_cave_details(details): ########################################################################## # Define the Bretz Grammar. # Sample cave description: # Boring Caverns SE1/4 NW1/4 sec. 16, T. 37 N., R. 10 W., Pulaski County Not shown on Waynesville Quadrangle map The mouth of this cave ...\n # Another Cave S1/2 sec. 15, T. 36 N., R. 12 W., Pulaski County Not shown on Waynesville Quadrangle map There are two large caves...\n # Something Bridge Sec. 15 or 22, T. 36 N., R. 13 W., Pulaski County Not shown on Richland Quadrangle map This cave is near Ozark...\n # # CAVE ::= CAVE_NAME [ALIQUOT_PART] SECTION, TOWNSHIP, RANGE, COUNTY QUAD_MAP DESCRIPTION # ALIQUOT_PART ::= (((NE|SE|SW|NW)1/4)|((N|E|S|W)1/2))* # SECTION ::= (S|s)ec. num+ # TOWNSHIP ::= T. num+ TOWNSHIP_DIR. # TOWNSHIP_DIR ::= N|S # RANGE ::= R. num+ RANGE_DIR. # RANGE_DIR ::= E|W # COUNTY = WORD+ County # QUAD_MAP = (Not s|S)hown on QUAD Quadrangle map # QUAD = WORD+ # DESCRIPTION = WORD+ aliquotQuadrantID = Literal("NE") |\ Literal("SE") |\ Literal("SW") |\ Literal("NW") aliquotQuadrantString = aliquotQuadrantID + Suppress("1/4") aliquotHalfString = oneOf("N E S W") + Suppress("1/2") aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString))\ .setResultsName("aliquot")\ .setParseAction(lambda kwd: " ".join(kwd[0])) sectionToken = Suppress(oneOf("S s") + Literal("ec") + Optional(".")) sectionNumber = Word(nums) section = Group( sectionToken \ + sectionNumber \ + ZeroOrMore(Suppress("or") + sectionNumber) ).setResultsName("section") afterEndOfCaveName = aliquotHalfString | aliquotQuadrantString | sectionToken caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)))\ .setResultsName('name')\ .setParseAction(lambda name: " ".join(name[0])) townshipDirection = oneOf("N S").setResultsName("direction") townshipNumber = Word(nums).setResultsName("number") township = Suppress("T.") \ + Group(townshipNumber + townshipDirection).setResultsName("township")\ + Suppress('.') rangeDirection = oneOf("E W").setResultsName("direction") rangeNumber = Word(nums).setResultsName("number") range_info = Suppress("R.") \ + Group(rangeNumber + rangeDirection).setResultsName("range")\ + Suppress('.') countyKeyword = Literal("County") countyName = Group(OneOrMore(~countyKeyword + Word(alphas+"-'.")))\ .setResultsName("county")\ .setParseAction(lambda c: " ".join(c[0])) county = countyName + Suppress("County") notShownOnQuad = (Literal("Not") + Suppress("s"))\ .setParseAction(lambda x: False) shownOnQuad = Literal("S").setParseAction(lambda x: True) onKeyword = Literal("on") mapAlias = Group(OneOrMore(~onKeyword + Word(printables)))\ .setParseAction(lambda alias: " ".join(alias[0]))\ .setResultsName("alias") quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName("is_on_map")\ + Suppress("hown") \ + Optional(Suppress('as') + mapAlias)\ + Suppress(onKeyword) quadrangleKeyword = Literal("Quadrangle") + Literal("map") quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas+"-'.")))\ .setResultsName("name")\ .setParseAction(lambda name: " ".join(name[0])) quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName("quad") \ + Suppress(quadrangleKeyword) description = Group(ZeroOrMore(Word(alphanums + printables)))\ .setResultsName("description")\ .setParseAction(lambda desc: " ".join(desc[0])) location = caveName \ + aliquotPart \ + section + Suppress(',') \ + township + Suppress(',') \ + range_info + Suppress(',')\ + county \ + quadrangle \ + description return location.parseString(details) if __name__ == "__main__": if len(sys.argv) < 2: print("ERROR: pass in the filename as the second argument.") print(" $ python {0} /path/to/file.txt".format(sys.argv[0])) exit() filepath = sys.argv[1] with open(filepath) as f: raw_text = f.read() raw_caves = raw_text.split("\n") caves = [] for raw_cave_text in raw_caves: raw_cave_text = raw_cave_text.strip() if raw_cave_text: try: cave = parse_cave_details(raw_cave_text) caves.append({ 'Cave name': cave.name, 'Alias': cave.quad.alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad.name, 'County': cave.county, 'State': 'MO', 'Principal Meridian Code': 5, 'Township Number': cave.township.number, 'Township Fraction': 0, 'Township Direction': cave.township.direction, 'Range Number': cave.range.number, 'Range Fraction': 0, 'Range Direction': cave.range.direction, 'Section': cave.section[0], 'Section Division': "".join(cave.aliquot), 'Township Duplicate': 0, 'Description': raw_cave_text, }) except: print("="*80) print("ERROR: unexpected format for {0}".format(cave.name)) print(raw_cave_text) import traceback print(traceback.format_exc()) print("\t" + "\n\t".join([str(x) for x in sys.exc_info()])) print("Skipping this cave for the next one") else: sections = " or ".join(cave.section) #print("="*80) #print("{1} := {0.aliquot} Sect. {2}, T. {0.township.number} {0.township.direction}., R. {0.range.number} {0.range.direction}., in {0.county} County on the {0.quad.name} quad map.".format(cave, cave.name, sections)) #print(" Marked on map as {0}".format(cave.quad.alias if cave.quad.alias else cave.name) if cave.quad.is_on_map else " Not on map") output_path = os.path.basename(filepath).split(".")[0] + ".csv" print("#"*80) print("{0} caves processed! Saving to '{1}'.".format(len(caves), output_path)) with open(output_path, 'wb') as f: cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys()) try: cave_csv.writeheader() except: # Versions before 2.7 of Python do not have csv with writeheader(). header = {} for k in caves[0].keys(): header[k] = k cave_csv.writerow(header) cave_csv.writerows(caves)
flexible
{ "blob_id": "1fc1d2e1a7d18b1ef8ee6396210afe47a63ab09f", "index": 3267, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print('ERROR: pass in the filename as the second argument.')\n print(' $ python {0} /path/to/file.txt'.format(sys.argv[0]))\n exit()\n filepath = sys.argv[1]\n with open(filepath) as f:\n raw_text = f.read()\n raw_caves = raw_text.split('\\n')\n caves = []\n for raw_cave_text in raw_caves:\n raw_cave_text = raw_cave_text.strip()\n if raw_cave_text:\n try:\n cave = parse_cave_details(raw_cave_text)\n caves.append({'Cave name': cave.name, 'Alias': cave.quad.\n alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad\n .name, 'County': cave.county, 'State': 'MO',\n 'Principal Meridian Code': 5, 'Township Number': cave.\n township.number, 'Township Fraction': 0,\n 'Township Direction': cave.township.direction,\n 'Range Number': cave.range.number, 'Range Fraction': 0,\n 'Range Direction': cave.range.direction, 'Section':\n cave.section[0], 'Section Division': ''.join(cave.\n aliquot), 'Township Duplicate': 0, 'Description':\n raw_cave_text})\n except:\n print('=' * 80)\n print('ERROR: unexpected format for {0}'.format(cave.name))\n print(raw_cave_text)\n import traceback\n print(traceback.format_exc())\n print('\\t' + '\\n\\t'.join([str(x) for x in sys.exc_info()]))\n print('Skipping this cave for the next one')\n else:\n sections = ' or '.join(cave.section)\n output_path = os.path.basename(filepath).split('.')[0] + '.csv'\n print('#' * 80)\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves),\n output_path))\n with open(output_path, 'wb') as f:\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\n try:\n cave_csv.writeheader()\n except:\n header = {}\n for k in caves[0].keys():\n header[k] = k\n cave_csv.writerow(header)\n cave_csv.writerows(caves)\n", "step-4": "import sys\nimport os\nfrom pyparsing import *\nimport csv\n\n\ndef parse_cave_details(details):\n aliquotQuadrantID = Literal('NE') | Literal('SE') | Literal('SW'\n ) | Literal('NW')\n aliquotQuadrantString = aliquotQuadrantID + Suppress('1/4')\n aliquotHalfString = oneOf('N E S W') + Suppress('1/2')\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString)\n ).setResultsName('aliquot').setParseAction(lambda kwd: ' '.join(kwd[0])\n )\n sectionToken = Suppress(oneOf('S s') + Literal('ec') + Optional('.'))\n sectionNumber = Word(nums)\n section = Group(sectionToken + sectionNumber + ZeroOrMore(Suppress('or'\n ) + sectionNumber)).setResultsName('section')\n afterEndOfCaveName = (aliquotHalfString | aliquotQuadrantString |\n sectionToken)\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n townshipDirection = oneOf('N S').setResultsName('direction')\n townshipNumber = Word(nums).setResultsName('number')\n township = Suppress('T.') + Group(townshipNumber + townshipDirection\n ).setResultsName('township') + Suppress('.')\n rangeDirection = oneOf('E W').setResultsName('direction')\n rangeNumber = Word(nums).setResultsName('number')\n range_info = Suppress('R.') + Group(rangeNumber + rangeDirection\n ).setResultsName('range') + Suppress('.')\n countyKeyword = Literal('County')\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('county').setParseAction(lambda c: ' '.join(c[0]))\n county = countyName + Suppress('County')\n notShownOnQuad = (Literal('Not') + Suppress('s')).setParseAction(lambda\n x: False)\n shownOnQuad = Literal('S').setParseAction(lambda x: True)\n onKeyword = Literal('on')\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables))).setParseAction(\n lambda alias: ' '.join(alias[0])).setResultsName('alias')\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\n 'is_on_map') + Suppress('hown') + Optional(Suppress('as') + mapAlias\n ) + Suppress(onKeyword)\n quadrangleKeyword = Literal('Quadrangle') + Literal('map')\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas + \"-'.\"))\n ).setResultsName('name').setParseAction(lambda name: ' '.join(name[0]))\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName('quad'\n ) + Suppress(quadrangleKeyword)\n description = Group(ZeroOrMore(Word(alphanums + printables))\n ).setResultsName('description').setParseAction(lambda desc: ' '.\n join(desc[0]))\n location = caveName + aliquotPart + section + Suppress(','\n ) + township + Suppress(',') + range_info + Suppress(','\n ) + county + quadrangle + description\n return location.parseString(details)\n\n\nif __name__ == '__main__':\n if len(sys.argv) < 2:\n print('ERROR: pass in the filename as the second argument.')\n print(' $ python {0} /path/to/file.txt'.format(sys.argv[0]))\n exit()\n filepath = sys.argv[1]\n with open(filepath) as f:\n raw_text = f.read()\n raw_caves = raw_text.split('\\n')\n caves = []\n for raw_cave_text in raw_caves:\n raw_cave_text = raw_cave_text.strip()\n if raw_cave_text:\n try:\n cave = parse_cave_details(raw_cave_text)\n caves.append({'Cave name': cave.name, 'Alias': cave.quad.\n alias, 'On map': cave.quad.is_on_map, 'Quad': cave.quad\n .name, 'County': cave.county, 'State': 'MO',\n 'Principal Meridian Code': 5, 'Township Number': cave.\n township.number, 'Township Fraction': 0,\n 'Township Direction': cave.township.direction,\n 'Range Number': cave.range.number, 'Range Fraction': 0,\n 'Range Direction': cave.range.direction, 'Section':\n cave.section[0], 'Section Division': ''.join(cave.\n aliquot), 'Township Duplicate': 0, 'Description':\n raw_cave_text})\n except:\n print('=' * 80)\n print('ERROR: unexpected format for {0}'.format(cave.name))\n print(raw_cave_text)\n import traceback\n print(traceback.format_exc())\n print('\\t' + '\\n\\t'.join([str(x) for x in sys.exc_info()]))\n print('Skipping this cave for the next one')\n else:\n sections = ' or '.join(cave.section)\n output_path = os.path.basename(filepath).split('.')[0] + '.csv'\n print('#' * 80)\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves),\n output_path))\n with open(output_path, 'wb') as f:\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\n try:\n cave_csv.writeheader()\n except:\n header = {}\n for k in caves[0].keys():\n header[k] = k\n cave_csv.writerow(header)\n cave_csv.writerows(caves)\n", "step-5": "import sys\r\nimport os\r\nfrom pyparsing import *\r\nimport csv\r\n\r\n\r\ndef parse_cave_details(details):\r\n ##########################################################################\r\n # Define the Bretz Grammar.\r\n # Sample cave description:\r\n # Boring Caverns SE1/4 NW1/4 sec. 16, T. 37 N., R. 10 W., Pulaski County Not shown on Waynesville Quadrangle map The mouth of this cave ...\\n\r\n # Another Cave S1/2 sec. 15, T. 36 N., R. 12 W., Pulaski County Not shown on Waynesville Quadrangle map There are two large caves...\\n\r\n # Something Bridge Sec. 15 or 22, T. 36 N., R. 13 W., Pulaski County Not shown on Richland Quadrangle map This cave is near Ozark...\\n\r\n #\r\n # CAVE ::= CAVE_NAME [ALIQUOT_PART] SECTION, TOWNSHIP, RANGE, COUNTY QUAD_MAP DESCRIPTION\r\n # ALIQUOT_PART ::= (((NE|SE|SW|NW)1/4)|((N|E|S|W)1/2))*\r\n # SECTION ::= (S|s)ec. num+\r\n # TOWNSHIP ::= T. num+ TOWNSHIP_DIR.\r\n # TOWNSHIP_DIR ::= N|S\r\n # RANGE ::= R. num+ RANGE_DIR.\r\n # RANGE_DIR ::= E|W\r\n # COUNTY = WORD+ County\r\n # QUAD_MAP = (Not s|S)hown on QUAD Quadrangle map\r\n # QUAD = WORD+\r\n # DESCRIPTION = WORD+\r\n aliquotQuadrantID = Literal(\"NE\") |\\\r\n Literal(\"SE\") |\\\r\n Literal(\"SW\") |\\\r\n Literal(\"NW\")\r\n aliquotQuadrantString = aliquotQuadrantID + Suppress(\"1/4\")\r\n aliquotHalfString = oneOf(\"N E S W\") + Suppress(\"1/2\")\r\n aliquotPart = Group(ZeroOrMore(aliquotQuadrantString | aliquotHalfString))\\\r\n .setResultsName(\"aliquot\")\\\r\n .setParseAction(lambda kwd: \" \".join(kwd[0]))\r\n\r\n sectionToken = Suppress(oneOf(\"S s\") + Literal(\"ec\") + Optional(\".\"))\r\n sectionNumber = Word(nums)\r\n section = Group(\r\n sectionToken \\\r\n + sectionNumber \\\r\n + ZeroOrMore(Suppress(\"or\") + sectionNumber)\r\n ).setResultsName(\"section\")\r\n\r\n afterEndOfCaveName = aliquotHalfString | aliquotQuadrantString | sectionToken\r\n caveName = Group(OneOrMore(~afterEndOfCaveName + Word(printables)))\\\r\n .setResultsName('name')\\\r\n .setParseAction(lambda name: \" \".join(name[0]))\r\n\r\n townshipDirection = oneOf(\"N S\").setResultsName(\"direction\")\r\n townshipNumber = Word(nums).setResultsName(\"number\")\r\n township = Suppress(\"T.\") \\\r\n + Group(townshipNumber + townshipDirection).setResultsName(\"township\")\\\r\n + Suppress('.')\r\n\r\n rangeDirection = oneOf(\"E W\").setResultsName(\"direction\")\r\n rangeNumber = Word(nums).setResultsName(\"number\")\r\n range_info = Suppress(\"R.\") \\\r\n + Group(rangeNumber + rangeDirection).setResultsName(\"range\")\\\r\n + Suppress('.')\r\n\r\n countyKeyword = Literal(\"County\")\r\n countyName = Group(OneOrMore(~countyKeyword + Word(alphas+\"-'.\")))\\\r\n .setResultsName(\"county\")\\\r\n .setParseAction(lambda c: \" \".join(c[0]))\r\n county = countyName + Suppress(\"County\")\r\n\r\n notShownOnQuad = (Literal(\"Not\") + Suppress(\"s\"))\\\r\n .setParseAction(lambda x: False)\r\n shownOnQuad = Literal(\"S\").setParseAction(lambda x: True)\r\n onKeyword = Literal(\"on\")\r\n mapAlias = Group(OneOrMore(~onKeyword + Word(printables)))\\\r\n .setParseAction(lambda alias: \" \".join(alias[0]))\\\r\n .setResultsName(\"alias\")\r\n quadrangleStatus = (shownOnQuad | notShownOnQuad).setResultsName(\"is_on_map\")\\\r\n + Suppress(\"hown\") \\\r\n + Optional(Suppress('as') + mapAlias)\\\r\n + Suppress(onKeyword)\r\n quadrangleKeyword = Literal(\"Quadrangle\") + Literal(\"map\")\r\n quadrangleName = Group(OneOrMore(~quadrangleKeyword + Word(alphas+\"-'.\")))\\\r\n .setResultsName(\"name\")\\\r\n .setParseAction(lambda name: \" \".join(name[0]))\r\n quadrangle = Group(quadrangleStatus + quadrangleName).setResultsName(\"quad\") \\\r\n + Suppress(quadrangleKeyword)\r\n\r\n description = Group(ZeroOrMore(Word(alphanums + printables)))\\\r\n .setResultsName(\"description\")\\\r\n .setParseAction(lambda desc: \" \".join(desc[0]))\r\n\r\n location = caveName \\\r\n + aliquotPart \\\r\n + section + Suppress(',') \\\r\n + township + Suppress(',') \\\r\n + range_info + Suppress(',')\\\r\n + county \\\r\n + quadrangle \\\r\n + description\r\n\r\n return location.parseString(details)\r\n\r\n\r\nif __name__ == \"__main__\":\r\n if len(sys.argv) < 2:\r\n print(\"ERROR: pass in the filename as the second argument.\")\r\n print(\" $ python {0} /path/to/file.txt\".format(sys.argv[0]))\r\n exit()\r\n\r\n filepath = sys.argv[1]\r\n with open(filepath) as f:\r\n raw_text = f.read()\r\n\r\n raw_caves = raw_text.split(\"\\n\")\r\n caves = []\r\n for raw_cave_text in raw_caves:\r\n raw_cave_text = raw_cave_text.strip()\r\n if raw_cave_text:\r\n try:\r\n cave = parse_cave_details(raw_cave_text)\r\n caves.append({\r\n 'Cave name': cave.name,\r\n 'Alias': cave.quad.alias,\r\n 'On map': cave.quad.is_on_map,\r\n 'Quad': cave.quad.name,\r\n 'County': cave.county,\r\n 'State': 'MO',\r\n 'Principal Meridian Code': 5,\r\n 'Township Number': cave.township.number,\r\n 'Township Fraction': 0,\r\n 'Township Direction': cave.township.direction,\r\n 'Range Number': cave.range.number,\r\n 'Range Fraction': 0,\r\n 'Range Direction': cave.range.direction,\r\n 'Section': cave.section[0],\r\n 'Section Division': \"\".join(cave.aliquot),\r\n 'Township Duplicate': 0,\r\n 'Description': raw_cave_text,\r\n })\r\n\r\n except:\r\n print(\"=\"*80)\r\n print(\"ERROR: unexpected format for {0}\".format(cave.name))\r\n print(raw_cave_text)\r\n import traceback\r\n print(traceback.format_exc())\r\n print(\"\\t\" + \"\\n\\t\".join([str(x) for x in sys.exc_info()]))\r\n print(\"Skipping this cave for the next one\")\r\n else:\r\n sections = \" or \".join(cave.section)\r\n #print(\"=\"*80)\r\n #print(\"{1} := {0.aliquot} Sect. {2}, T. {0.township.number} {0.township.direction}., R. {0.range.number} {0.range.direction}., in {0.county} County on the {0.quad.name} quad map.\".format(cave, cave.name, sections))\r\n #print(\" Marked on map as {0}\".format(cave.quad.alias if cave.quad.alias else cave.name) if cave.quad.is_on_map else \" Not on map\")\r\n\r\n output_path = os.path.basename(filepath).split(\".\")[0] + \".csv\"\r\n print(\"#\"*80)\r\n print(\"{0} caves processed! Saving to '{1}'.\".format(len(caves), output_path))\r\n with open(output_path, 'wb') as f:\r\n cave_csv = csv.DictWriter(f, fieldnames=caves[0].keys())\r\n try:\r\n cave_csv.writeheader()\r\n \r\n except: # Versions before 2.7 of Python do not have csv with writeheader().\r\n header = {}\r\n for k in caves[0].keys():\r\n header[k] = k\r\n \r\n cave_csv.writerow(header)\r\n\r\n cave_csv.writerows(caves)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' <|reserved_special_token_0|> def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' <|reserved_special_token_0|> def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): """Basically testing to see if the cache can store and recall info""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) if __name__ == '__main__': test_1() test_2() test_3() test_4() <|reserved_special_token_1|> from collections import OrderedDict class LRU_Cache(object): def __init__(self, capacity): self.size = capacity self.jar = OrderedDict() pass def get(self, key): if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): """Basically testing to see if the cache can store and recall info""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): """testing to see if the least used object gets removed""" our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): """entering null key to be set, should not work""" our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) def test_4(): """0 capacity test case""" our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print( f'Current Cache state: {our_cache} expected result is for it to be empty' ) if __name__ == '__main__': test_1() test_2() test_3() test_4() <|reserved_special_token_1|> from collections import OrderedDict class LRU_Cache(object): def __init__(self, capacity): # Initialize class variables self.size = capacity self.jar = OrderedDict() pass def get(self, key): # Retrieve item from provided key. Return -1 if nonexistent. if key not in self.jar: return -1 else: rtn = self.jar.get(key) self.jar.move_to_end(key) return rtn def set(self, key, value): # Set the value if the key is not present in the cache. If the cache is at capacity remove the oldest item. if key is None: return if len(self.jar) == self.size: self.jar.popitem(last=False) self.jar[key] = value else: self.jar[key] = value return def __str__(self): return f'{self.jar}' def test_1(): '''Basically testing to see if the cache can store and recall info''' our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1') def test_2(): '''testing to see if the least used object gets removed''' our_cache = LRU_Cache(5) our_cache.set(1, 1) our_cache.set(2, 2) our_cache.set(3, 3) our_cache.set(4, 4) our_cache.set(5, 5) our_cache.get(1) our_cache.set(6, 6) print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1') def test_3(): '''entering null key to be set, should not work''' our_cache = LRU_Cache(5) [our_cache.set(None, 1) for _ in range(5)] print(f'Current Cache state: {our_cache} expected result is for it to be empty') def test_4(): '''0 capacity test case''' our_cache = LRU_Cache(0) [our_cache.set(None, 1) for _ in range(5)] print(f'Current Cache state: {our_cache} expected result is for it to be empty') if __name__ == "__main__": test_1() test_2() test_3() test_4()
flexible
{ "blob_id": "3c88e13e8796c5f39180a9a514f0528a074460a6", "index": 2198, "step-1": "<mask token>\n\n\nclass LRU_Cache(object):\n\n def __init__(self, capacity):\n self.size = capacity\n self.jar = OrderedDict()\n pass\n\n def get(self, key):\n if key not in self.jar:\n return -1\n else:\n rtn = self.jar.get(key)\n self.jar.move_to_end(key)\n return rtn\n\n def set(self, key, value):\n if key is None:\n return\n if len(self.jar) == self.size:\n self.jar.popitem(last=False)\n self.jar[key] = value\n else:\n self.jar[key] = value\n return\n\n def __str__(self):\n return f'{self.jar}'\n\n\n<mask token>\n\n\ndef test_2():\n \"\"\"testing to see if the least used object gets removed\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n our_cache.set(5, 5)\n our_cache.get(1)\n our_cache.set(6, 6)\n print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass LRU_Cache(object):\n\n def __init__(self, capacity):\n self.size = capacity\n self.jar = OrderedDict()\n pass\n\n def get(self, key):\n if key not in self.jar:\n return -1\n else:\n rtn = self.jar.get(key)\n self.jar.move_to_end(key)\n return rtn\n\n def set(self, key, value):\n if key is None:\n return\n if len(self.jar) == self.size:\n self.jar.popitem(last=False)\n self.jar[key] = value\n else:\n self.jar[key] = value\n return\n\n def __str__(self):\n return f'{self.jar}'\n\n\n<mask token>\n\n\ndef test_2():\n \"\"\"testing to see if the least used object gets removed\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n our_cache.set(5, 5)\n our_cache.get(1)\n our_cache.set(6, 6)\n print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1')\n\n\ndef test_3():\n \"\"\"entering null key to be set, should not work\"\"\"\n our_cache = LRU_Cache(5)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\ndef test_4():\n \"\"\"0 capacity test case\"\"\"\n our_cache = LRU_Cache(0)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass LRU_Cache(object):\n\n def __init__(self, capacity):\n self.size = capacity\n self.jar = OrderedDict()\n pass\n\n def get(self, key):\n if key not in self.jar:\n return -1\n else:\n rtn = self.jar.get(key)\n self.jar.move_to_end(key)\n return rtn\n\n def set(self, key, value):\n if key is None:\n return\n if len(self.jar) == self.size:\n self.jar.popitem(last=False)\n self.jar[key] = value\n else:\n self.jar[key] = value\n return\n\n def __str__(self):\n return f'{self.jar}'\n\n\ndef test_1():\n \"\"\"Basically testing to see if the cache can store and recall info\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1')\n\n\ndef test_2():\n \"\"\"testing to see if the least used object gets removed\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n our_cache.set(5, 5)\n our_cache.get(1)\n our_cache.set(6, 6)\n print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1')\n\n\ndef test_3():\n \"\"\"entering null key to be set, should not work\"\"\"\n our_cache = LRU_Cache(5)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\ndef test_4():\n \"\"\"0 capacity test case\"\"\"\n our_cache = LRU_Cache(0)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\nif __name__ == '__main__':\n test_1()\n test_2()\n test_3()\n test_4()\n", "step-4": "from collections import OrderedDict\n\n\nclass LRU_Cache(object):\n\n def __init__(self, capacity):\n self.size = capacity\n self.jar = OrderedDict()\n pass\n\n def get(self, key):\n if key not in self.jar:\n return -1\n else:\n rtn = self.jar.get(key)\n self.jar.move_to_end(key)\n return rtn\n\n def set(self, key, value):\n if key is None:\n return\n if len(self.jar) == self.size:\n self.jar.popitem(last=False)\n self.jar[key] = value\n else:\n self.jar[key] = value\n return\n\n def __str__(self):\n return f'{self.jar}'\n\n\ndef test_1():\n \"\"\"Basically testing to see if the cache can store and recall info\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1')\n\n\ndef test_2():\n \"\"\"testing to see if the least used object gets removed\"\"\"\n our_cache = LRU_Cache(5)\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n our_cache.set(5, 5)\n our_cache.get(1)\n our_cache.set(6, 6)\n print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1')\n\n\ndef test_3():\n \"\"\"entering null key to be set, should not work\"\"\"\n our_cache = LRU_Cache(5)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\ndef test_4():\n \"\"\"0 capacity test case\"\"\"\n our_cache = LRU_Cache(0)\n [our_cache.set(None, 1) for _ in range(5)]\n print(\n f'Current Cache state: {our_cache} expected result is for it to be empty'\n )\n\n\nif __name__ == '__main__':\n test_1()\n test_2()\n test_3()\n test_4()\n", "step-5": "from collections import OrderedDict\nclass LRU_Cache(object):\n def __init__(self, capacity):\n # Initialize class variables\n self.size = capacity\n self.jar = OrderedDict()\n pass\n\n def get(self, key):\n # Retrieve item from provided key. Return -1 if nonexistent.\n if key not in self.jar:\n return -1\n else:\n rtn = self.jar.get(key)\n self.jar.move_to_end(key)\n return rtn\n\n def set(self, key, value):\n # Set the value if the key is not present in the cache. If the cache is at capacity remove the oldest item.\n if key is None:\n return\n if len(self.jar) == self.size:\n self.jar.popitem(last=False)\n self.jar[key] = value\n else:\n self.jar[key] = value\n return\n \n def __str__(self):\n return f'{self.jar}'\n\n\ndef test_1():\n '''Basically testing to see if the cache can store and recall info'''\n our_cache = LRU_Cache(5)\n\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n\n print(f'Cache get 1 returns -> {our_cache.get(1)} | expected result = 1')\n\n\ndef test_2():\n '''testing to see if the least used object gets removed'''\n our_cache = LRU_Cache(5)\n\n our_cache.set(1, 1)\n our_cache.set(2, 2)\n our_cache.set(3, 3)\n our_cache.set(4, 4)\n our_cache.set(5, 5) \n\n our_cache.get(1)\n\n our_cache.set(6, 6)\n\n\n\n print(f'Cache get 2 returns -> {our_cache.get(2)} | expected result = -1')\n\ndef test_3():\n '''entering null key to be set, should not work'''\n our_cache = LRU_Cache(5)\n\n [our_cache.set(None, 1) for _ in range(5)]\n\n print(f'Current Cache state: {our_cache} expected result is for it to be empty')\n\ndef test_4():\n '''0 capacity test case'''\n our_cache = LRU_Cache(0)\n\n [our_cache.set(None, 1) for _ in range(5)]\n\n print(f'Current Cache state: {our_cache} expected result is for it to be empty')\n\n \n\nif __name__ == \"__main__\":\n test_1()\n test_2()\n test_3()\n test_4()\n", "step-ids": [ 6, 8, 10, 11, 12 ] }
[ 6, 8, 10, 11, 12 ]
<|reserved_special_token_0|> class ListContact(ListView): model = Contact <|reserved_special_token_1|> <|reserved_special_token_0|> class AddContact(CreateView): model = Contact success_url = reverse_lazy('home') class ListContact(ListView): model = Contact <|reserved_special_token_1|> <|reserved_special_token_0|> class Home(TemplateView): <|reserved_special_token_0|> class AddContact(CreateView): model = Contact success_url = reverse_lazy('home') class ListContact(ListView): model = Contact <|reserved_special_token_1|> <|reserved_special_token_0|> class Home(TemplateView): def get(self, request, *args, **kwargs): return render_to_response('home.html') class AddContact(CreateView): model = Contact success_url = reverse_lazy('home') class ListContact(ListView): model = Contact <|reserved_special_token_1|> # -*- coding: utf-8 -*- from django.shortcuts import render_to_response from django.views.generic import TemplateView from django.core.context_processors import csrf from django.template import RequestContext from django.views.generic import DetailView, ListView , CreateView , UpdateView , DeleteView , FormView , View from .models import Contact from django.core.urlresolvers import reverse_lazy from django.http import HttpResponse from django.shortcuts import render_to_response # Create your views here. #def home(request): # posts = Post.objects.all() # contexto = {'posts' : ''} # return render_to_response("home.html" , contexto) class Home(TemplateView): def get(self, request , *args , **kwargs): return render_to_response('home.html') class AddContact(CreateView): model = Contact success_url = reverse_lazy('home') # return render_to_response("home.html" , contexto) class ListContact(ListView): model = Contact
flexible
{ "blob_id": "8a3694f96203ae8d1e306e1c9a5a47bfe26abeb1", "index": 5178, "step-1": "<mask token>\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-2": "<mask token>\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-3": "<mask token>\n\n\nclass Home(TemplateView):\n <mask token>\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-4": "<mask token>\n\n\nclass Home(TemplateView):\n\n def get(self, request, *args, **kwargs):\n return render_to_response('home.html')\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n\n\nclass ListContact(ListView):\n model = Contact\n", "step-5": "# -*- coding: utf-8 -*-\nfrom django.shortcuts import render_to_response\nfrom django.views.generic import TemplateView\nfrom django.core.context_processors import csrf\nfrom django.template import RequestContext\nfrom django.views.generic import DetailView, ListView , CreateView , UpdateView , DeleteView , FormView , View\nfrom .models import Contact\nfrom django.core.urlresolvers import reverse_lazy\nfrom django.http import HttpResponse\nfrom django.shortcuts import render_to_response\n\n# Create your views here.\n\n#def home(request):\n # posts = Post.objects.all()\n# contexto = {'posts' : ''}\n# return render_to_response(\"home.html\" , contexto)\n\n\n\nclass Home(TemplateView):\n def get(self, request , *args , **kwargs):\n return render_to_response('home.html')\n\n\nclass AddContact(CreateView):\n model = Contact\n success_url = reverse_lazy('home')\n # return render_to_response(\"home.html\" , contexto)\n\nclass ListContact(ListView):\n model = Contact\n\n", "step-ids": [ 2, 4, 5, 6, 8 ] }
[ 2, 4, 5, 6, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> from .start_node import StartNode from .character_appearance import CharacterAppearance from .character_disappearance import CharacterDisappearance from .replica import Replica from .end_node import EndNode from .choice import Choice from .set_landscape import SetLandscape from .add_item import AddItem from .switch_by_item import SwitchByItem
flexible
{ "blob_id": "cd6e15daa2360ead47f0bac95843b1c030164996", "index": 6879, "step-1": "<mask token>\n", "step-2": "from .start_node import StartNode\nfrom .character_appearance import CharacterAppearance\nfrom .character_disappearance import CharacterDisappearance\nfrom .replica import Replica\nfrom .end_node import EndNode\nfrom .choice import Choice\nfrom .set_landscape import SetLandscape\nfrom .add_item import AddItem\nfrom .switch_by_item import SwitchByItem\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> driver.get('http://192.168.1.248:9079/#/') <|reserved_special_token_0|> print(type(lanuage)) print(lanuage.text) try: driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文' print('符合要求') except EOFError: print('不是中文') <|reserved_special_token_1|> <|reserved_special_token_0|> driver = webdriver.Chrome() driver.get('http://192.168.1.248:9079/#/') lanuage = driver.find_element_by_class_name('el-dropdown-trigger-text') print(type(lanuage)) print(lanuage.text) try: driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文' print('符合要求') except EOFError: print('不是中文') <|reserved_special_token_1|> from selenium import webdriver driver = webdriver.Chrome() driver.get('http://192.168.1.248:9079/#/') lanuage = driver.find_element_by_class_name('el-dropdown-trigger-text') print(type(lanuage)) print(lanuage.text) try: driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文' print('符合要求') except EOFError: print('不是中文') <|reserved_special_token_1|> from selenium import webdriver driver = webdriver.Chrome() driver.get("http://192.168.1.248:9079/#/") lanuage = driver.find_element_by_class_name("el-dropdown-trigger-text") print(type(lanuage)) print(lanuage.text) try: driver.find_element_by_class_name("el-dropdown-trigger-text").text =="中文" print("符合要求") except EOFError: print("不是中文") # driver.find_element_by_link_text("简体中文")
flexible
{ "blob_id": "6a1f58af26bbc4d584ffd699c512ef433ffb80d8", "index": 7206, "step-1": "<mask token>\n", "step-2": "<mask token>\ndriver.get('http://192.168.1.248:9079/#/')\n<mask token>\nprint(type(lanuage))\nprint(lanuage.text)\ntry:\n driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文'\n print('符合要求')\nexcept EOFError:\n print('不是中文')\n", "step-3": "<mask token>\ndriver = webdriver.Chrome()\ndriver.get('http://192.168.1.248:9079/#/')\nlanuage = driver.find_element_by_class_name('el-dropdown-trigger-text')\nprint(type(lanuage))\nprint(lanuage.text)\ntry:\n driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文'\n print('符合要求')\nexcept EOFError:\n print('不是中文')\n", "step-4": "from selenium import webdriver\ndriver = webdriver.Chrome()\ndriver.get('http://192.168.1.248:9079/#/')\nlanuage = driver.find_element_by_class_name('el-dropdown-trigger-text')\nprint(type(lanuage))\nprint(lanuage.text)\ntry:\n driver.find_element_by_class_name('el-dropdown-trigger-text').text == '中文'\n print('符合要求')\nexcept EOFError:\n print('不是中文')\n", "step-5": "from selenium import webdriver\n\n\ndriver = webdriver.Chrome()\ndriver.get(\"http://192.168.1.248:9079/#/\")\n\n\nlanuage = driver.find_element_by_class_name(\"el-dropdown-trigger-text\")\nprint(type(lanuage))\nprint(lanuage.text)\ntry:\n driver.find_element_by_class_name(\"el-dropdown-trigger-text\").text ==\"中文\"\n print(\"符合要求\")\nexcept EOFError:\n print(\"不是中文\") \n# driver.find_element_by_link_text(\"简体中文\")\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
print(10-10) print(1000-80) print(10/5) print(10/6) print(10//6) # remoção das casas decimais print(10*800) print(55*5)
normal
{ "blob_id": "e488761c15ee8cddbb7577d5340ee9001193c1a4", "index": 4767, "step-1": "<mask token>\n", "step-2": "print(10 - 10)\nprint(1000 - 80)\nprint(10 / 5)\nprint(10 / 6)\nprint(10 // 6)\nprint(10 * 800)\nprint(55 * 5)\n", "step-3": "print(10-10)\r\nprint(1000-80)\r\nprint(10/5)\r\nprint(10/6)\r\nprint(10//6) # remoção das casas decimais\r\n\r\nprint(10*800)\r\nprint(55*5)\r\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#Copyright (c) 2020 Ocado. All Rights Reserved. import vptree, itertools import numpy as np class _ExtendedVPTree(vptree.VPTree): """ VPTree class extended to include the list of points within the tree """ def __init__(self, points, dist_fn): """ :param points: List of points to add to the vp-tree :param dist_fn: Metric distance function """ super().__init__(points, dist_fn) self.points = points self.size = len(points) def get_n_nearest_neighbors(self, query, n_neighbors): """ Override parent method to use <= when finding nearest neighbours to ensure a neighbour is returned even at infinite/nan distance """ if not isinstance(n_neighbors, int) or n_neighbors < 1: raise ValueError('n_neighbors must be strictly positive integer') neighbors = vptree._AutoSortingList(max_size=n_neighbors) nodes_to_visit = [(self, 0)] furthest_d = np.inf while len(nodes_to_visit) > 0: node, d0 = nodes_to_visit.pop(0) if node is None or d0 > furthest_d: continue d = self.dist_fn(query, node.vp) if d <= furthest_d: #Replaced < with <= neighbors.append((d, node.vp)) furthest_d, _ = neighbors[-1] if node._is_leaf(): continue if node.left_min <= d <= node.left_max: nodes_to_visit.insert(0, (node.left, 0)) elif node.left_min - furthest_d <= d <= node.left_max + furthest_d: nodes_to_visit.append((node.left, node.left_min - d if d < node.left_min else d - node.left_max)) if node.right_min <= d <= node.right_max: nodes_to_visit.insert(0, (node.right, 0)) elif node.right_min - furthest_d <= d <= node.right_max + furthest_d: nodes_to_visit.append((node.right, node.right_min - d if d < node.right_min else d - node.right_max)) if len(neighbors) == 0: neighbors = [(np.nan, point) for point in self.points[:n_neighbors]] #Return any point(s) if query contains np.nan return list(neighbors) class DynamicVPTree: """ Dynamic vp-tree implemented using index folding """ def __init__(self, dist_fn, min_tree_size=4): """ :param dist_fn: Metric distance function used for vp-trees :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached) """ self.dist_fn = dist_fn self.trees = [] self.pool = [] self.min_tree_size = min_tree_size def insert(self, item): """ Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes """ self.pool.append(item) if len(self.pool) == self.min_tree_size: self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn)) self.pool = [] while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2].size: a = self.trees.pop() b = self.trees.pop() self.trees.append(_ExtendedVPTree(a.points + b.points, self.dist_fn)) def nearest(self, query): """ Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool) """ nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query), self.trees)) distances_pool = list(zip(map(lambda x: self.dist_fn(x, query), self.pool), self.pool)) best = None best_cost = np.inf for cost, near in nearest_trees + distances_pool: if cost <= best_cost: best = near best_cost = cost return best def neighbourhood(self, query, radius): """ Return all nodes within distance radius of the given query, by collating neighbourhoods for each internal tree (and pool) """ tree_neighbourhood = lambda tree: list(map(lambda x: x[1], tree.get_all_in_range(query, radius))) neighbourhood_trees = list(itertools.chain.from_iterable(map(tree_neighbourhood, self.trees))) return neighbourhood_trees + list(filter(lambda x: self.dist_fn(x, query) < radius, self.pool))
normal
{ "blob_id": "22e6616fb98ecfb256587c3767c7c289decc6bf6", "index": 3049, "step-1": "<mask token>\n\n\nclass DynamicVPTree:\n <mask token>\n\n def __init__(self, dist_fn, min_tree_size=4):\n \"\"\"\n :param dist_fn: Metric distance function used for vp-trees\n :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached)\n \"\"\"\n self.dist_fn = dist_fn\n self.trees = []\n self.pool = []\n self.min_tree_size = min_tree_size\n\n def insert(self, item):\n \"\"\"\n Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached\n Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes\n \"\"\"\n self.pool.append(item)\n if len(self.pool) == self.min_tree_size:\n self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn))\n self.pool = []\n while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2\n ].size:\n a = self.trees.pop()\n b = self.trees.pop()\n self.trees.append(_ExtendedVPTree(a.points + b.points, self.\n dist_fn))\n\n def nearest(self, query):\n \"\"\"\n Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool)\n \"\"\"\n nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query),\n self.trees))\n distances_pool = list(zip(map(lambda x: self.dist_fn(x, query),\n self.pool), self.pool))\n best = None\n best_cost = np.inf\n for cost, near in (nearest_trees + distances_pool):\n if cost <= best_cost:\n best = near\n best_cost = cost\n return best\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DynamicVPTree:\n \"\"\"\n Dynamic vp-tree implemented using index folding\n \"\"\"\n\n def __init__(self, dist_fn, min_tree_size=4):\n \"\"\"\n :param dist_fn: Metric distance function used for vp-trees\n :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached)\n \"\"\"\n self.dist_fn = dist_fn\n self.trees = []\n self.pool = []\n self.min_tree_size = min_tree_size\n\n def insert(self, item):\n \"\"\"\n Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached\n Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes\n \"\"\"\n self.pool.append(item)\n if len(self.pool) == self.min_tree_size:\n self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn))\n self.pool = []\n while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2\n ].size:\n a = self.trees.pop()\n b = self.trees.pop()\n self.trees.append(_ExtendedVPTree(a.points + b.points, self.\n dist_fn))\n\n def nearest(self, query):\n \"\"\"\n Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool)\n \"\"\"\n nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query),\n self.trees))\n distances_pool = list(zip(map(lambda x: self.dist_fn(x, query),\n self.pool), self.pool))\n best = None\n best_cost = np.inf\n for cost, near in (nearest_trees + distances_pool):\n if cost <= best_cost:\n best = near\n best_cost = cost\n return best\n\n def neighbourhood(self, query, radius):\n \"\"\"\n Return all nodes within distance radius of the given query, by collating neighbourhoods for each internal tree (and pool)\n \"\"\"\n tree_neighbourhood = lambda tree: list(map(lambda x: x[1], tree.\n get_all_in_range(query, radius)))\n neighbourhood_trees = list(itertools.chain.from_iterable(map(\n tree_neighbourhood, self.trees)))\n return neighbourhood_trees + list(filter(lambda x: self.dist_fn(x,\n query) < radius, self.pool))\n", "step-3": "<mask token>\n\n\nclass _ExtendedVPTree(vptree.VPTree):\n <mask token>\n\n def __init__(self, points, dist_fn):\n \"\"\"\n :param points: List of points to add to the vp-tree\n :param dist_fn: Metric distance function\n \"\"\"\n super().__init__(points, dist_fn)\n self.points = points\n self.size = len(points)\n\n def get_n_nearest_neighbors(self, query, n_neighbors):\n \"\"\"\n Override parent method to use <= when finding nearest neighbours to ensure a neighbour is returned even at infinite/nan distance\n \"\"\"\n if not isinstance(n_neighbors, int) or n_neighbors < 1:\n raise ValueError('n_neighbors must be strictly positive integer')\n neighbors = vptree._AutoSortingList(max_size=n_neighbors)\n nodes_to_visit = [(self, 0)]\n furthest_d = np.inf\n while len(nodes_to_visit) > 0:\n node, d0 = nodes_to_visit.pop(0)\n if node is None or d0 > furthest_d:\n continue\n d = self.dist_fn(query, node.vp)\n if d <= furthest_d:\n neighbors.append((d, node.vp))\n furthest_d, _ = neighbors[-1]\n if node._is_leaf():\n continue\n if node.left_min <= d <= node.left_max:\n nodes_to_visit.insert(0, (node.left, 0))\n elif node.left_min - furthest_d <= d <= node.left_max + furthest_d:\n nodes_to_visit.append((node.left, node.left_min - d if d <\n node.left_min else d - node.left_max))\n if node.right_min <= d <= node.right_max:\n nodes_to_visit.insert(0, (node.right, 0))\n elif node.right_min - furthest_d <= d <= node.right_max + furthest_d:\n nodes_to_visit.append((node.right, node.right_min - d if d <\n node.right_min else d - node.right_max))\n if len(neighbors) == 0:\n neighbors = [(np.nan, point) for point in self.points[:n_neighbors]\n ]\n return list(neighbors)\n\n\nclass DynamicVPTree:\n \"\"\"\n Dynamic vp-tree implemented using index folding\n \"\"\"\n\n def __init__(self, dist_fn, min_tree_size=4):\n \"\"\"\n :param dist_fn: Metric distance function used for vp-trees\n :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached)\n \"\"\"\n self.dist_fn = dist_fn\n self.trees = []\n self.pool = []\n self.min_tree_size = min_tree_size\n\n def insert(self, item):\n \"\"\"\n Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached\n Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes\n \"\"\"\n self.pool.append(item)\n if len(self.pool) == self.min_tree_size:\n self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn))\n self.pool = []\n while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2\n ].size:\n a = self.trees.pop()\n b = self.trees.pop()\n self.trees.append(_ExtendedVPTree(a.points + b.points, self.\n dist_fn))\n\n def nearest(self, query):\n \"\"\"\n Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool)\n \"\"\"\n nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query),\n self.trees))\n distances_pool = list(zip(map(lambda x: self.dist_fn(x, query),\n self.pool), self.pool))\n best = None\n best_cost = np.inf\n for cost, near in (nearest_trees + distances_pool):\n if cost <= best_cost:\n best = near\n best_cost = cost\n return best\n\n def neighbourhood(self, query, radius):\n \"\"\"\n Return all nodes within distance radius of the given query, by collating neighbourhoods for each internal tree (and pool)\n \"\"\"\n tree_neighbourhood = lambda tree: list(map(lambda x: x[1], tree.\n get_all_in_range(query, radius)))\n neighbourhood_trees = list(itertools.chain.from_iterable(map(\n tree_neighbourhood, self.trees)))\n return neighbourhood_trees + list(filter(lambda x: self.dist_fn(x,\n query) < radius, self.pool))\n", "step-4": "import vptree, itertools\nimport numpy as np\n\n\nclass _ExtendedVPTree(vptree.VPTree):\n \"\"\"\n VPTree class extended to include the list of points within the tree\n \"\"\"\n\n def __init__(self, points, dist_fn):\n \"\"\"\n :param points: List of points to add to the vp-tree\n :param dist_fn: Metric distance function\n \"\"\"\n super().__init__(points, dist_fn)\n self.points = points\n self.size = len(points)\n\n def get_n_nearest_neighbors(self, query, n_neighbors):\n \"\"\"\n Override parent method to use <= when finding nearest neighbours to ensure a neighbour is returned even at infinite/nan distance\n \"\"\"\n if not isinstance(n_neighbors, int) or n_neighbors < 1:\n raise ValueError('n_neighbors must be strictly positive integer')\n neighbors = vptree._AutoSortingList(max_size=n_neighbors)\n nodes_to_visit = [(self, 0)]\n furthest_d = np.inf\n while len(nodes_to_visit) > 0:\n node, d0 = nodes_to_visit.pop(0)\n if node is None or d0 > furthest_d:\n continue\n d = self.dist_fn(query, node.vp)\n if d <= furthest_d:\n neighbors.append((d, node.vp))\n furthest_d, _ = neighbors[-1]\n if node._is_leaf():\n continue\n if node.left_min <= d <= node.left_max:\n nodes_to_visit.insert(0, (node.left, 0))\n elif node.left_min - furthest_d <= d <= node.left_max + furthest_d:\n nodes_to_visit.append((node.left, node.left_min - d if d <\n node.left_min else d - node.left_max))\n if node.right_min <= d <= node.right_max:\n nodes_to_visit.insert(0, (node.right, 0))\n elif node.right_min - furthest_d <= d <= node.right_max + furthest_d:\n nodes_to_visit.append((node.right, node.right_min - d if d <\n node.right_min else d - node.right_max))\n if len(neighbors) == 0:\n neighbors = [(np.nan, point) for point in self.points[:n_neighbors]\n ]\n return list(neighbors)\n\n\nclass DynamicVPTree:\n \"\"\"\n Dynamic vp-tree implemented using index folding\n \"\"\"\n\n def __init__(self, dist_fn, min_tree_size=4):\n \"\"\"\n :param dist_fn: Metric distance function used for vp-trees\n :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached)\n \"\"\"\n self.dist_fn = dist_fn\n self.trees = []\n self.pool = []\n self.min_tree_size = min_tree_size\n\n def insert(self, item):\n \"\"\"\n Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached\n Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes\n \"\"\"\n self.pool.append(item)\n if len(self.pool) == self.min_tree_size:\n self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn))\n self.pool = []\n while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2\n ].size:\n a = self.trees.pop()\n b = self.trees.pop()\n self.trees.append(_ExtendedVPTree(a.points + b.points, self.\n dist_fn))\n\n def nearest(self, query):\n \"\"\"\n Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool)\n \"\"\"\n nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query),\n self.trees))\n distances_pool = list(zip(map(lambda x: self.dist_fn(x, query),\n self.pool), self.pool))\n best = None\n best_cost = np.inf\n for cost, near in (nearest_trees + distances_pool):\n if cost <= best_cost:\n best = near\n best_cost = cost\n return best\n\n def neighbourhood(self, query, radius):\n \"\"\"\n Return all nodes within distance radius of the given query, by collating neighbourhoods for each internal tree (and pool)\n \"\"\"\n tree_neighbourhood = lambda tree: list(map(lambda x: x[1], tree.\n get_all_in_range(query, radius)))\n neighbourhood_trees = list(itertools.chain.from_iterable(map(\n tree_neighbourhood, self.trees)))\n return neighbourhood_trees + list(filter(lambda x: self.dist_fn(x,\n query) < radius, self.pool))\n", "step-5": "#Copyright (c) 2020 Ocado. All Rights Reserved.\n\nimport vptree, itertools\nimport numpy as np\n\n\nclass _ExtendedVPTree(vptree.VPTree):\n \"\"\"\n VPTree class extended to include the list of points within the tree\n \"\"\"\n def __init__(self, points, dist_fn):\n \"\"\"\n :param points: List of points to add to the vp-tree\n :param dist_fn: Metric distance function\n \"\"\"\n super().__init__(points, dist_fn)\n self.points = points\n self.size = len(points)\n\n def get_n_nearest_neighbors(self, query, n_neighbors):\n \"\"\"\n Override parent method to use <= when finding nearest neighbours to ensure a neighbour is returned even at infinite/nan distance\n \"\"\"\n if not isinstance(n_neighbors, int) or n_neighbors < 1:\n raise ValueError('n_neighbors must be strictly positive integer')\n neighbors = vptree._AutoSortingList(max_size=n_neighbors)\n nodes_to_visit = [(self, 0)]\n furthest_d = np.inf\n while len(nodes_to_visit) > 0:\n node, d0 = nodes_to_visit.pop(0)\n if node is None or d0 > furthest_d:\n continue\n d = self.dist_fn(query, node.vp)\n if d <= furthest_d: #Replaced < with <=\n neighbors.append((d, node.vp))\n furthest_d, _ = neighbors[-1]\n if node._is_leaf():\n continue\n if node.left_min <= d <= node.left_max:\n nodes_to_visit.insert(0, (node.left, 0))\n elif node.left_min - furthest_d <= d <= node.left_max + furthest_d:\n nodes_to_visit.append((node.left,\n node.left_min - d if d < node.left_min\n else d - node.left_max))\n if node.right_min <= d <= node.right_max:\n nodes_to_visit.insert(0, (node.right, 0))\n elif node.right_min - furthest_d <= d <= node.right_max + furthest_d:\n nodes_to_visit.append((node.right,\n node.right_min - d if d < node.right_min\n else d - node.right_max))\n if len(neighbors) == 0:\n neighbors = [(np.nan, point) for point in self.points[:n_neighbors]] #Return any point(s) if query contains np.nan\n return list(neighbors)\n\n\nclass DynamicVPTree:\n \"\"\"\n Dynamic vp-tree implemented using index folding\n \"\"\"\n def __init__(self, dist_fn, min_tree_size=4):\n \"\"\"\n :param dist_fn: Metric distance function used for vp-trees\n :param min_tree_size: Minimum number of nodes to form a tree (extra nodes are stored in a pool until the number is reached)\n \"\"\"\n self.dist_fn = dist_fn\n self.trees = []\n self.pool = []\n self.min_tree_size = min_tree_size\n\n def insert(self, item):\n \"\"\"\n Insert item into dynamic vp tree by first adding to pool, and then building a tree from the pool if min size reached\n Then merge trees of equal sizes so that there are at most log(log (n)) trees, with the largest tree having roughly n/2 nodes\n \"\"\"\n self.pool.append(item)\n if len(self.pool) == self.min_tree_size:\n self.trees.append(_ExtendedVPTree(self.pool, self.dist_fn))\n self.pool = []\n while len(self.trees) > 1 and self.trees[-1].size == self.trees[-2].size:\n a = self.trees.pop()\n b = self.trees.pop()\n self.trees.append(_ExtendedVPTree(a.points + b.points, self.dist_fn))\n\n def nearest(self, query):\n \"\"\"\n Return node nearest to query by finding nearest node in each tree and returning the global minimum (including nodes in pool)\n \"\"\"\n nearest_trees = list(map(lambda t: t.get_nearest_neighbor(query), self.trees))\n distances_pool = list(zip(map(lambda x: self.dist_fn(x, query), self.pool), self.pool))\n best = None\n best_cost = np.inf\n for cost, near in nearest_trees + distances_pool:\n if cost <= best_cost:\n best = near\n best_cost = cost\n return best\n\n def neighbourhood(self, query, radius):\n \"\"\"\n Return all nodes within distance radius of the given query, by collating neighbourhoods for each internal tree (and pool)\n \"\"\"\n tree_neighbourhood = lambda tree: list(map(lambda x: x[1], tree.get_all_in_range(query, radius)))\n neighbourhood_trees = list(itertools.chain.from_iterable(map(tree_neighbourhood, self.trees)))\n return neighbourhood_trees + list(filter(lambda x: self.dist_fn(x, query) < radius, self.pool))\n", "step-ids": [ 4, 6, 9, 11, 12 ] }
[ 4, 6, 9, 11, 12 ]
<|reserved_special_token_0|> class VideoClassSerializer(serializers.ModelSerializer): <|reserved_special_token_0|> class Meta: model = VideoClass fields = 'title', 'video_set' def get_video_set(self, instance): videos = instance.video_set.all() return VideoSerializer(videos, many=True).data <|reserved_special_token_1|> <|reserved_special_token_0|> class VideoClassSerializer(serializers.ModelSerializer): video_set = serializers.SerializerMethodField() class Meta: model = VideoClass fields = 'title', 'video_set' def get_video_set(self, instance): videos = instance.video_set.all() return VideoSerializer(videos, many=True).data <|reserved_special_token_1|> <|reserved_special_token_0|> class VideoSerializer(serializers.ModelSerializer): class Meta: model = Video fields = ['videoURL', 'subTitle', 'numOfLike', 'numOfPlay'] class VideoClassSerializer(serializers.ModelSerializer): video_set = serializers.SerializerMethodField() class Meta: model = VideoClass fields = 'title', 'video_set' def get_video_set(self, instance): videos = instance.video_set.all() return VideoSerializer(videos, many=True).data <|reserved_special_token_1|> from .models import Video, VideoClass from rest_framework import serializers class VideoSerializer(serializers.ModelSerializer): class Meta: model = Video fields = ['videoURL', 'subTitle', 'numOfLike', 'numOfPlay'] class VideoClassSerializer(serializers.ModelSerializer): video_set = serializers.SerializerMethodField() class Meta: model = VideoClass fields = 'title', 'video_set' def get_video_set(self, instance): videos = instance.video_set.all() return VideoSerializer(videos, many=True).data <|reserved_special_token_1|> from .models import Video, VideoClass from rest_framework import serializers # Video 정보 class VideoSerializer(serializers.ModelSerializer): class Meta: model = Video fields = ['videoURL','subTitle', 'numOfLike', 'numOfPlay'] # Video 분류 class VideoClassSerializer(serializers.ModelSerializer): video_set = serializers.SerializerMethodField() class Meta: model = VideoClass fields = ('title', 'video_set') def get_video_set(self, instance): videos = instance.video_set.all() return VideoSerializer(videos, many=True).data
flexible
{ "blob_id": "b20a8160ba455a39e990b8b37c5017645530ced3", "index": 1545, "step-1": "<mask token>\n\n\nclass VideoClassSerializer(serializers.ModelSerializer):\n <mask token>\n\n\n class Meta:\n model = VideoClass\n fields = 'title', 'video_set'\n\n def get_video_set(self, instance):\n videos = instance.video_set.all()\n return VideoSerializer(videos, many=True).data\n", "step-2": "<mask token>\n\n\nclass VideoClassSerializer(serializers.ModelSerializer):\n video_set = serializers.SerializerMethodField()\n\n\n class Meta:\n model = VideoClass\n fields = 'title', 'video_set'\n\n def get_video_set(self, instance):\n videos = instance.video_set.all()\n return VideoSerializer(videos, many=True).data\n", "step-3": "<mask token>\n\n\nclass VideoSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Video\n fields = ['videoURL', 'subTitle', 'numOfLike', 'numOfPlay']\n\n\nclass VideoClassSerializer(serializers.ModelSerializer):\n video_set = serializers.SerializerMethodField()\n\n\n class Meta:\n model = VideoClass\n fields = 'title', 'video_set'\n\n def get_video_set(self, instance):\n videos = instance.video_set.all()\n return VideoSerializer(videos, many=True).data\n", "step-4": "from .models import Video, VideoClass\nfrom rest_framework import serializers\n\n\nclass VideoSerializer(serializers.ModelSerializer):\n\n\n class Meta:\n model = Video\n fields = ['videoURL', 'subTitle', 'numOfLike', 'numOfPlay']\n\n\nclass VideoClassSerializer(serializers.ModelSerializer):\n video_set = serializers.SerializerMethodField()\n\n\n class Meta:\n model = VideoClass\n fields = 'title', 'video_set'\n\n def get_video_set(self, instance):\n videos = instance.video_set.all()\n return VideoSerializer(videos, many=True).data\n", "step-5": "from .models import Video, VideoClass\nfrom rest_framework import serializers\n\n\n# Video 정보\nclass VideoSerializer(serializers.ModelSerializer): \n class Meta:\n model = Video\n fields = ['videoURL','subTitle', 'numOfLike', 'numOfPlay']\n\n# Video 분류\nclass VideoClassSerializer(serializers.ModelSerializer):\n video_set = serializers.SerializerMethodField()\n\n class Meta:\n model = VideoClass\n fields = ('title', 'video_set')\n\n def get_video_set(self, instance):\n videos = instance.video_set.all()\n return VideoSerializer(videos, many=True).data\n\n\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> @app.route('/search_general', methods=['POST']) def query(): message = None searchQuery = request.json['searchQuery'] result = qp.generateQuery(searchQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/search_faceted', methods=['POST']) def facQuery(): message = None facQuery = request.json['facQuery'] result = qp.advancedQuery(facQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> CORS(app) <|reserved_special_token_0|> @app.route('/search_general', methods=['POST']) def query(): message = None searchQuery = request.json['searchQuery'] result = qp.generateQuery(searchQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/search_faceted', methods=['POST']) def facQuery(): message = None facQuery = request.json['facQuery'] result = qp.advancedQuery(facQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == '__main__': app.run(debug=True) <|reserved_special_token_1|> <|reserved_special_token_0|> app = Flask(__name__) CORS(app) qp = QueryProcessor() @app.route('/search_general', methods=['POST']) def query(): message = None searchQuery = request.json['searchQuery'] result = qp.generateQuery(searchQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/search_faceted', methods=['POST']) def facQuery(): message = None facQuery = request.json['facQuery'] result = qp.advancedQuery(facQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == '__main__': app.run(debug=True) <|reserved_special_token_1|> from flask import Flask, request from flask import jsonify from preprocessing import QueryProcessor from flask_cors import CORS app = Flask(__name__) CORS(app) qp = QueryProcessor() @app.route('/search_general', methods=['POST']) def query(): message = None searchQuery = request.json['searchQuery'] result = qp.generateQuery(searchQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/search_faceted', methods=['POST']) def facQuery(): message = None facQuery = request.json['facQuery'] result = qp.advancedQuery(facQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == '__main__': app.run(debug=True) <|reserved_special_token_1|> from flask import Flask, request from flask import jsonify from preprocessing import QueryProcessor from flask_cors import CORS app = Flask(__name__) CORS(app) qp = QueryProcessor() @app.route('/search_general', methods=['POST']) def query(): message = None searchQuery = request.json['searchQuery'] result = qp.generateQuery(searchQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response @app.route('/search_faceted', methods=['POST']) def facQuery(): message = None facQuery = request.json['facQuery'] result = qp.advancedQuery(facQuery) response = jsonify(result) response.headers.add('Access-Control-Allow-Origin', '*') return response if __name__ == "__main__": app.run(debug=True)
flexible
{ "blob_id": "e582787a912f479830ed99575b2c6adb8088b4e5", "index": 257, "step-1": "<mask token>\n\n\[email protected]('/search_general', methods=['POST'])\ndef query():\n message = None\n searchQuery = request.json['searchQuery']\n result = qp.generateQuery(searchQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\[email protected]('/search_faceted', methods=['POST'])\ndef facQuery():\n message = None\n facQuery = request.json['facQuery']\n result = qp.advancedQuery(facQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\n<mask token>\n", "step-2": "<mask token>\nCORS(app)\n<mask token>\n\n\[email protected]('/search_general', methods=['POST'])\ndef query():\n message = None\n searchQuery = request.json['searchQuery']\n result = qp.generateQuery(searchQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\[email protected]('/search_faceted', methods=['POST'])\ndef facQuery():\n message = None\n facQuery = request.json['facQuery']\n result = qp.advancedQuery(facQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-3": "<mask token>\napp = Flask(__name__)\nCORS(app)\nqp = QueryProcessor()\n\n\[email protected]('/search_general', methods=['POST'])\ndef query():\n message = None\n searchQuery = request.json['searchQuery']\n result = qp.generateQuery(searchQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\[email protected]('/search_faceted', methods=['POST'])\ndef facQuery():\n message = None\n facQuery = request.json['facQuery']\n result = qp.advancedQuery(facQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "from flask import Flask, request\nfrom flask import jsonify\nfrom preprocessing import QueryProcessor\nfrom flask_cors import CORS\napp = Flask(__name__)\nCORS(app)\nqp = QueryProcessor()\n\n\[email protected]('/search_general', methods=['POST'])\ndef query():\n message = None\n searchQuery = request.json['searchQuery']\n result = qp.generateQuery(searchQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\[email protected]('/search_faceted', methods=['POST'])\ndef facQuery():\n message = None\n facQuery = request.json['facQuery']\n result = qp.advancedQuery(facQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask, request\nfrom flask import jsonify\nfrom preprocessing import QueryProcessor\nfrom flask_cors import CORS\n\napp = Flask(__name__)\nCORS(app)\nqp = QueryProcessor()\n\n\[email protected]('/search_general', methods=['POST'])\ndef query():\n message = None\n searchQuery = request.json['searchQuery']\n result = qp.generateQuery(searchQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\[email protected]('/search_faceted', methods=['POST'])\ndef facQuery():\n message = None\n facQuery = request.json['facQuery']\n result = qp.advancedQuery(facQuery)\n response = jsonify(result)\n response.headers.add('Access-Control-Allow-Origin', '*')\n return response\n\n\nif __name__ == \"__main__\":\n app.run(debug=True)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from .dataset_readers import * from .models import *
normal
{ "blob_id": "bc8bf06f1adedeb7b364308591bff09ac42d6c29", "index": 3702, "step-1": "<mask token>\n", "step-2": "from .dataset_readers import *\nfrom .models import *\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> def main(): if len(sys.argv) < 2: print( 'Usage: pyspark q2.py <file>\n e.g. pyspark q2.py file:///home/cloudera/test_file' ) exit(-1) sc = SparkContext(appName='HW4_Q2_LC') try: n = sc.textFile(sys.argv[1]).filter(lambda x: len( NON_WORDS_DELIMITER.split(x)) > 10).count() print('=' * 20) print(' R E S U L T S ') print('Lines with more than 10 words:', n) print('=' * 20) finally: sc.stop() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def main(): if len(sys.argv) < 2: print( 'Usage: pyspark q2.py <file>\n e.g. pyspark q2.py file:///home/cloudera/test_file' ) exit(-1) sc = SparkContext(appName='HW4_Q2_LC') try: n = sc.textFile(sys.argv[1]).filter(lambda x: len( NON_WORDS_DELIMITER.split(x)) > 10).count() print('=' * 20) print(' R E S U L T S ') print('Lines with more than 10 words:', n) print('=' * 20) finally: sc.stop() if __name__ == '__main__': main() <|reserved_special_token_1|> <|reserved_special_token_0|> NON_WORDS_DELIMITER = re.compile('[^\\w\\d]+') def main(): if len(sys.argv) < 2: print( 'Usage: pyspark q2.py <file>\n e.g. pyspark q2.py file:///home/cloudera/test_file' ) exit(-1) sc = SparkContext(appName='HW4_Q2_LC') try: n = sc.textFile(sys.argv[1]).filter(lambda x: len( NON_WORDS_DELIMITER.split(x)) > 10).count() print('=' * 20) print(' R E S U L T S ') print('Lines with more than 10 words:', n) print('=' * 20) finally: sc.stop() if __name__ == '__main__': main() <|reserved_special_token_1|> from __future__ import print_function import re import sys from pyspark import SparkContext NON_WORDS_DELIMITER = re.compile('[^\\w\\d]+') def main(): if len(sys.argv) < 2: print( 'Usage: pyspark q2.py <file>\n e.g. pyspark q2.py file:///home/cloudera/test_file' ) exit(-1) sc = SparkContext(appName='HW4_Q2_LC') try: n = sc.textFile(sys.argv[1]).filter(lambda x: len( NON_WORDS_DELIMITER.split(x)) > 10).count() print('=' * 20) print(' R E S U L T S ') print('Lines with more than 10 words:', n) print('=' * 20) finally: sc.stop() if __name__ == '__main__': main() <|reserved_special_token_1|> from __future__ import print_function import re import sys from pyspark import SparkContext # define a regular expression for delimiters NON_WORDS_DELIMITER = re.compile(r'[^\w\d]+') def main(): if len(sys.argv) < 2: print('''Usage: pyspark q2.py <file> e.g. pyspark q2.py file:///home/cloudera/test_file''') exit(-1) sc = SparkContext(appName="HW4_Q2_LC") try: n = sc.textFile(sys.argv[1]) \ .filter(lambda x: len(NON_WORDS_DELIMITER.split(x)) > 10).count() print("=" * 20) print(" R E S U L T S ") print("Lines with more than 10 words:", n) print("=" * 20) finally: sc.stop() if __name__ == '__main__': main()
flexible
{ "blob_id": "deff4eb3ae933a99036f39213ceaf2144b682904", "index": 5025, "step-1": "<mask token>\n\n\ndef main():\n if len(sys.argv) < 2:\n print(\n 'Usage: pyspark q2.py <file>\\n e.g. pyspark q2.py file:///home/cloudera/test_file'\n )\n exit(-1)\n sc = SparkContext(appName='HW4_Q2_LC')\n try:\n n = sc.textFile(sys.argv[1]).filter(lambda x: len(\n NON_WORDS_DELIMITER.split(x)) > 10).count()\n print('=' * 20)\n print(' R E S U L T S ')\n print('Lines with more than 10 words:', n)\n print('=' * 20)\n finally:\n sc.stop()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n if len(sys.argv) < 2:\n print(\n 'Usage: pyspark q2.py <file>\\n e.g. pyspark q2.py file:///home/cloudera/test_file'\n )\n exit(-1)\n sc = SparkContext(appName='HW4_Q2_LC')\n try:\n n = sc.textFile(sys.argv[1]).filter(lambda x: len(\n NON_WORDS_DELIMITER.split(x)) > 10).count()\n print('=' * 20)\n print(' R E S U L T S ')\n print('Lines with more than 10 words:', n)\n print('=' * 20)\n finally:\n sc.stop()\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nNON_WORDS_DELIMITER = re.compile('[^\\\\w\\\\d]+')\n\n\ndef main():\n if len(sys.argv) < 2:\n print(\n 'Usage: pyspark q2.py <file>\\n e.g. pyspark q2.py file:///home/cloudera/test_file'\n )\n exit(-1)\n sc = SparkContext(appName='HW4_Q2_LC')\n try:\n n = sc.textFile(sys.argv[1]).filter(lambda x: len(\n NON_WORDS_DELIMITER.split(x)) > 10).count()\n print('=' * 20)\n print(' R E S U L T S ')\n print('Lines with more than 10 words:', n)\n print('=' * 20)\n finally:\n sc.stop()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from __future__ import print_function\nimport re\nimport sys\nfrom pyspark import SparkContext\nNON_WORDS_DELIMITER = re.compile('[^\\\\w\\\\d]+')\n\n\ndef main():\n if len(sys.argv) < 2:\n print(\n 'Usage: pyspark q2.py <file>\\n e.g. pyspark q2.py file:///home/cloudera/test_file'\n )\n exit(-1)\n sc = SparkContext(appName='HW4_Q2_LC')\n try:\n n = sc.textFile(sys.argv[1]).filter(lambda x: len(\n NON_WORDS_DELIMITER.split(x)) > 10).count()\n print('=' * 20)\n print(' R E S U L T S ')\n print('Lines with more than 10 words:', n)\n print('=' * 20)\n finally:\n sc.stop()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from __future__ import print_function\n\nimport re\nimport sys\nfrom pyspark import SparkContext\n\n\n# define a regular expression for delimiters\nNON_WORDS_DELIMITER = re.compile(r'[^\\w\\d]+')\n\n\ndef main():\n if len(sys.argv) < 2:\n print('''Usage: pyspark q2.py <file>\n e.g. pyspark q2.py file:///home/cloudera/test_file''')\n exit(-1)\n\n sc = SparkContext(appName=\"HW4_Q2_LC\")\n try:\n n = sc.textFile(sys.argv[1]) \\\n .filter(lambda x: len(NON_WORDS_DELIMITER.split(x)) > 10).count()\n print(\"=\" * 20)\n print(\" R E S U L T S \")\n print(\"Lines with more than 10 words:\", n)\n print(\"=\" * 20)\n finally:\n sc.stop()\n \n\nif __name__ == '__main__':\n main()", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from mcpi.minecraft import Minecraft import random, time while True: x, y, z = mc.player.getTilePos() color = random.randrange(0, 9) mc.setBlock(x, y, z - 1, 38, color) time.sleep(0.01)
normal
{ "blob_id": "a2e00af84f743e949b53840ae6d5509e08935486", "index": 7978, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n x, y, z = mc.player.getTilePos()\n color = random.randrange(0, 9)\n mc.setBlock(x, y, z - 1, 38, color)\n time.sleep(0.01)\n", "step-3": "from mcpi.minecraft import Minecraft\nimport random, time\nwhile True:\n x, y, z = mc.player.getTilePos()\n color = random.randrange(0, 9)\n mc.setBlock(x, y, z - 1, 38, color)\n time.sleep(0.01)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- import requests import json import boto3 from lxml.html import parse CardTitlePrefix = "Greeting" def build_speechlet_response(title, output, reprompt_text, should_end_session): """ Build a speechlet JSON representation of the title, output text, reprompt text & end of session """ return { 'outputSpeech': { 'type': 'PlainText', 'text': output }, 'card': { 'type': 'Simple', 'title': CardTitlePrefix + " - " + title, 'content': output }, 'reprompt': { 'outputSpeech': { 'type': 'PlainText', 'text': reprompt_text } }, 'shouldEndSession': should_end_session } def build_response(session_attributes, speechlet_response): """ Build the full response JSON from the speechlet response """ return { 'version': '1.0', 'sessionAttributes': session_attributes, 'response': speechlet_response } def get_welcome_response(): welcome_response= "Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda." print(welcome_response); session_attributes = {} card_title = "Hello" speech_output = welcome_response; # If the user either does not reply to the welcome message or says something # that is not understood, they will be prompted again with this text. reprompt_text = "I'm sorry - I didn't understand. You should say give me latest motions." should_end_session = True return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session)) def replace_with_longform_name(name): if name == "LASD": longformName = "Los Angeles County Sheriff's Department" elif name == "DMH": longformName = "Department of Mental Health" else: longformName = name; return longformName; def get_next_motions_response(session): print("Initial session attributes are "+str(session['attributes'])); if "result_number" not in session['attributes']: print("Second session attributes are "+str(session['attributes'])); session['attributes']['result_number'] = 1; print("Value is "+str(session['attributes']['result_number'])); print("Final session attributes are "+str(session['attributes'])) result_number = session['attributes']['result_number']; host = "http://api.lacounty.gov"; url = host + "/searchAPIWeb/searchapi?type=bcsearch&database=OMD&" \ "SearchTerm=1&title=1&content=1&PStart=" + str(result_number) +"&PEnd=" + str(result_number) +"&_=1509121047612" response = requests.get(url); #print(response.text); data = json.loads(response.text) alexaResponse = ""; if(result_number == 1): alexaResponse = "Here is the latest correspondence before the L.A. board (both upcoming and past): " alexaResponse += str(result_number)+": From the "+replace_with_longform_name(data["results"][0]["department"])+ ", " alexaResponse += "on "+data["results"][0]["date"]+", " alexaResponse += data["results"][0]["title"]+"... " alexaResponse += "You can say text me link or next item" session['attributes']['result_number'] = result_number + 1; session['attributes']['result_url'] = data["results"][0]["url"]; #text_url_to_number(session); reprompt_text = "I'm sorry - I didn't understand. You should say text me link or next item" card_title = "LA Board Latest Motions Message"; greeting_string = alexaResponse; return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, False)) def get_next_agenda_response(session): print("Initial session attributes are "+str(session['attributes'])); host = "http://bos.lacounty.gov/Board-Meeting/Board-Agendas"; url = host; page = parse(url) nodes = page.xpath("//div[a[text()='View Agenda']]"); latest_agenda_node = nodes[0]; headline = latest_agenda_node.find("ul").xpath("string()").strip(); print(headline); agenda_url = latest_agenda_node.find("a[@href]").attrib['href']; print("http://bos.lacounty.gov"+agenda_url) agenda_heading = headline; #session['attributes']['result_url'] session['attributes']['result_url'] = "http://bos.lacounty.gov"+agenda_url; card_title = "Agenda"; greeting_string = "I have a link for the "+agenda_heading+". Say text me and I'll send it to you."; reprompt = "Say text me to receive a link to the agenda." return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt, False)) def text_url_to_number(session, intent): if "phone_number" not in session['attributes'] and "value" not in intent['slots']['phoneNumber']: greeting_string = "Say your nine digit phone number, including the area code"; card_title = "What's your phone number?"; reprompt_text = "I didn't understand. Please say your nine digit mobile phone number." return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, False)) else: number = intent['slots']['phoneNumber']['value']; if "result_url" not in session['attributes']: session['attributes']['result_url'] = 'http://portal.lacounty.gov/wps/portal/omd'; url = session['attributes']['result_url']; session['attributes']['phone_number'] = number; sns_client = boto3.client('sns') response = sns_client.publish( PhoneNumber='1'+str(number), Message="Thank you for using the LA Board of Supervisors Skill. Here's your URL: "+url ) greeting_string = "Sent text message to "+ " ".join(number); card_title = "Sent motion URL via text message"; reprompt_text = "I didn't understand. Please say your nine digit mobile phone number." return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, True)) def on_session_started(session_started_request, session): """ Called when the session starts """ #session.attributes['result_number'] = 1 session['attributes'] = {} print("on_session_started requestId=" + session_started_request['requestId'] + ", sessionId=" + session['sessionId']) def handle_session_end_request(): card_title = "County of LA Board of Supervisors Skill- Thanks" speech_output = "Thank you for using the County of LA Board of Supervisors Skill. See you next time!" should_end_session = True return build_response({}, build_speechlet_response(card_title, speech_output, None, should_end_session)); def on_launch(launch_request, session): """ Called when the user launches the skill without specifying what they want """ print("on_launch requestId=" + launch_request['requestId'] + ", sessionId=" + session['sessionId']) # Dispatch to your skill's launch return get_welcome_response() def on_intent(intent_request, session): """ Called when the user specifies an intent for this skill """ print("on_intent requestId=" + intent_request['requestId'] + ", sessionId=" + session['sessionId']) intent = intent_request['intent'] intent_name = intent_request['intent']['name'] # Dispatch to your skill's intent handlers if intent_name == "GetLatestAgendaIntent": return get_next_agenda_response(session) elif intent_name == "GetLatestMotionsIntent": return get_next_motions_response(session) elif intent_name == "GetNextMotionIntent": return get_next_motions_response(session) elif intent_name == "SetPhoneNumberIntent": return text_url_to_number(session, intent); elif intent_name == "AMAZON.HelpIntent": return get_welcome_response() elif intent_name == "AMAZON.CancelIntent" or intent_name == "AMAZON.StopIntent": return handle_session_end_request() else: raise ValueError("Invalid intent") def lambda_handler(event, context): print("Test!") print("event.session.application.applicationId=" + event['session']['application']['applicationId']) if event['session']['new']: on_session_started({'requestId': event['request']['requestId']}, event['session']) if event['request']['type'] == "LaunchRequest": return on_launch(event['request'], event['session']) elif event['request']['type'] == "IntentRequest": return on_intent(event['request'], event['session']) elif event['request']['type'] == "SessionEndedRequest": return handle_session_end_request()
normal
{ "blob_id": "237277e132c8223c6048be9b754516635ab720e2", "index": 8964, "step-1": "<mask token>\n\n\ndef build_response(session_attributes, speechlet_response):\n \"\"\"\n Build the full response JSON from the speechlet response\n \"\"\"\n return {'version': '1.0', 'sessionAttributes': session_attributes,\n 'response': speechlet_response}\n\n\ndef get_welcome_response():\n welcome_response = (\n 'Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda.'\n )\n print(welcome_response)\n session_attributes = {}\n card_title = 'Hello'\n speech_output = welcome_response\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say give me latest motions.\"\n )\n should_end_session = True\n return build_response(session_attributes, build_speechlet_response(\n card_title, speech_output, reprompt_text, should_end_session))\n\n\n<mask token>\n\n\ndef get_next_motions_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n if 'result_number' not in session['attributes']:\n print('Second session attributes are ' + str(session['attributes']))\n session['attributes']['result_number'] = 1\n print('Value is ' + str(session['attributes']['result_number']))\n print('Final session attributes are ' + str(session['attributes']))\n result_number = session['attributes']['result_number']\n host = 'http://api.lacounty.gov'\n url = (host +\n '/searchAPIWeb/searchapi?type=bcsearch&database=OMD&SearchTerm=1&title=1&content=1&PStart='\n + str(result_number) + '&PEnd=' + str(result_number) +\n '&_=1509121047612')\n response = requests.get(url)\n data = json.loads(response.text)\n alexaResponse = ''\n if result_number == 1:\n alexaResponse = (\n 'Here is the latest correspondence before the L.A. board (both upcoming and past): '\n )\n alexaResponse += str(result_number\n ) + ': From the ' + replace_with_longform_name(data['results'][0][\n 'department']) + ', '\n alexaResponse += 'on ' + data['results'][0]['date'] + ', '\n alexaResponse += data['results'][0]['title'] + '... '\n alexaResponse += 'You can say text me link or next item'\n session['attributes']['result_number'] = result_number + 1\n session['attributes']['result_url'] = data['results'][0]['url']\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say text me link or next item\"\n )\n card_title = 'LA Board Latest Motions Message'\n greeting_string = alexaResponse\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt_text, False))\n\n\n<mask token>\n\n\ndef text_url_to_number(session, intent):\n if 'phone_number' not in session['attributes'] and 'value' not in intent[\n 'slots']['phoneNumber']:\n greeting_string = (\n 'Say your nine digit phone number, including the area code')\n card_title = \"What's your phone number?\"\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, False))\n else:\n number = intent['slots']['phoneNumber']['value']\n if 'result_url' not in session['attributes']:\n session['attributes']['result_url'\n ] = 'http://portal.lacounty.gov/wps/portal/omd'\n url = session['attributes']['result_url']\n session['attributes']['phone_number'] = number\n sns_client = boto3.client('sns')\n response = sns_client.publish(PhoneNumber='1' + str(number),\n Message=\n \"Thank you for using the LA Board of Supervisors Skill. Here's your URL: \"\n + url)\n greeting_string = 'Sent text message to ' + ' '.join(number)\n card_title = 'Sent motion URL via text message'\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, True))\n\n\n<mask token>\n\n\ndef handle_session_end_request():\n card_title = 'County of LA Board of Supervisors Skill- Thanks'\n speech_output = (\n 'Thank you for using the County of LA Board of Supervisors Skill. See you next time!'\n )\n should_end_session = True\n return build_response({}, build_speechlet_response(card_title,\n speech_output, None, should_end_session))\n\n\ndef on_launch(launch_request, session):\n \"\"\" Called when the user launches the skill without specifying what they want \"\"\"\n print('on_launch requestId=' + launch_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n return get_welcome_response()\n\n\ndef on_intent(intent_request, session):\n \"\"\" Called when the user specifies an intent for this skill \"\"\"\n print('on_intent requestId=' + intent_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n intent = intent_request['intent']\n intent_name = intent_request['intent']['name']\n if intent_name == 'GetLatestAgendaIntent':\n return get_next_agenda_response(session)\n elif intent_name == 'GetLatestMotionsIntent':\n return get_next_motions_response(session)\n elif intent_name == 'GetNextMotionIntent':\n return get_next_motions_response(session)\n elif intent_name == 'SetPhoneNumberIntent':\n return text_url_to_number(session, intent)\n elif intent_name == 'AMAZON.HelpIntent':\n return get_welcome_response()\n elif intent_name == 'AMAZON.CancelIntent' or intent_name == 'AMAZON.StopIntent':\n return handle_session_end_request()\n else:\n raise ValueError('Invalid intent')\n\n\ndef lambda_handler(event, context):\n print('Test!')\n print('event.session.application.applicationId=' + event['session'][\n 'application']['applicationId'])\n if event['session']['new']:\n on_session_started({'requestId': event['request']['requestId']},\n event['session'])\n if event['request']['type'] == 'LaunchRequest':\n return on_launch(event['request'], event['session'])\n elif event['request']['type'] == 'IntentRequest':\n return on_intent(event['request'], event['session'])\n elif event['request']['type'] == 'SessionEndedRequest':\n return handle_session_end_request()\n", "step-2": "<mask token>\n\n\ndef build_response(session_attributes, speechlet_response):\n \"\"\"\n Build the full response JSON from the speechlet response\n \"\"\"\n return {'version': '1.0', 'sessionAttributes': session_attributes,\n 'response': speechlet_response}\n\n\ndef get_welcome_response():\n welcome_response = (\n 'Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda.'\n )\n print(welcome_response)\n session_attributes = {}\n card_title = 'Hello'\n speech_output = welcome_response\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say give me latest motions.\"\n )\n should_end_session = True\n return build_response(session_attributes, build_speechlet_response(\n card_title, speech_output, reprompt_text, should_end_session))\n\n\ndef replace_with_longform_name(name):\n if name == 'LASD':\n longformName = \"Los Angeles County Sheriff's Department\"\n elif name == 'DMH':\n longformName = 'Department of Mental Health'\n else:\n longformName = name\n return longformName\n\n\ndef get_next_motions_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n if 'result_number' not in session['attributes']:\n print('Second session attributes are ' + str(session['attributes']))\n session['attributes']['result_number'] = 1\n print('Value is ' + str(session['attributes']['result_number']))\n print('Final session attributes are ' + str(session['attributes']))\n result_number = session['attributes']['result_number']\n host = 'http://api.lacounty.gov'\n url = (host +\n '/searchAPIWeb/searchapi?type=bcsearch&database=OMD&SearchTerm=1&title=1&content=1&PStart='\n + str(result_number) + '&PEnd=' + str(result_number) +\n '&_=1509121047612')\n response = requests.get(url)\n data = json.loads(response.text)\n alexaResponse = ''\n if result_number == 1:\n alexaResponse = (\n 'Here is the latest correspondence before the L.A. board (both upcoming and past): '\n )\n alexaResponse += str(result_number\n ) + ': From the ' + replace_with_longform_name(data['results'][0][\n 'department']) + ', '\n alexaResponse += 'on ' + data['results'][0]['date'] + ', '\n alexaResponse += data['results'][0]['title'] + '... '\n alexaResponse += 'You can say text me link or next item'\n session['attributes']['result_number'] = result_number + 1\n session['attributes']['result_url'] = data['results'][0]['url']\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say text me link or next item\"\n )\n card_title = 'LA Board Latest Motions Message'\n greeting_string = alexaResponse\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt_text, False))\n\n\ndef get_next_agenda_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n host = 'http://bos.lacounty.gov/Board-Meeting/Board-Agendas'\n url = host\n page = parse(url)\n nodes = page.xpath(\"//div[a[text()='View Agenda']]\")\n latest_agenda_node = nodes[0]\n headline = latest_agenda_node.find('ul').xpath('string()').strip()\n print(headline)\n agenda_url = latest_agenda_node.find('a[@href]').attrib['href']\n print('http://bos.lacounty.gov' + agenda_url)\n agenda_heading = headline\n session['attributes']['result_url'\n ] = 'http://bos.lacounty.gov' + agenda_url\n card_title = 'Agenda'\n greeting_string = ('I have a link for the ' + agenda_heading +\n \". Say text me and I'll send it to you.\")\n reprompt = 'Say text me to receive a link to the agenda.'\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt, False))\n\n\ndef text_url_to_number(session, intent):\n if 'phone_number' not in session['attributes'] and 'value' not in intent[\n 'slots']['phoneNumber']:\n greeting_string = (\n 'Say your nine digit phone number, including the area code')\n card_title = \"What's your phone number?\"\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, False))\n else:\n number = intent['slots']['phoneNumber']['value']\n if 'result_url' not in session['attributes']:\n session['attributes']['result_url'\n ] = 'http://portal.lacounty.gov/wps/portal/omd'\n url = session['attributes']['result_url']\n session['attributes']['phone_number'] = number\n sns_client = boto3.client('sns')\n response = sns_client.publish(PhoneNumber='1' + str(number),\n Message=\n \"Thank you for using the LA Board of Supervisors Skill. Here's your URL: \"\n + url)\n greeting_string = 'Sent text message to ' + ' '.join(number)\n card_title = 'Sent motion URL via text message'\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, True))\n\n\ndef on_session_started(session_started_request, session):\n \"\"\" Called when the session starts \"\"\"\n session['attributes'] = {}\n print('on_session_started requestId=' + session_started_request[\n 'requestId'] + ', sessionId=' + session['sessionId'])\n\n\ndef handle_session_end_request():\n card_title = 'County of LA Board of Supervisors Skill- Thanks'\n speech_output = (\n 'Thank you for using the County of LA Board of Supervisors Skill. See you next time!'\n )\n should_end_session = True\n return build_response({}, build_speechlet_response(card_title,\n speech_output, None, should_end_session))\n\n\ndef on_launch(launch_request, session):\n \"\"\" Called when the user launches the skill without specifying what they want \"\"\"\n print('on_launch requestId=' + launch_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n return get_welcome_response()\n\n\ndef on_intent(intent_request, session):\n \"\"\" Called when the user specifies an intent for this skill \"\"\"\n print('on_intent requestId=' + intent_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n intent = intent_request['intent']\n intent_name = intent_request['intent']['name']\n if intent_name == 'GetLatestAgendaIntent':\n return get_next_agenda_response(session)\n elif intent_name == 'GetLatestMotionsIntent':\n return get_next_motions_response(session)\n elif intent_name == 'GetNextMotionIntent':\n return get_next_motions_response(session)\n elif intent_name == 'SetPhoneNumberIntent':\n return text_url_to_number(session, intent)\n elif intent_name == 'AMAZON.HelpIntent':\n return get_welcome_response()\n elif intent_name == 'AMAZON.CancelIntent' or intent_name == 'AMAZON.StopIntent':\n return handle_session_end_request()\n else:\n raise ValueError('Invalid intent')\n\n\ndef lambda_handler(event, context):\n print('Test!')\n print('event.session.application.applicationId=' + event['session'][\n 'application']['applicationId'])\n if event['session']['new']:\n on_session_started({'requestId': event['request']['requestId']},\n event['session'])\n if event['request']['type'] == 'LaunchRequest':\n return on_launch(event['request'], event['session'])\n elif event['request']['type'] == 'IntentRequest':\n return on_intent(event['request'], event['session'])\n elif event['request']['type'] == 'SessionEndedRequest':\n return handle_session_end_request()\n", "step-3": "<mask token>\nCardTitlePrefix = 'Greeting'\n\n\ndef build_speechlet_response(title, output, reprompt_text, should_end_session):\n \"\"\"\n Build a speechlet JSON representation of the title, output text, \n reprompt text & end of session\n \"\"\"\n return {'outputSpeech': {'type': 'PlainText', 'text': output}, 'card':\n {'type': 'Simple', 'title': CardTitlePrefix + ' - ' + title,\n 'content': output}, 'reprompt': {'outputSpeech': {'type':\n 'PlainText', 'text': reprompt_text}}, 'shouldEndSession':\n should_end_session}\n\n\ndef build_response(session_attributes, speechlet_response):\n \"\"\"\n Build the full response JSON from the speechlet response\n \"\"\"\n return {'version': '1.0', 'sessionAttributes': session_attributes,\n 'response': speechlet_response}\n\n\ndef get_welcome_response():\n welcome_response = (\n 'Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda.'\n )\n print(welcome_response)\n session_attributes = {}\n card_title = 'Hello'\n speech_output = welcome_response\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say give me latest motions.\"\n )\n should_end_session = True\n return build_response(session_attributes, build_speechlet_response(\n card_title, speech_output, reprompt_text, should_end_session))\n\n\ndef replace_with_longform_name(name):\n if name == 'LASD':\n longformName = \"Los Angeles County Sheriff's Department\"\n elif name == 'DMH':\n longformName = 'Department of Mental Health'\n else:\n longformName = name\n return longformName\n\n\ndef get_next_motions_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n if 'result_number' not in session['attributes']:\n print('Second session attributes are ' + str(session['attributes']))\n session['attributes']['result_number'] = 1\n print('Value is ' + str(session['attributes']['result_number']))\n print('Final session attributes are ' + str(session['attributes']))\n result_number = session['attributes']['result_number']\n host = 'http://api.lacounty.gov'\n url = (host +\n '/searchAPIWeb/searchapi?type=bcsearch&database=OMD&SearchTerm=1&title=1&content=1&PStart='\n + str(result_number) + '&PEnd=' + str(result_number) +\n '&_=1509121047612')\n response = requests.get(url)\n data = json.loads(response.text)\n alexaResponse = ''\n if result_number == 1:\n alexaResponse = (\n 'Here is the latest correspondence before the L.A. board (both upcoming and past): '\n )\n alexaResponse += str(result_number\n ) + ': From the ' + replace_with_longform_name(data['results'][0][\n 'department']) + ', '\n alexaResponse += 'on ' + data['results'][0]['date'] + ', '\n alexaResponse += data['results'][0]['title'] + '... '\n alexaResponse += 'You can say text me link or next item'\n session['attributes']['result_number'] = result_number + 1\n session['attributes']['result_url'] = data['results'][0]['url']\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say text me link or next item\"\n )\n card_title = 'LA Board Latest Motions Message'\n greeting_string = alexaResponse\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt_text, False))\n\n\ndef get_next_agenda_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n host = 'http://bos.lacounty.gov/Board-Meeting/Board-Agendas'\n url = host\n page = parse(url)\n nodes = page.xpath(\"//div[a[text()='View Agenda']]\")\n latest_agenda_node = nodes[0]\n headline = latest_agenda_node.find('ul').xpath('string()').strip()\n print(headline)\n agenda_url = latest_agenda_node.find('a[@href]').attrib['href']\n print('http://bos.lacounty.gov' + agenda_url)\n agenda_heading = headline\n session['attributes']['result_url'\n ] = 'http://bos.lacounty.gov' + agenda_url\n card_title = 'Agenda'\n greeting_string = ('I have a link for the ' + agenda_heading +\n \". Say text me and I'll send it to you.\")\n reprompt = 'Say text me to receive a link to the agenda.'\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt, False))\n\n\ndef text_url_to_number(session, intent):\n if 'phone_number' not in session['attributes'] and 'value' not in intent[\n 'slots']['phoneNumber']:\n greeting_string = (\n 'Say your nine digit phone number, including the area code')\n card_title = \"What's your phone number?\"\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, False))\n else:\n number = intent['slots']['phoneNumber']['value']\n if 'result_url' not in session['attributes']:\n session['attributes']['result_url'\n ] = 'http://portal.lacounty.gov/wps/portal/omd'\n url = session['attributes']['result_url']\n session['attributes']['phone_number'] = number\n sns_client = boto3.client('sns')\n response = sns_client.publish(PhoneNumber='1' + str(number),\n Message=\n \"Thank you for using the LA Board of Supervisors Skill. Here's your URL: \"\n + url)\n greeting_string = 'Sent text message to ' + ' '.join(number)\n card_title = 'Sent motion URL via text message'\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, True))\n\n\ndef on_session_started(session_started_request, session):\n \"\"\" Called when the session starts \"\"\"\n session['attributes'] = {}\n print('on_session_started requestId=' + session_started_request[\n 'requestId'] + ', sessionId=' + session['sessionId'])\n\n\ndef handle_session_end_request():\n card_title = 'County of LA Board of Supervisors Skill- Thanks'\n speech_output = (\n 'Thank you for using the County of LA Board of Supervisors Skill. See you next time!'\n )\n should_end_session = True\n return build_response({}, build_speechlet_response(card_title,\n speech_output, None, should_end_session))\n\n\ndef on_launch(launch_request, session):\n \"\"\" Called when the user launches the skill without specifying what they want \"\"\"\n print('on_launch requestId=' + launch_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n return get_welcome_response()\n\n\ndef on_intent(intent_request, session):\n \"\"\" Called when the user specifies an intent for this skill \"\"\"\n print('on_intent requestId=' + intent_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n intent = intent_request['intent']\n intent_name = intent_request['intent']['name']\n if intent_name == 'GetLatestAgendaIntent':\n return get_next_agenda_response(session)\n elif intent_name == 'GetLatestMotionsIntent':\n return get_next_motions_response(session)\n elif intent_name == 'GetNextMotionIntent':\n return get_next_motions_response(session)\n elif intent_name == 'SetPhoneNumberIntent':\n return text_url_to_number(session, intent)\n elif intent_name == 'AMAZON.HelpIntent':\n return get_welcome_response()\n elif intent_name == 'AMAZON.CancelIntent' or intent_name == 'AMAZON.StopIntent':\n return handle_session_end_request()\n else:\n raise ValueError('Invalid intent')\n\n\ndef lambda_handler(event, context):\n print('Test!')\n print('event.session.application.applicationId=' + event['session'][\n 'application']['applicationId'])\n if event['session']['new']:\n on_session_started({'requestId': event['request']['requestId']},\n event['session'])\n if event['request']['type'] == 'LaunchRequest':\n return on_launch(event['request'], event['session'])\n elif event['request']['type'] == 'IntentRequest':\n return on_intent(event['request'], event['session'])\n elif event['request']['type'] == 'SessionEndedRequest':\n return handle_session_end_request()\n", "step-4": "import requests\nimport json\nimport boto3\nfrom lxml.html import parse\nCardTitlePrefix = 'Greeting'\n\n\ndef build_speechlet_response(title, output, reprompt_text, should_end_session):\n \"\"\"\n Build a speechlet JSON representation of the title, output text, \n reprompt text & end of session\n \"\"\"\n return {'outputSpeech': {'type': 'PlainText', 'text': output}, 'card':\n {'type': 'Simple', 'title': CardTitlePrefix + ' - ' + title,\n 'content': output}, 'reprompt': {'outputSpeech': {'type':\n 'PlainText', 'text': reprompt_text}}, 'shouldEndSession':\n should_end_session}\n\n\ndef build_response(session_attributes, speechlet_response):\n \"\"\"\n Build the full response JSON from the speechlet response\n \"\"\"\n return {'version': '1.0', 'sessionAttributes': session_attributes,\n 'response': speechlet_response}\n\n\ndef get_welcome_response():\n welcome_response = (\n 'Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda.'\n )\n print(welcome_response)\n session_attributes = {}\n card_title = 'Hello'\n speech_output = welcome_response\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say give me latest motions.\"\n )\n should_end_session = True\n return build_response(session_attributes, build_speechlet_response(\n card_title, speech_output, reprompt_text, should_end_session))\n\n\ndef replace_with_longform_name(name):\n if name == 'LASD':\n longformName = \"Los Angeles County Sheriff's Department\"\n elif name == 'DMH':\n longformName = 'Department of Mental Health'\n else:\n longformName = name\n return longformName\n\n\ndef get_next_motions_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n if 'result_number' not in session['attributes']:\n print('Second session attributes are ' + str(session['attributes']))\n session['attributes']['result_number'] = 1\n print('Value is ' + str(session['attributes']['result_number']))\n print('Final session attributes are ' + str(session['attributes']))\n result_number = session['attributes']['result_number']\n host = 'http://api.lacounty.gov'\n url = (host +\n '/searchAPIWeb/searchapi?type=bcsearch&database=OMD&SearchTerm=1&title=1&content=1&PStart='\n + str(result_number) + '&PEnd=' + str(result_number) +\n '&_=1509121047612')\n response = requests.get(url)\n data = json.loads(response.text)\n alexaResponse = ''\n if result_number == 1:\n alexaResponse = (\n 'Here is the latest correspondence before the L.A. board (both upcoming and past): '\n )\n alexaResponse += str(result_number\n ) + ': From the ' + replace_with_longform_name(data['results'][0][\n 'department']) + ', '\n alexaResponse += 'on ' + data['results'][0]['date'] + ', '\n alexaResponse += data['results'][0]['title'] + '... '\n alexaResponse += 'You can say text me link or next item'\n session['attributes']['result_number'] = result_number + 1\n session['attributes']['result_url'] = data['results'][0]['url']\n reprompt_text = (\n \"I'm sorry - I didn't understand. You should say text me link or next item\"\n )\n card_title = 'LA Board Latest Motions Message'\n greeting_string = alexaResponse\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt_text, False))\n\n\ndef get_next_agenda_response(session):\n print('Initial session attributes are ' + str(session['attributes']))\n host = 'http://bos.lacounty.gov/Board-Meeting/Board-Agendas'\n url = host\n page = parse(url)\n nodes = page.xpath(\"//div[a[text()='View Agenda']]\")\n latest_agenda_node = nodes[0]\n headline = latest_agenda_node.find('ul').xpath('string()').strip()\n print(headline)\n agenda_url = latest_agenda_node.find('a[@href]').attrib['href']\n print('http://bos.lacounty.gov' + agenda_url)\n agenda_heading = headline\n session['attributes']['result_url'\n ] = 'http://bos.lacounty.gov' + agenda_url\n card_title = 'Agenda'\n greeting_string = ('I have a link for the ' + agenda_heading +\n \". Say text me and I'll send it to you.\")\n reprompt = 'Say text me to receive a link to the agenda.'\n return build_response(session['attributes'], build_speechlet_response(\n card_title, greeting_string, reprompt, False))\n\n\ndef text_url_to_number(session, intent):\n if 'phone_number' not in session['attributes'] and 'value' not in intent[\n 'slots']['phoneNumber']:\n greeting_string = (\n 'Say your nine digit phone number, including the area code')\n card_title = \"What's your phone number?\"\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, False))\n else:\n number = intent['slots']['phoneNumber']['value']\n if 'result_url' not in session['attributes']:\n session['attributes']['result_url'\n ] = 'http://portal.lacounty.gov/wps/portal/omd'\n url = session['attributes']['result_url']\n session['attributes']['phone_number'] = number\n sns_client = boto3.client('sns')\n response = sns_client.publish(PhoneNumber='1' + str(number),\n Message=\n \"Thank you for using the LA Board of Supervisors Skill. Here's your URL: \"\n + url)\n greeting_string = 'Sent text message to ' + ' '.join(number)\n card_title = 'Sent motion URL via text message'\n reprompt_text = (\n \"I didn't understand. Please say your nine digit mobile phone number.\"\n )\n return build_response(session['attributes'],\n build_speechlet_response(card_title, greeting_string,\n reprompt_text, True))\n\n\ndef on_session_started(session_started_request, session):\n \"\"\" Called when the session starts \"\"\"\n session['attributes'] = {}\n print('on_session_started requestId=' + session_started_request[\n 'requestId'] + ', sessionId=' + session['sessionId'])\n\n\ndef handle_session_end_request():\n card_title = 'County of LA Board of Supervisors Skill- Thanks'\n speech_output = (\n 'Thank you for using the County of LA Board of Supervisors Skill. See you next time!'\n )\n should_end_session = True\n return build_response({}, build_speechlet_response(card_title,\n speech_output, None, should_end_session))\n\n\ndef on_launch(launch_request, session):\n \"\"\" Called when the user launches the skill without specifying what they want \"\"\"\n print('on_launch requestId=' + launch_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n return get_welcome_response()\n\n\ndef on_intent(intent_request, session):\n \"\"\" Called when the user specifies an intent for this skill \"\"\"\n print('on_intent requestId=' + intent_request['requestId'] +\n ', sessionId=' + session['sessionId'])\n intent = intent_request['intent']\n intent_name = intent_request['intent']['name']\n if intent_name == 'GetLatestAgendaIntent':\n return get_next_agenda_response(session)\n elif intent_name == 'GetLatestMotionsIntent':\n return get_next_motions_response(session)\n elif intent_name == 'GetNextMotionIntent':\n return get_next_motions_response(session)\n elif intent_name == 'SetPhoneNumberIntent':\n return text_url_to_number(session, intent)\n elif intent_name == 'AMAZON.HelpIntent':\n return get_welcome_response()\n elif intent_name == 'AMAZON.CancelIntent' or intent_name == 'AMAZON.StopIntent':\n return handle_session_end_request()\n else:\n raise ValueError('Invalid intent')\n\n\ndef lambda_handler(event, context):\n print('Test!')\n print('event.session.application.applicationId=' + event['session'][\n 'application']['applicationId'])\n if event['session']['new']:\n on_session_started({'requestId': event['request']['requestId']},\n event['session'])\n if event['request']['type'] == 'LaunchRequest':\n return on_launch(event['request'], event['session'])\n elif event['request']['type'] == 'IntentRequest':\n return on_intent(event['request'], event['session'])\n elif event['request']['type'] == 'SessionEndedRequest':\n return handle_session_end_request()\n", "step-5": "# -*- coding: utf-8 -*-\nimport requests\nimport json\nimport boto3\nfrom lxml.html import parse\n\nCardTitlePrefix = \"Greeting\"\n\ndef build_speechlet_response(title, output, reprompt_text, should_end_session):\n \"\"\"\n Build a speechlet JSON representation of the title, output text, \n reprompt text & end of session\n \"\"\"\n return {\n 'outputSpeech': {\n 'type': 'PlainText',\n 'text': output\n },\n 'card': {\n 'type': 'Simple',\n 'title': CardTitlePrefix + \" - \" + title,\n 'content': output\n },\n 'reprompt': {\n 'outputSpeech': {\n 'type': 'PlainText',\n 'text': reprompt_text\n }\n },\n 'shouldEndSession': should_end_session\n }\n \ndef build_response(session_attributes, speechlet_response):\n \"\"\"\n Build the full response JSON from the speechlet response\n \"\"\"\n return {\n 'version': '1.0',\n 'sessionAttributes': session_attributes,\n 'response': speechlet_response\n }\n\ndef get_welcome_response():\n welcome_response= \"Welcome to the L.A. Board of Supervisors Skill. You can say, give me recent motions or give me the latest agenda.\"\n print(welcome_response);\n\n session_attributes = {}\n card_title = \"Hello\"\n speech_output = welcome_response;\n # If the user either does not reply to the welcome message or says something\n # that is not understood, they will be prompted again with this text.\n reprompt_text = \"I'm sorry - I didn't understand. You should say give me latest motions.\"\n should_end_session = True\n return build_response(session_attributes, build_speechlet_response(card_title, speech_output, reprompt_text, should_end_session))\n\ndef replace_with_longform_name(name):\n\n if name == \"LASD\":\n longformName = \"Los Angeles County Sheriff's Department\"\n elif name == \"DMH\":\n longformName = \"Department of Mental Health\"\n else:\n longformName = name;\n\n return longformName;\n\n\ndef get_next_motions_response(session):\n \n print(\"Initial session attributes are \"+str(session['attributes']));\n\n if \"result_number\" not in session['attributes']:\n print(\"Second session attributes are \"+str(session['attributes']));\n session['attributes']['result_number'] = 1;\n print(\"Value is \"+str(session['attributes']['result_number']));\n print(\"Final session attributes are \"+str(session['attributes']))\n\n result_number = session['attributes']['result_number'];\n host = \"http://api.lacounty.gov\";\n\n url = host + \"/searchAPIWeb/searchapi?type=bcsearch&database=OMD&\" \\\n \"SearchTerm=1&title=1&content=1&PStart=\" + str(result_number) +\"&PEnd=\" + str(result_number) +\"&_=1509121047612\"\n\n response = requests.get(url);\n #print(response.text);\n data = json.loads(response.text)\n\n alexaResponse = \"\";\n if(result_number == 1):\n alexaResponse = \"Here is the latest correspondence before the L.A. board (both upcoming and past): \"\n\n alexaResponse += str(result_number)+\": From the \"+replace_with_longform_name(data[\"results\"][0][\"department\"])+ \", \"\n alexaResponse += \"on \"+data[\"results\"][0][\"date\"]+\", \"\n alexaResponse += data[\"results\"][0][\"title\"]+\"... \"\n \n alexaResponse += \"You can say text me link or next item\"\n \n session['attributes']['result_number'] = result_number + 1;\n session['attributes']['result_url'] = data[\"results\"][0][\"url\"];\n \n #text_url_to_number(session);\n reprompt_text = \"I'm sorry - I didn't understand. You should say text me link or next item\"\n \n card_title = \"LA Board Latest Motions Message\";\n greeting_string = alexaResponse;\n return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, False))\n \ndef get_next_agenda_response(session):\n \n print(\"Initial session attributes are \"+str(session['attributes']));\n \n host = \"http://bos.lacounty.gov/Board-Meeting/Board-Agendas\";\n url = host;\n page = parse(url)\n nodes = page.xpath(\"//div[a[text()='View Agenda']]\");\n latest_agenda_node = nodes[0];\n headline = latest_agenda_node.find(\"ul\").xpath(\"string()\").strip();\n \n print(headline);\n agenda_url = latest_agenda_node.find(\"a[@href]\").attrib['href'];\n print(\"http://bos.lacounty.gov\"+agenda_url)\n \n agenda_heading = headline;\n #session['attributes']['result_url']\n session['attributes']['result_url'] = \"http://bos.lacounty.gov\"+agenda_url;\n card_title = \"Agenda\";\n greeting_string = \"I have a link for the \"+agenda_heading+\". Say text me and I'll send it to you.\";\n reprompt = \"Say text me to receive a link to the agenda.\"\n\n return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt, False))\n \n \ndef text_url_to_number(session, intent):\n \n if \"phone_number\" not in session['attributes'] and \"value\" not in intent['slots']['phoneNumber']:\n greeting_string = \"Say your nine digit phone number, including the area code\";\n card_title = \"What's your phone number?\";\n reprompt_text = \"I didn't understand. Please say your nine digit mobile phone number.\"\n return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, False))\n else:\n number = intent['slots']['phoneNumber']['value'];\n if \"result_url\" not in session['attributes']:\n session['attributes']['result_url'] = 'http://portal.lacounty.gov/wps/portal/omd';\n \n url = session['attributes']['result_url'];\n session['attributes']['phone_number'] = number;\n \n sns_client = boto3.client('sns')\n response = sns_client.publish(\n PhoneNumber='1'+str(number), \n Message=\"Thank you for using the LA Board of Supervisors Skill. Here's your URL: \"+url\n )\n greeting_string = \"Sent text message to \"+ \" \".join(number);\n card_title = \"Sent motion URL via text message\";\n reprompt_text = \"I didn't understand. Please say your nine digit mobile phone number.\"\n return build_response(session['attributes'], build_speechlet_response(card_title, greeting_string, reprompt_text, True))\n\ndef on_session_started(session_started_request, session):\n \"\"\" Called when the session starts \"\"\"\n \n #session.attributes['result_number'] = 1\n session['attributes'] = {}\n print(\"on_session_started requestId=\" + session_started_request['requestId']\n + \", sessionId=\" + session['sessionId'])\n\ndef handle_session_end_request():\n card_title = \"County of LA Board of Supervisors Skill- Thanks\"\n speech_output = \"Thank you for using the County of LA Board of Supervisors Skill. See you next time!\"\n should_end_session = True\n return build_response({}, build_speechlet_response(card_title, speech_output, None, should_end_session));\n \ndef on_launch(launch_request, session):\n \"\"\" Called when the user launches the skill without specifying what they want \"\"\"\n print(\"on_launch requestId=\" + launch_request['requestId'] +\n \", sessionId=\" + session['sessionId'])\n # Dispatch to your skill's launch\n return get_welcome_response()\n \ndef on_intent(intent_request, session):\n \"\"\" Called when the user specifies an intent for this skill \"\"\"\n print(\"on_intent requestId=\" + intent_request['requestId'] +\n \", sessionId=\" + session['sessionId'])\n \n intent = intent_request['intent']\n intent_name = intent_request['intent']['name']\n # Dispatch to your skill's intent handlers\n if intent_name == \"GetLatestAgendaIntent\":\n return get_next_agenda_response(session)\n elif intent_name == \"GetLatestMotionsIntent\":\n return get_next_motions_response(session)\n elif intent_name == \"GetNextMotionIntent\":\n return get_next_motions_response(session)\n elif intent_name == \"SetPhoneNumberIntent\":\n return text_url_to_number(session, intent);\n elif intent_name == \"AMAZON.HelpIntent\":\n return get_welcome_response()\n elif intent_name == \"AMAZON.CancelIntent\" or intent_name == \"AMAZON.StopIntent\":\n return handle_session_end_request()\n else:\n raise ValueError(\"Invalid intent\")\n\ndef lambda_handler(event, context):\n print(\"Test!\")\n \n print(\"event.session.application.applicationId=\" +\n event['session']['application']['applicationId'])\n \n if event['session']['new']:\n on_session_started({'requestId': event['request']['requestId']},\n event['session'])\n if event['request']['type'] == \"LaunchRequest\":\n return on_launch(event['request'], event['session'])\n elif event['request']['type'] == \"IntentRequest\":\n return on_intent(event['request'], event['session'])\n elif event['request']['type'] == \"SessionEndedRequest\":\n return handle_session_end_request()\n", "step-ids": [ 8, 11, 13, 14, 15 ] }
[ 8, 11, 13, 14, 15 ]
from sand_game.Environment import Environment from sand_game.behaviours.Behaviour import Behaviour class EphemeralBehaviour(Behaviour): """Removes the particle after one frame """ def behave(env: Environment, loc: tuple[int, int]) ->tuple[int, int]: env.set(loc[0], loc[1], None)
normal
{ "blob_id": "2728c3ab26fbdbaac9c47054eafe1c114341f6f2", "index": 7736, "step-1": "<mask token>\n\n\nclass EphemeralBehaviour(Behaviour):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass EphemeralBehaviour(Behaviour):\n <mask token>\n\n def behave(env: Environment, loc: tuple[int, int]) ->tuple[int, int]:\n env.set(loc[0], loc[1], None)\n", "step-3": "<mask token>\n\n\nclass EphemeralBehaviour(Behaviour):\n \"\"\"Removes the particle after one frame\n \"\"\"\n\n def behave(env: Environment, loc: tuple[int, int]) ->tuple[int, int]:\n env.set(loc[0], loc[1], None)\n", "step-4": "from sand_game.Environment import Environment\nfrom sand_game.behaviours.Behaviour import Behaviour\n\n\nclass EphemeralBehaviour(Behaviour):\n \"\"\"Removes the particle after one frame\n \"\"\"\n\n def behave(env: Environment, loc: tuple[int, int]) ->tuple[int, int]:\n env.set(loc[0], loc[1], None)\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
<|reserved_special_token_0|> def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN) <|reserved_special_token_1|> <|reserved_special_token_0|> TOKEN = 'TOKEN' CONTACT_EMAIL = None translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN) <|reserved_special_token_1|> import discord, requests from random import choice TOKEN = 'TOKEN' CONTACT_EMAIL = None translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', "'").replace('&lt;', '<').replace('&gt;', '>') @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ') ] ttt = message.content[len(translate_command) + len(lang) + 1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>', s) ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e]) ).name + ttt[e:] s = ttt.find(id_start) body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL} r = requests.get('https://api.mymemory.translated.net/get', params=body ) message_sent = await message.channel.send(unescape(r.json()[ 'responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout= 600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN) <|reserved_special_token_1|> import discord, requests from random import choice TOKEN = 'TOKEN' CONTACT_EMAIL = None #'Contact email for getting 10000 words/day instead of 1000' translate_command = '$t' id_start = '<@!' client = discord.Client() def unescape(text): return text.replace('&#39;', '\'').replace('&lt;','<').replace('&gt;', '>') # to improve @client.event async def on_ready(): print(f'{client.user} has connected to Discord!') @client.event async def on_message(message): if message.content.startswith(translate_command): lang = message.content[len(translate_command):message.content.find(' ')] ttt = message.content[len(translate_command)+len(lang)+1:] s = ttt.find(id_start) while s != -1: e = ttt.find('>',s) ttt = ttt[:s]+client.get_user(int(ttt[s+len(id_start):e])).name+ttt[e:] s = ttt.find(id_start) body = { 'q': ttt, 'langpair': lang+'|en' if len(lang) == 2 else lang[:2]+'|'+lang[2:], 'de': CONTACT_EMAIL } r = requests.get('https://api.mymemory.translated.net/get', params=body) message_sent = await message.channel.send(unescape(r.json()['responseData']['translatedText'])) def check(reaction, user): return user == message.author and str(reaction.emoji) == '❌' try: reaction, user = await client.wait_for('reaction_add', timeout=600.0, check=check) except asyncio.TimeoutError: pass else: await message_sent.delete() client.run(TOKEN)
flexible
{ "blob_id": "1ab69874a89311b22220dda541dfe03462a98a55", "index": 2243, "step-1": "<mask token>\n\n\ndef unescape(text):\n return text.replace('&#39;', \"'\").replace('&lt;', '<').replace('&gt;', '>')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef unescape(text):\n return text.replace('&#39;', \"'\").replace('&lt;', '<').replace('&gt;', '>')\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} has connected to Discord!')\n\n\[email protected]\nasync def on_message(message):\n if message.content.startswith(translate_command):\n lang = message.content[len(translate_command):message.content.find(' ')\n ]\n ttt = message.content[len(translate_command) + len(lang) + 1:]\n s = ttt.find(id_start)\n while s != -1:\n e = ttt.find('>', s)\n ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e])\n ).name + ttt[e:]\n s = ttt.find(id_start)\n body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else \n lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL}\n r = requests.get('https://api.mymemory.translated.net/get', params=body\n )\n message_sent = await message.channel.send(unescape(r.json()[\n 'responseData']['translatedText']))\n\n def check(reaction, user):\n return user == message.author and str(reaction.emoji) == '❌'\n try:\n reaction, user = await client.wait_for('reaction_add', timeout=\n 600.0, check=check)\n except asyncio.TimeoutError:\n pass\n else:\n await message_sent.delete()\n\n\nclient.run(TOKEN)\n", "step-3": "<mask token>\nTOKEN = 'TOKEN'\nCONTACT_EMAIL = None\ntranslate_command = '$t'\nid_start = '<@!'\nclient = discord.Client()\n\n\ndef unescape(text):\n return text.replace('&#39;', \"'\").replace('&lt;', '<').replace('&gt;', '>')\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} has connected to Discord!')\n\n\[email protected]\nasync def on_message(message):\n if message.content.startswith(translate_command):\n lang = message.content[len(translate_command):message.content.find(' ')\n ]\n ttt = message.content[len(translate_command) + len(lang) + 1:]\n s = ttt.find(id_start)\n while s != -1:\n e = ttt.find('>', s)\n ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e])\n ).name + ttt[e:]\n s = ttt.find(id_start)\n body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else \n lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL}\n r = requests.get('https://api.mymemory.translated.net/get', params=body\n )\n message_sent = await message.channel.send(unescape(r.json()[\n 'responseData']['translatedText']))\n\n def check(reaction, user):\n return user == message.author and str(reaction.emoji) == '❌'\n try:\n reaction, user = await client.wait_for('reaction_add', timeout=\n 600.0, check=check)\n except asyncio.TimeoutError:\n pass\n else:\n await message_sent.delete()\n\n\nclient.run(TOKEN)\n", "step-4": "import discord, requests\nfrom random import choice\nTOKEN = 'TOKEN'\nCONTACT_EMAIL = None\ntranslate_command = '$t'\nid_start = '<@!'\nclient = discord.Client()\n\n\ndef unescape(text):\n return text.replace('&#39;', \"'\").replace('&lt;', '<').replace('&gt;', '>')\n\n\[email protected]\nasync def on_ready():\n print(f'{client.user} has connected to Discord!')\n\n\[email protected]\nasync def on_message(message):\n if message.content.startswith(translate_command):\n lang = message.content[len(translate_command):message.content.find(' ')\n ]\n ttt = message.content[len(translate_command) + len(lang) + 1:]\n s = ttt.find(id_start)\n while s != -1:\n e = ttt.find('>', s)\n ttt = ttt[:s] + client.get_user(int(ttt[s + len(id_start):e])\n ).name + ttt[e:]\n s = ttt.find(id_start)\n body = {'q': ttt, 'langpair': lang + '|en' if len(lang) == 2 else \n lang[:2] + '|' + lang[2:], 'de': CONTACT_EMAIL}\n r = requests.get('https://api.mymemory.translated.net/get', params=body\n )\n message_sent = await message.channel.send(unescape(r.json()[\n 'responseData']['translatedText']))\n\n def check(reaction, user):\n return user == message.author and str(reaction.emoji) == '❌'\n try:\n reaction, user = await client.wait_for('reaction_add', timeout=\n 600.0, check=check)\n except asyncio.TimeoutError:\n pass\n else:\n await message_sent.delete()\n\n\nclient.run(TOKEN)\n", "step-5": "import discord, requests\r\nfrom random import choice\r\n\r\nTOKEN = 'TOKEN'\r\nCONTACT_EMAIL = None #'Contact email for getting 10000 words/day instead of 1000'\r\n\r\ntranslate_command = '$t'\r\nid_start = '<@!'\r\n\r\nclient = discord.Client()\r\n\r\ndef unescape(text):\r\n return text.replace('&#39;', '\\'').replace('&lt;','<').replace('&gt;', '>') # to improve\r\n\r\[email protected]\r\nasync def on_ready():\r\n print(f'{client.user} has connected to Discord!')\r\n\r\[email protected]\r\nasync def on_message(message):\r\n if message.content.startswith(translate_command):\r\n lang = message.content[len(translate_command):message.content.find(' ')]\r\n ttt = message.content[len(translate_command)+len(lang)+1:]\r\n s = ttt.find(id_start)\r\n while s != -1:\r\n e = ttt.find('>',s)\r\n ttt = ttt[:s]+client.get_user(int(ttt[s+len(id_start):e])).name+ttt[e:]\r\n s = ttt.find(id_start)\r\n body = {\r\n 'q': ttt,\r\n 'langpair': lang+'|en' if len(lang) == 2 else lang[:2]+'|'+lang[2:],\r\n 'de': CONTACT_EMAIL\r\n }\r\n r = requests.get('https://api.mymemory.translated.net/get', params=body)\r\n \r\n message_sent = await message.channel.send(unescape(r.json()['responseData']['translatedText']))\r\n \r\n def check(reaction, user):\r\n return user == message.author and str(reaction.emoji) == '❌'\r\n \r\n try:\r\n reaction, user = await client.wait_for('reaction_add', timeout=600.0, check=check)\r\n except asyncio.TimeoutError:\r\n pass\r\n else:\r\n await message_sent.delete()\r\n\r\nclient.run(TOKEN)\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from IPython import embed from selenium import webdriver b = webdriver.Firefox() embed()
normal
{ "blob_id": "9aa54f1259aceb052cfba74cedcfadfe68778ebd", "index": 1020, "step-1": "<mask token>\n", "step-2": "<mask token>\nembed()\n", "step-3": "<mask token>\nb = webdriver.Firefox()\nembed()\n", "step-4": "from IPython import embed\nfrom selenium import webdriver\nb = webdriver.Firefox()\nembed()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# this is just to test with ilp_polytope import polytope polytope.ilp_polytope.test2()
normal
{ "blob_id": "d2fce15636e43ca618c39c5c963bbf0c3a6a3886", "index": 4444, "step-1": "<mask token>\n", "step-2": "<mask token>\npolytope.ilp_polytope.test2()\n", "step-3": "import polytope\npolytope.ilp_polytope.test2()\n", "step-4": "# this is just to test with ilp_polytope\nimport polytope\n\npolytope.ilp_polytope.test2()\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def check_ok(boat, taken_positions): boat.sort() for i in range(len(boat)): if boat[i] in taken_positions: boat = [-1] break elif boat[i] > 99 or boat[i] < 0: boat = [-1] break elif boat[i] % 10 == 9 and i < len(boat) - 1: if boat[i + 1] % 10 == 0: boat = [-1] break if i != 0: if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10: boat = [-1] break return boat def check_shot(shot, ships, hit, miss, comp, sinked_boats): cond = 0 for i in range(len(ships)): if shot in ships[i]: ships[i].remove(shot) if len(ships[i]) > 0: hit.append(shot) cond = 1 else: comp.append(shot) cond = 2 sinked_boats += 1 if cond == 0: miss.append(shot) return ships, hit, miss, comp, cond, sinked_boats <|reserved_special_token_0|> def check_empty(ships): return all([(not elem) for elem in ships]) <|reserved_special_token_0|> def create_ships_u(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: ship, taken_positions = get_ship(len_of_boat, taken_positions) ships.append(ship) return ships, taken_positions <|reserved_special_token_0|> def create_ships_c(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: boat_position = [-1] while -1 in boat_position: boat_start = randrange(99) boat_direction = randrange(1, 4) boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) ships.append(boat_position) taken_positions += boat_position return ships, taken_positions def create_boat(len_of_boat, boat_start, boat_direction, taken_positions): boat = [] if boat_direction == 1: for i in range(len_of_boat): boat.append(boat_start - i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 2: for i in range(len_of_boat): boat.append(boat_start + i) boat = check_ok(boat, taken_positions) elif boat_direction == 3: for i in range(len_of_boat): boat.append(boat_start + i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 4: for i in range(len_of_boat): boat.append(boat_start - i) boat = check_ok(boat, taken_positions) return boat def get_shot_comp(guesses, tactics): while True: try: if len(tactics) > 0: shot = tactics[0] else: shot = randrange(99) if shot not in guesses: guesses.append(shot) break except: print('incorrect - please enter integer only') return shot, guesses <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def check_ok(boat, taken_positions): boat.sort() for i in range(len(boat)): if boat[i] in taken_positions: boat = [-1] break elif boat[i] > 99 or boat[i] < 0: boat = [-1] break elif boat[i] % 10 == 9 and i < len(boat) - 1: if boat[i + 1] % 10 == 0: boat = [-1] break if i != 0: if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10: boat = [-1] break return boat def check_shot(shot, ships, hit, miss, comp, sinked_boats): cond = 0 for i in range(len(ships)): if shot in ships[i]: ships[i].remove(shot) if len(ships[i]) > 0: hit.append(shot) cond = 1 else: comp.append(shot) cond = 2 sinked_boats += 1 if cond == 0: miss.append(shot) return ships, hit, miss, comp, cond, sinked_boats def create_playground(hit, miss, comp): print(' battleship') print(' 0 1 2 3 4 5 6 7 8 9') block = 0 for i in range(10): row = '' for j in range(10): character = '_ ' if block in miss: character = 'x ' elif block in hit: character = 'o ' elif block in comp: character = 'Q ' row += character block += 1 print(i, ' ', row) print('') def check_empty(ships): return all([(not elem) for elem in ships]) <|reserved_special_token_0|> def create_ships_u(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: ship, taken_positions = get_ship(len_of_boat, taken_positions) ships.append(ship) return ships, taken_positions <|reserved_special_token_0|> def get_shot_user(guesses): while True: try: shot = int(input('Enter your shot: ')) if shot < 0 or shot > 99: shot = int(input('Enter your shot:')) elif shot in guesses: print('already guessed - please enter again') else: return shot except: print('incorrect - please enter integer only') <|reserved_special_token_0|> def create_ships_c(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: boat_position = [-1] while -1 in boat_position: boat_start = randrange(99) boat_direction = randrange(1, 4) boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) ships.append(boat_position) taken_positions += boat_position return ships, taken_positions def create_boat(len_of_boat, boat_start, boat_direction, taken_positions): boat = [] if boat_direction == 1: for i in range(len_of_boat): boat.append(boat_start - i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 2: for i in range(len_of_boat): boat.append(boat_start + i) boat = check_ok(boat, taken_positions) elif boat_direction == 3: for i in range(len_of_boat): boat.append(boat_start + i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 4: for i in range(len_of_boat): boat.append(boat_start - i) boat = check_ok(boat, taken_positions) return boat def get_shot_comp(guesses, tactics): while True: try: if len(tactics) > 0: shot = tactics[0] else: shot = randrange(99) if shot not in guesses: guesses.append(shot) break except: print('incorrect - please enter integer only') return shot, guesses def calculate_tactics(shot, tactics, guesses, hit): temp = [] if len(tactics) < 1: temp = [shot - 1, shot + 1, shot - 10, shot + 10] elif shot - 1 in hit: temp = [shot + 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot - num not in hit: temp.append(shot - num) break elif shot + 1 in hit: temp = [shot - 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot + num not in hit: temp.append(shot + num) break elif shot - 10 in hit: temp = [shot + 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot - num not in hit: temp.append(shot - num) break elif shot + 10 in hit: temp = [shot - 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot + num not in hit: temp.append(shot + num) break candidate = [] for i in range(len(temp)): if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1: candidate.append(temp[i]) random.shuffle(candidate) return candidate <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def check_ok(boat, taken_positions): boat.sort() for i in range(len(boat)): if boat[i] in taken_positions: boat = [-1] break elif boat[i] > 99 or boat[i] < 0: boat = [-1] break elif boat[i] % 10 == 9 and i < len(boat) - 1: if boat[i + 1] % 10 == 0: boat = [-1] break if i != 0: if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10: boat = [-1] break return boat def check_shot(shot, ships, hit, miss, comp, sinked_boats): cond = 0 for i in range(len(ships)): if shot in ships[i]: ships[i].remove(shot) if len(ships[i]) > 0: hit.append(shot) cond = 1 else: comp.append(shot) cond = 2 sinked_boats += 1 if cond == 0: miss.append(shot) return ships, hit, miss, comp, cond, sinked_boats def create_playground(hit, miss, comp): print(' battleship') print(' 0 1 2 3 4 5 6 7 8 9') block = 0 for i in range(10): row = '' for j in range(10): character = '_ ' if block in miss: character = 'x ' elif block in hit: character = 'o ' elif block in comp: character = 'Q ' row += character block += 1 print(i, ' ', row) print('') def check_empty(ships): return all([(not elem) for elem in ships]) <|reserved_special_token_0|> def create_ships_u(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: ship, taken_positions = get_ship(len_of_boat, taken_positions) ships.append(ship) return ships, taken_positions <|reserved_special_token_0|> def get_ship(len_of_boat, taken_positions): while True: ship = [] print('enter your ship of length', len_of_boat) for i in range(len_of_boat): while True: try: boat_num = input('please enter a number: ') ship.append(int(boat_num)) except ValueError: print('wrong type of input') continue else: break ship = check_ok(ship, taken_positions) if -1 not in ship: taken_positions += ship break else: print('invalid number - please enter again') return ship, taken_positions def get_shot_user(guesses): while True: try: shot = int(input('Enter your shot: ')) if shot < 0 or shot > 99: shot = int(input('Enter your shot:')) elif shot in guesses: print('already guessed - please enter again') else: return shot except: print('incorrect - please enter integer only') <|reserved_special_token_0|> def create_ships_c(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: boat_position = [-1] while -1 in boat_position: boat_start = randrange(99) boat_direction = randrange(1, 4) boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) ships.append(boat_position) taken_positions += boat_position return ships, taken_positions def create_boat(len_of_boat, boat_start, boat_direction, taken_positions): boat = [] if boat_direction == 1: for i in range(len_of_boat): boat.append(boat_start - i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 2: for i in range(len_of_boat): boat.append(boat_start + i) boat = check_ok(boat, taken_positions) elif boat_direction == 3: for i in range(len_of_boat): boat.append(boat_start + i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 4: for i in range(len_of_boat): boat.append(boat_start - i) boat = check_ok(boat, taken_positions) return boat def get_shot_comp(guesses, tactics): while True: try: if len(tactics) > 0: shot = tactics[0] else: shot = randrange(99) if shot not in guesses: guesses.append(shot) break except: print('incorrect - please enter integer only') return shot, guesses def calculate_tactics(shot, tactics, guesses, hit): temp = [] if len(tactics) < 1: temp = [shot - 1, shot + 1, shot - 10, shot + 10] elif shot - 1 in hit: temp = [shot + 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot - num not in hit: temp.append(shot - num) break elif shot + 1 in hit: temp = [shot - 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot + num not in hit: temp.append(shot + num) break elif shot - 10 in hit: temp = [shot + 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot - num not in hit: temp.append(shot - num) break elif shot + 10 in hit: temp = [shot - 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot + num not in hit: temp.append(shot + num) break candidate = [] for i in range(len(temp)): if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1: candidate.append(temp[i]) random.shuffle(candidate) return candidate <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def check_ok(boat, taken_positions): boat.sort() for i in range(len(boat)): if boat[i] in taken_positions: boat = [-1] break elif boat[i] > 99 or boat[i] < 0: boat = [-1] break elif boat[i] % 10 == 9 and i < len(boat) - 1: if boat[i + 1] % 10 == 0: boat = [-1] break if i != 0: if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10: boat = [-1] break return boat def check_shot(shot, ships, hit, miss, comp, sinked_boats): cond = 0 for i in range(len(ships)): if shot in ships[i]: ships[i].remove(shot) if len(ships[i]) > 0: hit.append(shot) cond = 1 else: comp.append(shot) cond = 2 sinked_boats += 1 if cond == 0: miss.append(shot) return ships, hit, miss, comp, cond, sinked_boats def create_playground(hit, miss, comp): print(' battleship') print(' 0 1 2 3 4 5 6 7 8 9') block = 0 for i in range(10): row = '' for j in range(10): character = '_ ' if block in miss: character = 'x ' elif block in hit: character = 'o ' elif block in comp: character = 'Q ' row += character block += 1 print(i, ' ', row) print('') def check_empty(ships): return all([(not elem) for elem in ships]) <|reserved_special_token_0|> def create_ships_u(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: ship, taken_positions = get_ship(len_of_boat, taken_positions) ships.append(ship) return ships, taken_positions def create_playground_u(taken_positions): print(' battleships ') print(' 0 1 2 3 4 5 6 7 8 9') place = 0 for x in range(10): row = '' for y in range(10): ch = ' _ ' if place in taken_positions: ch = ' o ' row = row + ch place = place + 1 print(x, ' ', row) def get_ship(len_of_boat, taken_positions): while True: ship = [] print('enter your ship of length', len_of_boat) for i in range(len_of_boat): while True: try: boat_num = input('please enter a number: ') ship.append(int(boat_num)) except ValueError: print('wrong type of input') continue else: break ship = check_ok(ship, taken_positions) if -1 not in ship: taken_positions += ship break else: print('invalid number - please enter again') return ship, taken_positions def get_shot_user(guesses): while True: try: shot = int(input('Enter your shot: ')) if shot < 0 or shot > 99: shot = int(input('Enter your shot:')) elif shot in guesses: print('already guessed - please enter again') else: return shot except: print('incorrect - please enter integer only') <|reserved_special_token_0|> def create_ships_c(taken_positions, num_boats): ships = [] for len_of_boat in num_boats: boat_position = [-1] while -1 in boat_position: boat_start = randrange(99) boat_direction = randrange(1, 4) boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) ships.append(boat_position) taken_positions += boat_position return ships, taken_positions def create_boat(len_of_boat, boat_start, boat_direction, taken_positions): boat = [] if boat_direction == 1: for i in range(len_of_boat): boat.append(boat_start - i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 2: for i in range(len_of_boat): boat.append(boat_start + i) boat = check_ok(boat, taken_positions) elif boat_direction == 3: for i in range(len_of_boat): boat.append(boat_start + i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 4: for i in range(len_of_boat): boat.append(boat_start - i) boat = check_ok(boat, taken_positions) return boat def get_shot_comp(guesses, tactics): while True: try: if len(tactics) > 0: shot = tactics[0] else: shot = randrange(99) if shot not in guesses: guesses.append(shot) break except: print('incorrect - please enter integer only') return shot, guesses def calculate_tactics(shot, tactics, guesses, hit): temp = [] if len(tactics) < 1: temp = [shot - 1, shot + 1, shot - 10, shot + 10] elif shot - 1 in hit: temp = [shot + 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot - num not in hit: temp.append(shot - num) break elif shot + 1 in hit: temp = [shot - 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot + num not in hit: temp.append(shot + num) break elif shot - 10 in hit: temp = [shot + 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot - num not in hit: temp.append(shot - num) break elif shot + 10 in hit: temp = [shot - 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot + num not in hit: temp.append(shot + num) break candidate = [] for i in range(len(temp)): if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1: candidate.append(temp[i]) random.shuffle(candidate) return candidate <|reserved_special_token_0|> <|reserved_special_token_1|> from random import randrange import random """ both user and computer funcs: """ def check_ok(boat, taken_positions): # input: boat, taken_positions # this func checks if the boat outside the playground or the position of the boat is already in taken_position # return: boat. boat will returned as [-1] or its specific position boat.sort() for i in range(len(boat)): if boat[i] in taken_positions: #this condition checks if the block boat[i] is already in the list taken_positions boat = [-1] break elif boat[i] > 99 or boat[i] < 0: #this condition checks border 1 and 3 boat = [-1] break elif boat[i] % 10 == 9 and i < len(boat) - 1: #this condition checks border 2 and 4 if boat[i + 1] % 10 == 0: boat = [-1] break if i != 0: # this condition checks if there is any hole in the boat if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10: boat = [-1] break return boat def check_shot(shot, ships, hit, miss, comp, sinked_boats): # input: shot, all the boats (ships), hit, miss, comp, sinked_boats # this func initially assumes that the shot is missed (cond = 0) # given a shot, this func uses a for-loop that goes through all ships to see if the shot hits one of the ships # if yes, remove the block of the boat that is hitted by the shot # append the shot to hit or comp. If comp, sinked_boats += 1 # if not, append the shot to miss # return: all the boats (ships), hit, miss, comp, cond, sinked_boats cond = 0 # miss for i in range(len(ships)): if shot in ships[i]: ships[i].remove(shot) if len(ships[i]) > 0: hit.append(shot) cond = 1 # hit else: comp.append(shot) cond = 2 # comp sinked_boats += 1 if cond == 0: # miss miss.append(shot) return ships, hit, miss, comp, cond, sinked_boats def create_playground(hit, miss, comp): # input: hit, miss, comp # this func creates the playground with the status of each block # print the playground print(" battleship") print(" 0 1 2 3 4 5 6 7 8 9") block = 0 #this variable keep track of the spot of the block for i in range(10): #create each row row = "" for j in range(10): #create each spot on the specific row character = "_ " if block in miss: character = "x " elif block in hit: character = "o " elif block in comp: character = "Q " row += character block += 1 #the block var increments 1 after each character is add to row print(i, " ", row) print("") def check_empty(ships): # input: ships # [] = False, [#have element] = True # this func checks each ship in the 2D list ships # if ship is empty, return True, and vice versa # if all ships are empty, return True, else return False # return True or False return all([not elem for elem in ships]) """ user - 2 funcs: """ def create_ships_u(taken_positions, num_boats): # input: num_boats # this func has a loop that makes all boats, # which calls the get_ship(len_of_boat, taken_positions) that creates a single boat # return: ships, which are the 2D list has len(num_boats) that contains the positions of all boats ships = [] #this is a 2D list contains the positions of all boats for len_of_boat in num_boats: ship, taken_positions = get_ship(len_of_boat, taken_positions) ships.append(ship) return ships, taken_positions def create_playground_u(taken_positions): print(" battleships ") print(" 0 1 2 3 4 5 6 7 8 9") place = 0 for x in range(10): row = "" for y in range(10): ch = " _ " if place in taken_positions: ch = " o " row = row + ch place = place + 1 print(x," ",row) def get_ship(len_of_boat, taken_positions): # input: len_of_boat, taken_positions # this func gets the boat's position from the user's input # this func checks both the type of the input(is it int) and if the boat is inside playground/in taken_positions/in correct order # return a valid ship while True: ship = [] print("enter your ship of length", len_of_boat) for i in range(len_of_boat): while True: try: boat_num = input("please enter a number: ") ship.append(int(boat_num)) except ValueError: # better try again... Return to the start of the loop print("wrong type of input") continue else: # is is a correct input, and we're ready to exit the loop break ship = check_ok(ship, taken_positions) if -1 not in ship: # check if a ship is valid. If yes, add the ship to taken_positions and break taken_positions += ship break else: print("invalid number - please enter again") return ship, taken_positions def get_shot_user(guesses): # input: guesses is the combined list of hit, miss, comp # this funcs asks the user to enter the shot, then checks the validity of the shot # return: the valid shot while True: try: shot = int(input("Enter your shot: ")) if shot < 0 or shot > 99: shot = int(input("Enter your shot:")) elif shot in guesses: print("already guessed - please enter again") else: return shot except: print("incorrect - please enter integer only") """ computer - 1 funcs: """ def create_ships_c(taken_positions, num_boats): # input: num_boats # this funcs has a loop that makes all boats, # which calls the create_boat() that creates a single boat # return: ships, which are the 2D list has len(num_boats) that contains the positions of all boats ships = [] #this is a 2D list contains the positions of all boats for len_of_boat in num_boats: boat_position = [-1] #create the initial position of every boat is [-1] while -1 in boat_position: boat_start = randrange(99) #boat starting point boat_direction = randrange(1, 4) #{1: "up", 2: "right", 3: "down", 4: "left"} boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) #return the position of boat #a new boat is created after finishing the while loop ships.append(boat_position) taken_positions += boat_position #add all positions of the newly created boat to the list taken_positions return ships, taken_positions def create_boat(len_of_boat, boat_start, boat_direction, taken_positions): # input: len_of_boat, boat_start, boat_direction, taken_positions # this func initializes boat = [] # with len_of_boat, boat_start, boat_direction, this func create the position of the boat # calls check_ok(boat, taken_positions) to see if the boat outside playground or the position of the boat is already in taken_position # return: boat. boat will returned as [-1] or its specific position boat = [] if boat_direction == 1: for i in range(len_of_boat): boat.append(boat_start - i * 10) # already have the position of boat after this line boat = check_ok(boat, taken_positions) elif boat_direction == 2: for i in range(len_of_boat): boat.append(boat_start + i) boat = check_ok(boat, taken_positions) elif boat_direction == 3: for i in range(len_of_boat): boat.append(boat_start + i * 10) boat = check_ok(boat, taken_positions) elif boat_direction == 4: for i in range(len_of_boat): boat.append(boat_start - i) boat = check_ok(boat, taken_positions) return boat def get_shot_comp(guesses, tactics): # input: guesses (all moves), tactics(which is the list of all valid possible moves for the shot) # in the first mơve, tactics = [] # this func checks if len(tactics) > 0 # if yes, pick shot = tactics[0] # if no, pick shot = randrange(99) # this func check if shot not in guesses(which is the list of all moves) # if yes, guess.append(shot), and break # return: the valid shot, guesses while True: try: if len(tactics) > 0: shot = tactics[0] else: shot = randrange(99) if shot not in guesses: guesses.append(shot) break except: print("incorrect - please enter integer only") return shot, guesses def calculate_tactics(shot, tactics, guesses, hit): # input: shot, tactics, guesses, hit # this function takes the newly shot, and changes the tactics list accordingly # the list temp is the possible positions that the next shot can be # if the shot hits the first time, len(tactics) = 0. Then, temp is the list contains 4 blocks around the shot # else, the list temp will be created based on the last 2 shots # candidate is the list of valid possible shots that is created from temp # shuffle the order of elements inside candidate # return: candidate (candidate is tactics) temp = [] if len(tactics) < 1: # got 1 hit the first time temp = [shot - 1, shot + 1, shot - 10, shot + 10] # temporary places that the next shot could be else: # got at least 2 hits # checks to see if the 4 spots around is in hit if shot - 1 in hit: # east temp = [shot + 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot - num not in hit: temp.append(shot - num) break elif shot + 1 in hit: # west temp = [shot - 1] for num in [2, 3, 4, 5, 6, 7, 8]: if shot + num not in hit: temp.append(shot + num) break elif shot - 10 in hit: # south temp = [shot + 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot - num not in hit: temp.append(shot - num) break elif shot + 10 in hit: # north. Ex: first shot is 50, next shot is 40 temp = [shot - 10] for num in [20, 30, 40, 50, 60, 70, 80]: if shot + num not in hit: temp.append(shot + num) break candidate = [] # list of valid places that the next shot could be for i in range(len(temp)): if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1: #checks the validity of places in temp candidate.append(temp[i]) random.shuffle(candidate) # shuffle the element order of the list candidate return candidate """ main program: """ num_boats = [5, 4, 3, 3, 2, 2] # this list contains all boats. Each boat is represented by its length # before game # computer - 1 hit1 = [] miss1 = [] comp1 = [] guesses1 = [] cond1 = 0 tactics1 = [] # list of possible moves after a boat is hitted. After a boat is sunked, tactics reset to [] taken_positions1 = [] sinked_boats1 = [] # user - 2 hit2 = [] miss2 = [] comp2 = [] guesses2 = [] cond2 = 0 tactics2 = [] taken_positions2 = [] sinked_boats2 = [] # computer creates ships for player 1 ships1, taken_positions1 = create_ships_c(taken_positions1, num_boats) # user creates boat for player 2 - show board ships2, taken_positions2 = create_ships_u(taken_positions2, num_boats) create_playground_u(taken_positions2) # loop for user and computer takes turn to shoot, and repeat until finding a winner: turns = 0 while True: turns += 1 # USER SHOOTS: using 1 because it is checking the data of computer guesses1 = hit1 + miss1 + comp1 shot1 = get_shot_user(guesses1) ships1, hit1, miss1, comp1, cond1, sinked_boats1 = check_shot(shot1, ships1, hit1, miss1, comp1, sinked_boats1) create_playground(hit1, miss1, comp1) # check if all of the computer ships are empty: if check_empty(ships1): print("end of game - winner in", turns) break # COMPUTER SHOOTS: guesses2 = hit2 + miss2 + comp2 shot2, guesses2 = get_shot_comp(guesses2, tactics2) ships2, hit2, miss2, comp2, cond2, sinked_boats2 = check_shot(shot2, ships2, hit2, miss2, comp2, sinked_boats2) create_playground(hit2, miss2, comp2) if cond2 == 1: # got 1 hit tactics2 = calculate_tactics(shot2, tactics2, guesses2, hit2) elif cond2 == 2: # comp, and sunk the boat # reset tactics = [] tactics2 = [] elif len(tactics2) > 0: #len(tactics) > 0 means that there are still possible moves # got 1 hit, then miss # remove the newly shot from tactics tactics2.pop(0) # in case all 3 statements above are False, which means there is no hit in the first place, tactics is still [] # check if all of the computer ships are empty: if check_empty(ships2): print("end of game - computer wins in", turns) break # after both the user and computer shoot, start a new loop:
flexible
{ "blob_id": "95584dfdb232be7f507dc9d29ed2f1d95fa2b653", "index": 9642, "step-1": "<mask token>\n\n\ndef check_ok(boat, taken_positions):\n boat.sort()\n for i in range(len(boat)):\n if boat[i] in taken_positions:\n boat = [-1]\n break\n elif boat[i] > 99 or boat[i] < 0:\n boat = [-1]\n break\n elif boat[i] % 10 == 9 and i < len(boat) - 1:\n if boat[i + 1] % 10 == 0:\n boat = [-1]\n break\n if i != 0:\n if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10:\n boat = [-1]\n break\n return boat\n\n\ndef check_shot(shot, ships, hit, miss, comp, sinked_boats):\n cond = 0\n for i in range(len(ships)):\n if shot in ships[i]:\n ships[i].remove(shot)\n if len(ships[i]) > 0:\n hit.append(shot)\n cond = 1\n else:\n comp.append(shot)\n cond = 2\n sinked_boats += 1\n if cond == 0:\n miss.append(shot)\n return ships, hit, miss, comp, cond, sinked_boats\n\n\n<mask token>\n\n\ndef check_empty(ships):\n return all([(not elem) for elem in ships])\n\n\n<mask token>\n\n\ndef create_ships_u(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n ship, taken_positions = get_ship(len_of_boat, taken_positions)\n ships.append(ship)\n return ships, taken_positions\n\n\n<mask token>\n\n\ndef create_ships_c(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n boat_position = [-1]\n while -1 in boat_position:\n boat_start = randrange(99)\n boat_direction = randrange(1, 4)\n boat_position = create_boat(len_of_boat, boat_start,\n boat_direction, taken_positions)\n ships.append(boat_position)\n taken_positions += boat_position\n return ships, taken_positions\n\n\ndef create_boat(len_of_boat, boat_start, boat_direction, taken_positions):\n boat = []\n if boat_direction == 1:\n for i in range(len_of_boat):\n boat.append(boat_start - i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 2:\n for i in range(len_of_boat):\n boat.append(boat_start + i)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 3:\n for i in range(len_of_boat):\n boat.append(boat_start + i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 4:\n for i in range(len_of_boat):\n boat.append(boat_start - i)\n boat = check_ok(boat, taken_positions)\n return boat\n\n\ndef get_shot_comp(guesses, tactics):\n while True:\n try:\n if len(tactics) > 0:\n shot = tactics[0]\n else:\n shot = randrange(99)\n if shot not in guesses:\n guesses.append(shot)\n break\n except:\n print('incorrect - please enter integer only')\n return shot, guesses\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef check_ok(boat, taken_positions):\n boat.sort()\n for i in range(len(boat)):\n if boat[i] in taken_positions:\n boat = [-1]\n break\n elif boat[i] > 99 or boat[i] < 0:\n boat = [-1]\n break\n elif boat[i] % 10 == 9 and i < len(boat) - 1:\n if boat[i + 1] % 10 == 0:\n boat = [-1]\n break\n if i != 0:\n if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10:\n boat = [-1]\n break\n return boat\n\n\ndef check_shot(shot, ships, hit, miss, comp, sinked_boats):\n cond = 0\n for i in range(len(ships)):\n if shot in ships[i]:\n ships[i].remove(shot)\n if len(ships[i]) > 0:\n hit.append(shot)\n cond = 1\n else:\n comp.append(shot)\n cond = 2\n sinked_boats += 1\n if cond == 0:\n miss.append(shot)\n return ships, hit, miss, comp, cond, sinked_boats\n\n\ndef create_playground(hit, miss, comp):\n print(' battleship')\n print(' 0 1 2 3 4 5 6 7 8 9')\n block = 0\n for i in range(10):\n row = ''\n for j in range(10):\n character = '_ '\n if block in miss:\n character = 'x '\n elif block in hit:\n character = 'o '\n elif block in comp:\n character = 'Q '\n row += character\n block += 1\n print(i, ' ', row)\n print('')\n\n\ndef check_empty(ships):\n return all([(not elem) for elem in ships])\n\n\n<mask token>\n\n\ndef create_ships_u(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n ship, taken_positions = get_ship(len_of_boat, taken_positions)\n ships.append(ship)\n return ships, taken_positions\n\n\n<mask token>\n\n\ndef get_shot_user(guesses):\n while True:\n try:\n shot = int(input('Enter your shot: '))\n if shot < 0 or shot > 99:\n shot = int(input('Enter your shot:'))\n elif shot in guesses:\n print('already guessed - please enter again')\n else:\n return shot\n except:\n print('incorrect - please enter integer only')\n\n\n<mask token>\n\n\ndef create_ships_c(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n boat_position = [-1]\n while -1 in boat_position:\n boat_start = randrange(99)\n boat_direction = randrange(1, 4)\n boat_position = create_boat(len_of_boat, boat_start,\n boat_direction, taken_positions)\n ships.append(boat_position)\n taken_positions += boat_position\n return ships, taken_positions\n\n\ndef create_boat(len_of_boat, boat_start, boat_direction, taken_positions):\n boat = []\n if boat_direction == 1:\n for i in range(len_of_boat):\n boat.append(boat_start - i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 2:\n for i in range(len_of_boat):\n boat.append(boat_start + i)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 3:\n for i in range(len_of_boat):\n boat.append(boat_start + i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 4:\n for i in range(len_of_boat):\n boat.append(boat_start - i)\n boat = check_ok(boat, taken_positions)\n return boat\n\n\ndef get_shot_comp(guesses, tactics):\n while True:\n try:\n if len(tactics) > 0:\n shot = tactics[0]\n else:\n shot = randrange(99)\n if shot not in guesses:\n guesses.append(shot)\n break\n except:\n print('incorrect - please enter integer only')\n return shot, guesses\n\n\ndef calculate_tactics(shot, tactics, guesses, hit):\n temp = []\n if len(tactics) < 1:\n temp = [shot - 1, shot + 1, shot - 10, shot + 10]\n elif shot - 1 in hit:\n temp = [shot + 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 1 in hit:\n temp = [shot - 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n elif shot - 10 in hit:\n temp = [shot + 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 10 in hit:\n temp = [shot - 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n candidate = []\n for i in range(len(temp)):\n if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1:\n candidate.append(temp[i])\n random.shuffle(candidate)\n return candidate\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef check_ok(boat, taken_positions):\n boat.sort()\n for i in range(len(boat)):\n if boat[i] in taken_positions:\n boat = [-1]\n break\n elif boat[i] > 99 or boat[i] < 0:\n boat = [-1]\n break\n elif boat[i] % 10 == 9 and i < len(boat) - 1:\n if boat[i + 1] % 10 == 0:\n boat = [-1]\n break\n if i != 0:\n if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10:\n boat = [-1]\n break\n return boat\n\n\ndef check_shot(shot, ships, hit, miss, comp, sinked_boats):\n cond = 0\n for i in range(len(ships)):\n if shot in ships[i]:\n ships[i].remove(shot)\n if len(ships[i]) > 0:\n hit.append(shot)\n cond = 1\n else:\n comp.append(shot)\n cond = 2\n sinked_boats += 1\n if cond == 0:\n miss.append(shot)\n return ships, hit, miss, comp, cond, sinked_boats\n\n\ndef create_playground(hit, miss, comp):\n print(' battleship')\n print(' 0 1 2 3 4 5 6 7 8 9')\n block = 0\n for i in range(10):\n row = ''\n for j in range(10):\n character = '_ '\n if block in miss:\n character = 'x '\n elif block in hit:\n character = 'o '\n elif block in comp:\n character = 'Q '\n row += character\n block += 1\n print(i, ' ', row)\n print('')\n\n\ndef check_empty(ships):\n return all([(not elem) for elem in ships])\n\n\n<mask token>\n\n\ndef create_ships_u(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n ship, taken_positions = get_ship(len_of_boat, taken_positions)\n ships.append(ship)\n return ships, taken_positions\n\n\n<mask token>\n\n\ndef get_ship(len_of_boat, taken_positions):\n while True:\n ship = []\n print('enter your ship of length', len_of_boat)\n for i in range(len_of_boat):\n while True:\n try:\n boat_num = input('please enter a number: ')\n ship.append(int(boat_num))\n except ValueError:\n print('wrong type of input')\n continue\n else:\n break\n ship = check_ok(ship, taken_positions)\n if -1 not in ship:\n taken_positions += ship\n break\n else:\n print('invalid number - please enter again')\n return ship, taken_positions\n\n\ndef get_shot_user(guesses):\n while True:\n try:\n shot = int(input('Enter your shot: '))\n if shot < 0 or shot > 99:\n shot = int(input('Enter your shot:'))\n elif shot in guesses:\n print('already guessed - please enter again')\n else:\n return shot\n except:\n print('incorrect - please enter integer only')\n\n\n<mask token>\n\n\ndef create_ships_c(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n boat_position = [-1]\n while -1 in boat_position:\n boat_start = randrange(99)\n boat_direction = randrange(1, 4)\n boat_position = create_boat(len_of_boat, boat_start,\n boat_direction, taken_positions)\n ships.append(boat_position)\n taken_positions += boat_position\n return ships, taken_positions\n\n\ndef create_boat(len_of_boat, boat_start, boat_direction, taken_positions):\n boat = []\n if boat_direction == 1:\n for i in range(len_of_boat):\n boat.append(boat_start - i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 2:\n for i in range(len_of_boat):\n boat.append(boat_start + i)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 3:\n for i in range(len_of_boat):\n boat.append(boat_start + i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 4:\n for i in range(len_of_boat):\n boat.append(boat_start - i)\n boat = check_ok(boat, taken_positions)\n return boat\n\n\ndef get_shot_comp(guesses, tactics):\n while True:\n try:\n if len(tactics) > 0:\n shot = tactics[0]\n else:\n shot = randrange(99)\n if shot not in guesses:\n guesses.append(shot)\n break\n except:\n print('incorrect - please enter integer only')\n return shot, guesses\n\n\ndef calculate_tactics(shot, tactics, guesses, hit):\n temp = []\n if len(tactics) < 1:\n temp = [shot - 1, shot + 1, shot - 10, shot + 10]\n elif shot - 1 in hit:\n temp = [shot + 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 1 in hit:\n temp = [shot - 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n elif shot - 10 in hit:\n temp = [shot + 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 10 in hit:\n temp = [shot - 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n candidate = []\n for i in range(len(temp)):\n if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1:\n candidate.append(temp[i])\n random.shuffle(candidate)\n return candidate\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef check_ok(boat, taken_positions):\n boat.sort()\n for i in range(len(boat)):\n if boat[i] in taken_positions:\n boat = [-1]\n break\n elif boat[i] > 99 or boat[i] < 0:\n boat = [-1]\n break\n elif boat[i] % 10 == 9 and i < len(boat) - 1:\n if boat[i + 1] % 10 == 0:\n boat = [-1]\n break\n if i != 0:\n if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10:\n boat = [-1]\n break\n return boat\n\n\ndef check_shot(shot, ships, hit, miss, comp, sinked_boats):\n cond = 0\n for i in range(len(ships)):\n if shot in ships[i]:\n ships[i].remove(shot)\n if len(ships[i]) > 0:\n hit.append(shot)\n cond = 1\n else:\n comp.append(shot)\n cond = 2\n sinked_boats += 1\n if cond == 0:\n miss.append(shot)\n return ships, hit, miss, comp, cond, sinked_boats\n\n\ndef create_playground(hit, miss, comp):\n print(' battleship')\n print(' 0 1 2 3 4 5 6 7 8 9')\n block = 0\n for i in range(10):\n row = ''\n for j in range(10):\n character = '_ '\n if block in miss:\n character = 'x '\n elif block in hit:\n character = 'o '\n elif block in comp:\n character = 'Q '\n row += character\n block += 1\n print(i, ' ', row)\n print('')\n\n\ndef check_empty(ships):\n return all([(not elem) for elem in ships])\n\n\n<mask token>\n\n\ndef create_ships_u(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n ship, taken_positions = get_ship(len_of_boat, taken_positions)\n ships.append(ship)\n return ships, taken_positions\n\n\ndef create_playground_u(taken_positions):\n print(' battleships ')\n print(' 0 1 2 3 4 5 6 7 8 9')\n place = 0\n for x in range(10):\n row = ''\n for y in range(10):\n ch = ' _ '\n if place in taken_positions:\n ch = ' o '\n row = row + ch\n place = place + 1\n print(x, ' ', row)\n\n\ndef get_ship(len_of_boat, taken_positions):\n while True:\n ship = []\n print('enter your ship of length', len_of_boat)\n for i in range(len_of_boat):\n while True:\n try:\n boat_num = input('please enter a number: ')\n ship.append(int(boat_num))\n except ValueError:\n print('wrong type of input')\n continue\n else:\n break\n ship = check_ok(ship, taken_positions)\n if -1 not in ship:\n taken_positions += ship\n break\n else:\n print('invalid number - please enter again')\n return ship, taken_positions\n\n\ndef get_shot_user(guesses):\n while True:\n try:\n shot = int(input('Enter your shot: '))\n if shot < 0 or shot > 99:\n shot = int(input('Enter your shot:'))\n elif shot in guesses:\n print('already guessed - please enter again')\n else:\n return shot\n except:\n print('incorrect - please enter integer only')\n\n\n<mask token>\n\n\ndef create_ships_c(taken_positions, num_boats):\n ships = []\n for len_of_boat in num_boats:\n boat_position = [-1]\n while -1 in boat_position:\n boat_start = randrange(99)\n boat_direction = randrange(1, 4)\n boat_position = create_boat(len_of_boat, boat_start,\n boat_direction, taken_positions)\n ships.append(boat_position)\n taken_positions += boat_position\n return ships, taken_positions\n\n\ndef create_boat(len_of_boat, boat_start, boat_direction, taken_positions):\n boat = []\n if boat_direction == 1:\n for i in range(len_of_boat):\n boat.append(boat_start - i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 2:\n for i in range(len_of_boat):\n boat.append(boat_start + i)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 3:\n for i in range(len_of_boat):\n boat.append(boat_start + i * 10)\n boat = check_ok(boat, taken_positions)\n elif boat_direction == 4:\n for i in range(len_of_boat):\n boat.append(boat_start - i)\n boat = check_ok(boat, taken_positions)\n return boat\n\n\ndef get_shot_comp(guesses, tactics):\n while True:\n try:\n if len(tactics) > 0:\n shot = tactics[0]\n else:\n shot = randrange(99)\n if shot not in guesses:\n guesses.append(shot)\n break\n except:\n print('incorrect - please enter integer only')\n return shot, guesses\n\n\ndef calculate_tactics(shot, tactics, guesses, hit):\n temp = []\n if len(tactics) < 1:\n temp = [shot - 1, shot + 1, shot - 10, shot + 10]\n elif shot - 1 in hit:\n temp = [shot + 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 1 in hit:\n temp = [shot - 1]\n for num in [2, 3, 4, 5, 6, 7, 8]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n elif shot - 10 in hit:\n temp = [shot + 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot - num not in hit:\n temp.append(shot - num)\n break\n elif shot + 10 in hit:\n temp = [shot - 10]\n for num in [20, 30, 40, 50, 60, 70, 80]:\n if shot + num not in hit:\n temp.append(shot + num)\n break\n candidate = []\n for i in range(len(temp)):\n if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1:\n candidate.append(temp[i])\n random.shuffle(candidate)\n return candidate\n\n\n<mask token>\n", "step-5": "from random import randrange\r\nimport random\r\n\r\n\"\"\"\r\nboth user and computer funcs:\r\n\"\"\"\r\ndef check_ok(boat, taken_positions):\r\n# input: boat, taken_positions \r\n# this func checks if the boat outside the playground or the position of the boat is already in taken_position\r\n# return: boat. boat will returned as [-1] or its specific position\r\n boat.sort()\r\n for i in range(len(boat)):\r\n if boat[i] in taken_positions:\r\n #this condition checks if the block boat[i] is already in the list taken_positions\r\n boat = [-1]\r\n break \r\n elif boat[i] > 99 or boat[i] < 0:\r\n #this condition checks border 1 and 3\r\n boat = [-1]\r\n break\r\n elif boat[i] % 10 == 9 and i < len(boat) - 1:\r\n #this condition checks border 2 and 4\r\n if boat[i + 1] % 10 == 0:\r\n boat = [-1]\r\n break\r\n \r\n if i != 0:\r\n # this condition checks if there is any hole in the boat\r\n if boat[i] != boat[i - 1] + 1 and boat[i] != boat[i - 1] + 10:\r\n boat = [-1]\r\n break\r\n return boat \r\n\r\n\r\ndef check_shot(shot, ships, hit, miss, comp, sinked_boats):\r\n# input: shot, all the boats (ships), hit, miss, comp, sinked_boats\r\n# this func initially assumes that the shot is missed (cond = 0)\r\n# given a shot, this func uses a for-loop that goes through all ships to see if the shot hits one of the ships \r\n# if yes, remove the block of the boat that is hitted by the shot\r\n# append the shot to hit or comp. If comp, sinked_boats += 1\r\n# if not, append the shot to miss\r\n# return: all the boats (ships), hit, miss, comp, cond, sinked_boats\r\n cond = 0 # miss\r\n for i in range(len(ships)):\r\n if shot in ships[i]:\r\n ships[i].remove(shot)\r\n if len(ships[i]) > 0:\r\n hit.append(shot)\r\n cond = 1 # hit\r\n else:\r\n comp.append(shot)\r\n cond = 2 # comp\r\n sinked_boats += 1 \r\n if cond == 0: # miss\r\n miss.append(shot) \r\n return ships, hit, miss, comp, cond, sinked_boats\r\n\r\n\r\ndef create_playground(hit, miss, comp):\r\n# input: hit, miss, comp\r\n# this func creates the playground with the status of each block \r\n# print the playground\r\n print(\" battleship\")\r\n print(\" 0 1 2 3 4 5 6 7 8 9\")\r\n \r\n block = 0 #this variable keep track of the spot of the block\r\n for i in range(10):\r\n #create each row\r\n row = \"\"\r\n for j in range(10):\r\n #create each spot on the specific row\r\n character = \"_ \"\r\n if block in miss:\r\n character = \"x \"\r\n elif block in hit:\r\n character = \"o \" \r\n elif block in comp:\r\n character = \"Q \"\r\n row += character\r\n block += 1 #the block var increments 1 after each character is add to row\r\n print(i, \" \", row)\r\n print(\"\")\r\n\r\n\r\ndef check_empty(ships):\r\n# input: ships\r\n# [] = False, [#have element] = True\r\n# this func checks each ship in the 2D list ships\r\n# if ship is empty, return True, and vice versa\r\n# if all ships are empty, return True, else return False\r\n# return True or False \r\n return all([not elem for elem in ships])\r\n\r\n\r\n\"\"\"\r\nuser - 2 funcs:\r\n\"\"\"\r\ndef create_ships_u(taken_positions, num_boats):\r\n# input: num_boats\r\n# this func has a loop that makes all boats,\r\n# which calls the get_ship(len_of_boat, taken_positions) that creates a single boat\r\n# return: ships, which are the 2D list has len(num_boats) that contains the positions of all boats\r\n ships = [] #this is a 2D list contains the positions of all boats\r\n for len_of_boat in num_boats:\r\n ship, taken_positions = get_ship(len_of_boat, taken_positions)\r\n ships.append(ship)\r\n return ships, taken_positions\r\n\r\n \r\ndef create_playground_u(taken_positions):\r\n print(\" battleships \")\r\n print(\" 0 1 2 3 4 5 6 7 8 9\")\r\n \r\n place = 0\r\n for x in range(10):\r\n row = \"\"\r\n for y in range(10):\r\n ch = \" _ \"\r\n if place in taken_positions:\r\n ch = \" o \" \r\n row = row + ch\r\n place = place + 1\r\n \r\n print(x,\" \",row)\r\n\r\n\r\ndef get_ship(len_of_boat, taken_positions):\r\n# input: len_of_boat, taken_positions\r\n# this func gets the boat's position from the user's input\r\n# this func checks both the type of the input(is it int) and if the boat is inside playground/in taken_positions/in correct order \r\n# return a valid ship \r\n while True:\r\n ship = []\r\n print(\"enter your ship of length\", len_of_boat)\r\n for i in range(len_of_boat):\r\n while True:\r\n try:\r\n boat_num = input(\"please enter a number: \")\r\n ship.append(int(boat_num))\r\n except ValueError: # better try again... Return to the start of the loop\r\n print(\"wrong type of input\")\r\n continue\r\n else: # is is a correct input, and we're ready to exit the loop\r\n break\r\n ship = check_ok(ship, taken_positions)\r\n\r\n if -1 not in ship: # check if a ship is valid. If yes, add the ship to taken_positions and break\r\n taken_positions += ship\r\n break\r\n else:\r\n print(\"invalid number - please enter again\")\r\n return ship, taken_positions\r\n\r\n\r\ndef get_shot_user(guesses):\r\n# input: guesses is the combined list of hit, miss, comp\r\n# this funcs asks the user to enter the shot, then checks the validity of the shot \r\n# return: the valid shot\r\n while True:\r\n try:\r\n shot = int(input(\"Enter your shot: \"))\r\n if shot < 0 or shot > 99:\r\n shot = int(input(\"Enter your shot:\"))\r\n elif shot in guesses:\r\n print(\"already guessed - please enter again\")\r\n else:\r\n return shot\r\n except:\r\n print(\"incorrect - please enter integer only\")\r\n\r\n\r\n\"\"\"\r\ncomputer - 1 funcs:\r\n\"\"\"\r\ndef create_ships_c(taken_positions, num_boats):\r\n# input: num_boats\r\n# this funcs has a loop that makes all boats,\r\n# which calls the create_boat() that creates a single boat\r\n# return: ships, which are the 2D list has len(num_boats) that contains the positions of all boats\r\n ships = [] #this is a 2D list contains the positions of all boats\r\n for len_of_boat in num_boats:\r\n boat_position = [-1] #create the initial position of every boat is [-1]\r\n while -1 in boat_position:\r\n boat_start = randrange(99) #boat starting point\r\n boat_direction = randrange(1, 4) #{1: \"up\", 2: \"right\", 3: \"down\", 4: \"left\"}\r\n boat_position = create_boat(len_of_boat, boat_start, boat_direction, taken_positions) #return the position of boat\r\n #a new boat is created after finishing the while loop\r\n ships.append(boat_position)\r\n taken_positions += boat_position #add all positions of the newly created boat to the list taken_positions\r\n return ships, taken_positions\r\n\r\n\r\ndef create_boat(len_of_boat, boat_start, boat_direction, taken_positions):\r\n# input: len_of_boat, boat_start, boat_direction, taken_positions\r\n# this func initializes boat = []\r\n# with len_of_boat, boat_start, boat_direction, this func create the position of the boat\r\n# calls check_ok(boat, taken_positions) to see if the boat outside playground or the position of the boat is already in taken_position\r\n# return: boat. boat will returned as [-1] or its specific position\r\n boat = []\r\n if boat_direction == 1:\r\n for i in range(len_of_boat):\r\n boat.append(boat_start - i * 10) # already have the position of boat after this line\r\n boat = check_ok(boat, taken_positions)\r\n elif boat_direction == 2:\r\n for i in range(len_of_boat):\r\n boat.append(boat_start + i)\r\n boat = check_ok(boat, taken_positions)\r\n elif boat_direction == 3:\r\n for i in range(len_of_boat):\r\n boat.append(boat_start + i * 10)\r\n boat = check_ok(boat, taken_positions)\r\n elif boat_direction == 4:\r\n for i in range(len_of_boat):\r\n boat.append(boat_start - i)\r\n boat = check_ok(boat, taken_positions)\r\n return boat\r\n\r\n\r\ndef get_shot_comp(guesses, tactics):\r\n# input: guesses (all moves), tactics(which is the list of all valid possible moves for the shot)\r\n# in the first mơve, tactics = []\r\n# this func checks if len(tactics) > 0\r\n# if yes, pick shot = tactics[0]\r\n# if no, pick shot = randrange(99)\r\n# this func check if shot not in guesses(which is the list of all moves) \r\n# if yes, guess.append(shot), and break\r\n# return: the valid shot, guesses\r\n while True:\r\n try:\r\n if len(tactics) > 0:\r\n shot = tactics[0]\r\n else:\r\n shot = randrange(99)\r\n \r\n if shot not in guesses:\r\n guesses.append(shot)\r\n break\r\n except:\r\n print(\"incorrect - please enter integer only\")\r\n return shot, guesses\r\n\r\n\r\ndef calculate_tactics(shot, tactics, guesses, hit):\r\n# input: shot, tactics, guesses, hit\r\n# this function takes the newly shot, and changes the tactics list accordingly\r\n# the list temp is the possible positions that the next shot can be\r\n# if the shot hits the first time, len(tactics) = 0. Then, temp is the list contains 4 blocks around the shot\r\n# else, the list temp will be created based on the last 2 shots\r\n# candidate is the list of valid possible shots that is created from temp\r\n# shuffle the order of elements inside candidate\r\n# return: candidate (candidate is tactics)\r\n temp = []\r\n if len(tactics) < 1:\r\n # got 1 hit the first time \r\n temp = [shot - 1, shot + 1, shot - 10, shot + 10] # temporary places that the next shot could be \r\n else: \r\n # got at least 2 hits \r\n # checks to see if the 4 spots around is in hit\r\n if shot - 1 in hit: # east\r\n temp = [shot + 1]\r\n for num in [2, 3, 4, 5, 6, 7, 8]:\r\n if shot - num not in hit:\r\n temp.append(shot - num) \r\n break\r\n\r\n elif shot + 1 in hit: # west\r\n temp = [shot - 1]\r\n for num in [2, 3, 4, 5, 6, 7, 8]:\r\n if shot + num not in hit:\r\n temp.append(shot + num) \r\n break\r\n \r\n elif shot - 10 in hit: # south\r\n temp = [shot + 10]\r\n for num in [20, 30, 40, 50, 60, 70, 80]:\r\n if shot - num not in hit:\r\n temp.append(shot - num) \r\n break\r\n \r\n elif shot + 10 in hit: # north. Ex: first shot is 50, next shot is 40\r\n temp = [shot - 10]\r\n for num in [20, 30, 40, 50, 60, 70, 80]:\r\n if shot + num not in hit:\r\n temp.append(shot + num) \r\n break\r\n \r\n candidate = [] # list of valid places that the next shot could be\r\n for i in range(len(temp)):\r\n if temp[i] not in guesses and temp[i] < 100 and temp[i] > -1: #checks the validity of places in temp\r\n candidate.append(temp[i])\r\n random.shuffle(candidate) # shuffle the element order of the list candidate\r\n return candidate\r\n\r\n\r\n\r\n\"\"\"\r\nmain program:\r\n\"\"\"\r\nnum_boats = [5, 4, 3, 3, 2, 2] # this list contains all boats. Each boat is represented by its length \r\n\r\n# before game\r\n# computer - 1\r\nhit1 = []\r\nmiss1 = []\r\ncomp1 = []\r\nguesses1 = []\r\ncond1 = 0\r\ntactics1 = [] # list of possible moves after a boat is hitted. After a boat is sunked, tactics reset to []\r\ntaken_positions1 = []\r\nsinked_boats1 = []\r\n\r\n# user - 2\r\nhit2 = []\r\nmiss2 = []\r\ncomp2 = []\r\nguesses2 = []\r\ncond2 = 0\r\ntactics2 = []\r\ntaken_positions2 = []\r\nsinked_boats2 = []\r\n\r\n# computer creates ships for player 1\r\nships1, taken_positions1 = create_ships_c(taken_positions1, num_boats) \r\n# user creates boat for player 2 - show board\r\nships2, taken_positions2 = create_ships_u(taken_positions2, num_boats)\r\ncreate_playground_u(taken_positions2)\r\n\r\n# loop for user and computer takes turn to shoot, and repeat until finding a winner:\r\nturns = 0\r\nwhile True: \r\n turns += 1\r\n\r\n# USER SHOOTS: using 1 because it is checking the data of computer\r\n guesses1 = hit1 + miss1 + comp1\r\n shot1 = get_shot_user(guesses1)\r\n ships1, hit1, miss1, comp1, cond1, sinked_boats1 = check_shot(shot1, ships1, hit1, miss1, comp1, sinked_boats1)\r\n create_playground(hit1, miss1, comp1)\r\n\r\n# check if all of the computer ships are empty:\r\n if check_empty(ships1):\r\n print(\"end of game - winner in\", turns)\r\n break\r\n\r\n# COMPUTER SHOOTS:\r\n guesses2 = hit2 + miss2 + comp2\r\n shot2, guesses2 = get_shot_comp(guesses2, tactics2) \r\n ships2, hit2, miss2, comp2, cond2, sinked_boats2 = check_shot(shot2, ships2, hit2, miss2, comp2, sinked_boats2)\r\n create_playground(hit2, miss2, comp2)\r\n\r\n if cond2 == 1:\r\n # got 1 hit\r\n tactics2 = calculate_tactics(shot2, tactics2, guesses2, hit2)\r\n elif cond2 == 2:\r\n # comp, and sunk the boat\r\n # reset tactics = []\r\n tactics2 = []\r\n elif len(tactics2) > 0: #len(tactics) > 0 means that there are still possible moves\r\n # got 1 hit, then miss\r\n # remove the newly shot from tactics\r\n tactics2.pop(0)\r\n # in case all 3 statements above are False, which means there is no hit in the first place, tactics is still []\r\n\r\n# check if all of the computer ships are empty:\r\n if check_empty(ships2):\r\n print(\"end of game - computer wins in\", turns)\r\n break\r\n\r\n# after both the user and computer shoot, start a new loop:\r\n\r\n", "step-ids": [ 7, 10, 11, 12, 16 ] }
[ 7, 10, 11, 12, 16 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def firstMissingPositive(nums): if len(nums) == 0: return 1 if len(nums) == 1: if nums[0] == 1: return 2 else: return 1 nums.sort() current = 1 nums = [ele for ele in nums if ele > 0] if len(nums) == 0: return 1 if len(nums) == 1: if nums[0] == 1: return 2 else: return 1 for i in range(len(nums) - 1): if current != nums[i]: return 1 else: while i < len(nums) - 1 and (nums[i] + 1 == nums[i + 1] or nums [i] == nums[i + 1]): i += 1 if i == len(nums) - 2 and nums[i] + 1 == nums[i + 1]: return nums[i + 1] + 1 else: return nums[i] + 1 return 1 <|reserved_special_token_0|> <|reserved_special_token_1|> def firstMissingPositive(nums): if len(nums) == 0: return 1 if len(nums) == 1: if nums[0] == 1: return 2 else: return 1 nums.sort() current = 1 nums = [ele for ele in nums if ele > 0] if len(nums) == 0: return 1 if len(nums) == 1: if nums[0] == 1: return 2 else: return 1 for i in range(len(nums) - 1): if current != nums[i]: return 1 else: while i < len(nums) - 1 and (nums[i] + 1 == nums[i + 1] or nums [i] == nums[i + 1]): i += 1 if i == len(nums) - 2 and nums[i] + 1 == nums[i + 1]: return nums[i + 1] + 1 else: return nums[i] + 1 return 1 print(firstMissingPositive([1, 1000])) print(firstMissingPositive([1, 0])) print(firstMissingPositive([-1, -2])) print(firstMissingPositive([1, 2, 0])) print(firstMissingPositive([3, 4, -1, 1])) print(firstMissingPositive([7, 8, 9, 11, 12]))
flexible
{ "blob_id": "89addbf2c49d568250cd5a48d3fdb73914ce50c4", "index": 2899, "step-1": "<mask token>\n", "step-2": "def firstMissingPositive(nums):\n if len(nums) == 0:\n return 1\n if len(nums) == 1:\n if nums[0] == 1:\n return 2\n else:\n return 1\n nums.sort()\n current = 1\n nums = [ele for ele in nums if ele > 0]\n if len(nums) == 0:\n return 1\n if len(nums) == 1:\n if nums[0] == 1:\n return 2\n else:\n return 1\n for i in range(len(nums) - 1):\n if current != nums[i]:\n return 1\n else:\n while i < len(nums) - 1 and (nums[i] + 1 == nums[i + 1] or nums\n [i] == nums[i + 1]):\n i += 1\n if i == len(nums) - 2 and nums[i] + 1 == nums[i + 1]:\n return nums[i + 1] + 1\n else:\n return nums[i] + 1\n return 1\n\n\n<mask token>\n", "step-3": "def firstMissingPositive(nums):\n if len(nums) == 0:\n return 1\n if len(nums) == 1:\n if nums[0] == 1:\n return 2\n else:\n return 1\n nums.sort()\n current = 1\n nums = [ele for ele in nums if ele > 0]\n if len(nums) == 0:\n return 1\n if len(nums) == 1:\n if nums[0] == 1:\n return 2\n else:\n return 1\n for i in range(len(nums) - 1):\n if current != nums[i]:\n return 1\n else:\n while i < len(nums) - 1 and (nums[i] + 1 == nums[i + 1] or nums\n [i] == nums[i + 1]):\n i += 1\n if i == len(nums) - 2 and nums[i] + 1 == nums[i + 1]:\n return nums[i + 1] + 1\n else:\n return nums[i] + 1\n return 1\n\n\nprint(firstMissingPositive([1, 1000]))\nprint(firstMissingPositive([1, 0]))\nprint(firstMissingPositive([-1, -2]))\nprint(firstMissingPositive([1, 2, 0]))\nprint(firstMissingPositive([3, 4, -1, 1]))\nprint(firstMissingPositive([7, 8, 9, 11, 12]))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> websocket_urlpatterns = [url('^account/home', consumers. NotificationConsumer), url('^fund/(?P<fund>[\\w-]+)', consumers. NotificationConsumer), url('^websockets', consumers.StreamConsumer)] <|reserved_special_token_1|> from django.conf.urls import url from . import consumers websocket_urlpatterns = [url('^account/home', consumers. NotificationConsumer), url('^fund/(?P<fund>[\\w-]+)', consumers. NotificationConsumer), url('^websockets', consumers.StreamConsumer)] <|reserved_special_token_1|> from django.conf.urls import url from . import consumers websocket_urlpatterns = [ url(r'^account/home', consumers.NotificationConsumer), url(r'^fund/(?P<fund>[\w-]+)', consumers.NotificationConsumer), url(r'^websockets', consumers.StreamConsumer), ]
flexible
{ "blob_id": "7ab9c530035185ee2250f3f6ce8cde87bdfd9803", "index": 5295, "step-1": "<mask token>\n", "step-2": "<mask token>\nwebsocket_urlpatterns = [url('^account/home', consumers.\n NotificationConsumer), url('^fund/(?P<fund>[\\\\w-]+)', consumers.\n NotificationConsumer), url('^websockets', consumers.StreamConsumer)]\n", "step-3": "from django.conf.urls import url\nfrom . import consumers\nwebsocket_urlpatterns = [url('^account/home', consumers.\n NotificationConsumer), url('^fund/(?P<fund>[\\\\w-]+)', consumers.\n NotificationConsumer), url('^websockets', consumers.StreamConsumer)]\n", "step-4": "from django.conf.urls import url\n\nfrom . import consumers\n\nwebsocket_urlpatterns = [\n url(r'^account/home', consumers.NotificationConsumer),\n url(r'^fund/(?P<fund>[\\w-]+)', consumers.NotificationConsumer),\n url(r'^websockets', consumers.StreamConsumer),\n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def digit_sum(x): sum = 0 while x != 0: sum = sum + x % 10 x = x // 10 return sum <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def digit_sum(x): sum = 0 while x != 0: sum = sum + x % 10 x = x // 10 return sum for i in sys.stdin: test_num = int(i) if test_num == 0: break count = 11 while digit_sum(test_num) != digit_sum(count * test_num): count = count + 1 print('{}'.format(count)) <|reserved_special_token_1|> import sys def digit_sum(x): sum = 0 while x != 0: sum = sum + x % 10 x = x // 10 return sum for i in sys.stdin: test_num = int(i) if test_num == 0: break count = 11 while digit_sum(test_num) != digit_sum(count * test_num): count = count + 1 print('{}'.format(count))
flexible
{ "blob_id": "0d37b6f0ea8854f9d4d4cd2ff235fa39bab7cc12", "index": 6549, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\nfor i in sys.stdin:\n test_num = int(i)\n if test_num == 0:\n break\n count = 11\n while digit_sum(test_num) != digit_sum(count * test_num):\n count = count + 1\n print('{}'.format(count))\n", "step-4": "import sys\n\n\ndef digit_sum(x):\n sum = 0\n while x != 0:\n sum = sum + x % 10\n x = x // 10\n return sum\n\n\nfor i in sys.stdin:\n test_num = int(i)\n if test_num == 0:\n break\n count = 11\n while digit_sum(test_num) != digit_sum(count * test_num):\n count = count + 1\n print('{}'.format(count))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python3 # Rhino Motor Driver (RMCS 2303) - Basic Modbus Communication # ----------------------------------------------------------- """ BSD 3-Clause License Copyright (c) 2021, Rajesh Subramanian All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import time import traceback import minimalmodbus as modbus import rhino_params as rhino class Controller: def __init__(self, port_name, slave_address): # Parameters self.__instrument = modbus.Instrument(port_name, slave_address, modbus.MODE_ASCII) self.__instrument.serial.baudrate = 9600 self.__instrument.serial.parity = modbus.serial.PARITY_NONE self.__instrument.bytesize = 8 self.__instrument.stopbits = 1 self.__instrument.timeout = 5 # seconds self.__instrument.write_timeout = 5 # seconds self.__instrument.clear_buffers_before_each_transaction = True # self.__instrument.close_port_after_each_call = True self.__time_delay = 0.001 #0.001 # default: 1 ms self.__lock_resource = False # To prevent issuing simultaneous commands to RMCS2303 motor controller. Eg. # trying to read encoder value while writing motor enable command self.name = self.extract_name_from_port_name(port_name) self.__status_rotation_direction = 0 self.__CW = 1 # clockwise rotation status self.__CCW = -1 # counter clockwise rotation status self.__IDLE = 0 # no rotation status # Functions self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT) self.brake() self.__go_home() self.set_acceleration(rhino.ACCELERATION_DEFAULT) self.set_speed(rhino.SPEED_DEFAULT) # Private Functions # ----------------- @staticmethod def __convert_unsigned32_to_signed32(unsigned32_data): # UInt32 range: 0 to 4294967295 # Int32 range: -2147483648 to 2147483647 mid_uint32 = 2147483648 if unsigned32_data is not None: signed32_data = int(unsigned32_data - mid_uint32) return signed32_data @staticmethod def __convert_signed32_to_signed16(signed32_data): # Int16 range: -32768 to 32767 signed16_data = signed32_data >> 16 return signed16_data def __read_from_register(self, message_list): while True: # Attempt sending message until the controller is free try: if not self.__lock_resource: # Check if controller is in use self.__lock_resource = True data = self.__instrument.read_register(message_list[0], message_list[1], message_list[2]) time.sleep(self.__time_delay) self.__lock_resource = False return data except KeyboardInterrupt: print("Keyboard Interrupt: " + self.name) except modbus.ModbusException as e: print("ModbusException at " + self.name + ": " + str(e)) except modbus.serial.SerialException as e: print("Modbus Serial Exception at " + self.name + ": " + str(e)) except modbus.InvalidResponseError as e: print("Modbus Invalid Response Exception at " + self.name + ": " + str(e)) except Exception as e: print("Motor Driver Exception at " + self.name + ": " + str(e)) print(traceback.format_exc()) time.sleep(self.__time_delay) def __read_from_registers(self, message_list): while True: # Attempt sending message until the controller is free try: if not self.__lock_resource: # Check if controller is in use self.__lock_resource = True register_size = 16 data = self.__instrument.read_registers(message_list[0], message_list[1], message_list[2]) lsb = data[0] msb = data[1] combined_data = (msb << register_size) + lsb # combining two 16 bit values into one 32 bit value time.sleep(self.__time_delay) self.__lock_resource = False return combined_data ''' # combine two registers and create a long integer def combine_two_registers(self, reg): if reg[1] > 32767: long_reg = (65535 - reg[1]) b = long_reg << 16 out = (b + 65535 - reg[0]) * -1 else: long_reg = reg[1] b = long_reg << 16 out = b + reg[0] return out ''' except KeyboardInterrupt: print("Keyboard Interrupt: " + self.name) except modbus.ModbusException as e: print("ModbusException at " + self.name + ": " + str(e)) except modbus.serial.SerialException as e: print("Modbus Serial Exception at " + self.name + ": " + str(e)) except modbus.InvalidResponseError as e: print("Modbus Invalid Response Exception at " + self.name + ": " + str(e)) except Exception as e: print("Motor Driver Exception at " + self.name + ": " + str(e)) print(traceback.format_exc()) time.sleep(self.__time_delay) def __write_to_register(self, message_list): while True: # Attempt sending message until the controller is free try: if not self.__lock_resource: # Check if controller is in use self.__lock_resource = True self.__instrument.write_register(message_list[0], message_list[1], message_list[2], message_list[3]) time.sleep(self.__time_delay) self.__lock_resource = False return except KeyboardInterrupt: print("Keyboard Interrupt: " + self.name) except modbus.ModbusException as e: print("ModbusException at " + self.name + ": " + str(e)) except modbus.serial.SerialException as e: print("Modbus Serial Exception at " + self.name + ": " + str(e)) except modbus.InvalidResponseError as e: print("Modbus Invalid Response Exception at " + self.name + ": " + str(e)) except Exception as e: print("Motor Driver Exception at " + self.name + ": " + str(e)) print(traceback.format_exc()) time.sleep(self.__time_delay) def __go_home(self): message = rhino.HOME_POSITION_MESSAGE self.__write_to_register(message) def __set_lines_per_rotation(self, lines_per_rotation): message = rhino.LINES_PER_ROTATION_MESSAGE message[rhino.DATA_INDEX] = lines_per_rotation self.__write_to_register(message) # Public Functions # ---------------- @staticmethod def extract_name_from_port_name(port_name): chars = port_name.split("/") name = chars[len(chars) - 1] return name @staticmethod def convert_rad_per_sec_to_rpm(radians_per_sec): # Formula: rpm = rad/sec * 9.549297 rpm = radians_per_sec * 9.549297 rpm_scaled = rpm * rhino.GEAR_RATIO return rpm_scaled @staticmethod def convert_rpm_to_rad_per_sec(rpm): # Formula: rad/sec = rpm * 0.10472 radians_per_sec = rpm * 0.10472 radians_per_sec_scaled = radians_per_sec / rhino.GEAR_RATIO return radians_per_sec_scaled def set_speed(self, speed): speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed))) if speed_rpm > rhino.SPEED_MAX: speed_rpm = rhino.SPEED_MAX if speed_rpm < rhino.SPEED_MIN: speed_rpm = rhino.SPEED_MIN message = rhino.SPEED_MESSAGE message[rhino.DATA_INDEX] = speed_rpm self.__write_to_register(message) def set_acceleration(self, acceleration): if acceleration > rhino.ACCELERATION_MAX: acceleration = rhino.ACCELERATION_MAX if acceleration < rhino.ACCELERATION_MIN: acceleration = rhino.ACCELERATION_MIN message = rhino.ACCELERATION_MESSAGE message[rhino.DATA_INDEX] = acceleration self.__write_to_register(message) def turn_motor_cw(self): message = rhino.TURN_MOTOR_CW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__CW def turn_motor_ccw(self): message = rhino.TURN_MOTOR_CCW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__CCW def stop_rotation_cw(self): message = rhino.STOP_MOTOR_CW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def stop_rotation_ccw(self): message = rhino.STOP_MOTOR_CCW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def stop_rotation(self): message = rhino.STOP_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def emergency_stop(self): message = rhino.EMERGENCY_STOP_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def get_position_32bit(self): message = rhino.POSITION_FEEDBACK_MESSAGE position = self.__read_from_registers(message) # position = self.__convert_unsigned32_to_signed32(position) return position def get_position_16bit(self): message = rhino.POSITION_FEEDBACK_MESSAGE position = self.__read_from_registers(message) position_32bit = self.__convert_unsigned32_to_signed32(position) position_16bit = self.__convert_signed32_to_signed16(position_32bit) return position_16bit def get_position_raw(self): message = rhino.POSITION_FEEDBACK_MESSAGE position = self.__read_from_registers(message) return position def get_speed(self): message = rhino.SPEED_FEEDBACK_MESSAGE speed = self.__read_from_register(message) speed = self.__convert_unsigned32_to_signed32(speed) return speed def brake_cw(self): message = rhino.BRAKE_CW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def brake_ccw(self): message = rhino.BRAKE_CCW_MESSAGE self.__write_to_register(message) self.__status_rotation_direction = self.__IDLE def brake(self): if self.__status_rotation_direction == self.__CW: self.brake_cw() print(self.name + ": Brake CW") self.__status_rotation_direction = self.__IDLE elif self.__status_rotation_direction == self.__CCW: self.brake_ccw() print(self.name + ": Brake CCW") self.__status_rotation_direction = self.__IDLE elif self.__status_rotation_direction == self.__IDLE: print(self.name + ": Motor idle") else: print(self.name + ": Motor Unknown Rotation Status")
normal
{ "blob_id": "df3dcbf3c8d621f5db2a07765a0a28e7626387d9", "index": 3485, "step-1": "<mask token>\n\n\nclass Controller:\n\n def __init__(self, port_name, slave_address):\n self.__instrument = modbus.Instrument(port_name, slave_address,\n modbus.MODE_ASCII)\n self.__instrument.serial.baudrate = 9600\n self.__instrument.serial.parity = modbus.serial.PARITY_NONE\n self.__instrument.bytesize = 8\n self.__instrument.stopbits = 1\n self.__instrument.timeout = 5\n self.__instrument.write_timeout = 5\n self.__instrument.clear_buffers_before_each_transaction = True\n self.__time_delay = 0.001\n self.__lock_resource = False\n self.name = self.extract_name_from_port_name(port_name)\n self.__status_rotation_direction = 0\n self.__CW = 1\n self.__CCW = -1\n self.__IDLE = 0\n self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT)\n self.brake()\n self.__go_home()\n self.set_acceleration(rhino.ACCELERATION_DEFAULT)\n self.set_speed(rhino.SPEED_DEFAULT)\n <mask token>\n\n @staticmethod\n def __convert_signed32_to_signed16(signed32_data):\n signed16_data = signed32_data >> 16\n return signed16_data\n <mask token>\n\n def __read_from_registers(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n register_size = 16\n data = self.__instrument.read_registers(message_list[0],\n message_list[1], message_list[2])\n lsb = data[0]\n msb = data[1]\n combined_data = (msb << register_size) + lsb\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return combined_data\n \"\"\"\n # combine two registers and create a long integer\n def combine_two_registers(self, reg):\n if reg[1] > 32767:\n long_reg = (65535 - reg[1])\n b = long_reg << 16\n out = (b + 65535 - reg[0]) * -1\n else:\n long_reg = reg[1]\n b = long_reg << 16\n out = b + reg[0]\n return out\n \"\"\"\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n <mask token>\n\n def __go_home(self):\n message = rhino.HOME_POSITION_MESSAGE\n self.__write_to_register(message)\n\n def __set_lines_per_rotation(self, lines_per_rotation):\n message = rhino.LINES_PER_ROTATION_MESSAGE\n message[rhino.DATA_INDEX] = lines_per_rotation\n self.__write_to_register(message)\n <mask token>\n\n @staticmethod\n def convert_rad_per_sec_to_rpm(radians_per_sec):\n rpm = radians_per_sec * 9.549297\n rpm_scaled = rpm * rhino.GEAR_RATIO\n return rpm_scaled\n <mask token>\n\n def set_speed(self, speed):\n speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed)))\n if speed_rpm > rhino.SPEED_MAX:\n speed_rpm = rhino.SPEED_MAX\n if speed_rpm < rhino.SPEED_MIN:\n speed_rpm = rhino.SPEED_MIN\n message = rhino.SPEED_MESSAGE\n message[rhino.DATA_INDEX] = speed_rpm\n self.__write_to_register(message)\n\n def set_acceleration(self, acceleration):\n if acceleration > rhino.ACCELERATION_MAX:\n acceleration = rhino.ACCELERATION_MAX\n if acceleration < rhino.ACCELERATION_MIN:\n acceleration = rhino.ACCELERATION_MIN\n message = rhino.ACCELERATION_MESSAGE\n message[rhino.DATA_INDEX] = acceleration\n self.__write_to_register(message)\n <mask token>\n\n def turn_motor_ccw(self):\n message = rhino.TURN_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CCW\n\n def stop_rotation_cw(self):\n message = rhino.STOP_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation_ccw(self):\n message = rhino.STOP_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation(self):\n message = rhino.STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def emergency_stop(self):\n message = rhino.EMERGENCY_STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n <mask token>\n\n def get_position_raw(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n <mask token>\n\n def brake_cw(self):\n message = rhino.BRAKE_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Controller:\n\n def __init__(self, port_name, slave_address):\n self.__instrument = modbus.Instrument(port_name, slave_address,\n modbus.MODE_ASCII)\n self.__instrument.serial.baudrate = 9600\n self.__instrument.serial.parity = modbus.serial.PARITY_NONE\n self.__instrument.bytesize = 8\n self.__instrument.stopbits = 1\n self.__instrument.timeout = 5\n self.__instrument.write_timeout = 5\n self.__instrument.clear_buffers_before_each_transaction = True\n self.__time_delay = 0.001\n self.__lock_resource = False\n self.name = self.extract_name_from_port_name(port_name)\n self.__status_rotation_direction = 0\n self.__CW = 1\n self.__CCW = -1\n self.__IDLE = 0\n self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT)\n self.brake()\n self.__go_home()\n self.set_acceleration(rhino.ACCELERATION_DEFAULT)\n self.set_speed(rhino.SPEED_DEFAULT)\n\n @staticmethod\n def __convert_unsigned32_to_signed32(unsigned32_data):\n mid_uint32 = 2147483648\n if unsigned32_data is not None:\n signed32_data = int(unsigned32_data - mid_uint32)\n return signed32_data\n\n @staticmethod\n def __convert_signed32_to_signed16(signed32_data):\n signed16_data = signed32_data >> 16\n return signed16_data\n <mask token>\n\n def __read_from_registers(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n register_size = 16\n data = self.__instrument.read_registers(message_list[0],\n message_list[1], message_list[2])\n lsb = data[0]\n msb = data[1]\n combined_data = (msb << register_size) + lsb\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return combined_data\n \"\"\"\n # combine two registers and create a long integer\n def combine_two_registers(self, reg):\n if reg[1] > 32767:\n long_reg = (65535 - reg[1])\n b = long_reg << 16\n out = (b + 65535 - reg[0]) * -1\n else:\n long_reg = reg[1]\n b = long_reg << 16\n out = b + reg[0]\n return out\n \"\"\"\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n <mask token>\n\n def __go_home(self):\n message = rhino.HOME_POSITION_MESSAGE\n self.__write_to_register(message)\n\n def __set_lines_per_rotation(self, lines_per_rotation):\n message = rhino.LINES_PER_ROTATION_MESSAGE\n message[rhino.DATA_INDEX] = lines_per_rotation\n self.__write_to_register(message)\n <mask token>\n\n @staticmethod\n def convert_rad_per_sec_to_rpm(radians_per_sec):\n rpm = radians_per_sec * 9.549297\n rpm_scaled = rpm * rhino.GEAR_RATIO\n return rpm_scaled\n <mask token>\n\n def set_speed(self, speed):\n speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed)))\n if speed_rpm > rhino.SPEED_MAX:\n speed_rpm = rhino.SPEED_MAX\n if speed_rpm < rhino.SPEED_MIN:\n speed_rpm = rhino.SPEED_MIN\n message = rhino.SPEED_MESSAGE\n message[rhino.DATA_INDEX] = speed_rpm\n self.__write_to_register(message)\n\n def set_acceleration(self, acceleration):\n if acceleration > rhino.ACCELERATION_MAX:\n acceleration = rhino.ACCELERATION_MAX\n if acceleration < rhino.ACCELERATION_MIN:\n acceleration = rhino.ACCELERATION_MIN\n message = rhino.ACCELERATION_MESSAGE\n message[rhino.DATA_INDEX] = acceleration\n self.__write_to_register(message)\n <mask token>\n\n def turn_motor_ccw(self):\n message = rhino.TURN_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CCW\n\n def stop_rotation_cw(self):\n message = rhino.STOP_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation_ccw(self):\n message = rhino.STOP_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation(self):\n message = rhino.STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def emergency_stop(self):\n message = rhino.EMERGENCY_STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n <mask token>\n\n def get_position_raw(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n\n def get_speed(self):\n message = rhino.SPEED_FEEDBACK_MESSAGE\n speed = self.__read_from_register(message)\n speed = self.__convert_unsigned32_to_signed32(speed)\n return speed\n\n def brake_cw(self):\n message = rhino.BRAKE_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake_ccw(self):\n message = rhino.BRAKE_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Controller:\n\n def __init__(self, port_name, slave_address):\n self.__instrument = modbus.Instrument(port_name, slave_address,\n modbus.MODE_ASCII)\n self.__instrument.serial.baudrate = 9600\n self.__instrument.serial.parity = modbus.serial.PARITY_NONE\n self.__instrument.bytesize = 8\n self.__instrument.stopbits = 1\n self.__instrument.timeout = 5\n self.__instrument.write_timeout = 5\n self.__instrument.clear_buffers_before_each_transaction = True\n self.__time_delay = 0.001\n self.__lock_resource = False\n self.name = self.extract_name_from_port_name(port_name)\n self.__status_rotation_direction = 0\n self.__CW = 1\n self.__CCW = -1\n self.__IDLE = 0\n self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT)\n self.brake()\n self.__go_home()\n self.set_acceleration(rhino.ACCELERATION_DEFAULT)\n self.set_speed(rhino.SPEED_DEFAULT)\n\n @staticmethod\n def __convert_unsigned32_to_signed32(unsigned32_data):\n mid_uint32 = 2147483648\n if unsigned32_data is not None:\n signed32_data = int(unsigned32_data - mid_uint32)\n return signed32_data\n\n @staticmethod\n def __convert_signed32_to_signed16(signed32_data):\n signed16_data = signed32_data >> 16\n return signed16_data\n\n def __read_from_register(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n data = self.__instrument.read_register(message_list[0],\n message_list[1], message_list[2])\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return data\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __read_from_registers(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n register_size = 16\n data = self.__instrument.read_registers(message_list[0],\n message_list[1], message_list[2])\n lsb = data[0]\n msb = data[1]\n combined_data = (msb << register_size) + lsb\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return combined_data\n \"\"\"\n # combine two registers and create a long integer\n def combine_two_registers(self, reg):\n if reg[1] > 32767:\n long_reg = (65535 - reg[1])\n b = long_reg << 16\n out = (b + 65535 - reg[0]) * -1\n else:\n long_reg = reg[1]\n b = long_reg << 16\n out = b + reg[0]\n return out\n \"\"\"\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n <mask token>\n\n def __go_home(self):\n message = rhino.HOME_POSITION_MESSAGE\n self.__write_to_register(message)\n\n def __set_lines_per_rotation(self, lines_per_rotation):\n message = rhino.LINES_PER_ROTATION_MESSAGE\n message[rhino.DATA_INDEX] = lines_per_rotation\n self.__write_to_register(message)\n\n @staticmethod\n def extract_name_from_port_name(port_name):\n chars = port_name.split('/')\n name = chars[len(chars) - 1]\n return name\n\n @staticmethod\n def convert_rad_per_sec_to_rpm(radians_per_sec):\n rpm = radians_per_sec * 9.549297\n rpm_scaled = rpm * rhino.GEAR_RATIO\n return rpm_scaled\n\n @staticmethod\n def convert_rpm_to_rad_per_sec(rpm):\n radians_per_sec = rpm * 0.10472\n radians_per_sec_scaled = radians_per_sec / rhino.GEAR_RATIO\n return radians_per_sec_scaled\n\n def set_speed(self, speed):\n speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed)))\n if speed_rpm > rhino.SPEED_MAX:\n speed_rpm = rhino.SPEED_MAX\n if speed_rpm < rhino.SPEED_MIN:\n speed_rpm = rhino.SPEED_MIN\n message = rhino.SPEED_MESSAGE\n message[rhino.DATA_INDEX] = speed_rpm\n self.__write_to_register(message)\n\n def set_acceleration(self, acceleration):\n if acceleration > rhino.ACCELERATION_MAX:\n acceleration = rhino.ACCELERATION_MAX\n if acceleration < rhino.ACCELERATION_MIN:\n acceleration = rhino.ACCELERATION_MIN\n message = rhino.ACCELERATION_MESSAGE\n message[rhino.DATA_INDEX] = acceleration\n self.__write_to_register(message)\n\n def turn_motor_cw(self):\n message = rhino.TURN_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CW\n\n def turn_motor_ccw(self):\n message = rhino.TURN_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CCW\n\n def stop_rotation_cw(self):\n message = rhino.STOP_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation_ccw(self):\n message = rhino.STOP_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation(self):\n message = rhino.STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def emergency_stop(self):\n message = rhino.EMERGENCY_STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n\n def get_position_16bit(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n position_32bit = self.__convert_unsigned32_to_signed32(position)\n position_16bit = self.__convert_signed32_to_signed16(position_32bit)\n return position_16bit\n\n def get_position_raw(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n\n def get_speed(self):\n message = rhino.SPEED_FEEDBACK_MESSAGE\n speed = self.__read_from_register(message)\n speed = self.__convert_unsigned32_to_signed32(speed)\n return speed\n\n def brake_cw(self):\n message = rhino.BRAKE_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake_ccw(self):\n message = rhino.BRAKE_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n <mask token>\n", "step-4": "<mask token>\n\n\nclass Controller:\n\n def __init__(self, port_name, slave_address):\n self.__instrument = modbus.Instrument(port_name, slave_address,\n modbus.MODE_ASCII)\n self.__instrument.serial.baudrate = 9600\n self.__instrument.serial.parity = modbus.serial.PARITY_NONE\n self.__instrument.bytesize = 8\n self.__instrument.stopbits = 1\n self.__instrument.timeout = 5\n self.__instrument.write_timeout = 5\n self.__instrument.clear_buffers_before_each_transaction = True\n self.__time_delay = 0.001\n self.__lock_resource = False\n self.name = self.extract_name_from_port_name(port_name)\n self.__status_rotation_direction = 0\n self.__CW = 1\n self.__CCW = -1\n self.__IDLE = 0\n self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT)\n self.brake()\n self.__go_home()\n self.set_acceleration(rhino.ACCELERATION_DEFAULT)\n self.set_speed(rhino.SPEED_DEFAULT)\n\n @staticmethod\n def __convert_unsigned32_to_signed32(unsigned32_data):\n mid_uint32 = 2147483648\n if unsigned32_data is not None:\n signed32_data = int(unsigned32_data - mid_uint32)\n return signed32_data\n\n @staticmethod\n def __convert_signed32_to_signed16(signed32_data):\n signed16_data = signed32_data >> 16\n return signed16_data\n\n def __read_from_register(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n data = self.__instrument.read_register(message_list[0],\n message_list[1], message_list[2])\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return data\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __read_from_registers(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n register_size = 16\n data = self.__instrument.read_registers(message_list[0],\n message_list[1], message_list[2])\n lsb = data[0]\n msb = data[1]\n combined_data = (msb << register_size) + lsb\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return combined_data\n \"\"\"\n # combine two registers and create a long integer\n def combine_two_registers(self, reg):\n if reg[1] > 32767:\n long_reg = (65535 - reg[1])\n b = long_reg << 16\n out = (b + 65535 - reg[0]) * -1\n else:\n long_reg = reg[1]\n b = long_reg << 16\n out = b + reg[0]\n return out\n \"\"\"\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __write_to_register(self, message_list):\n while True:\n try:\n if not self.__lock_resource:\n self.__lock_resource = True\n self.__instrument.write_register(message_list[0],\n message_list[1], message_list[2], message_list[3])\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return\n except KeyboardInterrupt:\n print('Keyboard Interrupt: ' + self.name)\n except modbus.ModbusException as e:\n print('ModbusException at ' + self.name + ': ' + str(e))\n except modbus.serial.SerialException as e:\n print('Modbus Serial Exception at ' + self.name + ': ' + str(e)\n )\n except modbus.InvalidResponseError as e:\n print('Modbus Invalid Response Exception at ' + self.name +\n ': ' + str(e))\n except Exception as e:\n print('Motor Driver Exception at ' + self.name + ': ' + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __go_home(self):\n message = rhino.HOME_POSITION_MESSAGE\n self.__write_to_register(message)\n\n def __set_lines_per_rotation(self, lines_per_rotation):\n message = rhino.LINES_PER_ROTATION_MESSAGE\n message[rhino.DATA_INDEX] = lines_per_rotation\n self.__write_to_register(message)\n\n @staticmethod\n def extract_name_from_port_name(port_name):\n chars = port_name.split('/')\n name = chars[len(chars) - 1]\n return name\n\n @staticmethod\n def convert_rad_per_sec_to_rpm(radians_per_sec):\n rpm = radians_per_sec * 9.549297\n rpm_scaled = rpm * rhino.GEAR_RATIO\n return rpm_scaled\n\n @staticmethod\n def convert_rpm_to_rad_per_sec(rpm):\n radians_per_sec = rpm * 0.10472\n radians_per_sec_scaled = radians_per_sec / rhino.GEAR_RATIO\n return radians_per_sec_scaled\n\n def set_speed(self, speed):\n speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed)))\n if speed_rpm > rhino.SPEED_MAX:\n speed_rpm = rhino.SPEED_MAX\n if speed_rpm < rhino.SPEED_MIN:\n speed_rpm = rhino.SPEED_MIN\n message = rhino.SPEED_MESSAGE\n message[rhino.DATA_INDEX] = speed_rpm\n self.__write_to_register(message)\n\n def set_acceleration(self, acceleration):\n if acceleration > rhino.ACCELERATION_MAX:\n acceleration = rhino.ACCELERATION_MAX\n if acceleration < rhino.ACCELERATION_MIN:\n acceleration = rhino.ACCELERATION_MIN\n message = rhino.ACCELERATION_MESSAGE\n message[rhino.DATA_INDEX] = acceleration\n self.__write_to_register(message)\n\n def turn_motor_cw(self):\n message = rhino.TURN_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CW\n\n def turn_motor_ccw(self):\n message = rhino.TURN_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CCW\n\n def stop_rotation_cw(self):\n message = rhino.STOP_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation_ccw(self):\n message = rhino.STOP_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation(self):\n message = rhino.STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def emergency_stop(self):\n message = rhino.EMERGENCY_STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def get_position_32bit(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n\n def get_position_16bit(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n position_32bit = self.__convert_unsigned32_to_signed32(position)\n position_16bit = self.__convert_signed32_to_signed16(position_32bit)\n return position_16bit\n\n def get_position_raw(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n\n def get_speed(self):\n message = rhino.SPEED_FEEDBACK_MESSAGE\n speed = self.__read_from_register(message)\n speed = self.__convert_unsigned32_to_signed32(speed)\n return speed\n\n def brake_cw(self):\n message = rhino.BRAKE_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake_ccw(self):\n message = rhino.BRAKE_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake(self):\n if self.__status_rotation_direction == self.__CW:\n self.brake_cw()\n print(self.name + ': Brake CW')\n self.__status_rotation_direction = self.__IDLE\n elif self.__status_rotation_direction == self.__CCW:\n self.brake_ccw()\n print(self.name + ': Brake CCW')\n self.__status_rotation_direction = self.__IDLE\n elif self.__status_rotation_direction == self.__IDLE:\n print(self.name + ': Motor idle')\n else:\n print(self.name + ': Motor Unknown Rotation Status')\n", "step-5": "#!/usr/bin/env python3\n\n# Rhino Motor Driver (RMCS 2303) - Basic Modbus Communication\n# -----------------------------------------------------------\n\n\"\"\"\n BSD 3-Clause License\n\n Copyright (c) 2021, Rajesh Subramanian\n All rights reserved.\n\n Redistribution and use in source and binary forms, with or without\n modification, are permitted provided that the following conditions are met:\n\n * Redistributions of source code must retain the above copyright notice, this\n list of conditions and the following disclaimer.\n\n * Redistributions in binary form must reproduce the above copyright notice,\n this list of conditions and the following disclaimer in the documentation\n and/or other materials provided with the distribution.\n\n * Neither the name of the copyright holder nor the names of its\n contributors may be used to endorse or promote products derived from\n this software without specific prior written permission.\n\n THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\n FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\n OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n\"\"\"\n\nimport time\nimport traceback\nimport minimalmodbus as modbus\nimport rhino_params as rhino\n\n\nclass Controller:\n def __init__(self, port_name, slave_address):\n # Parameters\n self.__instrument = modbus.Instrument(port_name, slave_address, modbus.MODE_ASCII)\n self.__instrument.serial.baudrate = 9600\n self.__instrument.serial.parity = modbus.serial.PARITY_NONE\n self.__instrument.bytesize = 8\n self.__instrument.stopbits = 1\n self.__instrument.timeout = 5 # seconds\n self.__instrument.write_timeout = 5 # seconds\n self.__instrument.clear_buffers_before_each_transaction = True\n # self.__instrument.close_port_after_each_call = True\n self.__time_delay = 0.001 #0.001 # default: 1 ms\n self.__lock_resource = False # To prevent issuing simultaneous commands to RMCS2303 motor controller. Eg.\n # trying to read encoder value while writing motor enable command\n self.name = self.extract_name_from_port_name(port_name)\n self.__status_rotation_direction = 0\n self.__CW = 1 # clockwise rotation status\n self.__CCW = -1 # counter clockwise rotation status\n self.__IDLE = 0 # no rotation status\n\n # Functions\n self.__set_lines_per_rotation(rhino.LINES_PER_ROTATION_DEFAULT)\n self.brake()\n self.__go_home()\n self.set_acceleration(rhino.ACCELERATION_DEFAULT)\n self.set_speed(rhino.SPEED_DEFAULT)\n\n # Private Functions\n # -----------------\n @staticmethod\n def __convert_unsigned32_to_signed32(unsigned32_data):\n # UInt32 range: 0 to 4294967295\n # Int32 range: -2147483648 to 2147483647\n mid_uint32 = 2147483648\n if unsigned32_data is not None:\n signed32_data = int(unsigned32_data - mid_uint32)\n return signed32_data\n\n @staticmethod\n def __convert_signed32_to_signed16(signed32_data):\n # Int16 range: -32768 to 32767\n signed16_data = signed32_data >> 16\n return signed16_data\n\n def __read_from_register(self, message_list):\n while True: # Attempt sending message until the controller is free\n try:\n if not self.__lock_resource: # Check if controller is in use\n self.__lock_resource = True\n data = self.__instrument.read_register(message_list[0], message_list[1], message_list[2])\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return data\n except KeyboardInterrupt:\n print(\"Keyboard Interrupt: \" + self.name)\n except modbus.ModbusException as e:\n print(\"ModbusException at \" + self.name + \": \" + str(e))\n except modbus.serial.SerialException as e:\n print(\"Modbus Serial Exception at \" + self.name + \": \" + str(e))\n except modbus.InvalidResponseError as e:\n print(\"Modbus Invalid Response Exception at \" + self.name + \": \" + str(e))\n except Exception as e:\n print(\"Motor Driver Exception at \" + self.name + \": \" + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __read_from_registers(self, message_list):\n while True: # Attempt sending message until the controller is free\n try:\n if not self.__lock_resource: # Check if controller is in use\n self.__lock_resource = True\n register_size = 16\n data = self.__instrument.read_registers(message_list[0], message_list[1], message_list[2])\n lsb = data[0]\n msb = data[1]\n combined_data = (msb << register_size) + lsb # combining two 16 bit values into one 32 bit value\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return combined_data\n '''\n # combine two registers and create a long integer\n def combine_two_registers(self, reg):\n if reg[1] > 32767:\n long_reg = (65535 - reg[1])\n b = long_reg << 16\n out = (b + 65535 - reg[0]) * -1\n else:\n long_reg = reg[1]\n b = long_reg << 16\n out = b + reg[0]\n return out\n '''\n except KeyboardInterrupt:\n print(\"Keyboard Interrupt: \" + self.name)\n except modbus.ModbusException as e:\n print(\"ModbusException at \" + self.name + \": \" + str(e))\n except modbus.serial.SerialException as e:\n print(\"Modbus Serial Exception at \" + self.name + \": \" + str(e))\n except modbus.InvalidResponseError as e:\n print(\"Modbus Invalid Response Exception at \" + self.name + \": \" + str(e))\n except Exception as e:\n print(\"Motor Driver Exception at \" + self.name + \": \" + str(e))\n print(traceback.format_exc())\n time.sleep(self.__time_delay)\n\n def __write_to_register(self, message_list):\n while True: # Attempt sending message until the controller is free\n try:\n if not self.__lock_resource: # Check if controller is in use\n self.__lock_resource = True\n self.__instrument.write_register(message_list[0], message_list[1], message_list[2], message_list[3])\n time.sleep(self.__time_delay)\n self.__lock_resource = False\n return\n except KeyboardInterrupt:\n print(\"Keyboard Interrupt: \" + self.name)\n except modbus.ModbusException as e:\n print(\"ModbusException at \" + self.name + \": \" + str(e))\n except modbus.serial.SerialException as e:\n print(\"Modbus Serial Exception at \" + self.name + \": \" + str(e))\n except modbus.InvalidResponseError as e:\n print(\"Modbus Invalid Response Exception at \" + self.name + \": \" + str(e))\n except Exception as e:\n print(\"Motor Driver Exception at \" + self.name + \": \" + str(e))\n print(traceback.format_exc())\n\n time.sleep(self.__time_delay)\n\n def __go_home(self):\n message = rhino.HOME_POSITION_MESSAGE\n self.__write_to_register(message)\n\n def __set_lines_per_rotation(self, lines_per_rotation):\n message = rhino.LINES_PER_ROTATION_MESSAGE\n message[rhino.DATA_INDEX] = lines_per_rotation\n self.__write_to_register(message)\n\n # Public Functions\n # ----------------\n @staticmethod\n def extract_name_from_port_name(port_name):\n chars = port_name.split(\"/\")\n name = chars[len(chars) - 1]\n return name\n\n @staticmethod\n def convert_rad_per_sec_to_rpm(radians_per_sec):\n # Formula: rpm = rad/sec * 9.549297\n rpm = radians_per_sec * 9.549297\n rpm_scaled = rpm * rhino.GEAR_RATIO\n return rpm_scaled\n\n @staticmethod\n def convert_rpm_to_rad_per_sec(rpm):\n # Formula: rad/sec = rpm * 0.10472\n radians_per_sec = rpm * 0.10472\n radians_per_sec_scaled = radians_per_sec / rhino.GEAR_RATIO\n return radians_per_sec_scaled\n\n def set_speed(self, speed):\n speed_rpm = abs(int(self.convert_rad_per_sec_to_rpm(speed)))\n if speed_rpm > rhino.SPEED_MAX:\n speed_rpm = rhino.SPEED_MAX\n if speed_rpm < rhino.SPEED_MIN:\n speed_rpm = rhino.SPEED_MIN\n message = rhino.SPEED_MESSAGE\n message[rhino.DATA_INDEX] = speed_rpm\n self.__write_to_register(message)\n\n def set_acceleration(self, acceleration):\n if acceleration > rhino.ACCELERATION_MAX:\n acceleration = rhino.ACCELERATION_MAX\n if acceleration < rhino.ACCELERATION_MIN:\n acceleration = rhino.ACCELERATION_MIN\n message = rhino.ACCELERATION_MESSAGE\n message[rhino.DATA_INDEX] = acceleration\n self.__write_to_register(message)\n\n def turn_motor_cw(self):\n message = rhino.TURN_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CW\n\n def turn_motor_ccw(self):\n message = rhino.TURN_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__CCW\n\n def stop_rotation_cw(self):\n message = rhino.STOP_MOTOR_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation_ccw(self):\n message = rhino.STOP_MOTOR_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def stop_rotation(self):\n message = rhino.STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def emergency_stop(self):\n message = rhino.EMERGENCY_STOP_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def get_position_32bit(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n # position = self.__convert_unsigned32_to_signed32(position)\n return position\n\n def get_position_16bit(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n position_32bit = self.__convert_unsigned32_to_signed32(position)\n position_16bit = self.__convert_signed32_to_signed16(position_32bit)\n return position_16bit\n\n def get_position_raw(self):\n message = rhino.POSITION_FEEDBACK_MESSAGE\n position = self.__read_from_registers(message)\n return position\n\n def get_speed(self):\n message = rhino.SPEED_FEEDBACK_MESSAGE\n speed = self.__read_from_register(message)\n speed = self.__convert_unsigned32_to_signed32(speed)\n return speed\n\n def brake_cw(self):\n message = rhino.BRAKE_CW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake_ccw(self):\n message = rhino.BRAKE_CCW_MESSAGE\n self.__write_to_register(message)\n self.__status_rotation_direction = self.__IDLE\n\n def brake(self):\n if self.__status_rotation_direction == self.__CW:\n self.brake_cw()\n print(self.name + \": Brake CW\")\n self.__status_rotation_direction = self.__IDLE\n elif self.__status_rotation_direction == self.__CCW:\n self.brake_ccw()\n print(self.name + \": Brake CCW\")\n self.__status_rotation_direction = self.__IDLE\n elif self.__status_rotation_direction == self.__IDLE:\n print(self.name + \": Motor idle\")\n else:\n print(self.name + \": Motor Unknown Rotation Status\")\n", "step-ids": [ 16, 19, 24, 27, 29 ] }
[ 16, 19, 24, 27, 29 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(' O dobro de {} é {}'.format(n, n * 2)) print(' O triplo de {} é {}'.format(n, n * 3)) print(' A Raiz quadrada de {} é {}'.format(n, n * n)) <|reserved_special_token_1|> n = int(input('Digite um número inteiro: ')) print(' O dobro de {} é {}'.format(n, n * 2)) print(' O triplo de {} é {}'.format(n, n * 3)) print(' A Raiz quadrada de {} é {}'.format(n, n * n))
flexible
{ "blob_id": "c0ad3d642f28cb11a8225d4d011dbb241bd88432", "index": 1661, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(' O dobro de {} é {}'.format(n, n * 2))\nprint(' O triplo de {} é {}'.format(n, n * 3))\nprint(' A Raiz quadrada de {} é {}'.format(n, n * n))\n", "step-3": "n = int(input('Digite um número inteiro: '))\nprint(' O dobro de {} é {}'.format(n, n * 2))\nprint(' O triplo de {} é {}'.format(n, n * 3))\nprint(' A Raiz quadrada de {} é {}'.format(n, n * n))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import json from django.core.management import call_command from django.http import JsonResponse from django.test import TestCase from django.urls import reverse URLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles'] class GetJsonData(TestCase): def test_post_not_login_no_pk(self): for url in URLS: response = self.client.get(reverse(url)) self.check_redirect(response) def check_redirect(self, response): self.assertEqual(response.status_code, 200) self.assertEqual(type(response), JsonResponse) class UnLoginGetArticleJsonTestCase(TestCase): @classmethod def setUpClass(cls): super().setUpClass() call_command('loaddata', 'fixtures/auth.json', verbosity=0) call_command('loaddata', 'fixtures/dump.json', verbosity=0) def test_article_success_data(self): url = reverse('api_v1:articles') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) self.assertIn('description', data[0]) self.assertIn('category_id', data[0]) self.assertIn('user_id', data[0]) self.assertIn('image', data[0]) def test_get_main_category_json_data(self): url = reverse('api_v1:main_categories') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) def test_get_json_category_success_data(self): url = reverse('api_v1:categories') self.response = self.client.get(url) data = json.loads(self.response.content) self.assertTrue(len(data) >= 1) self.assertIn('pk', data[0]) self.assertIn('title', data[0]) self.assertIn('parent_id', data[0])
normal
{ "blob_id": "676caabb103f67c631bc191b11ab0d2d8ab25d1e", "index": 5803, "step-1": "<mask token>\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-2": "<mask token>\n\n\nclass GetJsonData(TestCase):\n <mask token>\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-3": "<mask token>\n\n\nclass GetJsonData(TestCase):\n\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-4": "<mask token>\nURLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles']\n\n\nclass GetJsonData(TestCase):\n\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-5": "import json\n\nfrom django.core.management import call_command\nfrom django.http import JsonResponse\nfrom django.test import TestCase\nfrom django.urls import reverse\n\n\nURLS = ['api_v1:categories', 'api_v1:main_categories', 'api_v1:articles']\n\n\nclass GetJsonData(TestCase):\n def test_post_not_login_no_pk(self):\n for url in URLS:\n response = self.client.get(reverse(url))\n self.check_redirect(response)\n\n def check_redirect(self, response):\n self.assertEqual(response.status_code, 200)\n self.assertEqual(type(response), JsonResponse)\n\n\nclass UnLoginGetArticleJsonTestCase(TestCase):\n @classmethod\n def setUpClass(cls):\n super().setUpClass()\n call_command('loaddata', 'fixtures/auth.json', verbosity=0)\n call_command('loaddata', 'fixtures/dump.json', verbosity=0)\n\n def test_article_success_data(self):\n url = reverse('api_v1:articles')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('description', data[0])\n self.assertIn('category_id', data[0])\n self.assertIn('user_id', data[0])\n self.assertIn('image', data[0])\n\n def test_get_main_category_json_data(self):\n url = reverse('api_v1:main_categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n\n def test_get_json_category_success_data(self):\n url = reverse('api_v1:categories')\n self.response = self.client.get(url)\n data = json.loads(self.response.content)\n self.assertTrue(len(data) >= 1)\n self.assertIn('pk', data[0])\n self.assertIn('title', data[0])\n self.assertIn('parent_id', data[0])\n", "step-ids": [ 5, 7, 8, 9, 11 ] }
[ 5, 7, 8, 9, 11 ]
<|reserved_special_token_0|> class RoughLightGame: def __init__(self, game_map, width, height, **kwargs): self.map = game_map self.width = width self.height = height self.objects = kwargs.get('objects', list()) self.start = kwargs.get('start', utils.Vector(0, 0)) self.player = kwargs.get('player', None) if not self.player: self.player = objects.Player(self.start, b'@', WHITE, self.map, STARTING_LIFE, fov=20) self.objects.append(self.player) count = 0 for room in self.map.rooms: label = objects.Object(room.get_center(), chr(ord('a') + count), WHITE, True, False) self.objects.append(label) count += 1 <|reserved_special_token_0|> <|reserved_special_token_0|> def move_player(self, direction): if not self.is_blocked(self.player.location + direction): self.player.move(direction) <|reserved_special_token_0|> def get_area(self, width, height): return self.map.get_area(width, height, self.player.location) <|reserved_special_token_1|> <|reserved_special_token_0|> class RoughLightGame: def __init__(self, game_map, width, height, **kwargs): self.map = game_map self.width = width self.height = height self.objects = kwargs.get('objects', list()) self.start = kwargs.get('start', utils.Vector(0, 0)) self.player = kwargs.get('player', None) if not self.player: self.player = objects.Player(self.start, b'@', WHITE, self.map, STARTING_LIFE, fov=20) self.objects.append(self.player) count = 0 for room in self.map.rooms: label = objects.Object(room.get_center(), chr(ord('a') + count), WHITE, True, False) self.objects.append(label) count += 1 <|reserved_special_token_0|> <|reserved_special_token_0|> def move_player(self, direction): if not self.is_blocked(self.player.location + direction): self.player.move(direction) def is_blocked(self, location): if self.map[location].blocks: return True return any(object.blocks and object.location == location for object in self.objects) def get_area(self, width, height): return self.map.get_area(width, height, self.player.location) <|reserved_special_token_1|> <|reserved_special_token_0|> class RoughLightGame: def __init__(self, game_map, width, height, **kwargs): self.map = game_map self.width = width self.height = height self.objects = kwargs.get('objects', list()) self.start = kwargs.get('start', utils.Vector(0, 0)) self.player = kwargs.get('player', None) if not self.player: self.player = objects.Player(self.start, b'@', WHITE, self.map, STARTING_LIFE, fov=20) self.objects.append(self.player) count = 0 for room in self.map.rooms: label = objects.Object(room.get_center(), chr(ord('a') + count), WHITE, True, False) self.objects.append(label) count += 1 def is_blocked(self, location): if self.map[location].blocks: return True return any(object.location == location and object.blocks for object in self.objects) <|reserved_special_token_0|> def move_player(self, direction): if not self.is_blocked(self.player.location + direction): self.player.move(direction) def is_blocked(self, location): if self.map[location].blocks: return True return any(object.blocks and object.location == location for object in self.objects) def get_area(self, width, height): return self.map.get_area(width, height, self.player.location) <|reserved_special_token_1|> <|reserved_special_token_0|> START = 0, 0 STARTING_LIFE = 10 WHITE = 255, 255, 255 class RoughLightGame: def __init__(self, game_map, width, height, **kwargs): self.map = game_map self.width = width self.height = height self.objects = kwargs.get('objects', list()) self.start = kwargs.get('start', utils.Vector(0, 0)) self.player = kwargs.get('player', None) if not self.player: self.player = objects.Player(self.start, b'@', WHITE, self.map, STARTING_LIFE, fov=20) self.objects.append(self.player) count = 0 for room in self.map.rooms: label = objects.Object(room.get_center(), chr(ord('a') + count), WHITE, True, False) self.objects.append(label) count += 1 def is_blocked(self, location): if self.map[location].blocks: return True return any(object.location == location and object.blocks for object in self.objects) def visible_objects(self): res = [] for object in self.objects: if object.visible and object.location in self.player.seen: if self.map.in_area(self.width, self.height, object. location, self.player.location): res.append(object) return reversed(res) def move_player(self, direction): if not self.is_blocked(self.player.location + direction): self.player.move(direction) def is_blocked(self, location): if self.map[location].blocks: return True return any(object.blocks and object.location == location for object in self.objects) def get_area(self, width, height): return self.map.get_area(width, height, self.player.location) <|reserved_special_token_1|> from . import utils from . import objects START = (0, 0) STARTING_LIFE = 10 WHITE = (255, 255, 255) class RoughLightGame: def __init__(self, game_map, width, height, **kwargs): self.map = game_map self.width = width self.height = height self.objects = kwargs.get('objects', list()) self.start = kwargs.get('start', utils.Vector(0, 0)) # player initialization self.player = kwargs.get('player', None) if not self.player: self.player = objects.Player(self.start, b'@', WHITE, self.map, STARTING_LIFE, fov=20) self.objects.append(self.player) # Add room lables to map count = 0 for room in self.map.rooms: label = objects.Object(room.get_center(), chr(ord('a')+count), WHITE, True, False) self.objects.append(label) count += 1 def is_blocked(self, location): if self.map[location].blocks: return True return any(object.location == location and object.blocks for object in self.objects) def visible_objects(self): res = [] for object in self.objects: if object.visible and object.location in self.player.seen: if self.map.in_area(self.width, self.height, object.location, self.player.location): res.append(object) return reversed(res) def move_player(self, direction): if not self.is_blocked(self.player.location + direction): self.player.move(direction) def is_blocked(self, location): if self.map[location].blocks: return True return any(object.blocks and object.location == location for object in self.objects) def get_area(self, width, height): # Get the current area the player is in based on desired size and players location return self.map.get_area(width, height, self.player.location)
flexible
{ "blob_id": "5f089c3e67452fe6d14f96a70d792bc0d056b375", "index": 9227, "step-1": "<mask token>\n\n\nclass RoughLightGame:\n\n def __init__(self, game_map, width, height, **kwargs):\n self.map = game_map\n self.width = width\n self.height = height\n self.objects = kwargs.get('objects', list())\n self.start = kwargs.get('start', utils.Vector(0, 0))\n self.player = kwargs.get('player', None)\n if not self.player:\n self.player = objects.Player(self.start, b'@', WHITE, self.map,\n STARTING_LIFE, fov=20)\n self.objects.append(self.player)\n count = 0\n for room in self.map.rooms:\n label = objects.Object(room.get_center(), chr(ord('a') + count),\n WHITE, True, False)\n self.objects.append(label)\n count += 1\n <mask token>\n <mask token>\n\n def move_player(self, direction):\n if not self.is_blocked(self.player.location + direction):\n self.player.move(direction)\n <mask token>\n\n def get_area(self, width, height):\n return self.map.get_area(width, height, self.player.location)\n", "step-2": "<mask token>\n\n\nclass RoughLightGame:\n\n def __init__(self, game_map, width, height, **kwargs):\n self.map = game_map\n self.width = width\n self.height = height\n self.objects = kwargs.get('objects', list())\n self.start = kwargs.get('start', utils.Vector(0, 0))\n self.player = kwargs.get('player', None)\n if not self.player:\n self.player = objects.Player(self.start, b'@', WHITE, self.map,\n STARTING_LIFE, fov=20)\n self.objects.append(self.player)\n count = 0\n for room in self.map.rooms:\n label = objects.Object(room.get_center(), chr(ord('a') + count),\n WHITE, True, False)\n self.objects.append(label)\n count += 1\n <mask token>\n <mask token>\n\n def move_player(self, direction):\n if not self.is_blocked(self.player.location + direction):\n self.player.move(direction)\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n return any(object.blocks and object.location == location for object in\n self.objects)\n\n def get_area(self, width, height):\n return self.map.get_area(width, height, self.player.location)\n", "step-3": "<mask token>\n\n\nclass RoughLightGame:\n\n def __init__(self, game_map, width, height, **kwargs):\n self.map = game_map\n self.width = width\n self.height = height\n self.objects = kwargs.get('objects', list())\n self.start = kwargs.get('start', utils.Vector(0, 0))\n self.player = kwargs.get('player', None)\n if not self.player:\n self.player = objects.Player(self.start, b'@', WHITE, self.map,\n STARTING_LIFE, fov=20)\n self.objects.append(self.player)\n count = 0\n for room in self.map.rooms:\n label = objects.Object(room.get_center(), chr(ord('a') + count),\n WHITE, True, False)\n self.objects.append(label)\n count += 1\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n return any(object.location == location and object.blocks for object in\n self.objects)\n <mask token>\n\n def move_player(self, direction):\n if not self.is_blocked(self.player.location + direction):\n self.player.move(direction)\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n return any(object.blocks and object.location == location for object in\n self.objects)\n\n def get_area(self, width, height):\n return self.map.get_area(width, height, self.player.location)\n", "step-4": "<mask token>\nSTART = 0, 0\nSTARTING_LIFE = 10\nWHITE = 255, 255, 255\n\n\nclass RoughLightGame:\n\n def __init__(self, game_map, width, height, **kwargs):\n self.map = game_map\n self.width = width\n self.height = height\n self.objects = kwargs.get('objects', list())\n self.start = kwargs.get('start', utils.Vector(0, 0))\n self.player = kwargs.get('player', None)\n if not self.player:\n self.player = objects.Player(self.start, b'@', WHITE, self.map,\n STARTING_LIFE, fov=20)\n self.objects.append(self.player)\n count = 0\n for room in self.map.rooms:\n label = objects.Object(room.get_center(), chr(ord('a') + count),\n WHITE, True, False)\n self.objects.append(label)\n count += 1\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n return any(object.location == location and object.blocks for object in\n self.objects)\n\n def visible_objects(self):\n res = []\n for object in self.objects:\n if object.visible and object.location in self.player.seen:\n if self.map.in_area(self.width, self.height, object.\n location, self.player.location):\n res.append(object)\n return reversed(res)\n\n def move_player(self, direction):\n if not self.is_blocked(self.player.location + direction):\n self.player.move(direction)\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n return any(object.blocks and object.location == location for object in\n self.objects)\n\n def get_area(self, width, height):\n return self.map.get_area(width, height, self.player.location)\n", "step-5": "from . import utils\nfrom . import objects\n\nSTART = (0, 0)\nSTARTING_LIFE = 10\n\nWHITE = (255, 255, 255)\n\nclass RoughLightGame:\n\n def __init__(self, game_map, width, height, **kwargs):\n\n self.map = game_map\n self.width = width\n self.height = height\n\n self.objects = kwargs.get('objects', list())\n self.start = kwargs.get('start', utils.Vector(0, 0))\n\n # player initialization\n self.player = kwargs.get('player', None)\n if not self.player:\n self.player = objects.Player(self.start, b'@', WHITE,\n self.map, STARTING_LIFE, fov=20)\n\n self.objects.append(self.player)\n\n # Add room lables to map\n count = 0\n for room in self.map.rooms:\n label = objects.Object(room.get_center(), chr(ord('a')+count), WHITE, True, False)\n self.objects.append(label)\n count += 1\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n\n return any(object.location == location and object.blocks for object in self.objects)\n\n\n def visible_objects(self):\n res = []\n for object in self.objects:\n if object.visible and object.location in self.player.seen:\n if self.map.in_area(self.width, self.height, object.location, self.player.location):\n res.append(object)\n return reversed(res)\n \n\n def move_player(self, direction):\n if not self.is_blocked(self.player.location + direction):\n self.player.move(direction)\n\n def is_blocked(self, location):\n if self.map[location].blocks:\n return True\n\n return any(object.blocks and object.location == location for object in self.objects)\n\n def get_area(self, width, height):\n # Get the current area the player is in based on desired size and players location\n return self.map.get_area(width, height, self.player.location)\n\n\n", "step-ids": [ 4, 5, 6, 8, 10 ] }
[ 4, 5, 6, 8, 10 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(list(result)) <|reserved_special_token_0|> print(list(result)) <|reserved_special_token_1|> <|reserved_special_token_0|> even_integers = lambda a: a % 2 == 0 input = [11, 4, 5, 8, 9, 2, 12] result = filter(even_integers, input) print(list(result)) input = [3, 5, 7] result = filter(even_integers, input) print(list(result)) <|reserved_special_token_1|> ''' filter_items = lambda a : a[0] == 'b' fruits = ["apple", "banana", "pear", "orange"] result = filter(filter_items, fruits) print(list(result)) ''' ''' Given a list of integers, return the even integers in the list. input = [11, 4, 5, 8, 9, 2, 12] output = [4, 8, 2, 12] input = [3, 5, 7] output = [] ''' # even_integers = lambda a : a / 2 == 0 even_integers = lambda a : a % 2 == 0 input = [11, 4, 5, 8, 9, 2, 12] result = filter(even_integers, input) print(list(result)) input = [3, 5, 7] result = filter(even_integers, input) print(list(result))
flexible
{ "blob_id": "7d9032b2426dbf3c285b99efa78be38d8f76ec24", "index": 1933, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(list(result))\n<mask token>\nprint(list(result))\n", "step-3": "<mask token>\neven_integers = lambda a: a % 2 == 0\ninput = [11, 4, 5, 8, 9, 2, 12]\nresult = filter(even_integers, input)\nprint(list(result))\ninput = [3, 5, 7]\nresult = filter(even_integers, input)\nprint(list(result))\n", "step-4": "'''\nfilter_items = lambda a : a[0] == 'b'\n\nfruits = [\"apple\", \"banana\", \"pear\", \"orange\"]\nresult = filter(filter_items, fruits)\nprint(list(result))\n'''\n\n'''\nGiven a list of integers, return the even integers in the list.\n\ninput = [11, 4, 5, 8, 9, 2, 12]\noutput = [4, 8, 2, 12]\n\ninput = [3, 5, 7]\noutput = []\n'''\n\n# even_integers = lambda a : a / 2 == 0\neven_integers = lambda a : a % 2 == 0\n\ninput = [11, 4, 5, 8, 9, 2, 12]\nresult = filter(even_integers, input)\nprint(list(result))\n\ninput = [3, 5, 7]\nresult = filter(even_integers, input)\nprint(list(result))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class _TimeIT(object): <|reserved_special_token_0|> def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines) <|reserved_special_token_1|> <|reserved_special_token_0|> def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines) <|reserved_special_token_1|> <|reserved_special_token_0|> import gc from inspect import signature, getsourcelines from operator import itemgetter from time import perf_counter from SpeedIT.ProjectErr import Err from SpeedIT.Utils import format_time, get_table_rst_formatted_lines def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, '__name__', self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if (self.run_sec is not None and self.run_sec != -1 and self. run_sec < 0.1): raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>' .format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', 'exec') exec(_code, globals(), _ns) self.inner = _ns['inner'] else: raise ValueError('<func>: is not a `callable` type: <{}>'. format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len( stripped_codeline) indent_ = codebody_indent - func_def_indent if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3 ] == "'''": search_docstring = True continue first_none_docstring_idx = idx break adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: if line_orig: rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line): has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', """<{}>: ERROR: indentation must be a multiple of the second function line: <{}> seems we encountered a wrong indented line: line_indentation: <{}> {}""" .format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 if has_block_speedit: if '::SPEEDIT::' in stripped_line: if (start_tag_block_speedit != end_tag_block_speedit): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an END-TAG <**SPEEDIT**>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if (end_tag_block_speedit != start_tag_block_speedit - 1): raise Err('_TimeIT.get_final_inner_function', """<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}> Expected an START-TAG <::SPEEDIT::>: {}""" .format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append(' ' * line_indentation_level + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append(' ' * line_indentation_level + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>' .format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) end_tag_block_speedit += 1 else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) else: adjusted_func_code_line.append(' ' * line_indentation_level + stripped_line) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format( _start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added' ) adjusted_func_code_line.append( ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added' ) if self.check_too_fast: adjusted_func_code_line.append( ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>' .format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added' ) final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>' .format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append(' ' * 2 + parameter_line) elif value.kind == value.VAR_KEYWORD: parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append(' ' * 2 + parameter_line) else: continue final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self. orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #' , ''] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = ['', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times' , ' _speeit_prefix__check_reference_time = {}'.format(self. perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,' , ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()' , ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #' , ''] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = ['', ' # ==================== END CODE BLOCK ==================== #' , '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time' , ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:' , ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec' , ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:' , ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec' , ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time' , ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:' , ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops' , ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,' , ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec' , ' }', ''] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'. format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>' .format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'. format(benchmarkit__repeat)) all_final_lines = [] perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================' , '', '']) for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format( func_name), '', benchmark_result, '', '']) else: title_line = ( 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> ' .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) ) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, '__name__', function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time ).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'best_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format(dict_[ 'avg_loop_sec'] / compare_reference * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_[ 'best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format( dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[ 'worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format( dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_ ['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_[ 'avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_[ 'best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_[ 'second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_[ 'worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_[ 'second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_[ 'all_loops_time_sec']) header_mapping = [('name', 'name'), ('rank-{}'.format( benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ( 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ( 'best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ( 'all_loops time', 'all_loops_time_sec')] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend(['', '']) return '\n'.join(all_final_lines) <|reserved_special_token_1|> """ Benchmark module: can also compare multiple functions """ import gc from inspect import ( signature, getsourcelines ) from operator import itemgetter from time import perf_counter from SpeedIT.ProjectErr import Err from SpeedIT.Utils import ( format_time, get_table_rst_formatted_lines ) def _helper_get_perf_counter_reference_time(): """ Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times Returns: float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times """ _result_time = 99999999999.0 for y_ in range(50): for x_ in range(3000): temp_start = perf_counter() temp_time = perf_counter() - temp_start if temp_time < _result_time: _result_time = temp_time return _result_time * 2 class _TimeIT(object): """ Class for timing execution speed of function code. Partially based on code from python timeit.py This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block` This avoids calling into the function itself Args: func (function): .. warning:: the `func` function may not have any return statements: but any inner function can have one OK .. code-block:: python def example_formal_func_inner(data_): shuffle(data_) def fninner(x): return x[1] result = sorted(data_.items(), key=fninner) del result NOT OK .. code-block:: python def example_pep265(data_): shuffle(data_) result = sorted(data_.items(), key=itemgetter(1)) return result func_positional_arguments (list): positional arguments for the function func_keyword_arguments (dict): any keyword arguments for the function setup_line_list (list): of strings with import lines needed by the functions any global data ect.. this part is executed once before the actual `func code block` enters the loop .. warning:: no multiline string or indented code line check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over) - if run_sec is -1: then the generated function source code is only run once - if run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. name (str): the name used for the output `name` part perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time() """ def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time): """ Constructor. See class doc string. """ self.func = func self.orig_func_name = getattr(self.func, "__name__", self.func) self.args_list = args_list.copy() self.kwargs_dict = kwargs_dict.copy() self.setup_line_list = setup_line_list self.check_too_fast = check_too_fast self.run_sec = run_sec self.name = name self.perf_counter_reference_time = perf_counter_reference_time if callable(self.func): _ns = {} self.src = self.__get_final_inner_function() if self.run_sec is not None and self.run_sec != -1 and self.run_sec < 0.1: raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'.format(self.run_sec)) _code = compile(self.src, 'benchmarkit-src', "exec") exec(_code, globals(), _ns) self.inner = _ns["inner"] else: raise ValueError('<func>: is not a `callable` type: <{}>'.format(self.func)) def benchmark_it(self, with_gc): """ Returns timing result for the `func code block` .. note:: By default, timeit() temporarily turns off garbage collection during the timing. The advantage of this approach is that it makes independent timings more comparable. This disadvantage is that GC may be an important component of the performance of the function being measured. If so, GC can be re-enabled as the with_gc=True Returns: dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec - loops: how many times the `func code block` was executed (looped over) - all_loops_time_sec: the total time in seconds for all loops: only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time: if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it - two_best_loop_sec: time in seconds for the two fastest of all loops - two_worst_loop_sec: time in seconds for the two slowest of all loops Raises: SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1 """ if self.run_sec is None: benchmark_result = self.src elif with_gc: gc_old = gc.isenabled() gc.enable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if not gc_old: gc.disable() else: gc_old = gc.isenabled() gc.disable() try: benchmark_result = self.inner() benchmark_result['name'] = self.name finally: if gc_old: gc.enable() return benchmark_result def __get_final_inner_function(self): """ Returns a string of an generated inner function with the code body from: func Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict .. warnings:: the `func` function may not have any return statements: but any inner function can have one Returns: str: generated inner function Raises: SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation """ has_block_speedit = False _start_block_stripped_line = '' start_tag_block_speedit = 0 end_tag_block_speedit = 0 func_line, lnum = getsourcelines(self.func) sig = signature(self.func) indent_ = None func_def_indent = len(func_line[0]) - len(func_line[0].lstrip()) func_body = func_line[1:] search_docstring = False # PREPARE: remove docstring and get final indentation first_none_docstring_idx = 0 for idx, line_orig in enumerate(func_body): rstripped_line = line_orig.rstrip() if rstripped_line: stripped_codeline = rstripped_line.lstrip() if stripped_codeline[0] == '#': # remove comment lines if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline): continue if search_docstring: if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3] == "'''": search_docstring = False continue else: codebody_indent = len(rstripped_line) - len(stripped_codeline) indent_ = codebody_indent - func_def_indent # Check if we have a docstring if stripped_codeline[0:3] == '"""' or stripped_codeline[0:3] == "'''": search_docstring = True continue first_none_docstring_idx = idx break # do the func code body adjusted_func_code_line = [] for line_orig in func_body[first_none_docstring_idx:]: # remove empty if line_orig: # get indentation check it is a multiple of indent_ rstrip_line = line_orig.rstrip() if rstrip_line: stripped_line = rstrip_line.lstrip() if stripped_line[0] == '#': # remove comment lines: keep any with ::SPEEDIT:: if '::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line: has_block_speedit = True else: continue line_indentation = len(rstrip_line) - len(stripped_line) if line_indentation % indent_ != 0: raise Err('_TimeIT.get_final_inner_function', '<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}'.format(self.orig_func_name, indent_, line_indentation, line_orig)) line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 # need one extra level if has_block_speedit: if '::SPEEDIT::' in stripped_line: if start_tag_block_speedit != end_tag_block_speedit: # expected END Tag raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}'.format(self.orig_func_name, has_block_speedit, line_orig)) adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added') start_tag_block_speedit += 1 _start_block_stripped_line = stripped_line elif '**SPEEDIT**' in stripped_line: if end_tag_block_speedit != start_tag_block_speedit - 1: # expected START TAG raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}'.format(self.orig_func_name, has_block_speedit, line_orig)) # Do this inner result adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append((' ' * line_indentation_level) + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') end_tag_block_speedit += 1 else: adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line) else: adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line) # CHECK: LAST END TAG # e.g. if a function body ends with an END-TAG this is not returned by: inspect.getsourcelines(self.func) if has_block_speedit: if start_tag_block_speedit != end_tag_block_speedit: # Do the last inner result: ADDING an END-TAG adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') # add the normal perf_counter time lines else: adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added') adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added') if self.check_too_fast: adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception("in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added') # Do the arguments final_param_line = [] for param, value in sig.parameters.items(): if value.kind == value.POSITIONAL_OR_KEYWORD: # check if we have a keyword if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: # use the positional value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.POSITIONAL_ONLY: value_to_set = self.args_list.pop(0) if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) # TODO: From docs: 3.4 Python has no explicit syntax for defining positional-only parameters, but many built-in and extension module functions (especially those that accept only one or two parameters) accept them. raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'.format(param, value.kind)) elif value.kind == value.VAR_POSITIONAL: # do the remaining POSITIONAL arguments parameter_line = '{} = {}'.format(param, self.args_list) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.KEYWORD_ONLY: if param in self.kwargs_dict: value_to_set = self.kwargs_dict.pop(param) else: # use the default value_to_set = value.default if isinstance(value_to_set, str): parameter_line = '{} = "{}"'.format(param, value_to_set) else: parameter_line = '{} = {}'.format(param, value_to_set) final_param_line.append((' ' * 2) + parameter_line) elif value.kind == value.VAR_KEYWORD: # do the remaining KEYWORD arguments parameter_line = '{} = {}'.format(param, self.kwargs_dict) final_param_line.append((' ' * 2) + parameter_line) else: continue # do self.setup_line_list final_setup_lines = [] for setup_line in self.setup_line_list: setup_line = setup_line.strip() if setup_line: final_setup_lines.append(' ' + setup_line) final_inner_function_lines = [ 'def inner(): # orig function name: <{}>'.format(self.orig_func_name), ' from time import perf_counter as _speeit_prefix__perf_counter', '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '', ' # ==================== START SETUP LINES ==================== #', '', ] final_inner_function_lines.extend(final_setup_lines) inner_function_lines_part2 = [ '', ' # ==================== END SETUP LINES ==================== #', '', ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times', ' _speeit_prefix__check_reference_time = {}'.format(self.perf_counter_reference_time), ' _speeit_prefix__loops = 0', ' _speeit_prefix__all_loops_time_sec = 0.0', ' _speeit_prefix__avg_loop_sec = 0.0', ' _speeit_prefix__best_loop_sec = 99999999999.0', ' _speeit_prefix__second_best_loop_sec = 99999999999.0', ' _speeit_prefix__worst_loop_sec = 0.0', ' _speeit_prefix__second_worst_loop_sec = 0.0', ' if _speeit_prefix__run_sec is None:', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,', ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec', ' }', ' elif _speeit_prefix__run_sec == -1:', ' # only run it once', ' _speeit_prefix__run_once = True', ' else:', ' _speeit_prefix__run_once = False', ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()', ' while True:', ' _speeit_prefix__loops += 1', ' _speeit_prefix__result_time = 0', '', ' # ==================== START CODE BLOCK ==================== #', '', ] final_inner_function_lines.extend(inner_function_lines_part2) final_inner_function_lines.extend(final_param_line) final_inner_function_lines.extend(adjusted_func_code_line) inner_function_lines_rest = [ '', ' # ==================== END CODE BLOCK ==================== #', '', ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time', ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:', ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec', ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time', ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:', ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec', ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time', ' if _speeit_prefix__run_once:', ' break', ' # check if we have to get out', ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:', ' break', ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops', ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:', ' _speeit_prefix__second_best_loop_sec = -1.0', ' if _speeit_prefix__second_worst_loop_sec == 0.0:', ' _speeit_prefix__second_worst_loop_sec = -1.0', ' return {', ' "loops": _speeit_prefix__loops,', ' "all_loops_time_sec": _speeit_prefix__all_loops_time_sec,', ' "avg_loop_sec": _speeit_prefix__avg_loop_sec,', ' "best_loop_sec": _speeit_prefix__best_loop_sec,', ' "second_best_loop_sec": _speeit_prefix__second_best_loop_sec,', ' "worst_loop_sec": _speeit_prefix__worst_loop_sec,', ' "second_worst_loop_sec": _speeit_prefix__second_worst_loop_sec', ' }', '' ] final_inner_function_lines.extend(inner_function_lines_rest) return '\n'.join(final_inner_function_lines) def speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3): """ Returns one txt string for the ready comparison table: format is conform with reStructuredText Usage: .. code-block:: python func_dict = { 'function_f1': (function_f1, [act_one_hamlet], {}), 'function_f2': (function_f2, [act_one_hamlet], {}), 'function_f3': (function_f3, [act_one_hamlet], {}), } setup_line_list = [ 'from random import shuffle', 'from os.path import abspath, dirname, join', 'MY_CONSTANT = 15' ] benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3) Args: func_dict (dict): mapping function names to functions value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments) setup_line_list (list): of strings with import lines needed by the functions any global data ect.. .. warning:: no multiline string or indented code line use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name` output_in_sec (int): if true the output is keep in seconds if false it is transformed to: second (s) millisecond (ms) One thousandth of one second microsecond (µs) One millionth of one second nanosecond (ns) One billionth of one second benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised. - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times .. seealso:: _helper_get_perf_counter_reference_time() benchmarkit__rank_by (str): `best` or `average` benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec - if benchmarkit__run_sec is -1: then the generated function source code is only run once - if benchmarkit__run_sec is None: then the generated function source code is only printed this is mainly useful to see the exact final `func code block` which will be timed. benchmarkit__repeat (int): how often everything is repeated This is a convenience variable that calls the whole setup repeatedly Returns: str: ready to print or write to file: table format is conform with reStructuredText Raises: SpeedIT.Err """ if not func_dict: raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'.format(func_dict)) if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average': raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'.format(benchmarkit__rank_by)) if benchmarkit__repeat < 1: raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.format(benchmarkit__repeat)) all_final_lines = [] # get once the perf_counter_reference_time perf_counter_reference_time = _helper_get_perf_counter_reference_time() if benchmarkit__run_sec is None: all_final_lines.extend([ '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================', '', '' ]) # Run all only once and get the code for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, "__name__", function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc) all_final_lines.extend([ '===================== function name: <{}>'.format(func_name), '', benchmark_result, '', '', ]) else: title_line = 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '.format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec) for repeat_all in range(benchmarkit__repeat): table = [] for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()): if use_func_name: name = getattr(function_, "__name__", function_) else: name = func_name benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(with_gc=benchmarkit__with_gc) table.append(benchmark_result) if benchmarkit__rank_by == 'best': table = sorted(table, key=itemgetter('best_loop_sec')) compare_reference = table[0]['best_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format((dict_['best_loop_sec'] / compare_reference) * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_['best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec']) elif benchmarkit__rank_by == 'average': table = sorted(table, key=itemgetter('avg_loop_sec')) compare_reference = table[0]['avg_loop_sec'] for idx, dict_ in enumerate(table): dict_['compare'] = '{:,.3f}'.format((dict_['avg_loop_sec'] / compare_reference) * 100.0) dict_['rank'] = '{:,}'.format(idx + 1) dict_['loops'] = '{:,}'.format(dict_['loops']) if output_in_sec: dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec']) dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec']) if dict_['second_best_loop_sec'] == -1.0: dict_['second_best_loop_sec'] = 'NOT-MEASURED' else: dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec']) if dict_['second_worst_loop_sec'] == -1.0: dict_['second_worst_loop_sec'] = 'NOT-MEASURED' else: dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec']) else: dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec']) dict_['best_loop_sec'] = format_time(dict_['best_loop_sec']) dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec']) dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec']) dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec']) dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec']) header_mapping = [ ('name', 'name'), ('rank-{}'.format(benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), ('num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), ('best_loop', 'best_loop_sec'), ('second_best_loop', 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'), ('second_worst_loop', 'second_worst_loop_sec'), ('all_loops time', 'all_loops_time_sec') ] all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line)) all_final_lines.extend([ '', '', ]) return '\n'.join(all_final_lines)
flexible
{ "blob_id": "b2d3ebe4b1ce8f6f0fde8495fb90542080b810ce", "index": 1390, "step-1": "<mask token>\n\n\nclass _TimeIT(object):\n <mask token>\n\n def __init__(self, func, args_list, kwargs_dict, setup_line_list,\n check_too_fast, run_sec, name, perf_counter_reference_time):\n \"\"\" Constructor. See class doc string.\n \"\"\"\n self.func = func\n self.orig_func_name = getattr(self.func, '__name__', self.func)\n self.args_list = args_list.copy()\n self.kwargs_dict = kwargs_dict.copy()\n self.setup_line_list = setup_line_list\n self.check_too_fast = check_too_fast\n self.run_sec = run_sec\n self.name = name\n self.perf_counter_reference_time = perf_counter_reference_time\n if callable(self.func):\n _ns = {}\n self.src = self.__get_final_inner_function()\n if (self.run_sec is not None and self.run_sec != -1 and self.\n run_sec < 0.1):\n raise Err('_TimeIT.__init__()',\n 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'\n .format(self.run_sec))\n _code = compile(self.src, 'benchmarkit-src', 'exec')\n exec(_code, globals(), _ns)\n self.inner = _ns['inner']\n else:\n raise ValueError('<func>: is not a `callable` type: <{}>'.\n format(self.func))\n\n def benchmark_it(self, with_gc):\n \"\"\" Returns timing result for the `func code block`\n\n .. note::\n By default, timeit() temporarily turns off garbage collection during the timing.\n The advantage of this approach is that it makes independent timings more comparable.\n This disadvantage is that GC may be an important component of the performance of the function being measured.\n If so, GC can be re-enabled as the with_gc=True\n\n Returns:\n dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec\n\n - loops: how many times the `func code block` was executed (looped over)\n - all_loops_time_sec: the total time in seconds for all loops:\n only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime\n - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time:\n if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it\n - two_best_loop_sec: time in seconds for the two fastest of all loops\n - two_worst_loop_sec: time in seconds for the two slowest of all loops\n\n Raises:\n SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1\n \"\"\"\n if self.run_sec is None:\n benchmark_result = self.src\n elif with_gc:\n gc_old = gc.isenabled()\n gc.enable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if not gc_old:\n gc.disable()\n else:\n gc_old = gc.isenabled()\n gc.disable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if gc_old:\n gc.enable()\n return benchmark_result\n\n def __get_final_inner_function(self):\n \"\"\" Returns a string of an generated inner function with the code body from: func\n\n Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict\n\n .. warnings:: the `func` function may not have any return statements: but any inner function can have one\n\n Returns:\n str: generated inner function\n\n Raises:\n SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation\n \"\"\"\n has_block_speedit = False\n _start_block_stripped_line = ''\n start_tag_block_speedit = 0\n end_tag_block_speedit = 0\n func_line, lnum = getsourcelines(self.func)\n sig = signature(self.func)\n indent_ = None\n func_def_indent = len(func_line[0]) - len(func_line[0].lstrip())\n func_body = func_line[1:]\n search_docstring = False\n first_none_docstring_idx = 0\n for idx, line_orig in enumerate(func_body):\n rstripped_line = line_orig.rstrip()\n if rstripped_line:\n stripped_codeline = rstripped_line.lstrip()\n if stripped_codeline[0] == '#':\n if not ('::SPEEDIT::' in stripped_codeline or \n '**SPEEDIT**' in stripped_codeline):\n continue\n if search_docstring:\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = False\n continue\n else:\n codebody_indent = len(rstripped_line) - len(\n stripped_codeline)\n indent_ = codebody_indent - func_def_indent\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = True\n continue\n first_none_docstring_idx = idx\n break\n adjusted_func_code_line = []\n for line_orig in func_body[first_none_docstring_idx:]:\n if line_orig:\n rstrip_line = line_orig.rstrip()\n if rstrip_line:\n stripped_line = rstrip_line.lstrip()\n if stripped_line[0] == '#':\n if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in\n stripped_line):\n has_block_speedit = True\n else:\n continue\n line_indentation = len(rstrip_line) - len(stripped_line)\n if line_indentation % indent_ != 0:\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}\"\"\"\n .format(self.orig_func_name, indent_,\n line_indentation, line_orig))\n line_indentation_level = int((line_indentation -\n func_def_indent) / indent_) + 1\n if has_block_speedit:\n if '::SPEEDIT::' in stripped_line:\n if (start_tag_block_speedit !=\n end_tag_block_speedit):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n start_tag_block_speedit += 1\n _start_block_stripped_line = stripped_line\n elif '**SPEEDIT**' in stripped_line:\n if (end_tag_block_speedit != \n start_tag_block_speedit - 1):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'\n .format(_start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n end_tag_block_speedit += 1\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n if has_block_speedit:\n if start_tag_block_speedit != end_tag_block_speedit:\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'.format(\n _start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n else:\n adjusted_func_code_line.insert(0,\n ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n final_param_line = []\n for param, value in sig.parameters.items():\n if value.kind == value.POSITIONAL_OR_KEYWORD:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.POSITIONAL_ONLY:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n raise Err('_TimeIT.get_final_inner_function()',\n 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'\n .format(param, value.kind))\n elif value.kind == value.VAR_POSITIONAL:\n parameter_line = '{} = {}'.format(param, self.args_list)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.KEYWORD_ONLY:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = value.default\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.VAR_KEYWORD:\n parameter_line = '{} = {}'.format(param, self.kwargs_dict)\n final_param_line.append(' ' * 2 + parameter_line)\n else:\n continue\n final_setup_lines = []\n for setup_line in self.setup_line_list:\n setup_line = setup_line.strip()\n if setup_line:\n final_setup_lines.append(' ' + setup_line)\n final_inner_function_lines = [\n 'def inner(): # orig function name: <{}>'.format(self.\n orig_func_name),\n ' from time import perf_counter as _speeit_prefix__perf_counter',\n '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '',\n ' # ==================== START SETUP LINES ==================== #'\n , '']\n final_inner_function_lines.extend(final_setup_lines)\n inner_function_lines_part2 = ['',\n ' # ==================== END SETUP LINES ==================== #',\n '',\n ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times'\n , ' _speeit_prefix__check_reference_time = {}'.format(self.\n perf_counter_reference_time), ' _speeit_prefix__loops = 0',\n ' _speeit_prefix__all_loops_time_sec = 0.0',\n ' _speeit_prefix__avg_loop_sec = 0.0',\n ' _speeit_prefix__best_loop_sec = 99999999999.0',\n ' _speeit_prefix__second_best_loop_sec = 99999999999.0',\n ' _speeit_prefix__worst_loop_sec = 0.0',\n ' _speeit_prefix__second_worst_loop_sec = 0.0',\n ' if _speeit_prefix__run_sec is None:', ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,'\n , ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', ' elif _speeit_prefix__run_sec == -1:',\n ' # only run it once',\n ' _speeit_prefix__run_once = True', ' else:',\n ' _speeit_prefix__run_once = False',\n ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()'\n , ' while True:', ' _speeit_prefix__loops += 1',\n ' _speeit_prefix__result_time = 0', '',\n ' # ==================== START CODE BLOCK ==================== #'\n , '']\n final_inner_function_lines.extend(inner_function_lines_part2)\n final_inner_function_lines.extend(final_param_line)\n final_inner_function_lines.extend(adjusted_func_code_line)\n inner_function_lines_rest = ['',\n ' # ==================== END CODE BLOCK ==================== #'\n , '',\n ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:'\n ,\n ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec'\n ,\n ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:'\n ,\n ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec'\n ,\n ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time'\n , ' if _speeit_prefix__run_once:', ' break',\n ' # check if we have to get out',\n ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:'\n , ' break',\n ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops'\n ,\n ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:',\n ' _speeit_prefix__second_best_loop_sec = -1.0',\n ' if _speeit_prefix__second_worst_loop_sec == 0.0:',\n ' _speeit_prefix__second_worst_loop_sec = -1.0',\n ' return {', ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', '']\n final_inner_function_lines.extend(inner_function_lines_rest)\n return '\\n'.join(final_inner_function_lines)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass _TimeIT(object):\n \"\"\" Class for timing execution speed of function code.\n\n Partially based on code from python timeit.py\n\n This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block`\n This avoids calling into the function itself\n\n Args:\n func (function):\n\n .. warning:: the `func` function may not have any return statements: but any inner function can have one\n\n OK\n\n .. code-block:: python\n\n def example_formal_func_inner(data_):\n shuffle(data_)\n def fninner(x):\n return x[1]\n result = sorted(data_.items(), key=fninner)\n del result\n\n NOT OK\n\n .. code-block:: python\n\n def example_pep265(data_):\n shuffle(data_)\n result = sorted(data_.items(), key=itemgetter(1))\n return result\n\n func_positional_arguments (list): positional arguments for the function\n func_keyword_arguments (dict): any keyword arguments for the function\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n this part is executed once before the actual `func code block` enters the loop\n\n .. warning:: no multiline string or indented code line\n\n check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over)\n\n - if run_sec is -1: then the generated function source code is only run once\n\n - if run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n name (str): the name used for the output `name` part\n\n perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time()\n \"\"\"\n\n def __init__(self, func, args_list, kwargs_dict, setup_line_list,\n check_too_fast, run_sec, name, perf_counter_reference_time):\n \"\"\" Constructor. See class doc string.\n \"\"\"\n self.func = func\n self.orig_func_name = getattr(self.func, '__name__', self.func)\n self.args_list = args_list.copy()\n self.kwargs_dict = kwargs_dict.copy()\n self.setup_line_list = setup_line_list\n self.check_too_fast = check_too_fast\n self.run_sec = run_sec\n self.name = name\n self.perf_counter_reference_time = perf_counter_reference_time\n if callable(self.func):\n _ns = {}\n self.src = self.__get_final_inner_function()\n if (self.run_sec is not None and self.run_sec != -1 and self.\n run_sec < 0.1):\n raise Err('_TimeIT.__init__()',\n 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'\n .format(self.run_sec))\n _code = compile(self.src, 'benchmarkit-src', 'exec')\n exec(_code, globals(), _ns)\n self.inner = _ns['inner']\n else:\n raise ValueError('<func>: is not a `callable` type: <{}>'.\n format(self.func))\n\n def benchmark_it(self, with_gc):\n \"\"\" Returns timing result for the `func code block`\n\n .. note::\n By default, timeit() temporarily turns off garbage collection during the timing.\n The advantage of this approach is that it makes independent timings more comparable.\n This disadvantage is that GC may be an important component of the performance of the function being measured.\n If so, GC can be re-enabled as the with_gc=True\n\n Returns:\n dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec\n\n - loops: how many times the `func code block` was executed (looped over)\n - all_loops_time_sec: the total time in seconds for all loops:\n only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime\n - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time:\n if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it\n - two_best_loop_sec: time in seconds for the two fastest of all loops\n - two_worst_loop_sec: time in seconds for the two slowest of all loops\n\n Raises:\n SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1\n \"\"\"\n if self.run_sec is None:\n benchmark_result = self.src\n elif with_gc:\n gc_old = gc.isenabled()\n gc.enable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if not gc_old:\n gc.disable()\n else:\n gc_old = gc.isenabled()\n gc.disable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if gc_old:\n gc.enable()\n return benchmark_result\n\n def __get_final_inner_function(self):\n \"\"\" Returns a string of an generated inner function with the code body from: func\n\n Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict\n\n .. warnings:: the `func` function may not have any return statements: but any inner function can have one\n\n Returns:\n str: generated inner function\n\n Raises:\n SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation\n \"\"\"\n has_block_speedit = False\n _start_block_stripped_line = ''\n start_tag_block_speedit = 0\n end_tag_block_speedit = 0\n func_line, lnum = getsourcelines(self.func)\n sig = signature(self.func)\n indent_ = None\n func_def_indent = len(func_line[0]) - len(func_line[0].lstrip())\n func_body = func_line[1:]\n search_docstring = False\n first_none_docstring_idx = 0\n for idx, line_orig in enumerate(func_body):\n rstripped_line = line_orig.rstrip()\n if rstripped_line:\n stripped_codeline = rstripped_line.lstrip()\n if stripped_codeline[0] == '#':\n if not ('::SPEEDIT::' in stripped_codeline or \n '**SPEEDIT**' in stripped_codeline):\n continue\n if search_docstring:\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = False\n continue\n else:\n codebody_indent = len(rstripped_line) - len(\n stripped_codeline)\n indent_ = codebody_indent - func_def_indent\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = True\n continue\n first_none_docstring_idx = idx\n break\n adjusted_func_code_line = []\n for line_orig in func_body[first_none_docstring_idx:]:\n if line_orig:\n rstrip_line = line_orig.rstrip()\n if rstrip_line:\n stripped_line = rstrip_line.lstrip()\n if stripped_line[0] == '#':\n if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in\n stripped_line):\n has_block_speedit = True\n else:\n continue\n line_indentation = len(rstrip_line) - len(stripped_line)\n if line_indentation % indent_ != 0:\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}\"\"\"\n .format(self.orig_func_name, indent_,\n line_indentation, line_orig))\n line_indentation_level = int((line_indentation -\n func_def_indent) / indent_) + 1\n if has_block_speedit:\n if '::SPEEDIT::' in stripped_line:\n if (start_tag_block_speedit !=\n end_tag_block_speedit):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n start_tag_block_speedit += 1\n _start_block_stripped_line = stripped_line\n elif '**SPEEDIT**' in stripped_line:\n if (end_tag_block_speedit != \n start_tag_block_speedit - 1):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'\n .format(_start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n end_tag_block_speedit += 1\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n if has_block_speedit:\n if start_tag_block_speedit != end_tag_block_speedit:\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'.format(\n _start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n else:\n adjusted_func_code_line.insert(0,\n ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n final_param_line = []\n for param, value in sig.parameters.items():\n if value.kind == value.POSITIONAL_OR_KEYWORD:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.POSITIONAL_ONLY:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n raise Err('_TimeIT.get_final_inner_function()',\n 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'\n .format(param, value.kind))\n elif value.kind == value.VAR_POSITIONAL:\n parameter_line = '{} = {}'.format(param, self.args_list)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.KEYWORD_ONLY:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = value.default\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.VAR_KEYWORD:\n parameter_line = '{} = {}'.format(param, self.kwargs_dict)\n final_param_line.append(' ' * 2 + parameter_line)\n else:\n continue\n final_setup_lines = []\n for setup_line in self.setup_line_list:\n setup_line = setup_line.strip()\n if setup_line:\n final_setup_lines.append(' ' + setup_line)\n final_inner_function_lines = [\n 'def inner(): # orig function name: <{}>'.format(self.\n orig_func_name),\n ' from time import perf_counter as _speeit_prefix__perf_counter',\n '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '',\n ' # ==================== START SETUP LINES ==================== #'\n , '']\n final_inner_function_lines.extend(final_setup_lines)\n inner_function_lines_part2 = ['',\n ' # ==================== END SETUP LINES ==================== #',\n '',\n ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times'\n , ' _speeit_prefix__check_reference_time = {}'.format(self.\n perf_counter_reference_time), ' _speeit_prefix__loops = 0',\n ' _speeit_prefix__all_loops_time_sec = 0.0',\n ' _speeit_prefix__avg_loop_sec = 0.0',\n ' _speeit_prefix__best_loop_sec = 99999999999.0',\n ' _speeit_prefix__second_best_loop_sec = 99999999999.0',\n ' _speeit_prefix__worst_loop_sec = 0.0',\n ' _speeit_prefix__second_worst_loop_sec = 0.0',\n ' if _speeit_prefix__run_sec is None:', ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,'\n , ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', ' elif _speeit_prefix__run_sec == -1:',\n ' # only run it once',\n ' _speeit_prefix__run_once = True', ' else:',\n ' _speeit_prefix__run_once = False',\n ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()'\n , ' while True:', ' _speeit_prefix__loops += 1',\n ' _speeit_prefix__result_time = 0', '',\n ' # ==================== START CODE BLOCK ==================== #'\n , '']\n final_inner_function_lines.extend(inner_function_lines_part2)\n final_inner_function_lines.extend(final_param_line)\n final_inner_function_lines.extend(adjusted_func_code_line)\n inner_function_lines_rest = ['',\n ' # ==================== END CODE BLOCK ==================== #'\n , '',\n ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:'\n ,\n ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec'\n ,\n ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:'\n ,\n ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec'\n ,\n ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time'\n , ' if _speeit_prefix__run_once:', ' break',\n ' # check if we have to get out',\n ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:'\n , ' break',\n ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops'\n ,\n ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:',\n ' _speeit_prefix__second_best_loop_sec = -1.0',\n ' if _speeit_prefix__second_worst_loop_sec == 0.0:',\n ' _speeit_prefix__second_worst_loop_sec = -1.0',\n ' return {', ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', '']\n final_inner_function_lines.extend(inner_function_lines_rest)\n return '\\n'.join(final_inner_function_lines)\n\n\ndef speedit_benchmark(func_dict, setup_line_list, use_func_name=True,\n output_in_sec=False, benchmarkit__with_gc=False,\n benchmarkit__check_too_fast=True, benchmarkit__rank_by='best',\n benchmarkit__run_sec=1, benchmarkit__repeat=3):\n \"\"\" Returns one txt string for the ready comparison table: format is conform with reStructuredText\n\n Usage:\n\n .. code-block:: python\n\n func_dict = {\n 'function_f1': (function_f1, [act_one_hamlet], {}),\n 'function_f2': (function_f2, [act_one_hamlet], {}),\n 'function_f3': (function_f3, [act_one_hamlet], {}),\n }\n\n setup_line_list = [\n 'from random import shuffle',\n 'from os.path import abspath, dirname, join',\n 'MY_CONSTANT = 15'\n ]\n\n benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3)\n\n Args:\n func_dict (dict): mapping function names to functions\n value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments)\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n\n .. warning:: no multiline string or indented code line\n\n use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name`\n\n output_in_sec (int): if true the output is keep in seconds if false it is transformed to:\n second (s)\n millisecond (ms) One thousandth of one second\n microsecond (µs) One millionth of one second\n nanosecond (ns) One billionth of one second\n\n benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing\n\n benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n benchmarkit__rank_by (str): `best` or `average`\n\n benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec\n\n - if benchmarkit__run_sec is -1: then the generated function source code is only run once\n\n - if benchmarkit__run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n benchmarkit__repeat (int): how often everything is repeated\n This is a convenience variable that calls the whole setup repeatedly\n\n Returns:\n str: ready to print or write to file: table format is conform with reStructuredText\n\n Raises:\n SpeedIT.Err\n \"\"\"\n if not func_dict:\n raise Err('speedit_benchmark()',\n 'At least one function must be defined in `func_dict`: <{}>'.\n format(func_dict))\n if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average':\n raise Err('speedit_benchmark()',\n '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'\n .format(benchmarkit__rank_by))\n if benchmarkit__repeat < 1:\n raise Err('speedit_benchmark()',\n '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.\n format(benchmarkit__repeat))\n all_final_lines = []\n perf_counter_reference_time = _helper_get_perf_counter_reference_time()\n if benchmarkit__run_sec is None:\n all_final_lines.extend([\n '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================'\n , '', ''])\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_, func_positional_arguments,\n func_keyword_arguments, setup_line_list,\n benchmarkit__check_too_fast, benchmarkit__run_sec, name,\n perf_counter_reference_time).benchmark_it(benchmarkit__with_gc)\n all_final_lines.extend([\n '===================== function name: <{}>'.format(\n func_name), '', benchmark_result, '', ''])\n else:\n title_line = (\n 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '\n .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec)\n )\n for repeat_all in range(benchmarkit__repeat):\n table = []\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_,\n func_positional_arguments, func_keyword_arguments,\n setup_line_list, benchmarkit__check_too_fast,\n benchmarkit__run_sec, name, perf_counter_reference_time\n ).benchmark_it(with_gc=benchmarkit__with_gc)\n table.append(benchmark_result)\n if benchmarkit__rank_by == 'best':\n table = sorted(table, key=itemgetter('best_loop_sec'))\n compare_reference = table[0]['best_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'best_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n elif benchmarkit__rank_by == 'average':\n table = sorted(table, key=itemgetter('avg_loop_sec'))\n compare_reference = table[0]['avg_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'avg_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n header_mapping = [('name', 'name'), ('rank-{}'.format(\n benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), (\n 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), (\n 'best_loop', 'best_loop_sec'), ('second_best_loop',\n 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'),\n ('second_worst_loop', 'second_worst_loop_sec'), (\n 'all_loops time', 'all_loops_time_sec')]\n all_final_lines.extend(get_table_rst_formatted_lines(table,\n header_mapping, title_line))\n all_final_lines.extend(['', ''])\n return '\\n'.join(all_final_lines)\n", "step-3": "<mask token>\n\n\ndef _helper_get_perf_counter_reference_time():\n \"\"\" Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n Returns:\n float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times\n \"\"\"\n _result_time = 99999999999.0\n for y_ in range(50):\n for x_ in range(3000):\n temp_start = perf_counter()\n temp_time = perf_counter() - temp_start\n if temp_time < _result_time:\n _result_time = temp_time\n return _result_time * 2\n\n\nclass _TimeIT(object):\n \"\"\" Class for timing execution speed of function code.\n\n Partially based on code from python timeit.py\n\n This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block`\n This avoids calling into the function itself\n\n Args:\n func (function):\n\n .. warning:: the `func` function may not have any return statements: but any inner function can have one\n\n OK\n\n .. code-block:: python\n\n def example_formal_func_inner(data_):\n shuffle(data_)\n def fninner(x):\n return x[1]\n result = sorted(data_.items(), key=fninner)\n del result\n\n NOT OK\n\n .. code-block:: python\n\n def example_pep265(data_):\n shuffle(data_)\n result = sorted(data_.items(), key=itemgetter(1))\n return result\n\n func_positional_arguments (list): positional arguments for the function\n func_keyword_arguments (dict): any keyword arguments for the function\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n this part is executed once before the actual `func code block` enters the loop\n\n .. warning:: no multiline string or indented code line\n\n check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over)\n\n - if run_sec is -1: then the generated function source code is only run once\n\n - if run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n name (str): the name used for the output `name` part\n\n perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time()\n \"\"\"\n\n def __init__(self, func, args_list, kwargs_dict, setup_line_list,\n check_too_fast, run_sec, name, perf_counter_reference_time):\n \"\"\" Constructor. See class doc string.\n \"\"\"\n self.func = func\n self.orig_func_name = getattr(self.func, '__name__', self.func)\n self.args_list = args_list.copy()\n self.kwargs_dict = kwargs_dict.copy()\n self.setup_line_list = setup_line_list\n self.check_too_fast = check_too_fast\n self.run_sec = run_sec\n self.name = name\n self.perf_counter_reference_time = perf_counter_reference_time\n if callable(self.func):\n _ns = {}\n self.src = self.__get_final_inner_function()\n if (self.run_sec is not None and self.run_sec != -1 and self.\n run_sec < 0.1):\n raise Err('_TimeIT.__init__()',\n 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'\n .format(self.run_sec))\n _code = compile(self.src, 'benchmarkit-src', 'exec')\n exec(_code, globals(), _ns)\n self.inner = _ns['inner']\n else:\n raise ValueError('<func>: is not a `callable` type: <{}>'.\n format(self.func))\n\n def benchmark_it(self, with_gc):\n \"\"\" Returns timing result for the `func code block`\n\n .. note::\n By default, timeit() temporarily turns off garbage collection during the timing.\n The advantage of this approach is that it makes independent timings more comparable.\n This disadvantage is that GC may be an important component of the performance of the function being measured.\n If so, GC can be re-enabled as the with_gc=True\n\n Returns:\n dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec\n\n - loops: how many times the `func code block` was executed (looped over)\n - all_loops_time_sec: the total time in seconds for all loops:\n only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime\n - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time:\n if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it\n - two_best_loop_sec: time in seconds for the two fastest of all loops\n - two_worst_loop_sec: time in seconds for the two slowest of all loops\n\n Raises:\n SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1\n \"\"\"\n if self.run_sec is None:\n benchmark_result = self.src\n elif with_gc:\n gc_old = gc.isenabled()\n gc.enable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if not gc_old:\n gc.disable()\n else:\n gc_old = gc.isenabled()\n gc.disable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if gc_old:\n gc.enable()\n return benchmark_result\n\n def __get_final_inner_function(self):\n \"\"\" Returns a string of an generated inner function with the code body from: func\n\n Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict\n\n .. warnings:: the `func` function may not have any return statements: but any inner function can have one\n\n Returns:\n str: generated inner function\n\n Raises:\n SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation\n \"\"\"\n has_block_speedit = False\n _start_block_stripped_line = ''\n start_tag_block_speedit = 0\n end_tag_block_speedit = 0\n func_line, lnum = getsourcelines(self.func)\n sig = signature(self.func)\n indent_ = None\n func_def_indent = len(func_line[0]) - len(func_line[0].lstrip())\n func_body = func_line[1:]\n search_docstring = False\n first_none_docstring_idx = 0\n for idx, line_orig in enumerate(func_body):\n rstripped_line = line_orig.rstrip()\n if rstripped_line:\n stripped_codeline = rstripped_line.lstrip()\n if stripped_codeline[0] == '#':\n if not ('::SPEEDIT::' in stripped_codeline or \n '**SPEEDIT**' in stripped_codeline):\n continue\n if search_docstring:\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = False\n continue\n else:\n codebody_indent = len(rstripped_line) - len(\n stripped_codeline)\n indent_ = codebody_indent - func_def_indent\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = True\n continue\n first_none_docstring_idx = idx\n break\n adjusted_func_code_line = []\n for line_orig in func_body[first_none_docstring_idx:]:\n if line_orig:\n rstrip_line = line_orig.rstrip()\n if rstrip_line:\n stripped_line = rstrip_line.lstrip()\n if stripped_line[0] == '#':\n if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in\n stripped_line):\n has_block_speedit = True\n else:\n continue\n line_indentation = len(rstrip_line) - len(stripped_line)\n if line_indentation % indent_ != 0:\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}\"\"\"\n .format(self.orig_func_name, indent_,\n line_indentation, line_orig))\n line_indentation_level = int((line_indentation -\n func_def_indent) / indent_) + 1\n if has_block_speedit:\n if '::SPEEDIT::' in stripped_line:\n if (start_tag_block_speedit !=\n end_tag_block_speedit):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n start_tag_block_speedit += 1\n _start_block_stripped_line = stripped_line\n elif '**SPEEDIT**' in stripped_line:\n if (end_tag_block_speedit != \n start_tag_block_speedit - 1):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'\n .format(_start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n end_tag_block_speedit += 1\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n if has_block_speedit:\n if start_tag_block_speedit != end_tag_block_speedit:\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'.format(\n _start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n else:\n adjusted_func_code_line.insert(0,\n ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n final_param_line = []\n for param, value in sig.parameters.items():\n if value.kind == value.POSITIONAL_OR_KEYWORD:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.POSITIONAL_ONLY:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n raise Err('_TimeIT.get_final_inner_function()',\n 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'\n .format(param, value.kind))\n elif value.kind == value.VAR_POSITIONAL:\n parameter_line = '{} = {}'.format(param, self.args_list)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.KEYWORD_ONLY:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = value.default\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.VAR_KEYWORD:\n parameter_line = '{} = {}'.format(param, self.kwargs_dict)\n final_param_line.append(' ' * 2 + parameter_line)\n else:\n continue\n final_setup_lines = []\n for setup_line in self.setup_line_list:\n setup_line = setup_line.strip()\n if setup_line:\n final_setup_lines.append(' ' + setup_line)\n final_inner_function_lines = [\n 'def inner(): # orig function name: <{}>'.format(self.\n orig_func_name),\n ' from time import perf_counter as _speeit_prefix__perf_counter',\n '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '',\n ' # ==================== START SETUP LINES ==================== #'\n , '']\n final_inner_function_lines.extend(final_setup_lines)\n inner_function_lines_part2 = ['',\n ' # ==================== END SETUP LINES ==================== #',\n '',\n ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times'\n , ' _speeit_prefix__check_reference_time = {}'.format(self.\n perf_counter_reference_time), ' _speeit_prefix__loops = 0',\n ' _speeit_prefix__all_loops_time_sec = 0.0',\n ' _speeit_prefix__avg_loop_sec = 0.0',\n ' _speeit_prefix__best_loop_sec = 99999999999.0',\n ' _speeit_prefix__second_best_loop_sec = 99999999999.0',\n ' _speeit_prefix__worst_loop_sec = 0.0',\n ' _speeit_prefix__second_worst_loop_sec = 0.0',\n ' if _speeit_prefix__run_sec is None:', ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,'\n , ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', ' elif _speeit_prefix__run_sec == -1:',\n ' # only run it once',\n ' _speeit_prefix__run_once = True', ' else:',\n ' _speeit_prefix__run_once = False',\n ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()'\n , ' while True:', ' _speeit_prefix__loops += 1',\n ' _speeit_prefix__result_time = 0', '',\n ' # ==================== START CODE BLOCK ==================== #'\n , '']\n final_inner_function_lines.extend(inner_function_lines_part2)\n final_inner_function_lines.extend(final_param_line)\n final_inner_function_lines.extend(adjusted_func_code_line)\n inner_function_lines_rest = ['',\n ' # ==================== END CODE BLOCK ==================== #'\n , '',\n ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:'\n ,\n ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec'\n ,\n ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:'\n ,\n ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec'\n ,\n ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time'\n , ' if _speeit_prefix__run_once:', ' break',\n ' # check if we have to get out',\n ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:'\n , ' break',\n ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops'\n ,\n ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:',\n ' _speeit_prefix__second_best_loop_sec = -1.0',\n ' if _speeit_prefix__second_worst_loop_sec == 0.0:',\n ' _speeit_prefix__second_worst_loop_sec = -1.0',\n ' return {', ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', '']\n final_inner_function_lines.extend(inner_function_lines_rest)\n return '\\n'.join(final_inner_function_lines)\n\n\ndef speedit_benchmark(func_dict, setup_line_list, use_func_name=True,\n output_in_sec=False, benchmarkit__with_gc=False,\n benchmarkit__check_too_fast=True, benchmarkit__rank_by='best',\n benchmarkit__run_sec=1, benchmarkit__repeat=3):\n \"\"\" Returns one txt string for the ready comparison table: format is conform with reStructuredText\n\n Usage:\n\n .. code-block:: python\n\n func_dict = {\n 'function_f1': (function_f1, [act_one_hamlet], {}),\n 'function_f2': (function_f2, [act_one_hamlet], {}),\n 'function_f3': (function_f3, [act_one_hamlet], {}),\n }\n\n setup_line_list = [\n 'from random import shuffle',\n 'from os.path import abspath, dirname, join',\n 'MY_CONSTANT = 15'\n ]\n\n benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3)\n\n Args:\n func_dict (dict): mapping function names to functions\n value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments)\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n\n .. warning:: no multiline string or indented code line\n\n use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name`\n\n output_in_sec (int): if true the output is keep in seconds if false it is transformed to:\n second (s)\n millisecond (ms) One thousandth of one second\n microsecond (µs) One millionth of one second\n nanosecond (ns) One billionth of one second\n\n benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing\n\n benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n benchmarkit__rank_by (str): `best` or `average`\n\n benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec\n\n - if benchmarkit__run_sec is -1: then the generated function source code is only run once\n\n - if benchmarkit__run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n benchmarkit__repeat (int): how often everything is repeated\n This is a convenience variable that calls the whole setup repeatedly\n\n Returns:\n str: ready to print or write to file: table format is conform with reStructuredText\n\n Raises:\n SpeedIT.Err\n \"\"\"\n if not func_dict:\n raise Err('speedit_benchmark()',\n 'At least one function must be defined in `func_dict`: <{}>'.\n format(func_dict))\n if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average':\n raise Err('speedit_benchmark()',\n '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'\n .format(benchmarkit__rank_by))\n if benchmarkit__repeat < 1:\n raise Err('speedit_benchmark()',\n '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.\n format(benchmarkit__repeat))\n all_final_lines = []\n perf_counter_reference_time = _helper_get_perf_counter_reference_time()\n if benchmarkit__run_sec is None:\n all_final_lines.extend([\n '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================'\n , '', ''])\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_, func_positional_arguments,\n func_keyword_arguments, setup_line_list,\n benchmarkit__check_too_fast, benchmarkit__run_sec, name,\n perf_counter_reference_time).benchmark_it(benchmarkit__with_gc)\n all_final_lines.extend([\n '===================== function name: <{}>'.format(\n func_name), '', benchmark_result, '', ''])\n else:\n title_line = (\n 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '\n .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec)\n )\n for repeat_all in range(benchmarkit__repeat):\n table = []\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_,\n func_positional_arguments, func_keyword_arguments,\n setup_line_list, benchmarkit__check_too_fast,\n benchmarkit__run_sec, name, perf_counter_reference_time\n ).benchmark_it(with_gc=benchmarkit__with_gc)\n table.append(benchmark_result)\n if benchmarkit__rank_by == 'best':\n table = sorted(table, key=itemgetter('best_loop_sec'))\n compare_reference = table[0]['best_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'best_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n elif benchmarkit__rank_by == 'average':\n table = sorted(table, key=itemgetter('avg_loop_sec'))\n compare_reference = table[0]['avg_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'avg_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n header_mapping = [('name', 'name'), ('rank-{}'.format(\n benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), (\n 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), (\n 'best_loop', 'best_loop_sec'), ('second_best_loop',\n 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'),\n ('second_worst_loop', 'second_worst_loop_sec'), (\n 'all_loops time', 'all_loops_time_sec')]\n all_final_lines.extend(get_table_rst_formatted_lines(table,\n header_mapping, title_line))\n all_final_lines.extend(['', ''])\n return '\\n'.join(all_final_lines)\n", "step-4": "<mask token>\nimport gc\nfrom inspect import signature, getsourcelines\nfrom operator import itemgetter\nfrom time import perf_counter\nfrom SpeedIT.ProjectErr import Err\nfrom SpeedIT.Utils import format_time, get_table_rst_formatted_lines\n\n\ndef _helper_get_perf_counter_reference_time():\n \"\"\" Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n Returns:\n float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times\n \"\"\"\n _result_time = 99999999999.0\n for y_ in range(50):\n for x_ in range(3000):\n temp_start = perf_counter()\n temp_time = perf_counter() - temp_start\n if temp_time < _result_time:\n _result_time = temp_time\n return _result_time * 2\n\n\nclass _TimeIT(object):\n \"\"\" Class for timing execution speed of function code.\n\n Partially based on code from python timeit.py\n\n This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block`\n This avoids calling into the function itself\n\n Args:\n func (function):\n\n .. warning:: the `func` function may not have any return statements: but any inner function can have one\n\n OK\n\n .. code-block:: python\n\n def example_formal_func_inner(data_):\n shuffle(data_)\n def fninner(x):\n return x[1]\n result = sorted(data_.items(), key=fninner)\n del result\n\n NOT OK\n\n .. code-block:: python\n\n def example_pep265(data_):\n shuffle(data_)\n result = sorted(data_.items(), key=itemgetter(1))\n return result\n\n func_positional_arguments (list): positional arguments for the function\n func_keyword_arguments (dict): any keyword arguments for the function\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n this part is executed once before the actual `func code block` enters the loop\n\n .. warning:: no multiline string or indented code line\n\n check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over)\n\n - if run_sec is -1: then the generated function source code is only run once\n\n - if run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n name (str): the name used for the output `name` part\n\n perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time()\n \"\"\"\n\n def __init__(self, func, args_list, kwargs_dict, setup_line_list,\n check_too_fast, run_sec, name, perf_counter_reference_time):\n \"\"\" Constructor. See class doc string.\n \"\"\"\n self.func = func\n self.orig_func_name = getattr(self.func, '__name__', self.func)\n self.args_list = args_list.copy()\n self.kwargs_dict = kwargs_dict.copy()\n self.setup_line_list = setup_line_list\n self.check_too_fast = check_too_fast\n self.run_sec = run_sec\n self.name = name\n self.perf_counter_reference_time = perf_counter_reference_time\n if callable(self.func):\n _ns = {}\n self.src = self.__get_final_inner_function()\n if (self.run_sec is not None and self.run_sec != -1 and self.\n run_sec < 0.1):\n raise Err('_TimeIT.__init__()',\n 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'\n .format(self.run_sec))\n _code = compile(self.src, 'benchmarkit-src', 'exec')\n exec(_code, globals(), _ns)\n self.inner = _ns['inner']\n else:\n raise ValueError('<func>: is not a `callable` type: <{}>'.\n format(self.func))\n\n def benchmark_it(self, with_gc):\n \"\"\" Returns timing result for the `func code block`\n\n .. note::\n By default, timeit() temporarily turns off garbage collection during the timing.\n The advantage of this approach is that it makes independent timings more comparable.\n This disadvantage is that GC may be an important component of the performance of the function being measured.\n If so, GC can be re-enabled as the with_gc=True\n\n Returns:\n dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec\n\n - loops: how many times the `func code block` was executed (looped over)\n - all_loops_time_sec: the total time in seconds for all loops:\n only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime\n - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time:\n if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it\n - two_best_loop_sec: time in seconds for the two fastest of all loops\n - two_worst_loop_sec: time in seconds for the two slowest of all loops\n\n Raises:\n SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1\n \"\"\"\n if self.run_sec is None:\n benchmark_result = self.src\n elif with_gc:\n gc_old = gc.isenabled()\n gc.enable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if not gc_old:\n gc.disable()\n else:\n gc_old = gc.isenabled()\n gc.disable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if gc_old:\n gc.enable()\n return benchmark_result\n\n def __get_final_inner_function(self):\n \"\"\" Returns a string of an generated inner function with the code body from: func\n\n Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict\n\n .. warnings:: the `func` function may not have any return statements: but any inner function can have one\n\n Returns:\n str: generated inner function\n\n Raises:\n SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation\n \"\"\"\n has_block_speedit = False\n _start_block_stripped_line = ''\n start_tag_block_speedit = 0\n end_tag_block_speedit = 0\n func_line, lnum = getsourcelines(self.func)\n sig = signature(self.func)\n indent_ = None\n func_def_indent = len(func_line[0]) - len(func_line[0].lstrip())\n func_body = func_line[1:]\n search_docstring = False\n first_none_docstring_idx = 0\n for idx, line_orig in enumerate(func_body):\n rstripped_line = line_orig.rstrip()\n if rstripped_line:\n stripped_codeline = rstripped_line.lstrip()\n if stripped_codeline[0] == '#':\n if not ('::SPEEDIT::' in stripped_codeline or \n '**SPEEDIT**' in stripped_codeline):\n continue\n if search_docstring:\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = False\n continue\n else:\n codebody_indent = len(rstripped_line) - len(\n stripped_codeline)\n indent_ = codebody_indent - func_def_indent\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3\n ] == \"'''\":\n search_docstring = True\n continue\n first_none_docstring_idx = idx\n break\n adjusted_func_code_line = []\n for line_orig in func_body[first_none_docstring_idx:]:\n if line_orig:\n rstrip_line = line_orig.rstrip()\n if rstrip_line:\n stripped_line = rstrip_line.lstrip()\n if stripped_line[0] == '#':\n if ('::SPEEDIT::' in stripped_line or '**SPEEDIT**' in\n stripped_line):\n has_block_speedit = True\n else:\n continue\n line_indentation = len(rstrip_line) - len(stripped_line)\n if line_indentation % indent_ != 0:\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\n seems we encountered a wrong indented line: line_indentation: <{}>\n {}\"\"\"\n .format(self.orig_func_name, indent_,\n line_indentation, line_orig))\n line_indentation_level = int((line_indentation -\n func_def_indent) / indent_) + 1\n if has_block_speedit:\n if '::SPEEDIT::' in stripped_line:\n if (start_tag_block_speedit !=\n end_tag_block_speedit):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an END-TAG <**SPEEDIT**>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n start_tag_block_speedit += 1\n _start_block_stripped_line = stripped_line\n elif '**SPEEDIT**' in stripped_line:\n if (end_tag_block_speedit != \n start_tag_block_speedit - 1):\n raise Err('_TimeIT.get_final_inner_function',\n \"\"\"<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\n Expected an START-TAG <::SPEEDIT::>: \n {}\"\"\"\n .format(self.orig_func_name,\n has_block_speedit, line_orig))\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(' ' *\n line_indentation_level +\n 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'\n .format(_start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n end_tag_block_speedit += 1\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n else:\n adjusted_func_code_line.append(' ' *\n line_indentation_level + stripped_line)\n if has_block_speedit:\n if start_tag_block_speedit != end_tag_block_speedit:\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n '\n + ' _start_block_stripped_line: <{}>'.format(\n _start_block_stripped_line) +\n '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n else:\n adjusted_func_code_line.insert(0,\n ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added'\n )\n adjusted_func_code_line.append(\n ' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added'\n )\n if self.check_too_fast:\n adjusted_func_code_line.append(\n ' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'\n .format(self.orig_func_name) +\n ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added'\n )\n final_param_line = []\n for param, value in sig.parameters.items():\n if value.kind == value.POSITIONAL_OR_KEYWORD:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.POSITIONAL_ONLY:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n raise Err('_TimeIT.get_final_inner_function()',\n 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'\n .format(param, value.kind))\n elif value.kind == value.VAR_POSITIONAL:\n parameter_line = '{} = {}'.format(param, self.args_list)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.KEYWORD_ONLY:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else:\n value_to_set = value.default\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append(' ' * 2 + parameter_line)\n elif value.kind == value.VAR_KEYWORD:\n parameter_line = '{} = {}'.format(param, self.kwargs_dict)\n final_param_line.append(' ' * 2 + parameter_line)\n else:\n continue\n final_setup_lines = []\n for setup_line in self.setup_line_list:\n setup_line = setup_line.strip()\n if setup_line:\n final_setup_lines.append(' ' + setup_line)\n final_inner_function_lines = [\n 'def inner(): # orig function name: <{}>'.format(self.\n orig_func_name),\n ' from time import perf_counter as _speeit_prefix__perf_counter',\n '', ' _speeit_prefix__run_sec = {}'.format(self.run_sec), '',\n ' # ==================== START SETUP LINES ==================== #'\n , '']\n final_inner_function_lines.extend(final_setup_lines)\n inner_function_lines_part2 = ['',\n ' # ==================== END SETUP LINES ==================== #',\n '',\n ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times'\n , ' _speeit_prefix__check_reference_time = {}'.format(self.\n perf_counter_reference_time), ' _speeit_prefix__loops = 0',\n ' _speeit_prefix__all_loops_time_sec = 0.0',\n ' _speeit_prefix__avg_loop_sec = 0.0',\n ' _speeit_prefix__best_loop_sec = 99999999999.0',\n ' _speeit_prefix__second_best_loop_sec = 99999999999.0',\n ' _speeit_prefix__worst_loop_sec = 0.0',\n ' _speeit_prefix__second_worst_loop_sec = 0.0',\n ' if _speeit_prefix__run_sec is None:', ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,'\n , ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', ' elif _speeit_prefix__run_sec == -1:',\n ' # only run it once',\n ' _speeit_prefix__run_once = True', ' else:',\n ' _speeit_prefix__run_once = False',\n ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()'\n , ' while True:', ' _speeit_prefix__loops += 1',\n ' _speeit_prefix__result_time = 0', '',\n ' # ==================== START CODE BLOCK ==================== #'\n , '']\n final_inner_function_lines.extend(inner_function_lines_part2)\n final_inner_function_lines.extend(final_param_line)\n final_inner_function_lines.extend(adjusted_func_code_line)\n inner_function_lines_rest = ['',\n ' # ==================== END CODE BLOCK ==================== #'\n , '',\n ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:'\n ,\n ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec'\n ,\n ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time'\n ,\n ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:'\n ,\n ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec'\n ,\n ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time'\n , ' if _speeit_prefix__run_once:', ' break',\n ' # check if we have to get out',\n ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:'\n , ' break',\n ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops'\n ,\n ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:',\n ' _speeit_prefix__second_best_loop_sec = -1.0',\n ' if _speeit_prefix__second_worst_loop_sec == 0.0:',\n ' _speeit_prefix__second_worst_loop_sec = -1.0',\n ' return {', ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,'\n , ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec'\n , ' }', '']\n final_inner_function_lines.extend(inner_function_lines_rest)\n return '\\n'.join(final_inner_function_lines)\n\n\ndef speedit_benchmark(func_dict, setup_line_list, use_func_name=True,\n output_in_sec=False, benchmarkit__with_gc=False,\n benchmarkit__check_too_fast=True, benchmarkit__rank_by='best',\n benchmarkit__run_sec=1, benchmarkit__repeat=3):\n \"\"\" Returns one txt string for the ready comparison table: format is conform with reStructuredText\n\n Usage:\n\n .. code-block:: python\n\n func_dict = {\n 'function_f1': (function_f1, [act_one_hamlet], {}),\n 'function_f2': (function_f2, [act_one_hamlet], {}),\n 'function_f3': (function_f3, [act_one_hamlet], {}),\n }\n\n setup_line_list = [\n 'from random import shuffle',\n 'from os.path import abspath, dirname, join',\n 'MY_CONSTANT = 15'\n ]\n\n benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3)\n\n Args:\n func_dict (dict): mapping function names to functions\n value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments)\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n\n .. warning:: no multiline string or indented code line\n\n use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name`\n\n output_in_sec (int): if true the output is keep in seconds if false it is transformed to:\n second (s)\n millisecond (ms) One thousandth of one second\n microsecond (µs) One millionth of one second\n nanosecond (ns) One billionth of one second\n\n benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing\n\n benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n benchmarkit__rank_by (str): `best` or `average`\n\n benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec\n\n - if benchmarkit__run_sec is -1: then the generated function source code is only run once\n\n - if benchmarkit__run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n benchmarkit__repeat (int): how often everything is repeated\n This is a convenience variable that calls the whole setup repeatedly\n\n Returns:\n str: ready to print or write to file: table format is conform with reStructuredText\n\n Raises:\n SpeedIT.Err\n \"\"\"\n if not func_dict:\n raise Err('speedit_benchmark()',\n 'At least one function must be defined in `func_dict`: <{}>'.\n format(func_dict))\n if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average':\n raise Err('speedit_benchmark()',\n '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'\n .format(benchmarkit__rank_by))\n if benchmarkit__repeat < 1:\n raise Err('speedit_benchmark()',\n '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.\n format(benchmarkit__repeat))\n all_final_lines = []\n perf_counter_reference_time = _helper_get_perf_counter_reference_time()\n if benchmarkit__run_sec is None:\n all_final_lines.extend([\n '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================'\n , '', ''])\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_, func_positional_arguments,\n func_keyword_arguments, setup_line_list,\n benchmarkit__check_too_fast, benchmarkit__run_sec, name,\n perf_counter_reference_time).benchmark_it(benchmarkit__with_gc)\n all_final_lines.extend([\n '===================== function name: <{}>'.format(\n func_name), '', benchmark_result, '', ''])\n else:\n title_line = (\n 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '\n .format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec)\n )\n for repeat_all in range(benchmarkit__repeat):\n table = []\n for func_name, (function_, func_positional_arguments,\n func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, '__name__', function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_,\n func_positional_arguments, func_keyword_arguments,\n setup_line_list, benchmarkit__check_too_fast,\n benchmarkit__run_sec, name, perf_counter_reference_time\n ).benchmark_it(with_gc=benchmarkit__with_gc)\n table.append(benchmark_result)\n if benchmarkit__rank_by == 'best':\n table = sorted(table, key=itemgetter('best_loop_sec'))\n compare_reference = table[0]['best_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'best_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n elif benchmarkit__rank_by == 'average':\n table = sorted(table, key=itemgetter('avg_loop_sec'))\n compare_reference = table[0]['avg_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format(dict_[\n 'avg_loop_sec'] / compare_reference * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_[\n 'best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(\n dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_[\n 'worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(\n dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_\n ['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_[\n 'avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_[\n 'best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_[\n 'second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_[\n 'worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_[\n 'second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_[\n 'all_loops_time_sec'])\n header_mapping = [('name', 'name'), ('rank-{}'.format(\n benchmarkit__rank_by), 'rank'), ('compare %', 'compare'), (\n 'num. loops', 'loops'), ('avg_loop', 'avg_loop_sec'), (\n 'best_loop', 'best_loop_sec'), ('second_best_loop',\n 'second_best_loop_sec'), ('worst_loop', 'worst_loop_sec'),\n ('second_worst_loop', 'second_worst_loop_sec'), (\n 'all_loops time', 'all_loops_time_sec')]\n all_final_lines.extend(get_table_rst_formatted_lines(table,\n header_mapping, title_line))\n all_final_lines.extend(['', ''])\n return '\\n'.join(all_final_lines)\n", "step-5": "\"\"\" Benchmark module: can also compare multiple functions\n\"\"\"\nimport gc\nfrom inspect import (\n signature,\n getsourcelines\n)\nfrom operator import itemgetter\nfrom time import perf_counter\n\nfrom SpeedIT.ProjectErr import Err\nfrom SpeedIT.Utils import (\n format_time,\n get_table_rst_formatted_lines\n)\n\n\n\ndef _helper_get_perf_counter_reference_time():\n \"\"\" Helper: Returns 2 times: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n Returns:\n float: 2 times the smallest difference of calling perf_counter() immediately after each other a couple of times\n \"\"\"\n _result_time = 99999999999.0\n for y_ in range(50):\n for x_ in range(3000):\n temp_start = perf_counter()\n temp_time = perf_counter() - temp_start\n if temp_time < _result_time:\n _result_time = temp_time\n return _result_time * 2\n\n\nclass _TimeIT(object):\n \"\"\" Class for timing execution speed of function code.\n\n Partially based on code from python timeit.py\n\n This does not execute the original function but generates a new function which executes only the code body of 'func': `func code block`\n This avoids calling into the function itself\n\n Args:\n func (function):\n\n .. warning:: the `func` function may not have any return statements: but any inner function can have one\n\n OK\n\n .. code-block:: python\n\n def example_formal_func_inner(data_):\n shuffle(data_)\n def fninner(x):\n return x[1]\n result = sorted(data_.items(), key=fninner)\n del result\n\n NOT OK\n\n .. code-block:: python\n\n def example_pep265(data_):\n shuffle(data_)\n result = sorted(data_.items(), key=itemgetter(1))\n return result\n\n func_positional_arguments (list): positional arguments for the function\n func_keyword_arguments (dict): any keyword arguments for the function\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n this part is executed once before the actual `func code block` enters the loop\n\n .. warning:: no multiline string or indented code line\n\n check_too_fast(bool): if True and a code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n run_sec (float or -1 or None): seconds the `func code block` will be executed (looped over)\n\n - if run_sec is -1: then the generated function source code is only run once\n\n - if run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n name (str): the name used for the output `name` part\n\n perf_counter_reference_time (float): passed on see: _helper_get_perf_counter_reference_time()\n \"\"\"\n\n def __init__(self, func, args_list, kwargs_dict, setup_line_list, check_too_fast, run_sec, name, perf_counter_reference_time):\n \"\"\" Constructor. See class doc string.\n \"\"\"\n self.func = func\n self.orig_func_name = getattr(self.func, \"__name__\", self.func)\n self.args_list = args_list.copy()\n self.kwargs_dict = kwargs_dict.copy()\n self.setup_line_list = setup_line_list\n self.check_too_fast = check_too_fast\n self.run_sec = run_sec\n self.name = name\n self.perf_counter_reference_time = perf_counter_reference_time\n if callable(self.func):\n _ns = {}\n self.src = self.__get_final_inner_function()\n if self.run_sec is not None and self.run_sec != -1 and self.run_sec < 0.1:\n raise Err('_TimeIT.__init__()', 'run_sec: <{:.1f}> must be at least <0.1 second> or <-1 to run it once> or <None to print the `func code block`>'.format(self.run_sec))\n\n _code = compile(self.src, 'benchmarkit-src', \"exec\")\n exec(_code, globals(), _ns)\n self.inner = _ns[\"inner\"]\n else:\n raise ValueError('<func>: is not a `callable` type: <{}>'.format(self.func))\n\n\n def benchmark_it(self, with_gc):\n \"\"\" Returns timing result for the `func code block`\n\n .. note::\n By default, timeit() temporarily turns off garbage collection during the timing.\n The advantage of this approach is that it makes independent timings more comparable.\n This disadvantage is that GC may be an important component of the performance of the function being measured.\n If so, GC can be re-enabled as the with_gc=True\n\n Returns:\n dict: benchmark result: dict keys: loops, all_loops_time_sec, avg_loop_sec, best_loop_sec, worst_loop_sec\n\n - loops: how many times the `func code block` was executed (looped over)\n - all_loops_time_sec: the total time in seconds for all loops:\n only loop times are counted not other times: depending on the `func code block` this can be about 25% of the total runtime\n - avg_loop_sec: average loop time in seconds: this should be mostly used as measure time:\n if there where only a very low number of loops - one might want to increase the `run_sec` and rerun it\n - two_best_loop_sec: time in seconds for the two fastest of all loops\n - two_worst_loop_sec: time in seconds for the two slowest of all loops\n\n Raises:\n SpeedIT.Err: example if `run_sec` is not <-1 run once>, <None only print> but less than 0.1\n \"\"\"\n if self.run_sec is None:\n benchmark_result = self.src\n elif with_gc:\n gc_old = gc.isenabled()\n gc.enable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if not gc_old:\n gc.disable()\n else:\n gc_old = gc.isenabled()\n gc.disable()\n try:\n benchmark_result = self.inner()\n benchmark_result['name'] = self.name\n finally:\n if gc_old:\n gc.enable()\n return benchmark_result\n\n def __get_final_inner_function(self):\n \"\"\" Returns a string of an generated inner function with the code body from: func\n\n Tries to generate a function with the 'code-body' from the passed on func as well as the args_list, kwargs_dict\n\n .. warnings:: the `func` function may not have any return statements: but any inner function can have one\n\n Returns:\n str: generated inner function\n\n Raises:\n SpeedIT.Err: example if an indentation is encountered which is not a multiple of the first found indentation\n \"\"\"\n has_block_speedit = False\n _start_block_stripped_line = ''\n start_tag_block_speedit = 0\n end_tag_block_speedit = 0\n\n func_line, lnum = getsourcelines(self.func)\n sig = signature(self.func)\n indent_ = None\n func_def_indent = len(func_line[0]) - len(func_line[0].lstrip())\n func_body = func_line[1:]\n search_docstring = False\n\n # PREPARE: remove docstring and get final indentation\n first_none_docstring_idx = 0\n for idx, line_orig in enumerate(func_body):\n rstripped_line = line_orig.rstrip()\n if rstripped_line:\n stripped_codeline = rstripped_line.lstrip()\n if stripped_codeline[0] == '#': # remove comment lines\n if not ('::SPEEDIT::' in stripped_codeline or '**SPEEDIT**' in stripped_codeline):\n continue\n if search_docstring:\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3] == \"'''\":\n search_docstring = False\n continue\n else:\n codebody_indent = len(rstripped_line) - len(stripped_codeline)\n indent_ = codebody_indent - func_def_indent\n # Check if we have a docstring\n if stripped_codeline[0:3] == '\"\"\"' or stripped_codeline[0:3] == \"'''\":\n search_docstring = True\n continue\n first_none_docstring_idx = idx\n break\n\n # do the func code body\n adjusted_func_code_line = []\n for line_orig in func_body[first_none_docstring_idx:]:\n # remove empty\n if line_orig:\n # get indentation check it is a multiple of indent_\n rstrip_line = line_orig.rstrip()\n if rstrip_line:\n stripped_line = rstrip_line.lstrip()\n if stripped_line[0] == '#': # remove comment lines: keep any with ::SPEEDIT::\n if '::SPEEDIT::' in stripped_line or '**SPEEDIT**' in stripped_line:\n has_block_speedit = True\n else:\n continue\n line_indentation = len(rstrip_line) - len(stripped_line)\n if line_indentation % indent_ != 0:\n raise Err('_TimeIT.get_final_inner_function', '<{}>: ERROR: indentation must be a multiple of the second function line: <{}>\\n seems we encountered a wrong indented line: line_indentation: <{}>\\n {}'.format(self.orig_func_name, indent_, line_indentation, line_orig))\n line_indentation_level = int((line_indentation - func_def_indent) / indent_) + 1 # need one extra level\n\n if has_block_speedit:\n if '::SPEEDIT::' in stripped_line:\n if start_tag_block_speedit != end_tag_block_speedit:\n # expected END Tag\n raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\\n Expected an END-TAG <**SPEEDIT**>: \\n {}'.format(self.orig_func_name, has_block_speedit, line_orig))\n adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added')\n start_tag_block_speedit += 1\n _start_block_stripped_line = stripped_line\n elif '**SPEEDIT**' in stripped_line:\n if end_tag_block_speedit != start_tag_block_speedit - 1:\n # expected START TAG\n raise Err('_TimeIT.get_final_inner_function', '<{}>: FUNCTION INNER TAG ERROR: has_block_speedit: <{}>\\n Expected an START-TAG <::SPEEDIT::>: \\n {}'.format(self.orig_func_name, has_block_speedit, line_orig))\n # Do this inner result\n adjusted_func_code_line.append((' ' * line_indentation_level) + '_speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added')\n if self.check_too_fast:\n adjusted_func_code_line.append((' ' * line_indentation_level) + 'if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added')\n end_tag_block_speedit += 1\n else:\n adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line)\n else:\n adjusted_func_code_line.append((' ' * line_indentation_level) + stripped_line)\n\n # CHECK: LAST END TAG\n # e.g. if a function body ends with an END-TAG this is not returned by: inspect.getsourcelines(self.func)\n if has_block_speedit:\n if start_tag_block_speedit != end_tag_block_speedit:\n # Do the last inner result: ADDING an END-TAG\n adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added')\n if self.check_too_fast:\n adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\\\\n ' + ' _start_block_stripped_line: <{}>'.format(_start_block_stripped_line) + '\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added')\n\n # add the normal perf_counter time lines\n else:\n adjusted_func_code_line.insert(0, ' _speeit_prefix__stmt_inner_start = _speeit_prefix__perf_counter() # ::SPEEDIT::START internally added')\n adjusted_func_code_line.append(' _speeit_prefix__result_time += _speeit_prefix__perf_counter() - _speeit_prefix__stmt_inner_start # **SPEEDIT**END internally added')\n\n if self.check_too_fast:\n adjusted_func_code_line.append(' if _speeit_prefix__result_time < _speeit_prefix__check_reference_time: raise Exception(\"in function: <{}>'.format(self.orig_func_name) + ' code block: too fast to measure:\\\\n code part: _speeit_prefix__result_time: <{:.11f}> 2 times _smallest_perf_counter_time: <{:.11f}>\".format(_speeit_prefix__result_time, _speeit_prefix__check_reference_time)) # SPEEDIT: internally added')\n\n # Do the arguments\n final_param_line = []\n for param, value in sig.parameters.items():\n if value.kind == value.POSITIONAL_OR_KEYWORD:\n # check if we have a keyword\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else: # use the positional\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append((' ' * 2) + parameter_line)\n elif value.kind == value.POSITIONAL_ONLY:\n value_to_set = self.args_list.pop(0)\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append((' ' * 2) + parameter_line)\n # TODO: From docs: 3.4 Python has no explicit syntax for defining positional-only parameters, but many built-in and extension module functions (especially those that accept only one or two parameters) accept them.\n raise Err('_TimeIT.get_final_inner_function()', 'POSITIONAL_ONLY !! not sure what to do .. check in future if needed: param: <{}> value.kind: <{}>'.format(param, value.kind))\n elif value.kind == value.VAR_POSITIONAL: # do the remaining POSITIONAL arguments\n parameter_line = '{} = {}'.format(param, self.args_list)\n final_param_line.append((' ' * 2) + parameter_line)\n elif value.kind == value.KEYWORD_ONLY:\n if param in self.kwargs_dict:\n value_to_set = self.kwargs_dict.pop(param)\n else: # use the default\n value_to_set = value.default\n if isinstance(value_to_set, str):\n parameter_line = '{} = \"{}\"'.format(param, value_to_set)\n else:\n parameter_line = '{} = {}'.format(param, value_to_set)\n final_param_line.append((' ' * 2) + parameter_line)\n elif value.kind == value.VAR_KEYWORD: # do the remaining KEYWORD arguments\n parameter_line = '{} = {}'.format(param, self.kwargs_dict)\n final_param_line.append((' ' * 2) + parameter_line)\n else:\n continue\n\n # do self.setup_line_list\n final_setup_lines = []\n for setup_line in self.setup_line_list:\n setup_line = setup_line.strip()\n if setup_line:\n final_setup_lines.append(' ' + setup_line)\n\n final_inner_function_lines = [\n 'def inner(): # orig function name: <{}>'.format(self.orig_func_name),\n ' from time import perf_counter as _speeit_prefix__perf_counter',\n '',\n ' _speeit_prefix__run_sec = {}'.format(self.run_sec),\n '',\n ' # ==================== START SETUP LINES ==================== #',\n '',\n ]\n\n final_inner_function_lines.extend(final_setup_lines)\n\n inner_function_lines_part2 = [\n '',\n ' # ==================== END SETUP LINES ==================== #',\n '',\n ' # The smallest difference of calling _speeit_prefix__perf_counter() immediately after each other a couple of times',\n ' _speeit_prefix__check_reference_time = {}'.format(self.perf_counter_reference_time),\n ' _speeit_prefix__loops = 0',\n ' _speeit_prefix__all_loops_time_sec = 0.0',\n ' _speeit_prefix__avg_loop_sec = 0.0',\n ' _speeit_prefix__best_loop_sec = 99999999999.0',\n ' _speeit_prefix__second_best_loop_sec = 99999999999.0',\n ' _speeit_prefix__worst_loop_sec = 0.0',\n ' _speeit_prefix__second_worst_loop_sec = 0.0',\n ' if _speeit_prefix__run_sec is None:',\n ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,',\n ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec',\n ' }',\n ' elif _speeit_prefix__run_sec == -1:',\n ' # only run it once',\n ' _speeit_prefix__run_once = True',\n ' else:',\n ' _speeit_prefix__run_once = False',\n ' _speeit_prefix__main_start_time = _speeit_prefix__perf_counter()',\n ' while True:',\n ' _speeit_prefix__loops += 1',\n ' _speeit_prefix__result_time = 0',\n '',\n ' # ==================== START CODE BLOCK ==================== #',\n '',\n ]\n\n final_inner_function_lines.extend(inner_function_lines_part2)\n\n final_inner_function_lines.extend(final_param_line)\n final_inner_function_lines.extend(adjusted_func_code_line)\n\n inner_function_lines_rest = [\n '',\n ' # ==================== END CODE BLOCK ==================== #',\n '',\n ' _speeit_prefix__all_loops_time_sec += _speeit_prefix__result_time',\n ' if _speeit_prefix__result_time <= _speeit_prefix__best_loop_sec:',\n ' _speeit_prefix__second_best_loop_sec = _speeit_prefix__best_loop_sec',\n ' _speeit_prefix__best_loop_sec = _speeit_prefix__result_time',\n ' if _speeit_prefix__result_time >= _speeit_prefix__worst_loop_sec:',\n ' _speeit_prefix__second_worst_loop_sec = _speeit_prefix__worst_loop_sec',\n ' _speeit_prefix__worst_loop_sec = _speeit_prefix__result_time',\n ' if _speeit_prefix__run_once:',\n ' break',\n ' # check if we have to get out',\n ' if _speeit_prefix__perf_counter() - _speeit_prefix__main_start_time >= _speeit_prefix__run_sec:',\n ' break',\n ' _speeit_prefix__avg_loop_sec = _speeit_prefix__all_loops_time_sec / _speeit_prefix__loops',\n ' if _speeit_prefix__second_best_loop_sec == 99999999999.0:',\n ' _speeit_prefix__second_best_loop_sec = -1.0',\n ' if _speeit_prefix__second_worst_loop_sec == 0.0:',\n ' _speeit_prefix__second_worst_loop_sec = -1.0',\n ' return {',\n ' \"loops\": _speeit_prefix__loops,',\n ' \"all_loops_time_sec\": _speeit_prefix__all_loops_time_sec,',\n ' \"avg_loop_sec\": _speeit_prefix__avg_loop_sec,',\n ' \"best_loop_sec\": _speeit_prefix__best_loop_sec,',\n ' \"second_best_loop_sec\": _speeit_prefix__second_best_loop_sec,',\n ' \"worst_loop_sec\": _speeit_prefix__worst_loop_sec,',\n ' \"second_worst_loop_sec\": _speeit_prefix__second_worst_loop_sec',\n ' }',\n ''\n ]\n final_inner_function_lines.extend(inner_function_lines_rest)\n\n return '\\n'.join(final_inner_function_lines)\n\n\ndef speedit_benchmark(func_dict, setup_line_list, use_func_name=True, output_in_sec=False, benchmarkit__with_gc=False, benchmarkit__check_too_fast=True, benchmarkit__rank_by='best', benchmarkit__run_sec=1, benchmarkit__repeat=3):\n \"\"\" Returns one txt string for the ready comparison table: format is conform with reStructuredText\n\n Usage:\n\n .. code-block:: python\n\n func_dict = {\n 'function_f1': (function_f1, [act_one_hamlet], {}),\n 'function_f2': (function_f2, [act_one_hamlet], {}),\n 'function_f3': (function_f3, [act_one_hamlet], {}),\n }\n\n setup_line_list = [\n 'from random import shuffle',\n 'from os.path import abspath, dirname, join',\n 'MY_CONSTANT = 15'\n ]\n\n benchmark_result = BenchmarkIT.speedit_benchmark(func_dict, setup_line_list, benchmarkit__run_sec=1.0, output_in_sec=True, use_func_name=True, benchmarkit__with_gc=False, benchmarkit__repeat=3)\n\n Args:\n func_dict (dict): mapping function names to functions\n value format: tuple (function, list_of_positional_arguments, dictionary_of_keyword_arguments)\n setup_line_list (list): of strings with import lines needed by the functions any global data ect..\n\n .. warning:: no multiline string or indented code line\n\n use_func_name (bool): if True the function name will be used in the output `name` if False the `func_dict key` will be used in the the output `name`\n\n output_in_sec (int): if true the output is keep in seconds if false it is transformed to:\n second (s)\n millisecond (ms) One thousandth of one second\n microsecond (µs) One millionth of one second\n nanosecond (ns) One billionth of one second\n\n benchmarkit__with_gc (bool): if True gc is kept on during timing: if False: turns off garbage collection during the timing\n\n benchmarkit__check_too_fast(bool): if True and aa code block is timed faster than a `Reference-Time` an Exception is raised.\n\n - Reference-Time: the smallest difference of calling perf_counter() immediately after each other a couple of times\n\n .. seealso:: _helper_get_perf_counter_reference_time()\n\n benchmarkit__rank_by (str): `best` or `average`\n\n benchmarkit__run_sec (float or -1 or None): the number of loops per run is scaled to approximately fit the benchmarkit__run_sec\n\n - if benchmarkit__run_sec is -1: then the generated function source code is only run once\n\n - if benchmarkit__run_sec is None: then the generated function source code is only printed\n this is mainly useful to see the exact final `func code block` which will be timed.\n\n benchmarkit__repeat (int): how often everything is repeated\n This is a convenience variable that calls the whole setup repeatedly\n\n Returns:\n str: ready to print or write to file: table format is conform with reStructuredText\n\n Raises:\n SpeedIT.Err\n \"\"\"\n if not func_dict:\n raise Err('speedit_benchmark()', 'At least one function must be defined in `func_dict`: <{}>'.format(func_dict))\n if benchmarkit__rank_by != 'best' and benchmarkit__rank_by != 'average':\n raise Err('speedit_benchmark()', '<benchmarkit__rank_by> must be one of: <best, average> We got: <{}>'.format(benchmarkit__rank_by))\n if benchmarkit__repeat < 1:\n raise Err('speedit_benchmark()', '<benchmarkit__repeat> must be greater than <0> We got: <{}>'.format(benchmarkit__repeat))\n\n\n all_final_lines = []\n\n # get once the perf_counter_reference_time\n perf_counter_reference_time = _helper_get_perf_counter_reference_time()\n\n if benchmarkit__run_sec is None:\n all_final_lines.extend([\n '================ RUN SECONDS: benchmarkit__run_sec was defined as: None (benchmarkit__run_sec=None) ================',\n '',\n ''\n ])\n # Run all only once and get the code\n for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, \"__name__\", function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(benchmarkit__with_gc)\n all_final_lines.extend([\n '===================== function name: <{}>'.format(func_name),\n '',\n benchmark_result,\n '',\n '',\n ])\n else:\n title_line = 'SpeedIT: `BenchmarkIT` for: <{}> functions. benchmarkit__with_gc: <{}> benchmarkit__run_sec: <{}> '.format(len(func_dict), benchmarkit__with_gc, benchmarkit__run_sec)\n\n for repeat_all in range(benchmarkit__repeat):\n table = []\n for func_name, (function_, func_positional_arguments, func_keyword_arguments) in sorted(func_dict.items()):\n if use_func_name:\n name = getattr(function_, \"__name__\", function_)\n else:\n name = func_name\n benchmark_result = _TimeIT(function_, func_positional_arguments, func_keyword_arguments, setup_line_list, benchmarkit__check_too_fast, benchmarkit__run_sec, name, perf_counter_reference_time).benchmark_it(with_gc=benchmarkit__with_gc)\n table.append(benchmark_result)\n\n if benchmarkit__rank_by == 'best':\n table = sorted(table, key=itemgetter('best_loop_sec'))\n compare_reference = table[0]['best_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format((dict_['best_loop_sec'] / compare_reference) * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_['best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec'])\n elif benchmarkit__rank_by == 'average':\n table = sorted(table, key=itemgetter('avg_loop_sec'))\n compare_reference = table[0]['avg_loop_sec']\n for idx, dict_ in enumerate(table):\n dict_['compare'] = '{:,.3f}'.format((dict_['avg_loop_sec'] / compare_reference) * 100.0)\n dict_['rank'] = '{:,}'.format(idx + 1)\n dict_['loops'] = '{:,}'.format(dict_['loops'])\n if output_in_sec:\n dict_['avg_loop_sec'] = '{:.11f}'.format(dict_['avg_loop_sec'])\n dict_['best_loop_sec'] = '{:.11f}'.format(dict_['best_loop_sec'])\n if dict_['second_best_loop_sec'] == -1.0:\n dict_['second_best_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_best_loop_sec'] = '{:.11f}'.format(dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = '{:.11f}'.format(dict_['worst_loop_sec'])\n if dict_['second_worst_loop_sec'] == -1.0:\n dict_['second_worst_loop_sec'] = 'NOT-MEASURED'\n else:\n dict_['second_worst_loop_sec'] = '{:.11f}'.format(dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = '{:.11f}'.format(dict_['all_loops_time_sec'])\n else:\n dict_['avg_loop_sec'] = format_time(dict_['avg_loop_sec'])\n dict_['best_loop_sec'] = format_time(dict_['best_loop_sec'])\n dict_['second_best_loop_sec'] = format_time(dict_['second_best_loop_sec'])\n dict_['worst_loop_sec'] = format_time(dict_['worst_loop_sec'])\n dict_['second_worst_loop_sec'] = format_time(dict_['second_worst_loop_sec'])\n dict_['all_loops_time_sec'] = format_time(dict_['all_loops_time_sec'])\n\n header_mapping = [\n ('name', 'name'),\n ('rank-{}'.format(benchmarkit__rank_by), 'rank'),\n ('compare %', 'compare'),\n ('num. loops', 'loops'),\n ('avg_loop', 'avg_loop_sec'),\n ('best_loop', 'best_loop_sec'),\n ('second_best_loop', 'second_best_loop_sec'),\n ('worst_loop', 'worst_loop_sec'),\n ('second_worst_loop', 'second_worst_loop_sec'),\n ('all_loops time', 'all_loops_time_sec')\n ]\n\n all_final_lines.extend(get_table_rst_formatted_lines(table, header_mapping, title_line))\n all_final_lines.extend([\n '',\n '',\n ])\n\n return '\\n'.join(all_final_lines)\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]