code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
# -*- coding: utf-8 -*- """ Modul do zapisu piosenki (wczytywanie ustawien (defs.txt), tworzenie .wav, "zglasnianie utworu") """ print("Laduje modul o nazwie: "+__name__) import numpy as np def wczytywanie_ustawien(plik_konfiguracyjny = "defs.txt"): """ wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika arg: str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi wartosciami parametrow (tempo itd.) wyjscie: dict: parametry - zapisane nazwy i wartosci uzywanych parametrow """ import re import numpy as np # wczytuje zawartosc pliku (bez pierwszej i ostatniej linijki, jeden wiersz # wyjsciowej macierzy, zawiera nazwe parametru i jego wartosc, jako # oddzielne elementy, zapisane jako stringi) ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype = str, \ skip_header=1, skip_footer=1, delimiter=":") # tworze slownik, ktory bedzie przechowywal wartosci parametry = {} # pozbywam się "" z key # jesli mamy 1 parametr (1 linijka w pliku, to ustawienia to zmienna o # shape = (2,), wiec odwoluje sie bezposrednio do zmiennej ustawienia if ustawienia.shape == (2,): parametry[re.sub('"','',ustawienia[0])] = ustawienia[1] # jak mamy wiecej parametrow odwoluje sie do kolejnych linijek macierzy # ustawienia else: for l in ustawienia: parametry[re.sub('"','',l[0])] = l[1] # zamieniamy napisy na odpowiednie wartosci - kontroluje te parametry, wiec # robie to recznie try: parametry['tryb'] = parametry['tryb'].strip() #tryb # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu except KeyError: print("Podaj tryb odczytu!") try: parametry['bpm'] = int(parametry['bpm']) # tempo # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu except KeyError: pass try: parametry['freq'] = int(parametry['freq']) # frekwencja wyjsciowego wav # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu except KeyError: pass try: parametry['loud'] = float(parametry['loud'] ) # glosnosc # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu except KeyError: pass try: # lista wag dla sampli parametry['wages'] = [float(s) for s in parametry['wages'].split(",")] # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu except KeyError: pass return parametry #b = wczytywanie_ustawien("defs.txt") #zglasnianie utworu def zmiana_glosnosci(utwor, procent = 0): """ zmienia glosnosc utworu (jego amplitudy) arg: numpy.ndarray (numpy.int16): utwor - dzwiek, ktory ma byc zglosniony lub zciszony float: procent - liczba obrazujaca zmiane glosnosci utworu, osiaga wartosci od -1 do 1, dla 0 brak zmian, dla 1 - "100% glosniej", dla -1 "100% ciszej" wyjscie: numpy.ndarray (numpy.int16): glosniejszy -sciszony lub zglosniony utwor """ if(-1 <= procent <= 1): #ile razy mamy pomnozyc amplitude naszego dzwieku mnoznik = 0 if( procent < 0 ): mnoznik = 1 + procent else: # obliczamy najwyzsza amplitude w danym utworze i ona bedzie # wyznaczac jak bardzo mozemy podglosnic maks_ampli = 0 maks_ampli = max(abs(utwor)) mnoznik = 32767/maks_ampli # maksymalny mnoznik # mnoznik minimalnie moze osiagnac wartosc 1, to co powyzej # (mnoznik-1) mnozymy o procent zglosnienia # i dodajemy do podstawy (czyli 1) mnoznik = 1 + (mnoznik - 1)*procent glosniej = mnoznik * utwor #glosniej = np.array(glosniej, dtype=np.int16) glosniej = glosniej.astype(np.int16) return glosniej else: print("Podaj procent z zakresu -1 do 1") #wierszyk1 = zmiana_glosnosci(wierszyk, b['loud']) #wierszyk1 def tworzenie_piosenki(macierz_piosenki, czy_pelna = True, bpm = 120, \ freq = 44100, wages = None, loud = 0): """ glowna funkcja generujaca cala piosenke arg: numpy.ndarray (str: U2): macierz_piosenki - macierz zawierajaca definicje kolejnych cwiercnut (co ma byc grane w danej cwiercnucie) bool: czy_pelna - zmienna sprawdzajaca czy macierz_piosenki jest zapisana (nie jest, gdy tracki mialy nieodpowiednia liczbe wierszy lub kolumn) int: bpm - tempo piosenki w jednostce bpm int: freq - ilosc probek w jednej sekundzie list (float): wages - wagi kolejnych sampli (jakie znaczenie ma miec 1 probka, 2 etc.) float: loud - procent glosnosci, 0 - tak jak oryginalne probki, 1 - na maxa, -1 - sciszamy na maxa wyjscie: numpy.ndarray (numpy.int16): gotowy utwór """ # macierz piosenki byla pusta, piosenka nie zostala utworzona if(czy_pelna == False): print("Nie utworzono piosenki") return None else: import numpy as np import scipy.io.wavfile t_cwiercnuty = 60 / bpm # czas trwania jednej cwiercnuty (zalezy od #tempa) ile_cwiercnut = macierz_piosenki.shape[0] # ilosc cwiercnut kanaly = macierz_piosenki.shape[1] # ilosc uzywanych sampli frekw = freq czas_utworu = ile_cwiercnut*t_cwiercnuty # ile elementow bedzie w nowym utworze ilosc_probek = int(frekw*czas_utworu) # bedziemy tylko raz wczytywac zawartosc sampleXY.wav, wiec potrzebuje # unikalne numery sampli rozne_sample = np.unique(macierz_piosenki) # bierze lacznie z "--" # w slownikach zapiszemy parametry tych sampli # slownik z wartosciami danego sampla (tj. macierze numpy-owe z # amplitudami) sample_co = {} sample_frekw = {} # slownik z ich frekwencjami sample_dl = {} # slownik z ich dlugosciami #wczytujemy te sample # w iteratorze bierzemy napisy "01" "02" "--" itd. stringi!!! for ktory_sampel in rozne_sample: if(ktory_sampel != '--'): # tworzymy napis z nazwa pliku sampla, np. "sample01.wav" plik = ''.join(['sample',ktory_sampel,'.wav']) # wczytujemy zawartosc i frekwencje danego sampla do # odpowiednio nazwanego elementu w slowniku sample_co i # sample_frekw sample_frekw[ktory_sampel], sample_co[ktory_sampel] = \ scipy.io.wavfile.read(plik) # tworzymy mono z naszego sampla sample_co[ktory_sampel] = np.mean(sample_co[ktory_sampel],\ axis=1)/32767 # normalizujemy te wartosci sample_co[ktory_sampel] = np.int16(sample_co[ktory_sampel]/ \ max(np.abs(sample_co[ktory_sampel])) * 32767) # zapisujemy dlugosc sampli, czyli ilosc probek # ( = czas_trwania*frekwencja) sample_dl[ktory_sampel] = sample_co[ktory_sampel].shape[0] else: # to samo robimy dla "--" recznie ustawiamy # robimy cisze, gdy -- sample_co[ktory_sampel] = np.zeros((1,), dtype=np.int16) sample_frekw[ktory_sampel] = frekw # taka sama jak domyslna sample_dl[ktory_sampel] = 0 # zakladamy czas 0 sekund if wages is None: wages = np.ones((1,kanaly)) else: # zeby mialo wymiar (1,kanaly), a nie (kanaly,) wages = np.array(wages).reshape(1,kanaly) # definicja nowego utworu T = np.linspace(0, czas_utworu, ilosc_probek) for wiersz in range(0, ile_cwiercnut): sample = [] # wczytamy sample z danej cwiecnuty dlugosci = [] # tu zapiszemy ich dlugosci w tej cwiercnucie for i in range(0, kanaly): sampus = macierz_piosenki[wiersz,i] sample.append(sample_co[sampus]) dlugosci.append(sample_dl[sampus]) # bierzemy najdluzszy sample i w calosci bedziemy go odtwarzac; # reszte zatem tez w calosci odtworzymy, a gdy sie skoncza damy # cisze (zera) maksik = max(dlugosci) # mamy tutaj macierz 4 na max dlugosc, przygotowana do zlaczenia # potem tych dzwiekow w jeden pusty = np.int16(np.zeros((len(sample), maksik))) # dodajemy nasze dzwieki do tej pustej for k in range(0, kanaly): pusty[k][0:dlugosci[k]] = sample[k] # mnozymy kolejne elementy wektora pusty (czyli sample) przez # wagi i sumujemy cwiercnuta = np.dot(wages, pusty) #otrzymamy wymiar (1, x), a chcemy (x,), wiec bierzemy pierwszy # element cwiercnuta = cwiercnuta[0] # poczatek biezacej cwiercnuty poczatek_cwiercnuty = int(wiersz*t_cwiercnuty*frekw) # jesli dodanie ostatnich cwiercnut bedzie wiazalo sie z # przekroczeniem dlugosci tworzonego utworu, obcinamy ostatnie # dzwieki, tak by zmiescic sie w tej dlugosci if (poczatek_cwiercnuty + maksik) > ilosc_probek: T[poczatek_cwiercnuty:(poczatek_cwiercnuty + maksik)]=\ cwiercnuta[0:len(T[poczatek_cwiercnuty:(poczatek_cwiercnuty +\ maksik)])] else: T[poczatek_cwiercnuty:(poczatek_cwiercnuty + maksik)] += \ cwiercnuta T= np.array(T, dtype=np.int16) #ustalamy glosnosc utworu T = zmiana_glosnosci(T, loud) return T #pios, k = wczytywanie_sciezek(a) #wierszyk = tworzenie_piosenki(pios, k, bpm = b['bpm'], freq = b['freq'], \ #wages = b['wages']) #wierszyk = tworzenie_piosenki(pios, k, **b) #wierszyk
normal
{ "blob_id": "8220a6d33cda5861e74d6236757abbc81685a998", "index": 6369, "step-1": "<mask token>\n\n\ndef wczytywanie_ustawien(plik_konfiguracyjny='defs.txt'):\n \"\"\" \n wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika\n \n arg:\n str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi \n wartosciami parametrow (tempo itd.)\n \n wyjscie:\n dict: parametry - zapisane nazwy i wartosci uzywanych parametrow\n \n \"\"\"\n import re\n import numpy as np\n ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype=str, skip_header=\n 1, skip_footer=1, delimiter=':')\n parametry = {}\n if ustawienia.shape == (2,):\n parametry[re.sub('\"', '', ustawienia[0])] = ustawienia[1]\n else:\n for l in ustawienia:\n parametry[re.sub('\"', '', l[0])] = l[1]\n try:\n parametry['tryb'] = parametry['tryb'].strip()\n except KeyError:\n print('Podaj tryb odczytu!')\n try:\n parametry['bpm'] = int(parametry['bpm'])\n except KeyError:\n pass\n try:\n parametry['freq'] = int(parametry['freq'])\n except KeyError:\n pass\n try:\n parametry['loud'] = float(parametry['loud'])\n except KeyError:\n pass\n try:\n parametry['wages'] = [float(s) for s in parametry['wages'].split(',')]\n except KeyError:\n pass\n return parametry\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef wczytywanie_ustawien(plik_konfiguracyjny='defs.txt'):\n \"\"\" \n wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika\n \n arg:\n str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi \n wartosciami parametrow (tempo itd.)\n \n wyjscie:\n dict: parametry - zapisane nazwy i wartosci uzywanych parametrow\n \n \"\"\"\n import re\n import numpy as np\n ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype=str, skip_header=\n 1, skip_footer=1, delimiter=':')\n parametry = {}\n if ustawienia.shape == (2,):\n parametry[re.sub('\"', '', ustawienia[0])] = ustawienia[1]\n else:\n for l in ustawienia:\n parametry[re.sub('\"', '', l[0])] = l[1]\n try:\n parametry['tryb'] = parametry['tryb'].strip()\n except KeyError:\n print('Podaj tryb odczytu!')\n try:\n parametry['bpm'] = int(parametry['bpm'])\n except KeyError:\n pass\n try:\n parametry['freq'] = int(parametry['freq'])\n except KeyError:\n pass\n try:\n parametry['loud'] = float(parametry['loud'])\n except KeyError:\n pass\n try:\n parametry['wages'] = [float(s) for s in parametry['wages'].split(',')]\n except KeyError:\n pass\n return parametry\n\n\ndef zmiana_glosnosci(utwor, procent=0):\n \"\"\"\n zmienia glosnosc utworu (jego amplitudy)\n \n arg:\n numpy.ndarray (numpy.int16): utwor - dzwiek, ktory ma byc zglosniony \n lub zciszony\n \n float: procent - liczba obrazujaca zmiane glosnosci utworu, osiaga \n wartosci od -1 do 1, dla 0 brak zmian, dla 1 - \"100% \n glosniej\", dla -1 \"100% ciszej\"\n \n wyjscie:\n numpy.ndarray (numpy.int16): glosniejszy -sciszony lub zglosniony utwor\n \"\"\"\n if -1 <= procent <= 1:\n mnoznik = 0\n if procent < 0:\n mnoznik = 1 + procent\n else:\n maks_ampli = 0\n maks_ampli = max(abs(utwor))\n mnoznik = 32767 / maks_ampli\n mnoznik = 1 + (mnoznik - 1) * procent\n glosniej = mnoznik * utwor\n glosniej = glosniej.astype(np.int16)\n return glosniej\n else:\n print('Podaj procent z zakresu -1 do 1')\n\n\ndef tworzenie_piosenki(macierz_piosenki, czy_pelna=True, bpm=120, freq=\n 44100, wages=None, loud=0):\n \"\"\"\n glowna funkcja generujaca cala piosenke\n \n arg:\n numpy.ndarray (str: U2): macierz_piosenki - macierz zawierajaca \n definicje kolejnych cwiercnut (co ma byc grane \n w danej cwiercnucie)\n \n bool: czy_pelna - zmienna sprawdzajaca czy macierz_piosenki jest \n zapisana (nie jest, gdy tracki mialy nieodpowiednia \n liczbe wierszy lub kolumn)\n \n int: bpm - tempo piosenki w jednostce bpm\n \n int: freq - ilosc probek w jednej sekundzie\n \n list (float): wages - wagi kolejnych sampli (jakie znaczenie ma miec 1 \n probka, 2 etc.)\n \n float: loud - procent glosnosci, 0 - tak jak oryginalne probki, 1 - na \n maxa, -1 - sciszamy na maxa\n \n wyjscie:\n numpy.ndarray (numpy.int16): gotowy utwór\n \n \"\"\"\n if czy_pelna == False:\n print('Nie utworzono piosenki')\n return None\n else:\n import numpy as np\n import scipy.io.wavfile\n t_cwiercnuty = 60 / bpm\n ile_cwiercnut = macierz_piosenki.shape[0]\n kanaly = macierz_piosenki.shape[1]\n frekw = freq\n czas_utworu = ile_cwiercnut * t_cwiercnuty\n ilosc_probek = int(frekw * czas_utworu)\n rozne_sample = np.unique(macierz_piosenki)\n sample_co = {}\n sample_frekw = {}\n sample_dl = {}\n for ktory_sampel in rozne_sample:\n if ktory_sampel != '--':\n plik = ''.join(['sample', ktory_sampel, '.wav'])\n sample_frekw[ktory_sampel], sample_co[ktory_sampel\n ] = scipy.io.wavfile.read(plik)\n sample_co[ktory_sampel] = np.mean(sample_co[ktory_sampel],\n axis=1) / 32767\n sample_co[ktory_sampel] = np.int16(sample_co[ktory_sampel] /\n max(np.abs(sample_co[ktory_sampel])) * 32767)\n sample_dl[ktory_sampel] = sample_co[ktory_sampel].shape[0]\n else:\n sample_co[ktory_sampel] = np.zeros((1,), dtype=np.int16)\n sample_frekw[ktory_sampel] = frekw\n sample_dl[ktory_sampel] = 0\n if wages is None:\n wages = np.ones((1, kanaly))\n else:\n wages = np.array(wages).reshape(1, kanaly)\n T = np.linspace(0, czas_utworu, ilosc_probek)\n for wiersz in range(0, ile_cwiercnut):\n sample = []\n dlugosci = []\n for i in range(0, kanaly):\n sampus = macierz_piosenki[wiersz, i]\n sample.append(sample_co[sampus])\n dlugosci.append(sample_dl[sampus])\n maksik = max(dlugosci)\n pusty = np.int16(np.zeros((len(sample), maksik)))\n for k in range(0, kanaly):\n pusty[k][0:dlugosci[k]] = sample[k]\n cwiercnuta = np.dot(wages, pusty)\n cwiercnuta = cwiercnuta[0]\n poczatek_cwiercnuty = int(wiersz * t_cwiercnuty * frekw)\n if poczatek_cwiercnuty + maksik > ilosc_probek:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] = cwiercnuta[0:len(T[poczatek_cwiercnuty:\n poczatek_cwiercnuty + maksik])]\n else:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] += cwiercnuta\n T = np.array(T, dtype=np.int16)\n T = zmiana_glosnosci(T, loud)\n return T\n", "step-3": "<mask token>\nprint('Laduje modul o nazwie: ' + __name__)\n<mask token>\n\n\ndef wczytywanie_ustawien(plik_konfiguracyjny='defs.txt'):\n \"\"\" \n wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika\n \n arg:\n str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi \n wartosciami parametrow (tempo itd.)\n \n wyjscie:\n dict: parametry - zapisane nazwy i wartosci uzywanych parametrow\n \n \"\"\"\n import re\n import numpy as np\n ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype=str, skip_header=\n 1, skip_footer=1, delimiter=':')\n parametry = {}\n if ustawienia.shape == (2,):\n parametry[re.sub('\"', '', ustawienia[0])] = ustawienia[1]\n else:\n for l in ustawienia:\n parametry[re.sub('\"', '', l[0])] = l[1]\n try:\n parametry['tryb'] = parametry['tryb'].strip()\n except KeyError:\n print('Podaj tryb odczytu!')\n try:\n parametry['bpm'] = int(parametry['bpm'])\n except KeyError:\n pass\n try:\n parametry['freq'] = int(parametry['freq'])\n except KeyError:\n pass\n try:\n parametry['loud'] = float(parametry['loud'])\n except KeyError:\n pass\n try:\n parametry['wages'] = [float(s) for s in parametry['wages'].split(',')]\n except KeyError:\n pass\n return parametry\n\n\ndef zmiana_glosnosci(utwor, procent=0):\n \"\"\"\n zmienia glosnosc utworu (jego amplitudy)\n \n arg:\n numpy.ndarray (numpy.int16): utwor - dzwiek, ktory ma byc zglosniony \n lub zciszony\n \n float: procent - liczba obrazujaca zmiane glosnosci utworu, osiaga \n wartosci od -1 do 1, dla 0 brak zmian, dla 1 - \"100% \n glosniej\", dla -1 \"100% ciszej\"\n \n wyjscie:\n numpy.ndarray (numpy.int16): glosniejszy -sciszony lub zglosniony utwor\n \"\"\"\n if -1 <= procent <= 1:\n mnoznik = 0\n if procent < 0:\n mnoznik = 1 + procent\n else:\n maks_ampli = 0\n maks_ampli = max(abs(utwor))\n mnoznik = 32767 / maks_ampli\n mnoznik = 1 + (mnoznik - 1) * procent\n glosniej = mnoznik * utwor\n glosniej = glosniej.astype(np.int16)\n return glosniej\n else:\n print('Podaj procent z zakresu -1 do 1')\n\n\ndef tworzenie_piosenki(macierz_piosenki, czy_pelna=True, bpm=120, freq=\n 44100, wages=None, loud=0):\n \"\"\"\n glowna funkcja generujaca cala piosenke\n \n arg:\n numpy.ndarray (str: U2): macierz_piosenki - macierz zawierajaca \n definicje kolejnych cwiercnut (co ma byc grane \n w danej cwiercnucie)\n \n bool: czy_pelna - zmienna sprawdzajaca czy macierz_piosenki jest \n zapisana (nie jest, gdy tracki mialy nieodpowiednia \n liczbe wierszy lub kolumn)\n \n int: bpm - tempo piosenki w jednostce bpm\n \n int: freq - ilosc probek w jednej sekundzie\n \n list (float): wages - wagi kolejnych sampli (jakie znaczenie ma miec 1 \n probka, 2 etc.)\n \n float: loud - procent glosnosci, 0 - tak jak oryginalne probki, 1 - na \n maxa, -1 - sciszamy na maxa\n \n wyjscie:\n numpy.ndarray (numpy.int16): gotowy utwór\n \n \"\"\"\n if czy_pelna == False:\n print('Nie utworzono piosenki')\n return None\n else:\n import numpy as np\n import scipy.io.wavfile\n t_cwiercnuty = 60 / bpm\n ile_cwiercnut = macierz_piosenki.shape[0]\n kanaly = macierz_piosenki.shape[1]\n frekw = freq\n czas_utworu = ile_cwiercnut * t_cwiercnuty\n ilosc_probek = int(frekw * czas_utworu)\n rozne_sample = np.unique(macierz_piosenki)\n sample_co = {}\n sample_frekw = {}\n sample_dl = {}\n for ktory_sampel in rozne_sample:\n if ktory_sampel != '--':\n plik = ''.join(['sample', ktory_sampel, '.wav'])\n sample_frekw[ktory_sampel], sample_co[ktory_sampel\n ] = scipy.io.wavfile.read(plik)\n sample_co[ktory_sampel] = np.mean(sample_co[ktory_sampel],\n axis=1) / 32767\n sample_co[ktory_sampel] = np.int16(sample_co[ktory_sampel] /\n max(np.abs(sample_co[ktory_sampel])) * 32767)\n sample_dl[ktory_sampel] = sample_co[ktory_sampel].shape[0]\n else:\n sample_co[ktory_sampel] = np.zeros((1,), dtype=np.int16)\n sample_frekw[ktory_sampel] = frekw\n sample_dl[ktory_sampel] = 0\n if wages is None:\n wages = np.ones((1, kanaly))\n else:\n wages = np.array(wages).reshape(1, kanaly)\n T = np.linspace(0, czas_utworu, ilosc_probek)\n for wiersz in range(0, ile_cwiercnut):\n sample = []\n dlugosci = []\n for i in range(0, kanaly):\n sampus = macierz_piosenki[wiersz, i]\n sample.append(sample_co[sampus])\n dlugosci.append(sample_dl[sampus])\n maksik = max(dlugosci)\n pusty = np.int16(np.zeros((len(sample), maksik)))\n for k in range(0, kanaly):\n pusty[k][0:dlugosci[k]] = sample[k]\n cwiercnuta = np.dot(wages, pusty)\n cwiercnuta = cwiercnuta[0]\n poczatek_cwiercnuty = int(wiersz * t_cwiercnuty * frekw)\n if poczatek_cwiercnuty + maksik > ilosc_probek:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] = cwiercnuta[0:len(T[poczatek_cwiercnuty:\n poczatek_cwiercnuty + maksik])]\n else:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] += cwiercnuta\n T = np.array(T, dtype=np.int16)\n T = zmiana_glosnosci(T, loud)\n return T\n", "step-4": "<mask token>\nprint('Laduje modul o nazwie: ' + __name__)\nimport numpy as np\n\n\ndef wczytywanie_ustawien(plik_konfiguracyjny='defs.txt'):\n \"\"\" \n wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika\n \n arg:\n str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi \n wartosciami parametrow (tempo itd.)\n \n wyjscie:\n dict: parametry - zapisane nazwy i wartosci uzywanych parametrow\n \n \"\"\"\n import re\n import numpy as np\n ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype=str, skip_header=\n 1, skip_footer=1, delimiter=':')\n parametry = {}\n if ustawienia.shape == (2,):\n parametry[re.sub('\"', '', ustawienia[0])] = ustawienia[1]\n else:\n for l in ustawienia:\n parametry[re.sub('\"', '', l[0])] = l[1]\n try:\n parametry['tryb'] = parametry['tryb'].strip()\n except KeyError:\n print('Podaj tryb odczytu!')\n try:\n parametry['bpm'] = int(parametry['bpm'])\n except KeyError:\n pass\n try:\n parametry['freq'] = int(parametry['freq'])\n except KeyError:\n pass\n try:\n parametry['loud'] = float(parametry['loud'])\n except KeyError:\n pass\n try:\n parametry['wages'] = [float(s) for s in parametry['wages'].split(',')]\n except KeyError:\n pass\n return parametry\n\n\ndef zmiana_glosnosci(utwor, procent=0):\n \"\"\"\n zmienia glosnosc utworu (jego amplitudy)\n \n arg:\n numpy.ndarray (numpy.int16): utwor - dzwiek, ktory ma byc zglosniony \n lub zciszony\n \n float: procent - liczba obrazujaca zmiane glosnosci utworu, osiaga \n wartosci od -1 do 1, dla 0 brak zmian, dla 1 - \"100% \n glosniej\", dla -1 \"100% ciszej\"\n \n wyjscie:\n numpy.ndarray (numpy.int16): glosniejszy -sciszony lub zglosniony utwor\n \"\"\"\n if -1 <= procent <= 1:\n mnoznik = 0\n if procent < 0:\n mnoznik = 1 + procent\n else:\n maks_ampli = 0\n maks_ampli = max(abs(utwor))\n mnoznik = 32767 / maks_ampli\n mnoznik = 1 + (mnoznik - 1) * procent\n glosniej = mnoznik * utwor\n glosniej = glosniej.astype(np.int16)\n return glosniej\n else:\n print('Podaj procent z zakresu -1 do 1')\n\n\ndef tworzenie_piosenki(macierz_piosenki, czy_pelna=True, bpm=120, freq=\n 44100, wages=None, loud=0):\n \"\"\"\n glowna funkcja generujaca cala piosenke\n \n arg:\n numpy.ndarray (str: U2): macierz_piosenki - macierz zawierajaca \n definicje kolejnych cwiercnut (co ma byc grane \n w danej cwiercnucie)\n \n bool: czy_pelna - zmienna sprawdzajaca czy macierz_piosenki jest \n zapisana (nie jest, gdy tracki mialy nieodpowiednia \n liczbe wierszy lub kolumn)\n \n int: bpm - tempo piosenki w jednostce bpm\n \n int: freq - ilosc probek w jednej sekundzie\n \n list (float): wages - wagi kolejnych sampli (jakie znaczenie ma miec 1 \n probka, 2 etc.)\n \n float: loud - procent glosnosci, 0 - tak jak oryginalne probki, 1 - na \n maxa, -1 - sciszamy na maxa\n \n wyjscie:\n numpy.ndarray (numpy.int16): gotowy utwór\n \n \"\"\"\n if czy_pelna == False:\n print('Nie utworzono piosenki')\n return None\n else:\n import numpy as np\n import scipy.io.wavfile\n t_cwiercnuty = 60 / bpm\n ile_cwiercnut = macierz_piosenki.shape[0]\n kanaly = macierz_piosenki.shape[1]\n frekw = freq\n czas_utworu = ile_cwiercnut * t_cwiercnuty\n ilosc_probek = int(frekw * czas_utworu)\n rozne_sample = np.unique(macierz_piosenki)\n sample_co = {}\n sample_frekw = {}\n sample_dl = {}\n for ktory_sampel in rozne_sample:\n if ktory_sampel != '--':\n plik = ''.join(['sample', ktory_sampel, '.wav'])\n sample_frekw[ktory_sampel], sample_co[ktory_sampel\n ] = scipy.io.wavfile.read(plik)\n sample_co[ktory_sampel] = np.mean(sample_co[ktory_sampel],\n axis=1) / 32767\n sample_co[ktory_sampel] = np.int16(sample_co[ktory_sampel] /\n max(np.abs(sample_co[ktory_sampel])) * 32767)\n sample_dl[ktory_sampel] = sample_co[ktory_sampel].shape[0]\n else:\n sample_co[ktory_sampel] = np.zeros((1,), dtype=np.int16)\n sample_frekw[ktory_sampel] = frekw\n sample_dl[ktory_sampel] = 0\n if wages is None:\n wages = np.ones((1, kanaly))\n else:\n wages = np.array(wages).reshape(1, kanaly)\n T = np.linspace(0, czas_utworu, ilosc_probek)\n for wiersz in range(0, ile_cwiercnut):\n sample = []\n dlugosci = []\n for i in range(0, kanaly):\n sampus = macierz_piosenki[wiersz, i]\n sample.append(sample_co[sampus])\n dlugosci.append(sample_dl[sampus])\n maksik = max(dlugosci)\n pusty = np.int16(np.zeros((len(sample), maksik)))\n for k in range(0, kanaly):\n pusty[k][0:dlugosci[k]] = sample[k]\n cwiercnuta = np.dot(wages, pusty)\n cwiercnuta = cwiercnuta[0]\n poczatek_cwiercnuty = int(wiersz * t_cwiercnuty * frekw)\n if poczatek_cwiercnuty + maksik > ilosc_probek:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] = cwiercnuta[0:len(T[poczatek_cwiercnuty:\n poczatek_cwiercnuty + maksik])]\n else:\n T[poczatek_cwiercnuty:poczatek_cwiercnuty + maksik\n ] += cwiercnuta\n T = np.array(T, dtype=np.int16)\n T = zmiana_glosnosci(T, loud)\n return T\n", "step-5": "# -*- coding: utf-8 -*-\r\n\"\"\"\r\nModul do zapisu piosenki (wczytywanie ustawien (defs.txt), tworzenie .wav,\r\n \"zglasnianie utworu\")\r\n\"\"\"\r\n\r\n\r\nprint(\"Laduje modul o nazwie: \"+__name__)\r\n\r\nimport numpy as np\r\n\r\ndef wczytywanie_ustawien(plik_konfiguracyjny = \"defs.txt\"):\r\n \"\"\" \r\n wczytywanie pliku z ustawieniami (pliku defs.txt) do slownika\r\n \r\n arg:\r\n str: plik_konfiguracyjny - nazwa pliku konfiguracyjnego z podanymi \r\n wartosciami parametrow (tempo itd.)\r\n \r\n wyjscie:\r\n dict: parametry - zapisane nazwy i wartosci uzywanych parametrow\r\n \r\n \"\"\"\r\n import re\r\n import numpy as np\r\n \r\n # wczytuje zawartosc pliku (bez pierwszej i ostatniej linijki, jeden wiersz \r\n # wyjsciowej macierzy, zawiera nazwe parametru i jego wartosc, jako \r\n # oddzielne elementy, zapisane jako stringi)\r\n ustawienia = np.genfromtxt(plik_konfiguracyjny, dtype = str, \\\r\n skip_header=1, skip_footer=1, delimiter=\":\")\r\n \r\n # tworze slownik, ktory bedzie przechowywal wartosci\r\n parametry = {}\r\n \r\n # pozbywam się \"\" z key\r\n \r\n # jesli mamy 1 parametr (1 linijka w pliku, to ustawienia to zmienna o \r\n # shape = (2,), wiec odwoluje sie bezposrednio do zmiennej ustawienia\r\n if ustawienia.shape == (2,): \r\n parametry[re.sub('\"','',ustawienia[0])] = ustawienia[1]\r\n # jak mamy wiecej parametrow odwoluje sie do kolejnych linijek macierzy \r\n # ustawienia\r\n else:\r\n for l in ustawienia: \r\n parametry[re.sub('\"','',l[0])] = l[1]\r\n \r\n # zamieniamy napisy na odpowiednie wartosci - kontroluje te parametry, wiec\r\n # robie to recznie\r\n \r\n try:\r\n parametry['tryb'] = parametry['tryb'].strip() #tryb\r\n # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu\r\n except KeyError:\r\n print(\"Podaj tryb odczytu!\")\r\n try:\r\n parametry['bpm'] = int(parametry['bpm']) # tempo\r\n # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu\r\n except KeyError:\r\n pass\r\n try:\r\n parametry['freq'] = int(parametry['freq']) # frekwencja wyjsciowego wav\r\n # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu\r\n except KeyError:\r\n pass\r\n try:\r\n parametry['loud'] = float(parametry['loud'] ) # glosnosc\r\n # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu\r\n except KeyError:\r\n pass\r\n try:\r\n # lista wag dla sampli\r\n parametry['wages'] = [float(s) for s in parametry['wages'].split(\",\")] \r\n # jak nie podano danego parametru to idz dalej, nie wyrzucaj bledu\r\n except KeyError:\r\n pass\r\n \r\n return parametry\r\n \r\n#b = wczytywanie_ustawien(\"defs.txt\")\r\n \r\n \r\n#zglasnianie utworu\r\n\r\ndef zmiana_glosnosci(utwor, procent = 0):\r\n \"\"\"\r\n zmienia glosnosc utworu (jego amplitudy)\r\n \r\n arg:\r\n numpy.ndarray (numpy.int16): utwor - dzwiek, ktory ma byc zglosniony \r\n lub zciszony\r\n \r\n float: procent - liczba obrazujaca zmiane glosnosci utworu, osiaga \r\n wartosci od -1 do 1, dla 0 brak zmian, dla 1 - \"100% \r\n glosniej\", dla -1 \"100% ciszej\"\r\n \r\n wyjscie:\r\n numpy.ndarray (numpy.int16): glosniejszy -sciszony lub zglosniony utwor\r\n \"\"\"\r\n if(-1 <= procent <= 1):\r\n #ile razy mamy pomnozyc amplitude naszego dzwieku\r\n mnoznik = 0\r\n if( procent < 0 ):\r\n mnoznik = 1 + procent\r\n else:\r\n # obliczamy najwyzsza amplitude w danym utworze i ona bedzie \r\n # wyznaczac jak bardzo mozemy podglosnic\r\n maks_ampli = 0\r\n maks_ampli = max(abs(utwor))\r\n mnoznik = 32767/maks_ampli # maksymalny mnoznik\r\n # mnoznik minimalnie moze osiagnac wartosc 1, to co powyzej \r\n # (mnoznik-1) mnozymy o procent zglosnienia\r\n # i dodajemy do podstawy (czyli 1)\r\n mnoznik = 1 + (mnoznik - 1)*procent\r\n glosniej = mnoznik * utwor\r\n #glosniej = np.array(glosniej, dtype=np.int16)\r\n glosniej = glosniej.astype(np.int16) \r\n return glosniej\r\n else:\r\n print(\"Podaj procent z zakresu -1 do 1\")\r\n \r\n\r\n#wierszyk1 = zmiana_glosnosci(wierszyk, b['loud'])\r\n#wierszyk1\r\n \r\n \r\n \r\n\r\ndef tworzenie_piosenki(macierz_piosenki, czy_pelna = True, bpm = 120, \\\r\n freq = 44100, wages = None, loud = 0):\r\n \"\"\"\r\n glowna funkcja generujaca cala piosenke\r\n \r\n arg:\r\n numpy.ndarray (str: U2): macierz_piosenki - macierz zawierajaca \r\n definicje kolejnych cwiercnut (co ma byc grane \r\n w danej cwiercnucie)\r\n \r\n bool: czy_pelna - zmienna sprawdzajaca czy macierz_piosenki jest \r\n zapisana (nie jest, gdy tracki mialy nieodpowiednia \r\n liczbe wierszy lub kolumn)\r\n \r\n int: bpm - tempo piosenki w jednostce bpm\r\n \r\n int: freq - ilosc probek w jednej sekundzie\r\n \r\n list (float): wages - wagi kolejnych sampli (jakie znaczenie ma miec 1 \r\n probka, 2 etc.)\r\n \r\n float: loud - procent glosnosci, 0 - tak jak oryginalne probki, 1 - na \r\n maxa, -1 - sciszamy na maxa\r\n \r\n wyjscie:\r\n numpy.ndarray (numpy.int16): gotowy utwór\r\n \r\n \"\"\"\r\n \r\n \r\n # macierz piosenki byla pusta, piosenka nie zostala utworzona\r\n if(czy_pelna == False):\r\n print(\"Nie utworzono piosenki\")\r\n return None \r\n \r\n else:\r\n \r\n import numpy as np\r\n import scipy.io.wavfile\r\n \r\n t_cwiercnuty = 60 / bpm # czas trwania jednej cwiercnuty (zalezy od \r\n #tempa)\r\n ile_cwiercnut = macierz_piosenki.shape[0] # ilosc cwiercnut\r\n kanaly = macierz_piosenki.shape[1] # ilosc uzywanych sampli\r\n frekw = freq\r\n czas_utworu = ile_cwiercnut*t_cwiercnuty\r\n # ile elementow bedzie w nowym utworze\r\n ilosc_probek = int(frekw*czas_utworu) \r\n \r\n # bedziemy tylko raz wczytywac zawartosc sampleXY.wav, wiec potrzebuje \r\n # unikalne numery sampli\r\n rozne_sample = np.unique(macierz_piosenki) # bierze lacznie z \"--\"\r\n \r\n # w slownikach zapiszemy parametry tych sampli\r\n # slownik z wartosciami danego sampla (tj. macierze numpy-owe z \r\n # amplitudami)\r\n sample_co = {} \r\n sample_frekw = {} # slownik z ich frekwencjami\r\n sample_dl = {} # slownik z ich dlugosciami\r\n \r\n #wczytujemy te sample\r\n # w iteratorze bierzemy napisy \"01\" \"02\" \"--\" itd. stringi!!!\r\n for ktory_sampel in rozne_sample: \r\n \r\n if(ktory_sampel != '--'):\r\n # tworzymy napis z nazwa pliku sampla, np. \"sample01.wav\"\r\n plik = ''.join(['sample',ktory_sampel,'.wav'])\r\n # wczytujemy zawartosc i frekwencje danego sampla do \r\n # odpowiednio nazwanego elementu w slowniku sample_co i \r\n # sample_frekw\r\n sample_frekw[ktory_sampel], sample_co[ktory_sampel] = \\\r\n scipy.io.wavfile.read(plik)\r\n # tworzymy mono z naszego sampla\r\n sample_co[ktory_sampel] = np.mean(sample_co[ktory_sampel],\\\r\n axis=1)/32767\r\n # normalizujemy te wartosci\r\n sample_co[ktory_sampel] = np.int16(sample_co[ktory_sampel]/ \\\r\n max(np.abs(sample_co[ktory_sampel])) * 32767)\r\n # zapisujemy dlugosc sampli, czyli ilosc probek \r\n # ( = czas_trwania*frekwencja)\r\n sample_dl[ktory_sampel] = sample_co[ktory_sampel].shape[0]\r\n \r\n else: # to samo robimy dla \"--\" recznie ustawiamy\r\n # robimy cisze, gdy --\r\n sample_co[ktory_sampel] = np.zeros((1,), dtype=np.int16) \r\n sample_frekw[ktory_sampel] = frekw # taka sama jak domyslna\r\n sample_dl[ktory_sampel] = 0 # zakladamy czas 0 sekund\r\n \r\n\r\n \r\n \r\n \r\n if wages is None:\r\n wages = np.ones((1,kanaly)) \r\n else:\r\n # zeby mialo wymiar (1,kanaly), a nie (kanaly,)\r\n wages = np.array(wages).reshape(1,kanaly) \r\n \r\n # definicja nowego utworu\r\n T = np.linspace(0, czas_utworu, ilosc_probek)\r\n \r\n for wiersz in range(0, ile_cwiercnut):\r\n\r\n sample = [] # wczytamy sample z danej cwiecnuty\r\n dlugosci = [] # tu zapiszemy ich dlugosci w tej cwiercnucie\r\n\r\n for i in range(0, kanaly):\r\n \r\n sampus = macierz_piosenki[wiersz,i]\r\n sample.append(sample_co[sampus]) \r\n dlugosci.append(sample_dl[sampus])\r\n\r\n \r\n # bierzemy najdluzszy sample i w calosci bedziemy go odtwarzac; \r\n # reszte zatem tez w calosci odtworzymy, a gdy sie skoncza damy \r\n # cisze (zera)\r\n maksik = max(dlugosci)\r\n # mamy tutaj macierz 4 na max dlugosc, przygotowana do zlaczenia \r\n # potem tych dzwiekow w jeden \r\n pusty = np.int16(np.zeros((len(sample), maksik)))\r\n\r\n # dodajemy nasze dzwieki do tej pustej\r\n for k in range(0, kanaly):\r\n pusty[k][0:dlugosci[k]] = sample[k]\r\n\r\n \r\n # mnozymy kolejne elementy wektora pusty (czyli sample) przez \r\n # wagi i sumujemy\r\n cwiercnuta = np.dot(wages, pusty) \r\n #otrzymamy wymiar (1, x), a chcemy (x,), wiec bierzemy pierwszy \r\n # element\r\n cwiercnuta = cwiercnuta[0]\r\n \r\n # poczatek biezacej cwiercnuty \r\n poczatek_cwiercnuty = int(wiersz*t_cwiercnuty*frekw)\r\n \r\n # jesli dodanie ostatnich cwiercnut bedzie wiazalo sie z \r\n # przekroczeniem dlugosci tworzonego utworu, obcinamy ostatnie \r\n # dzwieki, tak by zmiescic sie w tej dlugosci\r\n if (poczatek_cwiercnuty + maksik) > ilosc_probek:\r\n \r\n T[poczatek_cwiercnuty:(poczatek_cwiercnuty + maksik)]=\\\r\n cwiercnuta[0:len(T[poczatek_cwiercnuty:(poczatek_cwiercnuty +\\\r\n maksik)])]\r\n \r\n else:\r\n T[poczatek_cwiercnuty:(poczatek_cwiercnuty + maksik)] += \\\r\n cwiercnuta\r\n \r\n T= np.array(T, dtype=np.int16)\r\n \r\n #ustalamy glosnosc utworu\r\n T = zmiana_glosnosci(T, loud)\r\n\r\n return T\r\n\r\n#pios, k = wczytywanie_sciezek(a)\r\n#wierszyk = tworzenie_piosenki(pios, k, bpm = b['bpm'], freq = b['freq'], \\\r\n#wages = b['wages'])\r\n#wierszyk = tworzenie_piosenki(pios, k, **b)\r\n#wierszyk ", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def json_dump(obj, file_path): with open(file_path, 'w') as f: json.dump(obj, f) <|reserved_special_token_0|> def get_repo_path(file_path): if os.path.isfile(file_path): folder_path = os.path.abspath(os.path.join(file_path, os.pardir)) else: folder_path = file_path for i in range(100): if folder_path == '/': return None if is_repo_path(folder_path): break folder_path = os.path.abspath(os.path.join(folder_path, os.pardir)) return folder_path <|reserved_special_token_0|> class LineNumberTracker: """ When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones, """ def __init__(self): self._log = [] def transform(self, line_num): for is_add, start, end in self._log: if line_num < start: pass elif line_num < end and not is_add: assert False, 'Line Deleted: {} {}'.format(line_num, self._log) elif is_add: line_num += end - start else: line_num -= end - start return line_num def remove_lines(self, start, end): self._log.append((False, start, end)) def add_lines(self, start, end): self._log.append((True, start, end)) <|reserved_special_token_1|> <|reserved_special_token_0|> def json_dump(obj, file_path): with open(file_path, 'w') as f: json.dump(obj, f) <|reserved_special_token_0|> def get_repo_path(file_path): if os.path.isfile(file_path): folder_path = os.path.abspath(os.path.join(file_path, os.pardir)) else: folder_path = file_path for i in range(100): if folder_path == '/': return None if is_repo_path(folder_path): break folder_path = os.path.abspath(os.path.join(folder_path, os.pardir)) return folder_path def is_repo_path(path): return os.path.isdir(path) and '.git' in os.listdir(path) class LineNumberTracker: """ When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones, """ def __init__(self): self._log = [] def transform(self, line_num): for is_add, start, end in self._log: if line_num < start: pass elif line_num < end and not is_add: assert False, 'Line Deleted: {} {}'.format(line_num, self._log) elif is_add: line_num += end - start else: line_num -= end - start return line_num def remove_lines(self, start, end): self._log.append((False, start, end)) def add_lines(self, start, end): self._log.append((True, start, end)) <|reserved_special_token_1|> <|reserved_special_token_0|> def load_json_if_exists(path): if not os.path.isfile(path): return {} with open(path) as f: return json.load(f) def json_dump(obj, file_path): with open(file_path, 'w') as f: json.dump(obj, f) def get_folder_paths(directory): return [os.path.join(directory, f) for f in os.listdir(directory) if os .path.isdir(os.path.join(directory, f))] def file_to_lines(file_path): if len(file_path) == 0: return [] with open(file_path) as f: lines = list(f.read().splitlines()) return lines def get_repo_path(file_path): if os.path.isfile(file_path): folder_path = os.path.abspath(os.path.join(file_path, os.pardir)) else: folder_path = file_path for i in range(100): if folder_path == '/': return None if is_repo_path(folder_path): break folder_path = os.path.abspath(os.path.join(folder_path, os.pardir)) return folder_path def is_repo_path(path): return os.path.isdir(path) and '.git' in os.listdir(path) class LineNumberTracker: """ When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones, """ def __init__(self): self._log = [] def transform(self, line_num): for is_add, start, end in self._log: if line_num < start: pass elif line_num < end and not is_add: assert False, 'Line Deleted: {} {}'.format(line_num, self._log) elif is_add: line_num += end - start else: line_num -= end - start return line_num def remove_lines(self, start, end): self._log.append((False, start, end)) def add_lines(self, start, end): self._log.append((True, start, end)) <|reserved_special_token_1|> import os import json def load_json_if_exists(path): if not os.path.isfile(path): return {} with open(path) as f: return json.load(f) def json_dump(obj, file_path): with open(file_path, 'w') as f: json.dump(obj, f) def get_folder_paths(directory): return [os.path.join(directory, f) for f in os.listdir(directory) if os .path.isdir(os.path.join(directory, f))] def file_to_lines(file_path): if len(file_path) == 0: return [] with open(file_path) as f: lines = list(f.read().splitlines()) return lines def get_repo_path(file_path): if os.path.isfile(file_path): folder_path = os.path.abspath(os.path.join(file_path, os.pardir)) else: folder_path = file_path for i in range(100): if folder_path == '/': return None if is_repo_path(folder_path): break folder_path = os.path.abspath(os.path.join(folder_path, os.pardir)) return folder_path def is_repo_path(path): return os.path.isdir(path) and '.git' in os.listdir(path) class LineNumberTracker: """ When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones, """ def __init__(self): self._log = [] def transform(self, line_num): for is_add, start, end in self._log: if line_num < start: pass elif line_num < end and not is_add: assert False, 'Line Deleted: {} {}'.format(line_num, self._log) elif is_add: line_num += end - start else: line_num -= end - start return line_num def remove_lines(self, start, end): self._log.append((False, start, end)) def add_lines(self, start, end): self._log.append((True, start, end)) <|reserved_special_token_1|> import os import json def load_json_if_exists(path): if not os.path.isfile(path): return {} with open(path) as f: return json.load(f) def json_dump(obj, file_path): with open(file_path, 'w') as f: json.dump(obj, f) def get_folder_paths(directory): return [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isdir(os.path.join(directory, f))] def file_to_lines(file_path): if len(file_path) == 0: return [] with open(file_path) as f: lines = list(f.read().splitlines()) return lines def get_repo_path(file_path): if os.path.isfile(file_path): folder_path = os.path.abspath(os.path.join(file_path, os.pardir)) else: folder_path = file_path for i in range(100): if folder_path == '/': return None if is_repo_path(folder_path): break folder_path = os.path.abspath(os.path.join(folder_path, os.pardir)) return folder_path def is_repo_path(path): return os.path.isdir(path) and '.git' in os.listdir(path) class LineNumberTracker: ''' When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones, ''' def __init__(self): self._log = [] def transform(self, line_num): for is_add, start, end in self._log: if line_num < start: pass elif line_num < end and not is_add: assert False, 'Line Deleted: {} {}'.format(line_num, self._log) else: if is_add: line_num += (end - start) else: line_num -= (end - start) return line_num def remove_lines(self, start, end): self._log.append((False, start, end)) def add_lines(self, start, end): self._log.append((True, start, end))
flexible
{ "blob_id": "3788888a17e2598e781803f89cd63ac9c3219f59", "index": 4341, "step-1": "<mask token>\n\n\ndef json_dump(obj, file_path):\n with open(file_path, 'w') as f:\n json.dump(obj, f)\n\n\n<mask token>\n\n\ndef get_repo_path(file_path):\n if os.path.isfile(file_path):\n folder_path = os.path.abspath(os.path.join(file_path, os.pardir))\n else:\n folder_path = file_path\n for i in range(100):\n if folder_path == '/':\n return None\n if is_repo_path(folder_path):\n break\n folder_path = os.path.abspath(os.path.join(folder_path, os.pardir))\n return folder_path\n\n\n<mask token>\n\n\nclass LineNumberTracker:\n \"\"\"\n When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones,\n \"\"\"\n\n def __init__(self):\n self._log = []\n\n def transform(self, line_num):\n for is_add, start, end in self._log:\n if line_num < start:\n pass\n elif line_num < end and not is_add:\n assert False, 'Line Deleted: {} {}'.format(line_num, self._log)\n elif is_add:\n line_num += end - start\n else:\n line_num -= end - start\n return line_num\n\n def remove_lines(self, start, end):\n self._log.append((False, start, end))\n\n def add_lines(self, start, end):\n self._log.append((True, start, end))\n", "step-2": "<mask token>\n\n\ndef json_dump(obj, file_path):\n with open(file_path, 'w') as f:\n json.dump(obj, f)\n\n\n<mask token>\n\n\ndef get_repo_path(file_path):\n if os.path.isfile(file_path):\n folder_path = os.path.abspath(os.path.join(file_path, os.pardir))\n else:\n folder_path = file_path\n for i in range(100):\n if folder_path == '/':\n return None\n if is_repo_path(folder_path):\n break\n folder_path = os.path.abspath(os.path.join(folder_path, os.pardir))\n return folder_path\n\n\ndef is_repo_path(path):\n return os.path.isdir(path) and '.git' in os.listdir(path)\n\n\nclass LineNumberTracker:\n \"\"\"\n When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones,\n \"\"\"\n\n def __init__(self):\n self._log = []\n\n def transform(self, line_num):\n for is_add, start, end in self._log:\n if line_num < start:\n pass\n elif line_num < end and not is_add:\n assert False, 'Line Deleted: {} {}'.format(line_num, self._log)\n elif is_add:\n line_num += end - start\n else:\n line_num -= end - start\n return line_num\n\n def remove_lines(self, start, end):\n self._log.append((False, start, end))\n\n def add_lines(self, start, end):\n self._log.append((True, start, end))\n", "step-3": "<mask token>\n\n\ndef load_json_if_exists(path):\n if not os.path.isfile(path):\n return {}\n with open(path) as f:\n return json.load(f)\n\n\ndef json_dump(obj, file_path):\n with open(file_path, 'w') as f:\n json.dump(obj, f)\n\n\ndef get_folder_paths(directory):\n return [os.path.join(directory, f) for f in os.listdir(directory) if os\n .path.isdir(os.path.join(directory, f))]\n\n\ndef file_to_lines(file_path):\n if len(file_path) == 0:\n return []\n with open(file_path) as f:\n lines = list(f.read().splitlines())\n return lines\n\n\ndef get_repo_path(file_path):\n if os.path.isfile(file_path):\n folder_path = os.path.abspath(os.path.join(file_path, os.pardir))\n else:\n folder_path = file_path\n for i in range(100):\n if folder_path == '/':\n return None\n if is_repo_path(folder_path):\n break\n folder_path = os.path.abspath(os.path.join(folder_path, os.pardir))\n return folder_path\n\n\ndef is_repo_path(path):\n return os.path.isdir(path) and '.git' in os.listdir(path)\n\n\nclass LineNumberTracker:\n \"\"\"\n When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones,\n \"\"\"\n\n def __init__(self):\n self._log = []\n\n def transform(self, line_num):\n for is_add, start, end in self._log:\n if line_num < start:\n pass\n elif line_num < end and not is_add:\n assert False, 'Line Deleted: {} {}'.format(line_num, self._log)\n elif is_add:\n line_num += end - start\n else:\n line_num -= end - start\n return line_num\n\n def remove_lines(self, start, end):\n self._log.append((False, start, end))\n\n def add_lines(self, start, end):\n self._log.append((True, start, end))\n", "step-4": "import os\nimport json\n\n\ndef load_json_if_exists(path):\n if not os.path.isfile(path):\n return {}\n with open(path) as f:\n return json.load(f)\n\n\ndef json_dump(obj, file_path):\n with open(file_path, 'w') as f:\n json.dump(obj, f)\n\n\ndef get_folder_paths(directory):\n return [os.path.join(directory, f) for f in os.listdir(directory) if os\n .path.isdir(os.path.join(directory, f))]\n\n\ndef file_to_lines(file_path):\n if len(file_path) == 0:\n return []\n with open(file_path) as f:\n lines = list(f.read().splitlines())\n return lines\n\n\ndef get_repo_path(file_path):\n if os.path.isfile(file_path):\n folder_path = os.path.abspath(os.path.join(file_path, os.pardir))\n else:\n folder_path = file_path\n for i in range(100):\n if folder_path == '/':\n return None\n if is_repo_path(folder_path):\n break\n folder_path = os.path.abspath(os.path.join(folder_path, os.pardir))\n return folder_path\n\n\ndef is_repo_path(path):\n return os.path.isdir(path) and '.git' in os.listdir(path)\n\n\nclass LineNumberTracker:\n \"\"\"\n When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones,\n \"\"\"\n\n def __init__(self):\n self._log = []\n\n def transform(self, line_num):\n for is_add, start, end in self._log:\n if line_num < start:\n pass\n elif line_num < end and not is_add:\n assert False, 'Line Deleted: {} {}'.format(line_num, self._log)\n elif is_add:\n line_num += end - start\n else:\n line_num -= end - start\n return line_num\n\n def remove_lines(self, start, end):\n self._log.append((False, start, end))\n\n def add_lines(self, start, end):\n self._log.append((True, start, end))\n", "step-5": "import os\nimport json\n\n\ndef load_json_if_exists(path):\n if not os.path.isfile(path):\n return {}\n with open(path) as f:\n return json.load(f)\n\ndef json_dump(obj, file_path):\n with open(file_path, 'w') as f:\n json.dump(obj, f)\n\ndef get_folder_paths(directory):\n return [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isdir(os.path.join(directory, f))]\n\n\ndef file_to_lines(file_path):\n if len(file_path) == 0:\n return []\n with open(file_path) as f:\n lines = list(f.read().splitlines())\n return lines\n\n\ndef get_repo_path(file_path):\n if os.path.isfile(file_path):\n folder_path = os.path.abspath(os.path.join(file_path, os.pardir))\n else:\n folder_path = file_path\n for i in range(100):\n if folder_path == '/':\n return None\n if is_repo_path(folder_path):\n break\n folder_path = os.path.abspath(os.path.join(folder_path, os.pardir))\n return folder_path\n\ndef is_repo_path(path):\n return os.path.isdir(path) and '.git' in os.listdir(path)\n\nclass LineNumberTracker:\n '''\n When deleting/adding lines in a file, this allows you to translate original line numbers into transformed ones,\n '''\n def __init__(self):\n self._log = []\n\n def transform(self, line_num):\n for is_add, start, end in self._log:\n if line_num < start:\n pass\n elif line_num < end and not is_add:\n assert False, 'Line Deleted: {} {}'.format(line_num, self._log)\n else:\n if is_add:\n line_num += (end - start)\n else:\n line_num -= (end - start)\n return line_num\n\n def remove_lines(self, start, end):\n self._log.append((False, start, end))\n\n def add_lines(self, start, end):\n self._log.append((True, start, end))\n\n\n", "step-ids": [ 8, 9, 12, 13, 14 ] }
[ 8, 9, 12, 13, 14 ]
import weakref from enum import Enum from functools import partial from typing import TYPE_CHECKING import inflection if TYPE_CHECKING: from stake.client import StakeClient camelcase = partial(inflection.camelize, uppercase_first_letter=False) __all__ = ["SideEnum"] class SideEnum(str, Enum): BUY = "B" SELL = "S" class BaseClient: # flake8: noqa def __init__(self, client: "StakeClient"): self._client = weakref.proxy(client)
normal
{ "blob_id": "f13ccbfb27788deca0d4f4b58a4e9e8c7e8e0306", "index": 1644, "step-1": "<mask token>\n\n\nclass SideEnum(str, Enum):\n BUY = 'B'\n SELL = 'S'\n\n\nclass BaseClient:\n\n def __init__(self, client: 'StakeClient'):\n self._client = weakref.proxy(client)\n", "step-2": "<mask token>\nif TYPE_CHECKING:\n from stake.client import StakeClient\n<mask token>\n\n\nclass SideEnum(str, Enum):\n BUY = 'B'\n SELL = 'S'\n\n\nclass BaseClient:\n\n def __init__(self, client: 'StakeClient'):\n self._client = weakref.proxy(client)\n", "step-3": "<mask token>\nif TYPE_CHECKING:\n from stake.client import StakeClient\ncamelcase = partial(inflection.camelize, uppercase_first_letter=False)\n__all__ = ['SideEnum']\n\n\nclass SideEnum(str, Enum):\n BUY = 'B'\n SELL = 'S'\n\n\nclass BaseClient:\n\n def __init__(self, client: 'StakeClient'):\n self._client = weakref.proxy(client)\n", "step-4": "import weakref\nfrom enum import Enum\nfrom functools import partial\nfrom typing import TYPE_CHECKING\nimport inflection\nif TYPE_CHECKING:\n from stake.client import StakeClient\ncamelcase = partial(inflection.camelize, uppercase_first_letter=False)\n__all__ = ['SideEnum']\n\n\nclass SideEnum(str, Enum):\n BUY = 'B'\n SELL = 'S'\n\n\nclass BaseClient:\n\n def __init__(self, client: 'StakeClient'):\n self._client = weakref.proxy(client)\n", "step-5": "import weakref\nfrom enum import Enum\nfrom functools import partial\nfrom typing import TYPE_CHECKING\n\nimport inflection\n\nif TYPE_CHECKING:\n from stake.client import StakeClient\n\ncamelcase = partial(inflection.camelize, uppercase_first_letter=False)\n\n__all__ = [\"SideEnum\"]\n\n\nclass SideEnum(str, Enum):\n BUY = \"B\"\n SELL = \"S\"\n\n\nclass BaseClient:\n # flake8: noqa\n def __init__(self, client: \"StakeClient\"):\n self._client = weakref.proxy(client)\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# open a converted base to bits file and convert it back to the base sequences seq2 = '' with open('chr01.txt') as a: while 1: seq = a.read(2) # print(seq) seq = seq.replace('00', 'c').replace('01', 'g').replace('10', 'a').replace('11', 't') seq2 += seq if not seq: break print(len(seq2)) print(seq2)
normal
{ "blob_id": "c2f859e0ed0e812768dec04b2b1f9ddd349350f6", "index": 9780, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('chr01.txt') as a:\n while 1:\n seq = a.read(2)\n seq = seq.replace('00', 'c').replace('01', 'g').replace('10', 'a'\n ).replace('11', 't')\n seq2 += seq\n if not seq:\n break\nprint(len(seq2))\nprint(seq2)\n", "step-3": "seq2 = ''\nwith open('chr01.txt') as a:\n while 1:\n seq = a.read(2)\n seq = seq.replace('00', 'c').replace('01', 'g').replace('10', 'a'\n ).replace('11', 't')\n seq2 += seq\n if not seq:\n break\nprint(len(seq2))\nprint(seq2)\n", "step-4": "# open a converted base to bits file and convert it back to the base sequences\n\nseq2 = ''\nwith open('chr01.txt') as a:\n while 1:\n seq = a.read(2)\n # print(seq)\n seq = seq.replace('00', 'c').replace('01', 'g').replace('10', 'a').replace('11', 't')\n seq2 += seq\n if not seq:\n break\n\nprint(len(seq2))\nprint(seq2)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def getfanyiInfo(): vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_fileen)) vocab_sizeen = len(vocaben) vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_filech)) vocab_sizech = len(vocabch) return vocab_sizeen, vocab_sizech, vocaben, vocabch def createModel(session, forward_only, from_vocab_size, to_vocab_size): model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf .float32) ckpt = tf.train.latest_checkpoint(checkpoint_dir) if ckpt != None: model.saver.restore(session, ckpt) else: session.run(tf.global_variables_initializer()) return model <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> tf.reset_default_graph <|reserved_special_token_0|> def getfanyiInfo(): vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_fileen)) vocab_sizeen = len(vocaben) vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_filech)) vocab_sizech = len(vocabch) return vocab_sizeen, vocab_sizech, vocaben, vocabch def createModel(session, forward_only, from_vocab_size, to_vocab_size): model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf .float32) ckpt = tf.train.latest_checkpoint(checkpoint_dir) if ckpt != None: model.saver.restore(session, ckpt) else: session.run(tf.global_variables_initializer()) return model def main(): vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo() if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) with tf.Session() as sess: model = createModel(sess, True, vocab_sizeen, vocab_sizech) model.batch_size = 1 conversation_history = [] while True: prompt = '请输入:' sentence = input(prompt) conversation_history.append(sentence) conversation_history = conversation_history[-conversation_history:] token_ids = list(reversed(datautil.sentence_to_ids(' '.join( conversation_history), vocaben, normalize_digits=True, Isch =True))) bucket_id = min([b for b in range(len(_buckets)) if _buckets[b] [0] > len(token_ids)]) encoder_inputs, decoder_inputs, target_weights = model.get_batch({ bucket_id: [(token_ids, [])]}, bucket_id) _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits ] if datautil.EOS_ID in outputs: outputs = outputs[:outputs.index(datautil.EOS_ID)] convo_output = ' '.join(datautil.ids2texts(outputs, rev_vocabch)) conversation_history.append(convo_output) else: print('can not translation!') if __name__ == '__main__': main() <|reserved_special_token_1|> <|reserved_special_token_0|> _buckets = [] convo_hist_limit = 1 max_source_length = 1 max_target_length = 2 flags = tf.app.flags FLAGS = flags.FLAGS tf.reset_default_graph max_train_data_size = 0 data_dir = 'datacn/' dropout = 1.0 grad_clip = 5.0 batch_size = 60 hidden_size = 14 num_layers = 2 learning_rate = 0.5 lr_decay_factor = 0.99 checkpoint_dir = 'data/checkpoints/' hidden_size = 100 checkpoint_dir = 'fanyichina/checkpoints/' data_dir = 'fanyichina' _buckets = [(20, 20), (40, 40), (50, 50), (60, 60)] def getfanyiInfo(): vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_fileen)) vocab_sizeen = len(vocaben) vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_filech)) vocab_sizech = len(vocabch) return vocab_sizeen, vocab_sizech, vocaben, vocabch def createModel(session, forward_only, from_vocab_size, to_vocab_size): model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf .float32) ckpt = tf.train.latest_checkpoint(checkpoint_dir) if ckpt != None: model.saver.restore(session, ckpt) else: session.run(tf.global_variables_initializer()) return model def main(): vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo() if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) with tf.Session() as sess: model = createModel(sess, True, vocab_sizeen, vocab_sizech) model.batch_size = 1 conversation_history = [] while True: prompt = '请输入:' sentence = input(prompt) conversation_history.append(sentence) conversation_history = conversation_history[-conversation_history:] token_ids = list(reversed(datautil.sentence_to_ids(' '.join( conversation_history), vocaben, normalize_digits=True, Isch =True))) bucket_id = min([b for b in range(len(_buckets)) if _buckets[b] [0] > len(token_ids)]) encoder_inputs, decoder_inputs, target_weights = model.get_batch({ bucket_id: [(token_ids, [])]}, bucket_id) _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits ] if datautil.EOS_ID in outputs: outputs = outputs[:outputs.index(datautil.EOS_ID)] convo_output = ' '.join(datautil.ids2texts(outputs, rev_vocabch)) conversation_history.append(convo_output) else: print('can not translation!') if __name__ == '__main__': main() <|reserved_special_token_1|> import os import numpy as np import tensorflow as tf from translate import datautil import seq2seq_model _buckets = [] convo_hist_limit = 1 max_source_length = 1 max_target_length = 2 flags = tf.app.flags FLAGS = flags.FLAGS tf.reset_default_graph max_train_data_size = 0 data_dir = 'datacn/' dropout = 1.0 grad_clip = 5.0 batch_size = 60 hidden_size = 14 num_layers = 2 learning_rate = 0.5 lr_decay_factor = 0.99 checkpoint_dir = 'data/checkpoints/' hidden_size = 100 checkpoint_dir = 'fanyichina/checkpoints/' data_dir = 'fanyichina' _buckets = [(20, 20), (40, 40), (50, 50), (60, 60)] def getfanyiInfo(): vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_fileen)) vocab_sizeen = len(vocaben) vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join( datautil.data_dir, datautil.vocabulary_filech)) vocab_sizech = len(vocabch) return vocab_sizeen, vocab_sizech, vocaben, vocabch def createModel(session, forward_only, from_vocab_size, to_vocab_size): model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf .float32) ckpt = tf.train.latest_checkpoint(checkpoint_dir) if ckpt != None: model.saver.restore(session, ckpt) else: session.run(tf.global_variables_initializer()) return model def main(): vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo() if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) with tf.Session() as sess: model = createModel(sess, True, vocab_sizeen, vocab_sizech) model.batch_size = 1 conversation_history = [] while True: prompt = '请输入:' sentence = input(prompt) conversation_history.append(sentence) conversation_history = conversation_history[-conversation_history:] token_ids = list(reversed(datautil.sentence_to_ids(' '.join( conversation_history), vocaben, normalize_digits=True, Isch =True))) bucket_id = min([b for b in range(len(_buckets)) if _buckets[b] [0] > len(token_ids)]) encoder_inputs, decoder_inputs, target_weights = model.get_batch({ bucket_id: [(token_ids, [])]}, bucket_id) _, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits ] if datautil.EOS_ID in outputs: outputs = outputs[:outputs.index(datautil.EOS_ID)] convo_output = ' '.join(datautil.ids2texts(outputs, rev_vocabch)) conversation_history.append(convo_output) else: print('can not translation!') if __name__ == '__main__': main() <|reserved_special_token_1|> # -*- coding:utf-8 -*- import os import numpy as np import tensorflow as tf from translate import datautil import seq2seq_model _buckets = [] convo_hist_limit = 1 max_source_length = 1 max_target_length = 2 flags = tf.app.flags FLAGS = flags.FLAGS tf.reset_default_graph max_train_data_size = 0 data_dir = 'datacn/' dropout = 1.0 grad_clip = 5.0 batch_size = 60 hidden_size = 14 num_layers = 2 learning_rate = 0.5 lr_decay_factor = 0.99 checkpoint_dir = 'data/checkpoints/' hidden_size = 100 checkpoint_dir = 'fanyichina/checkpoints/' data_dir = 'fanyichina' _buckets = [(20, 20), (40, 40), (50, 50), (60, 60)] def getfanyiInfo(): vocaben, rev_vocaben = datautil.initialize_vocabulary( os.path.join(datautil.data_dir, datautil.vocabulary_fileen)) vocab_sizeen = len(vocaben) vocabch, rev_vocabch = datautil.initialize_vocabulary( os.path.join(datautil.data_dir, datautil.vocabulary_filech)) vocab_sizech = len(vocabch) return vocab_sizeen, vocab_sizech, vocaben, vocabch def createModel(session, forward_only, from_vocab_size, to_vocab_size): model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf.float32) ckpt = tf.train.latest_checkpoint(checkpoint_dir) if ckpt != None: model.saver.restore(session, ckpt) else: session.run(tf.global_variables_initializer()) return model def main(): vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo() if not os.path.exists(checkpoint_dir): os.mkdir(checkpoint_dir) with tf.Session() as sess: model = createModel(sess, True, vocab_sizeen, vocab_sizech) model.batch_size = 1 conversation_history = [] while True: prompt = '请输入:' sentence = input(prompt) conversation_history.append(sentence) conversation_history = conversation_history[-conversation_history:] token_ids = list(reversed(datautil.sentence_to_ids( " ".join(conversation_history), vocaben, normalize_digits=True, Isch=True))) bucket_id = min([b for b in range(len(_buckets)) if _buckets[b][0] > len(token_ids)]) encoder_inputs, decoder_inputs, target_weights = model.get_batch( {bucket_id: [(token_ids, [])]}, bucket_id) _, _, output_logits = model.step( sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True) outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits] if datautil.EOS_ID in outputs: outputs = outputs[:outputs.index(datautil.EOS_ID)] convo_output = " ".join( datautil.ids2texts(outputs, rev_vocabch)) conversation_history.append(convo_output) else: print('can not translation!') if __name__ == '__main__': main()
flexible
{ "blob_id": "b7007778ea9dfac3af8c31d66d32d8157dc0d69b", "index": 1517, "step-1": "<mask token>\n\n\ndef getfanyiInfo():\n vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_fileen))\n vocab_sizeen = len(vocaben)\n vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_filech))\n vocab_sizech = len(vocabch)\n return vocab_sizeen, vocab_sizech, vocaben, vocabch\n\n\ndef createModel(session, forward_only, from_vocab_size, to_vocab_size):\n model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size,\n _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size,\n learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf\n .float32)\n ckpt = tf.train.latest_checkpoint(checkpoint_dir)\n if ckpt != None:\n model.saver.restore(session, ckpt)\n else:\n session.run(tf.global_variables_initializer())\n return model\n\n\n<mask token>\n", "step-2": "<mask token>\ntf.reset_default_graph\n<mask token>\n\n\ndef getfanyiInfo():\n vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_fileen))\n vocab_sizeen = len(vocaben)\n vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_filech))\n vocab_sizech = len(vocabch)\n return vocab_sizeen, vocab_sizech, vocaben, vocabch\n\n\ndef createModel(session, forward_only, from_vocab_size, to_vocab_size):\n model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size,\n _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size,\n learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf\n .float32)\n ckpt = tf.train.latest_checkpoint(checkpoint_dir)\n if ckpt != None:\n model.saver.restore(session, ckpt)\n else:\n session.run(tf.global_variables_initializer())\n return model\n\n\ndef main():\n vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo()\n if not os.path.exists(checkpoint_dir):\n os.mkdir(checkpoint_dir)\n with tf.Session() as sess:\n model = createModel(sess, True, vocab_sizeen, vocab_sizech)\n model.batch_size = 1\n conversation_history = []\n while True:\n prompt = '请输入:'\n sentence = input(prompt)\n conversation_history.append(sentence)\n conversation_history = conversation_history[-conversation_history:]\n token_ids = list(reversed(datautil.sentence_to_ids(' '.join(\n conversation_history), vocaben, normalize_digits=True, Isch\n =True)))\n bucket_id = min([b for b in range(len(_buckets)) if _buckets[b]\n [0] > len(token_ids)])\n encoder_inputs, decoder_inputs, target_weights = model.get_batch({\n bucket_id: [(token_ids, [])]}, bucket_id)\n _, _, output_logits = model.step(sess, encoder_inputs,\n decoder_inputs, target_weights, bucket_id, True)\n outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits\n ]\n if datautil.EOS_ID in outputs:\n outputs = outputs[:outputs.index(datautil.EOS_ID)]\n convo_output = ' '.join(datautil.ids2texts(outputs,\n rev_vocabch))\n conversation_history.append(convo_output)\n else:\n print('can not translation!')\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\n_buckets = []\nconvo_hist_limit = 1\nmax_source_length = 1\nmax_target_length = 2\nflags = tf.app.flags\nFLAGS = flags.FLAGS\ntf.reset_default_graph\nmax_train_data_size = 0\ndata_dir = 'datacn/'\ndropout = 1.0\ngrad_clip = 5.0\nbatch_size = 60\nhidden_size = 14\nnum_layers = 2\nlearning_rate = 0.5\nlr_decay_factor = 0.99\ncheckpoint_dir = 'data/checkpoints/'\nhidden_size = 100\ncheckpoint_dir = 'fanyichina/checkpoints/'\ndata_dir = 'fanyichina'\n_buckets = [(20, 20), (40, 40), (50, 50), (60, 60)]\n\n\ndef getfanyiInfo():\n vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_fileen))\n vocab_sizeen = len(vocaben)\n vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_filech))\n vocab_sizech = len(vocabch)\n return vocab_sizeen, vocab_sizech, vocaben, vocabch\n\n\ndef createModel(session, forward_only, from_vocab_size, to_vocab_size):\n model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size,\n _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size,\n learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf\n .float32)\n ckpt = tf.train.latest_checkpoint(checkpoint_dir)\n if ckpt != None:\n model.saver.restore(session, ckpt)\n else:\n session.run(tf.global_variables_initializer())\n return model\n\n\ndef main():\n vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo()\n if not os.path.exists(checkpoint_dir):\n os.mkdir(checkpoint_dir)\n with tf.Session() as sess:\n model = createModel(sess, True, vocab_sizeen, vocab_sizech)\n model.batch_size = 1\n conversation_history = []\n while True:\n prompt = '请输入:'\n sentence = input(prompt)\n conversation_history.append(sentence)\n conversation_history = conversation_history[-conversation_history:]\n token_ids = list(reversed(datautil.sentence_to_ids(' '.join(\n conversation_history), vocaben, normalize_digits=True, Isch\n =True)))\n bucket_id = min([b for b in range(len(_buckets)) if _buckets[b]\n [0] > len(token_ids)])\n encoder_inputs, decoder_inputs, target_weights = model.get_batch({\n bucket_id: [(token_ids, [])]}, bucket_id)\n _, _, output_logits = model.step(sess, encoder_inputs,\n decoder_inputs, target_weights, bucket_id, True)\n outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits\n ]\n if datautil.EOS_ID in outputs:\n outputs = outputs[:outputs.index(datautil.EOS_ID)]\n convo_output = ' '.join(datautil.ids2texts(outputs,\n rev_vocabch))\n conversation_history.append(convo_output)\n else:\n print('can not translation!')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport numpy as np\nimport tensorflow as tf\nfrom translate import datautil\nimport seq2seq_model\n_buckets = []\nconvo_hist_limit = 1\nmax_source_length = 1\nmax_target_length = 2\nflags = tf.app.flags\nFLAGS = flags.FLAGS\ntf.reset_default_graph\nmax_train_data_size = 0\ndata_dir = 'datacn/'\ndropout = 1.0\ngrad_clip = 5.0\nbatch_size = 60\nhidden_size = 14\nnum_layers = 2\nlearning_rate = 0.5\nlr_decay_factor = 0.99\ncheckpoint_dir = 'data/checkpoints/'\nhidden_size = 100\ncheckpoint_dir = 'fanyichina/checkpoints/'\ndata_dir = 'fanyichina'\n_buckets = [(20, 20), (40, 40), (50, 50), (60, 60)]\n\n\ndef getfanyiInfo():\n vocaben, rev_vocaben = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_fileen))\n vocab_sizeen = len(vocaben)\n vocabch, rev_vocabch = datautil.initialize_vocabulary(os.path.join(\n datautil.data_dir, datautil.vocabulary_filech))\n vocab_sizech = len(vocabch)\n return vocab_sizeen, vocab_sizech, vocaben, vocabch\n\n\ndef createModel(session, forward_only, from_vocab_size, to_vocab_size):\n model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size,\n _buckets, hidden_size, num_layers, dropout, grad_clip, batch_size,\n learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf\n .float32)\n ckpt = tf.train.latest_checkpoint(checkpoint_dir)\n if ckpt != None:\n model.saver.restore(session, ckpt)\n else:\n session.run(tf.global_variables_initializer())\n return model\n\n\ndef main():\n vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo()\n if not os.path.exists(checkpoint_dir):\n os.mkdir(checkpoint_dir)\n with tf.Session() as sess:\n model = createModel(sess, True, vocab_sizeen, vocab_sizech)\n model.batch_size = 1\n conversation_history = []\n while True:\n prompt = '请输入:'\n sentence = input(prompt)\n conversation_history.append(sentence)\n conversation_history = conversation_history[-conversation_history:]\n token_ids = list(reversed(datautil.sentence_to_ids(' '.join(\n conversation_history), vocaben, normalize_digits=True, Isch\n =True)))\n bucket_id = min([b for b in range(len(_buckets)) if _buckets[b]\n [0] > len(token_ids)])\n encoder_inputs, decoder_inputs, target_weights = model.get_batch({\n bucket_id: [(token_ids, [])]}, bucket_id)\n _, _, output_logits = model.step(sess, encoder_inputs,\n decoder_inputs, target_weights, bucket_id, True)\n outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits\n ]\n if datautil.EOS_ID in outputs:\n outputs = outputs[:outputs.index(datautil.EOS_ID)]\n convo_output = ' '.join(datautil.ids2texts(outputs,\n rev_vocabch))\n conversation_history.append(convo_output)\n else:\n print('can not translation!')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "# -*- coding:utf-8 -*-\nimport os\n\nimport numpy as np\nimport tensorflow as tf\n\nfrom translate import datautil\nimport seq2seq_model\n\n_buckets = []\nconvo_hist_limit = 1\nmax_source_length = 1\nmax_target_length = 2\n\nflags = tf.app.flags\nFLAGS = flags.FLAGS\n\ntf.reset_default_graph\n\nmax_train_data_size = 0\n\ndata_dir = 'datacn/'\n\ndropout = 1.0\ngrad_clip = 5.0\nbatch_size = 60\nhidden_size = 14\nnum_layers = 2\nlearning_rate = 0.5\nlr_decay_factor = 0.99\n\ncheckpoint_dir = 'data/checkpoints/'\n\nhidden_size = 100\ncheckpoint_dir = 'fanyichina/checkpoints/'\ndata_dir = 'fanyichina'\n_buckets = [(20, 20), (40, 40), (50, 50), (60, 60)]\n\n\ndef getfanyiInfo():\n vocaben, rev_vocaben = datautil.initialize_vocabulary(\n os.path.join(datautil.data_dir, datautil.vocabulary_fileen))\n vocab_sizeen = len(vocaben)\n vocabch, rev_vocabch = datautil.initialize_vocabulary(\n os.path.join(datautil.data_dir, datautil.vocabulary_filech))\n vocab_sizech = len(vocabch)\n return vocab_sizeen, vocab_sizech, vocaben, vocabch\n\n\ndef createModel(session, forward_only, from_vocab_size, to_vocab_size):\n model = seq2seq_model.Seq2SeqModel(from_vocab_size, to_vocab_size, _buckets, hidden_size, num_layers, dropout,\n grad_clip, batch_size, learning_rate, lr_decay_factor, forward_only=forward_only, dtype=tf.float32)\n ckpt = tf.train.latest_checkpoint(checkpoint_dir)\n if ckpt != None:\n model.saver.restore(session, ckpt)\n else:\n session.run(tf.global_variables_initializer())\n return model\n\n\ndef main():\n vocab_sizeen, vocab_sizech, vocaben, rev_vocabch = getfanyiInfo()\n if not os.path.exists(checkpoint_dir):\n os.mkdir(checkpoint_dir)\n with tf.Session() as sess:\n model = createModel(sess, True, vocab_sizeen, vocab_sizech)\n model.batch_size = 1\n conversation_history = []\n while True:\n prompt = '请输入:'\n sentence = input(prompt)\n conversation_history.append(sentence)\n conversation_history = conversation_history[-conversation_history:]\n\n token_ids = list(reversed(datautil.sentence_to_ids(\n \" \".join(conversation_history), vocaben, normalize_digits=True, Isch=True)))\n bucket_id = min([b for b in range(len(_buckets))\n if _buckets[b][0] > len(token_ids)])\n\n encoder_inputs, decoder_inputs, target_weights = model.get_batch(\n {bucket_id: [(token_ids, [])]}, bucket_id)\n _, _, output_logits = model.step(\n sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)\n outputs = [int(np.argmax(logit, axis=1))\n for logit in output_logits]\n if datautil.EOS_ID in outputs:\n outputs = outputs[:outputs.index(datautil.EOS_ID)]\n convo_output = \" \".join(\n datautil.ids2texts(outputs, rev_vocabch))\n conversation_history.append(convo_output)\n else:\n print('can not translation!')\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
<|reserved_special_token_0|> class TestVideoMethods(luna.TestBase): def vlog(self, message): if VERBOSE_LOG: print(message) def setUp(self): self.vlog('setUp') if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('register ' + pid) luna.call(API_URL + 'register', {'context': pid}) self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe': True}) def tearDown(self): self.vlog('tearDown') for sink in SINK_LIST: self.vlog('disconnect ' + sink) luna.call(API_URL + 'disconnect', {'sink': sink}) if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('unregister ' + pid) luna.call(API_URL + 'unregister', {'context': pid}) luna.cancelSubscribe(self.statusSub) <|reserved_special_token_0|> def mute(self, sink, blank): self.vlog('- Mute' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, { 'video': [{'sink': sink, 'muted': blank}]}) def disconnect(self, sink, pid): self.vlog('disconnect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'disconnect', {'sink': sink}, self.statusSub, {'video': [{ 'sink': sink, 'connectedSource': None}]}) def testConnectDisconnect(self): print('[testConnectDisconnect]') for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems(): for port in ports: for sink in SINK_LIST: for i in range(3): self.connect(sink, source, port, '') self.disconnect(sink, '') <|reserved_special_token_0|> def testMute(self): print('[testMute]') for sink in SINK_LIST: self.connect(sink, SOURCE_NAME, SOURCE_PORT, '') for blank in [False, True]: self.mute(sink, blank) <|reserved_special_token_0|> def testSetVideoDataAndDisplayWindow(self): print('[testSetVideoDataAndDisplayWindow]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y' ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetFullscreen(self): print('[testSetFullscreen]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]} ) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetCompositing(self): print('[testSetCompositing]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN, 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31, 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 20, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'opacity': 130}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'opacity': 130, 'zOrder': 1}]}) if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 200}, self.statusSub, {'video': [{'sink': 'SUB0', 'opacity': 200, 'zOrder': 0}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 230}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 230, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 30, 'zOrder': 1}]}) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestVideoMethods(luna.TestBase): def vlog(self, message): if VERBOSE_LOG: print(message) def setUp(self): self.vlog('setUp') if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('register ' + pid) luna.call(API_URL + 'register', {'context': pid}) self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe': True}) def tearDown(self): self.vlog('tearDown') for sink in SINK_LIST: self.vlog('disconnect ' + sink) luna.call(API_URL + 'disconnect', {'sink': sink}) if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('unregister ' + pid) luna.call(API_URL + 'unregister', {'context': pid}) luna.cancelSubscribe(self.statusSub) def connect(self, sink, source, port, pid): self.vlog('connect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': sink, 'source': source, 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink, 'connectedSource': source, 'connectedSourcePort': port}]}) def mute(self, sink, blank): self.vlog('- Mute' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, { 'video': [{'sink': sink, 'muted': blank}]}) def disconnect(self, sink, pid): self.vlog('disconnect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'disconnect', {'sink': sink}, self.statusSub, {'video': [{ 'sink': sink, 'connectedSource': None}]}) def testConnectDisconnect(self): print('[testConnectDisconnect]') for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems(): for port in ports: for sink in SINK_LIST: for i in range(3): self.connect(sink, source, port, '') self.disconnect(sink, '') def testDualConnect(self): print('[testDualConnect]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB, 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink': SINK_SUB, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}]}) self.disconnect(SINK_MAIN, '') if len(SINK_LIST) > 1: self.disconnect(SINK_SUB, '') def testMute(self): print('[testMute]') for sink in SINK_LIST: self.connect(sink, SOURCE_NAME, SOURCE_PORT, '') for blank in [False, True]: self.mute(sink, blank) def testSetDisplayWindowAndVideoData(self): print('[testSetDisplayWindowAndVideoData]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[ 'W'], 'height': OUTPUT_RECT['H']}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[ 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetVideoDataAndDisplayWindow(self): print('[testSetVideoDataAndDisplayWindow]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y' ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetFullscreen(self): print('[testSetFullscreen]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]} ) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetCompositing(self): print('[testSetCompositing]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN, 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31, 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 20, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'opacity': 130}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'opacity': 130, 'zOrder': 1}]}) if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 200}, self.statusSub, {'video': [{'sink': 'SUB0', 'opacity': 200, 'zOrder': 0}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 230}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 230, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 30, 'zOrder': 1}]}) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestVideoMethods(luna.TestBase): def vlog(self, message): if VERBOSE_LOG: print(message) def setUp(self): self.vlog('setUp') if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('register ' + pid) luna.call(API_URL + 'register', {'context': pid}) self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe': True}) def tearDown(self): self.vlog('tearDown') for sink in SINK_LIST: self.vlog('disconnect ' + sink) luna.call(API_URL + 'disconnect', {'sink': sink}) if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('unregister ' + pid) luna.call(API_URL + 'unregister', {'context': pid}) luna.cancelSubscribe(self.statusSub) def connect(self, sink, source, port, pid): self.vlog('connect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': sink, 'source': source, 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink, 'connectedSource': source, 'connectedSourcePort': port}]}) def mute(self, sink, blank): self.vlog('- Mute' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, { 'video': [{'sink': sink, 'muted': blank}]}) def disconnect(self, sink, pid): self.vlog('disconnect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'disconnect', {'sink': sink}, self.statusSub, {'video': [{ 'sink': sink, 'connectedSource': None}]}) def testConnectDisconnect(self): print('[testConnectDisconnect]') for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems(): for port in ports: for sink in SINK_LIST: for i in range(3): self.connect(sink, source, port, '') self.disconnect(sink, '') def testDualConnect(self): print('[testDualConnect]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB, 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink': SINK_SUB, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}]}) self.disconnect(SINK_MAIN, '') if len(SINK_LIST) > 1: self.disconnect(SINK_SUB, '') def testMute(self): print('[testMute]') for sink in SINK_LIST: self.connect(sink, SOURCE_NAME, SOURCE_PORT, '') for blank in [False, True]: self.mute(sink, blank) def testSetDisplayWindowAndVideoData(self): print('[testSetDisplayWindowAndVideoData]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[ 'W'], 'height': OUTPUT_RECT['H']}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[ 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetVideoDataAndDisplayWindow(self): print('[testSetVideoDataAndDisplayWindow]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y' ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetFullscreen(self): print('[testSetFullscreen]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]} ) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetCompositing(self): print('[testSetCompositing]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN, 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31, 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 20, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'opacity': 130}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'opacity': 130, 'zOrder': 1}]}) if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 200}, self.statusSub, {'video': [{'sink': 'SUB0', 'opacity': 200, 'zOrder': 0}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 230}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 230, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 30, 'zOrder': 1}]}) if __name__ == '__main__': luna.VERBOSE = False unittest.main() <|reserved_special_token_1|> import unittest import luna_utils as luna import time API_URL = 'com.webos.service.videooutput/' VERBOSE_LOG = True SUPPORT_REGISTER = False SINK_MAIN = 'MAIN' SINK_SUB = 'SUB0' SINK_LIST = [SINK_MAIN] PID1 = 'pipeline1' PID2 = 'pipeline2' PID_LIST = [PID1, PID2] INPUT_RECT = {'X': 0, 'Y': 0, 'W': 1920, 'H': 1080} OUTPUT_RECT = {'X': 400, 'Y': 400, 'W': 1920, 'H': 1080} SOURCE_NAME = 'HDMI' SOURCE_PORT = 3 SOURCE_WIDTH = 1920 SOURCE_HEIGHT = 1080 SLEEP_TIME = 1 class TestVideoMethods(luna.TestBase): def vlog(self, message): if VERBOSE_LOG: print(message) def setUp(self): self.vlog('setUp') if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('register ' + pid) luna.call(API_URL + 'register', {'context': pid}) self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe': True}) def tearDown(self): self.vlog('tearDown') for sink in SINK_LIST: self.vlog('disconnect ' + sink) luna.call(API_URL + 'disconnect', {'sink': sink}) if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog('unregister ' + pid) luna.call(API_URL + 'unregister', {'context': pid}) luna.cancelSubscribe(self.statusSub) def connect(self, sink, source, port, pid): self.vlog('connect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': sink, 'source': source, 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink, 'connectedSource': source, 'connectedSourcePort': port}]}) def mute(self, sink, blank): self.vlog('- Mute' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, { 'video': [{'sink': sink, 'muted': blank}]}) def disconnect(self, sink, pid): self.vlog('disconnect ' + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'disconnect', {'sink': sink}, self.statusSub, {'video': [{ 'sink': sink, 'connectedSource': None}]}) def testConnectDisconnect(self): print('[testConnectDisconnect]') for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems(): for port in ports: for sink in SINK_LIST: for i in range(3): self.connect(sink, source, port, '') self.disconnect(sink, '') def testDualConnect(self): print('[testDualConnect]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB, 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink': SINK_SUB, 'connectedSource': SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}]}) self.disconnect(SINK_MAIN, '') if len(SINK_LIST) > 1: self.disconnect(SINK_SUB, '') def testMute(self): print('[testMute]') for sink in SINK_LIST: self.connect(sink, SOURCE_NAME, SOURCE_PORT, '') for blank in [False, True]: self.mute(sink, blank) def testSetDisplayWindowAndVideoData(self): print('[testSetDisplayWindowAndVideoData]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[ 'W'], 'height': OUTPUT_RECT['H']}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[ 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetVideoDataAndDisplayWindow(self): print('[testSetVideoDataAndDisplayWindow]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[ 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self. statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y' ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']}, 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetFullscreen(self): print('[testSetFullscreen]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media', 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0, 'height': 0}}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]} ) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetCompositing(self): print('[testSetCompositing]') self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '') if len(SINK_LIST) > 1: self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '') self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN, 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31, 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 20, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': True, 'opacity': 130}, self.statusSub, {'video': [{'sink': SINK_MAIN, 'opacity': 130, 'zOrder': 1}]}) if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 200}, self.statusSub, {'video': [{'sink': 'SUB0', 'opacity': 200, 'zOrder': 0}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 230}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 230, 'zOrder': 1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen': True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video': [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0', 'opacity': 30, 'zOrder': 1}]}) if __name__ == '__main__': luna.VERBOSE = False unittest.main() <|reserved_special_token_1|> #!/usr/bin/python2 import unittest import luna_utils as luna import time API_URL = "com.webos.service.videooutput/" VERBOSE_LOG = True SUPPORT_REGISTER = False SINK_MAIN = "MAIN" SINK_SUB = "SUB0" #TODO(ekwang): If you connect SUB, HAL error occurs. Just test MAIN in the current state #SINK_LIST = [SINK_MAIN, SINK_SUB] SINK_LIST = [SINK_MAIN] PID1 = "pipeline1" PID2 = "pipeline2" PID_LIST = [PID1, PID2] INPUT_RECT = {'X':0, 'Y':0, 'W':1920, 'H':1080} OUTPUT_RECT = {'X':400, 'Y':400, 'W':1920, 'H':1080} #Choose source type VDEC or HDMI for test input #SOURCE_NAME = SOURCE_NAME #SOURCE_PORT = 0 SOURCE_NAME = "HDMI" SOURCE_PORT = 3 SOURCE_WIDTH = 1920 SOURCE_HEIGHT = 1080 SLEEP_TIME = 1 class TestVideoMethods(luna.TestBase): def vlog(self, message): if VERBOSE_LOG: print(message) def setUp(self): self.vlog("setUp") if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog("register " + pid) luna.call(API_URL + "register", { "context": pid }) self.statusSub = luna.subscribe(API_URL + "getStatus", {"subscribe":True}) def tearDown(self): self.vlog("tearDown") for sink in SINK_LIST: self.vlog("disconnect " + sink) luna.call(API_URL + "disconnect", { "sink": sink }) if SUPPORT_REGISTER: for pid in PID_LIST: self.vlog("unregister " + pid) luna.call(API_URL + "unregister", { "context": pid }) luna.cancelSubscribe(self.statusSub) def connect(self, sink, source, port, pid): self.vlog("connect " + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + "connect", { "outputMode": "DISPLAY", "sink": sink, "source": source, "sourcePort": port }, self.statusSub, {"video":[{"sink": sink, "connectedSource": source, "connectedSourcePort": port}]}) def mute(self, sink, blank): self.vlog("- Mute" + sink) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "blankVideo", {"sink": sink, "blank": blank}, self.statusSub, {"video":[{"sink": sink, "muted": blank}]}) def disconnect(self, sink, pid): self.vlog("disconnect " + sink) self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + "disconnect", { "sink": sink }, self.statusSub, {"video": [{"sink": sink, "connectedSource": None}]}) def testConnectDisconnect(self): print("[testConnectDisconnect]") for source, ports in {"VDEC":[0,1], "HDMI":[0,1,2]}.iteritems(): for port in ports: for sink in SINK_LIST: for i in range(3): self.connect(sink, source, port, "") self.disconnect(sink, "") def testDualConnect(self): print("[testDualConnect]") self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, "") if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + "connect", {"outputMode": "DISPLAY", "sink": SINK_SUB, "source": SOURCE_NAME, "sourcePort": SOURCE_PORT}, self.statusSub, {"video": [{"sink": SINK_MAIN, "connectedSource": SOURCE_NAME, "connectedSourcePort": SOURCE_PORT}, {"sink": SINK_SUB, "connectedSource": SOURCE_NAME, "connectedSourcePort": SOURCE_PORT}]}) self.disconnect(SINK_MAIN, "") if len(SINK_LIST) > 1: self.disconnect(SINK_SUB, "") def testMute(self): print("[testMute]") for sink in SINK_LIST: self.connect(sink, SOURCE_NAME, SOURCE_PORT, "") for blank in [False, True]: self.mute(sink, blank) #test different orders of display window and media data def testSetDisplayWindowAndVideoData(self): print("[testSetDisplayWindowAndVideoData]") self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, "") self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_MAIN, "fullScreen": False, "sourceInput": {"x":INPUT_RECT['X'], "y":INPUT_RECT['Y'], "width":INPUT_RECT['W'], "height":INPUT_RECT['H']}, "displayOutput": {"x":OUTPUT_RECT['X'], "y":OUTPUT_RECT['Y'], "width":OUTPUT_RECT['W'], "height":OUTPUT_RECT['H']}}, self.statusSub, {"video":[{"sink": "MAIN", "fullScreen": False, "width":0, "height":0, "frameRate":0, "sourceInput": {"x":0, "y":0, "width":0, "height":0}, # no media data yet so can't determine appliedsourceInput yet "displayOutput": {"x":OUTPUT_RECT['X'], "y":OUTPUT_RECT['Y'], "width":OUTPUT_RECT['W'], "height":OUTPUT_RECT['H']} }]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "setVideoData", {"sink": SINK_MAIN, "contentType": "media", "frameRate":29.5, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "scanType":"progressive", "adaptive": False}, self.statusSub, {"video":[{"sink": "MAIN", "fullScreen": False, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "frameRate":29.5, "sourceInput": {"x":0, "y":0, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT}, "displayOutput": {"x":OUTPUT_RECT['X'], "y":OUTPUT_RECT['Y'], "width":OUTPUT_RECT['W'], "height":OUTPUT_RECT['H']} }]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetVideoDataAndDisplayWindow(self): print("[testSetVideoDataAndDisplayWindow]") self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, "") self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "setVideoData", {"sink": SINK_MAIN, "contentType": "media", "frameRate":29.5, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "scanType":"progressive", "adaptive": False}, self.statusSub, {"video":[{"sink": SINK_MAIN, "fullScreen": False, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "frameRate":29.5, "sourceInput": {"x":0, "y":0, "width":0, "height":0}, "displayOutput": {"x":0, "y":0, "width":0, "height":0} }]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": "MAIN", "fullScreen": False, "sourceInput": {"x":INPUT_RECT['X'], "y":INPUT_RECT['Y'], "width":INPUT_RECT['W'], "height":INPUT_RECT['H']}, "displayOutput": {"x":OUTPUT_RECT['X'], "y":OUTPUT_RECT['Y'], "width":OUTPUT_RECT['W'], "height":OUTPUT_RECT['H']}}, self.statusSub, {"video":[{"sink": SINK_MAIN, "fullScreen": False, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "frameRate":29.5, "sourceInput": {"x":INPUT_RECT['X'], "y":INPUT_RECT['Y'], "width":INPUT_RECT['W'], "height":INPUT_RECT['H']}, "displayOutput": {"x":OUTPUT_RECT['X'], "y":OUTPUT_RECT['Y'], "width":OUTPUT_RECT['W'], "height":OUTPUT_RECT['H']} }]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetFullscreen(self): print("[testSetFullscreen]") self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, "") self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "setVideoData", {"sink": SINK_MAIN, "contentType": "media", "frameRate":29.5, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "scanType":"progressive", "adaptive": False}, self.statusSub, {"video":[{"sink": SINK_MAIN, "fullScreen": False, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "frameRate":29.5, "sourceInput": {"x":0, "y":0, "width":0, "height":0}, "displayOutput": {"x":0, "y":0, "width":0, "height":0} }]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_MAIN, "fullScreen": True, "sourceInput": {"x":0, "y":0, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT}}, self.statusSub, {"video":[{"sink": SINK_MAIN, "fullScreen": True, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT, "frameRate":29.5, "sourceInput": {"x":0, "y":0, "width":SOURCE_WIDTH, "height":SOURCE_HEIGHT}, "displayOutput": {"x":0, "y":0, "width":3840, "height":2160} }]}) self.mute(SINK_MAIN, False) time.sleep(SLEEP_TIME) def testSetCompositing(self): print("[testSetCompositing]") self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, "") if len(SINK_LIST) > 1: self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, "") self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setCompositing", {"composeOrder": [{"sink":SINK_MAIN, "opacity":20, "zOrder":1}, {"sink":SINK_SUB, "opacity":31, "zOrder":0}]}, self.statusSub, {"video":[{"sink": "MAIN", "opacity":20, "zOrder":1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_MAIN, "fullScreen":True, "opacity":130}, self.statusSub, {"video":[{"sink": SINK_MAIN, "opacity":130, "zOrder":1}]}) if len(SINK_LIST) > 1: self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_SUB, "fullScreen":True, "opacity":200}, self.statusSub, {"video":[{"sink": "SUB0", "opacity":200, "zOrder":0}]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_SUB, "fullScreen":True, "opacity":230}, self.statusSub, {"video":[{"sink": "MAIN", "opacity":130, "zOrder":0}, {"sink": "SUB0", "opacity":230, "zOrder":1}]}) self.checkLunaCallSuccessAndSubscriptionUpdate( API_URL + "display/setDisplayWindow", {"sink": SINK_SUB, "fullScreen":True, "opacity":30, "zOrder": 1}, self.statusSub, {"video":[{"sink": "MAIN", "opacity":130, "zOrder":0}, {"sink": "SUB0", "opacity":30, "zOrder":1}]}) if __name__ == '__main__': luna.VERBOSE = False unittest.main()
flexible
{ "blob_id": "27e66b2a03bc626d5babd804e736a4652ba030d5", "index": 8624, "step-1": "<mask token>\n\n\nclass TestVideoMethods(luna.TestBase):\n\n def vlog(self, message):\n if VERBOSE_LOG:\n print(message)\n\n def setUp(self):\n self.vlog('setUp')\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('register ' + pid)\n luna.call(API_URL + 'register', {'context': pid})\n self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe':\n True})\n\n def tearDown(self):\n self.vlog('tearDown')\n for sink in SINK_LIST:\n self.vlog('disconnect ' + sink)\n luna.call(API_URL + 'disconnect', {'sink': sink})\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('unregister ' + pid)\n luna.call(API_URL + 'unregister', {'context': pid})\n luna.cancelSubscribe(self.statusSub)\n <mask token>\n\n def mute(self, sink, blank):\n self.vlog('- Mute' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, {\n 'video': [{'sink': sink, 'muted': blank}]})\n\n def disconnect(self, sink, pid):\n self.vlog('disconnect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'disconnect', {'sink': sink}, self.statusSub, {'video': [{\n 'sink': sink, 'connectedSource': None}]})\n\n def testConnectDisconnect(self):\n print('[testConnectDisconnect]')\n for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems():\n for port in ports:\n for sink in SINK_LIST:\n for i in range(3):\n self.connect(sink, source, port, '')\n self.disconnect(sink, '')\n <mask token>\n\n def testMute(self):\n print('[testMute]')\n for sink in SINK_LIST:\n self.connect(sink, SOURCE_NAME, SOURCE_PORT, '')\n for blank in [False, True]:\n self.mute(sink, blank)\n <mask token>\n\n def testSetVideoDataAndDisplayWindow(self):\n print('[testSetVideoDataAndDisplayWindow]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y'\n ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetFullscreen(self):\n print('[testSetFullscreen]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': \n 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT},\n 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]}\n )\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetCompositing(self):\n print('[testSetCompositing]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN,\n 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31,\n 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN',\n 'opacity': 20, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'opacity': 130}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'opacity': 130, 'zOrder': 1}]})\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 200}, self.statusSub, {'video': [{'sink':\n 'SUB0', 'opacity': 200, 'zOrder': 0}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 230}, self.statusSub, {'video': [{'sink':\n 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0',\n 'opacity': 230, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video':\n [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink':\n 'SUB0', 'opacity': 30, 'zOrder': 1}]})\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestVideoMethods(luna.TestBase):\n\n def vlog(self, message):\n if VERBOSE_LOG:\n print(message)\n\n def setUp(self):\n self.vlog('setUp')\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('register ' + pid)\n luna.call(API_URL + 'register', {'context': pid})\n self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe':\n True})\n\n def tearDown(self):\n self.vlog('tearDown')\n for sink in SINK_LIST:\n self.vlog('disconnect ' + sink)\n luna.call(API_URL + 'disconnect', {'sink': sink})\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('unregister ' + pid)\n luna.call(API_URL + 'unregister', {'context': pid})\n luna.cancelSubscribe(self.statusSub)\n\n def connect(self, sink, source, port, pid):\n self.vlog('connect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect',\n {'outputMode': 'DISPLAY', 'sink': sink, 'source': source,\n 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink,\n 'connectedSource': source, 'connectedSourcePort': port}]})\n\n def mute(self, sink, blank):\n self.vlog('- Mute' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, {\n 'video': [{'sink': sink, 'muted': blank}]})\n\n def disconnect(self, sink, pid):\n self.vlog('disconnect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'disconnect', {'sink': sink}, self.statusSub, {'video': [{\n 'sink': sink, 'connectedSource': None}]})\n\n def testConnectDisconnect(self):\n print('[testConnectDisconnect]')\n for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems():\n for port in ports:\n for sink in SINK_LIST:\n for i in range(3):\n self.connect(sink, source, port, '')\n self.disconnect(sink, '')\n\n def testDualConnect(self):\n print('[testDualConnect]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB,\n 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource':\n SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink':\n SINK_SUB, 'connectedSource': SOURCE_NAME,\n 'connectedSourcePort': SOURCE_PORT}]})\n self.disconnect(SINK_MAIN, '')\n if len(SINK_LIST) > 1:\n self.disconnect(SINK_SUB, '')\n\n def testMute(self):\n print('[testMute]')\n for sink in SINK_LIST:\n self.connect(sink, SOURCE_NAME, SOURCE_PORT, '')\n for blank in [False, True]:\n self.mute(sink, blank)\n\n def testSetDisplayWindowAndVideoData(self):\n print('[testSetDisplayWindowAndVideoData]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0,\n 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x':\n OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[\n 'W'], 'height': OUTPUT_RECT['H']}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[\n 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'],\n 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetVideoDataAndDisplayWindow(self):\n print('[testSetVideoDataAndDisplayWindow]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y'\n ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetFullscreen(self):\n print('[testSetFullscreen]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': \n 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT},\n 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]}\n )\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetCompositing(self):\n print('[testSetCompositing]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN,\n 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31,\n 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN',\n 'opacity': 20, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'opacity': 130}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'opacity': 130, 'zOrder': 1}]})\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 200}, self.statusSub, {'video': [{'sink':\n 'SUB0', 'opacity': 200, 'zOrder': 0}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 230}, self.statusSub, {'video': [{'sink':\n 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0',\n 'opacity': 230, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video':\n [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink':\n 'SUB0', 'opacity': 30, 'zOrder': 1}]})\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestVideoMethods(luna.TestBase):\n\n def vlog(self, message):\n if VERBOSE_LOG:\n print(message)\n\n def setUp(self):\n self.vlog('setUp')\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('register ' + pid)\n luna.call(API_URL + 'register', {'context': pid})\n self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe':\n True})\n\n def tearDown(self):\n self.vlog('tearDown')\n for sink in SINK_LIST:\n self.vlog('disconnect ' + sink)\n luna.call(API_URL + 'disconnect', {'sink': sink})\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('unregister ' + pid)\n luna.call(API_URL + 'unregister', {'context': pid})\n luna.cancelSubscribe(self.statusSub)\n\n def connect(self, sink, source, port, pid):\n self.vlog('connect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect',\n {'outputMode': 'DISPLAY', 'sink': sink, 'source': source,\n 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink,\n 'connectedSource': source, 'connectedSourcePort': port}]})\n\n def mute(self, sink, blank):\n self.vlog('- Mute' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, {\n 'video': [{'sink': sink, 'muted': blank}]})\n\n def disconnect(self, sink, pid):\n self.vlog('disconnect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'disconnect', {'sink': sink}, self.statusSub, {'video': [{\n 'sink': sink, 'connectedSource': None}]})\n\n def testConnectDisconnect(self):\n print('[testConnectDisconnect]')\n for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems():\n for port in ports:\n for sink in SINK_LIST:\n for i in range(3):\n self.connect(sink, source, port, '')\n self.disconnect(sink, '')\n\n def testDualConnect(self):\n print('[testDualConnect]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB,\n 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource':\n SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink':\n SINK_SUB, 'connectedSource': SOURCE_NAME,\n 'connectedSourcePort': SOURCE_PORT}]})\n self.disconnect(SINK_MAIN, '')\n if len(SINK_LIST) > 1:\n self.disconnect(SINK_SUB, '')\n\n def testMute(self):\n print('[testMute]')\n for sink in SINK_LIST:\n self.connect(sink, SOURCE_NAME, SOURCE_PORT, '')\n for blank in [False, True]:\n self.mute(sink, blank)\n\n def testSetDisplayWindowAndVideoData(self):\n print('[testSetDisplayWindowAndVideoData]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0,\n 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x':\n OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[\n 'W'], 'height': OUTPUT_RECT['H']}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[\n 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'],\n 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetVideoDataAndDisplayWindow(self):\n print('[testSetVideoDataAndDisplayWindow]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y'\n ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetFullscreen(self):\n print('[testSetFullscreen]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': \n 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT},\n 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]}\n )\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetCompositing(self):\n print('[testSetCompositing]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN,\n 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31,\n 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN',\n 'opacity': 20, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'opacity': 130}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'opacity': 130, 'zOrder': 1}]})\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 200}, self.statusSub, {'video': [{'sink':\n 'SUB0', 'opacity': 200, 'zOrder': 0}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 230}, self.statusSub, {'video': [{'sink':\n 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0',\n 'opacity': 230, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video':\n [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink':\n 'SUB0', 'opacity': 30, 'zOrder': 1}]})\n\n\nif __name__ == '__main__':\n luna.VERBOSE = False\n unittest.main()\n", "step-4": "import unittest\nimport luna_utils as luna\nimport time\nAPI_URL = 'com.webos.service.videooutput/'\nVERBOSE_LOG = True\nSUPPORT_REGISTER = False\nSINK_MAIN = 'MAIN'\nSINK_SUB = 'SUB0'\nSINK_LIST = [SINK_MAIN]\nPID1 = 'pipeline1'\nPID2 = 'pipeline2'\nPID_LIST = [PID1, PID2]\nINPUT_RECT = {'X': 0, 'Y': 0, 'W': 1920, 'H': 1080}\nOUTPUT_RECT = {'X': 400, 'Y': 400, 'W': 1920, 'H': 1080}\nSOURCE_NAME = 'HDMI'\nSOURCE_PORT = 3\nSOURCE_WIDTH = 1920\nSOURCE_HEIGHT = 1080\nSLEEP_TIME = 1\n\n\nclass TestVideoMethods(luna.TestBase):\n\n def vlog(self, message):\n if VERBOSE_LOG:\n print(message)\n\n def setUp(self):\n self.vlog('setUp')\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('register ' + pid)\n luna.call(API_URL + 'register', {'context': pid})\n self.statusSub = luna.subscribe(API_URL + 'getStatus', {'subscribe':\n True})\n\n def tearDown(self):\n self.vlog('tearDown')\n for sink in SINK_LIST:\n self.vlog('disconnect ' + sink)\n luna.call(API_URL + 'disconnect', {'sink': sink})\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog('unregister ' + pid)\n luna.call(API_URL + 'unregister', {'context': pid})\n luna.cancelSubscribe(self.statusSub)\n\n def connect(self, sink, source, port, pid):\n self.vlog('connect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + 'connect',\n {'outputMode': 'DISPLAY', 'sink': sink, 'source': source,\n 'sourcePort': port}, self.statusSub, {'video': [{'sink': sink,\n 'connectedSource': source, 'connectedSourcePort': port}]})\n\n def mute(self, sink, blank):\n self.vlog('- Mute' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'blankVideo', {'sink': sink, 'blank': blank}, self.statusSub, {\n 'video': [{'sink': sink, 'muted': blank}]})\n\n def disconnect(self, sink, pid):\n self.vlog('disconnect ' + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'disconnect', {'sink': sink}, self.statusSub, {'video': [{\n 'sink': sink, 'connectedSource': None}]})\n\n def testConnectDisconnect(self):\n print('[testConnectDisconnect]')\n for source, ports in {'VDEC': [0, 1], 'HDMI': [0, 1, 2]}.iteritems():\n for port in ports:\n for sink in SINK_LIST:\n for i in range(3):\n self.connect(sink, source, port, '')\n self.disconnect(sink, '')\n\n def testDualConnect(self):\n print('[testDualConnect]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'connect', {'outputMode': 'DISPLAY', 'sink': SINK_SUB,\n 'source': SOURCE_NAME, 'sourcePort': SOURCE_PORT}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'connectedSource':\n SOURCE_NAME, 'connectedSourcePort': SOURCE_PORT}, {'sink':\n SINK_SUB, 'connectedSource': SOURCE_NAME,\n 'connectedSourcePort': SOURCE_PORT}]})\n self.disconnect(SINK_MAIN, '')\n if len(SINK_LIST) > 1:\n self.disconnect(SINK_SUB, '')\n\n def testMute(self):\n print('[testMute]')\n for sink in SINK_LIST:\n self.connect(sink, SOURCE_NAME, SOURCE_PORT, '')\n for blank in [False, True]:\n self.mute(sink, blank)\n\n def testSetDisplayWindowAndVideoData(self):\n print('[testSetDisplayWindowAndVideoData]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': 0, 'height': 0, 'frameRate': 0, 'sourceInput': {'x': 0,\n 'y': 0, 'width': 0, 'height': 0}, 'displayOutput': {'x':\n OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT[\n 'W'], 'height': OUTPUT_RECT['H']}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': 'MAIN', 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}, 'displayOutput': {'x': OUTPUT_RECT[\n 'X'], 'y': OUTPUT_RECT['Y'], 'width': OUTPUT_RECT['W'],\n 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetVideoDataAndDisplayWindow(self):\n print('[testSetVideoDataAndDisplayWindow]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': 'MAIN', 'fullScreen': \n False, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT[\n 'Y'], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}, self.\n statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': False,\n 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT, 'frameRate': \n 29.5, 'sourceInput': {'x': INPUT_RECT['X'], 'y': INPUT_RECT['Y'\n ], 'width': INPUT_RECT['W'], 'height': INPUT_RECT['H']},\n 'displayOutput': {'x': OUTPUT_RECT['X'], 'y': OUTPUT_RECT['Y'],\n 'width': OUTPUT_RECT['W'], 'height': OUTPUT_RECT['H']}}]})\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetFullscreen(self):\n print('[testSetFullscreen]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'setVideoData', {'sink': SINK_MAIN, 'contentType': 'media',\n 'frameRate': 29.5, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'scanType': 'progressive', 'adaptive': False},\n self.statusSub, {'video': [{'sink': SINK_MAIN, 'fullScreen': \n False, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT,\n 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}, 'displayOutput': {'x': 0, 'y': 0, 'width': 0,\n 'height': 0}}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'sourceInput': {'x': 0, 'y': 0, 'width': SOURCE_WIDTH,\n 'height': SOURCE_HEIGHT}}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'fullScreen': True, 'width': SOURCE_WIDTH, 'height':\n SOURCE_HEIGHT, 'frameRate': 29.5, 'sourceInput': {'x': 0, 'y': \n 0, 'width': SOURCE_WIDTH, 'height': SOURCE_HEIGHT},\n 'displayOutput': {'x': 0, 'y': 0, 'width': 3840, 'height': 2160}}]}\n )\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetCompositing(self):\n print('[testSetCompositing]')\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, '')\n if len(SINK_LIST) > 1:\n self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, '')\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setCompositing', {'composeOrder': [{'sink': SINK_MAIN,\n 'opacity': 20, 'zOrder': 1}, {'sink': SINK_SUB, 'opacity': 31,\n 'zOrder': 0}]}, self.statusSub, {'video': [{'sink': 'MAIN',\n 'opacity': 20, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_MAIN, 'fullScreen': \n True, 'opacity': 130}, self.statusSub, {'video': [{'sink':\n SINK_MAIN, 'opacity': 130, 'zOrder': 1}]})\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 200}, self.statusSub, {'video': [{'sink':\n 'SUB0', 'opacity': 200, 'zOrder': 0}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 230}, self.statusSub, {'video': [{'sink':\n 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink': 'SUB0',\n 'opacity': 230, 'zOrder': 1}]})\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL +\n 'display/setDisplayWindow', {'sink': SINK_SUB, 'fullScreen':\n True, 'opacity': 30, 'zOrder': 1}, self.statusSub, {'video':\n [{'sink': 'MAIN', 'opacity': 130, 'zOrder': 0}, {'sink':\n 'SUB0', 'opacity': 30, 'zOrder': 1}]})\n\n\nif __name__ == '__main__':\n luna.VERBOSE = False\n unittest.main()\n", "step-5": "#!/usr/bin/python2\nimport unittest\nimport luna_utils as luna\nimport time\n\nAPI_URL = \"com.webos.service.videooutput/\"\n\nVERBOSE_LOG = True\nSUPPORT_REGISTER = False\n\nSINK_MAIN = \"MAIN\"\nSINK_SUB = \"SUB0\"\n\n#TODO(ekwang): If you connect SUB, HAL error occurs. Just test MAIN in the current state\n#SINK_LIST = [SINK_MAIN, SINK_SUB]\nSINK_LIST = [SINK_MAIN]\n\nPID1 = \"pipeline1\"\nPID2 = \"pipeline2\"\n\nPID_LIST = [PID1, PID2]\n\nINPUT_RECT = {'X':0, 'Y':0, 'W':1920, 'H':1080}\nOUTPUT_RECT = {'X':400, 'Y':400, 'W':1920, 'H':1080}\n\n#Choose source type VDEC or HDMI for test input\n#SOURCE_NAME = SOURCE_NAME\n#SOURCE_PORT = 0\nSOURCE_NAME = \"HDMI\"\nSOURCE_PORT = 3\n\nSOURCE_WIDTH = 1920\nSOURCE_HEIGHT = 1080\n\nSLEEP_TIME = 1\n\nclass TestVideoMethods(luna.TestBase):\n\n def vlog(self, message):\n if VERBOSE_LOG:\n print(message)\n\n def setUp(self):\n self.vlog(\"setUp\")\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog(\"register \" + pid)\n luna.call(API_URL + \"register\", { \"context\": pid })\n\n self.statusSub = luna.subscribe(API_URL + \"getStatus\", {\"subscribe\":True})\n\n def tearDown(self):\n self.vlog(\"tearDown\")\n for sink in SINK_LIST:\n self.vlog(\"disconnect \" + sink)\n luna.call(API_URL + \"disconnect\", { \"sink\": sink })\n\n if SUPPORT_REGISTER:\n for pid in PID_LIST:\n self.vlog(\"unregister \" + pid)\n luna.call(API_URL + \"unregister\", { \"context\": pid })\n\n luna.cancelSubscribe(self.statusSub)\n\n def connect(self, sink, source, port, pid):\n self.vlog(\"connect \" + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + \"connect\",\n { \"outputMode\": \"DISPLAY\", \"sink\": sink, \"source\": source, \"sourcePort\": port },\n self.statusSub,\n {\"video\":[{\"sink\": sink, \"connectedSource\": source, \"connectedSourcePort\": port}]})\n\n def mute(self, sink, blank):\n self.vlog(\"- Mute\" + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"blankVideo\",\n {\"sink\": sink, \"blank\": blank},\n self.statusSub,\n {\"video\":[{\"sink\": sink, \"muted\": blank}]})\n\n def disconnect(self, sink, pid):\n self.vlog(\"disconnect \" + sink)\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + \"disconnect\", { \"sink\": sink },\n self.statusSub,\n {\"video\": [{\"sink\": sink, \"connectedSource\": None}]})\n\n def testConnectDisconnect(self):\n print(\"[testConnectDisconnect]\")\n for source, ports in {\"VDEC\":[0,1], \"HDMI\":[0,1,2]}.iteritems():\n for port in ports:\n for sink in SINK_LIST:\n for i in range(3):\n self.connect(sink, source, port, \"\")\n self.disconnect(sink, \"\")\n\n def testDualConnect(self):\n print(\"[testDualConnect]\")\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, \"\")\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(API_URL + \"connect\",\n {\"outputMode\": \"DISPLAY\", \"sink\": SINK_SUB, \"source\": SOURCE_NAME, \"sourcePort\": SOURCE_PORT},\n self.statusSub,\n {\"video\": [{\"sink\": SINK_MAIN, \"connectedSource\": SOURCE_NAME, \"connectedSourcePort\": SOURCE_PORT},\n {\"sink\": SINK_SUB, \"connectedSource\": SOURCE_NAME, \"connectedSourcePort\": SOURCE_PORT}]})\n\n self.disconnect(SINK_MAIN, \"\")\n if len(SINK_LIST) > 1:\n self.disconnect(SINK_SUB, \"\")\n\n def testMute(self):\n print(\"[testMute]\")\n for sink in SINK_LIST:\n self.connect(sink, SOURCE_NAME, SOURCE_PORT, \"\")\n\n for blank in [False, True]:\n self.mute(sink, blank)\n\n #test different orders of display window and media data\n\n def testSetDisplayWindowAndVideoData(self):\n print(\"[testSetDisplayWindowAndVideoData]\")\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, \"\")\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_MAIN,\n \"fullScreen\": False,\n \"sourceInput\": {\"x\":INPUT_RECT['X'], \"y\":INPUT_RECT['Y'], \"width\":INPUT_RECT['W'], \"height\":INPUT_RECT['H']},\n \"displayOutput\": {\"x\":OUTPUT_RECT['X'], \"y\":OUTPUT_RECT['Y'], \"width\":OUTPUT_RECT['W'], \"height\":OUTPUT_RECT['H']}},\n self.statusSub,\n {\"video\":[{\"sink\": \"MAIN\",\n \"fullScreen\": False,\n \"width\":0,\n \"height\":0,\n \"frameRate\":0,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":0, \"height\":0}, # no media data yet so can't determine appliedsourceInput yet\n \"displayOutput\": {\"x\":OUTPUT_RECT['X'], \"y\":OUTPUT_RECT['Y'], \"width\":OUTPUT_RECT['W'], \"height\":OUTPUT_RECT['H']}\n }]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"setVideoData\",\n {\"sink\": SINK_MAIN,\n \"contentType\": \"media\",\n \"frameRate\":29.5,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"scanType\":\"progressive\",\n \"adaptive\": False},\n self.statusSub,\n {\"video\":[{\"sink\": \"MAIN\",\n \"fullScreen\": False,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"frameRate\":29.5,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":SOURCE_WIDTH, \"height\":SOURCE_HEIGHT},\n \"displayOutput\": {\"x\":OUTPUT_RECT['X'], \"y\":OUTPUT_RECT['Y'], \"width\":OUTPUT_RECT['W'], \"height\":OUTPUT_RECT['H']}\n }]})\n\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetVideoDataAndDisplayWindow(self):\n print(\"[testSetVideoDataAndDisplayWindow]\")\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, \"\")\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"setVideoData\",\n {\"sink\": SINK_MAIN,\n \"contentType\": \"media\",\n \"frameRate\":29.5,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"scanType\":\"progressive\",\n \"adaptive\": False},\n self.statusSub,\n {\"video\":[{\"sink\": SINK_MAIN,\n \"fullScreen\": False,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"frameRate\":29.5,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":0, \"height\":0},\n \"displayOutput\": {\"x\":0, \"y\":0, \"width\":0, \"height\":0}\n }]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": \"MAIN\",\n \"fullScreen\": False,\n \"sourceInput\": {\"x\":INPUT_RECT['X'], \"y\":INPUT_RECT['Y'], \"width\":INPUT_RECT['W'], \"height\":INPUT_RECT['H']},\n \"displayOutput\": {\"x\":OUTPUT_RECT['X'], \"y\":OUTPUT_RECT['Y'], \"width\":OUTPUT_RECT['W'], \"height\":OUTPUT_RECT['H']}},\n self.statusSub,\n {\"video\":[{\"sink\": SINK_MAIN,\n \"fullScreen\": False,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"frameRate\":29.5,\n \"sourceInput\": {\"x\":INPUT_RECT['X'], \"y\":INPUT_RECT['Y'], \"width\":INPUT_RECT['W'], \"height\":INPUT_RECT['H']},\n \"displayOutput\": {\"x\":OUTPUT_RECT['X'], \"y\":OUTPUT_RECT['Y'], \"width\":OUTPUT_RECT['W'], \"height\":OUTPUT_RECT['H']}\n }]})\n\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetFullscreen(self):\n print(\"[testSetFullscreen]\")\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, \"\")\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"setVideoData\",\n {\"sink\": SINK_MAIN,\n \"contentType\": \"media\",\n \"frameRate\":29.5,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"scanType\":\"progressive\",\n \"adaptive\": False},\n self.statusSub,\n {\"video\":[{\"sink\": SINK_MAIN,\n \"fullScreen\": False,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"frameRate\":29.5,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":0, \"height\":0},\n \"displayOutput\": {\"x\":0, \"y\":0, \"width\":0, \"height\":0}\n }]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_MAIN,\n \"fullScreen\": True,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":SOURCE_WIDTH, \"height\":SOURCE_HEIGHT}},\n self.statusSub,\n {\"video\":[{\"sink\": SINK_MAIN,\n \"fullScreen\": True,\n \"width\":SOURCE_WIDTH,\n \"height\":SOURCE_HEIGHT,\n \"frameRate\":29.5,\n \"sourceInput\": {\"x\":0, \"y\":0, \"width\":SOURCE_WIDTH, \"height\":SOURCE_HEIGHT},\n \"displayOutput\": {\"x\":0, \"y\":0, \"width\":3840, \"height\":2160}\n }]})\n\n self.mute(SINK_MAIN, False)\n time.sleep(SLEEP_TIME)\n\n def testSetCompositing(self):\n print(\"[testSetCompositing]\")\n self.connect(SINK_MAIN, SOURCE_NAME, SOURCE_PORT, \"\")\n if len(SINK_LIST) > 1:\n self.connect(SINK_SUB, SOURCE_NAME, SOURCE_PORT, \"\")\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setCompositing\",\n {\"composeOrder\": [{\"sink\":SINK_MAIN, \"opacity\":20, \"zOrder\":1},\n {\"sink\":SINK_SUB, \"opacity\":31, \"zOrder\":0}]},\n self.statusSub, {\"video\":[{\"sink\": \"MAIN\", \"opacity\":20, \"zOrder\":1}]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_MAIN, \"fullScreen\":True, \"opacity\":130},\n self.statusSub, {\"video\":[{\"sink\": SINK_MAIN, \"opacity\":130, \"zOrder\":1}]})\n\n if len(SINK_LIST) > 1:\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_SUB, \"fullScreen\":True, \"opacity\":200},\n self.statusSub, {\"video\":[{\"sink\": \"SUB0\", \"opacity\":200, \"zOrder\":0}]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_SUB, \"fullScreen\":True, \"opacity\":230},\n self.statusSub, {\"video\":[{\"sink\": \"MAIN\", \"opacity\":130, \"zOrder\":0}, {\"sink\": \"SUB0\", \"opacity\":230, \"zOrder\":1}]})\n\n self.checkLunaCallSuccessAndSubscriptionUpdate(\n API_URL + \"display/setDisplayWindow\",\n {\"sink\": SINK_SUB, \"fullScreen\":True, \"opacity\":30, \"zOrder\": 1},\n self.statusSub, {\"video\":[{\"sink\": \"MAIN\", \"opacity\":130, \"zOrder\":0}, {\"sink\": \"SUB0\", \"opacity\":30, \"zOrder\":1}]})\n\nif __name__ == '__main__':\n luna.VERBOSE = False\n unittest.main()\n", "step-ids": [ 11, 14, 15, 17, 18 ] }
[ 11, 14, 15, 17, 18 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def assert_shapes(shape, other): assert len(shape) == len(other), 'Dimensions are different' for s, o in zip(shape, other): if s is not None and o is not None: assert s == o, 'Shapes {} and {} are not equal'.format(shape, other ) <|reserved_special_token_1|> def assert_shapes(shape, other): assert len(shape) == len(other), "Dimensions are different" for s, o in zip(shape, other): if s is not None and o is not None: assert s == o, "Shapes {} and {} are not equal".format(shape, other)
flexible
{ "blob_id": "337311c3fbb6a8baab7a237d08152f0db9822527", "index": 2931, "step-1": "<mask token>\n", "step-2": "def assert_shapes(shape, other):\n assert len(shape) == len(other), 'Dimensions are different'\n for s, o in zip(shape, other):\n if s is not None and o is not None:\n assert s == o, 'Shapes {} and {} are not equal'.format(shape, other\n )\n", "step-3": "\ndef assert_shapes(shape, other):\n assert len(shape) == len(other), \"Dimensions are different\"\n for s, o in zip(shape, other):\n if s is not None and o is not None:\n assert s == o, \"Shapes {} and {} are not equal\".format(shape, other)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import matplotlib.pyplot as plt import matplotlib import matplotlib.colors as colors import matplotlib.cm as cm def plot_hist(data_list): plt.hist(data_list, bins=500) plt.show() return def compare_hits_plot(np_array, compare=False): if compare: clist = list(np_array[:,2]) minima, maxima = min(clist), max(clist) print minima, maxima hits=np_array[np_array[:,2]==1] total_hits=np_array[np_array[:,2]>=1] scatter = plt.scatter(np_array[:,3], np_array[:,1], c=clist, vmin=0, vmax=1, s=8, cmap=cm.winter) plt.ylim(ymin=0, ymax=max(hits[:,3])) plt.colorbar(scatter) plt.axhline(spot_count_cutoff) else: scatter = plt.scatter(np_array[:,3], np_array[:,1]) def pickle_ratio_plot(np_array): clist = list(np_array[:,5]) minima, maxima = min(clist), max(clist) print minima, maxima scatter = plt.scatter(np_array[:,1], np_array[:,2], c=clist, s=8, cmap=cm.winter) plt.colorbar(scatter) plt.axhline(spot_count_cutoff)
normal
{ "blob_id": "b6adb956aed934451fc21e51663be36d08c5b645", "index": 2535, "step-1": "import matplotlib.pyplot as plt\nimport matplotlib\nimport matplotlib.colors as colors\nimport matplotlib.cm as cm\n\ndef plot_hist(data_list):\n plt.hist(data_list, bins=500)\n plt.show()\n return\n\ndef compare_hits_plot(np_array, compare=False):\n if compare:\n clist = list(np_array[:,2])\n minima, maxima = min(clist), max(clist)\n print minima, maxima\n hits=np_array[np_array[:,2]==1]\n total_hits=np_array[np_array[:,2]>=1]\n scatter = plt.scatter(np_array[:,3], np_array[:,1], c=clist, vmin=0, vmax=1, s=8, cmap=cm.winter)\n plt.ylim(ymin=0, ymax=max(hits[:,3]))\n plt.colorbar(scatter)\n plt.axhline(spot_count_cutoff)\n else:\n scatter = plt.scatter(np_array[:,3], np_array[:,1])\n\n\ndef pickle_ratio_plot(np_array):\n clist = list(np_array[:,5])\n minima, maxima = min(clist), max(clist)\n print minima, maxima\n scatter = plt.scatter(np_array[:,1], np_array[:,2], c=clist, s=8, cmap=cm.winter)\n plt.colorbar(scatter)\n plt.axhline(spot_count_cutoff)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python3 import os from Alfred3 import Items, Tools def to_absolute_path(filepath): filepath = os.path.expanduser(filepath) return os.path.abspath(filepath) def is_valid_path(path): abs_path = to_absolute_path(path) if os.path.exists(abs_path) and os.path.isdir(abs_path): return True else: return False env_source = Tools.getEnv("source") env_target = Tools.getEnv("target") query = Tools.getArgv(1) path_to_ask = "source" if env_source == "" else "target" new_path = to_absolute_path(query) wf = Items() if query != "" and is_valid_path(new_path): wf.setItem( title=f"Path exists, add as {path_to_ask} path?", subtitle=new_path, arg=f"{new_path}|add" ) elif query.startswith("/") or query.startswith("~"): wf.setItem( title="Path does not exists, create?", subtitle=new_path, arg=f"{new_path}|create" ) else: wf.setItem( title=f"Enter {path_to_ask} path", subtitle="Type a directory path starting with / or ~", valid=False ) wf.addItem() wf.write()
normal
{ "blob_id": "1cf573863fca660cc1fec71ab64743e7a2dd74d8", "index": 1730, "step-1": "<mask token>\n\n\ndef to_absolute_path(filepath):\n filepath = os.path.expanduser(filepath)\n return os.path.abspath(filepath)\n\n\ndef is_valid_path(path):\n abs_path = to_absolute_path(path)\n if os.path.exists(abs_path) and os.path.isdir(abs_path):\n return True\n else:\n return False\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef to_absolute_path(filepath):\n filepath = os.path.expanduser(filepath)\n return os.path.abspath(filepath)\n\n\ndef is_valid_path(path):\n abs_path = to_absolute_path(path)\n if os.path.exists(abs_path) and os.path.isdir(abs_path):\n return True\n else:\n return False\n\n\n<mask token>\nif query != '' and is_valid_path(new_path):\n wf.setItem(title=f'Path exists, add as {path_to_ask} path?', subtitle=\n new_path, arg=f'{new_path}|add')\nelif query.startswith('/') or query.startswith('~'):\n wf.setItem(title='Path does not exists, create?', subtitle=new_path,\n arg=f'{new_path}|create')\nelse:\n wf.setItem(title=f'Enter {path_to_ask} path', subtitle=\n 'Type a directory path starting with / or ~', valid=False)\nwf.addItem()\nwf.write()\n", "step-3": "<mask token>\n\n\ndef to_absolute_path(filepath):\n filepath = os.path.expanduser(filepath)\n return os.path.abspath(filepath)\n\n\ndef is_valid_path(path):\n abs_path = to_absolute_path(path)\n if os.path.exists(abs_path) and os.path.isdir(abs_path):\n return True\n else:\n return False\n\n\nenv_source = Tools.getEnv('source')\nenv_target = Tools.getEnv('target')\nquery = Tools.getArgv(1)\npath_to_ask = 'source' if env_source == '' else 'target'\nnew_path = to_absolute_path(query)\nwf = Items()\nif query != '' and is_valid_path(new_path):\n wf.setItem(title=f'Path exists, add as {path_to_ask} path?', subtitle=\n new_path, arg=f'{new_path}|add')\nelif query.startswith('/') or query.startswith('~'):\n wf.setItem(title='Path does not exists, create?', subtitle=new_path,\n arg=f'{new_path}|create')\nelse:\n wf.setItem(title=f'Enter {path_to_ask} path', subtitle=\n 'Type a directory path starting with / or ~', valid=False)\nwf.addItem()\nwf.write()\n", "step-4": "import os\nfrom Alfred3 import Items, Tools\n\n\ndef to_absolute_path(filepath):\n filepath = os.path.expanduser(filepath)\n return os.path.abspath(filepath)\n\n\ndef is_valid_path(path):\n abs_path = to_absolute_path(path)\n if os.path.exists(abs_path) and os.path.isdir(abs_path):\n return True\n else:\n return False\n\n\nenv_source = Tools.getEnv('source')\nenv_target = Tools.getEnv('target')\nquery = Tools.getArgv(1)\npath_to_ask = 'source' if env_source == '' else 'target'\nnew_path = to_absolute_path(query)\nwf = Items()\nif query != '' and is_valid_path(new_path):\n wf.setItem(title=f'Path exists, add as {path_to_ask} path?', subtitle=\n new_path, arg=f'{new_path}|add')\nelif query.startswith('/') or query.startswith('~'):\n wf.setItem(title='Path does not exists, create?', subtitle=new_path,\n arg=f'{new_path}|create')\nelse:\n wf.setItem(title=f'Enter {path_to_ask} path', subtitle=\n 'Type a directory path starting with / or ~', valid=False)\nwf.addItem()\nwf.write()\n", "step-5": "#!/usr/bin/env python3\n\nimport os\n\nfrom Alfred3 import Items, Tools\n\n\ndef to_absolute_path(filepath):\n filepath = os.path.expanduser(filepath)\n return os.path.abspath(filepath)\n\n\ndef is_valid_path(path):\n abs_path = to_absolute_path(path)\n if os.path.exists(abs_path) and os.path.isdir(abs_path):\n return True\n else:\n return False\n\n\nenv_source = Tools.getEnv(\"source\")\nenv_target = Tools.getEnv(\"target\")\nquery = Tools.getArgv(1)\n\npath_to_ask = \"source\" if env_source == \"\" else \"target\"\n\nnew_path = to_absolute_path(query)\n\n\nwf = Items()\n\nif query != \"\" and is_valid_path(new_path):\n wf.setItem(\n title=f\"Path exists, add as {path_to_ask} path?\",\n subtitle=new_path,\n arg=f\"{new_path}|add\"\n )\nelif query.startswith(\"/\") or query.startswith(\"~\"):\n wf.setItem(\n title=\"Path does not exists, create?\",\n subtitle=new_path,\n arg=f\"{new_path}|create\"\n )\nelse:\n wf.setItem(\n title=f\"Enter {path_to_ask} path\",\n subtitle=\"Type a directory path starting with / or ~\",\n valid=False\n )\nwf.addItem()\nwf.write()\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
from __future__ import absolute_import, print_function, unicode_literals import six from six.moves import zip, filter, map, reduce, input, range import pathlib import unittest import networkx as nx import multiworm TEST_ROOT = pathlib.Path(__file__).parent.resolve() DATA_DIR = TEST_ROOT / 'data' SYNTH1 = DATA_DIR / 'synth1' SYNTH1_N_BLOBS = 12 class TestExperimentOpen(unittest.TestCase): def test_pathlib(self): ex = multiworm.Experiment(SYNTH1) def test_strpath(self): ex = multiworm.Experiment(str(SYNTH1)) def test_root_and_id(self): ex = multiworm.Experiment( data_root=DATA_DIR, experiment_id='synth1', ) def test_strroot_and_id(self): ex = multiworm.Experiment( data_root=str(DATA_DIR), experiment_id='synth1', ) def test_empty_fail(self): try: multiworm.Experiment() except Exception as e: if not isinstance(e, ValueError): self.fail('raised some unexpected error') if not all(x in str(e) for x in ['experiment_id', 'must', 'provided']): self.fail('error message unexpected') else: self.fail('experiment constructor worked with no arguments') def test_dataroot_only_fail(self): try: multiworm.Experiment(data_root=DATA_DIR) except Exception as e: if not isinstance(e, ValueError): self.fail('raised some unexpected error') if not all(x in str(e) for x in ['experiment_id', 'must', 'provided']): self.fail('error message unexpected') else: self.fail('experiment constructor allowed data-root only without erroring') def test_custom_id(self): my_id = 'peterspeppers' ex = multiworm.Experiment(fullpath=SYNTH1, experiment_id=my_id) self.assertEquals(ex.id, my_id) def test_callback(self): class StateThing(object): def __init__(self): self.progress = -1 def __call__(self, progress): assert progress >= self.progress self.progress = progress ex = multiworm.Experiment(SYNTH1, callback=StateThing()) class TestMalformedExperiments(unittest.TestCase): def test_nonexistent_folder(self): try: ex = multiworm.Experiment(DATA_DIR / 'guaranteedtohopefullynotbethere') except multiworm.core.MWTDataError: self.fail('Overly specific error raised') except IOError as e: self.assertIn('exist', str(e)) else: self.fail("Didn't even mention the folder isn't there") def test_check_is_dir(self): try: ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png') except multiworm.core.MWTDataError: self.fail('Overly specific error raised') except IOError as e: self.assertIn('directory', str(e)) else: self.fail("Didn't even mention the folder isn't there") def test_missing_summary(self): try: ex = multiworm.Experiment(DATA_DIR / 'bad_empty') except multiworm.core.MWTDataError as e: pass else: self.fail("Didn't raise error despite no summary file") def test_dupe_summary(self): try: ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary') except multiworm.core.MWTSummaryError as e: pass else: self.fail("Didn't raise error with ambiguous summary file") class TestMalformedData(unittest.TestCase): def test_zero_frame(self): try: ex = multiworm.Experiment(DATA_DIR / 'bad_framezero') except multiworm.core.MWTDataError: pass else: self.fail("Didn't raise error on malformed data with a frame 0") class TestReadingData(unittest.TestCase): def setUp(self): self.ex = multiworm.Experiment(SYNTH1) def test_length_is_num_blobs(self): self.assertEqual(SYNTH1_N_BLOBS, len(self.ex)) def test_iter(self): count = 0 for thing in self.ex: count += 1 self.assertEqual(SYNTH1_N_BLOBS, count) def test_iter_blobs(self): count = 0 for thing in self.ex.blobs(): count += 1 self.assertEqual(SYNTH1_N_BLOBS, count) class TestExperimentProperties(unittest.TestCase): def setUp(self): self.ex = multiworm.Experiment(SYNTH1) def test_blobs_in_frame(self): self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12))) self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12))) def test_locked_graph(self): try: self.ex.graph.add_node(123) except nx.NetworkXError as e: self.assertIn('frozen', str(e).lower()) else: self.fail('experiment graph should be frozen/locked') def test_graph_copy_unlocked(self): G = self.ex.graph.copy() G.add_node(123) G.add_edge(55, 66)
normal
{ "blob_id": "dfee0407eaed7b1ab96467874bbfe6463865bcb4", "index": 6238, "step-1": "<mask token>\n\n\nclass TestExperimentOpen(unittest.TestCase):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass TestMalformedExperiments(unittest.TestCase):\n\n def test_nonexistent_folder(self):\n try:\n ex = multiworm.Experiment(DATA_DIR /\n 'guaranteedtohopefullynotbethere')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('exist', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_check_is_dir(self):\n try:\n ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('directory', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_missing_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_empty')\n except multiworm.core.MWTDataError as e:\n pass\n else:\n self.fail(\"Didn't raise error despite no summary file\")\n\n def test_dupe_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary')\n except multiworm.core.MWTSummaryError as e:\n pass\n else:\n self.fail(\"Didn't raise error with ambiguous summary file\")\n\n\nclass TestMalformedData(unittest.TestCase):\n\n def test_zero_frame(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_framezero')\n except multiworm.core.MWTDataError:\n pass\n else:\n self.fail(\"Didn't raise error on malformed data with a frame 0\")\n\n\nclass TestReadingData(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_length_is_num_blobs(self):\n self.assertEqual(SYNTH1_N_BLOBS, len(self.ex))\n\n def test_iter(self):\n count = 0\n for thing in self.ex:\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n def test_iter_blobs(self):\n count = 0\n for thing in self.ex.blobs():\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n\nclass TestExperimentProperties(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_blobs_in_frame(self):\n self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12)))\n self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12))\n )\n\n def test_locked_graph(self):\n try:\n self.ex.graph.add_node(123)\n except nx.NetworkXError as e:\n self.assertIn('frozen', str(e).lower())\n else:\n self.fail('experiment graph should be frozen/locked')\n\n def test_graph_copy_unlocked(self):\n G = self.ex.graph.copy()\n G.add_node(123)\n G.add_edge(55, 66)\n", "step-2": "<mask token>\n\n\nclass TestExperimentOpen(unittest.TestCase):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_callback(self):\n\n\n class StateThing(object):\n\n def __init__(self):\n self.progress = -1\n\n def __call__(self, progress):\n assert progress >= self.progress\n self.progress = progress\n ex = multiworm.Experiment(SYNTH1, callback=StateThing())\n\n\nclass TestMalformedExperiments(unittest.TestCase):\n\n def test_nonexistent_folder(self):\n try:\n ex = multiworm.Experiment(DATA_DIR /\n 'guaranteedtohopefullynotbethere')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('exist', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_check_is_dir(self):\n try:\n ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('directory', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_missing_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_empty')\n except multiworm.core.MWTDataError as e:\n pass\n else:\n self.fail(\"Didn't raise error despite no summary file\")\n\n def test_dupe_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary')\n except multiworm.core.MWTSummaryError as e:\n pass\n else:\n self.fail(\"Didn't raise error with ambiguous summary file\")\n\n\nclass TestMalformedData(unittest.TestCase):\n\n def test_zero_frame(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_framezero')\n except multiworm.core.MWTDataError:\n pass\n else:\n self.fail(\"Didn't raise error on malformed data with a frame 0\")\n\n\nclass TestReadingData(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_length_is_num_blobs(self):\n self.assertEqual(SYNTH1_N_BLOBS, len(self.ex))\n\n def test_iter(self):\n count = 0\n for thing in self.ex:\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n def test_iter_blobs(self):\n count = 0\n for thing in self.ex.blobs():\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n\nclass TestExperimentProperties(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_blobs_in_frame(self):\n self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12)))\n self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12))\n )\n\n def test_locked_graph(self):\n try:\n self.ex.graph.add_node(123)\n except nx.NetworkXError as e:\n self.assertIn('frozen', str(e).lower())\n else:\n self.fail('experiment graph should be frozen/locked')\n\n def test_graph_copy_unlocked(self):\n G = self.ex.graph.copy()\n G.add_node(123)\n G.add_edge(55, 66)\n", "step-3": "<mask token>\n\n\nclass TestExperimentOpen(unittest.TestCase):\n\n def test_pathlib(self):\n ex = multiworm.Experiment(SYNTH1)\n <mask token>\n <mask token>\n\n def test_strroot_and_id(self):\n ex = multiworm.Experiment(data_root=str(DATA_DIR), experiment_id=\n 'synth1')\n\n def test_empty_fail(self):\n try:\n multiworm.Experiment()\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must',\n 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail('experiment constructor worked with no arguments')\n\n def test_dataroot_only_fail(self):\n try:\n multiworm.Experiment(data_root=DATA_DIR)\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must',\n 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail(\n 'experiment constructor allowed data-root only without erroring'\n )\n\n def test_custom_id(self):\n my_id = 'peterspeppers'\n ex = multiworm.Experiment(fullpath=SYNTH1, experiment_id=my_id)\n self.assertEquals(ex.id, my_id)\n\n def test_callback(self):\n\n\n class StateThing(object):\n\n def __init__(self):\n self.progress = -1\n\n def __call__(self, progress):\n assert progress >= self.progress\n self.progress = progress\n ex = multiworm.Experiment(SYNTH1, callback=StateThing())\n\n\nclass TestMalformedExperiments(unittest.TestCase):\n\n def test_nonexistent_folder(self):\n try:\n ex = multiworm.Experiment(DATA_DIR /\n 'guaranteedtohopefullynotbethere')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('exist', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_check_is_dir(self):\n try:\n ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('directory', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_missing_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_empty')\n except multiworm.core.MWTDataError as e:\n pass\n else:\n self.fail(\"Didn't raise error despite no summary file\")\n\n def test_dupe_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary')\n except multiworm.core.MWTSummaryError as e:\n pass\n else:\n self.fail(\"Didn't raise error with ambiguous summary file\")\n\n\nclass TestMalformedData(unittest.TestCase):\n\n def test_zero_frame(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_framezero')\n except multiworm.core.MWTDataError:\n pass\n else:\n self.fail(\"Didn't raise error on malformed data with a frame 0\")\n\n\nclass TestReadingData(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_length_is_num_blobs(self):\n self.assertEqual(SYNTH1_N_BLOBS, len(self.ex))\n\n def test_iter(self):\n count = 0\n for thing in self.ex:\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n def test_iter_blobs(self):\n count = 0\n for thing in self.ex.blobs():\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n\nclass TestExperimentProperties(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_blobs_in_frame(self):\n self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12)))\n self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12))\n )\n\n def test_locked_graph(self):\n try:\n self.ex.graph.add_node(123)\n except nx.NetworkXError as e:\n self.assertIn('frozen', str(e).lower())\n else:\n self.fail('experiment graph should be frozen/locked')\n\n def test_graph_copy_unlocked(self):\n G = self.ex.graph.copy()\n G.add_node(123)\n G.add_edge(55, 66)\n", "step-4": "<mask token>\nTEST_ROOT = pathlib.Path(__file__).parent.resolve()\nDATA_DIR = TEST_ROOT / 'data'\nSYNTH1 = DATA_DIR / 'synth1'\nSYNTH1_N_BLOBS = 12\n\n\nclass TestExperimentOpen(unittest.TestCase):\n\n def test_pathlib(self):\n ex = multiworm.Experiment(SYNTH1)\n\n def test_strpath(self):\n ex = multiworm.Experiment(str(SYNTH1))\n\n def test_root_and_id(self):\n ex = multiworm.Experiment(data_root=DATA_DIR, experiment_id='synth1')\n\n def test_strroot_and_id(self):\n ex = multiworm.Experiment(data_root=str(DATA_DIR), experiment_id=\n 'synth1')\n\n def test_empty_fail(self):\n try:\n multiworm.Experiment()\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must',\n 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail('experiment constructor worked with no arguments')\n\n def test_dataroot_only_fail(self):\n try:\n multiworm.Experiment(data_root=DATA_DIR)\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must',\n 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail(\n 'experiment constructor allowed data-root only without erroring'\n )\n\n def test_custom_id(self):\n my_id = 'peterspeppers'\n ex = multiworm.Experiment(fullpath=SYNTH1, experiment_id=my_id)\n self.assertEquals(ex.id, my_id)\n\n def test_callback(self):\n\n\n class StateThing(object):\n\n def __init__(self):\n self.progress = -1\n\n def __call__(self, progress):\n assert progress >= self.progress\n self.progress = progress\n ex = multiworm.Experiment(SYNTH1, callback=StateThing())\n\n\nclass TestMalformedExperiments(unittest.TestCase):\n\n def test_nonexistent_folder(self):\n try:\n ex = multiworm.Experiment(DATA_DIR /\n 'guaranteedtohopefullynotbethere')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('exist', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_check_is_dir(self):\n try:\n ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('directory', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_missing_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_empty')\n except multiworm.core.MWTDataError as e:\n pass\n else:\n self.fail(\"Didn't raise error despite no summary file\")\n\n def test_dupe_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary')\n except multiworm.core.MWTSummaryError as e:\n pass\n else:\n self.fail(\"Didn't raise error with ambiguous summary file\")\n\n\nclass TestMalformedData(unittest.TestCase):\n\n def test_zero_frame(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_framezero')\n except multiworm.core.MWTDataError:\n pass\n else:\n self.fail(\"Didn't raise error on malformed data with a frame 0\")\n\n\nclass TestReadingData(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_length_is_num_blobs(self):\n self.assertEqual(SYNTH1_N_BLOBS, len(self.ex))\n\n def test_iter(self):\n count = 0\n for thing in self.ex:\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n def test_iter_blobs(self):\n count = 0\n for thing in self.ex.blobs():\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n\nclass TestExperimentProperties(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_blobs_in_frame(self):\n self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12)))\n self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12))\n )\n\n def test_locked_graph(self):\n try:\n self.ex.graph.add_node(123)\n except nx.NetworkXError as e:\n self.assertIn('frozen', str(e).lower())\n else:\n self.fail('experiment graph should be frozen/locked')\n\n def test_graph_copy_unlocked(self):\n G = self.ex.graph.copy()\n G.add_node(123)\n G.add_edge(55, 66)\n", "step-5": "from __future__ import absolute_import, print_function, unicode_literals\nimport six\nfrom six.moves import zip, filter, map, reduce, input, range\n\nimport pathlib\nimport unittest\n\nimport networkx as nx\n\nimport multiworm\n\n\nTEST_ROOT = pathlib.Path(__file__).parent.resolve()\nDATA_DIR = TEST_ROOT / 'data'\nSYNTH1 = DATA_DIR / 'synth1'\n\nSYNTH1_N_BLOBS = 12\n\n\nclass TestExperimentOpen(unittest.TestCase):\n\n def test_pathlib(self):\n ex = multiworm.Experiment(SYNTH1)\n\n def test_strpath(self):\n ex = multiworm.Experiment(str(SYNTH1))\n\n def test_root_and_id(self):\n ex = multiworm.Experiment(\n data_root=DATA_DIR,\n experiment_id='synth1',\n )\n\n def test_strroot_and_id(self):\n ex = multiworm.Experiment(\n data_root=str(DATA_DIR),\n experiment_id='synth1',\n )\n\n def test_empty_fail(self):\n try:\n multiworm.Experiment()\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must', 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail('experiment constructor worked with no arguments')\n\n def test_dataroot_only_fail(self):\n try:\n multiworm.Experiment(data_root=DATA_DIR)\n except Exception as e:\n if not isinstance(e, ValueError):\n self.fail('raised some unexpected error')\n if not all(x in str(e) for x in ['experiment_id', 'must', 'provided']):\n self.fail('error message unexpected')\n else:\n self.fail('experiment constructor allowed data-root only without erroring')\n\n def test_custom_id(self):\n my_id = 'peterspeppers'\n ex = multiworm.Experiment(fullpath=SYNTH1, experiment_id=my_id)\n self.assertEquals(ex.id, my_id)\n\n def test_callback(self):\n class StateThing(object):\n def __init__(self):\n self.progress = -1\n\n def __call__(self, progress):\n assert progress >= self.progress\n self.progress = progress\n\n ex = multiworm.Experiment(SYNTH1, callback=StateThing())\n\n\nclass TestMalformedExperiments(unittest.TestCase):\n\n def test_nonexistent_folder(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'guaranteedtohopefullynotbethere')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('exist', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_check_is_dir(self):\n try:\n ex = multiworm.Experiment(SYNTH1 / 'test_blobsfile.png')\n except multiworm.core.MWTDataError:\n self.fail('Overly specific error raised')\n except IOError as e:\n self.assertIn('directory', str(e))\n else:\n self.fail(\"Didn't even mention the folder isn't there\")\n\n def test_missing_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_empty')\n except multiworm.core.MWTDataError as e:\n pass\n else:\n self.fail(\"Didn't raise error despite no summary file\")\n\n def test_dupe_summary(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_twosummary')\n except multiworm.core.MWTSummaryError as e:\n pass\n else:\n self.fail(\"Didn't raise error with ambiguous summary file\")\n\n\nclass TestMalformedData(unittest.TestCase):\n\n def test_zero_frame(self):\n try:\n ex = multiworm.Experiment(DATA_DIR / 'bad_framezero')\n except multiworm.core.MWTDataError:\n pass\n else:\n self.fail(\"Didn't raise error on malformed data with a frame 0\")\n\n\nclass TestReadingData(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_length_is_num_blobs(self):\n self.assertEqual(SYNTH1_N_BLOBS, len(self.ex))\n\n def test_iter(self):\n count = 0\n for thing in self.ex:\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n def test_iter_blobs(self):\n count = 0\n for thing in self.ex.blobs():\n count += 1\n self.assertEqual(SYNTH1_N_BLOBS, count)\n\n\nclass TestExperimentProperties(unittest.TestCase):\n\n def setUp(self):\n self.ex = multiworm.Experiment(SYNTH1)\n\n def test_blobs_in_frame(self):\n self.assertEquals(list(self.ex.blobs_in_frame(10)), list(range(1, 12)))\n self.assertEquals(list(self.ex.blobs_in_frame(200)), list(range(5, 12)))\n\n def test_locked_graph(self):\n try:\n self.ex.graph.add_node(123)\n except nx.NetworkXError as e:\n self.assertIn('frozen', str(e).lower())\n else:\n self.fail('experiment graph should be frozen/locked')\n\n def test_graph_copy_unlocked(self):\n G = self.ex.graph.copy()\n G.add_node(123)\n G.add_edge(55, 66)\n", "step-ids": [ 18, 19, 24, 27, 29 ] }
[ 18, 19, 24, 27, 29 ]
<|reserved_special_token_0|> def get_year_progress(): dt = pendulum.now() percent = year_progress(dt) year = dt.year return f'你的 {year} 使用进度:{percent}%\n\n\n{make_progress_string(percent)}' def year_progress(dt): year_days = 366 if dt.is_leap_year() else 365 passed_days = dt.timetuple().tm_yday percent = math.floor(passed_days / year_days * 100) return percent <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_year_progress(): dt = pendulum.now() percent = year_progress(dt) year = dt.year return f'你的 {year} 使用进度:{percent}%\n\n\n{make_progress_string(percent)}' def year_progress(dt): year_days = 366 if dt.is_leap_year() else 365 passed_days = dt.timetuple().tm_yday percent = math.floor(passed_days / year_days * 100) return percent def make_progress_string(percent): blocks = 15 percent = percent * blocks / 100 return ''.join([('▓' if i < percent else '░') for i in range(blocks)]) <|reserved_special_token_1|> <|reserved_special_token_0|> @on_command('yearprogress') async def year_progress(session: CommandSession): await session.send(get_year_progress()) def get_year_progress(): dt = pendulum.now() percent = year_progress(dt) year = dt.year return f'你的 {year} 使用进度:{percent}%\n\n\n{make_progress_string(percent)}' def year_progress(dt): year_days = 366 if dt.is_leap_year() else 365 passed_days = dt.timetuple().tm_yday percent = math.floor(passed_days / year_days * 100) return percent def make_progress_string(percent): blocks = 15 percent = percent * blocks / 100 return ''.join([('▓' if i < percent else '░') for i in range(blocks)]) <|reserved_special_token_1|> import math import pendulum from none import * @on_command('yearprogress') async def year_progress(session: CommandSession): await session.send(get_year_progress()) def get_year_progress(): dt = pendulum.now() percent = year_progress(dt) year = dt.year return f'你的 {year} 使用进度:{percent}%\n\n\n{make_progress_string(percent)}' def year_progress(dt): year_days = 366 if dt.is_leap_year() else 365 passed_days = dt.timetuple().tm_yday percent = math.floor(passed_days / year_days * 100) return percent def make_progress_string(percent): blocks = 15 percent = percent * blocks / 100 return ''.join([('▓' if i < percent else '░') for i in range(blocks)]) <|reserved_special_token_1|> import math import pendulum from none import * @on_command('yearprogress') async def year_progress(session: CommandSession): await session.send(get_year_progress()) def get_year_progress(): dt = pendulum.now() percent = year_progress(dt) year = dt.year return f'你的 {year} 使用进度:{percent}%\n' \ f'\n\n' \ f'{make_progress_string(percent)}' def year_progress(dt): year_days = 366 if dt.is_leap_year() else 365 passed_days = dt.timetuple().tm_yday percent = math.floor((passed_days / year_days) * 100) return percent def make_progress_string(percent): blocks = 15 percent = percent * blocks / 100 return ''.join(["▓" if i < percent else "░" for i in range(blocks)])
flexible
{ "blob_id": "f54d0eeffa140af9c16a1fedb8dcd7d06ced29f2", "index": 2395, "step-1": "<mask token>\n\n\ndef get_year_progress():\n dt = pendulum.now()\n percent = year_progress(dt)\n year = dt.year\n return f'你的 {year} 使用进度:{percent}%\\n\\n\\n{make_progress_string(percent)}'\n\n\ndef year_progress(dt):\n year_days = 366 if dt.is_leap_year() else 365\n passed_days = dt.timetuple().tm_yday\n percent = math.floor(passed_days / year_days * 100)\n return percent\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_year_progress():\n dt = pendulum.now()\n percent = year_progress(dt)\n year = dt.year\n return f'你的 {year} 使用进度:{percent}%\\n\\n\\n{make_progress_string(percent)}'\n\n\ndef year_progress(dt):\n year_days = 366 if dt.is_leap_year() else 365\n passed_days = dt.timetuple().tm_yday\n percent = math.floor(passed_days / year_days * 100)\n return percent\n\n\ndef make_progress_string(percent):\n blocks = 15\n percent = percent * blocks / 100\n return ''.join([('▓' if i < percent else '░') for i in range(blocks)])\n", "step-3": "<mask token>\n\n\n@on_command('yearprogress')\nasync def year_progress(session: CommandSession):\n await session.send(get_year_progress())\n\n\ndef get_year_progress():\n dt = pendulum.now()\n percent = year_progress(dt)\n year = dt.year\n return f'你的 {year} 使用进度:{percent}%\\n\\n\\n{make_progress_string(percent)}'\n\n\ndef year_progress(dt):\n year_days = 366 if dt.is_leap_year() else 365\n passed_days = dt.timetuple().tm_yday\n percent = math.floor(passed_days / year_days * 100)\n return percent\n\n\ndef make_progress_string(percent):\n blocks = 15\n percent = percent * blocks / 100\n return ''.join([('▓' if i < percent else '░') for i in range(blocks)])\n", "step-4": "import math\nimport pendulum\nfrom none import *\n\n\n@on_command('yearprogress')\nasync def year_progress(session: CommandSession):\n await session.send(get_year_progress())\n\n\ndef get_year_progress():\n dt = pendulum.now()\n percent = year_progress(dt)\n year = dt.year\n return f'你的 {year} 使用进度:{percent}%\\n\\n\\n{make_progress_string(percent)}'\n\n\ndef year_progress(dt):\n year_days = 366 if dt.is_leap_year() else 365\n passed_days = dt.timetuple().tm_yday\n percent = math.floor(passed_days / year_days * 100)\n return percent\n\n\ndef make_progress_string(percent):\n blocks = 15\n percent = percent * blocks / 100\n return ''.join([('▓' if i < percent else '░') for i in range(blocks)])\n", "step-5": "import math\n\nimport pendulum\nfrom none import *\n\n\n@on_command('yearprogress')\nasync def year_progress(session: CommandSession):\n await session.send(get_year_progress())\n\n\ndef get_year_progress():\n dt = pendulum.now()\n percent = year_progress(dt)\n year = dt.year\n return f'你的 {year} 使用进度:{percent}%\\n' \\\n f'\\n\\n' \\\n f'{make_progress_string(percent)}'\n\n\ndef year_progress(dt):\n year_days = 366 if dt.is_leap_year() else 365\n passed_days = dt.timetuple().tm_yday\n percent = math.floor((passed_days / year_days) * 100)\n return percent\n\n\ndef make_progress_string(percent):\n blocks = 15\n percent = percent * blocks / 100\n return ''.join([\"▓\" if i < percent else \"░\" for i in range(blocks)])\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> def test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard( client, service_one, api_user_active, sample_invite, mock_get_service, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service): expected_service = service_one['id'] expected_redirect_location = ('http://localhost/services/{}/dashboard'. format(expected_service)) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') assert mock_accept_invite.call_count == 1 mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 assert response.location == expected_redirect_location def test_existing_user_with_no_permissions_accept_invite(client, mocker, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] sample_invite['permissions'] = '' expected_permissions = [] mocker.patch('app.invite_api_client.accept_invite', return_value= sample_invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 def test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client, mocker, sample_invite, mock_get_service): sample_invite['status'] = 'accepted' invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_existing_user_of_service_get_redirected_to_signin(client, mocker, api_user_active, sample_invite, mock_get_service, mock_get_user_by_email, mock_accept_invite): sample_invite['email_address'] = api_user_active.email_address invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') assert mock_accept_invite.call_count == 1 def test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_accept_invite, mock_get_service): expected_service = service_one['id'] expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert mock_accept_invite.call_count == 1 assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_new_user_accept_invite_calls_api_and_redirects_to_registration(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 302 assert response.location == expected_redirect_location def test_new_user_accept_invite_calls_api_and_views_registration_page(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'Create an account' email_in_page = page.find('main').find('p') assert email_in_page.text.strip( ) == 'Your account will be created with this email: [email protected]' form = page.find('form') name = form.find('input', id='name') password = form.find('input', id='password') service = form.find('input', type='hidden', id='service') email = form.find('input', type='hidden', id='email_address') assert email assert email.attrs['value'] == '[email protected]' assert name assert password assert service assert service.attrs['value'] == service_one['id'] <|reserved_special_token_0|> def test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client, mocker, api_user_active, sample_invite, mock_get_user, mock_accept_invite, mock_get_service): invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = logged_in_client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 403 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == '403' flash_banners = page.find_all('div', class_='banner-dangerous') assert len(flash_banners) == 1 banner_contents = flash_banners[0].text.strip() assert 'You’re signed in as [email protected].' in banner_contents assert 'This invite is for another email address.' in banner_contents assert 'Sign out and click the link again to accept this invite.' in banner_contents assert mock_accept_invite.call_count == 0 <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard( client, service_one, api_user_active, sample_invite, mock_get_service, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service): expected_service = service_one['id'] expected_redirect_location = ('http://localhost/services/{}/dashboard'. format(expected_service)) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') assert mock_accept_invite.call_count == 1 mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 assert response.location == expected_redirect_location def test_existing_user_with_no_permissions_accept_invite(client, mocker, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] sample_invite['permissions'] = '' expected_permissions = [] mocker.patch('app.invite_api_client.accept_invite', return_value= sample_invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 def test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client, mocker, sample_invite, mock_get_service): sample_invite['status'] = 'accepted' invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_existing_user_of_service_get_redirected_to_signin(client, mocker, api_user_active, sample_invite, mock_get_service, mock_get_user_by_email, mock_accept_invite): sample_invite['email_address'] = api_user_active.email_address invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') assert mock_accept_invite.call_count == 1 def test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_accept_invite, mock_get_service): expected_service = service_one['id'] expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert mock_accept_invite.call_count == 1 assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_new_user_accept_invite_calls_api_and_redirects_to_registration(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 302 assert response.location == expected_redirect_location def test_new_user_accept_invite_calls_api_and_views_registration_page(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'Create an account' email_in_page = page.find('main').find('p') assert email_in_page.text.strip( ) == 'Your account will be created with this email: [email protected]' form = page.find('form') name = form.find('input', id='name') password = form.find('input', id='password') service = form.find('input', type='hidden', id='service') email = form.find('input', type='hidden', id='email_address') assert email assert email.attrs['value'] == '[email protected]' assert name assert password assert service assert service.attrs['value'] == service_one['id'] def test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation( client, service_one, mocker, mock_get_user, mock_get_service): cancelled_invitation = create_sample_invite(mocker, service_one, status ='cancelled') mock_check_token_invite(mocker, cancelled_invitation) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip( ) == 'The invitation you were sent has been cancelled' <|reserved_special_token_0|> def test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client, mocker, api_user_active, sample_invite, mock_get_user, mock_accept_invite, mock_get_service): invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = logged_in_client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 403 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == '403' flash_banners = page.find_all('div', class_='banner-dangerous') assert len(flash_banners) == 1 banner_contents = flash_banners[0].text.strip() assert 'You’re signed in as [email protected].' in banner_contents assert 'This invite is for another email address.' in banner_contents assert 'Sign out and click the link again to accept this invite.' in banner_contents assert mock_accept_invite.call_count == 0 def test_new_invited_user_verifies_and_added_to_service(client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_check_verify_code, mock_get_user, mock_update_user, mock_add_user_to_service, mock_accept_invite, mock_get_service, mock_get_service_templates, mock_get_template_statistics, mock_get_jobs, mock_has_permissions, mock_get_users_by_service, mock_get_detailed_service, mock_get_usage): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) data = {'service': sample_invite['service'], 'email_address': sample_invite['email_address'], 'from_user': sample_invite[ 'from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User'} response = client.post(url_for('main.register_from_invite'), data=data) response = client.post(url_for('main.verify'), data={'sms_code': '12345'}, follow_redirects=True) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] with client.session_transaction() as session: new_user_id = session['user_id'] mock_add_user_to_service.assert_called_with(data['service'], new_user_id, expected_permissions) mock_accept_invite.assert_called_with(data['service'], sample_invite['id']) mock_check_verify_code.assert_called_once_with(new_user_id, '12345', 'sms') assert service_one['id'] == session['service_id'] raw_html = response.data.decode('utf-8') page = BeautifulSoup(raw_html, 'html.parser') assert page.find('h1').text == 'Dashboard' <|reserved_special_token_1|> <|reserved_special_token_0|> def test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard( client, service_one, api_user_active, sample_invite, mock_get_service, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service): expected_service = service_one['id'] expected_redirect_location = ('http://localhost/services/{}/dashboard'. format(expected_service)) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') assert mock_accept_invite.call_count == 1 mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 assert response.location == expected_redirect_location def test_existing_user_with_no_permissions_accept_invite(client, mocker, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] sample_invite['permissions'] = '' expected_permissions = [] mocker.patch('app.invite_api_client.accept_invite', return_value= sample_invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 def test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client, mocker, sample_invite, mock_get_service): sample_invite['status'] = 'accepted' invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_existing_user_of_service_get_redirected_to_signin(client, mocker, api_user_active, sample_invite, mock_get_service, mock_get_user_by_email, mock_accept_invite): sample_invite['email_address'] = api_user_active.email_address invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') assert mock_accept_invite.call_count == 1 def test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_accept_invite, mock_get_service): expected_service = service_one['id'] expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert mock_accept_invite.call_count == 1 assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_new_user_accept_invite_calls_api_and_redirects_to_registration(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 302 assert response.location == expected_redirect_location def test_new_user_accept_invite_calls_api_and_views_registration_page(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'Create an account' email_in_page = page.find('main').find('p') assert email_in_page.text.strip( ) == 'Your account will be created with this email: [email protected]' form = page.find('form') name = form.find('input', id='name') password = form.find('input', id='password') service = form.find('input', type='hidden', id='service') email = form.find('input', type='hidden', id='email_address') assert email assert email.attrs['value'] == '[email protected]' assert name assert password assert service assert service.attrs['value'] == service_one['id'] def test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation( client, service_one, mocker, mock_get_user, mock_get_service): cancelled_invitation = create_sample_invite(mocker, service_one, status ='cancelled') mock_check_token_invite(mocker, cancelled_invitation) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip( ) == 'The invitation you were sent has been cancelled' def test_new_user_accept_invite_completes_new_registration_redirects_to_verify( client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_accept_invite, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] expected_email = sample_invite['email_address'] expected_from_user = service_one['users'][0] expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) with client.session_transaction() as session: assert response.status_code == 302 assert response.location == expected_redirect_location invited_user = session.get('invited_user') assert invited_user assert expected_service == invited_user['service'] assert expected_email == invited_user['email_address'] assert expected_from_user == invited_user['from_user'] data = {'service': invited_user['service'], 'email_address': invited_user['email_address'], 'from_user': invited_user[ 'from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User'} expected_redirect_location = 'http://localhost/verify' response = client.post(url_for('main.register_from_invite'), data=data) assert response.status_code == 302 assert response.location == expected_redirect_location mock_send_verify_code.assert_called_once_with(ANY, 'sms', data[ 'mobile_number']) mock_register_user.assert_called_with(data['name'], data[ 'email_address'], data['mobile_number'], data['password']) assert mock_accept_invite.call_count == 1 def test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client, mocker, api_user_active, sample_invite, mock_get_user, mock_accept_invite, mock_get_service): invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = logged_in_client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 403 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == '403' flash_banners = page.find_all('div', class_='banner-dangerous') assert len(flash_banners) == 1 banner_contents = flash_banners[0].text.strip() assert 'You’re signed in as [email protected].' in banner_contents assert 'This invite is for another email address.' in banner_contents assert 'Sign out and click the link again to accept this invite.' in banner_contents assert mock_accept_invite.call_count == 0 def test_new_invited_user_verifies_and_added_to_service(client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_check_verify_code, mock_get_user, mock_update_user, mock_add_user_to_service, mock_accept_invite, mock_get_service, mock_get_service_templates, mock_get_template_statistics, mock_get_jobs, mock_has_permissions, mock_get_users_by_service, mock_get_detailed_service, mock_get_usage): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) data = {'service': sample_invite['service'], 'email_address': sample_invite['email_address'], 'from_user': sample_invite[ 'from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User'} response = client.post(url_for('main.register_from_invite'), data=data) response = client.post(url_for('main.verify'), data={'sms_code': '12345'}, follow_redirects=True) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] with client.session_transaction() as session: new_user_id = session['user_id'] mock_add_user_to_service.assert_called_with(data['service'], new_user_id, expected_permissions) mock_accept_invite.assert_called_with(data['service'], sample_invite['id']) mock_check_verify_code.assert_called_once_with(new_user_id, '12345', 'sms') assert service_one['id'] == session['service_id'] raw_html = response.data.decode('utf-8') page = BeautifulSoup(raw_html, 'html.parser') assert page.find('h1').text == 'Dashboard' <|reserved_special_token_1|> from flask import url_for from bs4 import BeautifulSoup from unittest.mock import ANY import app from app.notify_client.models import InvitedUser from tests.conftest import sample_invite as create_sample_invite from tests.conftest import mock_check_invite_token as mock_check_token_invite def test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard( client, service_one, api_user_active, sample_invite, mock_get_service, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service): expected_service = service_one['id'] expected_redirect_location = ('http://localhost/services/{}/dashboard'. format(expected_service)) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') assert mock_accept_invite.call_count == 1 mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 assert response.location == expected_redirect_location def test_existing_user_with_no_permissions_accept_invite(client, mocker, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] sample_invite['permissions'] = '' expected_permissions = [] mocker.patch('app.invite_api_client.accept_invite', return_value= sample_invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 def test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client, mocker, sample_invite, mock_get_service): sample_invite['status'] = 'accepted' invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_existing_user_of_service_get_redirected_to_signin(client, mocker, api_user_active, sample_invite, mock_get_service, mock_get_user_by_email, mock_accept_invite): sample_invite['email_address'] = api_user_active.email_address invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') assert mock_accept_invite.call_count == 1 def test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_accept_invite, mock_get_service): expected_service = service_one['id'] expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert mock_accept_invite.call_count == 1 assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert (page.h1.string, page.select('main p')[0].text.strip()) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.') def test_new_user_accept_invite_calls_api_and_redirects_to_registration(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 302 assert response.location == expected_redirect_location def test_new_user_accept_invite_calls_api_and_views_registration_page(client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'Create an account' email_in_page = page.find('main').find('p') assert email_in_page.text.strip( ) == 'Your account will be created with this email: [email protected]' form = page.find('form') name = form.find('input', id='name') password = form.find('input', id='password') service = form.find('input', type='hidden', id='service') email = form.find('input', type='hidden', id='email_address') assert email assert email.attrs['value'] == '[email protected]' assert name assert password assert service assert service.attrs['value'] == service_one['id'] def test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation( client, service_one, mocker, mock_get_user, mock_get_service): cancelled_invitation = create_sample_invite(mocker, service_one, status ='cancelled') mock_check_token_invite(mocker, cancelled_invitation) response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip( ) == 'The invitation you were sent has been cancelled' def test_new_user_accept_invite_completes_new_registration_redirects_to_verify( client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_accept_invite, mock_get_users_by_service, mock_add_user_to_service, mock_get_service): expected_service = service_one['id'] expected_email = sample_invite['email_address'] expected_from_user = service_one['users'][0] expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) with client.session_transaction() as session: assert response.status_code == 302 assert response.location == expected_redirect_location invited_user = session.get('invited_user') assert invited_user assert expected_service == invited_user['service'] assert expected_email == invited_user['email_address'] assert expected_from_user == invited_user['from_user'] data = {'service': invited_user['service'], 'email_address': invited_user['email_address'], 'from_user': invited_user[ 'from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User'} expected_redirect_location = 'http://localhost/verify' response = client.post(url_for('main.register_from_invite'), data=data) assert response.status_code == 302 assert response.location == expected_redirect_location mock_send_verify_code.assert_called_once_with(ANY, 'sms', data[ 'mobile_number']) mock_register_user.assert_called_with(data['name'], data[ 'email_address'], data['mobile_number'], data['password']) assert mock_accept_invite.call_count == 1 def test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client, mocker, api_user_active, sample_invite, mock_get_user, mock_accept_invite, mock_get_service): invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value= [api_user_active]) response = logged_in_client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 403 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == '403' flash_banners = page.find_all('div', class_='banner-dangerous') assert len(flash_banners) == 1 banner_contents = flash_banners[0].text.strip() assert 'You’re signed in as [email protected].' in banner_contents assert 'This invite is for another email address.' in banner_contents assert 'Sign out and click the link again to accept this invite.' in banner_contents assert mock_accept_invite.call_count == 0 def test_new_invited_user_verifies_and_added_to_service(client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_check_verify_code, mock_get_user, mock_update_user, mock_add_user_to_service, mock_accept_invite, mock_get_service, mock_get_service_templates, mock_get_template_statistics, mock_get_jobs, mock_has_permissions, mock_get_users_by_service, mock_get_detailed_service, mock_get_usage): response = client.get(url_for('main.accept_invite', token= 'thisisnotarealtoken')) data = {'service': sample_invite['service'], 'email_address': sample_invite['email_address'], 'from_user': sample_invite[ 'from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User'} response = client.post(url_for('main.register_from_invite'), data=data) response = client.post(url_for('main.verify'), data={'sms_code': '12345'}, follow_redirects=True) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] with client.session_transaction() as session: new_user_id = session['user_id'] mock_add_user_to_service.assert_called_with(data['service'], new_user_id, expected_permissions) mock_accept_invite.assert_called_with(data['service'], sample_invite['id']) mock_check_verify_code.assert_called_once_with(new_user_id, '12345', 'sms') assert service_one['id'] == session['service_id'] raw_html = response.data.decode('utf-8') page = BeautifulSoup(raw_html, 'html.parser') assert page.find('h1').text == 'Dashboard' <|reserved_special_token_1|> from flask import url_for from bs4 import BeautifulSoup from unittest.mock import ANY import app from app.notify_client.models import InvitedUser from tests.conftest import sample_invite as create_sample_invite from tests.conftest import mock_check_invite_token as mock_check_token_invite def test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard( client, service_one, api_user_active, sample_invite, mock_get_service, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service, ): expected_service = service_one['id'] expected_redirect_location = 'http://localhost/services/{}/dashboard'.format(expected_service) expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') assert mock_accept_invite.call_count == 1 mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 assert response.location == expected_redirect_location def test_existing_user_with_no_permissions_accept_invite( client, mocker, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_get_service, ): expected_service = service_one['id'] sample_invite['permissions'] = '' expected_permissions = [] mocker.patch('app.invite_api_client.accept_invite', return_value=sample_invite) response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert response.status_code == 302 def test_if_existing_user_accepts_twice_they_redirect_to_sign_in( client, mocker, sample_invite, mock_get_service, ): sample_invite['status'] = 'accepted' invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert ( page.h1.string, page.select('main p')[0].text.strip(), ) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.', ) def test_existing_user_of_service_get_redirected_to_signin( client, mocker, api_user_active, sample_invite, mock_get_service, mock_get_user_by_email, mock_accept_invite, ): sample_invite['email_address'] = api_user_active.email_address invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value=[api_user_active]) response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert ( page.h1.string, page.select('main p')[0].text.strip(), ) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.', ) assert mock_accept_invite.call_count == 1 def test_existing_signed_out_user_accept_invite_redirects_to_sign_in( client, service_one, api_user_active, sample_invite, mock_check_invite_token, mock_get_user_by_email, mock_get_users_by_service, mock_add_user_to_service, mock_accept_invite, mock_get_service, ): expected_service = service_one['id'] expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_get_user_by_email.assert_called_with('[email protected]') mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions) assert mock_accept_invite.call_count == 1 assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert ( page.h1.string, page.select('main p')[0].text.strip(), ) == ( 'You need to sign in again', 'We signed you out because you haven’t used Notify for a while.', ) def test_new_user_accept_invite_calls_api_and_redirects_to_registration( client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service, ): expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 302 assert response.location == expected_redirect_location def test_new_user_accept_invite_calls_api_and_views_registration_page( client, service_one, mock_check_invite_token, mock_dont_get_user_by_email, mock_add_user_to_service, mock_get_users_by_service, mock_get_service, ): response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True) mock_check_invite_token.assert_called_with('thisisnotarealtoken') mock_dont_get_user_by_email.assert_called_with('[email protected]') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'Create an account' email_in_page = page.find('main').find('p') assert email_in_page.text.strip() == 'Your account will be created with this email: [email protected]' # noqa form = page.find('form') name = form.find('input', id='name') password = form.find('input', id='password') service = form.find('input', type='hidden', id='service') email = form.find('input', type='hidden', id='email_address') assert email assert email.attrs['value'] == '[email protected]' assert name assert password assert service assert service.attrs['value'] == service_one['id'] def test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation( client, service_one, mocker, mock_get_user, mock_get_service, ): cancelled_invitation = create_sample_invite(mocker, service_one, status='cancelled') mock_check_token_invite(mocker, cancelled_invitation) response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken') assert response.status_code == 200 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == 'The invitation you were sent has been cancelled' def test_new_user_accept_invite_completes_new_registration_redirects_to_verify( client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_accept_invite, mock_get_users_by_service, mock_add_user_to_service, mock_get_service, ): expected_service = service_one['id'] expected_email = sample_invite['email_address'] expected_from_user = service_one['users'][0] expected_redirect_location = 'http://localhost/register-from-invite' response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) with client.session_transaction() as session: assert response.status_code == 302 assert response.location == expected_redirect_location invited_user = session.get('invited_user') assert invited_user assert expected_service == invited_user['service'] assert expected_email == invited_user['email_address'] assert expected_from_user == invited_user['from_user'] data = {'service': invited_user['service'], 'email_address': invited_user['email_address'], 'from_user': invited_user['from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User' } expected_redirect_location = 'http://localhost/verify' response = client.post(url_for('main.register_from_invite'), data=data) assert response.status_code == 302 assert response.location == expected_redirect_location mock_send_verify_code.assert_called_once_with(ANY, 'sms', data['mobile_number']) mock_register_user.assert_called_with(data['name'], data['email_address'], data['mobile_number'], data['password']) assert mock_accept_invite.call_count == 1 def test_signed_in_existing_user_cannot_use_anothers_invite( logged_in_client, mocker, api_user_active, sample_invite, mock_get_user, mock_accept_invite, mock_get_service, ): invite = InvitedUser(**sample_invite) mocker.patch('app.invite_api_client.check_token', return_value=invite) mocker.patch('app.user_api_client.get_users_for_service', return_value=[api_user_active]) response = logged_in_client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True) assert response.status_code == 403 page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser') assert page.h1.string.strip() == '403' flash_banners = page.find_all('div', class_='banner-dangerous') assert len(flash_banners) == 1 banner_contents = flash_banners[0].text.strip() assert "You’re signed in as [email protected]." in banner_contents assert "This invite is for another email address." in banner_contents assert "Sign out and click the link again to accept this invite." in banner_contents assert mock_accept_invite.call_count == 0 def test_new_invited_user_verifies_and_added_to_service( client, service_one, sample_invite, api_user_active, mock_check_invite_token, mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user, mock_send_verify_code, mock_check_verify_code, mock_get_user, mock_update_user, mock_add_user_to_service, mock_accept_invite, mock_get_service, mock_get_service_templates, mock_get_template_statistics, mock_get_jobs, mock_has_permissions, mock_get_users_by_service, mock_get_detailed_service, mock_get_usage, ): # visit accept token page response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken')) data = {'service': sample_invite['service'], 'email_address': sample_invite['email_address'], 'from_user': sample_invite['from_user'], 'password': 'longpassword', 'mobile_number': '+447890123456', 'name': 'Invited User' } # get redirected to register from invite response = client.post(url_for('main.register_from_invite'), data=data) # that sends user on to verify response = client.post(url_for('main.verify'), data={'sms_code': '12345'}, follow_redirects=True) # when they post codes back to admin user should be added to # service and sent on to dash board expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys'] with client.session_transaction() as session: new_user_id = session['user_id'] mock_add_user_to_service.assert_called_with(data['service'], new_user_id, expected_permissions) mock_accept_invite.assert_called_with(data['service'], sample_invite['id']) mock_check_verify_code.assert_called_once_with(new_user_id, '12345', 'sms') assert service_one['id'] == session['service_id'] raw_html = response.data.decode('utf-8') page = BeautifulSoup(raw_html, 'html.parser') assert page.find('h1').text == 'Dashboard'
flexible
{ "blob_id": "0baa133bd9eb8a162a82b23ba4d26cdd34f701c4", "index": 1507, "step-1": "<mask token>\n\n\ndef test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard(\n client, service_one, api_user_active, sample_invite, mock_get_service,\n mock_check_invite_token, mock_get_user_by_email,\n mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service):\n expected_service = service_one['id']\n expected_redirect_location = ('http://localhost/services/{}/dashboard'.\n format(expected_service))\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n assert mock_accept_invite.call_count == 1\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_existing_user_with_no_permissions_accept_invite(client, mocker,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_get_service):\n expected_service = service_one['id']\n sample_invite['permissions'] = ''\n expected_permissions = []\n mocker.patch('app.invite_api_client.accept_invite', return_value=\n sample_invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n\n\ndef test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client,\n mocker, sample_invite, mock_get_service):\n sample_invite['status'] = 'accepted'\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_existing_user_of_service_get_redirected_to_signin(client, mocker,\n api_user_active, sample_invite, mock_get_service,\n mock_get_user_by_email, mock_accept_invite):\n sample_invite['email_address'] = api_user_active.email_address\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n assert mock_accept_invite.call_count == 1\n\n\ndef test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_accept_invite, mock_get_service):\n expected_service = service_one['id']\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert mock_accept_invite.call_count == 1\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_new_user_accept_invite_calls_api_and_redirects_to_registration(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_new_user_accept_invite_calls_api_and_views_registration_page(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'Create an account'\n email_in_page = page.find('main').find('p')\n assert email_in_page.text.strip(\n ) == 'Your account will be created with this email: [email protected]'\n form = page.find('form')\n name = form.find('input', id='name')\n password = form.find('input', id='password')\n service = form.find('input', type='hidden', id='service')\n email = form.find('input', type='hidden', id='email_address')\n assert email\n assert email.attrs['value'] == '[email protected]'\n assert name\n assert password\n assert service\n assert service.attrs['value'] == service_one['id']\n\n\n<mask token>\n\n\ndef test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client,\n mocker, api_user_active, sample_invite, mock_get_user,\n mock_accept_invite, mock_get_service):\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = logged_in_client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 403\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == '403'\n flash_banners = page.find_all('div', class_='banner-dangerous')\n assert len(flash_banners) == 1\n banner_contents = flash_banners[0].text.strip()\n assert 'You’re signed in as [email protected].' in banner_contents\n assert 'This invite is for another email address.' in banner_contents\n assert 'Sign out and click the link again to accept this invite.' in banner_contents\n assert mock_accept_invite.call_count == 0\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard(\n client, service_one, api_user_active, sample_invite, mock_get_service,\n mock_check_invite_token, mock_get_user_by_email,\n mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service):\n expected_service = service_one['id']\n expected_redirect_location = ('http://localhost/services/{}/dashboard'.\n format(expected_service))\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n assert mock_accept_invite.call_count == 1\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_existing_user_with_no_permissions_accept_invite(client, mocker,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_get_service):\n expected_service = service_one['id']\n sample_invite['permissions'] = ''\n expected_permissions = []\n mocker.patch('app.invite_api_client.accept_invite', return_value=\n sample_invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n\n\ndef test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client,\n mocker, sample_invite, mock_get_service):\n sample_invite['status'] = 'accepted'\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_existing_user_of_service_get_redirected_to_signin(client, mocker,\n api_user_active, sample_invite, mock_get_service,\n mock_get_user_by_email, mock_accept_invite):\n sample_invite['email_address'] = api_user_active.email_address\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n assert mock_accept_invite.call_count == 1\n\n\ndef test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_accept_invite, mock_get_service):\n expected_service = service_one['id']\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert mock_accept_invite.call_count == 1\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_new_user_accept_invite_calls_api_and_redirects_to_registration(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_new_user_accept_invite_calls_api_and_views_registration_page(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'Create an account'\n email_in_page = page.find('main').find('p')\n assert email_in_page.text.strip(\n ) == 'Your account will be created with this email: [email protected]'\n form = page.find('form')\n name = form.find('input', id='name')\n password = form.find('input', id='password')\n service = form.find('input', type='hidden', id='service')\n email = form.find('input', type='hidden', id='email_address')\n assert email\n assert email.attrs['value'] == '[email protected]'\n assert name\n assert password\n assert service\n assert service.attrs['value'] == service_one['id']\n\n\ndef test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation(\n client, service_one, mocker, mock_get_user, mock_get_service):\n cancelled_invitation = create_sample_invite(mocker, service_one, status\n ='cancelled')\n mock_check_token_invite(mocker, cancelled_invitation)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip(\n ) == 'The invitation you were sent has been cancelled'\n\n\n<mask token>\n\n\ndef test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client,\n mocker, api_user_active, sample_invite, mock_get_user,\n mock_accept_invite, mock_get_service):\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = logged_in_client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 403\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == '403'\n flash_banners = page.find_all('div', class_='banner-dangerous')\n assert len(flash_banners) == 1\n banner_contents = flash_banners[0].text.strip()\n assert 'You’re signed in as [email protected].' in banner_contents\n assert 'This invite is for another email address.' in banner_contents\n assert 'Sign out and click the link again to accept this invite.' in banner_contents\n assert mock_accept_invite.call_count == 0\n\n\ndef test_new_invited_user_verifies_and_added_to_service(client, service_one,\n sample_invite, api_user_active, mock_check_invite_token,\n mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user,\n mock_send_verify_code, mock_check_verify_code, mock_get_user,\n mock_update_user, mock_add_user_to_service, mock_accept_invite,\n mock_get_service, mock_get_service_templates,\n mock_get_template_statistics, mock_get_jobs, mock_has_permissions,\n mock_get_users_by_service, mock_get_detailed_service, mock_get_usage):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n data = {'service': sample_invite['service'], 'email_address':\n sample_invite['email_address'], 'from_user': sample_invite[\n 'from_user'], 'password': 'longpassword', 'mobile_number':\n '+447890123456', 'name': 'Invited User'}\n response = client.post(url_for('main.register_from_invite'), data=data)\n response = client.post(url_for('main.verify'), data={'sms_code':\n '12345'}, follow_redirects=True)\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n with client.session_transaction() as session:\n new_user_id = session['user_id']\n mock_add_user_to_service.assert_called_with(data['service'],\n new_user_id, expected_permissions)\n mock_accept_invite.assert_called_with(data['service'],\n sample_invite['id'])\n mock_check_verify_code.assert_called_once_with(new_user_id, '12345',\n 'sms')\n assert service_one['id'] == session['service_id']\n raw_html = response.data.decode('utf-8')\n page = BeautifulSoup(raw_html, 'html.parser')\n assert page.find('h1').text == 'Dashboard'\n", "step-3": "<mask token>\n\n\ndef test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard(\n client, service_one, api_user_active, sample_invite, mock_get_service,\n mock_check_invite_token, mock_get_user_by_email,\n mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service):\n expected_service = service_one['id']\n expected_redirect_location = ('http://localhost/services/{}/dashboard'.\n format(expected_service))\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n assert mock_accept_invite.call_count == 1\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_existing_user_with_no_permissions_accept_invite(client, mocker,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_get_service):\n expected_service = service_one['id']\n sample_invite['permissions'] = ''\n expected_permissions = []\n mocker.patch('app.invite_api_client.accept_invite', return_value=\n sample_invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n\n\ndef test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client,\n mocker, sample_invite, mock_get_service):\n sample_invite['status'] = 'accepted'\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_existing_user_of_service_get_redirected_to_signin(client, mocker,\n api_user_active, sample_invite, mock_get_service,\n mock_get_user_by_email, mock_accept_invite):\n sample_invite['email_address'] = api_user_active.email_address\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n assert mock_accept_invite.call_count == 1\n\n\ndef test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_accept_invite, mock_get_service):\n expected_service = service_one['id']\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert mock_accept_invite.call_count == 1\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_new_user_accept_invite_calls_api_and_redirects_to_registration(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_new_user_accept_invite_calls_api_and_views_registration_page(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'Create an account'\n email_in_page = page.find('main').find('p')\n assert email_in_page.text.strip(\n ) == 'Your account will be created with this email: [email protected]'\n form = page.find('form')\n name = form.find('input', id='name')\n password = form.find('input', id='password')\n service = form.find('input', type='hidden', id='service')\n email = form.find('input', type='hidden', id='email_address')\n assert email\n assert email.attrs['value'] == '[email protected]'\n assert name\n assert password\n assert service\n assert service.attrs['value'] == service_one['id']\n\n\ndef test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation(\n client, service_one, mocker, mock_get_user, mock_get_service):\n cancelled_invitation = create_sample_invite(mocker, service_one, status\n ='cancelled')\n mock_check_token_invite(mocker, cancelled_invitation)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip(\n ) == 'The invitation you were sent has been cancelled'\n\n\ndef test_new_user_accept_invite_completes_new_registration_redirects_to_verify(\n client, service_one, sample_invite, api_user_active,\n mock_check_invite_token, mock_dont_get_user_by_email,\n mock_is_email_unique, mock_register_user, mock_send_verify_code,\n mock_accept_invite, mock_get_users_by_service, mock_add_user_to_service,\n mock_get_service):\n expected_service = service_one['id']\n expected_email = sample_invite['email_address']\n expected_from_user = service_one['users'][0]\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n with client.session_transaction() as session:\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n invited_user = session.get('invited_user')\n assert invited_user\n assert expected_service == invited_user['service']\n assert expected_email == invited_user['email_address']\n assert expected_from_user == invited_user['from_user']\n data = {'service': invited_user['service'], 'email_address':\n invited_user['email_address'], 'from_user': invited_user[\n 'from_user'], 'password': 'longpassword', 'mobile_number':\n '+447890123456', 'name': 'Invited User'}\n expected_redirect_location = 'http://localhost/verify'\n response = client.post(url_for('main.register_from_invite'), data=data)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n mock_send_verify_code.assert_called_once_with(ANY, 'sms', data[\n 'mobile_number'])\n mock_register_user.assert_called_with(data['name'], data[\n 'email_address'], data['mobile_number'], data['password'])\n assert mock_accept_invite.call_count == 1\n\n\ndef test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client,\n mocker, api_user_active, sample_invite, mock_get_user,\n mock_accept_invite, mock_get_service):\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = logged_in_client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 403\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == '403'\n flash_banners = page.find_all('div', class_='banner-dangerous')\n assert len(flash_banners) == 1\n banner_contents = flash_banners[0].text.strip()\n assert 'You’re signed in as [email protected].' in banner_contents\n assert 'This invite is for another email address.' in banner_contents\n assert 'Sign out and click the link again to accept this invite.' in banner_contents\n assert mock_accept_invite.call_count == 0\n\n\ndef test_new_invited_user_verifies_and_added_to_service(client, service_one,\n sample_invite, api_user_active, mock_check_invite_token,\n mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user,\n mock_send_verify_code, mock_check_verify_code, mock_get_user,\n mock_update_user, mock_add_user_to_service, mock_accept_invite,\n mock_get_service, mock_get_service_templates,\n mock_get_template_statistics, mock_get_jobs, mock_has_permissions,\n mock_get_users_by_service, mock_get_detailed_service, mock_get_usage):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n data = {'service': sample_invite['service'], 'email_address':\n sample_invite['email_address'], 'from_user': sample_invite[\n 'from_user'], 'password': 'longpassword', 'mobile_number':\n '+447890123456', 'name': 'Invited User'}\n response = client.post(url_for('main.register_from_invite'), data=data)\n response = client.post(url_for('main.verify'), data={'sms_code':\n '12345'}, follow_redirects=True)\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n with client.session_transaction() as session:\n new_user_id = session['user_id']\n mock_add_user_to_service.assert_called_with(data['service'],\n new_user_id, expected_permissions)\n mock_accept_invite.assert_called_with(data['service'],\n sample_invite['id'])\n mock_check_verify_code.assert_called_once_with(new_user_id, '12345',\n 'sms')\n assert service_one['id'] == session['service_id']\n raw_html = response.data.decode('utf-8')\n page = BeautifulSoup(raw_html, 'html.parser')\n assert page.find('h1').text == 'Dashboard'\n", "step-4": "from flask import url_for\nfrom bs4 import BeautifulSoup\nfrom unittest.mock import ANY\nimport app\nfrom app.notify_client.models import InvitedUser\nfrom tests.conftest import sample_invite as create_sample_invite\nfrom tests.conftest import mock_check_invite_token as mock_check_token_invite\n\n\ndef test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard(\n client, service_one, api_user_active, sample_invite, mock_get_service,\n mock_check_invite_token, mock_get_user_by_email,\n mock_get_users_by_service, mock_accept_invite, mock_add_user_to_service):\n expected_service = service_one['id']\n expected_redirect_location = ('http://localhost/services/{}/dashboard'.\n format(expected_service))\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n assert mock_accept_invite.call_count == 1\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_existing_user_with_no_permissions_accept_invite(client, mocker,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_get_service):\n expected_service = service_one['id']\n sample_invite['permissions'] = ''\n expected_permissions = []\n mocker.patch('app.invite_api_client.accept_invite', return_value=\n sample_invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert response.status_code == 302\n\n\ndef test_if_existing_user_accepts_twice_they_redirect_to_sign_in(client,\n mocker, sample_invite, mock_get_service):\n sample_invite['status'] = 'accepted'\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_existing_user_of_service_get_redirected_to_signin(client, mocker,\n api_user_active, sample_invite, mock_get_service,\n mock_get_user_by_email, mock_accept_invite):\n sample_invite['email_address'] = api_user_active.email_address\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n assert mock_accept_invite.call_count == 1\n\n\ndef test_existing_signed_out_user_accept_invite_redirects_to_sign_in(client,\n service_one, api_user_active, sample_invite, mock_check_invite_token,\n mock_get_user_by_email, mock_get_users_by_service,\n mock_add_user_to_service, mock_accept_invite, mock_get_service):\n expected_service = service_one['id']\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n mock_add_user_to_service.assert_called_with(expected_service,\n api_user_active.id, expected_permissions)\n assert mock_accept_invite.call_count == 1\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (page.h1.string, page.select('main p')[0].text.strip()) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.')\n\n\ndef test_new_user_accept_invite_calls_api_and_redirects_to_registration(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_new_user_accept_invite_calls_api_and_views_registration_page(client,\n service_one, mock_check_invite_token, mock_dont_get_user_by_email,\n mock_add_user_to_service, mock_get_users_by_service, mock_get_service):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'Create an account'\n email_in_page = page.find('main').find('p')\n assert email_in_page.text.strip(\n ) == 'Your account will be created with this email: [email protected]'\n form = page.find('form')\n name = form.find('input', id='name')\n password = form.find('input', id='password')\n service = form.find('input', type='hidden', id='service')\n email = form.find('input', type='hidden', id='email_address')\n assert email\n assert email.attrs['value'] == '[email protected]'\n assert name\n assert password\n assert service\n assert service.attrs['value'] == service_one['id']\n\n\ndef test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation(\n client, service_one, mocker, mock_get_user, mock_get_service):\n cancelled_invitation = create_sample_invite(mocker, service_one, status\n ='cancelled')\n mock_check_token_invite(mocker, cancelled_invitation)\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip(\n ) == 'The invitation you were sent has been cancelled'\n\n\ndef test_new_user_accept_invite_completes_new_registration_redirects_to_verify(\n client, service_one, sample_invite, api_user_active,\n mock_check_invite_token, mock_dont_get_user_by_email,\n mock_is_email_unique, mock_register_user, mock_send_verify_code,\n mock_accept_invite, mock_get_users_by_service, mock_add_user_to_service,\n mock_get_service):\n expected_service = service_one['id']\n expected_email = sample_invite['email_address']\n expected_from_user = service_one['users'][0]\n expected_redirect_location = 'http://localhost/register-from-invite'\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n with client.session_transaction() as session:\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n invited_user = session.get('invited_user')\n assert invited_user\n assert expected_service == invited_user['service']\n assert expected_email == invited_user['email_address']\n assert expected_from_user == invited_user['from_user']\n data = {'service': invited_user['service'], 'email_address':\n invited_user['email_address'], 'from_user': invited_user[\n 'from_user'], 'password': 'longpassword', 'mobile_number':\n '+447890123456', 'name': 'Invited User'}\n expected_redirect_location = 'http://localhost/verify'\n response = client.post(url_for('main.register_from_invite'), data=data)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n mock_send_verify_code.assert_called_once_with(ANY, 'sms', data[\n 'mobile_number'])\n mock_register_user.assert_called_with(data['name'], data[\n 'email_address'], data['mobile_number'], data['password'])\n assert mock_accept_invite.call_count == 1\n\n\ndef test_signed_in_existing_user_cannot_use_anothers_invite(logged_in_client,\n mocker, api_user_active, sample_invite, mock_get_user,\n mock_accept_invite, mock_get_service):\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=\n [api_user_active])\n response = logged_in_client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 403\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == '403'\n flash_banners = page.find_all('div', class_='banner-dangerous')\n assert len(flash_banners) == 1\n banner_contents = flash_banners[0].text.strip()\n assert 'You’re signed in as [email protected].' in banner_contents\n assert 'This invite is for another email address.' in banner_contents\n assert 'Sign out and click the link again to accept this invite.' in banner_contents\n assert mock_accept_invite.call_count == 0\n\n\ndef test_new_invited_user_verifies_and_added_to_service(client, service_one,\n sample_invite, api_user_active, mock_check_invite_token,\n mock_dont_get_user_by_email, mock_is_email_unique, mock_register_user,\n mock_send_verify_code, mock_check_verify_code, mock_get_user,\n mock_update_user, mock_add_user_to_service, mock_accept_invite,\n mock_get_service, mock_get_service_templates,\n mock_get_template_statistics, mock_get_jobs, mock_has_permissions,\n mock_get_users_by_service, mock_get_detailed_service, mock_get_usage):\n response = client.get(url_for('main.accept_invite', token=\n 'thisisnotarealtoken'))\n data = {'service': sample_invite['service'], 'email_address':\n sample_invite['email_address'], 'from_user': sample_invite[\n 'from_user'], 'password': 'longpassword', 'mobile_number':\n '+447890123456', 'name': 'Invited User'}\n response = client.post(url_for('main.register_from_invite'), data=data)\n response = client.post(url_for('main.verify'), data={'sms_code':\n '12345'}, follow_redirects=True)\n expected_permissions = ['send_messages', 'manage_service',\n 'manage_api_keys']\n with client.session_transaction() as session:\n new_user_id = session['user_id']\n mock_add_user_to_service.assert_called_with(data['service'],\n new_user_id, expected_permissions)\n mock_accept_invite.assert_called_with(data['service'],\n sample_invite['id'])\n mock_check_verify_code.assert_called_once_with(new_user_id, '12345',\n 'sms')\n assert service_one['id'] == session['service_id']\n raw_html = response.data.decode('utf-8')\n page = BeautifulSoup(raw_html, 'html.parser')\n assert page.find('h1').text == 'Dashboard'\n", "step-5": "from flask import url_for\nfrom bs4 import BeautifulSoup\nfrom unittest.mock import ANY\n\nimport app\n\nfrom app.notify_client.models import InvitedUser\nfrom tests.conftest import sample_invite as create_sample_invite\nfrom tests.conftest import mock_check_invite_token as mock_check_token_invite\n\n\ndef test_existing_user_accept_invite_calls_api_and_redirects_to_dashboard(\n client,\n service_one,\n api_user_active,\n sample_invite,\n mock_get_service,\n mock_check_invite_token,\n mock_get_user_by_email,\n mock_get_users_by_service,\n mock_accept_invite,\n mock_add_user_to_service,\n):\n\n expected_service = service_one['id']\n expected_redirect_location = 'http://localhost/services/{}/dashboard'.format(expected_service)\n expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys']\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n assert mock_accept_invite.call_count == 1\n mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions)\n\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_existing_user_with_no_permissions_accept_invite(\n client,\n mocker,\n service_one,\n api_user_active,\n sample_invite,\n mock_check_invite_token,\n mock_get_user_by_email,\n mock_get_users_by_service,\n mock_add_user_to_service,\n mock_get_service,\n):\n\n expected_service = service_one['id']\n sample_invite['permissions'] = ''\n expected_permissions = []\n mocker.patch('app.invite_api_client.accept_invite', return_value=sample_invite)\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions)\n\n assert response.status_code == 302\n\n\ndef test_if_existing_user_accepts_twice_they_redirect_to_sign_in(\n client,\n mocker,\n sample_invite,\n mock_get_service,\n):\n\n sample_invite['status'] = 'accepted'\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (\n page.h1.string,\n page.select('main p')[0].text.strip(),\n ) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.',\n )\n\n\ndef test_existing_user_of_service_get_redirected_to_signin(\n client,\n mocker,\n api_user_active,\n sample_invite,\n mock_get_service,\n mock_get_user_by_email,\n mock_accept_invite,\n):\n sample_invite['email_address'] = api_user_active.email_address\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=[api_user_active])\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (\n page.h1.string,\n page.select('main p')[0].text.strip(),\n ) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.',\n )\n assert mock_accept_invite.call_count == 1\n\n\ndef test_existing_signed_out_user_accept_invite_redirects_to_sign_in(\n client,\n service_one,\n api_user_active,\n sample_invite,\n mock_check_invite_token,\n mock_get_user_by_email,\n mock_get_users_by_service,\n mock_add_user_to_service,\n mock_accept_invite,\n mock_get_service,\n):\n\n expected_service = service_one['id']\n expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys']\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True)\n\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_get_user_by_email.assert_called_with('[email protected]')\n mock_add_user_to_service.assert_called_with(expected_service, api_user_active.id, expected_permissions)\n assert mock_accept_invite.call_count == 1\n\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert (\n page.h1.string,\n page.select('main p')[0].text.strip(),\n ) == (\n 'You need to sign in again',\n 'We signed you out because you haven’t used Notify for a while.',\n )\n\n\ndef test_new_user_accept_invite_calls_api_and_redirects_to_registration(\n client,\n service_one,\n mock_check_invite_token,\n mock_dont_get_user_by_email,\n mock_add_user_to_service,\n mock_get_users_by_service,\n mock_get_service,\n):\n\n expected_redirect_location = 'http://localhost/register-from-invite'\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n\ndef test_new_user_accept_invite_calls_api_and_views_registration_page(\n client,\n service_one,\n mock_check_invite_token,\n mock_dont_get_user_by_email,\n mock_add_user_to_service,\n mock_get_users_by_service,\n mock_get_service,\n):\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True)\n\n mock_check_invite_token.assert_called_with('thisisnotarealtoken')\n mock_dont_get_user_by_email.assert_called_with('[email protected]')\n\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'Create an account'\n\n email_in_page = page.find('main').find('p')\n assert email_in_page.text.strip() == 'Your account will be created with this email: [email protected]' # noqa\n\n form = page.find('form')\n name = form.find('input', id='name')\n password = form.find('input', id='password')\n service = form.find('input', type='hidden', id='service')\n email = form.find('input', type='hidden', id='email_address')\n\n assert email\n assert email.attrs['value'] == '[email protected]'\n assert name\n assert password\n assert service\n assert service.attrs['value'] == service_one['id']\n\n\ndef test_cancelled_invited_user_accepts_invited_redirect_to_cancelled_invitation(\n client,\n service_one,\n mocker,\n mock_get_user,\n mock_get_service,\n):\n cancelled_invitation = create_sample_invite(mocker, service_one, status='cancelled')\n mock_check_token_invite(mocker, cancelled_invitation)\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n\n app.invite_api_client.check_token.assert_called_with('thisisnotarealtoken')\n assert response.status_code == 200\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == 'The invitation you were sent has been cancelled'\n\n\ndef test_new_user_accept_invite_completes_new_registration_redirects_to_verify(\n client,\n service_one,\n sample_invite,\n api_user_active,\n mock_check_invite_token,\n mock_dont_get_user_by_email,\n mock_is_email_unique,\n mock_register_user,\n mock_send_verify_code,\n mock_accept_invite,\n mock_get_users_by_service,\n mock_add_user_to_service,\n mock_get_service,\n):\n\n expected_service = service_one['id']\n expected_email = sample_invite['email_address']\n expected_from_user = service_one['users'][0]\n expected_redirect_location = 'http://localhost/register-from-invite'\n\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n with client.session_transaction() as session:\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n invited_user = session.get('invited_user')\n assert invited_user\n assert expected_service == invited_user['service']\n assert expected_email == invited_user['email_address']\n assert expected_from_user == invited_user['from_user']\n\n data = {'service': invited_user['service'],\n 'email_address': invited_user['email_address'],\n 'from_user': invited_user['from_user'],\n 'password': 'longpassword',\n 'mobile_number': '+447890123456',\n 'name': 'Invited User'\n }\n\n expected_redirect_location = 'http://localhost/verify'\n response = client.post(url_for('main.register_from_invite'), data=data)\n assert response.status_code == 302\n assert response.location == expected_redirect_location\n\n mock_send_verify_code.assert_called_once_with(ANY, 'sms', data['mobile_number'])\n\n mock_register_user.assert_called_with(data['name'],\n data['email_address'],\n data['mobile_number'],\n data['password'])\n\n assert mock_accept_invite.call_count == 1\n\n\ndef test_signed_in_existing_user_cannot_use_anothers_invite(\n logged_in_client,\n mocker,\n api_user_active,\n sample_invite,\n mock_get_user,\n mock_accept_invite,\n mock_get_service,\n):\n invite = InvitedUser(**sample_invite)\n mocker.patch('app.invite_api_client.check_token', return_value=invite)\n mocker.patch('app.user_api_client.get_users_for_service', return_value=[api_user_active])\n\n response = logged_in_client.get(url_for('main.accept_invite', token='thisisnotarealtoken'), follow_redirects=True)\n assert response.status_code == 403\n page = BeautifulSoup(response.data.decode('utf-8'), 'html.parser')\n assert page.h1.string.strip() == '403'\n flash_banners = page.find_all('div', class_='banner-dangerous')\n assert len(flash_banners) == 1\n banner_contents = flash_banners[0].text.strip()\n assert \"You’re signed in as [email protected].\" in banner_contents\n assert \"This invite is for another email address.\" in banner_contents\n assert \"Sign out and click the link again to accept this invite.\" in banner_contents\n assert mock_accept_invite.call_count == 0\n\n\ndef test_new_invited_user_verifies_and_added_to_service(\n client,\n service_one,\n sample_invite,\n api_user_active,\n mock_check_invite_token,\n mock_dont_get_user_by_email,\n mock_is_email_unique,\n mock_register_user,\n mock_send_verify_code,\n mock_check_verify_code,\n mock_get_user,\n mock_update_user,\n mock_add_user_to_service,\n mock_accept_invite,\n mock_get_service,\n mock_get_service_templates,\n mock_get_template_statistics,\n mock_get_jobs,\n mock_has_permissions,\n mock_get_users_by_service,\n mock_get_detailed_service,\n mock_get_usage,\n):\n\n # visit accept token page\n response = client.get(url_for('main.accept_invite', token='thisisnotarealtoken'))\n data = {'service': sample_invite['service'],\n 'email_address': sample_invite['email_address'],\n 'from_user': sample_invite['from_user'],\n 'password': 'longpassword',\n 'mobile_number': '+447890123456',\n 'name': 'Invited User'\n }\n\n # get redirected to register from invite\n response = client.post(url_for('main.register_from_invite'), data=data)\n\n # that sends user on to verify\n response = client.post(url_for('main.verify'), data={'sms_code': '12345'}, follow_redirects=True)\n\n # when they post codes back to admin user should be added to\n # service and sent on to dash board\n expected_permissions = ['send_messages', 'manage_service', 'manage_api_keys']\n\n with client.session_transaction() as session:\n new_user_id = session['user_id']\n mock_add_user_to_service.assert_called_with(data['service'], new_user_id, expected_permissions)\n mock_accept_invite.assert_called_with(data['service'], sample_invite['id'])\n mock_check_verify_code.assert_called_once_with(new_user_id, '12345', 'sms')\n assert service_one['id'] == session['service_id']\n\n raw_html = response.data.decode('utf-8')\n page = BeautifulSoup(raw_html, 'html.parser')\n assert page.find('h1').text == 'Dashboard'\n", "step-ids": [ 8, 10, 11, 12, 13 ] }
[ 8, 10, 11, 12, 13 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def iterative_train_test(X, y, test_size): """ Iteratively splits data with stratification. This function is based on the iterative_train_test_split function from the skmultilearn.model_selection package, but uses pandas dataframes as input and output. Parameters ---------- X : pandas dataframe Data samples. y : array or sparse matrix Indicator matrix. test_size : float [0,1] The proportion of the dataset to include in the test split, the rest will be put in the train set. Returns ------- X_train : pandas dataframe Training samples. y_train : array or sparse matrix Indicator matrix of the training samples. X_test : pandas dataframe Test samples. y_test : array or sparse matrix Indicator matrix of the test samples. """ stratifier = IterativeStratification(n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0 - test_size]) train_indexes, test_indexes = next(stratifier.split(X, y)) X_train, y_train = X.iloc[train_indexes], y[train_indexes] X_test, y_test = X.iloc[test_indexes], y[test_indexes] return X_train, y_train, X_test, y_test <|reserved_special_token_1|> <|reserved_special_token_0|> from skmultilearn.model_selection import IterativeStratification def iterative_train_test(X, y, test_size): """ Iteratively splits data with stratification. This function is based on the iterative_train_test_split function from the skmultilearn.model_selection package, but uses pandas dataframes as input and output. Parameters ---------- X : pandas dataframe Data samples. y : array or sparse matrix Indicator matrix. test_size : float [0,1] The proportion of the dataset to include in the test split, the rest will be put in the train set. Returns ------- X_train : pandas dataframe Training samples. y_train : array or sparse matrix Indicator matrix of the training samples. X_test : pandas dataframe Test samples. y_test : array or sparse matrix Indicator matrix of the test samples. """ stratifier = IterativeStratification(n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0 - test_size]) train_indexes, test_indexes = next(stratifier.split(X, y)) X_train, y_train = X.iloc[train_indexes], y[train_indexes] X_test, y_test = X.iloc[test_indexes], y[test_indexes] return X_train, y_train, X_test, y_test <|reserved_special_token_1|> # -*- coding: utf-8 -*- """ This module provides a function for splitting datasets.""" from skmultilearn.model_selection import IterativeStratification def iterative_train_test(X, y, test_size): """ Iteratively splits data with stratification. This function is based on the iterative_train_test_split function from the skmultilearn.model_selection package, but uses pandas dataframes as input and output. Parameters ---------- X : pandas dataframe Data samples. y : array or sparse matrix Indicator matrix. test_size : float [0,1] The proportion of the dataset to include in the test split, the rest will be put in the train set. Returns ------- X_train : pandas dataframe Training samples. y_train : array or sparse matrix Indicator matrix of the training samples. X_test : pandas dataframe Test samples. y_test : array or sparse matrix Indicator matrix of the test samples. """ stratifier = IterativeStratification(n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0-test_size]) train_indexes, test_indexes = next(stratifier.split(X, y)) X_train, y_train = X.iloc[train_indexes], y[train_indexes] X_test, y_test = X.iloc[test_indexes], y[test_indexes] return X_train, y_train, X_test, y_test
flexible
{ "blob_id": "c4c068c7b50d1811f224701ad7e95d88f6734230", "index": 2867, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef iterative_train_test(X, y, test_size):\n \"\"\"\n Iteratively splits data with stratification.\n\n This function is based on the iterative_train_test_split function from the\n skmultilearn.model_selection package, but uses pandas dataframes as input and output.\n\n Parameters\n ----------\n X : pandas dataframe\n Data samples.\n y : array or sparse matrix\n Indicator matrix.\n test_size : float [0,1]\n The proportion of the dataset to include in the test split, the rest will be put in the train set.\n\n Returns\n -------\n X_train : pandas dataframe\n Training samples.\n y_train : array or sparse matrix\n Indicator matrix of the training samples.\n X_test : pandas dataframe\n Test samples.\n y_test : array or sparse matrix\n Indicator matrix of the test samples.\n\n \"\"\"\n stratifier = IterativeStratification(n_splits=2, order=2,\n sample_distribution_per_fold=[test_size, 1.0 - test_size])\n train_indexes, test_indexes = next(stratifier.split(X, y))\n X_train, y_train = X.iloc[train_indexes], y[train_indexes]\n X_test, y_test = X.iloc[test_indexes], y[test_indexes]\n return X_train, y_train, X_test, y_test\n", "step-3": "<mask token>\nfrom skmultilearn.model_selection import IterativeStratification\n\n\ndef iterative_train_test(X, y, test_size):\n \"\"\"\n Iteratively splits data with stratification.\n\n This function is based on the iterative_train_test_split function from the\n skmultilearn.model_selection package, but uses pandas dataframes as input and output.\n\n Parameters\n ----------\n X : pandas dataframe\n Data samples.\n y : array or sparse matrix\n Indicator matrix.\n test_size : float [0,1]\n The proportion of the dataset to include in the test split, the rest will be put in the train set.\n\n Returns\n -------\n X_train : pandas dataframe\n Training samples.\n y_train : array or sparse matrix\n Indicator matrix of the training samples.\n X_test : pandas dataframe\n Test samples.\n y_test : array or sparse matrix\n Indicator matrix of the test samples.\n\n \"\"\"\n stratifier = IterativeStratification(n_splits=2, order=2,\n sample_distribution_per_fold=[test_size, 1.0 - test_size])\n train_indexes, test_indexes = next(stratifier.split(X, y))\n X_train, y_train = X.iloc[train_indexes], y[train_indexes]\n X_test, y_test = X.iloc[test_indexes], y[test_indexes]\n return X_train, y_train, X_test, y_test\n", "step-4": "# -*- coding: utf-8 -*-\n\"\"\" This module provides a function for splitting datasets.\"\"\"\n\nfrom skmultilearn.model_selection import IterativeStratification\n\ndef iterative_train_test(X, y, test_size):\n \"\"\"\n Iteratively splits data with stratification.\n\n This function is based on the iterative_train_test_split function from the\n skmultilearn.model_selection package, but uses pandas dataframes as input and output.\n\n Parameters\n ----------\n X : pandas dataframe\n Data samples.\n y : array or sparse matrix\n Indicator matrix.\n test_size : float [0,1]\n The proportion of the dataset to include in the test split, the rest will be put in the train set.\n\n Returns\n -------\n X_train : pandas dataframe\n Training samples.\n y_train : array or sparse matrix\n Indicator matrix of the training samples.\n X_test : pandas dataframe\n Test samples.\n y_test : array or sparse matrix\n Indicator matrix of the test samples.\n\n \"\"\"\n stratifier = IterativeStratification(n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0-test_size])\n train_indexes, test_indexes = next(stratifier.split(X, y))\n\n X_train, y_train = X.iloc[train_indexes], y[train_indexes]\n X_test, y_test = X.iloc[test_indexes], y[test_indexes]\n\n return X_train, y_train, X_test, y_test\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Food(Turtle): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Food(Turtle): def __init__(self): super().__init__() self.shape('circle') self.penup() self.color('red') self.speed('fastest') self.refresh() def refresh(self): self.color(random.choice(colors)) self.goto(random.randint(-280, 280), random.randint(-280, 280)) <|reserved_special_token_1|> <|reserved_special_token_0|> colors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown'] class Food(Turtle): def __init__(self): super().__init__() self.shape('circle') self.penup() self.color('red') self.speed('fastest') self.refresh() def refresh(self): self.color(random.choice(colors)) self.goto(random.randint(-280, 280), random.randint(-280, 280)) <|reserved_special_token_1|> import random from turtle import Turtle colors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown'] class Food(Turtle): def __init__(self): super().__init__() self.shape('circle') self.penup() self.color('red') self.speed('fastest') self.refresh() def refresh(self): self.color(random.choice(colors)) self.goto(random.randint(-280, 280), random.randint(-280, 280)) <|reserved_special_token_1|> import random from turtle import Turtle colors = ["red", "blue", 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown'] class Food(Turtle): def __init__(self): super().__init__() self.shape("circle") self.penup() self.color("red") self.speed("fastest") self.refresh() def refresh(self): self.color(random.choice(colors)) self.goto(random.randint(-280, 280), random.randint(-280, 280))
flexible
{ "blob_id": "8adda42dfebd3f394a1026720465824a836c1dd1", "index": 7997, "step-1": "<mask token>\n\n\nclass Food(Turtle):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-3": "<mask token>\ncolors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate',\n 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-4": "import random\nfrom turtle import Turtle\ncolors = ['red', 'blue', 'green', 'peru', 'purple', 'pink', 'chocolate',\n 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n self.shape('circle')\n self.penup()\n self.color('red')\n self.speed('fastest')\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-5": "import random\nfrom turtle import Turtle\n\ncolors = [\"red\", \"blue\", 'green', 'peru', 'purple', 'pink', 'chocolate', 'grey', 'cyan', 'brown']\n\n\nclass Food(Turtle):\n\n def __init__(self):\n super().__init__()\n\n self.shape(\"circle\")\n self.penup()\n self.color(\"red\")\n self.speed(\"fastest\")\n self.refresh()\n\n def refresh(self):\n self.color(random.choice(colors))\n self.goto(random.randint(-280, 280), random.randint(-280, 280))\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> class Example(QWidget): class A(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() <|reserved_special_token_0|> <|reserved_special_token_0|> def create_table(self): self.battle_table = QTableWidget() self.battle_table.setColumnCount(8) self.battle_table.setHorizontalHeaderLabels(['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score']) self.battle_table.setAlternatingRowColors(True) self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows) self.battle_table.resizeRowsToContents() self.battle_table.doubleClicked.connect(self.on_click) <|reserved_special_token_0|> def showDialog(self, match_id): data = requests.get('http://300report.jumpw.com/api/getmatch?id={}' .format(match_id)) a = self.A() <|reserved_special_token_0|> def search(self): print(self.user) print(__name__) runner = CrawlerRunner(get_project_settings()) print('a') runner.crawl('JumpReport', user=self.user) print(self.user) d = runner.join() d.addBoth(lambda _: reactor.stop()) reactor.run() print('complete') name = self.qle.text() db = db_handle() with db as con: sql = ( "select * from player where name = '{}' order by update_time" .format(name)) con.execute(sql) player = con.fetchone() if player: (id, name, win, match_count, strength, level, update_time, rank ) = player text = ( '角色名: {}\n胜场: {}\n总场数: {}\n团分: {}\n团分排行: {}\n等级: {}\n更新时间: {}' .format(name, win, match_count, strength, rank, level, update_time)) self.txt.setText(text) sql = ("select * from player_data where name = '{}' order by date" .format(name)) con.execute(sql) player_data = con.fetchall() a = '' for data in player_data: a += str(data) a += '\n' self.battle.setText(str(a)) sql = 'select * from game_data order by match_id desc' con.execute(sql) game_data = con.fetchall() a = '' l = 0 self.battle_table.setRowCount(len(game_data)) for data in game_data: a += str(data[1:]) print(type(data)) for i in range(self.battle_table.columnCount()): item = QTableWidgetItem(str(data[i + 1])) item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.battle_table.setItem(l, i, item) a += '\n' self.player_status.setText(str(a)) l += 1 <|reserved_special_token_0|> <|reserved_special_token_0|> class BatterReport(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.txt = QTextEdit() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Example(QWidget): class A(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() <|reserved_special_token_0|> def initUI(self): self.qle = QLineEdit('蔽月八云') self.user = self.qle.text() self.para = 'user={}'.format(self.user) print(self.user, '1') btn = QPushButton('查询', self) btn.resize(btn.sizeHint()) btn.clicked.connect(self.search) self.txt = QTextEdit() self.battle = QTextEdit() self.player_status = QTextEdit() self.create_table() exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('application') exitAction.triggered.connect(qApp.quit) grid = QGridLayout() grid.setSpacing(10) grid.addWidget(self.qle, 1, 0) grid.addWidget(btn, 2, 0) grid.addWidget(self.txt, 3, 0) grid.addWidget(self.battle, 1, 1, 3, 1) grid.addWidget(self.player_status, 4, 0, 2, 2) grid.addWidget(self.battle_table, 6, 0, 2, 2) self.setLayout(grid) self.setGeometry(600, 600, 800, 600) self.center() self.setWindowTitle('战绩查询') self.show() def create_table(self): self.battle_table = QTableWidget() self.battle_table.setColumnCount(8) self.battle_table.setHorizontalHeaderLabels(['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score']) self.battle_table.setAlternatingRowColors(True) self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows) self.battle_table.resizeRowsToContents() self.battle_table.doubleClicked.connect(self.on_click) <|reserved_special_token_0|> def showDialog(self, match_id): data = requests.get('http://300report.jumpw.com/api/getmatch?id={}' .format(match_id)) a = self.A() <|reserved_special_token_0|> def search(self): print(self.user) print(__name__) runner = CrawlerRunner(get_project_settings()) print('a') runner.crawl('JumpReport', user=self.user) print(self.user) d = runner.join() d.addBoth(lambda _: reactor.stop()) reactor.run() print('complete') name = self.qle.text() db = db_handle() with db as con: sql = ( "select * from player where name = '{}' order by update_time" .format(name)) con.execute(sql) player = con.fetchone() if player: (id, name, win, match_count, strength, level, update_time, rank ) = player text = ( '角色名: {}\n胜场: {}\n总场数: {}\n团分: {}\n团分排行: {}\n等级: {}\n更新时间: {}' .format(name, win, match_count, strength, rank, level, update_time)) self.txt.setText(text) sql = ("select * from player_data where name = '{}' order by date" .format(name)) con.execute(sql) player_data = con.fetchall() a = '' for data in player_data: a += str(data) a += '\n' self.battle.setText(str(a)) sql = 'select * from game_data order by match_id desc' con.execute(sql) game_data = con.fetchall() a = '' l = 0 self.battle_table.setRowCount(len(game_data)) for data in game_data: a += str(data[1:]) print(type(data)) for i in range(self.battle_table.columnCount()): item = QTableWidgetItem(str(data[i + 1])) item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.battle_table.setItem(l, i, item) a += '\n' self.player_status.setText(str(a)) l += 1 <|reserved_special_token_0|> <|reserved_special_token_0|> class BatterReport(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.txt = QTextEdit() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Example(QWidget): class A(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() def __init__(self): super().__init__() self.initUI() def initUI(self): self.qle = QLineEdit('蔽月八云') self.user = self.qle.text() self.para = 'user={}'.format(self.user) print(self.user, '1') btn = QPushButton('查询', self) btn.resize(btn.sizeHint()) btn.clicked.connect(self.search) self.txt = QTextEdit() self.battle = QTextEdit() self.player_status = QTextEdit() self.create_table() exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('application') exitAction.triggered.connect(qApp.quit) grid = QGridLayout() grid.setSpacing(10) grid.addWidget(self.qle, 1, 0) grid.addWidget(btn, 2, 0) grid.addWidget(self.txt, 3, 0) grid.addWidget(self.battle, 1, 1, 3, 1) grid.addWidget(self.player_status, 4, 0, 2, 2) grid.addWidget(self.battle_table, 6, 0, 2, 2) self.setLayout(grid) self.setGeometry(600, 600, 800, 600) self.center() self.setWindowTitle('战绩查询') self.show() def create_table(self): self.battle_table = QTableWidget() self.battle_table.setColumnCount(8) self.battle_table.setHorizontalHeaderLabels(['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score']) self.battle_table.setAlternatingRowColors(True) self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows) self.battle_table.resizeRowsToContents() self.battle_table.doubleClicked.connect(self.on_click) @pyqtSlot() def on_click(self): currentQTableWidgetItem = self.battle_table.selectedItems()[0] match_id = currentQTableWidgetItem.text() print(match_id) self.showDialog(match_id) def showDialog(self, match_id): data = requests.get('http://300report.jumpw.com/api/getmatch?id={}' .format(match_id)) a = self.A() <|reserved_special_token_0|> def search(self): print(self.user) print(__name__) runner = CrawlerRunner(get_project_settings()) print('a') runner.crawl('JumpReport', user=self.user) print(self.user) d = runner.join() d.addBoth(lambda _: reactor.stop()) reactor.run() print('complete') name = self.qle.text() db = db_handle() with db as con: sql = ( "select * from player where name = '{}' order by update_time" .format(name)) con.execute(sql) player = con.fetchone() if player: (id, name, win, match_count, strength, level, update_time, rank ) = player text = ( '角色名: {}\n胜场: {}\n总场数: {}\n团分: {}\n团分排行: {}\n等级: {}\n更新时间: {}' .format(name, win, match_count, strength, rank, level, update_time)) self.txt.setText(text) sql = ("select * from player_data where name = '{}' order by date" .format(name)) con.execute(sql) player_data = con.fetchall() a = '' for data in player_data: a += str(data) a += '\n' self.battle.setText(str(a)) sql = 'select * from game_data order by match_id desc' con.execute(sql) game_data = con.fetchall() a = '' l = 0 self.battle_table.setRowCount(len(game_data)) for data in game_data: a += str(data[1:]) print(type(data)) for i in range(self.battle_table.columnCount()): item = QTableWidgetItem(str(data[i + 1])) item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.battle_table.setItem(l, i, item) a += '\n' self.player_status.setText(str(a)) l += 1 <|reserved_special_token_0|> def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', 'Quit?', QMessageBox. Yes | QMessageBox.No, QMessageBox.Yes) if reply == QMessageBox.Yes: event.accept() else: event.ignore() class BatterReport(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.txt = QTextEdit() <|reserved_special_token_0|> <|reserved_special_token_1|> import sys from PyQt5.QtWidgets import * from PyQt5.QtGui import QIcon, QFont from PyQt5.QtCore import QCoreApplication import pymysql import requests from twisted.internet import reactor, defer from scrapy.crawler import CrawlerRunner, CrawlerProcess from scrapy.utils.project import get_project_settings from spider.jump_300heroes.jump_300heroes.spiders.my_report import JumpReport from scrapy.settings import Settings from PyQt5.QtCore import * from PyQt5.QtGui import * from multiprocessing import Process def db_handle(): con = pymysql.connect(host='localhost', user='web', passwd='web', charset='utf8', database='heroes') return con class Example(QWidget): class A(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() def __init__(self): super().__init__() self.initUI() def initUI(self): self.qle = QLineEdit('蔽月八云') self.user = self.qle.text() self.para = 'user={}'.format(self.user) print(self.user, '1') btn = QPushButton('查询', self) btn.resize(btn.sizeHint()) btn.clicked.connect(self.search) self.txt = QTextEdit() self.battle = QTextEdit() self.player_status = QTextEdit() self.create_table() exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('application') exitAction.triggered.connect(qApp.quit) grid = QGridLayout() grid.setSpacing(10) grid.addWidget(self.qle, 1, 0) grid.addWidget(btn, 2, 0) grid.addWidget(self.txt, 3, 0) grid.addWidget(self.battle, 1, 1, 3, 1) grid.addWidget(self.player_status, 4, 0, 2, 2) grid.addWidget(self.battle_table, 6, 0, 2, 2) self.setLayout(grid) self.setGeometry(600, 600, 800, 600) self.center() self.setWindowTitle('战绩查询') self.show() def create_table(self): self.battle_table = QTableWidget() self.battle_table.setColumnCount(8) self.battle_table.setHorizontalHeaderLabels(['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score']) self.battle_table.setAlternatingRowColors(True) self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows) self.battle_table.resizeRowsToContents() self.battle_table.doubleClicked.connect(self.on_click) @pyqtSlot() def on_click(self): currentQTableWidgetItem = self.battle_table.selectedItems()[0] match_id = currentQTableWidgetItem.text() print(match_id) self.showDialog(match_id) def showDialog(self, match_id): data = requests.get('http://300report.jumpw.com/api/getmatch?id={}' .format(match_id)) a = self.A() def searchd(self): if __name__ == '__main__': p = Process(target=self.a) p.start() p.join() def search(self): print(self.user) print(__name__) runner = CrawlerRunner(get_project_settings()) print('a') runner.crawl('JumpReport', user=self.user) print(self.user) d = runner.join() d.addBoth(lambda _: reactor.stop()) reactor.run() print('complete') name = self.qle.text() db = db_handle() with db as con: sql = ( "select * from player where name = '{}' order by update_time" .format(name)) con.execute(sql) player = con.fetchone() if player: (id, name, win, match_count, strength, level, update_time, rank ) = player text = ( '角色名: {}\n胜场: {}\n总场数: {}\n团分: {}\n团分排行: {}\n等级: {}\n更新时间: {}' .format(name, win, match_count, strength, rank, level, update_time)) self.txt.setText(text) sql = ("select * from player_data where name = '{}' order by date" .format(name)) con.execute(sql) player_data = con.fetchall() a = '' for data in player_data: a += str(data) a += '\n' self.battle.setText(str(a)) sql = 'select * from game_data order by match_id desc' con.execute(sql) game_data = con.fetchall() a = '' l = 0 self.battle_table.setRowCount(len(game_data)) for data in game_data: a += str(data[1:]) print(type(data)) for i in range(self.battle_table.columnCount()): item = QTableWidgetItem(str(data[i + 1])) item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.battle_table.setItem(l, i, item) a += '\n' self.player_status.setText(str(a)) l += 1 def center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', 'Quit?', QMessageBox. Yes | QMessageBox.No, QMessageBox.Yes) if reply == QMessageBox.Yes: event.accept() else: event.ignore() class BatterReport(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.txt = QTextEdit() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_()) <|reserved_special_token_1|> import sys from PyQt5.QtWidgets import * from PyQt5.QtGui import QIcon, QFont from PyQt5.QtCore import QCoreApplication import pymysql import requests from twisted.internet import reactor, defer from scrapy.crawler import CrawlerRunner, CrawlerProcess from scrapy.utils.project import get_project_settings from spider.jump_300heroes.jump_300heroes.spiders.my_report import JumpReport from scrapy.settings import Settings from PyQt5.QtCore import * from PyQt5.QtGui import * from multiprocessing import Process def db_handle(): con = pymysql.connect( host='localhost', user='web', passwd='web', charset='utf8', database='heroes' ) return con class Example(QWidget): class A(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 300, 220) self.setWindowTitle('Icon') self.setWindowIcon(QIcon('web.png')) self.show() def __init__(self): super().__init__() self.initUI() def initUI(self): #QToolTip.setFont(QFont('SanSerif', 10)) #self.setToolTip('This is a <b>QWidget</b> widget') #textEdit = QTextEdit() #self.setCentralWidget(textEdit) self.qle = QLineEdit("蔽月八云") self.user = self.qle.text() self.para = "user={}".format(self.user) print(self.user, '1') btn = QPushButton('查询', self) #btn.setToolTip('This is a <b>QPushButton</b> widget') btn.resize(btn.sizeHint()) btn.clicked.connect(self.search) self.txt = QTextEdit() #self.txt.textChanged.connect(self.adjustSize) self.battle = QTextEdit() self.player_status = QTextEdit() self.create_table() # 名称不能用Quit、Exit,用了就无法显示,原因不明 exitAction = QAction('Exit', self) exitAction.setShortcut('Ctrl+Q') exitAction.setStatusTip('application') exitAction.triggered.connect(qApp.quit) #self.statusBar() #menubar = QMainWindow.menuBar() # Mac OS的状态栏显示不一样 #menubar.setNativeMenuBar(False) #fileMenu = menubar.addMenu('&File') #fileMenu.addAction(exitAction) #toolbar = self.addToolBar('Exit') #toolbar.addAction(exitAction) grid = QGridLayout() grid.setSpacing(10) grid.addWidget(self.qle, 1, 0) grid.addWidget(btn, 2, 0) grid.addWidget(self.txt, 3, 0) grid.addWidget(self.battle, 1, 1, 3, 1) grid.addWidget(self.player_status, 4, 0, 2, 2) grid.addWidget(self.battle_table, 6, 0, 2, 2) self.setLayout(grid) self.setGeometry(600, 600, 800, 600) self.center() self.setWindowTitle("战绩查询") self.show() def create_table(self): # 设置表 self.battle_table = QTableWidget() # 表列数,行数在下方读取数据时,根据数据量建立 self.battle_table.setColumnCount(8) # 设置表头 self.battle_table.setHorizontalHeaderLabels( ['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score']) # 隔行变色 self.battle_table.setAlternatingRowColors(True) # 整行选中 self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows) # 将列调整到跟内容大小相匹配 # self.battle_table.resizeColumnsToContents() # #将行大小调整到跟内容的大小相匹配 self.battle_table.resizeRowsToContents() # 点击事件 self.battle_table.doubleClicked.connect(self.on_click) @pyqtSlot() def on_click(self): currentQTableWidgetItem = self.battle_table.selectedItems()[0] # 点击的行包含的比赛id #match_id = self.battle_table.item(currentQTableWidgetItem.row(), 0).text() match_id = currentQTableWidgetItem.text() print(match_id) self.showDialog(match_id) def showDialog(self, match_id): data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'.format(match_id)) a = self.A() ## 启动爬虫,获取该场比赛所有人的数据 #runner = CrawlerRunner(get_project_settings()) #runner.crawl('JumpReport') #d = runner.join() #d.addBoth(lambda _: reactor.stop()) #reactor.run() # 阻塞运行爬虫 # #text, ok = QInputDialog.getText(self, 'Input Dialog', # 'Enter your name:') def searchd(self): if __name__ == '__main__': #print(user, '2') p = Process(target=self.a) p.start() p.join() def search(self): print(self.user) print(__name__) #print(user, '3') #process = CrawlerProcess(get_project_settings()) #process.crawl('JumpReport') #process.start() #process.stop() #process.put() # 脚本执行爬虫代码 runner = CrawlerRunner(get_project_settings()) #def search(runner, keyword): # return runner.crawl(JumpReport, keyword) #runner = CrawlerProcess() #dfs = set() print('a') runner.crawl('JumpReport', user=self.user) print(self.user) d = runner.join() #dfs.add(d) #defer.DeferredList(dfs).addBoth(lambda _: reactor.stop()) d.addBoth(lambda _: reactor.stop()) #search(runner, "abcd") #search(runner, "beat") #runner.start() reactor.run() # 阻塞运行爬虫 print("complete") # runner = CrawlerRunner(get_project_settings()) # dfs = set() # for domain in range(2): # d = runner.crawl('JumpReport') # dfs.add(d) # # defer.DeferredList(dfs).addBoth(lambda _: reactor.stop()) # reactor.run() # the script will block here until all crawling jobs are finished # runner = CrawlerRunner(get_project_settings()) # # @defer.inlineCallbacks # def crawl(): # for domain in range(2): # yield runner.crawl('JumpReport') # reactor.stop() # # crawl() # reactor.run() # the script will block here until the last crawl call is finished # settings = Settings({'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'}) # runner = CrawlerRunner(settings) # # d = runner.crawl(JumpReport) # d.addBoth(lambda _: reactor.stop()) # reactor.run() # the script will block here until the crawling is finished # runner = CrawlerProcess(get_project_settings()) # runner.crawl(JumpReport) # runner.start() name = self.qle.text() db = db_handle() with db as con: sql = "select * from player where name = '{}' order by update_time".format(name) con.execute(sql) player = con.fetchone() if player: id, name, win, match_count, strength, level, update_time, rank = player text = "角色名: {}\n胜场: {}\n总场数: {}\n团分: {}\n团分排行: {}\n等级: {}\n更新时间: {}".format( name, win, match_count, strength, rank, level, update_time) self.txt.setText(text) sql = "select * from player_data where name = '{}' order by date".format(name) con.execute(sql) player_data = con.fetchall() a = "" for data in player_data: a += str(data) a += "\n" self.battle.setText(str(a)) sql = "select * from game_data order by match_id desc" con.execute(sql) game_data = con.fetchall() a = "" l = 0 self.battle_table.setRowCount(len(game_data)) for data in game_data: a += str(data[1:]) print(type(data)) for i in range(self.battle_table.columnCount()): item = QTableWidgetItem(str(data[i + 1])) # 设置填入数据的排列位置(左右居中| 上下居中) item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter) self.battle_table.setItem(l, i, item) a += "\n" self.player_status.setText(str(a)) l += 1 #for i in range(len(list(a))): # self.battle_table.setLayout(str(a)) def center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) def closeEvent(self, event): reply = QMessageBox.question(self, 'Message', "Quit?", QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes) if reply == QMessageBox.Yes: event.accept() else: event.ignore() class BatterReport(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.txt = QTextEdit() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
flexible
{ "blob_id": "889d465ceeac57a600b2fa3bd26632edcd90a655", "index": 2911, "step-1": "<mask token>\n\n\nclass Example(QWidget):\n\n\n class A(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.setGeometry(300, 300, 300, 220)\n self.setWindowTitle('Icon')\n self.setWindowIcon(QIcon('web.png'))\n self.show()\n <mask token>\n <mask token>\n\n def create_table(self):\n self.battle_table = QTableWidget()\n self.battle_table.setColumnCount(8)\n self.battle_table.setHorizontalHeaderLabels(['match_id', 'head',\n 'date', 'time', 'kill_count', 'death', 'support', 'score'])\n self.battle_table.setAlternatingRowColors(True)\n self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows)\n self.battle_table.resizeRowsToContents()\n self.battle_table.doubleClicked.connect(self.on_click)\n <mask token>\n\n def showDialog(self, match_id):\n data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'\n .format(match_id))\n a = self.A()\n <mask token>\n\n def search(self):\n print(self.user)\n print(__name__)\n runner = CrawlerRunner(get_project_settings())\n print('a')\n runner.crawl('JumpReport', user=self.user)\n print(self.user)\n d = runner.join()\n d.addBoth(lambda _: reactor.stop())\n reactor.run()\n print('complete')\n name = self.qle.text()\n db = db_handle()\n with db as con:\n sql = (\n \"select * from player where name = '{}' order by update_time\"\n .format(name))\n con.execute(sql)\n player = con.fetchone()\n if player:\n (id, name, win, match_count, strength, level, update_time, rank\n ) = player\n text = (\n '角色名: {}\\n胜场: {}\\n总场数: {}\\n团分: {}\\n团分排行: {}\\n等级: {}\\n更新时间: {}'\n .format(name, win, match_count, strength, rank, level,\n update_time))\n self.txt.setText(text)\n sql = (\"select * from player_data where name = '{}' order by date\"\n .format(name))\n con.execute(sql)\n player_data = con.fetchall()\n a = ''\n for data in player_data:\n a += str(data)\n a += '\\n'\n self.battle.setText(str(a))\n sql = 'select * from game_data order by match_id desc'\n con.execute(sql)\n game_data = con.fetchall()\n a = ''\n l = 0\n self.battle_table.setRowCount(len(game_data))\n for data in game_data:\n a += str(data[1:])\n print(type(data))\n for i in range(self.battle_table.columnCount()):\n item = QTableWidgetItem(str(data[i + 1]))\n item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)\n self.battle_table.setItem(l, i, item)\n a += '\\n'\n self.player_status.setText(str(a))\n l += 1\n <mask token>\n <mask token>\n\n\nclass BatterReport(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.txt = QTextEdit()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Example(QWidget):\n\n\n class A(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.setGeometry(300, 300, 300, 220)\n self.setWindowTitle('Icon')\n self.setWindowIcon(QIcon('web.png'))\n self.show()\n <mask token>\n\n def initUI(self):\n self.qle = QLineEdit('蔽月八云')\n self.user = self.qle.text()\n self.para = 'user={}'.format(self.user)\n print(self.user, '1')\n btn = QPushButton('查询', self)\n btn.resize(btn.sizeHint())\n btn.clicked.connect(self.search)\n self.txt = QTextEdit()\n self.battle = QTextEdit()\n self.player_status = QTextEdit()\n self.create_table()\n exitAction = QAction('Exit', self)\n exitAction.setShortcut('Ctrl+Q')\n exitAction.setStatusTip('application')\n exitAction.triggered.connect(qApp.quit)\n grid = QGridLayout()\n grid.setSpacing(10)\n grid.addWidget(self.qle, 1, 0)\n grid.addWidget(btn, 2, 0)\n grid.addWidget(self.txt, 3, 0)\n grid.addWidget(self.battle, 1, 1, 3, 1)\n grid.addWidget(self.player_status, 4, 0, 2, 2)\n grid.addWidget(self.battle_table, 6, 0, 2, 2)\n self.setLayout(grid)\n self.setGeometry(600, 600, 800, 600)\n self.center()\n self.setWindowTitle('战绩查询')\n self.show()\n\n def create_table(self):\n self.battle_table = QTableWidget()\n self.battle_table.setColumnCount(8)\n self.battle_table.setHorizontalHeaderLabels(['match_id', 'head',\n 'date', 'time', 'kill_count', 'death', 'support', 'score'])\n self.battle_table.setAlternatingRowColors(True)\n self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows)\n self.battle_table.resizeRowsToContents()\n self.battle_table.doubleClicked.connect(self.on_click)\n <mask token>\n\n def showDialog(self, match_id):\n data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'\n .format(match_id))\n a = self.A()\n <mask token>\n\n def search(self):\n print(self.user)\n print(__name__)\n runner = CrawlerRunner(get_project_settings())\n print('a')\n runner.crawl('JumpReport', user=self.user)\n print(self.user)\n d = runner.join()\n d.addBoth(lambda _: reactor.stop())\n reactor.run()\n print('complete')\n name = self.qle.text()\n db = db_handle()\n with db as con:\n sql = (\n \"select * from player where name = '{}' order by update_time\"\n .format(name))\n con.execute(sql)\n player = con.fetchone()\n if player:\n (id, name, win, match_count, strength, level, update_time, rank\n ) = player\n text = (\n '角色名: {}\\n胜场: {}\\n总场数: {}\\n团分: {}\\n团分排行: {}\\n等级: {}\\n更新时间: {}'\n .format(name, win, match_count, strength, rank, level,\n update_time))\n self.txt.setText(text)\n sql = (\"select * from player_data where name = '{}' order by date\"\n .format(name))\n con.execute(sql)\n player_data = con.fetchall()\n a = ''\n for data in player_data:\n a += str(data)\n a += '\\n'\n self.battle.setText(str(a))\n sql = 'select * from game_data order by match_id desc'\n con.execute(sql)\n game_data = con.fetchall()\n a = ''\n l = 0\n self.battle_table.setRowCount(len(game_data))\n for data in game_data:\n a += str(data[1:])\n print(type(data))\n for i in range(self.battle_table.columnCount()):\n item = QTableWidgetItem(str(data[i + 1]))\n item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)\n self.battle_table.setItem(l, i, item)\n a += '\\n'\n self.player_status.setText(str(a))\n l += 1\n <mask token>\n <mask token>\n\n\nclass BatterReport(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.txt = QTextEdit()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Example(QWidget):\n\n\n class A(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.setGeometry(300, 300, 300, 220)\n self.setWindowTitle('Icon')\n self.setWindowIcon(QIcon('web.png'))\n self.show()\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.qle = QLineEdit('蔽月八云')\n self.user = self.qle.text()\n self.para = 'user={}'.format(self.user)\n print(self.user, '1')\n btn = QPushButton('查询', self)\n btn.resize(btn.sizeHint())\n btn.clicked.connect(self.search)\n self.txt = QTextEdit()\n self.battle = QTextEdit()\n self.player_status = QTextEdit()\n self.create_table()\n exitAction = QAction('Exit', self)\n exitAction.setShortcut('Ctrl+Q')\n exitAction.setStatusTip('application')\n exitAction.triggered.connect(qApp.quit)\n grid = QGridLayout()\n grid.setSpacing(10)\n grid.addWidget(self.qle, 1, 0)\n grid.addWidget(btn, 2, 0)\n grid.addWidget(self.txt, 3, 0)\n grid.addWidget(self.battle, 1, 1, 3, 1)\n grid.addWidget(self.player_status, 4, 0, 2, 2)\n grid.addWidget(self.battle_table, 6, 0, 2, 2)\n self.setLayout(grid)\n self.setGeometry(600, 600, 800, 600)\n self.center()\n self.setWindowTitle('战绩查询')\n self.show()\n\n def create_table(self):\n self.battle_table = QTableWidget()\n self.battle_table.setColumnCount(8)\n self.battle_table.setHorizontalHeaderLabels(['match_id', 'head',\n 'date', 'time', 'kill_count', 'death', 'support', 'score'])\n self.battle_table.setAlternatingRowColors(True)\n self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows)\n self.battle_table.resizeRowsToContents()\n self.battle_table.doubleClicked.connect(self.on_click)\n\n @pyqtSlot()\n def on_click(self):\n currentQTableWidgetItem = self.battle_table.selectedItems()[0]\n match_id = currentQTableWidgetItem.text()\n print(match_id)\n self.showDialog(match_id)\n\n def showDialog(self, match_id):\n data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'\n .format(match_id))\n a = self.A()\n <mask token>\n\n def search(self):\n print(self.user)\n print(__name__)\n runner = CrawlerRunner(get_project_settings())\n print('a')\n runner.crawl('JumpReport', user=self.user)\n print(self.user)\n d = runner.join()\n d.addBoth(lambda _: reactor.stop())\n reactor.run()\n print('complete')\n name = self.qle.text()\n db = db_handle()\n with db as con:\n sql = (\n \"select * from player where name = '{}' order by update_time\"\n .format(name))\n con.execute(sql)\n player = con.fetchone()\n if player:\n (id, name, win, match_count, strength, level, update_time, rank\n ) = player\n text = (\n '角色名: {}\\n胜场: {}\\n总场数: {}\\n团分: {}\\n团分排行: {}\\n等级: {}\\n更新时间: {}'\n .format(name, win, match_count, strength, rank, level,\n update_time))\n self.txt.setText(text)\n sql = (\"select * from player_data where name = '{}' order by date\"\n .format(name))\n con.execute(sql)\n player_data = con.fetchall()\n a = ''\n for data in player_data:\n a += str(data)\n a += '\\n'\n self.battle.setText(str(a))\n sql = 'select * from game_data order by match_id desc'\n con.execute(sql)\n game_data = con.fetchall()\n a = ''\n l = 0\n self.battle_table.setRowCount(len(game_data))\n for data in game_data:\n a += str(data[1:])\n print(type(data))\n for i in range(self.battle_table.columnCount()):\n item = QTableWidgetItem(str(data[i + 1]))\n item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)\n self.battle_table.setItem(l, i, item)\n a += '\\n'\n self.player_status.setText(str(a))\n l += 1\n <mask token>\n\n def closeEvent(self, event):\n reply = QMessageBox.question(self, 'Message', 'Quit?', QMessageBox.\n Yes | QMessageBox.No, QMessageBox.Yes)\n if reply == QMessageBox.Yes:\n event.accept()\n else:\n event.ignore()\n\n\nclass BatterReport(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.txt = QTextEdit()\n\n\n<mask token>\n", "step-4": "import sys\nfrom PyQt5.QtWidgets import *\nfrom PyQt5.QtGui import QIcon, QFont\nfrom PyQt5.QtCore import QCoreApplication\nimport pymysql\nimport requests\nfrom twisted.internet import reactor, defer\nfrom scrapy.crawler import CrawlerRunner, CrawlerProcess\nfrom scrapy.utils.project import get_project_settings\nfrom spider.jump_300heroes.jump_300heroes.spiders.my_report import JumpReport\nfrom scrapy.settings import Settings\nfrom PyQt5.QtCore import *\nfrom PyQt5.QtGui import *\nfrom multiprocessing import Process\n\n\ndef db_handle():\n con = pymysql.connect(host='localhost', user='web', passwd='web',\n charset='utf8', database='heroes')\n return con\n\n\nclass Example(QWidget):\n\n\n class A(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.setGeometry(300, 300, 300, 220)\n self.setWindowTitle('Icon')\n self.setWindowIcon(QIcon('web.png'))\n self.show()\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.qle = QLineEdit('蔽月八云')\n self.user = self.qle.text()\n self.para = 'user={}'.format(self.user)\n print(self.user, '1')\n btn = QPushButton('查询', self)\n btn.resize(btn.sizeHint())\n btn.clicked.connect(self.search)\n self.txt = QTextEdit()\n self.battle = QTextEdit()\n self.player_status = QTextEdit()\n self.create_table()\n exitAction = QAction('Exit', self)\n exitAction.setShortcut('Ctrl+Q')\n exitAction.setStatusTip('application')\n exitAction.triggered.connect(qApp.quit)\n grid = QGridLayout()\n grid.setSpacing(10)\n grid.addWidget(self.qle, 1, 0)\n grid.addWidget(btn, 2, 0)\n grid.addWidget(self.txt, 3, 0)\n grid.addWidget(self.battle, 1, 1, 3, 1)\n grid.addWidget(self.player_status, 4, 0, 2, 2)\n grid.addWidget(self.battle_table, 6, 0, 2, 2)\n self.setLayout(grid)\n self.setGeometry(600, 600, 800, 600)\n self.center()\n self.setWindowTitle('战绩查询')\n self.show()\n\n def create_table(self):\n self.battle_table = QTableWidget()\n self.battle_table.setColumnCount(8)\n self.battle_table.setHorizontalHeaderLabels(['match_id', 'head',\n 'date', 'time', 'kill_count', 'death', 'support', 'score'])\n self.battle_table.setAlternatingRowColors(True)\n self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows)\n self.battle_table.resizeRowsToContents()\n self.battle_table.doubleClicked.connect(self.on_click)\n\n @pyqtSlot()\n def on_click(self):\n currentQTableWidgetItem = self.battle_table.selectedItems()[0]\n match_id = currentQTableWidgetItem.text()\n print(match_id)\n self.showDialog(match_id)\n\n def showDialog(self, match_id):\n data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'\n .format(match_id))\n a = self.A()\n\n def searchd(self):\n if __name__ == '__main__':\n p = Process(target=self.a)\n p.start()\n p.join()\n\n def search(self):\n print(self.user)\n print(__name__)\n runner = CrawlerRunner(get_project_settings())\n print('a')\n runner.crawl('JumpReport', user=self.user)\n print(self.user)\n d = runner.join()\n d.addBoth(lambda _: reactor.stop())\n reactor.run()\n print('complete')\n name = self.qle.text()\n db = db_handle()\n with db as con:\n sql = (\n \"select * from player where name = '{}' order by update_time\"\n .format(name))\n con.execute(sql)\n player = con.fetchone()\n if player:\n (id, name, win, match_count, strength, level, update_time, rank\n ) = player\n text = (\n '角色名: {}\\n胜场: {}\\n总场数: {}\\n团分: {}\\n团分排行: {}\\n等级: {}\\n更新时间: {}'\n .format(name, win, match_count, strength, rank, level,\n update_time))\n self.txt.setText(text)\n sql = (\"select * from player_data where name = '{}' order by date\"\n .format(name))\n con.execute(sql)\n player_data = con.fetchall()\n a = ''\n for data in player_data:\n a += str(data)\n a += '\\n'\n self.battle.setText(str(a))\n sql = 'select * from game_data order by match_id desc'\n con.execute(sql)\n game_data = con.fetchall()\n a = ''\n l = 0\n self.battle_table.setRowCount(len(game_data))\n for data in game_data:\n a += str(data[1:])\n print(type(data))\n for i in range(self.battle_table.columnCount()):\n item = QTableWidgetItem(str(data[i + 1]))\n item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)\n self.battle_table.setItem(l, i, item)\n a += '\\n'\n self.player_status.setText(str(a))\n l += 1\n\n def center(self):\n qr = self.frameGeometry()\n cp = QDesktopWidget().availableGeometry().center()\n qr.moveCenter(cp)\n self.move(qr.topLeft())\n\n def closeEvent(self, event):\n reply = QMessageBox.question(self, 'Message', 'Quit?', QMessageBox.\n Yes | QMessageBox.No, QMessageBox.Yes)\n if reply == QMessageBox.Yes:\n event.accept()\n else:\n event.ignore()\n\n\nclass BatterReport(QWidget):\n\n def __init__(self):\n super().__init__()\n self.initUI()\n\n def initUI(self):\n self.txt = QTextEdit()\n\n\nif __name__ == '__main__':\n app = QApplication(sys.argv)\n ex = Example()\n sys.exit(app.exec_())\n", "step-5": "import sys\nfrom PyQt5.QtWidgets import *\nfrom PyQt5.QtGui import QIcon, QFont\nfrom PyQt5.QtCore import QCoreApplication\n\nimport pymysql\nimport requests\n\nfrom twisted.internet import reactor, defer\nfrom scrapy.crawler import CrawlerRunner, CrawlerProcess\nfrom scrapy.utils.project import get_project_settings\nfrom spider.jump_300heroes.jump_300heroes.spiders.my_report import JumpReport\nfrom scrapy.settings import Settings\nfrom PyQt5.QtCore import *\nfrom PyQt5.QtGui import *\n\nfrom multiprocessing import Process\n\n\n\n\ndef db_handle():\n\n con = pymysql.connect(\n host='localhost',\n user='web',\n passwd='web',\n charset='utf8',\n database='heroes'\n )\n return con\n\nclass Example(QWidget):\n\n class A(QWidget):\n\n def __init__(self):\n super().__init__()\n\n self.initUI()\n\n def initUI(self):\n self.setGeometry(300, 300, 300, 220)\n self.setWindowTitle('Icon')\n self.setWindowIcon(QIcon('web.png'))\n\n self.show()\n\n def __init__(self):\n super().__init__()\n\n self.initUI()\n\n def initUI(self):\n\n #QToolTip.setFont(QFont('SanSerif', 10))\n\n #self.setToolTip('This is a <b>QWidget</b> widget')\n\n #textEdit = QTextEdit()\n #self.setCentralWidget(textEdit)\n\n self.qle = QLineEdit(\"蔽月八云\")\n self.user = self.qle.text()\n self.para = \"user={}\".format(self.user)\n print(self.user, '1')\n btn = QPushButton('查询', self)\n #btn.setToolTip('This is a <b>QPushButton</b> widget')\n btn.resize(btn.sizeHint())\n btn.clicked.connect(self.search)\n\n self.txt = QTextEdit()\n #self.txt.textChanged.connect(self.adjustSize)\n\n self.battle = QTextEdit()\n\n self.player_status = QTextEdit()\n\n self.create_table()\n\n\n\n # 名称不能用Quit、Exit,用了就无法显示,原因不明\n exitAction = QAction('Exit', self)\n exitAction.setShortcut('Ctrl+Q')\n exitAction.setStatusTip('application')\n exitAction.triggered.connect(qApp.quit)\n\n #self.statusBar()\n\n #menubar = QMainWindow.menuBar()\n\n # Mac OS的状态栏显示不一样\n #menubar.setNativeMenuBar(False)\n\n #fileMenu = menubar.addMenu('&File')\n #fileMenu.addAction(exitAction)\n\n #toolbar = self.addToolBar('Exit')\n #toolbar.addAction(exitAction)\n\n grid = QGridLayout()\n grid.setSpacing(10)\n\n grid.addWidget(self.qle, 1, 0)\n grid.addWidget(btn, 2, 0)\n grid.addWidget(self.txt, 3, 0)\n grid.addWidget(self.battle, 1, 1, 3, 1)\n grid.addWidget(self.player_status, 4, 0, 2, 2)\n grid.addWidget(self.battle_table, 6, 0, 2, 2)\n\n self.setLayout(grid)\n\n self.setGeometry(600, 600, 800, 600)\n self.center()\n self.setWindowTitle(\"战绩查询\")\n\n self.show()\n\n def create_table(self):\n # 设置表\n self.battle_table = QTableWidget()\n # 表列数,行数在下方读取数据时,根据数据量建立\n self.battle_table.setColumnCount(8)\n # 设置表头\n self.battle_table.setHorizontalHeaderLabels(\n ['match_id', 'head', 'date', 'time', 'kill_count', 'death', 'support', 'score'])\n # 隔行变色\n self.battle_table.setAlternatingRowColors(True)\n # 整行选中\n self.battle_table.setSelectionBehavior(QAbstractItemView.SelectRows)\n # 将列调整到跟内容大小相匹配\n # self.battle_table.resizeColumnsToContents()\n # #将行大小调整到跟内容的大小相匹配\n self.battle_table.resizeRowsToContents()\n # 点击事件\n self.battle_table.doubleClicked.connect(self.on_click)\n\n @pyqtSlot()\n def on_click(self):\n currentQTableWidgetItem = self.battle_table.selectedItems()[0]\n # 点击的行包含的比赛id\n #match_id = self.battle_table.item(currentQTableWidgetItem.row(), 0).text()\n match_id = currentQTableWidgetItem.text()\n print(match_id)\n self.showDialog(match_id)\n\n def showDialog(self, match_id):\n\n data = requests.get('http://300report.jumpw.com/api/getmatch?id={}'.format(match_id))\n a = self.A()\n\n ## 启动爬虫,获取该场比赛所有人的数据\n #runner = CrawlerRunner(get_project_settings())\n #runner.crawl('JumpReport')\n #d = runner.join()\n #d.addBoth(lambda _: reactor.stop())\n #reactor.run() # 阻塞运行爬虫\n #\n #text, ok = QInputDialog.getText(self, 'Input Dialog',\n # 'Enter your name:')\n\n\n\n def searchd(self):\n if __name__ == '__main__':\n #print(user, '2')\n p = Process(target=self.a)\n p.start()\n p.join()\n\n def search(self):\n print(self.user)\n print(__name__)\n #print(user, '3')\n\n\n #process = CrawlerProcess(get_project_settings())\n #process.crawl('JumpReport')\n #process.start()\n #process.stop()\n #process.put()\n # 脚本执行爬虫代码\n runner = CrawlerRunner(get_project_settings())\n\n #def search(runner, keyword):\n # return runner.crawl(JumpReport, keyword)\n\n #runner = CrawlerProcess()\n #dfs = set()\n print('a')\n runner.crawl('JumpReport', user=self.user)\n print(self.user)\n d = runner.join()\n #dfs.add(d)\n #defer.DeferredList(dfs).addBoth(lambda _: reactor.stop())\n d.addBoth(lambda _: reactor.stop())\n #search(runner, \"abcd\")\n #search(runner, \"beat\")\n #runner.start()\n reactor.run() # 阻塞运行爬虫\n\n print(\"complete\")\n\n\n # runner = CrawlerRunner(get_project_settings())\n # dfs = set()\n # for domain in range(2):\n # d = runner.crawl('JumpReport')\n # dfs.add(d)\n #\n # defer.DeferredList(dfs).addBoth(lambda _: reactor.stop())\n # reactor.run() # the script will block here until all crawling jobs are finished\n\n # runner = CrawlerRunner(get_project_settings())\n #\n # @defer.inlineCallbacks\n # def crawl():\n # for domain in range(2):\n # yield runner.crawl('JumpReport')\n # reactor.stop()\n #\n # crawl()\n # reactor.run() # the script will block here until the last crawl call is finished\n\n # settings = Settings({'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'})\n # runner = CrawlerRunner(settings)\n # \n # d = runner.crawl(JumpReport)\n # d.addBoth(lambda _: reactor.stop())\n # reactor.run() # the script will block here until the crawling is finished\n\n\n # runner = CrawlerProcess(get_project_settings())\n # runner.crawl(JumpReport)\n # runner.start()\n\n name = self.qle.text()\n db = db_handle()\n with db as con:\n sql = \"select * from player where name = '{}' order by update_time\".format(name)\n con.execute(sql)\n player = con.fetchone()\n if player:\n id, name, win, match_count, strength, level, update_time, rank = player\n text = \"角色名: {}\\n胜场: {}\\n总场数: {}\\n团分: {}\\n团分排行: {}\\n等级: {}\\n更新时间: {}\".format(\n name, win, match_count, strength, rank, level, update_time)\n \n self.txt.setText(text)\n \n sql = \"select * from player_data where name = '{}' order by date\".format(name)\n con.execute(sql)\n player_data = con.fetchall()\n a = \"\"\n for data in player_data:\n a += str(data)\n a += \"\\n\"\n self.battle.setText(str(a))\n\n sql = \"select * from game_data order by match_id desc\"\n con.execute(sql)\n game_data = con.fetchall()\n a = \"\"\n l = 0\n self.battle_table.setRowCount(len(game_data))\n for data in game_data:\n a += str(data[1:])\n print(type(data))\n\n for i in range(self.battle_table.columnCount()):\n\n item = QTableWidgetItem(str(data[i + 1]))\n # 设置填入数据的排列位置(左右居中| 上下居中)\n item.setTextAlignment(Qt.AlignHCenter | Qt.AlignVCenter)\n self.battle_table.setItem(l, i, item)\n\n a += \"\\n\"\n self.player_status.setText(str(a))\n l += 1\n #for i in range(len(list(a))):\n # self.battle_table.setLayout(str(a))\n\n def center(self):\n\n qr = self.frameGeometry()\n cp = QDesktopWidget().availableGeometry().center()\n qr.moveCenter(cp)\n self.move(qr.topLeft())\n\n def closeEvent(self, event):\n\n reply = QMessageBox.question(self, 'Message', \"Quit?\", QMessageBox.Yes | QMessageBox.No, QMessageBox.Yes)\n\n if reply == QMessageBox.Yes:\n event.accept()\n else:\n event.ignore()\n\n\nclass BatterReport(QWidget):\n\n def __init__(self):\n super().__init__()\n\n self.initUI()\n\n def initUI(self):\n self.txt = QTextEdit()\n\n\nif __name__ == '__main__':\n\n app = QApplication(sys.argv)\n\n ex = Example()\n\n sys.exit(app.exec_())\n", "step-ids": [ 7, 8, 11, 16, 17 ] }
[ 7, 8, 11, 16, 17 ]
from threading import Lock from typing import Callable, Any from remote.domain.commandCallback import CommandCallback from remote.domain.commandStatus import CommandStatus from remote.service.remoteService import RemoteService from ui.domain.subroutine.iSubroutineRunner import ISubroutineRunner class RemoteSubroutineRunner(ISubroutineRunner): def __init__(self, remote_service: RemoteService) -> None: self._remote_service = remote_service self._callback: CommandCallback = None self._busy = False self._busy_lock = Lock() def execute_charge_subroutine(self, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_charge_subroutine, callback) def execute_go_home_subroutine(self, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_go_home_subroutine, callback) def execute_read_qr_subroutine(self, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_read_qr_subroutine, callback) def execute_grab_subroutine(self, target: str, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_grab_subroutine, callback, target=target) def execute_drop_subroutine(self, target: str, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_drop_subroutine, callback, target=target) def execute_switch_light_subroutine(self, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_switch_light_subroutine, callback) def execute_directional_movement(self, direction: str, speed: str, distance: float, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_directional_movement, callback, direction=direction, speed=speed, distance=distance) def execute_rotational_movement(self, angle: float, callback: CommandCallback) -> None: """ :raises BlockingIOError: command already running """ self._start_command(self._remote_service.execute_rotational_movement, callback, angle=angle) def execute_activate_magnet(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_activate_magnet, callback) def execute_deactivate_magnet(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_deactivate_magnet, callback) def execute_discharge_magnet(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_discharge_magnet, callback) def execute_update_directions_subroutine(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_update_directions, callback) def execute_championship_subroutine(self, callback: CommandCallback): self._start_command(self._remote_service.execute_championship, callback) def execute_look_down(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_look_down, callback) def execute_look_ahead(self, callback: CommandCallback) -> None: self._start_command(self._remote_service.execute_look_ahead, callback) def _command_done(self, status: CommandStatus) -> None: with self._busy_lock: self._busy = False self._callback(status) def _start_command(self, function: Callable[[Any], None], callback: CommandCallback, **kwargs) -> None: """ :raises BlockingIOError: command already running """ with self._busy_lock: if self._busy: raise BlockingIOError() self._busy = True self._callback = callback kwargs["callback"] = self._command_done function(**kwargs)
normal
{ "blob_id": "75270fb4ed059f134b47b8937717cb7fe05d9499", "index": 8833, "step-1": "<mask token>\n\n\nclass RemoteSubroutineRunner(ISubroutineRunner):\n <mask token>\n\n def execute_charge_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_charge_subroutine,\n callback)\n\n def execute_go_home_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_go_home_subroutine,\n callback)\n\n def execute_read_qr_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_read_qr_subroutine,\n callback)\n\n def execute_grab_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_grab_subroutine,\n callback, target=target)\n\n def execute_drop_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_drop_subroutine,\n callback, target=target)\n <mask token>\n\n def execute_directional_movement(self, direction: str, speed: str,\n distance: float, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_directional_movement, callback, direction=direction,\n speed=speed, distance=distance)\n\n def execute_rotational_movement(self, angle: float, callback:\n CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_rotational_movement, callback, angle=angle)\n\n def execute_activate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_activate_magnet,\n callback)\n\n def execute_deactivate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_deactivate_magnet,\n callback)\n <mask token>\n\n def execute_update_directions_subroutine(self, callback: CommandCallback\n ) ->None:\n self._start_command(self._remote_service.execute_update_directions,\n callback)\n <mask token>\n\n def execute_look_down(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_down, callback)\n <mask token>\n\n def _command_done(self, status: CommandStatus) ->None:\n with self._busy_lock:\n self._busy = False\n self._callback(status)\n\n def _start_command(self, function: Callable[[Any], None], callback:\n CommandCallback, **kwargs) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n with self._busy_lock:\n if self._busy:\n raise BlockingIOError()\n self._busy = True\n self._callback = callback\n kwargs['callback'] = self._command_done\n function(**kwargs)\n", "step-2": "<mask token>\n\n\nclass RemoteSubroutineRunner(ISubroutineRunner):\n <mask token>\n\n def execute_charge_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_charge_subroutine,\n callback)\n\n def execute_go_home_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_go_home_subroutine,\n callback)\n\n def execute_read_qr_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_read_qr_subroutine,\n callback)\n\n def execute_grab_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_grab_subroutine,\n callback, target=target)\n\n def execute_drop_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_drop_subroutine,\n callback, target=target)\n <mask token>\n\n def execute_directional_movement(self, direction: str, speed: str,\n distance: float, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_directional_movement, callback, direction=direction,\n speed=speed, distance=distance)\n\n def execute_rotational_movement(self, angle: float, callback:\n CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_rotational_movement, callback, angle=angle)\n\n def execute_activate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_activate_magnet,\n callback)\n\n def execute_deactivate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_deactivate_magnet,\n callback)\n <mask token>\n\n def execute_update_directions_subroutine(self, callback: CommandCallback\n ) ->None:\n self._start_command(self._remote_service.execute_update_directions,\n callback)\n\n def execute_championship_subroutine(self, callback: CommandCallback):\n self._start_command(self._remote_service.execute_championship, callback\n )\n\n def execute_look_down(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_down, callback)\n <mask token>\n\n def _command_done(self, status: CommandStatus) ->None:\n with self._busy_lock:\n self._busy = False\n self._callback(status)\n\n def _start_command(self, function: Callable[[Any], None], callback:\n CommandCallback, **kwargs) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n with self._busy_lock:\n if self._busy:\n raise BlockingIOError()\n self._busy = True\n self._callback = callback\n kwargs['callback'] = self._command_done\n function(**kwargs)\n", "step-3": "<mask token>\n\n\nclass RemoteSubroutineRunner(ISubroutineRunner):\n <mask token>\n\n def execute_charge_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_charge_subroutine,\n callback)\n\n def execute_go_home_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_go_home_subroutine,\n callback)\n\n def execute_read_qr_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_read_qr_subroutine,\n callback)\n\n def execute_grab_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_grab_subroutine,\n callback, target=target)\n\n def execute_drop_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_drop_subroutine,\n callback, target=target)\n <mask token>\n\n def execute_directional_movement(self, direction: str, speed: str,\n distance: float, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_directional_movement, callback, direction=direction,\n speed=speed, distance=distance)\n\n def execute_rotational_movement(self, angle: float, callback:\n CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_rotational_movement, callback, angle=angle)\n\n def execute_activate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_activate_magnet,\n callback)\n\n def execute_deactivate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_deactivate_magnet,\n callback)\n\n def execute_discharge_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_discharge_magnet,\n callback)\n\n def execute_update_directions_subroutine(self, callback: CommandCallback\n ) ->None:\n self._start_command(self._remote_service.execute_update_directions,\n callback)\n\n def execute_championship_subroutine(self, callback: CommandCallback):\n self._start_command(self._remote_service.execute_championship, callback\n )\n\n def execute_look_down(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_down, callback)\n\n def execute_look_ahead(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_ahead, callback)\n\n def _command_done(self, status: CommandStatus) ->None:\n with self._busy_lock:\n self._busy = False\n self._callback(status)\n\n def _start_command(self, function: Callable[[Any], None], callback:\n CommandCallback, **kwargs) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n with self._busy_lock:\n if self._busy:\n raise BlockingIOError()\n self._busy = True\n self._callback = callback\n kwargs['callback'] = self._command_done\n function(**kwargs)\n", "step-4": "<mask token>\n\n\nclass RemoteSubroutineRunner(ISubroutineRunner):\n\n def __init__(self, remote_service: RemoteService) ->None:\n self._remote_service = remote_service\n self._callback: CommandCallback = None\n self._busy = False\n self._busy_lock = Lock()\n\n def execute_charge_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_charge_subroutine,\n callback)\n\n def execute_go_home_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_go_home_subroutine,\n callback)\n\n def execute_read_qr_subroutine(self, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_read_qr_subroutine,\n callback)\n\n def execute_grab_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_grab_subroutine,\n callback, target=target)\n\n def execute_drop_subroutine(self, target: str, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_drop_subroutine,\n callback, target=target)\n\n def execute_switch_light_subroutine(self, callback: CommandCallback\n ) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_switch_light_subroutine, callback)\n\n def execute_directional_movement(self, direction: str, speed: str,\n distance: float, callback: CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_directional_movement, callback, direction=direction,\n speed=speed, distance=distance)\n\n def execute_rotational_movement(self, angle: float, callback:\n CommandCallback) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.\n execute_rotational_movement, callback, angle=angle)\n\n def execute_activate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_activate_magnet,\n callback)\n\n def execute_deactivate_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_deactivate_magnet,\n callback)\n\n def execute_discharge_magnet(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_discharge_magnet,\n callback)\n\n def execute_update_directions_subroutine(self, callback: CommandCallback\n ) ->None:\n self._start_command(self._remote_service.execute_update_directions,\n callback)\n\n def execute_championship_subroutine(self, callback: CommandCallback):\n self._start_command(self._remote_service.execute_championship, callback\n )\n\n def execute_look_down(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_down, callback)\n\n def execute_look_ahead(self, callback: CommandCallback) ->None:\n self._start_command(self._remote_service.execute_look_ahead, callback)\n\n def _command_done(self, status: CommandStatus) ->None:\n with self._busy_lock:\n self._busy = False\n self._callback(status)\n\n def _start_command(self, function: Callable[[Any], None], callback:\n CommandCallback, **kwargs) ->None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n with self._busy_lock:\n if self._busy:\n raise BlockingIOError()\n self._busy = True\n self._callback = callback\n kwargs['callback'] = self._command_done\n function(**kwargs)\n", "step-5": "from threading import Lock\nfrom typing import Callable, Any\n\nfrom remote.domain.commandCallback import CommandCallback\nfrom remote.domain.commandStatus import CommandStatus\nfrom remote.service.remoteService import RemoteService\nfrom ui.domain.subroutine.iSubroutineRunner import ISubroutineRunner\n\n\nclass RemoteSubroutineRunner(ISubroutineRunner):\n def __init__(self, remote_service: RemoteService) -> None:\n self._remote_service = remote_service\n self._callback: CommandCallback = None\n self._busy = False\n self._busy_lock = Lock()\n\n def execute_charge_subroutine(self, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_charge_subroutine, callback)\n\n def execute_go_home_subroutine(self, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_go_home_subroutine, callback)\n\n def execute_read_qr_subroutine(self, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_read_qr_subroutine, callback)\n\n def execute_grab_subroutine(self, target: str, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_grab_subroutine, callback, target=target)\n\n def execute_drop_subroutine(self, target: str, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_drop_subroutine, callback, target=target)\n\n def execute_switch_light_subroutine(self, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_switch_light_subroutine, callback)\n\n def execute_directional_movement(self, direction: str, speed: str, distance: float,\n callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_directional_movement, callback,\n direction=direction, speed=speed, distance=distance)\n\n def execute_rotational_movement(self, angle: float, callback: CommandCallback) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n self._start_command(self._remote_service.execute_rotational_movement, callback, angle=angle)\n\n def execute_activate_magnet(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_activate_magnet, callback)\n\n def execute_deactivate_magnet(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_deactivate_magnet, callback)\n\n def execute_discharge_magnet(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_discharge_magnet, callback)\n\n def execute_update_directions_subroutine(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_update_directions, callback)\n\n def execute_championship_subroutine(self, callback: CommandCallback):\n self._start_command(self._remote_service.execute_championship, callback)\n\n def execute_look_down(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_look_down, callback)\n\n def execute_look_ahead(self, callback: CommandCallback) -> None:\n self._start_command(self._remote_service.execute_look_ahead, callback)\n\n def _command_done(self, status: CommandStatus) -> None:\n with self._busy_lock:\n self._busy = False\n self._callback(status)\n\n def _start_command(self, function: Callable[[Any], None], callback: CommandCallback, **kwargs) -> None:\n \"\"\"\n\n :raises BlockingIOError: command already running\n \"\"\"\n with self._busy_lock:\n if self._busy:\n raise BlockingIOError()\n self._busy = True\n self._callback = callback\n kwargs[\"callback\"] = self._command_done\n function(**kwargs)\n", "step-ids": [ 14, 15, 17, 19, 21 ] }
[ 14, 15, 17, 19, 21 ]
from HiddenLayer import HiddenLayer from Vector import Vector import IO import Loss import Utils import Activation import Backpropagation import Rate # As a test, let's simulate the OR-gate with a single perceptron """ training = [] training.append(Vector(2, arr=[1, 1])) training.append(Vector(2, arr=[1, 0])) training.append(Vector(2, arr=[0, 1])) training.append(Vector(2, arr=[0, 0])) labels = Vector(4, arr=[1, 1, 1, 0]) from Vector left_true= Vector(2, arr=[1, 0]) both_false = Vector(2, arr=[0, 0]) print(tron.predict(both_true)) print(tron.predict(right_true)) print(tron.predict(left_true)) print(tron.predict(both_false)) """ # Testing the reading of data """ images = Data.read_images('test') labels = Data.read_labels('test') UI.draw_image(images[1234], "testi") print(labels[1234]) """ # Vector multiplication test """ print(Vector(4, arr=[1, 2, 3, 4]) * Vector(4, arr=[1, 2, 2, 2])) """ # Neuron output test """ n = Neuron(Utils.rand_array(4), Activation.sigmoid, Activation.sigmoid_d, 3) x = Vector(4, arr=Utils.rand_array(4)) print(n) print(x) print(n.output(x)) """ # rand_array and normalization test """ arr = Utils.rand_array(10, -5, 15) print(arr) print(Utils.normalize(arr, -5, 15)) """ # Testing some hidden layer basic functionality and saving/loading """ images = IO.read_images('test') labels = IO.read_labels('test') weights = [Utils.rand_array(784, -1, 1) for _ in range(10)] hl_a = HiddenLayer(10, 784, weights, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1) #IO.save_layer(hl_a, "test") hl_b = IO.load_layer("test") for i in range(9): img = Vector(Utils.normalize(Utils.flatten_2d(images[i]), 0, 255)) o1 = hl_a.generate_output(img) o2 = hl_b.generate_output(img) #print("Picture " + str(i + 1) + ": " + str(o1) + ", " + str(o2) + ", correct answer is " + str(labels[i])) print(o1) print(o2) """ # Array flattening testing """ testarr = [[1, 2, 7, 8], [3, 4, 9, 10], [5, 6, 11, 12]] testarr = Utils.flatten_2d(testarr) print(testarr) testarr = Utils.deflatten_2d(testarr, 4, 3) print(testarr) """ # Let's test multi-layer nets """ images = IO.read_images('test') labels = IO.read_labels('test') img_test = images[:20] lab_test = labels[:20] weights_a = [Utils.rand_array(784, 0, 1) for _ in range(10)] weights_b = [Utils.rand_array(10, 0, 1) for _ in range(10)] hl_a = HiddenLayer(10, 784, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1) hl_b = HiddenLayer(10, 10, weights_b, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1) LEARNING_RATE = 0.5 for (i, l) in zip(images, labels): img = Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255)) lab = Utils.onehot_label_arr(l) o_a = hl_a.generate_output(img) o_b = hl_b.generate_output(o_a) grads = Backpropagation.output_layer_grads(hl_b, o_b, lab, hl_a, LEARNING_RATE) #grad_b = #print("Picture " + str(i + 1) + ": " + str(o1) + ", " + str(o2) + ", correct answer is " + str(labels[i])) #print(o_a) #print(o_b) #print(lab) #print() #print("----") for n in hl_b.neurons: print(n.weights) """ # Let's try how well a single one-layer 10-neuron net performs! # Read images and labels """ images = IO.read_images('training') labels = IO.read_labels('training') test_images = IO.read_images('test') test_labels = IO.read_labels('test') print("Images & labels read!") # Preprocess images and labels images_flat = [] labels_oh = [] test_images_flat = [] for (i, l) in zip(images, labels): images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255))) labels_oh.append(Utils.onehot_label_arr(l)) for i in test_images: test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255))) print("Images & labels processed!") # Initialize weights and layer #weights_a = [Utils.rand_array(784, 0, 1) for _ in range(10)] weights_a = [[0] * 784] * 10 hl_a = HiddenLayer(10, 784, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1) LEARNING_RATE = 0.05 iter = 1eturn super().setUp() prev_correct = 0 #old_weights = weights_a while True: print("Iteration: " + str(iter)) j = 1 for (img, lab) in zip(images_flat, labels_oh): o_a = hl_a.generate_output(img) grads = Backpropagation.output_layer_backpropagate(hl_a, o_a, lab, img, LEARNING_RATE) if j % 1000 == 0: print(" " + str(j)) j += 1 right_amount = 0 for (img, lab) in zip(test_images_flat, test_labels): o_a = hl_a.generate_output(img) pred = Utils.make_prediction(o_a) if pred == lab: right_amount += 1 print("Correct predictions: " + str(right_amount)) if (iter > 10): break prev_correct = right_amount iter = iter + 1 """ #IO.save_layer(hl_a, "test1_3") # Visualize weights! """ hl_a = IO.load_layer("test1_3") i = 0 for n in hl_a.neurons: weights = n.weights weights = Utils.fit_arr(weights, 0, 255) #print(weights) IO.save_image(Utils.deflatten_2d(weights, 28, 28), "w" + str(i)) i += 1 """ # Final boss: a 32-16-10 multi-layer net! images = IO.read_images('training') labels = IO.read_labels('training') test_images = IO.read_images('test') test_labels = IO.read_labels('test') print("Images & labels read!") # Preprocess images and labels images_flat = [] labels_oh = [] test_images_flat = [] for (i, l) in zip(images, labels): images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1))) labels_oh.append(Utils.onehot_label_arr(l)) for i in test_images: test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1))) print("Images & labels processed!") # Don't change these two IMAGE_INPUT_SIZE = 784 OUTPUT_LAYER_SIZE = 10 # These define how many neurons in layers A & B LAYER_A_SIZE = 32 LAYER_B_SIZE = 16 # Initialize weights and layer weights_a = [Utils.rand_array(IMAGE_INPUT_SIZE, -1, 1) for _ in range(LAYER_A_SIZE)] weights_b = [Utils.rand_array(LAYER_A_SIZE, -1, 1) for _ in range(LAYER_B_SIZE)] weights_op = [Utils.rand_array(LAYER_B_SIZE, -1, 1) for _ in range(OUTPUT_LAYER_SIZE)] hl_a = HiddenLayer(LAYER_A_SIZE, IMAGE_INPUT_SIZE, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.mean_quadratic_d, 0) hl_b = HiddenLayer(LAYER_B_SIZE, LAYER_A_SIZE, weights_b, Activation.sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.mean_quadratic_d, 0) opl = HiddenLayer(OUTPUT_LAYER_SIZE, LAYER_B_SIZE, weights_op, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0) # ---- Change these if you want to play around with the program ---- # These decide when the training stops ITERATION_CAP = 20 # after 20 iterations or ACCURACY_CAP = 6500 # at 65% accuracy # These adjust the learning process INITIAL_LEARNING_RATE = 0.05 LEARNING_DECAY_SCALAR = 0.0025 BATCH_SIZE = 100 # ---------------- learning_rate = INITIAL_LEARNING_RATE iter = 1 prev_correct = 0 while True: print("Iteration: " + str(iter)) learning_rate = Rate.decaying(learning_rate, iter, LEARNING_DECAY_SCALAR) print("Learning rate: " + str(learning_rate)) j = 1 batchtracker = 0 img_sum = Vector([0] * IMAGE_INPUT_SIZE) lab_sum = Vector([0] * OUTPUT_LAYER_SIZE) oa_sum = Vector([0] * LAYER_A_SIZE) ob_sum = Vector([0] * LAYER_B_SIZE) op_sum = Vector([0] * OUTPUT_LAYER_SIZE) for (img, lab) in zip(images_flat, labels_oh): o_a = hl_a.generate_output(img) o_b = hl_b.generate_output(o_a['op']) output = opl.generate_output(o_b['op']) img_sum = img_sum + img lab_sum = lab_sum + Vector(lab) oa_sum = oa_sum + o_a['op'] ob_sum = ob_sum + o_b['op'] op_sum = op_sum + output['op'] batchtracker = batchtracker + 1 if batchtracker == BATCH_SIZE: img_sum = img_sum * (1 / BATCH_SIZE) lab_sum = lab_sum * (1 / BATCH_SIZE) oa_sum = oa_sum * (1 / BATCH_SIZE) ob_sum = ob_sum * (1 / BATCH_SIZE) op_sum = op_sum * (1 / BATCH_SIZE) #print(opl.loss(lab_sum, op_sum)) opl_backprop = Backpropagation.output_layer_backpropagate(opl, op_sum, lab, ob_sum, learning_rate) hl_b_backprop = Backpropagation.hidden_layer_backpropagate(hl_b, oa_sum, ob_sum, opl_backprop, learning_rate) hl_a_backprop = Backpropagation.hidden_layer_backpropagate(hl_a, img, oa_sum, hl_b_backprop, learning_rate) img_sum = Vector([0] * IMAGE_INPUT_SIZE) lab_sum = Vector([0] * OUTPUT_LAYER_SIZE) oa_sum = Vector([0] * LAYER_A_SIZE) ob_sum = Vector([0] * LAYER_B_SIZE) op_sum = Vector([0] * OUTPUT_LAYER_SIZE) batchtracker = 0 if j % 10000 == 0: print(" " + str(j)) j += 1 print("Iteration " + str(iter) + " done! Now testing accuracy...") right_amount = 0 for (img_t, lab_t) in zip(test_images_flat, test_labels): oa = hl_a.generate_output(img_t)['op'] ob = hl_b.generate_output(oa)['op'] op = opl.generate_output(ob)['op'] pred = Utils.make_prediction(op) if pred == lab_t: right_amount += 1 print("Correct predictions: " + str(right_amount)) if (iter >= ITERATION_CAP): break if (prev_correct >= ACCURACY_CAP): break #if (prev_correct > right_amount): # break prev_correct = right_amount iter = iter + 1 IO.save_layer(hl_a, "test_layer_a") IO.save_layer(hl_b, "test_layer_b") IO.save_layer(opl, "test_layer_c")
normal
{ "blob_id": "1f86fe72c90c8457715a2f400dae8d355a9a97cf", "index": 8577, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('Images & labels read!')\n<mask token>\nfor i, l in zip(images, labels):\n images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\n labels_oh.append(Utils.onehot_label_arr(l))\nfor i in test_images:\n test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\nprint('Images & labels processed!')\n<mask token>\nwhile True:\n print('Iteration: ' + str(iter))\n learning_rate = Rate.decaying(learning_rate, iter, LEARNING_DECAY_SCALAR)\n print('Learning rate: ' + str(learning_rate))\n j = 1\n batchtracker = 0\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n for img, lab in zip(images_flat, labels_oh):\n o_a = hl_a.generate_output(img)\n o_b = hl_b.generate_output(o_a['op'])\n output = opl.generate_output(o_b['op'])\n img_sum = img_sum + img\n lab_sum = lab_sum + Vector(lab)\n oa_sum = oa_sum + o_a['op']\n ob_sum = ob_sum + o_b['op']\n op_sum = op_sum + output['op']\n batchtracker = batchtracker + 1\n if batchtracker == BATCH_SIZE:\n img_sum = img_sum * (1 / BATCH_SIZE)\n lab_sum = lab_sum * (1 / BATCH_SIZE)\n oa_sum = oa_sum * (1 / BATCH_SIZE)\n ob_sum = ob_sum * (1 / BATCH_SIZE)\n op_sum = op_sum * (1 / BATCH_SIZE)\n opl_backprop = Backpropagation.output_layer_backpropagate(opl,\n op_sum, lab, ob_sum, learning_rate)\n hl_b_backprop = Backpropagation.hidden_layer_backpropagate(hl_b,\n oa_sum, ob_sum, opl_backprop, learning_rate)\n hl_a_backprop = Backpropagation.hidden_layer_backpropagate(hl_a,\n img, oa_sum, hl_b_backprop, learning_rate)\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n batchtracker = 0\n if j % 10000 == 0:\n print(' ' + str(j))\n j += 1\n print('Iteration ' + str(iter) + ' done! Now testing accuracy...')\n right_amount = 0\n for img_t, lab_t in zip(test_images_flat, test_labels):\n oa = hl_a.generate_output(img_t)['op']\n ob = hl_b.generate_output(oa)['op']\n op = opl.generate_output(ob)['op']\n pred = Utils.make_prediction(op)\n if pred == lab_t:\n right_amount += 1\n print('Correct predictions: ' + str(right_amount))\n if iter >= ITERATION_CAP:\n break\n if prev_correct >= ACCURACY_CAP:\n break\n prev_correct = right_amount\n iter = iter + 1\nIO.save_layer(hl_a, 'test_layer_a')\nIO.save_layer(hl_b, 'test_layer_b')\nIO.save_layer(opl, 'test_layer_c')\n", "step-3": "<mask token>\nimages = IO.read_images('training')\nlabels = IO.read_labels('training')\ntest_images = IO.read_images('test')\ntest_labels = IO.read_labels('test')\nprint('Images & labels read!')\nimages_flat = []\nlabels_oh = []\ntest_images_flat = []\nfor i, l in zip(images, labels):\n images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\n labels_oh.append(Utils.onehot_label_arr(l))\nfor i in test_images:\n test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\nprint('Images & labels processed!')\nIMAGE_INPUT_SIZE = 784\nOUTPUT_LAYER_SIZE = 10\nLAYER_A_SIZE = 32\nLAYER_B_SIZE = 16\nweights_a = [Utils.rand_array(IMAGE_INPUT_SIZE, -1, 1) for _ in range(\n LAYER_A_SIZE)]\nweights_b = [Utils.rand_array(LAYER_A_SIZE, -1, 1) for _ in range(LAYER_B_SIZE)\n ]\nweights_op = [Utils.rand_array(LAYER_B_SIZE, -1, 1) for _ in range(\n OUTPUT_LAYER_SIZE)]\nhl_a = HiddenLayer(LAYER_A_SIZE, IMAGE_INPUT_SIZE, weights_a, Activation.\n sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.\n mean_quadratic_d, 0)\nhl_b = HiddenLayer(LAYER_B_SIZE, LAYER_A_SIZE, weights_b, Activation.\n sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.\n mean_quadratic_d, 0)\nopl = HiddenLayer(OUTPUT_LAYER_SIZE, LAYER_B_SIZE, weights_op, Activation.\n sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0)\nITERATION_CAP = 20\nACCURACY_CAP = 6500\nINITIAL_LEARNING_RATE = 0.05\nLEARNING_DECAY_SCALAR = 0.0025\nBATCH_SIZE = 100\nlearning_rate = INITIAL_LEARNING_RATE\niter = 1\nprev_correct = 0\nwhile True:\n print('Iteration: ' + str(iter))\n learning_rate = Rate.decaying(learning_rate, iter, LEARNING_DECAY_SCALAR)\n print('Learning rate: ' + str(learning_rate))\n j = 1\n batchtracker = 0\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n for img, lab in zip(images_flat, labels_oh):\n o_a = hl_a.generate_output(img)\n o_b = hl_b.generate_output(o_a['op'])\n output = opl.generate_output(o_b['op'])\n img_sum = img_sum + img\n lab_sum = lab_sum + Vector(lab)\n oa_sum = oa_sum + o_a['op']\n ob_sum = ob_sum + o_b['op']\n op_sum = op_sum + output['op']\n batchtracker = batchtracker + 1\n if batchtracker == BATCH_SIZE:\n img_sum = img_sum * (1 / BATCH_SIZE)\n lab_sum = lab_sum * (1 / BATCH_SIZE)\n oa_sum = oa_sum * (1 / BATCH_SIZE)\n ob_sum = ob_sum * (1 / BATCH_SIZE)\n op_sum = op_sum * (1 / BATCH_SIZE)\n opl_backprop = Backpropagation.output_layer_backpropagate(opl,\n op_sum, lab, ob_sum, learning_rate)\n hl_b_backprop = Backpropagation.hidden_layer_backpropagate(hl_b,\n oa_sum, ob_sum, opl_backprop, learning_rate)\n hl_a_backprop = Backpropagation.hidden_layer_backpropagate(hl_a,\n img, oa_sum, hl_b_backprop, learning_rate)\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n batchtracker = 0\n if j % 10000 == 0:\n print(' ' + str(j))\n j += 1\n print('Iteration ' + str(iter) + ' done! Now testing accuracy...')\n right_amount = 0\n for img_t, lab_t in zip(test_images_flat, test_labels):\n oa = hl_a.generate_output(img_t)['op']\n ob = hl_b.generate_output(oa)['op']\n op = opl.generate_output(ob)['op']\n pred = Utils.make_prediction(op)\n if pred == lab_t:\n right_amount += 1\n print('Correct predictions: ' + str(right_amount))\n if iter >= ITERATION_CAP:\n break\n if prev_correct >= ACCURACY_CAP:\n break\n prev_correct = right_amount\n iter = iter + 1\nIO.save_layer(hl_a, 'test_layer_a')\nIO.save_layer(hl_b, 'test_layer_b')\nIO.save_layer(opl, 'test_layer_c')\n", "step-4": "from HiddenLayer import HiddenLayer\nfrom Vector import Vector\nimport IO\nimport Loss\nimport Utils\nimport Activation\nimport Backpropagation\nimport Rate\n<mask token>\nimages = IO.read_images('training')\nlabels = IO.read_labels('training')\ntest_images = IO.read_images('test')\ntest_labels = IO.read_labels('test')\nprint('Images & labels read!')\nimages_flat = []\nlabels_oh = []\ntest_images_flat = []\nfor i, l in zip(images, labels):\n images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\n labels_oh.append(Utils.onehot_label_arr(l))\nfor i in test_images:\n test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\nprint('Images & labels processed!')\nIMAGE_INPUT_SIZE = 784\nOUTPUT_LAYER_SIZE = 10\nLAYER_A_SIZE = 32\nLAYER_B_SIZE = 16\nweights_a = [Utils.rand_array(IMAGE_INPUT_SIZE, -1, 1) for _ in range(\n LAYER_A_SIZE)]\nweights_b = [Utils.rand_array(LAYER_A_SIZE, -1, 1) for _ in range(LAYER_B_SIZE)\n ]\nweights_op = [Utils.rand_array(LAYER_B_SIZE, -1, 1) for _ in range(\n OUTPUT_LAYER_SIZE)]\nhl_a = HiddenLayer(LAYER_A_SIZE, IMAGE_INPUT_SIZE, weights_a, Activation.\n sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.\n mean_quadratic_d, 0)\nhl_b = HiddenLayer(LAYER_B_SIZE, LAYER_A_SIZE, weights_b, Activation.\n sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.\n mean_quadratic_d, 0)\nopl = HiddenLayer(OUTPUT_LAYER_SIZE, LAYER_B_SIZE, weights_op, Activation.\n sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0)\nITERATION_CAP = 20\nACCURACY_CAP = 6500\nINITIAL_LEARNING_RATE = 0.05\nLEARNING_DECAY_SCALAR = 0.0025\nBATCH_SIZE = 100\nlearning_rate = INITIAL_LEARNING_RATE\niter = 1\nprev_correct = 0\nwhile True:\n print('Iteration: ' + str(iter))\n learning_rate = Rate.decaying(learning_rate, iter, LEARNING_DECAY_SCALAR)\n print('Learning rate: ' + str(learning_rate))\n j = 1\n batchtracker = 0\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n for img, lab in zip(images_flat, labels_oh):\n o_a = hl_a.generate_output(img)\n o_b = hl_b.generate_output(o_a['op'])\n output = opl.generate_output(o_b['op'])\n img_sum = img_sum + img\n lab_sum = lab_sum + Vector(lab)\n oa_sum = oa_sum + o_a['op']\n ob_sum = ob_sum + o_b['op']\n op_sum = op_sum + output['op']\n batchtracker = batchtracker + 1\n if batchtracker == BATCH_SIZE:\n img_sum = img_sum * (1 / BATCH_SIZE)\n lab_sum = lab_sum * (1 / BATCH_SIZE)\n oa_sum = oa_sum * (1 / BATCH_SIZE)\n ob_sum = ob_sum * (1 / BATCH_SIZE)\n op_sum = op_sum * (1 / BATCH_SIZE)\n opl_backprop = Backpropagation.output_layer_backpropagate(opl,\n op_sum, lab, ob_sum, learning_rate)\n hl_b_backprop = Backpropagation.hidden_layer_backpropagate(hl_b,\n oa_sum, ob_sum, opl_backprop, learning_rate)\n hl_a_backprop = Backpropagation.hidden_layer_backpropagate(hl_a,\n img, oa_sum, hl_b_backprop, learning_rate)\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n batchtracker = 0\n if j % 10000 == 0:\n print(' ' + str(j))\n j += 1\n print('Iteration ' + str(iter) + ' done! Now testing accuracy...')\n right_amount = 0\n for img_t, lab_t in zip(test_images_flat, test_labels):\n oa = hl_a.generate_output(img_t)['op']\n ob = hl_b.generate_output(oa)['op']\n op = opl.generate_output(ob)['op']\n pred = Utils.make_prediction(op)\n if pred == lab_t:\n right_amount += 1\n print('Correct predictions: ' + str(right_amount))\n if iter >= ITERATION_CAP:\n break\n if prev_correct >= ACCURACY_CAP:\n break\n prev_correct = right_amount\n iter = iter + 1\nIO.save_layer(hl_a, 'test_layer_a')\nIO.save_layer(hl_b, 'test_layer_b')\nIO.save_layer(opl, 'test_layer_c')\n", "step-5": "from HiddenLayer import HiddenLayer\nfrom Vector import Vector\nimport IO\nimport Loss\nimport Utils\nimport Activation\nimport Backpropagation\nimport Rate\n\n\n# As a test, let's simulate the OR-gate with a single perceptron\n\"\"\" training = []\ntraining.append(Vector(2, arr=[1, 1]))\ntraining.append(Vector(2, arr=[1, 0]))\ntraining.append(Vector(2, arr=[0, 1]))\ntraining.append(Vector(2, arr=[0, 0]))\n\nlabels = Vector(4, arr=[1, 1, 1, 0])\nfrom Vector \nleft_true= Vector(2, arr=[1, 0])\nboth_false = Vector(2, arr=[0, 0])\n\nprint(tron.predict(both_true))\nprint(tron.predict(right_true))\nprint(tron.predict(left_true))\nprint(tron.predict(both_false)) \"\"\"\n\n# Testing the reading of data\n\"\"\" images = Data.read_images('test')\nlabels = Data.read_labels('test')\n\nUI.draw_image(images[1234], \"testi\")\nprint(labels[1234]) \"\"\"\n\n# Vector multiplication test\n\"\"\" print(Vector(4, arr=[1, 2, 3, 4]) * Vector(4, arr=[1, 2, 2, 2])) \"\"\"\n\n# Neuron output test\n\"\"\" n = Neuron(Utils.rand_array(4), Activation.sigmoid, Activation.sigmoid_d, 3)\nx = Vector(4, arr=Utils.rand_array(4))\nprint(n)\nprint(x)\nprint(n.output(x)) \"\"\"\n\n# rand_array and normalization test\n\"\"\" arr = Utils.rand_array(10, -5, 15)\nprint(arr)\nprint(Utils.normalize(arr, -5, 15)) \"\"\"\n\n# Testing some hidden layer basic functionality and saving/loading\n\"\"\" images = IO.read_images('test')\nlabels = IO.read_labels('test')\n\nweights = [Utils.rand_array(784, -1, 1) for _ in range(10)]\nhl_a = HiddenLayer(10, 784, weights, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1)\n\n#IO.save_layer(hl_a, \"test\")\nhl_b = IO.load_layer(\"test\")\n\nfor i in range(9):\n img = Vector(Utils.normalize(Utils.flatten_2d(images[i]), 0, 255))\n o1 = hl_a.generate_output(img)\n o2 = hl_b.generate_output(img)\n #print(\"Picture \" + str(i + 1) + \": \" + str(o1) + \", \" + str(o2) + \", correct answer is \" + str(labels[i]))\n print(o1)\n print(o2) \"\"\"\n\n# Array flattening testing\n\"\"\" testarr = [[1, 2, 7, 8], [3, 4, 9, 10], [5, 6, 11, 12]]\ntestarr = Utils.flatten_2d(testarr)\nprint(testarr)\ntestarr = Utils.deflatten_2d(testarr, 4, 3)\nprint(testarr) \"\"\"\n\n# Let's test multi-layer nets\n\"\"\" images = IO.read_images('test')\nlabels = IO.read_labels('test')\nimg_test = images[:20]\nlab_test = labels[:20]\n\nweights_a = [Utils.rand_array(784, 0, 1) for _ in range(10)]\nweights_b = [Utils.rand_array(10, 0, 1) for _ in range(10)]\nhl_a = HiddenLayer(10, 784, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1)\nhl_b = HiddenLayer(10, 10, weights_b, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1)\n\nLEARNING_RATE = 0.5\n\nfor (i, l) in zip(images, labels):\n img = Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255))\n lab = Utils.onehot_label_arr(l)\n o_a = hl_a.generate_output(img)\n o_b = hl_b.generate_output(o_a)\n grads = Backpropagation.output_layer_grads(hl_b, o_b, lab, hl_a, LEARNING_RATE)\n #grad_b = \n #print(\"Picture \" + str(i + 1) + \": \" + str(o1) + \", \" + str(o2) + \", correct answer is \" + str(labels[i]))\n #print(o_a)\n #print(o_b)\n #print(lab)\n #print()\n #print(\"----\")\n\nfor n in hl_b.neurons:\n print(n.weights) \"\"\"\n\n# Let's try how well a single one-layer 10-neuron net performs!\n# Read images and labels\n\"\"\" images = IO.read_images('training')\nlabels = IO.read_labels('training')\ntest_images = IO.read_images('test')\ntest_labels = IO.read_labels('test')\nprint(\"Images & labels read!\")\n\n# Preprocess images and labels\nimages_flat = []\nlabels_oh = []\ntest_images_flat = []\n\nfor (i, l) in zip(images, labels):\n images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255)))\n labels_oh.append(Utils.onehot_label_arr(l))\n\nfor i in test_images:\n test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 255)))\n\nprint(\"Images & labels processed!\")\n\n# Initialize weights and layer\n#weights_a = [Utils.rand_array(784, 0, 1) for _ in range(10)]\nweights_a = [[0] * 784] * 10\nhl_a = HiddenLayer(10, 784, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0.1)\n\nLEARNING_RATE = 0.05\n\niter = 1eturn super().setUp()\nprev_correct = 0\n#old_weights = weights_a\nwhile True:\n print(\"Iteration: \" + str(iter))\n\n j = 1\n for (img, lab) in zip(images_flat, labels_oh):\n o_a = hl_a.generate_output(img)\n grads = Backpropagation.output_layer_backpropagate(hl_a, o_a, lab, img, LEARNING_RATE)\n \n if j % 1000 == 0:\n print(\" \" + str(j))\n j += 1\n\n right_amount = 0\n for (img, lab) in zip(test_images_flat, test_labels):\n o_a = hl_a.generate_output(img)\n pred = Utils.make_prediction(o_a)\n if pred == lab:\n right_amount += 1\n \n print(\"Correct predictions: \" + str(right_amount))\n\n if (iter > 10):\n break\n\n prev_correct = right_amount\n iter = iter + 1 \"\"\"\n\n#IO.save_layer(hl_a, \"test1_3\")\n\n\n\n# Visualize weights!\n\"\"\" hl_a = IO.load_layer(\"test1_3\")\n\ni = 0\nfor n in hl_a.neurons:\n weights = n.weights\n weights = Utils.fit_arr(weights, 0, 255)\n #print(weights)\n IO.save_image(Utils.deflatten_2d(weights, 28, 28), \"w\" + str(i))\n i += 1 \"\"\"\n\n\n\n# Final boss: a 32-16-10 multi-layer net!\nimages = IO.read_images('training')\nlabels = IO.read_labels('training')\ntest_images = IO.read_images('test')\ntest_labels = IO.read_labels('test')\nprint(\"Images & labels read!\")\n\n# Preprocess images and labels\nimages_flat = []\nlabels_oh = []\ntest_images_flat = []\n\nfor (i, l) in zip(images, labels):\n images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\n labels_oh.append(Utils.onehot_label_arr(l))\n\nfor i in test_images:\n test_images_flat.append(Vector(Utils.normalize(Utils.flatten_2d(i), 0, 1)))\n\nprint(\"Images & labels processed!\")\n\n# Don't change these two\nIMAGE_INPUT_SIZE = 784\nOUTPUT_LAYER_SIZE = 10\n\n# These define how many neurons in layers A & B\nLAYER_A_SIZE = 32\nLAYER_B_SIZE = 16\n\n# Initialize weights and layer\nweights_a = [Utils.rand_array(IMAGE_INPUT_SIZE, -1, 1) for _ in range(LAYER_A_SIZE)]\nweights_b = [Utils.rand_array(LAYER_A_SIZE, -1, 1) for _ in range(LAYER_B_SIZE)]\nweights_op = [Utils.rand_array(LAYER_B_SIZE, -1, 1) for _ in range(OUTPUT_LAYER_SIZE)]\n\nhl_a = HiddenLayer(LAYER_A_SIZE, IMAGE_INPUT_SIZE, weights_a, Activation.sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.mean_quadratic_d, 0)\nhl_b = HiddenLayer(LAYER_B_SIZE, LAYER_A_SIZE, weights_b, Activation.sigmoid, Activation.sigmoid_d, Loss.mean_quadratic, Loss.mean_quadratic_d, 0)\nopl = HiddenLayer(OUTPUT_LAYER_SIZE, LAYER_B_SIZE, weights_op, Activation.sigmoid, Activation.sigmoid_d, Loss.quadratic, Loss.quadratic_d, 0)\n\n# ---- Change these if you want to play around with the program ----\n\n# These decide when the training stops\nITERATION_CAP = 20 # after 20 iterations or\nACCURACY_CAP = 6500 # at 65% accuracy\n\n# These adjust the learning process\nINITIAL_LEARNING_RATE = 0.05\nLEARNING_DECAY_SCALAR = 0.0025\nBATCH_SIZE = 100\n\n# ----------------\n\nlearning_rate = INITIAL_LEARNING_RATE\niter = 1\nprev_correct = 0\n\nwhile True:\n print(\"Iteration: \" + str(iter))\n\n learning_rate = Rate.decaying(learning_rate, iter, LEARNING_DECAY_SCALAR)\n\n print(\"Learning rate: \" + str(learning_rate))\n \n j = 1\n batchtracker = 0\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n\n for (img, lab) in zip(images_flat, labels_oh):\n o_a = hl_a.generate_output(img)\n o_b = hl_b.generate_output(o_a['op'])\n output = opl.generate_output(o_b['op'])\n\n img_sum = img_sum + img\n lab_sum = lab_sum + Vector(lab)\n oa_sum = oa_sum + o_a['op']\n ob_sum = ob_sum + o_b['op']\n op_sum = op_sum + output['op']\n\n batchtracker = batchtracker + 1\n\n if batchtracker == BATCH_SIZE:\n img_sum = img_sum * (1 / BATCH_SIZE)\n lab_sum = lab_sum * (1 / BATCH_SIZE)\n oa_sum = oa_sum * (1 / BATCH_SIZE)\n ob_sum = ob_sum * (1 / BATCH_SIZE)\n op_sum = op_sum * (1 / BATCH_SIZE)\n\n #print(opl.loss(lab_sum, op_sum))\n\n opl_backprop = Backpropagation.output_layer_backpropagate(opl, op_sum, lab, ob_sum, learning_rate)\n hl_b_backprop = Backpropagation.hidden_layer_backpropagate(hl_b, oa_sum, ob_sum, opl_backprop, learning_rate)\n hl_a_backprop = Backpropagation.hidden_layer_backpropagate(hl_a, img, oa_sum, hl_b_backprop, learning_rate)\n\n img_sum = Vector([0] * IMAGE_INPUT_SIZE)\n lab_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n oa_sum = Vector([0] * LAYER_A_SIZE)\n ob_sum = Vector([0] * LAYER_B_SIZE)\n op_sum = Vector([0] * OUTPUT_LAYER_SIZE)\n batchtracker = 0\n\n \n if j % 10000 == 0:\n print(\" \" + str(j))\n j += 1\n\n print(\"Iteration \" + str(iter) + \" done! Now testing accuracy...\")\n\n right_amount = 0\n for (img_t, lab_t) in zip(test_images_flat, test_labels):\n oa = hl_a.generate_output(img_t)['op']\n ob = hl_b.generate_output(oa)['op']\n op = opl.generate_output(ob)['op']\n pred = Utils.make_prediction(op)\n if pred == lab_t:\n right_amount += 1\n \n print(\"Correct predictions: \" + str(right_amount))\n\n if (iter >= ITERATION_CAP):\n break\n \n if (prev_correct >= ACCURACY_CAP):\n break\n\n #if (prev_correct > right_amount):\n # break\n\n prev_correct = right_amount\n iter = iter + 1\n\nIO.save_layer(hl_a, \"test_layer_a\")\nIO.save_layer(hl_b, \"test_layer_b\")\nIO.save_layer(opl, \"test_layer_c\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (C) 2014 Thibaut Lapierre <[email protected]>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from shaddock.drivers.docker.api import DockerApi from docker import errors as docker_errors import sys class Container(object): """Instance a defined container This class instance a Docker container depending on its name and model definition. The basics Docker methods are implemented as well as a Shaddock's specific one that return the information of the concerned container. Shaddock keep no tracks of any Container ID and rely on no databases. THe containers are retrieve from their names. """ def __init__(self, svc_cfg, containers_all=None): self.cfg = svc_cfg self.env = dict(self.cfg) # we may want to use func.__code__.co_varnames here to gather all # possible arguments of the docker api and compare them with cfg # and delete the crapy hack of the next 8 lines. args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg', 'cluster', 'images_dir', 'path', 'service_name', 'host'] for arg in args_to_delete: try: del self.env[arg] except KeyError: pass self.env['detach'] = self.cfg.get('detach', True) self.docker_client = None if containers_all is None: docker_api = DockerApi(self.cfg['api_cfg']) self.docker_api = docker_api.connect() self.docker_client = self.docker_api.containers self.info = self._get_info(containers_all) def gather_api_methods(self, func): return func.__code__.co_varnames def create(self): """Returns a Container object""" print('Creating container: {}'.format(self.cfg['name'])) create = self.docker_client.create(**self.env) return create['id'] def start(self): """Returns a Container object""" try: print('Starting container: {}'.format(self.cfg['name'])) start = self.docker_client.run(**self.env) except docker_errors.APIError as error: print(error) print('Container {} is already running'.format(self.cfg['name'])) return self.cfg['name'] return start def stop(self): c = self.info.get('Container') if c is not None: print('Stopping container: {}'.format(self.cfg['name'])) return c.stop() def remove(self): self.stop() c = self.info.get('Container') if c is not None: print('Removing container: {}'.format(self.cfg['name'])) try: c.remove() except docker_errors.NotFound: print('Container {} does not exist'.format(self.cfg['name'])) return True def restart(self): self.docker_client.restart(self.info['Id']) def return_shell(self, cmd): if self.cfg['image'] is not None: # "Fix" in order to not use the stream generator in Python2 c = self.info.get('Container') if sys.version_info > (3, 0): try: ret = c.exec_run(cmd, stderr=True, stdout=True, stream=True, ) for line in ret[1]: print(line.decode('utf-8').rstrip()) except (KeyboardInterrupt, SystemExit): return True else: line = c.exec_run(cmd, stderr=True, stdout=True, stream=False) print(line[1]) def return_logs(self): if self.cfg['image'] is not None: # "Fix" in order to not use the stream generator in Python2 c = self.info.get('Container') if sys.version_info > (3, 0): try: for line in c.logs(stderr=True, stdout=True, timestamps=False, stream=True, ): print(line.decode('utf-8').rstrip()) except (KeyboardInterrupt, SystemExit): return True else: line = c.logs(stderr=True, stdout=True, timestamps=False, stream=False) print(line) def _get_info(self, containers_all=None): info = {} if containers_all is None: containers_all = self.docker_client.list(all=True) try: container = [c for c in containers_all if (c.name in self.cfg['service_name'])][0] api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi') api = api.connect() infos = api.inspect_container(container.id) info['Container'] = container info['Id'] = container.id info['Ip'] = infos['NetworkSettings']['IPAddress'] info['State'] = container.status except IndexError: # Container is not running info = {} return info
normal
{ "blob_id": "c2c1194ed23adda015b23897888d1a4cc11423d5", "index": 5074, "step-1": "<mask token>\n\n\nclass Container(object):\n <mask token>\n\n def __init__(self, svc_cfg, containers_all=None):\n self.cfg = svc_cfg\n self.env = dict(self.cfg)\n args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg',\n 'cluster', 'images_dir', 'path', 'service_name', 'host']\n for arg in args_to_delete:\n try:\n del self.env[arg]\n except KeyError:\n pass\n self.env['detach'] = self.cfg.get('detach', True)\n self.docker_client = None\n if containers_all is None:\n docker_api = DockerApi(self.cfg['api_cfg'])\n self.docker_api = docker_api.connect()\n self.docker_client = self.docker_api.containers\n self.info = self._get_info(containers_all)\n\n def gather_api_methods(self, func):\n return func.__code__.co_varnames\n\n def create(self):\n \"\"\"Returns a Container object\"\"\"\n print('Creating container: {}'.format(self.cfg['name']))\n create = self.docker_client.create(**self.env)\n return create['id']\n <mask token>\n <mask token>\n\n def remove(self):\n self.stop()\n c = self.info.get('Container')\n if c is not None:\n print('Removing container: {}'.format(self.cfg['name']))\n try:\n c.remove()\n except docker_errors.NotFound:\n print('Container {} does not exist'.format(self.cfg['name']))\n return True\n\n def restart(self):\n self.docker_client.restart(self.info['Id'])\n\n def return_shell(self, cmd):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n ret = c.exec_run(cmd, stderr=True, stdout=True, stream=True\n )\n for line in ret[1]:\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.exec_run(cmd, stderr=True, stdout=True, stream=False)\n print(line[1])\n\n def return_logs(self):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n for line in c.logs(stderr=True, stdout=True, timestamps\n =False, stream=True):\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.logs(stderr=True, stdout=True, timestamps=False,\n stream=False)\n print(line)\n\n def _get_info(self, containers_all=None):\n info = {}\n if containers_all is None:\n containers_all = self.docker_client.list(all=True)\n try:\n container = [c for c in containers_all if c.name in self.cfg[\n 'service_name']][0]\n api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi')\n api = api.connect()\n infos = api.inspect_container(container.id)\n info['Container'] = container\n info['Id'] = container.id\n info['Ip'] = infos['NetworkSettings']['IPAddress']\n info['State'] = container.status\n except IndexError:\n info = {}\n return info\n", "step-2": "<mask token>\n\n\nclass Container(object):\n <mask token>\n\n def __init__(self, svc_cfg, containers_all=None):\n self.cfg = svc_cfg\n self.env = dict(self.cfg)\n args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg',\n 'cluster', 'images_dir', 'path', 'service_name', 'host']\n for arg in args_to_delete:\n try:\n del self.env[arg]\n except KeyError:\n pass\n self.env['detach'] = self.cfg.get('detach', True)\n self.docker_client = None\n if containers_all is None:\n docker_api = DockerApi(self.cfg['api_cfg'])\n self.docker_api = docker_api.connect()\n self.docker_client = self.docker_api.containers\n self.info = self._get_info(containers_all)\n\n def gather_api_methods(self, func):\n return func.__code__.co_varnames\n\n def create(self):\n \"\"\"Returns a Container object\"\"\"\n print('Creating container: {}'.format(self.cfg['name']))\n create = self.docker_client.create(**self.env)\n return create['id']\n\n def start(self):\n \"\"\"Returns a Container object\"\"\"\n try:\n print('Starting container: {}'.format(self.cfg['name']))\n start = self.docker_client.run(**self.env)\n except docker_errors.APIError as error:\n print(error)\n print('Container {} is already running'.format(self.cfg['name']))\n return self.cfg['name']\n return start\n <mask token>\n\n def remove(self):\n self.stop()\n c = self.info.get('Container')\n if c is not None:\n print('Removing container: {}'.format(self.cfg['name']))\n try:\n c.remove()\n except docker_errors.NotFound:\n print('Container {} does not exist'.format(self.cfg['name']))\n return True\n\n def restart(self):\n self.docker_client.restart(self.info['Id'])\n\n def return_shell(self, cmd):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n ret = c.exec_run(cmd, stderr=True, stdout=True, stream=True\n )\n for line in ret[1]:\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.exec_run(cmd, stderr=True, stdout=True, stream=False)\n print(line[1])\n\n def return_logs(self):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n for line in c.logs(stderr=True, stdout=True, timestamps\n =False, stream=True):\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.logs(stderr=True, stdout=True, timestamps=False,\n stream=False)\n print(line)\n\n def _get_info(self, containers_all=None):\n info = {}\n if containers_all is None:\n containers_all = self.docker_client.list(all=True)\n try:\n container = [c for c in containers_all if c.name in self.cfg[\n 'service_name']][0]\n api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi')\n api = api.connect()\n infos = api.inspect_container(container.id)\n info['Container'] = container\n info['Id'] = container.id\n info['Ip'] = infos['NetworkSettings']['IPAddress']\n info['State'] = container.status\n except IndexError:\n info = {}\n return info\n", "step-3": "<mask token>\n\n\nclass Container(object):\n \"\"\"Instance a defined container\n\n This class instance a Docker container depending on its\n name and model definition.\n The basics Docker methods are implemented as well as a\n Shaddock's specific one that return the information of\n the concerned container.\n\n Shaddock keep no tracks of any Container ID and rely on no\n databases. THe containers are retrieve from their names.\n \"\"\"\n\n def __init__(self, svc_cfg, containers_all=None):\n self.cfg = svc_cfg\n self.env = dict(self.cfg)\n args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg',\n 'cluster', 'images_dir', 'path', 'service_name', 'host']\n for arg in args_to_delete:\n try:\n del self.env[arg]\n except KeyError:\n pass\n self.env['detach'] = self.cfg.get('detach', True)\n self.docker_client = None\n if containers_all is None:\n docker_api = DockerApi(self.cfg['api_cfg'])\n self.docker_api = docker_api.connect()\n self.docker_client = self.docker_api.containers\n self.info = self._get_info(containers_all)\n\n def gather_api_methods(self, func):\n return func.__code__.co_varnames\n\n def create(self):\n \"\"\"Returns a Container object\"\"\"\n print('Creating container: {}'.format(self.cfg['name']))\n create = self.docker_client.create(**self.env)\n return create['id']\n\n def start(self):\n \"\"\"Returns a Container object\"\"\"\n try:\n print('Starting container: {}'.format(self.cfg['name']))\n start = self.docker_client.run(**self.env)\n except docker_errors.APIError as error:\n print(error)\n print('Container {} is already running'.format(self.cfg['name']))\n return self.cfg['name']\n return start\n\n def stop(self):\n c = self.info.get('Container')\n if c is not None:\n print('Stopping container: {}'.format(self.cfg['name']))\n return c.stop()\n\n def remove(self):\n self.stop()\n c = self.info.get('Container')\n if c is not None:\n print('Removing container: {}'.format(self.cfg['name']))\n try:\n c.remove()\n except docker_errors.NotFound:\n print('Container {} does not exist'.format(self.cfg['name']))\n return True\n\n def restart(self):\n self.docker_client.restart(self.info['Id'])\n\n def return_shell(self, cmd):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n ret = c.exec_run(cmd, stderr=True, stdout=True, stream=True\n )\n for line in ret[1]:\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.exec_run(cmd, stderr=True, stdout=True, stream=False)\n print(line[1])\n\n def return_logs(self):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n for line in c.logs(stderr=True, stdout=True, timestamps\n =False, stream=True):\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.logs(stderr=True, stdout=True, timestamps=False,\n stream=False)\n print(line)\n\n def _get_info(self, containers_all=None):\n info = {}\n if containers_all is None:\n containers_all = self.docker_client.list(all=True)\n try:\n container = [c for c in containers_all if c.name in self.cfg[\n 'service_name']][0]\n api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi')\n api = api.connect()\n infos = api.inspect_container(container.id)\n info['Container'] = container\n info['Id'] = container.id\n info['Ip'] = infos['NetworkSettings']['IPAddress']\n info['State'] = container.status\n except IndexError:\n info = {}\n return info\n", "step-4": "from shaddock.drivers.docker.api import DockerApi\nfrom docker import errors as docker_errors\nimport sys\n\n\nclass Container(object):\n \"\"\"Instance a defined container\n\n This class instance a Docker container depending on its\n name and model definition.\n The basics Docker methods are implemented as well as a\n Shaddock's specific one that return the information of\n the concerned container.\n\n Shaddock keep no tracks of any Container ID and rely on no\n databases. THe containers are retrieve from their names.\n \"\"\"\n\n def __init__(self, svc_cfg, containers_all=None):\n self.cfg = svc_cfg\n self.env = dict(self.cfg)\n args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg',\n 'cluster', 'images_dir', 'path', 'service_name', 'host']\n for arg in args_to_delete:\n try:\n del self.env[arg]\n except KeyError:\n pass\n self.env['detach'] = self.cfg.get('detach', True)\n self.docker_client = None\n if containers_all is None:\n docker_api = DockerApi(self.cfg['api_cfg'])\n self.docker_api = docker_api.connect()\n self.docker_client = self.docker_api.containers\n self.info = self._get_info(containers_all)\n\n def gather_api_methods(self, func):\n return func.__code__.co_varnames\n\n def create(self):\n \"\"\"Returns a Container object\"\"\"\n print('Creating container: {}'.format(self.cfg['name']))\n create = self.docker_client.create(**self.env)\n return create['id']\n\n def start(self):\n \"\"\"Returns a Container object\"\"\"\n try:\n print('Starting container: {}'.format(self.cfg['name']))\n start = self.docker_client.run(**self.env)\n except docker_errors.APIError as error:\n print(error)\n print('Container {} is already running'.format(self.cfg['name']))\n return self.cfg['name']\n return start\n\n def stop(self):\n c = self.info.get('Container')\n if c is not None:\n print('Stopping container: {}'.format(self.cfg['name']))\n return c.stop()\n\n def remove(self):\n self.stop()\n c = self.info.get('Container')\n if c is not None:\n print('Removing container: {}'.format(self.cfg['name']))\n try:\n c.remove()\n except docker_errors.NotFound:\n print('Container {} does not exist'.format(self.cfg['name']))\n return True\n\n def restart(self):\n self.docker_client.restart(self.info['Id'])\n\n def return_shell(self, cmd):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n ret = c.exec_run(cmd, stderr=True, stdout=True, stream=True\n )\n for line in ret[1]:\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.exec_run(cmd, stderr=True, stdout=True, stream=False)\n print(line[1])\n\n def return_logs(self):\n if self.cfg['image'] is not None:\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n for line in c.logs(stderr=True, stdout=True, timestamps\n =False, stream=True):\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.logs(stderr=True, stdout=True, timestamps=False,\n stream=False)\n print(line)\n\n def _get_info(self, containers_all=None):\n info = {}\n if containers_all is None:\n containers_all = self.docker_client.list(all=True)\n try:\n container = [c for c in containers_all if c.name in self.cfg[\n 'service_name']][0]\n api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi')\n api = api.connect()\n infos = api.inspect_container(container.id)\n info['Container'] = container\n info['Id'] = container.id\n info['Ip'] = infos['NetworkSettings']['IPAddress']\n info['State'] = container.status\n except IndexError:\n info = {}\n return info\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\n# Copyright (C) 2014 Thibaut Lapierre <[email protected]>. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\"); you may\n# not use this file except in compliance with the License. You may obtain\n# a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT\n# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the\n# License for the specific language governing permissions and limitations\n# under the License.\n\nfrom shaddock.drivers.docker.api import DockerApi\nfrom docker import errors as docker_errors\nimport sys\n\n\nclass Container(object):\n \"\"\"Instance a defined container\n\n This class instance a Docker container depending on its\n name and model definition.\n The basics Docker methods are implemented as well as a\n Shaddock's specific one that return the information of\n the concerned container.\n\n Shaddock keep no tracks of any Container ID and rely on no\n databases. THe containers are retrieve from their names.\n \"\"\"\n\n def __init__(self, svc_cfg, containers_all=None):\n self.cfg = svc_cfg\n self.env = dict(self.cfg)\n # we may want to use func.__code__.co_varnames here to gather all\n # possible arguments of the docker api and compare them with cfg\n # and delete the crapy hack of the next 8 lines.\n args_to_delete = ['priority', 'depends-on', 'detach', 'api_cfg',\n 'cluster', 'images_dir', 'path', 'service_name',\n 'host']\n for arg in args_to_delete:\n try:\n del self.env[arg]\n except KeyError:\n pass\n self.env['detach'] = self.cfg.get('detach', True)\n self.docker_client = None\n if containers_all is None:\n docker_api = DockerApi(self.cfg['api_cfg'])\n self.docker_api = docker_api.connect()\n self.docker_client = self.docker_api.containers\n self.info = self._get_info(containers_all)\n\n def gather_api_methods(self, func):\n return func.__code__.co_varnames\n\n def create(self):\n \"\"\"Returns a Container object\"\"\"\n print('Creating container: {}'.format(self.cfg['name']))\n create = self.docker_client.create(**self.env)\n return create['id']\n\n def start(self):\n \"\"\"Returns a Container object\"\"\"\n try:\n print('Starting container: {}'.format(self.cfg['name']))\n start = self.docker_client.run(**self.env)\n except docker_errors.APIError as error:\n print(error)\n print('Container {} is already running'.format(self.cfg['name']))\n return self.cfg['name']\n\n return start\n\n def stop(self):\n c = self.info.get('Container')\n if c is not None:\n print('Stopping container: {}'.format(self.cfg['name']))\n return c.stop()\n\n def remove(self):\n self.stop()\n c = self.info.get('Container')\n if c is not None:\n print('Removing container: {}'.format(self.cfg['name']))\n try:\n c.remove()\n except docker_errors.NotFound:\n print('Container {} does not exist'.format(self.cfg['name']))\n return True\n\n def restart(self):\n self.docker_client.restart(self.info['Id'])\n\n def return_shell(self, cmd):\n if self.cfg['image'] is not None:\n # \"Fix\" in order to not use the stream generator in Python2\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n ret = c.exec_run(cmd,\n stderr=True,\n stdout=True,\n stream=True,\n )\n for line in ret[1]:\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.exec_run(cmd,\n stderr=True,\n stdout=True,\n stream=False)\n print(line[1])\n\n def return_logs(self):\n if self.cfg['image'] is not None:\n # \"Fix\" in order to not use the stream generator in Python2\n c = self.info.get('Container')\n if sys.version_info > (3, 0):\n try:\n for line in c.logs(stderr=True,\n stdout=True,\n timestamps=False,\n stream=True,\n ):\n print(line.decode('utf-8').rstrip())\n except (KeyboardInterrupt, SystemExit):\n return True\n else:\n line = c.logs(stderr=True,\n stdout=True,\n timestamps=False,\n stream=False)\n print(line)\n\n def _get_info(self, containers_all=None):\n info = {}\n if containers_all is None:\n containers_all = self.docker_client.list(all=True)\n try:\n container = [c for c in containers_all\n if (c.name in self.cfg['service_name'])][0]\n\n api = DockerApi(self.cfg['api_cfg'], 'lowlevelapi')\n api = api.connect()\n infos = api.inspect_container(container.id)\n\n info['Container'] = container\n info['Id'] = container.id\n info['Ip'] = infos['NetworkSettings']['IPAddress']\n info['State'] = container.status\n\n except IndexError:\n # Container is not running\n info = {}\n return info\n", "step-ids": [ 9, 10, 12, 13, 14 ] }
[ 9, 10, 12, 13, 14 ]
from .chair_model import run_chair_simulation, init_omega_t, \ JumpingModel, H_to_L from .utils import load_hcp_peaks, Condition, average_peak_counts
normal
{ "blob_id": "9087a7bf42070fdb8639c616fdf7f09ad3903656", "index": 6755, "step-1": "<mask token>\n", "step-2": "from .chair_model import run_chair_simulation, init_omega_t, JumpingModel, H_to_L\nfrom .utils import load_hcp_peaks, Condition, average_peak_counts\n", "step-3": "from .chair_model import run_chair_simulation, init_omega_t, \\\n JumpingModel, H_to_L\nfrom .utils import load_hcp_peaks, Condition, average_peak_counts\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import numpy as np # # # basedir = '/n/regal/pfister_lab/haehn/CREMITEST/' testA = basedir + 'testA.npz.npy' testA_targets = basedir + 'testA_targets.npz.npy' testB = basedir + 'testB.npz.npy' testB_targets = basedir + 'testB_targets.npz.npy' testC = basedir + 'testC.npz.npy' testC_targets = basedir + 'testC_targets.npz.npy' counter = 0 # testA = np.load(testA, mmap_mode='r') # testA_count = testA.shape[0] # testB = np.load(testB, mmap_mode='r') # testB_count = testB.shape[0] # testC = np.load(testC, mmap_mode='r') # testC_count = testC.shape[0] # all_count = testA_count + testB_count + testC_count # # # # allocate large array # # # PATCH_BYTES = 75*75 # NO_PATCHES = all_count # P_SIZE = (NO_PATCHES, 4, 75,75) # rather than raveled right now # p_rgba = np.zeros(P_SIZE, dtype=np.float32) # p_rgba[0:testA_count] = testA # p_rgba[testA_count:testA_count+testB_count] = testB # p_rgba[testB_count:testB_count+testC_count] = testC # # now store this bad boy # np.save(basedir+'test.npy', p_rgba) # print 'STORED BIG BOY!' p_rgba = None # free them all # # same for targets # testA_targets = np.load(testA_targets) testA_count = testA_targets.shape[0] testB_targets = np.load(testB_targets) testB_count = testB_targets.shape[0] testC_targets = np.load(testC_targets) testC_count = testC_targets.shape[0] all_count = testA_count + testB_count + testC_count NO_PATCHES = all_count p_target = np.zeros(NO_PATCHES) p_target[0:testA_count] = testA_targets p_target[testA_count:testA_count+testB_count] = testB_targets p_target[testB_count:testB_count+testC_count] = testC_targets # now store this lady boy np.save(basedir+'test_targets.npy', p_target) print 'ALL DONE!' # import numpy as np # # # # # # # basedir = '/n/regal/pfister_lab/haehn/CREMITEST/' # testA = basedir + 'testA.npz.npy' # testA_targets = basedir + 'testA_targets.npz.npy' # testB = basedir + 'testB.npz.npy' # testB_targets = basedir + 'testB_targets.npz.npy' # testC = basedir + 'testC.npz.npy' # testC_targets = basedir + 'testC_targets.npz.npy' # counter = 0 # testA = np.load(testA, mmap_mode='r') # testA_count = testA.shape[0] # testB = np.load(testB, mmap_mode='r') # testB_count = testB.shape[0] # testC = np.load(testC, mmap_mode='r') # testC_count = testC.shape[0] # all_count = testA_count + testB_count + testC_count # # # # allocate large array # # # PATCH_BYTES = 75*75 # NO_PATCHES = all_count # P_SIZE = (NO_PATCHES, 4, 75,75) # rather than raveled right now # p_rgba = np.zeros(P_SIZE, dtype=np.float32) # p_rgba[0:testA_count] = testA # p_rgba[testA_count:testA_count+testB_count] = testB # p_rgba[testB_count:testB_count+testC_count] = testC # # now store this bad boy # np.save(basedir+'test.npy', p_rgba) # print 'STORED BIG BOY!' # p_rgba = None # free them all # # # # same for targets # # # testA_targets = np.load(testA_targets) # testB_targets = np.load(testB_targets) # testC_targets = np.load(testC_targets) # p_target = np.zeros(NO_PATCHES) # p_target[0:testA_count] = testA_targets # p_target[testA_count:testA_count+testB_count] = testB_targets # p_target[testB_count:testB_count+testC_count] = testC_targets # # now store this lady boy # np.save(basedir+'test_targets.npy', p_target) # print 'ALL DONE!'
normal
{ "blob_id": "5cb7af5ded532058db7f5520d48ff418ba856f04", "index": 6150, "step-1": "import numpy as np\n\n#\n#\n#\n\nbasedir = '/n/regal/pfister_lab/haehn/CREMITEST/'\n\ntestA = basedir + 'testA.npz.npy'\ntestA_targets = basedir + 'testA_targets.npz.npy'\ntestB = basedir + 'testB.npz.npy'\ntestB_targets = basedir + 'testB_targets.npz.npy'\ntestC = basedir + 'testC.npz.npy'\ntestC_targets = basedir + 'testC_targets.npz.npy'\n\ncounter = 0\n\n# testA = np.load(testA, mmap_mode='r')\n# testA_count = testA.shape[0]\n\n# testB = np.load(testB, mmap_mode='r')\n# testB_count = testB.shape[0]\n\n# testC = np.load(testC, mmap_mode='r')\n# testC_count = testC.shape[0]\n\n# all_count = testA_count + testB_count + testC_count\n\n# #\n# # allocate large array\n# # \n# PATCH_BYTES = 75*75\n# NO_PATCHES = all_count\n# P_SIZE = (NO_PATCHES, 4, 75,75) # rather than raveled right now\n\n# p_rgba = np.zeros(P_SIZE, dtype=np.float32)\n\n# p_rgba[0:testA_count] = testA\n# p_rgba[testA_count:testA_count+testB_count] = testB\n# p_rgba[testB_count:testB_count+testC_count] = testC\n\n# # now store this bad boy\n# np.save(basedir+'test.npy', p_rgba)\n\n# print 'STORED BIG BOY!'\np_rgba = None # free them all\n\n#\n# same for targets\n#\ntestA_targets = np.load(testA_targets)\ntestA_count = testA_targets.shape[0]\ntestB_targets = np.load(testB_targets)\ntestB_count = testB_targets.shape[0]\ntestC_targets = np.load(testC_targets)\ntestC_count = testC_targets.shape[0]\n\nall_count = testA_count + testB_count + testC_count\nNO_PATCHES = all_count\n\np_target = np.zeros(NO_PATCHES)\n\np_target[0:testA_count] = testA_targets\np_target[testA_count:testA_count+testB_count] = testB_targets\np_target[testB_count:testB_count+testC_count] = testC_targets\n\n# now store this lady boy\nnp.save(basedir+'test_targets.npy', p_target)\n\nprint 'ALL DONE!'\n\n\n\n# import numpy as np\n\n# #\n# #\n# #\n\n# basedir = '/n/regal/pfister_lab/haehn/CREMITEST/'\n\n# testA = basedir + 'testA.npz.npy'\n# testA_targets = basedir + 'testA_targets.npz.npy'\n# testB = basedir + 'testB.npz.npy'\n# testB_targets = basedir + 'testB_targets.npz.npy'\n# testC = basedir + 'testC.npz.npy'\n# testC_targets = basedir + 'testC_targets.npz.npy'\n\n# counter = 0\n\n# testA = np.load(testA, mmap_mode='r')\n# testA_count = testA.shape[0]\n\n# testB = np.load(testB, mmap_mode='r')\n# testB_count = testB.shape[0]\n\n# testC = np.load(testC, mmap_mode='r')\n# testC_count = testC.shape[0]\n\n# all_count = testA_count + testB_count + testC_count\n\n# #\n# # allocate large array\n# # \n# PATCH_BYTES = 75*75\n# NO_PATCHES = all_count\n# P_SIZE = (NO_PATCHES, 4, 75,75) # rather than raveled right now\n\n# p_rgba = np.zeros(P_SIZE, dtype=np.float32)\n\n# p_rgba[0:testA_count] = testA\n# p_rgba[testA_count:testA_count+testB_count] = testB\n# p_rgba[testB_count:testB_count+testC_count] = testC\n\n# # now store this bad boy\n# np.save(basedir+'test.npy', p_rgba)\n\n# print 'STORED BIG BOY!'\n# p_rgba = None # free them all\n\n# #\n# # same for targets\n# #\n# testA_targets = np.load(testA_targets)\n# testB_targets = np.load(testB_targets)\n# testC_targets = np.load(testC_targets)\n\n# p_target = np.zeros(NO_PATCHES)\n\n# p_target[0:testA_count] = testA_targets\n# p_target[testA_count:testA_count+testB_count] = testB_targets\n# p_target[testB_count:testB_count+testC_count] = testC_targets\n\n# # now store this lady boy\n# np.save(basedir+'test_targets.npy', p_target)\n\n# print 'ALL DONE!'\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print('-' * 10) print('NY State has:', cities['NY']) print('OR State has : ', cities['OR']) print('-' * 10) print("Michigan's abbreviation is: ", states['Michigan']) print("Flordia's abreviation is :", states['Flordia']) print('-' * 10) print('Michigan has : ', cities[states['Michigan']]) print('Flordia has: ', cities[states['Flordia']]) print('-' * 10) for state, abbrev in list(states.items()): print(f'{state} is abbreviated {abbrev}') print('-' * 10) for abbrev, city in list(cities.items()): print(f'{abbrev} has the city {city} ') print('-' * 10) for state, abbrev in list(states.items()): print(f'{state}state is abbreviated {abbrev}') print(f'and has city {cities[abbrev]}') print('-' * 10) <|reserved_special_token_1|> states = {'Oregon': 'OR', 'Flordia': 'FL', 'California': 'CA', 'New York': 'NY', 'Michigan': 'MI'} cities = {'CA': 'San Fransisco', 'MI': 'Detroit', 'FL': 'Jacksonville'} cities['NY'] = 'New York' cities['OR'] = 'PortLand' print('-' * 10) print('NY State has:', cities['NY']) print('OR State has : ', cities['OR']) print('-' * 10) print("Michigan's abbreviation is: ", states['Michigan']) print("Flordia's abreviation is :", states['Flordia']) print('-' * 10) print('Michigan has : ', cities[states['Michigan']]) print('Flordia has: ', cities[states['Flordia']]) print('-' * 10) for state, abbrev in list(states.items()): print(f'{state} is abbreviated {abbrev}') print('-' * 10) for abbrev, city in list(cities.items()): print(f'{abbrev} has the city {city} ') print('-' * 10) for state, abbrev in list(states.items()): print(f'{state}state is abbreviated {abbrev}') print(f'and has city {cities[abbrev]}') print('-' * 10) <|reserved_special_token_1|> #Adds states to the list states = { 'Oregon' : 'OR' , 'Flordia': 'FL' , 'California':'CA', 'New York':'NY', 'Michigan': 'MI', } #Adds cities to the list cities = { 'CA':'San Fransisco', 'MI': 'Detroit', 'FL': 'Jacksonville' } cities['NY'] = 'New York' cities['OR'] = 'PortLand' #Prints cities print('-' * 10) print("NY State has:", cities['NY']) print("OR State has : ",cities['OR']) #prints states print('-' * 10) print("Michigan's abbreviation is: " , states['Michigan']) print("Flordia's abreviation is :" , states['Flordia']) print('-' * 10) print("Michigan has : ", cities[states['Michigan']]) print("Flordia has: " , cities[states['Flordia']]) print('-' * 10) for state , abbrev in list(states.items()): print(f"{state} is abbreviated {abbrev}") print('-'* 10) for abbrev, city in list(cities.items()): print(f"{abbrev} has the city {city} ") print('-' * 10) for state, abbrev in list(states.items()): print(f"{state}state is abbreviated {abbrev}") print(f"and has city {cities[abbrev]}") #carefullly aquires state that may not be there print('-' * 10)
flexible
{ "blob_id": "1bdc1274cceba994524442c7a0065498a9c1d7bc", "index": 8919, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('-' * 10)\nprint('NY State has:', cities['NY'])\nprint('OR State has : ', cities['OR'])\nprint('-' * 10)\nprint(\"Michigan's abbreviation is: \", states['Michigan'])\nprint(\"Flordia's abreviation is :\", states['Flordia'])\nprint('-' * 10)\nprint('Michigan has : ', cities[states['Michigan']])\nprint('Flordia has: ', cities[states['Flordia']])\nprint('-' * 10)\nfor state, abbrev in list(states.items()):\n print(f'{state} is abbreviated {abbrev}')\nprint('-' * 10)\nfor abbrev, city in list(cities.items()):\n print(f'{abbrev} has the city {city} ')\nprint('-' * 10)\nfor state, abbrev in list(states.items()):\n print(f'{state}state is abbreviated {abbrev}')\n print(f'and has city {cities[abbrev]}')\nprint('-' * 10)\n", "step-3": "states = {'Oregon': 'OR', 'Flordia': 'FL', 'California': 'CA', 'New York':\n 'NY', 'Michigan': 'MI'}\ncities = {'CA': 'San Fransisco', 'MI': 'Detroit', 'FL': 'Jacksonville'}\ncities['NY'] = 'New York'\ncities['OR'] = 'PortLand'\nprint('-' * 10)\nprint('NY State has:', cities['NY'])\nprint('OR State has : ', cities['OR'])\nprint('-' * 10)\nprint(\"Michigan's abbreviation is: \", states['Michigan'])\nprint(\"Flordia's abreviation is :\", states['Flordia'])\nprint('-' * 10)\nprint('Michigan has : ', cities[states['Michigan']])\nprint('Flordia has: ', cities[states['Flordia']])\nprint('-' * 10)\nfor state, abbrev in list(states.items()):\n print(f'{state} is abbreviated {abbrev}')\nprint('-' * 10)\nfor abbrev, city in list(cities.items()):\n print(f'{abbrev} has the city {city} ')\nprint('-' * 10)\nfor state, abbrev in list(states.items()):\n print(f'{state}state is abbreviated {abbrev}')\n print(f'and has city {cities[abbrev]}')\nprint('-' * 10)\n", "step-4": "#Adds states to the list\nstates = {\n 'Oregon' : 'OR' ,\n 'Flordia': 'FL' ,\n 'California':'CA',\n 'New York':'NY',\n 'Michigan': 'MI',\n }\n \n#Adds cities to the list \ncities = {\n 'CA':'San Fransisco',\n 'MI': 'Detroit',\n 'FL': 'Jacksonville'\n}\n\ncities['NY'] = 'New York'\ncities['OR'] = 'PortLand'\n\n#Prints cities\nprint('-' * 10)\nprint(\"NY State has:\", cities['NY'])\nprint(\"OR State has : \",cities['OR'])\n#prints states\nprint('-' * 10)\nprint(\"Michigan's abbreviation is: \" , states['Michigan'])\nprint(\"Flordia's abreviation is :\" , states['Flordia'])\n\n\nprint('-' * 10)\nprint(\"Michigan has : \", cities[states['Michigan']])\nprint(\"Flordia has: \" , cities[states['Flordia']])\n\nprint('-' * 10)\nfor state , abbrev in list(states.items()):\n print(f\"{state} is abbreviated {abbrev}\")\n\nprint('-'* 10)\nfor abbrev, city in list(cities.items()):\n print(f\"{abbrev} has the city {city} \")\n\nprint('-' * 10)\nfor state, abbrev in list(states.items()):\n print(f\"{state}state is abbreviated {abbrev}\")\n print(f\"and has city {cities[abbrev]}\")\n#carefullly aquires state that may not be there \nprint('-' * 10)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while n > 0: arr.append(n) n -= 1 while len(arr) + len(sub) > 1: while len(arr) > 1: arr.pop() sub.append(arr.pop()) arr = sub[::-1] + arr sub = [] print(arr[0]) <|reserved_special_token_1|> <|reserved_special_token_0|> arr = [] sub = [] n = int(input()) while n > 0: arr.append(n) n -= 1 while len(arr) + len(sub) > 1: while len(arr) > 1: arr.pop() sub.append(arr.pop()) arr = sub[::-1] + arr sub = [] print(arr[0]) <|reserved_special_token_1|> #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 17 22:28:30 2019 @author: donsdev """ arr = [] sub = [] n = int(input()) while n > 0: arr.append(n) n-=1 while len(arr) + len(sub) > 1: while len(arr) > 1: arr.pop() sub.append(arr.pop()) arr = sub[::-1] + arr sub = [] print(arr[0])
flexible
{ "blob_id": "d5d31920f7fd4ed2913c5880dba61c2015181be9", "index": 5760, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile n > 0:\n arr.append(n)\n n -= 1\nwhile len(arr) + len(sub) > 1:\n while len(arr) > 1:\n arr.pop()\n sub.append(arr.pop())\n arr = sub[::-1] + arr\n sub = []\nprint(arr[0])\n", "step-3": "<mask token>\narr = []\nsub = []\nn = int(input())\nwhile n > 0:\n arr.append(n)\n n -= 1\nwhile len(arr) + len(sub) > 1:\n while len(arr) > 1:\n arr.pop()\n sub.append(arr.pop())\n arr = sub[::-1] + arr\n sub = []\nprint(arr[0])\n", "step-4": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Thu Jan 17 22:28:30 2019\n\n@author: donsdev\n\"\"\"\n\narr = []\nsub = []\nn = int(input())\nwhile n > 0:\n arr.append(n)\n n-=1\nwhile len(arr) + len(sub) > 1:\n while len(arr) > 1:\n arr.pop()\n sub.append(arr.pop())\n arr = sub[::-1] + arr\n sub = []\nprint(arr[0])", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
onfiguration name="test3" type="PythonConfigurationType" factoryName="Python" temporary="true"> <module name="hori_check" /> <option name="INTERPRETER_OPTIONS" value="" /> <option name="PARENT_ENVS" value="true" /> <envs> <env name="PYTHONUNBUFFERED" value="1" /> </envs> <option name="SDK_HOME" value="" /> <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" /> <option name="IS_MODULE_SDK" value="true" /> <option name="ADD_CONTENT_ROOTS" value="true" /> <option name="ADD_SOURCE_ROOTS" value="true" /> <option name="SCRIPT_NAME" value="$PROJECT_DIR$/test3.py" /> <option name="PARAMETERS" value="" /> <option name="SHOW_COMMAND_LINE" value="false" /> <option name="EMULATE_TERMINAL" value="false" /> <option name="MODULE_MODE" value="false" /> <option name="REDIRECT_INPUT" value="false" /> <option name="INPUT_FILE" value="" /> <method v="2" /> </configuration> <configuration name="test4" type="PythonConfigurationType" factoryName="Python" temporary="true"> <module name="hori_check" /> <option name="INTERPRETER_OPTIONS" value="" /> <option name="PARENT_ENVS" value="true" /> <envs> <env name="PYTHONUNBUFFERED" value="1" /> </envs> <option name="SDK_HOME" value="" /> <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" /> <option name="IS_MODULE_SDK" value="true" /> <option name="ADD_CONTENT_ROOTS" value="true" /> <option name="ADD_SOURCE_ROOTS" value="true" /> <option name="SCRIPT_NAME" value="$PROJECT_DIR$/test4.py" /> <option name="PARAMETERS" value="" /> <option name="SHOW_COMMAND_LINE" value="false" /> <option name="EMULATE_TERMINAL" value="false" /> <option name="MODULE_MODE" value="false" /> <option name="REDIRECT_INPUT" value="false" /> <option name="INPUT_FILE" value="" /> <method v="2" /> </configuration> <list> <item itemvalue="Python.test1" /> <item itemvalue="Python.test2" /> <item itemvalue="Python.test3" /> <item itemvalue="Python.dir_cut" /> <item itemvalue="Python.test4" /> </list> <recent_temporary> <list> <item itemvalue="Python.test4" /> <item itemvalue="Python.dir_cut" /> <item itemvalue="Python.test1" /> <item itemvalue="Python.test2" /> <item itemvalue="Python.test3" /> </list> </recent_temporary> </component> <component name="SvnConfiguration"> <configuration /> </component> <component name="TaskManager"> <task active="true" id="Default" summary="Default task"> <changelist id="b9acfeb2-5104-4c03-bdda-fe9dd331ff17" name="Default Changelist" comment="" /> <created>1539654879943</created> <option name="number" value="Default" /> <option name="presentableId" value="Default" /> <updated>1539654879943</updated> </task> <servers /> </component> <component name="ToolWindowManager"> <frame x="-8" y="-8" width="1382" height="744" extended-state="6" /> <editor active="true" /> <layout> <window_info content_ui="combo" id="Project" order="0" visible="true" weight
normal
{ "blob_id": "48affa1b823a2543b6bbda615247324f5c249a69", "index": 5831, "step-1": "onfiguration name=\"test3\" type=\"PythonConfigurationType\" factoryName=\"Python\" temporary=\"true\">\n <module name=\"hori_check\" />\n <option name=\"INTERPRETER_OPTIONS\" value=\"\" />\n <option name=\"PARENT_ENVS\" value=\"true\" />\n <envs>\n <env name=\"PYTHONUNBUFFERED\" value=\"1\" />\n </envs>\n <option name=\"SDK_HOME\" value=\"\" />\n <option name=\"WORKING_DIRECTORY\" value=\"$PROJECT_DIR$\" />\n <option name=\"IS_MODULE_SDK\" value=\"true\" />\n <option name=\"ADD_CONTENT_ROOTS\" value=\"true\" />\n <option name=\"ADD_SOURCE_ROOTS\" value=\"true\" />\n <option name=\"SCRIPT_NAME\" value=\"$PROJECT_DIR$/test3.py\" />\n <option name=\"PARAMETERS\" value=\"\" />\n <option name=\"SHOW_COMMAND_LINE\" value=\"false\" />\n <option name=\"EMULATE_TERMINAL\" value=\"false\" />\n <option name=\"MODULE_MODE\" value=\"false\" />\n <option name=\"REDIRECT_INPUT\" value=\"false\" />\n <option name=\"INPUT_FILE\" value=\"\" />\n <method v=\"2\" />\n </configuration>\n <configuration name=\"test4\" type=\"PythonConfigurationType\" factoryName=\"Python\" temporary=\"true\">\n <module name=\"hori_check\" />\n <option name=\"INTERPRETER_OPTIONS\" value=\"\" />\n <option name=\"PARENT_ENVS\" value=\"true\" />\n <envs>\n <env name=\"PYTHONUNBUFFERED\" value=\"1\" />\n </envs>\n <option name=\"SDK_HOME\" value=\"\" />\n <option name=\"WORKING_DIRECTORY\" value=\"$PROJECT_DIR$\" />\n <option name=\"IS_MODULE_SDK\" value=\"true\" />\n <option name=\"ADD_CONTENT_ROOTS\" value=\"true\" />\n <option name=\"ADD_SOURCE_ROOTS\" value=\"true\" />\n <option name=\"SCRIPT_NAME\" value=\"$PROJECT_DIR$/test4.py\" />\n <option name=\"PARAMETERS\" value=\"\" />\n <option name=\"SHOW_COMMAND_LINE\" value=\"false\" />\n <option name=\"EMULATE_TERMINAL\" value=\"false\" />\n <option name=\"MODULE_MODE\" value=\"false\" />\n <option name=\"REDIRECT_INPUT\" value=\"false\" />\n <option name=\"INPUT_FILE\" value=\"\" />\n <method v=\"2\" />\n </configuration>\n <list>\n <item itemvalue=\"Python.test1\" />\n <item itemvalue=\"Python.test2\" />\n <item itemvalue=\"Python.test3\" />\n <item itemvalue=\"Python.dir_cut\" />\n <item itemvalue=\"Python.test4\" />\n </list>\n <recent_temporary>\n <list>\n <item itemvalue=\"Python.test4\" />\n <item itemvalue=\"Python.dir_cut\" />\n <item itemvalue=\"Python.test1\" />\n <item itemvalue=\"Python.test2\" />\n <item itemvalue=\"Python.test3\" />\n </list>\n </recent_temporary>\n </component>\n <component name=\"SvnConfiguration\">\n <configuration />\n </component>\n <component name=\"TaskManager\">\n <task active=\"true\" id=\"Default\" summary=\"Default task\">\n <changelist id=\"b9acfeb2-5104-4c03-bdda-fe9dd331ff17\" name=\"Default Changelist\" comment=\"\" />\n <created>1539654879943</created>\n <option name=\"number\" value=\"Default\" />\n <option name=\"presentableId\" value=\"Default\" />\n <updated>1539654879943</updated>\n </task>\n <servers />\n </component>\n <component name=\"ToolWindowManager\">\n <frame x=\"-8\" y=\"-8\" width=\"1382\" height=\"744\" extended-state=\"6\" />\n <editor active=\"true\" />\n <layout>\n <window_info content_ui=\"combo\" id=\"Project\" order=\"0\" visible=\"true\" weight", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import asyncio import logging import os.path from serial_asyncio import open_serial_connection from typing import NewType, cast # Type annotations and converters AsciiBytes = NewType('AsciiBytes', bytes) def to_ascii(s: str) -> AsciiBytes: if s[-1] != '\n': s += '\n' return cast(AsciiBytes, s.encode(encoding='ascii')) class USBHandler: """Reads from and writes to the underlying MDB USB board. Users can either obtain an asyncio.Queue that the handler will push messages to using listen(), or it can ask for a one-time read using read(). For sending messages, if no reply is expected or there is a poller waiting for any response, send() can be used, otherwise sendread() will send the message and wait for a one-time reply. Having a listener and waiting for a single message at the same time is an error. See the Sniffer class for an example of both usages.""" def __init__(self): self.initialized = False self.run_task = None self.waiters = {} self.queues = {} self.logger = logging.getLogger('.'.join((__name__, self.__class__.__name__))) async def initialize(self, device_path: str) -> None: assert os.path.exists(device_path) self.logger.info("Initializing USBReader.") self.logger.debug("Opening serial connection to device at %s", device_path) self.serial_reader, self.serial_writer = \ await open_serial_connection(url=device_path, baudrate=115200) self.initialized = True self.logger.debug("Connected to serial device at %s.", device_path) async def _run(self) -> None: while True: message = await self.serial_reader.readuntil(separator=b'\r\n') stripped_message = message.decode(encoding='ascii').rstrip('\n\r') self.logger.debug("Read '%s' from MDB board.", stripped_message) message_type = stripped_message[0] if message_type in self.waiters: self.waiters[message_type].set_result(stripped_message) del self.waiters[message_type] # Lets the waiter run. await asyncio.sleep(0) elif message_type in self.queues: try: self.queues[message_type].put_nowait(stripped_message) except asyncio.QueueFull: self.logger.warning('Queue for message type %s is full. ' 'Scheduling the put in another task.', message_type) asyncio.create_task( self.queues[message_type].put(stripped_message)) else: self.logger.error("Unhandled message: %s", stripped_message) async def run(self) -> None: assert self.initialized self.logger.info('Starting runner.') self.run_task = asyncio.create_task(self._run()) try: await self.run_task except asyncio.CancelledError: self.logger.info('Runner cancelled.') async def send(self, message: AsciiBytes, _drain=True) -> None: assert self.initialized self.logger.info("Sending message to MDB board: %s", message) self.serial_writer.write(message) if _drain: await self.serial_writer.drain() self.logger.info("Sent message to MDB board: %s", message) def _read_internal(self, prefix: str) -> asyncio.Future: assert len(prefix) == 1 if prefix in self.queues or prefix in self.waiters: raise RuntimeError(f"Tried to wait for message type {prefix}" " when there was already a queue listening to " "all messages") fut = asyncio.get_running_loop().create_future() self.waiters[prefix] = fut return fut async def sendread(self, message: AsciiBytes, prefix: str) -> str: await self.send(message, _drain=False) fut = self._read_internal(prefix) self.logger.info("Waiting for a single message of type: %s", prefix) try: await self.serial_writer.drain() self.logger.info("Sent message to MDB board: %s", message) await fut except asyncio.CancelledError as e: self.logger.warning("Got cancelled while sending message %r or " "waiting on prefix %s", message, prefix, exc_info=e) del self.waiters[prefix] raise self.logger.info("Got message: %s", fut.result()) return fut.result() async def read(self, prefix: str) -> str: fut = self._read_internal(prefix) self.logger.info("Waiting for a single message of type: %s", prefix) try: await fut except asyncio.CancelledError as e: self.logger.warning("Got cancelled while waiting for message on " "%s", prefix, exc_info=e) del self.waiters[prefix] raise self.logger.info("Got message: %s", fut.result()) return fut.result() def listen(self, prefix: str) -> asyncio.Queue: assert len(prefix) == 1 if prefix in self.waiters or prefix in self.queues: raise RuntimeError("Tried to get a queue for message type " f"{prefix} when there was already someone" "waiting on it.") self.queues[prefix] = asyncio.Queue() self.logger.info("Polling for messages of type: %s", prefix) return self.queues[prefix] def unlisten(self, prefix: str) -> None: """Stops pushing messages with this prefix character to a Queue.""" assert len(prefix) == 1 del self.queues[prefix] self.logger.info("No longer polling for message type: %s", prefix) async def shutdown(self): if not self.initialized: return self.logger.info("Shutting down.") if self.run_task: self.run_task.cancel() self.run_task = None for fut in self.waiters.values(): fut.cancel() self.serial_writer.close() await self.serial_writer.wait_closed() self.logger.info("Shutdown complete.") self.initialized = False __all__ = (USBHandler, to_ascii)
normal
{ "blob_id": "50b630b762251f8646044b234ac4b82b8e4b645b", "index": 8460, "step-1": "<mask token>\n\n\nclass USBHandler:\n <mask token>\n\n def __init__(self):\n self.initialized = False\n self.run_task = None\n self.waiters = {}\n self.queues = {}\n self.logger = logging.getLogger('.'.join((__name__, self.__class__.\n __name__)))\n\n async def initialize(self, device_path: str) ->None:\n assert os.path.exists(device_path)\n self.logger.info('Initializing USBReader.')\n self.logger.debug('Opening serial connection to device at %s',\n device_path)\n self.serial_reader, self.serial_writer = await open_serial_connection(\n url=device_path, baudrate=115200)\n self.initialized = True\n self.logger.debug('Connected to serial device at %s.', device_path)\n\n async def _run(self) ->None:\n while True:\n message = await self.serial_reader.readuntil(separator=b'\\r\\n')\n stripped_message = message.decode(encoding='ascii').rstrip('\\n\\r')\n self.logger.debug(\"Read '%s' from MDB board.\", stripped_message)\n message_type = stripped_message[0]\n if message_type in self.waiters:\n self.waiters[message_type].set_result(stripped_message)\n del self.waiters[message_type]\n await asyncio.sleep(0)\n elif message_type in self.queues:\n try:\n self.queues[message_type].put_nowait(stripped_message)\n except asyncio.QueueFull:\n self.logger.warning(\n 'Queue for message type %s is full. Scheduling the put in another task.'\n , message_type)\n asyncio.create_task(self.queues[message_type].put(\n stripped_message))\n else:\n self.logger.error('Unhandled message: %s', stripped_message)\n\n async def run(self) ->None:\n assert self.initialized\n self.logger.info('Starting runner.')\n self.run_task = asyncio.create_task(self._run())\n try:\n await self.run_task\n except asyncio.CancelledError:\n self.logger.info('Runner cancelled.')\n\n async def send(self, message: AsciiBytes, _drain=True) ->None:\n assert self.initialized\n self.logger.info('Sending message to MDB board: %s', message)\n self.serial_writer.write(message)\n if _drain:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n <mask token>\n\n async def sendread(self, message: AsciiBytes, prefix: str) ->str:\n await self.send(message, _drain=False)\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\n 'Got cancelled while sending message %r or waiting on prefix %s'\n , message, prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n async def read(self, prefix: str) ->str:\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning('Got cancelled while waiting for message on %s'\n , prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n def listen(self, prefix: str) ->asyncio.Queue:\n assert len(prefix) == 1\n if prefix in self.waiters or prefix in self.queues:\n raise RuntimeError(\n f'Tried to get a queue for message type {prefix} when there was already someonewaiting on it.'\n )\n self.queues[prefix] = asyncio.Queue()\n self.logger.info('Polling for messages of type: %s', prefix)\n return self.queues[prefix]\n <mask token>\n\n async def shutdown(self):\n if not self.initialized:\n return\n self.logger.info('Shutting down.')\n if self.run_task:\n self.run_task.cancel()\n self.run_task = None\n for fut in self.waiters.values():\n fut.cancel()\n self.serial_writer.close()\n await self.serial_writer.wait_closed()\n self.logger.info('Shutdown complete.')\n self.initialized = False\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef to_ascii(s: str) ->AsciiBytes:\n if s[-1] != '\\n':\n s += '\\n'\n return cast(AsciiBytes, s.encode(encoding='ascii'))\n\n\nclass USBHandler:\n \"\"\"Reads from and writes to the underlying MDB USB board.\n\n Users can either obtain an asyncio.Queue that the handler will push\n messages to using listen(), or it can ask for a one-time read using read().\n For sending messages, if no reply is expected or there is a poller waiting\n for any response, send() can be used, otherwise sendread() will send the\n message and wait for a one-time reply. Having a listener and waiting for a\n single message at the same time is an error. See the Sniffer class for an\n example of both usages.\"\"\"\n\n def __init__(self):\n self.initialized = False\n self.run_task = None\n self.waiters = {}\n self.queues = {}\n self.logger = logging.getLogger('.'.join((__name__, self.__class__.\n __name__)))\n\n async def initialize(self, device_path: str) ->None:\n assert os.path.exists(device_path)\n self.logger.info('Initializing USBReader.')\n self.logger.debug('Opening serial connection to device at %s',\n device_path)\n self.serial_reader, self.serial_writer = await open_serial_connection(\n url=device_path, baudrate=115200)\n self.initialized = True\n self.logger.debug('Connected to serial device at %s.', device_path)\n\n async def _run(self) ->None:\n while True:\n message = await self.serial_reader.readuntil(separator=b'\\r\\n')\n stripped_message = message.decode(encoding='ascii').rstrip('\\n\\r')\n self.logger.debug(\"Read '%s' from MDB board.\", stripped_message)\n message_type = stripped_message[0]\n if message_type in self.waiters:\n self.waiters[message_type].set_result(stripped_message)\n del self.waiters[message_type]\n await asyncio.sleep(0)\n elif message_type in self.queues:\n try:\n self.queues[message_type].put_nowait(stripped_message)\n except asyncio.QueueFull:\n self.logger.warning(\n 'Queue for message type %s is full. Scheduling the put in another task.'\n , message_type)\n asyncio.create_task(self.queues[message_type].put(\n stripped_message))\n else:\n self.logger.error('Unhandled message: %s', stripped_message)\n\n async def run(self) ->None:\n assert self.initialized\n self.logger.info('Starting runner.')\n self.run_task = asyncio.create_task(self._run())\n try:\n await self.run_task\n except asyncio.CancelledError:\n self.logger.info('Runner cancelled.')\n\n async def send(self, message: AsciiBytes, _drain=True) ->None:\n assert self.initialized\n self.logger.info('Sending message to MDB board: %s', message)\n self.serial_writer.write(message)\n if _drain:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n\n def _read_internal(self, prefix: str) ->asyncio.Future:\n assert len(prefix) == 1\n if prefix in self.queues or prefix in self.waiters:\n raise RuntimeError(\n f'Tried to wait for message type {prefix} when there was already a queue listening to all messages'\n )\n fut = asyncio.get_running_loop().create_future()\n self.waiters[prefix] = fut\n return fut\n\n async def sendread(self, message: AsciiBytes, prefix: str) ->str:\n await self.send(message, _drain=False)\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\n 'Got cancelled while sending message %r or waiting on prefix %s'\n , message, prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n async def read(self, prefix: str) ->str:\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning('Got cancelled while waiting for message on %s'\n , prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n def listen(self, prefix: str) ->asyncio.Queue:\n assert len(prefix) == 1\n if prefix in self.waiters or prefix in self.queues:\n raise RuntimeError(\n f'Tried to get a queue for message type {prefix} when there was already someonewaiting on it.'\n )\n self.queues[prefix] = asyncio.Queue()\n self.logger.info('Polling for messages of type: %s', prefix)\n return self.queues[prefix]\n\n def unlisten(self, prefix: str) ->None:\n \"\"\"Stops pushing messages with this prefix character to a Queue.\"\"\"\n assert len(prefix) == 1\n del self.queues[prefix]\n self.logger.info('No longer polling for message type: %s', prefix)\n\n async def shutdown(self):\n if not self.initialized:\n return\n self.logger.info('Shutting down.')\n if self.run_task:\n self.run_task.cancel()\n self.run_task = None\n for fut in self.waiters.values():\n fut.cancel()\n self.serial_writer.close()\n await self.serial_writer.wait_closed()\n self.logger.info('Shutdown complete.')\n self.initialized = False\n\n\n<mask token>\n", "step-3": "<mask token>\nAsciiBytes = NewType('AsciiBytes', bytes)\n\n\ndef to_ascii(s: str) ->AsciiBytes:\n if s[-1] != '\\n':\n s += '\\n'\n return cast(AsciiBytes, s.encode(encoding='ascii'))\n\n\nclass USBHandler:\n \"\"\"Reads from and writes to the underlying MDB USB board.\n\n Users can either obtain an asyncio.Queue that the handler will push\n messages to using listen(), or it can ask for a one-time read using read().\n For sending messages, if no reply is expected or there is a poller waiting\n for any response, send() can be used, otherwise sendread() will send the\n message and wait for a one-time reply. Having a listener and waiting for a\n single message at the same time is an error. See the Sniffer class for an\n example of both usages.\"\"\"\n\n def __init__(self):\n self.initialized = False\n self.run_task = None\n self.waiters = {}\n self.queues = {}\n self.logger = logging.getLogger('.'.join((__name__, self.__class__.\n __name__)))\n\n async def initialize(self, device_path: str) ->None:\n assert os.path.exists(device_path)\n self.logger.info('Initializing USBReader.')\n self.logger.debug('Opening serial connection to device at %s',\n device_path)\n self.serial_reader, self.serial_writer = await open_serial_connection(\n url=device_path, baudrate=115200)\n self.initialized = True\n self.logger.debug('Connected to serial device at %s.', device_path)\n\n async def _run(self) ->None:\n while True:\n message = await self.serial_reader.readuntil(separator=b'\\r\\n')\n stripped_message = message.decode(encoding='ascii').rstrip('\\n\\r')\n self.logger.debug(\"Read '%s' from MDB board.\", stripped_message)\n message_type = stripped_message[0]\n if message_type in self.waiters:\n self.waiters[message_type].set_result(stripped_message)\n del self.waiters[message_type]\n await asyncio.sleep(0)\n elif message_type in self.queues:\n try:\n self.queues[message_type].put_nowait(stripped_message)\n except asyncio.QueueFull:\n self.logger.warning(\n 'Queue for message type %s is full. Scheduling the put in another task.'\n , message_type)\n asyncio.create_task(self.queues[message_type].put(\n stripped_message))\n else:\n self.logger.error('Unhandled message: %s', stripped_message)\n\n async def run(self) ->None:\n assert self.initialized\n self.logger.info('Starting runner.')\n self.run_task = asyncio.create_task(self._run())\n try:\n await self.run_task\n except asyncio.CancelledError:\n self.logger.info('Runner cancelled.')\n\n async def send(self, message: AsciiBytes, _drain=True) ->None:\n assert self.initialized\n self.logger.info('Sending message to MDB board: %s', message)\n self.serial_writer.write(message)\n if _drain:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n\n def _read_internal(self, prefix: str) ->asyncio.Future:\n assert len(prefix) == 1\n if prefix in self.queues or prefix in self.waiters:\n raise RuntimeError(\n f'Tried to wait for message type {prefix} when there was already a queue listening to all messages'\n )\n fut = asyncio.get_running_loop().create_future()\n self.waiters[prefix] = fut\n return fut\n\n async def sendread(self, message: AsciiBytes, prefix: str) ->str:\n await self.send(message, _drain=False)\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\n 'Got cancelled while sending message %r or waiting on prefix %s'\n , message, prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n async def read(self, prefix: str) ->str:\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning('Got cancelled while waiting for message on %s'\n , prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n def listen(self, prefix: str) ->asyncio.Queue:\n assert len(prefix) == 1\n if prefix in self.waiters or prefix in self.queues:\n raise RuntimeError(\n f'Tried to get a queue for message type {prefix} when there was already someonewaiting on it.'\n )\n self.queues[prefix] = asyncio.Queue()\n self.logger.info('Polling for messages of type: %s', prefix)\n return self.queues[prefix]\n\n def unlisten(self, prefix: str) ->None:\n \"\"\"Stops pushing messages with this prefix character to a Queue.\"\"\"\n assert len(prefix) == 1\n del self.queues[prefix]\n self.logger.info('No longer polling for message type: %s', prefix)\n\n async def shutdown(self):\n if not self.initialized:\n return\n self.logger.info('Shutting down.')\n if self.run_task:\n self.run_task.cancel()\n self.run_task = None\n for fut in self.waiters.values():\n fut.cancel()\n self.serial_writer.close()\n await self.serial_writer.wait_closed()\n self.logger.info('Shutdown complete.')\n self.initialized = False\n\n\n__all__ = USBHandler, to_ascii\n", "step-4": "import asyncio\nimport logging\nimport os.path\nfrom serial_asyncio import open_serial_connection\nfrom typing import NewType, cast\nAsciiBytes = NewType('AsciiBytes', bytes)\n\n\ndef to_ascii(s: str) ->AsciiBytes:\n if s[-1] != '\\n':\n s += '\\n'\n return cast(AsciiBytes, s.encode(encoding='ascii'))\n\n\nclass USBHandler:\n \"\"\"Reads from and writes to the underlying MDB USB board.\n\n Users can either obtain an asyncio.Queue that the handler will push\n messages to using listen(), or it can ask for a one-time read using read().\n For sending messages, if no reply is expected or there is a poller waiting\n for any response, send() can be used, otherwise sendread() will send the\n message and wait for a one-time reply. Having a listener and waiting for a\n single message at the same time is an error. See the Sniffer class for an\n example of both usages.\"\"\"\n\n def __init__(self):\n self.initialized = False\n self.run_task = None\n self.waiters = {}\n self.queues = {}\n self.logger = logging.getLogger('.'.join((__name__, self.__class__.\n __name__)))\n\n async def initialize(self, device_path: str) ->None:\n assert os.path.exists(device_path)\n self.logger.info('Initializing USBReader.')\n self.logger.debug('Opening serial connection to device at %s',\n device_path)\n self.serial_reader, self.serial_writer = await open_serial_connection(\n url=device_path, baudrate=115200)\n self.initialized = True\n self.logger.debug('Connected to serial device at %s.', device_path)\n\n async def _run(self) ->None:\n while True:\n message = await self.serial_reader.readuntil(separator=b'\\r\\n')\n stripped_message = message.decode(encoding='ascii').rstrip('\\n\\r')\n self.logger.debug(\"Read '%s' from MDB board.\", stripped_message)\n message_type = stripped_message[0]\n if message_type in self.waiters:\n self.waiters[message_type].set_result(stripped_message)\n del self.waiters[message_type]\n await asyncio.sleep(0)\n elif message_type in self.queues:\n try:\n self.queues[message_type].put_nowait(stripped_message)\n except asyncio.QueueFull:\n self.logger.warning(\n 'Queue for message type %s is full. Scheduling the put in another task.'\n , message_type)\n asyncio.create_task(self.queues[message_type].put(\n stripped_message))\n else:\n self.logger.error('Unhandled message: %s', stripped_message)\n\n async def run(self) ->None:\n assert self.initialized\n self.logger.info('Starting runner.')\n self.run_task = asyncio.create_task(self._run())\n try:\n await self.run_task\n except asyncio.CancelledError:\n self.logger.info('Runner cancelled.')\n\n async def send(self, message: AsciiBytes, _drain=True) ->None:\n assert self.initialized\n self.logger.info('Sending message to MDB board: %s', message)\n self.serial_writer.write(message)\n if _drain:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n\n def _read_internal(self, prefix: str) ->asyncio.Future:\n assert len(prefix) == 1\n if prefix in self.queues or prefix in self.waiters:\n raise RuntimeError(\n f'Tried to wait for message type {prefix} when there was already a queue listening to all messages'\n )\n fut = asyncio.get_running_loop().create_future()\n self.waiters[prefix] = fut\n return fut\n\n async def sendread(self, message: AsciiBytes, prefix: str) ->str:\n await self.send(message, _drain=False)\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await self.serial_writer.drain()\n self.logger.info('Sent message to MDB board: %s', message)\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\n 'Got cancelled while sending message %r or waiting on prefix %s'\n , message, prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n async def read(self, prefix: str) ->str:\n fut = self._read_internal(prefix)\n self.logger.info('Waiting for a single message of type: %s', prefix)\n try:\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning('Got cancelled while waiting for message on %s'\n , prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info('Got message: %s', fut.result())\n return fut.result()\n\n def listen(self, prefix: str) ->asyncio.Queue:\n assert len(prefix) == 1\n if prefix in self.waiters or prefix in self.queues:\n raise RuntimeError(\n f'Tried to get a queue for message type {prefix} when there was already someonewaiting on it.'\n )\n self.queues[prefix] = asyncio.Queue()\n self.logger.info('Polling for messages of type: %s', prefix)\n return self.queues[prefix]\n\n def unlisten(self, prefix: str) ->None:\n \"\"\"Stops pushing messages with this prefix character to a Queue.\"\"\"\n assert len(prefix) == 1\n del self.queues[prefix]\n self.logger.info('No longer polling for message type: %s', prefix)\n\n async def shutdown(self):\n if not self.initialized:\n return\n self.logger.info('Shutting down.')\n if self.run_task:\n self.run_task.cancel()\n self.run_task = None\n for fut in self.waiters.values():\n fut.cancel()\n self.serial_writer.close()\n await self.serial_writer.wait_closed()\n self.logger.info('Shutdown complete.')\n self.initialized = False\n\n\n__all__ = USBHandler, to_ascii\n", "step-5": "import asyncio\nimport logging\nimport os.path\nfrom serial_asyncio import open_serial_connection\nfrom typing import NewType, cast\n\n# Type annotations and converters\nAsciiBytes = NewType('AsciiBytes', bytes)\n\n\ndef to_ascii(s: str) -> AsciiBytes:\n if s[-1] != '\\n':\n s += '\\n'\n return cast(AsciiBytes, s.encode(encoding='ascii'))\n\n\nclass USBHandler:\n \"\"\"Reads from and writes to the underlying MDB USB board.\n\n Users can either obtain an asyncio.Queue that the handler will push\n messages to using listen(), or it can ask for a one-time read using read().\n For sending messages, if no reply is expected or there is a poller waiting\n for any response, send() can be used, otherwise sendread() will send the\n message and wait for a one-time reply. Having a listener and waiting for a\n single message at the same time is an error. See the Sniffer class for an\n example of both usages.\"\"\"\n\n def __init__(self):\n self.initialized = False\n self.run_task = None\n self.waiters = {}\n self.queues = {}\n self.logger = logging.getLogger('.'.join((__name__,\n self.__class__.__name__)))\n\n async def initialize(self, device_path: str) -> None:\n assert os.path.exists(device_path)\n self.logger.info(\"Initializing USBReader.\")\n self.logger.debug(\"Opening serial connection to device at %s\",\n device_path)\n self.serial_reader, self.serial_writer = \\\n await open_serial_connection(url=device_path, baudrate=115200)\n self.initialized = True\n self.logger.debug(\"Connected to serial device at %s.\", device_path)\n\n async def _run(self) -> None:\n while True:\n message = await self.serial_reader.readuntil(separator=b'\\r\\n')\n stripped_message = message.decode(encoding='ascii').rstrip('\\n\\r')\n self.logger.debug(\"Read '%s' from MDB board.\", stripped_message)\n message_type = stripped_message[0]\n if message_type in self.waiters:\n self.waiters[message_type].set_result(stripped_message)\n del self.waiters[message_type]\n # Lets the waiter run.\n await asyncio.sleep(0)\n elif message_type in self.queues:\n try:\n self.queues[message_type].put_nowait(stripped_message)\n except asyncio.QueueFull:\n self.logger.warning('Queue for message type %s is full. '\n 'Scheduling the put in another task.',\n message_type)\n asyncio.create_task(\n self.queues[message_type].put(stripped_message))\n else:\n self.logger.error(\"Unhandled message: %s\", stripped_message)\n\n async def run(self) -> None:\n assert self.initialized\n self.logger.info('Starting runner.')\n self.run_task = asyncio.create_task(self._run())\n try:\n await self.run_task\n except asyncio.CancelledError:\n self.logger.info('Runner cancelled.')\n\n async def send(self, message: AsciiBytes, _drain=True) -> None:\n assert self.initialized\n self.logger.info(\"Sending message to MDB board: %s\", message)\n self.serial_writer.write(message)\n if _drain:\n await self.serial_writer.drain()\n self.logger.info(\"Sent message to MDB board: %s\", message)\n\n def _read_internal(self, prefix: str) -> asyncio.Future:\n assert len(prefix) == 1\n if prefix in self.queues or prefix in self.waiters:\n raise RuntimeError(f\"Tried to wait for message type {prefix}\"\n \" when there was already a queue listening to \"\n \"all messages\")\n fut = asyncio.get_running_loop().create_future()\n self.waiters[prefix] = fut\n return fut\n\n async def sendread(self, message: AsciiBytes, prefix: str) -> str:\n await self.send(message, _drain=False)\n fut = self._read_internal(prefix)\n self.logger.info(\"Waiting for a single message of type: %s\", prefix)\n try:\n await self.serial_writer.drain()\n self.logger.info(\"Sent message to MDB board: %s\", message)\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\"Got cancelled while sending message %r or \"\n \"waiting on prefix %s\", message, prefix,\n exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info(\"Got message: %s\", fut.result())\n return fut.result()\n\n async def read(self, prefix: str) -> str:\n fut = self._read_internal(prefix)\n self.logger.info(\"Waiting for a single message of type: %s\", prefix)\n try:\n await fut\n except asyncio.CancelledError as e:\n self.logger.warning(\"Got cancelled while waiting for message on \"\n \"%s\", prefix, exc_info=e)\n del self.waiters[prefix]\n raise\n self.logger.info(\"Got message: %s\", fut.result())\n return fut.result()\n\n def listen(self, prefix: str) -> asyncio.Queue:\n assert len(prefix) == 1\n if prefix in self.waiters or prefix in self.queues:\n raise RuntimeError(\"Tried to get a queue for message type \"\n f\"{prefix} when there was already someone\"\n \"waiting on it.\")\n self.queues[prefix] = asyncio.Queue()\n self.logger.info(\"Polling for messages of type: %s\", prefix)\n return self.queues[prefix]\n\n def unlisten(self, prefix: str) -> None:\n \"\"\"Stops pushing messages with this prefix character to a Queue.\"\"\"\n assert len(prefix) == 1\n del self.queues[prefix]\n self.logger.info(\"No longer polling for message type: %s\", prefix)\n\n async def shutdown(self):\n if not self.initialized:\n return\n self.logger.info(\"Shutting down.\")\n if self.run_task:\n self.run_task.cancel()\n self.run_task = None\n for fut in self.waiters.values():\n fut.cancel()\n self.serial_writer.close()\n await self.serial_writer.wait_closed()\n self.logger.info(\"Shutdown complete.\")\n self.initialized = False\n\n\n__all__ = (USBHandler, to_ascii)\n", "step-ids": [ 3, 7, 8, 9, 10 ] }
[ 3, 7, 8, 9, 10 ]
import pandas as pd import numpy as np import matplotlib.pylab as plt from matplotlib.pylab import rcParams #from pandas import datetime #from pandas.tseries.t from sklearn.preprocessing import MinMaxScaler #from statsmodels.tsa.seasonal import seasonal_decompose from pandas import Series data = pd.read_csv( r'E:\Thesis Content\ukdale\house_1\channel_7.dat', delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.int64, 'KWh': np.float64}, index_col='date' ) #initially KWh column contains Ws in 6 second interval, later it will be converted to KWh data.index = pd.to_datetime((data.index.values), unit='s') #data.head(5) #before_process = data after_process=data #before_process = before_process.resample('d').sum() #before_process['KWh'] = round(((before_process.KWh * 6) / (1000 * 3600)) , 3) #before_process.head(5) after_process = after_process.drop(after_process[(after_process.KWh < 10) | (after_process.KWh > 4000) ].index) after_process = after_process.resample('d').sum() #after_process.head(5) after_process['KWh'] = round(((after_process.KWh * 6) / (1000 * 3600)) , 3) after_process.head(5) after_process.to_csv(path_or_buf=r'E:\Thesis Content\ukdale CSV\Without Noise\Tvday.csv', sep = ',' , index_label = 'date') #rcParams['figure.figsize'] = 16, 10 #plt.subplot(2, 1, 1) #plt.scatter(before_process.index ,before_process['KWh'].values, s=10) #plt.title('Before and After Pre Processing') #plt.ylabel('KWh') #plt.subplot(2, 1, 2) #plt.scatter(after_process.index ,after_process['KWh'].values, s=10) #plt.xlabel('Date') #plt.ylabel('KWh') #plt.show()
normal
{ "blob_id": "19c0c3156488ce99316ce40f32e84e476b7afdac", "index": 2754, "step-1": "<mask token>\n", "step-2": "<mask token>\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-3": "<mask token>\ndata = pd.read_csv('E:\\\\Thesis Content\\\\ukdale\\\\house_1\\\\channel_7.dat',\n delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.\n int64, 'KWh': np.float64}, index_col='date')\ndata.index = pd.to_datetime(data.index.values, unit='s')\nafter_process = data\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) |\n (after_process.KWh > 4000)].index)\nafter_process = after_process.resample('d').sum()\nafter_process['KWh'] = round(after_process.KWh * 6 / (1000 * 3600), 3)\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-4": "import pandas as pd\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom matplotlib.pylab import rcParams\nfrom sklearn.preprocessing import MinMaxScaler\nfrom pandas import Series\ndata = pd.read_csv('E:\\\\Thesis Content\\\\ukdale\\\\house_1\\\\channel_7.dat',\n delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.\n int64, 'KWh': np.float64}, index_col='date')\ndata.index = pd.to_datetime(data.index.values, unit='s')\nafter_process = data\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) |\n (after_process.KWh > 4000)].index)\nafter_process = after_process.resample('d').sum()\nafter_process['KWh'] = round(after_process.KWh * 6 / (1000 * 3600), 3)\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-5": "import pandas as pd\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom matplotlib.pylab import rcParams\n#from pandas import datetime\n#from pandas.tseries.t\nfrom sklearn.preprocessing import MinMaxScaler\n#from statsmodels.tsa.seasonal import seasonal_decompose\nfrom pandas import Series\n\ndata = pd.read_csv(\n r'E:\\Thesis Content\\ukdale\\house_1\\channel_7.dat',\n delimiter=' ',\n header=None,\n names=['date', 'KWh'],\n dtype={'date': np.int64, 'KWh': np.float64},\n index_col='date'\n ) #initially KWh column contains Ws in 6 second interval, later it will be converted to KWh\n\ndata.index = pd.to_datetime((data.index.values), unit='s')\n#data.head(5)\n#before_process = data\nafter_process=data\n#before_process = before_process.resample('d').sum()\n#before_process['KWh'] = round(((before_process.KWh * 6) / (1000 * 3600)) , 3)\n#before_process.head(5)\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) | (after_process.KWh > 4000) ].index)\nafter_process = after_process.resample('d').sum()\n#after_process.head(5)\nafter_process['KWh'] = round(((after_process.KWh * 6) / (1000 * 3600)) , 3)\nafter_process.head(5)\n\nafter_process.to_csv(path_or_buf=r'E:\\Thesis Content\\ukdale CSV\\Without Noise\\Tvday.csv', sep = ',' , index_label = 'date')\n\n\n#rcParams['figure.figsize'] = 16, 10\n#plt.subplot(2, 1, 1)\n#plt.scatter(before_process.index ,before_process['KWh'].values, s=10)\n#plt.title('Before and After Pre Processing')\n#plt.ylabel('KWh')\n#plt.subplot(2, 1, 2)\n#plt.scatter(after_process.index ,after_process['KWh'].values, s=10)\n#plt.xlabel('Date')\n#plt.ylabel('KWh')\n#plt.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
letters = ['a', 'b', 'c'] def delete_head(letters): del letters[0] print letters print delete_head(letters)
normal
{ "blob_id": "e0c10dfa4074b0de4d78fc78a6f373074ef4dadd", "index": 3971, "step-1": "letters = ['a', 'b', 'c']\ndef delete_head(letters):\n\tdel letters[0]\n\tprint letters\nprint delete_head(letters)\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(int(abs(K))) if K.is_integer() else print('IMPOSSIBLE') <|reserved_special_token_1|> A, B = map(int, input().split()) K = (B ** 2 - A ** 2) / (2 * A - 2 * B) print(int(abs(K))) if K.is_integer() else print('IMPOSSIBLE')
flexible
{ "blob_id": "36a7d3ed28348e56e54ce4bfa937363a64ee718f", "index": 6981, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(int(abs(K))) if K.is_integer() else print('IMPOSSIBLE')\n", "step-3": "A, B = map(int, input().split())\nK = (B ** 2 - A ** 2) / (2 * A - 2 * B)\nprint(int(abs(K))) if K.is_integer() else print('IMPOSSIBLE')\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#!/usr/bin/env python import os import sys import click import logging from signal import signal, SIGPIPE, SIG_DFL from ..helpers.file_helpers import return_filehandle from ..helpers.sequence_helpers import get_seqio_fastq_record signal(SIGPIPE, SIG_DFL) def subset_fastq(fastq, subset): '''Subset FASTQ file. Pick 1/subset reads. If reverse, fasta <= length ''' seqio_in = sys.stdin fh = '' count = 0 total = 0 if not fastq: # Check STDIN for record in get_seqio_fastq_record(seqio_in): # get SeqIO record count += 1 if count == subset: count = 0 total += 1 sys.stdout.write(record.format('fastq')) sys.stdout.flush() else: # Check FASTA fh = return_filehandle(fastq) for record in get_seqio_fastq_record(fh): # Get SeqIO record count += 1 if count == subset: count = 0 total += 1 sys.stdout.write(record.format('fastq')) sys.stdout.flush() return 'Output {} reads'.format(total) @click.command() @click.option('--fastq', help='''FASTQ file to subset, can be compressed''') @click.option('--subset', metavar = '<INT>', help='''Take every N reads (default:10)''', default=10) @click.option('--log_file', metavar = '<FILE>', default='./subset_fastq.log', help='''File to write log to. (default:./subset_fastq.log)''') @click.option('--log_level', default='INFO', help='''Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)''') def main(fastq, subset, log_file, log_level): '''Subset FASTQ Files. cat input*.fastq | subset_fastq.py or subset_fastq.py --fastq input.fastq ''' log_level = getattr(logging, log_level.upper(), logging.INFO) msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s' logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M', level=log_level) log_handler = logging.FileHandler(log_file, mode='w') formatter = logging.Formatter(msg_format) log_handler.setFormatter(formatter) logger = logging.getLogger('subset_fastq') logger.addHandler(log_handler) if fastq: fastq = os.path.abspath(fastq) logger.info(subset_fastq(fastq, subset)) if __name__ == '__main__': main()
normal
{ "blob_id": "873a53983e3aeb66bd290450fb9c15a552bd163c", "index": 4017, "step-1": "<mask token>\n\n\[email protected]()\[email protected]('--fastq', help='FASTQ file to subset, can be compressed')\[email protected]('--subset', metavar='<INT>', help=\n 'Take every N reads (default:10)', default=10)\[email protected]('--log_file', metavar='<FILE>', default='./subset_fastq.log',\n help='File to write log to. (default:./subset_fastq.log)')\[email protected]('--log_level', default='INFO', help=\n 'Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)')\ndef main(fastq, subset, log_file, log_level):\n \"\"\"Subset FASTQ Files.\n\n cat input*.fastq | subset_fastq.py\n\n or\n\n subset_fastq.py --fastq input.fastq\n \"\"\"\n log_level = getattr(logging, log_level.upper(), logging.INFO)\n msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s'\n logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M', level=\n log_level)\n log_handler = logging.FileHandler(log_file, mode='w')\n formatter = logging.Formatter(msg_format)\n log_handler.setFormatter(formatter)\n logger = logging.getLogger('subset_fastq')\n logger.addHandler(log_handler)\n if fastq:\n fastq = os.path.abspath(fastq)\n logger.info(subset_fastq(fastq, subset))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef subset_fastq(fastq, subset):\n \"\"\"Subset FASTQ file. Pick 1/subset reads.\n\n If reverse, fasta <= length\n \"\"\"\n seqio_in = sys.stdin\n fh = ''\n count = 0\n total = 0\n if not fastq:\n for record in get_seqio_fastq_record(seqio_in):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n else:\n fh = return_filehandle(fastq)\n for record in get_seqio_fastq_record(fh):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n return 'Output {} reads'.format(total)\n\n\[email protected]()\[email protected]('--fastq', help='FASTQ file to subset, can be compressed')\[email protected]('--subset', metavar='<INT>', help=\n 'Take every N reads (default:10)', default=10)\[email protected]('--log_file', metavar='<FILE>', default='./subset_fastq.log',\n help='File to write log to. (default:./subset_fastq.log)')\[email protected]('--log_level', default='INFO', help=\n 'Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)')\ndef main(fastq, subset, log_file, log_level):\n \"\"\"Subset FASTQ Files.\n\n cat input*.fastq | subset_fastq.py\n\n or\n\n subset_fastq.py --fastq input.fastq\n \"\"\"\n log_level = getattr(logging, log_level.upper(), logging.INFO)\n msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s'\n logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M', level=\n log_level)\n log_handler = logging.FileHandler(log_file, mode='w')\n formatter = logging.Formatter(msg_format)\n log_handler.setFormatter(formatter)\n logger = logging.getLogger('subset_fastq')\n logger.addHandler(log_handler)\n if fastq:\n fastq = os.path.abspath(fastq)\n logger.info(subset_fastq(fastq, subset))\n\n\n<mask token>\n", "step-3": "<mask token>\nsignal(SIGPIPE, SIG_DFL)\n\n\ndef subset_fastq(fastq, subset):\n \"\"\"Subset FASTQ file. Pick 1/subset reads.\n\n If reverse, fasta <= length\n \"\"\"\n seqio_in = sys.stdin\n fh = ''\n count = 0\n total = 0\n if not fastq:\n for record in get_seqio_fastq_record(seqio_in):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n else:\n fh = return_filehandle(fastq)\n for record in get_seqio_fastq_record(fh):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n return 'Output {} reads'.format(total)\n\n\[email protected]()\[email protected]('--fastq', help='FASTQ file to subset, can be compressed')\[email protected]('--subset', metavar='<INT>', help=\n 'Take every N reads (default:10)', default=10)\[email protected]('--log_file', metavar='<FILE>', default='./subset_fastq.log',\n help='File to write log to. (default:./subset_fastq.log)')\[email protected]('--log_level', default='INFO', help=\n 'Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)')\ndef main(fastq, subset, log_file, log_level):\n \"\"\"Subset FASTQ Files.\n\n cat input*.fastq | subset_fastq.py\n\n or\n\n subset_fastq.py --fastq input.fastq\n \"\"\"\n log_level = getattr(logging, log_level.upper(), logging.INFO)\n msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s'\n logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M', level=\n log_level)\n log_handler = logging.FileHandler(log_file, mode='w')\n formatter = logging.Formatter(msg_format)\n log_handler.setFormatter(formatter)\n logger = logging.getLogger('subset_fastq')\n logger.addHandler(log_handler)\n if fastq:\n fastq = os.path.abspath(fastq)\n logger.info(subset_fastq(fastq, subset))\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import os\nimport sys\nimport click\nimport logging\nfrom signal import signal, SIGPIPE, SIG_DFL\nfrom ..helpers.file_helpers import return_filehandle\nfrom ..helpers.sequence_helpers import get_seqio_fastq_record\nsignal(SIGPIPE, SIG_DFL)\n\n\ndef subset_fastq(fastq, subset):\n \"\"\"Subset FASTQ file. Pick 1/subset reads.\n\n If reverse, fasta <= length\n \"\"\"\n seqio_in = sys.stdin\n fh = ''\n count = 0\n total = 0\n if not fastq:\n for record in get_seqio_fastq_record(seqio_in):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n else:\n fh = return_filehandle(fastq)\n for record in get_seqio_fastq_record(fh):\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n return 'Output {} reads'.format(total)\n\n\[email protected]()\[email protected]('--fastq', help='FASTQ file to subset, can be compressed')\[email protected]('--subset', metavar='<INT>', help=\n 'Take every N reads (default:10)', default=10)\[email protected]('--log_file', metavar='<FILE>', default='./subset_fastq.log',\n help='File to write log to. (default:./subset_fastq.log)')\[email protected]('--log_level', default='INFO', help=\n 'Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)')\ndef main(fastq, subset, log_file, log_level):\n \"\"\"Subset FASTQ Files.\n\n cat input*.fastq | subset_fastq.py\n\n or\n\n subset_fastq.py --fastq input.fastq\n \"\"\"\n log_level = getattr(logging, log_level.upper(), logging.INFO)\n msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s'\n logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M', level=\n log_level)\n log_handler = logging.FileHandler(log_file, mode='w')\n formatter = logging.Formatter(msg_format)\n log_handler.setFormatter(formatter)\n logger = logging.getLogger('subset_fastq')\n logger.addHandler(log_handler)\n if fastq:\n fastq = os.path.abspath(fastq)\n logger.info(subset_fastq(fastq, subset))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n\nimport os\nimport sys\nimport click\nimport logging\nfrom signal import signal, SIGPIPE, SIG_DFL\nfrom ..helpers.file_helpers import return_filehandle\nfrom ..helpers.sequence_helpers import get_seqio_fastq_record\n\nsignal(SIGPIPE, SIG_DFL)\n\n\ndef subset_fastq(fastq, subset):\n '''Subset FASTQ file. Pick 1/subset reads.\n\n If reverse, fasta <= length\n '''\n seqio_in = sys.stdin\n fh = ''\n count = 0\n total = 0\n if not fastq: # Check STDIN\n for record in get_seqio_fastq_record(seqio_in): # get SeqIO record\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n else: # Check FASTA\n fh = return_filehandle(fastq)\n for record in get_seqio_fastq_record(fh): # Get SeqIO record\n count += 1\n if count == subset:\n count = 0\n total += 1\n sys.stdout.write(record.format('fastq'))\n sys.stdout.flush()\n return 'Output {} reads'.format(total)\n\n\[email protected]() \[email protected]('--fastq',\n help='''FASTQ file to subset, can be compressed''')\[email protected]('--subset', metavar = '<INT>',\n help='''Take every N reads (default:10)''', default=10)\[email protected]('--log_file', metavar = '<FILE>', default='./subset_fastq.log',\n help='''File to write log to. (default:./subset_fastq.log)''')\[email protected]('--log_level', default='INFO',\n help='''Log level: DEBUG, INFO, WARNING, ERROR, CRITICAL (default:INFO)''')\ndef main(fastq, subset, log_file, log_level):\n '''Subset FASTQ Files.\n\n cat input*.fastq | subset_fastq.py\n\n or\n\n subset_fastq.py --fastq input.fastq\n '''\n log_level = getattr(logging, log_level.upper(), logging.INFO)\n msg_format = '%(asctime)s|%(name)s|[%(levelname)s]: %(message)s'\n logging.basicConfig(format=msg_format, datefmt='%m-%d %H:%M',\n level=log_level)\n log_handler = logging.FileHandler(log_file, mode='w')\n formatter = logging.Formatter(msg_format)\n log_handler.setFormatter(formatter)\n logger = logging.getLogger('subset_fastq')\n logger.addHandler(log_handler)\n if fastq:\n fastq = os.path.abspath(fastq)\n logger.info(subset_fastq(fastq, subset))\n\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def auth(role): from core import admin_view, student_view, teacher_view def deco(func): def wrapper(*args, **kwargs): if role == 'admin': if admin_view.admin_user == None: admin_view.login() else: res = func(*args, **kwargs) return res if role == 'student': if student_view.student_user == None: student_view.login() else: res = func(*args, **kwargs) return res if role == 'teacher': if teacher_view.teacher_user == None: teacher_view.login() else: res = func(*args, **kwargs) return res return wrapper return deco <|reserved_special_token_1|> # 多角色认证装饰器 def auth(role): from core import admin_view,student_view,teacher_view def deco(func): def wrapper(*args,**kwargs): if role == 'admin': if admin_view.admin_user == None: admin_view.login() else: res = func(*args,**kwargs) return res if role == 'student': if student_view.student_user == None: student_view.login() else: res = func(*args,**kwargs) return res if role == 'teacher': if teacher_view.teacher_user == None: teacher_view.login() else: res = func(*args,**kwargs) return res return wrapper return deco
flexible
{ "blob_id": "e247ffb5b6e4319ff17d0b8ae9f67e10c282c4ff", "index": 7348, "step-1": "<mask token>\n", "step-2": "def auth(role):\n from core import admin_view, student_view, teacher_view\n\n def deco(func):\n\n def wrapper(*args, **kwargs):\n if role == 'admin':\n if admin_view.admin_user == None:\n admin_view.login()\n else:\n res = func(*args, **kwargs)\n return res\n if role == 'student':\n if student_view.student_user == None:\n student_view.login()\n else:\n res = func(*args, **kwargs)\n return res\n if role == 'teacher':\n if teacher_view.teacher_user == None:\n teacher_view.login()\n else:\n res = func(*args, **kwargs)\n return res\n return wrapper\n return deco\n", "step-3": "\n# 多角色认证装饰器\n\ndef auth(role):\n\n from core import admin_view,student_view,teacher_view\n def deco(func):\n def wrapper(*args,**kwargs):\n\n if role == 'admin':\n if admin_view.admin_user == None:\n admin_view.login()\n else:\n res = func(*args,**kwargs)\n return res\n\n if role == 'student':\n if student_view.student_user == None:\n student_view.login()\n else:\n res = func(*args,**kwargs)\n return res\n\n\n if role == 'teacher':\n if teacher_view.teacher_user == None:\n teacher_view.login()\n else:\n res = func(*args,**kwargs)\n return res\n\n\n return wrapper\n return deco", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if os.path.exists(DATA_DIR): override = input('Data exist, override (delete and re-parse)? (Y/n): ') if override.lower() == 'y': shutil.rmtree(DATA_DIR) else: parse = False os.makedirs(DATA_DIR, exist_ok=True) <|reserved_special_token_0|> if parse: with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream: raw_papers = stream.readlines() papers = [paper.strip().split('##SENT##') for paper in raw_papers] with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r' ) as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DID)) print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm')) print(stream.readlines()[17]) with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DIR)) print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm')) print(stream.readlines()[30]) print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS) print('Converting src to raw text...') for i, paper in tqdm(enumerate(papers), total=len(papers)): did = f'{i + 1}' text_file = os.path.join(DATA_DIR, did) with open(text_file, 'w') as stream: stream.write('\n'.join(paper)) print('Clean up stuff that might influence XML parsing...') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/</&lt;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/&/&amp;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/>/&gt;/g"') print('Create cluster and docsent files...') os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}') if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0: print( 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl' ) print("Currently, it has bug and can't create file") os.system( f'find {DATA_DIR} -name "*.cluster" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) os.system( f'find {DATA_DIR} -name "*.docsent" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) <|reserved_special_token_0|> if os.path.exists(OUTPUT_DIR): override = input('Result exist, do you want to re-run? (Y/n): ') if override.lower() == 'y': shutil.rmtree(OUTPUT_DIR) os.makedirs(OUTPUT_DIR, exist_ok=True) <|reserved_special_token_0|> os.system( f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}' ) <|reserved_special_token_1|> <|reserved_special_token_0|> DATAPATH = '../../../data/test' MEAD_DIR = os.path.abspath('mead') MEAD_DATA_PATH = f'{MEAD_DIR}/data' MEAD_BIN = f'{MEAD_DIR}/bin' MEAD_LIB = f'{MEAD_DIR}/lib' MEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting' MEAD_DID = f'{MEAD_DIR}/did' TARGET = 'MEAD_TEST' DATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET) parse = True if os.path.exists(DATA_DIR): override = input('Data exist, override (delete and re-parse)? (Y/n): ') if override.lower() == 'y': shutil.rmtree(DATA_DIR) else: parse = False os.makedirs(DATA_DIR, exist_ok=True) cluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster') config_file = os.path.join(DATA_DIR, 'MEAD_TEST.config') CONFIG = f"""<?xml version='1.0' encoding='utf-8'?> <MEAD-CONFIG LANG="ENG" TARGET="MEAD_TEST" CLUSTER-PATH="{DATA_DIR}" DOC-DIRECTORY="{DATA_DIR}/docsent"> <FEATURE-SET BASE-DIRECTORY="{DATA_DIR}/feature"> <FEATURE NAME="Position" SCRIPT="{MEAD_BIN}/feature-scripts/Position.pl" /> <FEATURE NAME="Length" SCRIPT="{MEAD_BIN}/feature-scripts/Length.pl" /> <FEATURE NAME="Centroid" SCRIPT="{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG" /> </FEATURE-SET> <CLASSIFIER COMMAND-LINE="{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0" SYSTEM="MEADORIG" /> <COMPRESSION BASIS="sentences" PERCENT="1" /> </MEAD-CONFIG> """ if parse: with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream: raw_papers = stream.readlines() papers = [paper.strip().split('##SENT##') for paper in raw_papers] with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r' ) as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DID)) print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm')) print(stream.readlines()[17]) with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DIR)) print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm')) print(stream.readlines()[30]) print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS) print('Converting src to raw text...') for i, paper in tqdm(enumerate(papers), total=len(papers)): did = f'{i + 1}' text_file = os.path.join(DATA_DIR, did) with open(text_file, 'w') as stream: stream.write('\n'.join(paper)) print('Clean up stuff that might influence XML parsing...') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/</&lt;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/&/&amp;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/>/&gt;/g"') print('Create cluster and docsent files...') os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}') if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0: print( 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl' ) print("Currently, it has bug and can't create file") os.system( f'find {DATA_DIR} -name "*.cluster" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) os.system( f'find {DATA_DIR} -name "*.docsent" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) OUTPUT_PATH = '../output' OUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead') if os.path.exists(OUTPUT_DIR): override = input('Result exist, do you want to re-run? (Y/n): ') if override.lower() == 'y': shutil.rmtree(OUTPUT_DIR) os.makedirs(OUTPUT_DIR, exist_ok=True) summary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary') extract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract') shared_parameters = f'-sentences -percent {PERCENT}' os.system( f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}' ) <|reserved_special_token_1|> import os import shutil from tqdm import tqdm from pathlib import Path from eval_mead import PERCENT DATAPATH = '../../../data/test' MEAD_DIR = os.path.abspath('mead') MEAD_DATA_PATH = f'{MEAD_DIR}/data' MEAD_BIN = f'{MEAD_DIR}/bin' MEAD_LIB = f'{MEAD_DIR}/lib' MEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting' MEAD_DID = f'{MEAD_DIR}/did' TARGET = 'MEAD_TEST' DATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET) parse = True if os.path.exists(DATA_DIR): override = input('Data exist, override (delete and re-parse)? (Y/n): ') if override.lower() == 'y': shutil.rmtree(DATA_DIR) else: parse = False os.makedirs(DATA_DIR, exist_ok=True) cluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster') config_file = os.path.join(DATA_DIR, 'MEAD_TEST.config') CONFIG = f"""<?xml version='1.0' encoding='utf-8'?> <MEAD-CONFIG LANG="ENG" TARGET="MEAD_TEST" CLUSTER-PATH="{DATA_DIR}" DOC-DIRECTORY="{DATA_DIR}/docsent"> <FEATURE-SET BASE-DIRECTORY="{DATA_DIR}/feature"> <FEATURE NAME="Position" SCRIPT="{MEAD_BIN}/feature-scripts/Position.pl" /> <FEATURE NAME="Length" SCRIPT="{MEAD_BIN}/feature-scripts/Length.pl" /> <FEATURE NAME="Centroid" SCRIPT="{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG" /> </FEATURE-SET> <CLASSIFIER COMMAND-LINE="{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0" SYSTEM="MEADORIG" /> <COMPRESSION BASIS="sentences" PERCENT="1" /> </MEAD-CONFIG> """ if parse: with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream: raw_papers = stream.readlines() papers = [paper.strip().split('##SENT##') for paper in raw_papers] with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r' ) as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DID)) print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm')) print(stream.readlines()[17]) with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream: print( 'Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DIR)) print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm')) print(stream.readlines()[30]) print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS) print('Converting src to raw text...') for i, paper in tqdm(enumerate(papers), total=len(papers)): did = f'{i + 1}' text_file = os.path.join(DATA_DIR, did) with open(text_file, 'w') as stream: stream.write('\n'.join(paper)) print('Clean up stuff that might influence XML parsing...') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/</&lt;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/&/&amp;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/>/&gt;/g"') print('Create cluster and docsent files...') os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}') if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0: print( 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl' ) print("Currently, it has bug and can't create file") os.system( f'find {DATA_DIR} -name "*.cluster" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) os.system( f'find {DATA_DIR} -name "*.docsent" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"' ) OUTPUT_PATH = '../output' OUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead') if os.path.exists(OUTPUT_DIR): override = input('Result exist, do you want to re-run? (Y/n): ') if override.lower() == 'y': shutil.rmtree(OUTPUT_DIR) os.makedirs(OUTPUT_DIR, exist_ok=True) summary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary') extract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract') shared_parameters = f'-sentences -percent {PERCENT}' os.system( f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}' ) <|reserved_special_token_1|> import os import shutil from tqdm import tqdm from pathlib import Path from eval_mead import PERCENT DATAPATH = '../../../data/test' # MEAD_DIR = 'mead' MEAD_DIR = os.path.abspath('mead') MEAD_DATA_PATH = f'{MEAD_DIR}/data' MEAD_BIN = f'{MEAD_DIR}/bin' MEAD_LIB = f'{MEAD_DIR}/lib' MEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting' MEAD_DID = f'{MEAD_DIR}/did' TARGET = 'MEAD_TEST' DATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET) parse = True if os.path.exists(DATA_DIR): override = input('Data exist, override (delete and re-parse)? (Y/n): ') if override.lower() == 'y': shutil.rmtree(DATA_DIR) else: parse = False os.makedirs(DATA_DIR, exist_ok=True) cluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster') config_file = os.path.join(DATA_DIR, 'MEAD_TEST.config') CONFIG = f"""<?xml version='1.0' encoding='utf-8'?> <MEAD-CONFIG LANG="ENG" TARGET="MEAD_TEST" CLUSTER-PATH="{DATA_DIR}" DOC-DIRECTORY="{DATA_DIR}/docsent"> <FEATURE-SET BASE-DIRECTORY="{DATA_DIR}/feature"> <FEATURE NAME="Position" SCRIPT="{MEAD_BIN}/feature-scripts/Position.pl" /> <FEATURE NAME="Length" SCRIPT="{MEAD_BIN}/feature-scripts/Length.pl" /> <FEATURE NAME="Centroid" SCRIPT="{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG" /> </FEATURE-SET> <CLASSIFIER COMMAND-LINE="{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0" SYSTEM="MEADORIG" /> <COMPRESSION BASIS="sentences" PERCENT="1" /> </MEAD-CONFIG> """ if parse: ### Get raw text ### with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream: raw_papers = stream.readlines() papers = [paper.strip().split('##SENT##') for paper in raw_papers] # Setting Env. Var. with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r') as stream: print('Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DID)) print('line 18 of', os.path.join( MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm')) print(stream.readlines()[17]) with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream: print('Make sure you have change the following line to absolute path to', os.path.abspath(MEAD_DIR)) print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm')) print(stream.readlines()[30]) print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS)) os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS) # Write raw text, cluster file # This stuff should be generated by text2cluster.pl # cluster_lines = [] # cluster_lines.append("<?xml version = '1.0' encoding='utf-8'?>\n") # cluster_lines.append("<CLUSTER LANG='ENG'>\n") print('Converting src to raw text...') for i, paper in tqdm(enumerate(papers), total=len(papers)): # did = f'raw_text_{i+1}.txt' did = f'{i+1}' text_file = os.path.join(DATA_DIR, did) with open(text_file, 'w') as stream: # make sure the sent split are the same as our annotation stream.write('\n'.join(paper)) # delete </ pattern or XML might break # os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/<\///g"') # https://stackoverflow.com/questions/8914435/awk-sed-how-to-remove-parentheses-in-simple-text-file # os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/[><]//g"') # https://validator.w3.org/feed/docs/error/SAXError.html # https://www.w3.org/TR/REC-xml/#dt-chardata print('Clean up stuff that might influence XML parsing...') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/</&lt;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/&/&amp;/g"') os.system(f'find {DATA_DIR} -type f | xargs sed -i "s/>/&gt;/g"') # cluster_lines.append(f"\t<D DID='{did}' />\n") # cluster_lines.append('</CLUSTER>\n') # Get docsent # with open(cluster_file, 'w') as stream: # stream.writelines(cluster_lines) # Path(cluster_file).touch() print('Create cluster and docsent files...') os.system( f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}') if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0: print( 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl') print("Currently, it has bug and can't create file") # Run config # with open(config_file, 'w') as stream: # stream.write(CONFIG) # extract_file = os.path.join(DATA_DIR, f'{TARGET}.extract') # os.system( # f'cat {config_file} | {MEAD_BIN}/driver.pl > {extract_file}') # https://askubuntu.com/questions/20414/find-and-replace-text-within-a-file-using-commands os.system( f'find {DATA_DIR} -name "*.cluster" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"') os.system( f'find {DATA_DIR} -name "*.docsent" | xargs sed -i "s/<?xml version=\'1.0\'?>/<?xml version=\'1.0\' encoding=\'utf-8\'?>/g"') OUTPUT_PATH = '../output' OUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead') if os.path.exists(OUTPUT_DIR): override = input('Result exist, do you want to re-run? (Y/n): ') if override.lower() == 'y': shutil.rmtree(OUTPUT_DIR) os.makedirs(OUTPUT_DIR, exist_ok=True) summary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary') extract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract') # compression basis is "sentence", and give PERCENT% summary shared_parameters = f'-sentences -percent {PERCENT}' # os.system( # f'perl {MEAD_BIN}/mead.pl {shared_parameters} -summary -output {summary_file} {TARGET}') os.system( f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}')
flexible
{ "blob_id": "887ae9b7c629be679bf4f5fb4311c31bff605c73", "index": 8874, "step-1": "<mask token>\n", "step-2": "<mask token>\nif os.path.exists(DATA_DIR):\n override = input('Data exist, override (delete and re-parse)? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(DATA_DIR)\n else:\n parse = False\nos.makedirs(DATA_DIR, exist_ok=True)\n<mask token>\nif parse:\n with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream:\n raw_papers = stream.readlines()\n papers = [paper.strip().split('##SENT##') for paper in raw_papers]\n with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r'\n ) as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DID))\n print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS,\n 'MEAD_ADDONS_UTIL.pm'))\n print(stream.readlines()[17])\n with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DIR))\n print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'))\n print(stream.readlines()[30])\n print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS)\n print('Converting src to raw text...')\n for i, paper in tqdm(enumerate(papers), total=len(papers)):\n did = f'{i + 1}'\n text_file = os.path.join(DATA_DIR, did)\n with open(text_file, 'w') as stream:\n stream.write('\\n'.join(paper))\n print('Clean up stuff that might influence XML parsing...')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/</&lt;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/&/&amp;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/>/&gt;/g\"')\n print('Create cluster and docsent files...')\n os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}')\n if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0:\n print(\n 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl'\n )\n print(\"Currently, it has bug and can't create file\")\n os.system(\n f'find {DATA_DIR} -name \"*.cluster\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\n os.system(\n f'find {DATA_DIR} -name \"*.docsent\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\n<mask token>\nif os.path.exists(OUTPUT_DIR):\n override = input('Result exist, do you want to re-run? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(OUTPUT_DIR)\nos.makedirs(OUTPUT_DIR, exist_ok=True)\n<mask token>\nos.system(\n f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}'\n )\n", "step-3": "<mask token>\nDATAPATH = '../../../data/test'\nMEAD_DIR = os.path.abspath('mead')\nMEAD_DATA_PATH = f'{MEAD_DIR}/data'\nMEAD_BIN = f'{MEAD_DIR}/bin'\nMEAD_LIB = f'{MEAD_DIR}/lib'\nMEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting'\nMEAD_DID = f'{MEAD_DIR}/did'\nTARGET = 'MEAD_TEST'\nDATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET)\nparse = True\nif os.path.exists(DATA_DIR):\n override = input('Data exist, override (delete and re-parse)? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(DATA_DIR)\n else:\n parse = False\nos.makedirs(DATA_DIR, exist_ok=True)\ncluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster')\nconfig_file = os.path.join(DATA_DIR, 'MEAD_TEST.config')\nCONFIG = f\"\"\"<?xml version='1.0' encoding='utf-8'?>\n<MEAD-CONFIG LANG=\"ENG\" TARGET=\"MEAD_TEST\" CLUSTER-PATH=\"{DATA_DIR}\" DOC-DIRECTORY=\"{DATA_DIR}/docsent\">\n<FEATURE-SET BASE-DIRECTORY=\"{DATA_DIR}/feature\">\n<FEATURE NAME=\"Position\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Position.pl\" />\n<FEATURE NAME=\"Length\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Length.pl\" />\n<FEATURE NAME=\"Centroid\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG\" />\n</FEATURE-SET>\n<CLASSIFIER COMMAND-LINE=\"{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0\" SYSTEM=\"MEADORIG\" />\n<COMPRESSION BASIS=\"sentences\" PERCENT=\"1\" />\n</MEAD-CONFIG>\n\"\"\"\nif parse:\n with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream:\n raw_papers = stream.readlines()\n papers = [paper.strip().split('##SENT##') for paper in raw_papers]\n with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r'\n ) as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DID))\n print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS,\n 'MEAD_ADDONS_UTIL.pm'))\n print(stream.readlines()[17])\n with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DIR))\n print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'))\n print(stream.readlines()[30])\n print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS)\n print('Converting src to raw text...')\n for i, paper in tqdm(enumerate(papers), total=len(papers)):\n did = f'{i + 1}'\n text_file = os.path.join(DATA_DIR, did)\n with open(text_file, 'w') as stream:\n stream.write('\\n'.join(paper))\n print('Clean up stuff that might influence XML parsing...')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/</&lt;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/&/&amp;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/>/&gt;/g\"')\n print('Create cluster and docsent files...')\n os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}')\n if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0:\n print(\n 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl'\n )\n print(\"Currently, it has bug and can't create file\")\n os.system(\n f'find {DATA_DIR} -name \"*.cluster\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\n os.system(\n f'find {DATA_DIR} -name \"*.docsent\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\nOUTPUT_PATH = '../output'\nOUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead')\nif os.path.exists(OUTPUT_DIR):\n override = input('Result exist, do you want to re-run? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(OUTPUT_DIR)\nos.makedirs(OUTPUT_DIR, exist_ok=True)\nsummary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary')\nextract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract')\nshared_parameters = f'-sentences -percent {PERCENT}'\nos.system(\n f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}'\n )\n", "step-4": "import os\nimport shutil\nfrom tqdm import tqdm\nfrom pathlib import Path\nfrom eval_mead import PERCENT\nDATAPATH = '../../../data/test'\nMEAD_DIR = os.path.abspath('mead')\nMEAD_DATA_PATH = f'{MEAD_DIR}/data'\nMEAD_BIN = f'{MEAD_DIR}/bin'\nMEAD_LIB = f'{MEAD_DIR}/lib'\nMEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting'\nMEAD_DID = f'{MEAD_DIR}/did'\nTARGET = 'MEAD_TEST'\nDATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET)\nparse = True\nif os.path.exists(DATA_DIR):\n override = input('Data exist, override (delete and re-parse)? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(DATA_DIR)\n else:\n parse = False\nos.makedirs(DATA_DIR, exist_ok=True)\ncluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster')\nconfig_file = os.path.join(DATA_DIR, 'MEAD_TEST.config')\nCONFIG = f\"\"\"<?xml version='1.0' encoding='utf-8'?>\n<MEAD-CONFIG LANG=\"ENG\" TARGET=\"MEAD_TEST\" CLUSTER-PATH=\"{DATA_DIR}\" DOC-DIRECTORY=\"{DATA_DIR}/docsent\">\n<FEATURE-SET BASE-DIRECTORY=\"{DATA_DIR}/feature\">\n<FEATURE NAME=\"Position\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Position.pl\" />\n<FEATURE NAME=\"Length\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Length.pl\" />\n<FEATURE NAME=\"Centroid\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG\" />\n</FEATURE-SET>\n<CLASSIFIER COMMAND-LINE=\"{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0\" SYSTEM=\"MEADORIG\" />\n<COMPRESSION BASIS=\"sentences\" PERCENT=\"1\" />\n</MEAD-CONFIG>\n\"\"\"\nif parse:\n with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream:\n raw_papers = stream.readlines()\n papers = [paper.strip().split('##SENT##') for paper in raw_papers]\n with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r'\n ) as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DID))\n print('line 18 of', os.path.join(MEAD_FORMATTING_ADDONS,\n 'MEAD_ADDONS_UTIL.pm'))\n print(stream.readlines()[17])\n with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream:\n print(\n 'Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DIR))\n print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'))\n print(stream.readlines()[30])\n print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS)\n print('Converting src to raw text...')\n for i, paper in tqdm(enumerate(papers), total=len(papers)):\n did = f'{i + 1}'\n text_file = os.path.join(DATA_DIR, did)\n with open(text_file, 'w') as stream:\n stream.write('\\n'.join(paper))\n print('Clean up stuff that might influence XML parsing...')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/</&lt;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/&/&amp;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/>/&gt;/g\"')\n print('Create cluster and docsent files...')\n os.system(f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}')\n if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0:\n print(\n 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl'\n )\n print(\"Currently, it has bug and can't create file\")\n os.system(\n f'find {DATA_DIR} -name \"*.cluster\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\n os.system(\n f'find {DATA_DIR} -name \"*.docsent\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"'\n )\nOUTPUT_PATH = '../output'\nOUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead')\nif os.path.exists(OUTPUT_DIR):\n override = input('Result exist, do you want to re-run? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(OUTPUT_DIR)\nos.makedirs(OUTPUT_DIR, exist_ok=True)\nsummary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary')\nextract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract')\nshared_parameters = f'-sentences -percent {PERCENT}'\nos.system(\n f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}'\n )\n", "step-5": "import os\nimport shutil\nfrom tqdm import tqdm\nfrom pathlib import Path\nfrom eval_mead import PERCENT\n\nDATAPATH = '../../../data/test'\n# MEAD_DIR = 'mead'\nMEAD_DIR = os.path.abspath('mead')\nMEAD_DATA_PATH = f'{MEAD_DIR}/data'\nMEAD_BIN = f'{MEAD_DIR}/bin'\nMEAD_LIB = f'{MEAD_DIR}/lib'\nMEAD_FORMATTING_ADDONS = f'{MEAD_BIN}/addons/formatting'\nMEAD_DID = f'{MEAD_DIR}/did'\nTARGET = 'MEAD_TEST'\n\n\nDATA_DIR = os.path.join(MEAD_DATA_PATH, TARGET)\nparse = True\nif os.path.exists(DATA_DIR):\n override = input('Data exist, override (delete and re-parse)? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(DATA_DIR)\n else:\n parse = False\nos.makedirs(DATA_DIR, exist_ok=True)\n\ncluster_file = os.path.join(DATA_DIR, 'MEAD_TEST.cluster')\nconfig_file = os.path.join(DATA_DIR, 'MEAD_TEST.config')\n\nCONFIG = f\"\"\"<?xml version='1.0' encoding='utf-8'?>\n<MEAD-CONFIG LANG=\"ENG\" TARGET=\"MEAD_TEST\" CLUSTER-PATH=\"{DATA_DIR}\" DOC-DIRECTORY=\"{DATA_DIR}/docsent\">\n<FEATURE-SET BASE-DIRECTORY=\"{DATA_DIR}/feature\">\n<FEATURE NAME=\"Position\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Position.pl\" />\n<FEATURE NAME=\"Length\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Length.pl\" />\n<FEATURE NAME=\"Centroid\" SCRIPT=\"{MEAD_BIN}/feature-scripts/Centroid.pl enidf ENG\" />\n</FEATURE-SET>\n<CLASSIFIER COMMAND-LINE=\"{MEAD_BIN}/default-classifier.pl Length 3 Centroid 4 Position 0\" SYSTEM=\"MEADORIG\" />\n<COMPRESSION BASIS=\"sentences\" PERCENT=\"1\" />\n</MEAD-CONFIG>\n\"\"\"\n\nif parse:\n\n ### Get raw text ###\n\n with open(os.path.join(DATAPATH, 'test.txt.src'), 'r') as stream:\n raw_papers = stream.readlines()\n\n papers = [paper.strip().split('##SENT##') for paper in raw_papers]\n\n # Setting Env. Var.\n\n with open(os.path.join(MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'), 'r') as stream:\n print('Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DID))\n print('line 18 of', os.path.join(\n MEAD_FORMATTING_ADDONS, 'MEAD_ADDONS_UTIL.pm'))\n print(stream.readlines()[17])\n with open(os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'), 'r') as stream:\n print('Make sure you have change the following line to absolute path to',\n os.path.abspath(MEAD_DIR))\n print('line 31 of', os.path.join(MEAD_LIB, 'MEAD', 'MEAD.pm'))\n print(stream.readlines()[30])\n\n print('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.system('export PERL5LIB=' + os.path.abspath(MEAD_FORMATTING_ADDONS))\n os.environ['PERL5LIB'] = os.path.abspath(MEAD_FORMATTING_ADDONS)\n\n # Write raw text, cluster file\n\n # This stuff should be generated by text2cluster.pl\n # cluster_lines = []\n # cluster_lines.append(\"<?xml version = '1.0' encoding='utf-8'?>\\n\")\n # cluster_lines.append(\"<CLUSTER LANG='ENG'>\\n\")\n\n print('Converting src to raw text...')\n for i, paper in tqdm(enumerate(papers), total=len(papers)):\n\n # did = f'raw_text_{i+1}.txt'\n did = f'{i+1}'\n text_file = os.path.join(DATA_DIR, did)\n with open(text_file, 'w') as stream:\n # make sure the sent split are the same as our annotation\n stream.write('\\n'.join(paper))\n\n # delete </ pattern or XML might break\n # os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/<\\///g\"')\n # https://stackoverflow.com/questions/8914435/awk-sed-how-to-remove-parentheses-in-simple-text-file\n # os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/[><]//g\"')\n\n # https://validator.w3.org/feed/docs/error/SAXError.html\n # https://www.w3.org/TR/REC-xml/#dt-chardata\n print('Clean up stuff that might influence XML parsing...')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/</&lt;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/&/&amp;/g\"')\n os.system(f'find {DATA_DIR} -type f | xargs sed -i \"s/>/&gt;/g\"')\n\n # cluster_lines.append(f\"\\t<D DID='{did}' />\\n\")\n # cluster_lines.append('</CLUSTER>\\n')\n\n # Get docsent\n\n # with open(cluster_file, 'w') as stream:\n # stream.writelines(cluster_lines)\n\n # Path(cluster_file).touch()\n\n print('Create cluster and docsent files...')\n os.system(\n f'perl {MEAD_FORMATTING_ADDONS}/text2cluster.pl {DATA_DIR}')\n\n if os.system(f'mv {DATA_DIR}/../{TARGET}.cluster {DATA_DIR}') != 0:\n print(\n 'MAKE SURE you have change $dir/$dir.cluster to $dir.cluster in {MEAD_FORMATTING_ADDONS}/text2cluster.pl')\n print(\"Currently, it has bug and can't create file\")\n\n # Run config\n\n # with open(config_file, 'w') as stream:\n # stream.write(CONFIG)\n\n # extract_file = os.path.join(DATA_DIR, f'{TARGET}.extract')\n # os.system(\n # f'cat {config_file} | {MEAD_BIN}/driver.pl > {extract_file}')\n\n # https://askubuntu.com/questions/20414/find-and-replace-text-within-a-file-using-commands\n os.system(\n f'find {DATA_DIR} -name \"*.cluster\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"')\n os.system(\n f'find {DATA_DIR} -name \"*.docsent\" | xargs sed -i \"s/<?xml version=\\'1.0\\'?>/<?xml version=\\'1.0\\' encoding=\\'utf-8\\'?>/g\"')\n\n\nOUTPUT_PATH = '../output'\nOUTPUT_DIR = os.path.join(OUTPUT_PATH, 'mead')\nif os.path.exists(OUTPUT_DIR):\n override = input('Result exist, do you want to re-run? (Y/n): ')\n if override.lower() == 'y':\n shutil.rmtree(OUTPUT_DIR)\nos.makedirs(OUTPUT_DIR, exist_ok=True)\n\nsummary_file = os.path.join(OUTPUT_DIR, f'{TARGET}.summary')\nextract_file = os.path.join(OUTPUT_DIR, f'{TARGET}.extract')\n# compression basis is \"sentence\", and give PERCENT% summary\nshared_parameters = f'-sentences -percent {PERCENT}'\n\n# os.system(\n# f'perl {MEAD_BIN}/mead.pl {shared_parameters} -summary -output {summary_file} {TARGET}')\nos.system(\n f'perl {MEAD_BIN}/mead.pl {shared_parameters} -extract -output {extract_file} {TARGET}')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def Hello_worlder(x): a = [] for i in range(x): a.append('Hello world') for i in a: print(i) <|reserved_special_token_0|> <|reserved_special_token_1|> def Hello_worlder(x): a = [] for i in range(x): a.append('Hello world') for i in a: print(i) Hello_worlder(10)
flexible
{ "blob_id": "4f116f3eec9198a56a047ab42ed8e018ebb794bb", "index": 3528, "step-1": "<mask token>\n", "step-2": "def Hello_worlder(x):\n a = []\n for i in range(x):\n a.append('Hello world')\n for i in a:\n print(i)\n\n\n<mask token>\n", "step-3": "def Hello_worlder(x):\n a = []\n for i in range(x):\n a.append('Hello world')\n for i in a:\n print(i)\n\n\nHello_worlder(10)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import sys import math from random import randrange from utilities import * from EffectiveThueLemma import * def getZ(value): s = str(value) p10 = 1 if s[0] != '0': p10 = 10 for i in range(1, len(s)): if s[i] == '.': break p10 *= 10 z = [] first = int(s[0] == '0') for i in range(first, len(s)): if s[i] != '.': z.append(int(s[i])) return (p10, z) def Theorem4_9(n, b, R): if R >= n: raise ValueError("r* >= n") if b < 0 or b >= n: raise ValueError("b < 0 or b >= n") r, rr = n, b # r0, r1 s, ss = 1, 0 # s0, s1 t, tt = 0, 1 # t0, t1 if r < R: return (r, s, t) if rr < R: return (rr, ss, tt) while rr != 0: q = r/rr rrr = r % rr r, s, t, rr, ss, tt = rr, ss, tt, rrr, (s-ss*q), (t-tt*q) if rr < R: return (rr, ss, tt) return None def gcd(a, b): if b == 0: return a return gcd(b, a%b) def RationalReconstruction(value, M = int(1e9)): # check if value is already an integer if value.is_integer(): return (value, 1) # get additional 10^x and z array p10, z = getZ(value) print(z) k = len(z) # 1. Compute n = 10^k and b = sum(z(i-1) * 10^(k-i)) with i = 1..k n = pow(10, k) b = 0 for i in range(1, k+1): b += z[i-1] * pow(10, k-i) # make sure 10^k > 2(M^2) while M >= 10 and 2*(M**2) >= n: M /= 10 # 2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b) # and then apply Theorem 4.9 with n, b, and r* = t* = M to obtain the values r', s', t'. EEA(n, b) print(n, b, M) rr, ss, tt = Theorem4_9(n, b, M) # 3. Output the rational number -s'/t' if tt < 0: ss, tt = -ss, -tt ss *= p10 g = gcd(abs(ss), abs(tt)) ss /= g tt /= g return (-ss, tt) def main(): if (len(sys.argv) < 2): return value = float(sys.argv[1]) M = int(1e9) if len(sys.argv) > 2: M = int(sys.argv[2]) p, q = RationalReconstruction(value, M) print("p = %ld" %(p)) print("q = %ld" %(q)) print("p/q = %.20lf" %(1.0*p/q)) print("val = %.20lf" %(value)) main()
normal
{ "blob_id": "2b3a7d0c28d1bf7d4400b0e5558b0527a96af781", "index": 7658, "step-1": "<mask token>\n\n\ndef Theorem4_9(n, b, R):\n if R >= n:\n raise ValueError('r* >= n')\n if b < 0 or b >= n:\n raise ValueError('b < 0 or b >= n')\n r, rr = n, b\n s, ss = 1, 0\n t, tt = 0, 1\n if r < R:\n return r, s, t\n if rr < R:\n return rr, ss, tt\n while rr != 0:\n q = r / rr\n rrr = r % rr\n r, s, t, rr, ss, tt = rr, ss, tt, rrr, s - ss * q, t - tt * q\n if rr < R:\n return rr, ss, tt\n return None\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\n<mask token>\n\n\ndef main():\n if len(sys.argv) < 2:\n return\n value = float(sys.argv[1])\n M = int(1000000000.0)\n if len(sys.argv) > 2:\n M = int(sys.argv[2])\n p, q = RationalReconstruction(value, M)\n print('p = %ld' % p)\n print('q = %ld' % q)\n print('p/q = %.20lf' % (1.0 * p / q))\n print('val = %.20lf' % value)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef getZ(value):\n s = str(value)\n p10 = 1\n if s[0] != '0':\n p10 = 10\n for i in range(1, len(s)):\n if s[i] == '.':\n break\n p10 *= 10\n z = []\n first = int(s[0] == '0')\n for i in range(first, len(s)):\n if s[i] != '.':\n z.append(int(s[i]))\n return p10, z\n\n\ndef Theorem4_9(n, b, R):\n if R >= n:\n raise ValueError('r* >= n')\n if b < 0 or b >= n:\n raise ValueError('b < 0 or b >= n')\n r, rr = n, b\n s, ss = 1, 0\n t, tt = 0, 1\n if r < R:\n return r, s, t\n if rr < R:\n return rr, ss, tt\n while rr != 0:\n q = r / rr\n rrr = r % rr\n r, s, t, rr, ss, tt = rr, ss, tt, rrr, s - ss * q, t - tt * q\n if rr < R:\n return rr, ss, tt\n return None\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\ndef RationalReconstruction(value, M=int(1000000000.0)):\n if value.is_integer():\n return value, 1\n p10, z = getZ(value)\n print(z)\n k = len(z)\n n = pow(10, k)\n b = 0\n for i in range(1, k + 1):\n b += z[i - 1] * pow(10, k - i)\n while M >= 10 and 2 * M ** 2 >= n:\n M /= 10\n EEA(n, b)\n print(n, b, M)\n rr, ss, tt = Theorem4_9(n, b, M)\n if tt < 0:\n ss, tt = -ss, -tt\n ss *= p10\n g = gcd(abs(ss), abs(tt))\n ss /= g\n tt /= g\n return -ss, tt\n\n\ndef main():\n if len(sys.argv) < 2:\n return\n value = float(sys.argv[1])\n M = int(1000000000.0)\n if len(sys.argv) > 2:\n M = int(sys.argv[2])\n p, q = RationalReconstruction(value, M)\n print('p = %ld' % p)\n print('q = %ld' % q)\n print('p/q = %.20lf' % (1.0 * p / q))\n print('val = %.20lf' % value)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef getZ(value):\n s = str(value)\n p10 = 1\n if s[0] != '0':\n p10 = 10\n for i in range(1, len(s)):\n if s[i] == '.':\n break\n p10 *= 10\n z = []\n first = int(s[0] == '0')\n for i in range(first, len(s)):\n if s[i] != '.':\n z.append(int(s[i]))\n return p10, z\n\n\ndef Theorem4_9(n, b, R):\n if R >= n:\n raise ValueError('r* >= n')\n if b < 0 or b >= n:\n raise ValueError('b < 0 or b >= n')\n r, rr = n, b\n s, ss = 1, 0\n t, tt = 0, 1\n if r < R:\n return r, s, t\n if rr < R:\n return rr, ss, tt\n while rr != 0:\n q = r / rr\n rrr = r % rr\n r, s, t, rr, ss, tt = rr, ss, tt, rrr, s - ss * q, t - tt * q\n if rr < R:\n return rr, ss, tt\n return None\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\ndef RationalReconstruction(value, M=int(1000000000.0)):\n if value.is_integer():\n return value, 1\n p10, z = getZ(value)\n print(z)\n k = len(z)\n n = pow(10, k)\n b = 0\n for i in range(1, k + 1):\n b += z[i - 1] * pow(10, k - i)\n while M >= 10 and 2 * M ** 2 >= n:\n M /= 10\n EEA(n, b)\n print(n, b, M)\n rr, ss, tt = Theorem4_9(n, b, M)\n if tt < 0:\n ss, tt = -ss, -tt\n ss *= p10\n g = gcd(abs(ss), abs(tt))\n ss /= g\n tt /= g\n return -ss, tt\n\n\ndef main():\n if len(sys.argv) < 2:\n return\n value = float(sys.argv[1])\n M = int(1000000000.0)\n if len(sys.argv) > 2:\n M = int(sys.argv[2])\n p, q = RationalReconstruction(value, M)\n print('p = %ld' % p)\n print('q = %ld' % q)\n print('p/q = %.20lf' % (1.0 * p / q))\n print('val = %.20lf' % value)\n\n\nmain()\n", "step-4": "import sys\nimport math\nfrom random import randrange\nfrom utilities import *\nfrom EffectiveThueLemma import *\n\n\ndef getZ(value):\n s = str(value)\n p10 = 1\n if s[0] != '0':\n p10 = 10\n for i in range(1, len(s)):\n if s[i] == '.':\n break\n p10 *= 10\n z = []\n first = int(s[0] == '0')\n for i in range(first, len(s)):\n if s[i] != '.':\n z.append(int(s[i]))\n return p10, z\n\n\ndef Theorem4_9(n, b, R):\n if R >= n:\n raise ValueError('r* >= n')\n if b < 0 or b >= n:\n raise ValueError('b < 0 or b >= n')\n r, rr = n, b\n s, ss = 1, 0\n t, tt = 0, 1\n if r < R:\n return r, s, t\n if rr < R:\n return rr, ss, tt\n while rr != 0:\n q = r / rr\n rrr = r % rr\n r, s, t, rr, ss, tt = rr, ss, tt, rrr, s - ss * q, t - tt * q\n if rr < R:\n return rr, ss, tt\n return None\n\n\ndef gcd(a, b):\n if b == 0:\n return a\n return gcd(b, a % b)\n\n\ndef RationalReconstruction(value, M=int(1000000000.0)):\n if value.is_integer():\n return value, 1\n p10, z = getZ(value)\n print(z)\n k = len(z)\n n = pow(10, k)\n b = 0\n for i in range(1, k + 1):\n b += z[i - 1] * pow(10, k - i)\n while M >= 10 and 2 * M ** 2 >= n:\n M /= 10\n EEA(n, b)\n print(n, b, M)\n rr, ss, tt = Theorem4_9(n, b, M)\n if tt < 0:\n ss, tt = -ss, -tt\n ss *= p10\n g = gcd(abs(ss), abs(tt))\n ss /= g\n tt /= g\n return -ss, tt\n\n\ndef main():\n if len(sys.argv) < 2:\n return\n value = float(sys.argv[1])\n M = int(1000000000.0)\n if len(sys.argv) > 2:\n M = int(sys.argv[2])\n p, q = RationalReconstruction(value, M)\n print('p = %ld' % p)\n print('q = %ld' % q)\n print('p/q = %.20lf' % (1.0 * p / q))\n print('val = %.20lf' % value)\n\n\nmain()\n", "step-5": "import sys\nimport math\nfrom random import randrange\nfrom utilities import *\nfrom EffectiveThueLemma import *\n\n\ndef getZ(value):\n\ts = str(value)\n\tp10 = 1\n\tif s[0] != '0':\n\t\tp10 = 10\n\tfor i in range(1, len(s)):\n\t\tif s[i] == '.':\n\t\t\tbreak\n\t\tp10 *= 10\n\tz = []\n\tfirst = int(s[0] == '0')\n\tfor i in range(first, len(s)):\n\t\tif s[i] != '.':\n\t\t\tz.append(int(s[i]))\n\treturn (p10, z)\n\n\ndef Theorem4_9(n, b, R):\n\tif R >= n:\n\t\traise ValueError(\"r* >= n\")\n\tif b < 0 or b >= n:\n\t\traise ValueError(\"b < 0 or b >= n\")\n\tr, rr = n, b\t# r0, r1\n\ts, ss = 1, 0\t# s0, s1\n\tt, tt = 0, 1\t# t0, t1\n\tif r < R:\n\t\treturn (r, s, t)\n\tif rr < R:\n\t\treturn (rr, ss, tt)\n\twhile rr != 0:\n\t\tq = r/rr\n\t\trrr = r % rr\n\t\tr, s, t, rr, ss, tt = rr, ss, tt, rrr, (s-ss*q), (t-tt*q)\n\t\tif rr < R:\n\t\t\treturn (rr, ss, tt)\n\treturn None\n\n\ndef gcd(a, b):\n\tif b == 0:\n\t\treturn a\n\treturn gcd(b, a%b)\n\n\ndef RationalReconstruction(value, M = int(1e9)):\n\t# check if value is already an integer\n\tif value.is_integer():\n\t\treturn (value, 1)\n\n\t# get additional 10^x and z array\n\tp10, z = getZ(value)\n\tprint(z)\n\tk = len(z)\n\n\t# 1. Compute n = 10^k and b = sum(z(i-1) * 10^(k-i)) with i = 1..k\n\tn = pow(10, k)\n\tb = 0\n\tfor i in range(1, k+1):\n\t\tb += z[i-1] * pow(10, k-i)\n\n\t# make sure 10^k > 2(M^2)\n\twhile M >= 10 and 2*(M**2) >= n:\n\t\tM /= 10\n\n\t# 2. Run the extended Euclidean algorithm on input n, b to obtain EEA(n, b)\n\t# and then apply Theorem 4.9 with n, b, and r* = t* = M to obtain the values r', s', t'.\n\tEEA(n, b)\n\tprint(n, b, M)\n\trr, ss, tt = Theorem4_9(n, b, M)\n\n\t# 3. Output the rational number -s'/t'\n\tif tt < 0:\n\t\tss, tt = -ss, -tt\n\tss *= p10\n\tg = gcd(abs(ss), abs(tt))\n\tss /= g\n\ttt /= g\n\treturn (-ss, tt)\n\n\ndef main():\n\tif (len(sys.argv) < 2):\n\t\treturn\n\tvalue = float(sys.argv[1])\n\tM = int(1e9)\n\tif len(sys.argv) > 2:\n\t\tM = int(sys.argv[2])\n\tp, q = RationalReconstruction(value, M)\n\tprint(\"p = %ld\" %(p))\n\tprint(\"q = %ld\" %(q))\n\tprint(\"p/q = %.20lf\" %(1.0*p/q))\n\tprint(\"val = %.20lf\" %(value))\n\n\nmain()", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> while True: if button_a.is_pressed(): music.pitch(400, 500) <|reserved_special_token_1|> from microbit import * import music while True: if button_a.is_pressed(): music.pitch(400, 500)
flexible
{ "blob_id": "356c817e254d8885beb447aa10759fff6a45ca25", "index": 9454, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n if button_a.is_pressed():\n music.pitch(400, 500)\n", "step-3": "from microbit import *\nimport music\nwhile True:\n if button_a.is_pressed():\n music.pitch(400, 500)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' from keras.models import load_model from utils import resize_to_fit, clear_chunks, stack_windows from imutils import paths import numpy as np import imutils import cv2 as cv2 import pickle from tqdm import tqdm c1_correct = 0 c2_correct = 0 c3_correct = 0 c4_correct = 0 c5_correct = 0 total_correct = 0 incorrectly_segmented = 0 correct_guesses_dict = {} MODEL_FILENAME = "captcha_model.hdf5" MODEL_LABELS_FILENAME = "model_labels.dat" CAPTCHA_IMAGE_FOLDER = "test captchas" # Load up the model labels (so we can translate model predictions to actual letters) with open(MODEL_LABELS_FILENAME, "rb") as f: lb = pickle.load(f) # Load the trained neural network model = load_model(MODEL_FILENAME) for root, dirs, files in os.walk(CAPTCHA_IMAGE_FOLDER): for name in tqdm(files, desc='Solving captchas'): kernel = (5,5) #load image image = cv2.imread(os.path.join(root, name)) image = cv2.cvtColor(image, cv2.COLOR_RGBA2GRAY) #add padding image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_CONSTANT, None, 255) #blur k = np.ones((5,5),np.float32)/25 image = cv2.filter2D(image,-1,k) # threshhold image ret, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV) # clear white dots clear_chunks(image,0,50) # erosion image = cv2.erode(image, kernel, iterations=1) # get contours contours = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2] #segment letters letter_image_regions = [] #(x, y, w ,h) contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True) contours = contours[:5] for contour in contours: if cv2.contourArea(contour) < 60: continue (x, y, w, h) = cv2.boundingRect(contour) if w / h > 1.5: half_width = int(w / 2) letter_image_regions.append((x, y, half_width, h)) letter_image_regions.append((x + half_width, y, half_width, h)) else: letter_image_regions.append((x, y, w, h)) if len(letter_image_regions) != 5: incorrectly_segmented += 1 continue print(f"Found {len(letter_image_regions)} letter regions instead of 5 , the guess will likely be incorrect") letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0]) chars = [] i=0 for (x,y,w,h) in letter_image_regions: letter = image[y-2:y+h+2, x-2:x+w+2] chars.append(letter) i+=1 predictions = [] for letter in chars: # Re-size the letter image to 20x20 pixels to match training data letter = resize_to_fit(letter, 20, 20) # Turn the single image into a 4d list of images to make Keras happy letter = np.expand_dims(letter, axis=2) letter = np.expand_dims(letter, axis=0) # Ask the neural network to make a prediction prediction = model.predict(letter) # Convert the one-hot-encoded prediction back to a normal letter letter_text = lb.inverse_transform(prediction)[0] predictions.append(letter_text) gc1, gc2, gc3, gc4, gc5 = predictions c1, c2, c3, c4, c5, e1, e2, e3, e4 = name correct_guesses = 0 if c1 == gc1: c1_correct += 1 correct_guesses += 1 if c2 == gc2: c2_correct += 1 correct_guesses += 1 if c3 == gc3: c3_correct += 1 correct_guesses += 1 if c4 == gc4: c4_correct += 1 correct_guesses += 1 if c5 == gc5: c5_correct += 1 correct_guesses += 1 if ''.join(predictions) == ''.join([c1,c2,c3,c4,c5]): total_correct += 1 n = correct_guesses_dict.get(correct_guesses, 0) + 1 correct_guesses_dict[correct_guesses] = n print(f"Prediction for {name}: {''.join(predictions)}") print(f"correct c1: {c1_correct}") print(f"correct c2: {c2_correct}") print(f"correct c3: {c3_correct}") print(f"correct c4: {c4_correct}") print(f"correct c5: {c5_correct}") print(f"correct total: {total_correct}") print(f"correctly segmented: {10000 - incorrectly_segmented}") print(correct_guesses_dict)
normal
{ "blob_id": "c2ddf31bce4a5f3ae2b0d5455bbc9942f92bff40", "index": 275, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(MODEL_LABELS_FILENAME, 'rb') as f:\n lb = pickle.load(f)\n<mask token>\nfor root, dirs, files in os.walk(CAPTCHA_IMAGE_FOLDER):\n for name in tqdm(files, desc='Solving captchas'):\n kernel = 5, 5\n image = cv2.imread(os.path.join(root, name))\n image = cv2.cvtColor(image, cv2.COLOR_RGBA2GRAY)\n image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_CONSTANT,\n None, 255)\n k = np.ones((5, 5), np.float32) / 25\n image = cv2.filter2D(image, -1, k)\n ret, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV)\n clear_chunks(image, 0, 50)\n image = cv2.erode(image, kernel, iterations=1)\n contours = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.\n CHAIN_APPROX_SIMPLE)[-2]\n letter_image_regions = []\n contours = sorted(contours, key=lambda x: cv2.contourArea(x),\n reverse=True)\n contours = contours[:5]\n for contour in contours:\n if cv2.contourArea(contour) < 60:\n continue\n x, y, w, h = cv2.boundingRect(contour)\n if w / h > 1.5:\n half_width = int(w / 2)\n letter_image_regions.append((x, y, half_width, h))\n letter_image_regions.append((x + half_width, y, half_width, h))\n else:\n letter_image_regions.append((x, y, w, h))\n if len(letter_image_regions) != 5:\n incorrectly_segmented += 1\n continue\n print(\n f'Found {len(letter_image_regions)} letter regions instead of 5 , the guess will likely be incorrect'\n )\n letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])\n chars = []\n i = 0\n for x, y, w, h in letter_image_regions:\n letter = image[y - 2:y + h + 2, x - 2:x + w + 2]\n chars.append(letter)\n i += 1\n predictions = []\n for letter in chars:\n letter = resize_to_fit(letter, 20, 20)\n letter = np.expand_dims(letter, axis=2)\n letter = np.expand_dims(letter, axis=0)\n prediction = model.predict(letter)\n letter_text = lb.inverse_transform(prediction)[0]\n predictions.append(letter_text)\n gc1, gc2, gc3, gc4, gc5 = predictions\n c1, c2, c3, c4, c5, e1, e2, e3, e4 = name\n correct_guesses = 0\n if c1 == gc1:\n c1_correct += 1\n correct_guesses += 1\n if c2 == gc2:\n c2_correct += 1\n correct_guesses += 1\n if c3 == gc3:\n c3_correct += 1\n correct_guesses += 1\n if c4 == gc4:\n c4_correct += 1\n correct_guesses += 1\n if c5 == gc5:\n c5_correct += 1\n correct_guesses += 1\n if ''.join(predictions) == ''.join([c1, c2, c3, c4, c5]):\n total_correct += 1\n n = correct_guesses_dict.get(correct_guesses, 0) + 1\n correct_guesses_dict[correct_guesses] = n\n print(f\"Prediction for {name}: {''.join(predictions)}\")\nprint(f'correct c1: {c1_correct}')\nprint(f'correct c2: {c2_correct}')\nprint(f'correct c3: {c3_correct}')\nprint(f'correct c4: {c4_correct}')\nprint(f'correct c5: {c5_correct}')\nprint(f'correct total: {total_correct}')\nprint(f'correctly segmented: {10000 - incorrectly_segmented}')\nprint(correct_guesses_dict)\n", "step-3": "<mask token>\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n<mask token>\nc1_correct = 0\nc2_correct = 0\nc3_correct = 0\nc4_correct = 0\nc5_correct = 0\ntotal_correct = 0\nincorrectly_segmented = 0\ncorrect_guesses_dict = {}\nMODEL_FILENAME = 'captcha_model.hdf5'\nMODEL_LABELS_FILENAME = 'model_labels.dat'\nCAPTCHA_IMAGE_FOLDER = 'test captchas'\nwith open(MODEL_LABELS_FILENAME, 'rb') as f:\n lb = pickle.load(f)\nmodel = load_model(MODEL_FILENAME)\nfor root, dirs, files in os.walk(CAPTCHA_IMAGE_FOLDER):\n for name in tqdm(files, desc='Solving captchas'):\n kernel = 5, 5\n image = cv2.imread(os.path.join(root, name))\n image = cv2.cvtColor(image, cv2.COLOR_RGBA2GRAY)\n image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_CONSTANT,\n None, 255)\n k = np.ones((5, 5), np.float32) / 25\n image = cv2.filter2D(image, -1, k)\n ret, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV)\n clear_chunks(image, 0, 50)\n image = cv2.erode(image, kernel, iterations=1)\n contours = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.\n CHAIN_APPROX_SIMPLE)[-2]\n letter_image_regions = []\n contours = sorted(contours, key=lambda x: cv2.contourArea(x),\n reverse=True)\n contours = contours[:5]\n for contour in contours:\n if cv2.contourArea(contour) < 60:\n continue\n x, y, w, h = cv2.boundingRect(contour)\n if w / h > 1.5:\n half_width = int(w / 2)\n letter_image_regions.append((x, y, half_width, h))\n letter_image_regions.append((x + half_width, y, half_width, h))\n else:\n letter_image_regions.append((x, y, w, h))\n if len(letter_image_regions) != 5:\n incorrectly_segmented += 1\n continue\n print(\n f'Found {len(letter_image_regions)} letter regions instead of 5 , the guess will likely be incorrect'\n )\n letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])\n chars = []\n i = 0\n for x, y, w, h in letter_image_regions:\n letter = image[y - 2:y + h + 2, x - 2:x + w + 2]\n chars.append(letter)\n i += 1\n predictions = []\n for letter in chars:\n letter = resize_to_fit(letter, 20, 20)\n letter = np.expand_dims(letter, axis=2)\n letter = np.expand_dims(letter, axis=0)\n prediction = model.predict(letter)\n letter_text = lb.inverse_transform(prediction)[0]\n predictions.append(letter_text)\n gc1, gc2, gc3, gc4, gc5 = predictions\n c1, c2, c3, c4, c5, e1, e2, e3, e4 = name\n correct_guesses = 0\n if c1 == gc1:\n c1_correct += 1\n correct_guesses += 1\n if c2 == gc2:\n c2_correct += 1\n correct_guesses += 1\n if c3 == gc3:\n c3_correct += 1\n correct_guesses += 1\n if c4 == gc4:\n c4_correct += 1\n correct_guesses += 1\n if c5 == gc5:\n c5_correct += 1\n correct_guesses += 1\n if ''.join(predictions) == ''.join([c1, c2, c3, c4, c5]):\n total_correct += 1\n n = correct_guesses_dict.get(correct_guesses, 0) + 1\n correct_guesses_dict[correct_guesses] = n\n print(f\"Prediction for {name}: {''.join(predictions)}\")\nprint(f'correct c1: {c1_correct}')\nprint(f'correct c2: {c2_correct}')\nprint(f'correct c3: {c3_correct}')\nprint(f'correct c4: {c4_correct}')\nprint(f'correct c5: {c5_correct}')\nprint(f'correct total: {total_correct}')\nprint(f'correctly segmented: {10000 - incorrectly_segmented}')\nprint(correct_guesses_dict)\n", "step-4": "import os\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\nfrom keras.models import load_model\nfrom utils import resize_to_fit, clear_chunks, stack_windows\nfrom imutils import paths\nimport numpy as np\nimport imutils\nimport cv2 as cv2\nimport pickle\nfrom tqdm import tqdm\nc1_correct = 0\nc2_correct = 0\nc3_correct = 0\nc4_correct = 0\nc5_correct = 0\ntotal_correct = 0\nincorrectly_segmented = 0\ncorrect_guesses_dict = {}\nMODEL_FILENAME = 'captcha_model.hdf5'\nMODEL_LABELS_FILENAME = 'model_labels.dat'\nCAPTCHA_IMAGE_FOLDER = 'test captchas'\nwith open(MODEL_LABELS_FILENAME, 'rb') as f:\n lb = pickle.load(f)\nmodel = load_model(MODEL_FILENAME)\nfor root, dirs, files in os.walk(CAPTCHA_IMAGE_FOLDER):\n for name in tqdm(files, desc='Solving captchas'):\n kernel = 5, 5\n image = cv2.imread(os.path.join(root, name))\n image = cv2.cvtColor(image, cv2.COLOR_RGBA2GRAY)\n image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_CONSTANT,\n None, 255)\n k = np.ones((5, 5), np.float32) / 25\n image = cv2.filter2D(image, -1, k)\n ret, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV)\n clear_chunks(image, 0, 50)\n image = cv2.erode(image, kernel, iterations=1)\n contours = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.\n CHAIN_APPROX_SIMPLE)[-2]\n letter_image_regions = []\n contours = sorted(contours, key=lambda x: cv2.contourArea(x),\n reverse=True)\n contours = contours[:5]\n for contour in contours:\n if cv2.contourArea(contour) < 60:\n continue\n x, y, w, h = cv2.boundingRect(contour)\n if w / h > 1.5:\n half_width = int(w / 2)\n letter_image_regions.append((x, y, half_width, h))\n letter_image_regions.append((x + half_width, y, half_width, h))\n else:\n letter_image_regions.append((x, y, w, h))\n if len(letter_image_regions) != 5:\n incorrectly_segmented += 1\n continue\n print(\n f'Found {len(letter_image_regions)} letter regions instead of 5 , the guess will likely be incorrect'\n )\n letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])\n chars = []\n i = 0\n for x, y, w, h in letter_image_regions:\n letter = image[y - 2:y + h + 2, x - 2:x + w + 2]\n chars.append(letter)\n i += 1\n predictions = []\n for letter in chars:\n letter = resize_to_fit(letter, 20, 20)\n letter = np.expand_dims(letter, axis=2)\n letter = np.expand_dims(letter, axis=0)\n prediction = model.predict(letter)\n letter_text = lb.inverse_transform(prediction)[0]\n predictions.append(letter_text)\n gc1, gc2, gc3, gc4, gc5 = predictions\n c1, c2, c3, c4, c5, e1, e2, e3, e4 = name\n correct_guesses = 0\n if c1 == gc1:\n c1_correct += 1\n correct_guesses += 1\n if c2 == gc2:\n c2_correct += 1\n correct_guesses += 1\n if c3 == gc3:\n c3_correct += 1\n correct_guesses += 1\n if c4 == gc4:\n c4_correct += 1\n correct_guesses += 1\n if c5 == gc5:\n c5_correct += 1\n correct_guesses += 1\n if ''.join(predictions) == ''.join([c1, c2, c3, c4, c5]):\n total_correct += 1\n n = correct_guesses_dict.get(correct_guesses, 0) + 1\n correct_guesses_dict[correct_guesses] = n\n print(f\"Prediction for {name}: {''.join(predictions)}\")\nprint(f'correct c1: {c1_correct}')\nprint(f'correct c2: {c2_correct}')\nprint(f'correct c3: {c3_correct}')\nprint(f'correct c4: {c4_correct}')\nprint(f'correct c5: {c5_correct}')\nprint(f'correct total: {total_correct}')\nprint(f'correctly segmented: {10000 - incorrectly_segmented}')\nprint(correct_guesses_dict)\n", "step-5": "import os\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom keras.models import load_model\nfrom utils import resize_to_fit, clear_chunks, stack_windows\nfrom imutils import paths\nimport numpy as np\nimport imutils\nimport cv2 as cv2\nimport pickle\nfrom tqdm import tqdm\n\nc1_correct = 0\nc2_correct = 0\nc3_correct = 0\nc4_correct = 0\nc5_correct = 0\n\ntotal_correct = 0\nincorrectly_segmented = 0\n\ncorrect_guesses_dict = {}\n\nMODEL_FILENAME = \"captcha_model.hdf5\"\nMODEL_LABELS_FILENAME = \"model_labels.dat\"\nCAPTCHA_IMAGE_FOLDER = \"test captchas\"\n\n\n# Load up the model labels (so we can translate model predictions to actual letters)\nwith open(MODEL_LABELS_FILENAME, \"rb\") as f:\n lb = pickle.load(f)\n\n# Load the trained neural network\nmodel = load_model(MODEL_FILENAME)\n\n\nfor root, dirs, files in os.walk(CAPTCHA_IMAGE_FOLDER):\n for name in tqdm(files, desc='Solving captchas'):\n \n kernel = (5,5)\n\n #load image\n image = cv2.imread(os.path.join(root, name))\n image = cv2.cvtColor(image, cv2.COLOR_RGBA2GRAY)\n \n #add padding\n image = cv2.copyMakeBorder(image, 8, 8, 8, 8, cv2.BORDER_CONSTANT, None, 255)\n\n #blur\n k = np.ones((5,5),np.float32)/25\n image = cv2.filter2D(image,-1,k)\n\n # threshhold image\n ret, image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY_INV)\n\n # clear white dots\n clear_chunks(image,0,50)\n\n # erosion\n image = cv2.erode(image, kernel, iterations=1)\n\n # get contours\n contours = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2]\n\n #segment letters\n letter_image_regions = [] #(x, y, w ,h)\n \n \n contours = sorted(contours, key=lambda x: cv2.contourArea(x), reverse=True)\n contours = contours[:5]\n \n for contour in contours:\n \n if cv2.contourArea(contour) < 60:\n continue\n\n \n (x, y, w, h) = cv2.boundingRect(contour)\n\n if w / h > 1.5:\n half_width = int(w / 2)\n letter_image_regions.append((x, y, half_width, h))\n letter_image_regions.append((x + half_width, y, half_width, h))\n else:\n letter_image_regions.append((x, y, w, h))\n\n if len(letter_image_regions) != 5:\n incorrectly_segmented += 1\n continue\n print(f\"Found {len(letter_image_regions)} letter regions instead of 5 , the guess will likely be incorrect\")\n \n \n letter_image_regions = sorted(letter_image_regions, key=lambda x: x[0])\n\n chars = []\n i=0\n for (x,y,w,h) in letter_image_regions:\n letter = image[y-2:y+h+2, x-2:x+w+2]\n chars.append(letter)\n i+=1\n\n predictions = []\n\n for letter in chars:\n # Re-size the letter image to 20x20 pixels to match training data\n letter = resize_to_fit(letter, 20, 20)\n\n # Turn the single image into a 4d list of images to make Keras happy\n letter = np.expand_dims(letter, axis=2)\n letter = np.expand_dims(letter, axis=0)\n\n # Ask the neural network to make a prediction\n prediction = model.predict(letter)\n\n # Convert the one-hot-encoded prediction back to a normal letter\n letter_text = lb.inverse_transform(prediction)[0]\n predictions.append(letter_text)\n\n gc1, gc2, gc3, gc4, gc5 = predictions\n c1, c2, c3, c4, c5, e1, e2, e3, e4 = name \n\n correct_guesses = 0\n\n if c1 == gc1:\n c1_correct += 1\n correct_guesses += 1\n if c2 == gc2:\n c2_correct += 1\n correct_guesses += 1\n if c3 == gc3:\n c3_correct += 1\n correct_guesses += 1\n if c4 == gc4:\n c4_correct += 1\n correct_guesses += 1\n if c5 == gc5:\n c5_correct += 1\n correct_guesses += 1\n\n if ''.join(predictions) == ''.join([c1,c2,c3,c4,c5]):\n total_correct += 1\n\n n = correct_guesses_dict.get(correct_guesses, 0) + 1\n correct_guesses_dict[correct_guesses] = n\n\n print(f\"Prediction for {name}: {''.join(predictions)}\")\n \nprint(f\"correct c1: {c1_correct}\")\nprint(f\"correct c2: {c2_correct}\")\nprint(f\"correct c3: {c3_correct}\")\nprint(f\"correct c4: {c4_correct}\")\nprint(f\"correct c5: {c5_correct}\")\n\nprint(f\"correct total: {total_correct}\")\n\nprint(f\"correctly segmented: {10000 - incorrectly_segmented}\")\n\nprint(correct_guesses_dict)\n \n \n ", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import re, glob, os lst = [] def rename(dir, pattern, titlePattern): for pathAndFilename in glob.iglob(os.path.join(dir, pattern)): title, ext = os.path.splitext(os.path.basename(pathAndFilename)) #title = title[22:] #hexa = [] #hexb = [] hexa = title[:2] hexb = title[2:4] #title = title[4:] title = (title[4:] + '_' + str(int(hexa,16)) + '_' + str(int(hexb, 16))) #print(title) #lst.append(title) os.rename(pathAndFilename, os.path.join(dir, titlePattern % title + ext)) def renamer(files, pattern, replacement): for pathname in glob.glob(files): basename= os.path.basename(pathname) new_filename= re.sub(pattern, replacement, basename) if new_filename != basename: os.rename( pathname, os.path.join(os.path.dirname(pathname), new_filename)) rename(r'C:\test', r'*.jpeg', r'%s') #print(lst)
normal
{ "blob_id": "22aa6042b77c3cfd1f102a0ea22a43223e366d2f", "index": 1476, "step-1": "<mask token>\n\n\ndef rename(dir, pattern, titlePattern):\n for pathAndFilename in glob.iglob(os.path.join(dir, pattern)):\n title, ext = os.path.splitext(os.path.basename(pathAndFilename))\n hexa = title[:2]\n hexb = title[2:4]\n title = title[4:] + '_' + str(int(hexa, 16)) + '_' + str(int(hexb, 16))\n os.rename(pathAndFilename, os.path.join(dir, titlePattern % title +\n ext))\n\n\ndef renamer(files, pattern, replacement):\n for pathname in glob.glob(files):\n basename = os.path.basename(pathname)\n new_filename = re.sub(pattern, replacement, basename)\n if new_filename != basename:\n os.rename(pathname, os.path.join(os.path.dirname(pathname),\n new_filename))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef rename(dir, pattern, titlePattern):\n for pathAndFilename in glob.iglob(os.path.join(dir, pattern)):\n title, ext = os.path.splitext(os.path.basename(pathAndFilename))\n hexa = title[:2]\n hexb = title[2:4]\n title = title[4:] + '_' + str(int(hexa, 16)) + '_' + str(int(hexb, 16))\n os.rename(pathAndFilename, os.path.join(dir, titlePattern % title +\n ext))\n\n\ndef renamer(files, pattern, replacement):\n for pathname in glob.glob(files):\n basename = os.path.basename(pathname)\n new_filename = re.sub(pattern, replacement, basename)\n if new_filename != basename:\n os.rename(pathname, os.path.join(os.path.dirname(pathname),\n new_filename))\n\n\nrename('C:\\\\test', '*.jpeg', '%s')\n", "step-3": "<mask token>\nlst = []\n\n\ndef rename(dir, pattern, titlePattern):\n for pathAndFilename in glob.iglob(os.path.join(dir, pattern)):\n title, ext = os.path.splitext(os.path.basename(pathAndFilename))\n hexa = title[:2]\n hexb = title[2:4]\n title = title[4:] + '_' + str(int(hexa, 16)) + '_' + str(int(hexb, 16))\n os.rename(pathAndFilename, os.path.join(dir, titlePattern % title +\n ext))\n\n\ndef renamer(files, pattern, replacement):\n for pathname in glob.glob(files):\n basename = os.path.basename(pathname)\n new_filename = re.sub(pattern, replacement, basename)\n if new_filename != basename:\n os.rename(pathname, os.path.join(os.path.dirname(pathname),\n new_filename))\n\n\nrename('C:\\\\test', '*.jpeg', '%s')\n", "step-4": "import re, glob, os\nlst = []\n\n\ndef rename(dir, pattern, titlePattern):\n for pathAndFilename in glob.iglob(os.path.join(dir, pattern)):\n title, ext = os.path.splitext(os.path.basename(pathAndFilename))\n hexa = title[:2]\n hexb = title[2:4]\n title = title[4:] + '_' + str(int(hexa, 16)) + '_' + str(int(hexb, 16))\n os.rename(pathAndFilename, os.path.join(dir, titlePattern % title +\n ext))\n\n\ndef renamer(files, pattern, replacement):\n for pathname in glob.glob(files):\n basename = os.path.basename(pathname)\n new_filename = re.sub(pattern, replacement, basename)\n if new_filename != basename:\n os.rename(pathname, os.path.join(os.path.dirname(pathname),\n new_filename))\n\n\nrename('C:\\\\test', '*.jpeg', '%s')\n", "step-5": "import re, glob, os\nlst = []\ndef rename(dir, pattern, titlePattern):\n for pathAndFilename in glob.iglob(os.path.join(dir, pattern)):\n title, ext = os.path.splitext(os.path.basename(pathAndFilename))\n #title = title[22:]\n #hexa = []\n #hexb = []\n hexa = title[:2]\n hexb = title[2:4]\n #title = title[4:]\n\n title = (title[4:] + '_' + str(int(hexa,16)) + '_' + str(int(hexb, 16)))\n \n #print(title)\n #lst.append(title)\n os.rename(pathAndFilename, \n os.path.join(dir, titlePattern % title + ext))\n\ndef renamer(files, pattern, replacement):\n for pathname in glob.glob(files):\n basename= os.path.basename(pathname)\n new_filename= re.sub(pattern, replacement, basename)\n if new_filename != basename:\n os.rename(\n pathname,\n os.path.join(os.path.dirname(pathname), new_filename))\n\n\nrename(r'C:\\test', r'*.jpeg', r'%s')\n#print(lst)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def demo(myAPI): myAPI.setAttr() video_capture = cv2.VideoCapture(0) print('Press q to quit: ') while True: ret, frame = video_capture.read() frame = cv2.resize(frame, (320, 240)) key = cv2.waitKey(100) & 255 if key == ord('q'): break elif key == ord('r'): pass frame = myAPI.simple_demo(frame) cv2.imshow('Video', frame) video_capture.release() cv2.destroyAllWindows() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def demo(myAPI): myAPI.setAttr() video_capture = cv2.VideoCapture(0) print('Press q to quit: ') while True: ret, frame = video_capture.read() frame = cv2.resize(frame, (320, 240)) key = cv2.waitKey(100) & 255 if key == ord('q'): break elif key == ord('r'): pass frame = myAPI.simple_demo(frame) cv2.imshow('Video', frame) video_capture.release() cv2.destroyAllWindows() demo(API.FacePlusPlus()) <|reserved_special_token_1|> import cv2 import sys import online as API def demo(myAPI): myAPI.setAttr() video_capture = cv2.VideoCapture(0) print('Press q to quit: ') while True: ret, frame = video_capture.read() frame = cv2.resize(frame, (320, 240)) key = cv2.waitKey(100) & 255 if key == ord('q'): break elif key == ord('r'): pass frame = myAPI.simple_demo(frame) cv2.imshow('Video', frame) video_capture.release() cv2.destroyAllWindows() demo(API.FacePlusPlus()) <|reserved_special_token_1|> import cv2 import sys import online as API def demo(myAPI): myAPI.setAttr() video_capture = cv2.VideoCapture(0) print("Press q to quit: ") while True: # Capture frame-by-frame ret, frame = video_capture.read() #np.array frame = cv2.resize(frame, (320, 240)) key = cv2.waitKey(100) & 0xFF if key == ord('q'): break elif key == ord('r'): pass frame = myAPI.simple_demo(frame) # Display the resulting frame cv2.imshow('Video', frame) # When everything is done, release the capture video_capture.release() cv2.destroyAllWindows() demo(API.FacePlusPlus())
flexible
{ "blob_id": "778ef68b5270657f75185b27dc8219b35847afa1", "index": 5829, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef demo(myAPI):\n myAPI.setAttr()\n video_capture = cv2.VideoCapture(0)\n print('Press q to quit: ')\n while True:\n ret, frame = video_capture.read()\n frame = cv2.resize(frame, (320, 240))\n key = cv2.waitKey(100) & 255\n if key == ord('q'):\n break\n elif key == ord('r'):\n pass\n frame = myAPI.simple_demo(frame)\n cv2.imshow('Video', frame)\n video_capture.release()\n cv2.destroyAllWindows()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef demo(myAPI):\n myAPI.setAttr()\n video_capture = cv2.VideoCapture(0)\n print('Press q to quit: ')\n while True:\n ret, frame = video_capture.read()\n frame = cv2.resize(frame, (320, 240))\n key = cv2.waitKey(100) & 255\n if key == ord('q'):\n break\n elif key == ord('r'):\n pass\n frame = myAPI.simple_demo(frame)\n cv2.imshow('Video', frame)\n video_capture.release()\n cv2.destroyAllWindows()\n\n\ndemo(API.FacePlusPlus())\n", "step-4": "import cv2\nimport sys\nimport online as API\n\n\ndef demo(myAPI):\n myAPI.setAttr()\n video_capture = cv2.VideoCapture(0)\n print('Press q to quit: ')\n while True:\n ret, frame = video_capture.read()\n frame = cv2.resize(frame, (320, 240))\n key = cv2.waitKey(100) & 255\n if key == ord('q'):\n break\n elif key == ord('r'):\n pass\n frame = myAPI.simple_demo(frame)\n cv2.imshow('Video', frame)\n video_capture.release()\n cv2.destroyAllWindows()\n\n\ndemo(API.FacePlusPlus())\n", "step-5": "import cv2\nimport sys\nimport online as API\n\ndef demo(myAPI):\n myAPI.setAttr()\n video_capture = cv2.VideoCapture(0)\n print(\"Press q to quit: \")\n while True:\n # Capture frame-by-frame\n ret, frame = video_capture.read() #np.array\n\n frame = cv2.resize(frame, (320, 240))\n\n key = cv2.waitKey(100) & 0xFF\n if key == ord('q'):\n break\n elif key == ord('r'):\n pass\n frame = myAPI.simple_demo(frame)\n\n # Display the resulting frame\n cv2.imshow('Video', frame)\n\n # When everything is done, release the capture\n video_capture.release()\n cv2.destroyAllWindows()\n\n\ndemo(API.FacePlusPlus())\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import importlib class Scrapper: def get_pos(str_lf, str_rg, text): left = text.find(str_lf) right = text.rfind(str_rg) return left, right def scrapper(prov): scrapper = importlib.import_module('scrappers.{}'.format(prov)) return scrapper.scrape()
normal
{ "blob_id": "67e06b6dddbd3f26295eaff921d1ad4a8b0e5487", "index": 5580, "step-1": "<mask token>\n\n\nclass Scrapper:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Scrapper:\n <mask token>\n\n def scrapper(prov):\n scrapper = importlib.import_module('scrappers.{}'.format(prov))\n return scrapper.scrape()\n", "step-3": "<mask token>\n\n\nclass Scrapper:\n\n def get_pos(str_lf, str_rg, text):\n left = text.find(str_lf)\n right = text.rfind(str_rg)\n return left, right\n\n def scrapper(prov):\n scrapper = importlib.import_module('scrappers.{}'.format(prov))\n return scrapper.scrape()\n", "step-4": "import importlib\n\n\nclass Scrapper:\n\n def get_pos(str_lf, str_rg, text):\n left = text.find(str_lf)\n right = text.rfind(str_rg)\n return left, right\n\n def scrapper(prov):\n scrapper = importlib.import_module('scrappers.{}'.format(prov))\n return scrapper.scrape()\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
#!/usr/bin/env python ''' fix a time and then draw the instant geopotential (contour) from /gws/nopw/j04/ncas_generic/users/renql/ERA5_subdaily/ERA5_NH_z_1989.nc, spatial filtered relative vorticity (shaded) from ~/ERA5-1HR-lev/ERA5_VOR850_1hr_1995_DET/ERA5_VOR850_1hr_1995_DET_T63filt.nc and identified feature points from ~/ERA5-1HR-lev/ERA5_VOR850_1hr_1995_DET/fft_trs_pos Loop through the height (850, 500, 250) 20211116 ''' import sys import subprocess import xarray as xr import numpy as np import pandas as pd from datetime import datetime import gc #garbage collector import matplotlib import matplotlib.pyplot as plt from matplotlib import colors import cartopy.crs as ccrs import cartopy.feature as cfeat from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import cmaps from PIL import Image, ImageDraw, ImageSequence def calc_frames(new_time): old_time = datetime(new_time.year-1, 11, 30, 23) days = (new_time - old_time).days sec = (new_time - old_time).seconds hours = days * 24 + sec/3600 return int(hours) def read_point_fixtime(filname,fixtime,flonl,flonr,flats,flatn): ff = open(filname,"r") line1 = ff.readline() line2 = ff.readline() line3 = ff.readline() line4 = ff.readline() plat = [] plon = [] line = ff.readline() while line: if line.strip().split(" ")[0] == "TRACK_ID": num = int(ff.readline().strip().split(" ")[-1]) for nl in range(0,num,1): data = list(map(float,ff.readline().strip().split(" "))) if str(int(data[0])) == fixtime and \ data[1]<=flonr and data[1] >= flonl and data[2]<=flatn and data[2]>=flats : plat.append(data[2]) plon.append(data[1]) line = ff.readline() ff.close() print("%s total feature point in %s : %d"%(filname,fixtime,len(plat))) return plat, plon lonl=0 #0 # lonr=150#360# lats=15 #0 # latn=70 #90 # lat_sp = 20 lon_sp = 30 nrow = 3 ncol = 1 bmlo = 0.1 title_font=18 label_font=14 dtime = pd.date_range(start='1995-01-01 00',periods=60, freq='6H',closed=None) #dtime = pd.date_range(start='1995-01-01 00',end='1995-01-15 00', freq='6H',closed=None) create_gif = True #False# nfilt="T63" lev = [850,500,250] cnlvl =[[-8 ,1 ]] cnlvl2 = [30,50,100] varname = 'z' path = '/home/users/qd201969/ERA5-1HR-lev/' datapath = "/gws/nopw/j04/ncas_generic/users/renql/"#t/ERA5_NH_t_1989.nc figdir = "/home/users/qd201969/uor_track/fig/" f = xr.open_dataset("%sERA5_subdaily/%s/ERA5_NH_%s_%d.nc"%(datapath,varname,varname,dtime[0].year)) lat = f['latitude'].data lon = f['longitude'].data ilon = lon[(lon>=lonl) & (lon<=lonr)] ilat = lat[(lat>=lats) & (lat<=latn)] ds = xr.open_dataset("/home/users/qd201969/gtopo30_0.9x1.25.nc") phis = ds['PHIS'].sel(lon=ilon,lat=ilat,method="nearest").load() phis = phis/9.8 # transfer from m2/s2 to m del ds gc.collect() nl = 0 fcolors = cmaps.BlueDarkRed18 cnlevels = np.arange(cnlvl[nl][0], cnlvl[nl][0]+cnlvl[nl][1]*(fcolors.N-1), cnlvl[nl][1]) norm = colors.BoundaryNorm(boundaries=cnlevels, ncolors=fcolors.N,extend='both') params = {'legend.fontsize': label_font, 'axes.labelsize': label_font, 'axes.titlesize':label_font, 'xtick.labelsize':label_font, 'ytick.labelsize':label_font} plt.rcParams.update(params) for nt in range(len(dtime)): fig = plt.figure(figsize=(12,12),dpi=100) ax = fig.subplots(nrow,ncol, subplot_kw=dict(projection=ccrs.PlateCarree())) #sharex=True, sharey=True for nl in range(len(lev)): var = f[varname].sel(time=dtime[nt],level=lev[nl],longitude=ilon,latitude=ilat) var.data = var.data/9.8 path2 = "%sERA5_VOR%d_1hr_%d_DET/"%(path,lev[nl],dtime[nt].year) plat, plon = read_point_fixtime(path2+"fft_trs_pos",dtime[nt].strftime('%Y%m%d%H'),lonl,lonr,lats,latn) fvor = xr.open_dataset("%sERA5_VOR%d_1hr_%d_DET_%sfilt.nc"%(path2,lev[nl],dtime[nt].year,nfilt)) var1 = fvor['var'].sel(time=calc_frames(dtime[nt]),level = 1,lon=ilon,lat=ilat,method="nearest").load() #fvor = xr.open_dataset("%sERA5_VOR_1h_dec_jan/ERA5_VOR%d_1hr_dec-jan%d_DET.nc"%(datapath,lev[nl],dtime[nt].year)) #var1 = fvor['var138'].sel(time=dtime[nt],lev=float(lev[nl]*100),lat=ilat,lon=ilon,method="nearest").load() var1.values = var1.values*1e5 axe = ax[nl] axe.add_feature(cfeat.COASTLINE.with_scale('110m'),edgecolor='black', linewidth=0.8, zorder=1) axe.set_title("%s %dhPa (%d)"%(dtime[nt].strftime('%Y-%m-%d-%H:00'), lev[nl], len(plat)),fontsize=title_font) shad = axe.contourf(ilon, ilat, var1, cnlevels, transform=ccrs.PlateCarree(),cmap=fcolors,extend='both',norm=norm) cont = axe.contour(ilon, ilat, var, np.arange(1000,15000,cnlvl2[nl]), transform=ccrs.PlateCarree(), colors='gray', linewidths=1.5) #pint = axe.plot(plon,plat,color='darkviolet', marker='o', markersize=12, transform=ccrs.PlateCarree()) pint = axe.scatter(plon,plat,10.0**2,color='k', marker='o', transform=ccrs.PlateCarree()) topo = axe.contour(ilon, ilat, phis, [1500,3000], transform=ccrs.PlateCarree(),colors='black',linewidths=1.2) axe.set_yticks(np.arange(lats,latn,lat_sp), crs=ccrs.PlateCarree()) axe.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol='')) axe.set_xticks(np.arange(lonl,lonr,lon_sp), crs=ccrs.PlateCarree()) axe.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol='')) position = fig.add_axes([0.85, bmlo+0.1, 0.015, 0.7]) #left, bottom, width, height cb = plt.colorbar(shad, cax=position ,orientation='vertical')#, shrink=.9) cb.set_label(label='T5~63 Relative Vort (1e5)', size=label_font) #, weight='bold' plt.tight_layout(rect=(0,bmlo,1,1)) plt.savefig(figdir+"filt_vor_%s.png"%(dtime[nt].strftime('%Y%m%d%H')), bbox_inches='tight',pad_inches=0.01) if create_gif == True: figname = figdir+"filt_vor_*.png" fn_stream = subprocess.check_output("ls "+figname, shell=True).decode('utf-8') fn_list = fn_stream.split() print(fn_list[0]) print('filenumber : '+str(len(fn_list))) gif_name = figname.rsplit("_",1)[0]+".gif" frames = [] for itm in fn_list: frame = Image.open(itm) frames.append(frame) frames[0].save(gif_name, save_all=True, append_images=frames[1:],\ duration = 1000, loop=0, disposal=1) subprocess.run('rm -f %s'%(figname),shell=True)
normal
{ "blob_id": "09a468e11651eb60e0805c151bda270e0ebecca9", "index": 4853, "step-1": "<mask token>\n\n\ndef calc_frames(new_time):\n old_time = datetime(new_time.year - 1, 11, 30, 23)\n days = (new_time - old_time).days\n sec = (new_time - old_time).seconds\n hours = days * 24 + sec / 3600\n return int(hours)\n\n\ndef read_point_fixtime(filname, fixtime, flonl, flonr, flats, flatn):\n ff = open(filname, 'r')\n line1 = ff.readline()\n line2 = ff.readline()\n line3 = ff.readline()\n line4 = ff.readline()\n plat = []\n plon = []\n line = ff.readline()\n while line:\n if line.strip().split(' ')[0] == 'TRACK_ID':\n num = int(ff.readline().strip().split(' ')[-1])\n for nl in range(0, num, 1):\n data = list(map(float, ff.readline().strip().split(' ')))\n if str(int(data[0])) == fixtime and data[1] <= flonr and data[1\n ] >= flonl and data[2] <= flatn and data[2] >= flats:\n plat.append(data[2])\n plon.append(data[1])\n line = ff.readline()\n ff.close()\n print('%s total feature point in %s : %d' % (filname, fixtime, len(plat)))\n return plat, plon\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef calc_frames(new_time):\n old_time = datetime(new_time.year - 1, 11, 30, 23)\n days = (new_time - old_time).days\n sec = (new_time - old_time).seconds\n hours = days * 24 + sec / 3600\n return int(hours)\n\n\ndef read_point_fixtime(filname, fixtime, flonl, flonr, flats, flatn):\n ff = open(filname, 'r')\n line1 = ff.readline()\n line2 = ff.readline()\n line3 = ff.readline()\n line4 = ff.readline()\n plat = []\n plon = []\n line = ff.readline()\n while line:\n if line.strip().split(' ')[0] == 'TRACK_ID':\n num = int(ff.readline().strip().split(' ')[-1])\n for nl in range(0, num, 1):\n data = list(map(float, ff.readline().strip().split(' ')))\n if str(int(data[0])) == fixtime and data[1] <= flonr and data[1\n ] >= flonl and data[2] <= flatn and data[2] >= flats:\n plat.append(data[2])\n plon.append(data[1])\n line = ff.readline()\n ff.close()\n print('%s total feature point in %s : %d' % (filname, fixtime, len(plat)))\n return plat, plon\n\n\n<mask token>\ndel ds\ngc.collect()\n<mask token>\nplt.rcParams.update(params)\nfor nt in range(len(dtime)):\n fig = plt.figure(figsize=(12, 12), dpi=100)\n ax = fig.subplots(nrow, ncol, subplot_kw=dict(projection=ccrs.\n PlateCarree()))\n for nl in range(len(lev)):\n var = f[varname].sel(time=dtime[nt], level=lev[nl], longitude=ilon,\n latitude=ilat)\n var.data = var.data / 9.8\n path2 = '%sERA5_VOR%d_1hr_%d_DET/' % (path, lev[nl], dtime[nt].year)\n plat, plon = read_point_fixtime(path2 + 'fft_trs_pos', dtime[nt].\n strftime('%Y%m%d%H'), lonl, lonr, lats, latn)\n fvor = xr.open_dataset('%sERA5_VOR%d_1hr_%d_DET_%sfilt.nc' % (path2,\n lev[nl], dtime[nt].year, nfilt))\n var1 = fvor['var'].sel(time=calc_frames(dtime[nt]), level=1, lon=\n ilon, lat=ilat, method='nearest').load()\n var1.values = var1.values * 100000.0\n axe = ax[nl]\n axe.add_feature(cfeat.COASTLINE.with_scale('110m'), edgecolor=\n 'black', linewidth=0.8, zorder=1)\n axe.set_title('%s %dhPa (%d)' % (dtime[nt].strftime(\n '%Y-%m-%d-%H:00'), lev[nl], len(plat)), fontsize=title_font)\n shad = axe.contourf(ilon, ilat, var1, cnlevels, transform=ccrs.\n PlateCarree(), cmap=fcolors, extend='both', norm=norm)\n cont = axe.contour(ilon, ilat, var, np.arange(1000, 15000, cnlvl2[\n nl]), transform=ccrs.PlateCarree(), colors='gray', linewidths=1.5)\n pint = axe.scatter(plon, plat, 10.0 ** 2, color='k', marker='o',\n transform=ccrs.PlateCarree())\n topo = axe.contour(ilon, ilat, phis, [1500, 3000], transform=ccrs.\n PlateCarree(), colors='black', linewidths=1.2)\n axe.set_yticks(np.arange(lats, latn, lat_sp), crs=ccrs.PlateCarree())\n axe.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n axe.set_xticks(np.arange(lonl, lonr, lon_sp), crs=ccrs.PlateCarree())\n axe.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol=''))\n position = fig.add_axes([0.85, bmlo + 0.1, 0.015, 0.7])\n cb = plt.colorbar(shad, cax=position, orientation='vertical')\n cb.set_label(label='T5~63 Relative Vort (1e5)', size=label_font)\n plt.tight_layout(rect=(0, bmlo, 1, 1))\n plt.savefig(figdir + 'filt_vor_%s.png' % dtime[nt].strftime('%Y%m%d%H'),\n bbox_inches='tight', pad_inches=0.01)\nif create_gif == True:\n figname = figdir + 'filt_vor_*.png'\n fn_stream = subprocess.check_output('ls ' + figname, shell=True).decode(\n 'utf-8')\n fn_list = fn_stream.split()\n print(fn_list[0])\n print('filenumber : ' + str(len(fn_list)))\n gif_name = figname.rsplit('_', 1)[0] + '.gif'\n frames = []\n for itm in fn_list:\n frame = Image.open(itm)\n frames.append(frame)\n frames[0].save(gif_name, save_all=True, append_images=frames[1:],\n duration=1000, loop=0, disposal=1)\n subprocess.run('rm -f %s' % figname, shell=True)\n", "step-3": "<mask token>\n\n\ndef calc_frames(new_time):\n old_time = datetime(new_time.year - 1, 11, 30, 23)\n days = (new_time - old_time).days\n sec = (new_time - old_time).seconds\n hours = days * 24 + sec / 3600\n return int(hours)\n\n\ndef read_point_fixtime(filname, fixtime, flonl, flonr, flats, flatn):\n ff = open(filname, 'r')\n line1 = ff.readline()\n line2 = ff.readline()\n line3 = ff.readline()\n line4 = ff.readline()\n plat = []\n plon = []\n line = ff.readline()\n while line:\n if line.strip().split(' ')[0] == 'TRACK_ID':\n num = int(ff.readline().strip().split(' ')[-1])\n for nl in range(0, num, 1):\n data = list(map(float, ff.readline().strip().split(' ')))\n if str(int(data[0])) == fixtime and data[1] <= flonr and data[1\n ] >= flonl and data[2] <= flatn and data[2] >= flats:\n plat.append(data[2])\n plon.append(data[1])\n line = ff.readline()\n ff.close()\n print('%s total feature point in %s : %d' % (filname, fixtime, len(plat)))\n return plat, plon\n\n\nlonl = 0\nlonr = 150\nlats = 15\nlatn = 70\nlat_sp = 20\nlon_sp = 30\nnrow = 3\nncol = 1\nbmlo = 0.1\ntitle_font = 18\nlabel_font = 14\ndtime = pd.date_range(start='1995-01-01 00', periods=60, freq='6H', closed=None\n )\ncreate_gif = True\nnfilt = 'T63'\nlev = [850, 500, 250]\ncnlvl = [[-8, 1]]\ncnlvl2 = [30, 50, 100]\nvarname = 'z'\npath = '/home/users/qd201969/ERA5-1HR-lev/'\ndatapath = '/gws/nopw/j04/ncas_generic/users/renql/'\nfigdir = '/home/users/qd201969/uor_track/fig/'\nf = xr.open_dataset('%sERA5_subdaily/%s/ERA5_NH_%s_%d.nc' % (datapath,\n varname, varname, dtime[0].year))\nlat = f['latitude'].data\nlon = f['longitude'].data\nilon = lon[(lon >= lonl) & (lon <= lonr)]\nilat = lat[(lat >= lats) & (lat <= latn)]\nds = xr.open_dataset('/home/users/qd201969/gtopo30_0.9x1.25.nc')\nphis = ds['PHIS'].sel(lon=ilon, lat=ilat, method='nearest').load()\nphis = phis / 9.8\ndel ds\ngc.collect()\nnl = 0\nfcolors = cmaps.BlueDarkRed18\ncnlevels = np.arange(cnlvl[nl][0], cnlvl[nl][0] + cnlvl[nl][1] * (fcolors.N -\n 1), cnlvl[nl][1])\nnorm = colors.BoundaryNorm(boundaries=cnlevels, ncolors=fcolors.N, extend=\n 'both')\nparams = {'legend.fontsize': label_font, 'axes.labelsize': label_font,\n 'axes.titlesize': label_font, 'xtick.labelsize': label_font,\n 'ytick.labelsize': label_font}\nplt.rcParams.update(params)\nfor nt in range(len(dtime)):\n fig = plt.figure(figsize=(12, 12), dpi=100)\n ax = fig.subplots(nrow, ncol, subplot_kw=dict(projection=ccrs.\n PlateCarree()))\n for nl in range(len(lev)):\n var = f[varname].sel(time=dtime[nt], level=lev[nl], longitude=ilon,\n latitude=ilat)\n var.data = var.data / 9.8\n path2 = '%sERA5_VOR%d_1hr_%d_DET/' % (path, lev[nl], dtime[nt].year)\n plat, plon = read_point_fixtime(path2 + 'fft_trs_pos', dtime[nt].\n strftime('%Y%m%d%H'), lonl, lonr, lats, latn)\n fvor = xr.open_dataset('%sERA5_VOR%d_1hr_%d_DET_%sfilt.nc' % (path2,\n lev[nl], dtime[nt].year, nfilt))\n var1 = fvor['var'].sel(time=calc_frames(dtime[nt]), level=1, lon=\n ilon, lat=ilat, method='nearest').load()\n var1.values = var1.values * 100000.0\n axe = ax[nl]\n axe.add_feature(cfeat.COASTLINE.with_scale('110m'), edgecolor=\n 'black', linewidth=0.8, zorder=1)\n axe.set_title('%s %dhPa (%d)' % (dtime[nt].strftime(\n '%Y-%m-%d-%H:00'), lev[nl], len(plat)), fontsize=title_font)\n shad = axe.contourf(ilon, ilat, var1, cnlevels, transform=ccrs.\n PlateCarree(), cmap=fcolors, extend='both', norm=norm)\n cont = axe.contour(ilon, ilat, var, np.arange(1000, 15000, cnlvl2[\n nl]), transform=ccrs.PlateCarree(), colors='gray', linewidths=1.5)\n pint = axe.scatter(plon, plat, 10.0 ** 2, color='k', marker='o',\n transform=ccrs.PlateCarree())\n topo = axe.contour(ilon, ilat, phis, [1500, 3000], transform=ccrs.\n PlateCarree(), colors='black', linewidths=1.2)\n axe.set_yticks(np.arange(lats, latn, lat_sp), crs=ccrs.PlateCarree())\n axe.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n axe.set_xticks(np.arange(lonl, lonr, lon_sp), crs=ccrs.PlateCarree())\n axe.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol=''))\n position = fig.add_axes([0.85, bmlo + 0.1, 0.015, 0.7])\n cb = plt.colorbar(shad, cax=position, orientation='vertical')\n cb.set_label(label='T5~63 Relative Vort (1e5)', size=label_font)\n plt.tight_layout(rect=(0, bmlo, 1, 1))\n plt.savefig(figdir + 'filt_vor_%s.png' % dtime[nt].strftime('%Y%m%d%H'),\n bbox_inches='tight', pad_inches=0.01)\nif create_gif == True:\n figname = figdir + 'filt_vor_*.png'\n fn_stream = subprocess.check_output('ls ' + figname, shell=True).decode(\n 'utf-8')\n fn_list = fn_stream.split()\n print(fn_list[0])\n print('filenumber : ' + str(len(fn_list)))\n gif_name = figname.rsplit('_', 1)[0] + '.gif'\n frames = []\n for itm in fn_list:\n frame = Image.open(itm)\n frames.append(frame)\n frames[0].save(gif_name, save_all=True, append_images=frames[1:],\n duration=1000, loop=0, disposal=1)\n subprocess.run('rm -f %s' % figname, shell=True)\n", "step-4": "<mask token>\nimport sys\nimport subprocess\nimport xarray as xr\nimport numpy as np\nimport pandas as pd\nfrom datetime import datetime\nimport gc\nimport matplotlib\nimport matplotlib.pyplot as plt\nfrom matplotlib import colors\nimport cartopy.crs as ccrs\nimport cartopy.feature as cfeat\nfrom cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\nimport cmaps\nfrom PIL import Image, ImageDraw, ImageSequence\n\n\ndef calc_frames(new_time):\n old_time = datetime(new_time.year - 1, 11, 30, 23)\n days = (new_time - old_time).days\n sec = (new_time - old_time).seconds\n hours = days * 24 + sec / 3600\n return int(hours)\n\n\ndef read_point_fixtime(filname, fixtime, flonl, flonr, flats, flatn):\n ff = open(filname, 'r')\n line1 = ff.readline()\n line2 = ff.readline()\n line3 = ff.readline()\n line4 = ff.readline()\n plat = []\n plon = []\n line = ff.readline()\n while line:\n if line.strip().split(' ')[0] == 'TRACK_ID':\n num = int(ff.readline().strip().split(' ')[-1])\n for nl in range(0, num, 1):\n data = list(map(float, ff.readline().strip().split(' ')))\n if str(int(data[0])) == fixtime and data[1] <= flonr and data[1\n ] >= flonl and data[2] <= flatn and data[2] >= flats:\n plat.append(data[2])\n plon.append(data[1])\n line = ff.readline()\n ff.close()\n print('%s total feature point in %s : %d' % (filname, fixtime, len(plat)))\n return plat, plon\n\n\nlonl = 0\nlonr = 150\nlats = 15\nlatn = 70\nlat_sp = 20\nlon_sp = 30\nnrow = 3\nncol = 1\nbmlo = 0.1\ntitle_font = 18\nlabel_font = 14\ndtime = pd.date_range(start='1995-01-01 00', periods=60, freq='6H', closed=None\n )\ncreate_gif = True\nnfilt = 'T63'\nlev = [850, 500, 250]\ncnlvl = [[-8, 1]]\ncnlvl2 = [30, 50, 100]\nvarname = 'z'\npath = '/home/users/qd201969/ERA5-1HR-lev/'\ndatapath = '/gws/nopw/j04/ncas_generic/users/renql/'\nfigdir = '/home/users/qd201969/uor_track/fig/'\nf = xr.open_dataset('%sERA5_subdaily/%s/ERA5_NH_%s_%d.nc' % (datapath,\n varname, varname, dtime[0].year))\nlat = f['latitude'].data\nlon = f['longitude'].data\nilon = lon[(lon >= lonl) & (lon <= lonr)]\nilat = lat[(lat >= lats) & (lat <= latn)]\nds = xr.open_dataset('/home/users/qd201969/gtopo30_0.9x1.25.nc')\nphis = ds['PHIS'].sel(lon=ilon, lat=ilat, method='nearest').load()\nphis = phis / 9.8\ndel ds\ngc.collect()\nnl = 0\nfcolors = cmaps.BlueDarkRed18\ncnlevels = np.arange(cnlvl[nl][0], cnlvl[nl][0] + cnlvl[nl][1] * (fcolors.N -\n 1), cnlvl[nl][1])\nnorm = colors.BoundaryNorm(boundaries=cnlevels, ncolors=fcolors.N, extend=\n 'both')\nparams = {'legend.fontsize': label_font, 'axes.labelsize': label_font,\n 'axes.titlesize': label_font, 'xtick.labelsize': label_font,\n 'ytick.labelsize': label_font}\nplt.rcParams.update(params)\nfor nt in range(len(dtime)):\n fig = plt.figure(figsize=(12, 12), dpi=100)\n ax = fig.subplots(nrow, ncol, subplot_kw=dict(projection=ccrs.\n PlateCarree()))\n for nl in range(len(lev)):\n var = f[varname].sel(time=dtime[nt], level=lev[nl], longitude=ilon,\n latitude=ilat)\n var.data = var.data / 9.8\n path2 = '%sERA5_VOR%d_1hr_%d_DET/' % (path, lev[nl], dtime[nt].year)\n plat, plon = read_point_fixtime(path2 + 'fft_trs_pos', dtime[nt].\n strftime('%Y%m%d%H'), lonl, lonr, lats, latn)\n fvor = xr.open_dataset('%sERA5_VOR%d_1hr_%d_DET_%sfilt.nc' % (path2,\n lev[nl], dtime[nt].year, nfilt))\n var1 = fvor['var'].sel(time=calc_frames(dtime[nt]), level=1, lon=\n ilon, lat=ilat, method='nearest').load()\n var1.values = var1.values * 100000.0\n axe = ax[nl]\n axe.add_feature(cfeat.COASTLINE.with_scale('110m'), edgecolor=\n 'black', linewidth=0.8, zorder=1)\n axe.set_title('%s %dhPa (%d)' % (dtime[nt].strftime(\n '%Y-%m-%d-%H:00'), lev[nl], len(plat)), fontsize=title_font)\n shad = axe.contourf(ilon, ilat, var1, cnlevels, transform=ccrs.\n PlateCarree(), cmap=fcolors, extend='both', norm=norm)\n cont = axe.contour(ilon, ilat, var, np.arange(1000, 15000, cnlvl2[\n nl]), transform=ccrs.PlateCarree(), colors='gray', linewidths=1.5)\n pint = axe.scatter(plon, plat, 10.0 ** 2, color='k', marker='o',\n transform=ccrs.PlateCarree())\n topo = axe.contour(ilon, ilat, phis, [1500, 3000], transform=ccrs.\n PlateCarree(), colors='black', linewidths=1.2)\n axe.set_yticks(np.arange(lats, latn, lat_sp), crs=ccrs.PlateCarree())\n axe.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n axe.set_xticks(np.arange(lonl, lonr, lon_sp), crs=ccrs.PlateCarree())\n axe.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol=''))\n position = fig.add_axes([0.85, bmlo + 0.1, 0.015, 0.7])\n cb = plt.colorbar(shad, cax=position, orientation='vertical')\n cb.set_label(label='T5~63 Relative Vort (1e5)', size=label_font)\n plt.tight_layout(rect=(0, bmlo, 1, 1))\n plt.savefig(figdir + 'filt_vor_%s.png' % dtime[nt].strftime('%Y%m%d%H'),\n bbox_inches='tight', pad_inches=0.01)\nif create_gif == True:\n figname = figdir + 'filt_vor_*.png'\n fn_stream = subprocess.check_output('ls ' + figname, shell=True).decode(\n 'utf-8')\n fn_list = fn_stream.split()\n print(fn_list[0])\n print('filenumber : ' + str(len(fn_list)))\n gif_name = figname.rsplit('_', 1)[0] + '.gif'\n frames = []\n for itm in fn_list:\n frame = Image.open(itm)\n frames.append(frame)\n frames[0].save(gif_name, save_all=True, append_images=frames[1:],\n duration=1000, loop=0, disposal=1)\n subprocess.run('rm -f %s' % figname, shell=True)\n", "step-5": "#!/usr/bin/env python\n'''\nfix a time and then draw the instant geopotential (contour) from \n/gws/nopw/j04/ncas_generic/users/renql/ERA5_subdaily/ERA5_NH_z_1989.nc,\n\nspatial filtered relative vorticity (shaded) from \n~/ERA5-1HR-lev/ERA5_VOR850_1hr_1995_DET/ERA5_VOR850_1hr_1995_DET_T63filt.nc\n\nand identified feature points from \n~/ERA5-1HR-lev/ERA5_VOR850_1hr_1995_DET/fft_trs_pos\n\nLoop through the height (850, 500, 250)\n\n20211116\n'''\nimport sys\nimport subprocess\nimport xarray as xr\nimport numpy as np\nimport pandas as pd\nfrom datetime import datetime\nimport gc #garbage collector\nimport matplotlib\nimport matplotlib.pyplot as plt\nfrom matplotlib import colors\nimport cartopy.crs as ccrs\nimport cartopy.feature as cfeat\nfrom cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter\nimport cmaps\nfrom PIL import Image, ImageDraw, ImageSequence\n\ndef calc_frames(new_time):\n old_time = datetime(new_time.year-1, 11, 30, 23)\n days = (new_time - old_time).days\n sec = (new_time - old_time).seconds\n hours = days * 24 + sec/3600\n return int(hours)\n\ndef read_point_fixtime(filname,fixtime,flonl,flonr,flats,flatn):\n ff = open(filname,\"r\") \n line1 = ff.readline()\n line2 = ff.readline()\n line3 = ff.readline()\n line4 = ff.readline()\n \n plat = []\n plon = []\n line = ff.readline()\n while line:\n if line.strip().split(\" \")[0] == \"TRACK_ID\":\n num = int(ff.readline().strip().split(\" \")[-1])\n for nl in range(0,num,1):\n data = list(map(float,ff.readline().strip().split(\" \")))\n if str(int(data[0])) == fixtime and \\\n data[1]<=flonr and data[1] >= flonl and data[2]<=flatn and data[2]>=flats :\n plat.append(data[2])\n plon.append(data[1])\n line = ff.readline()\n ff.close()\n print(\"%s total feature point in %s : %d\"%(filname,fixtime,len(plat)))\n return plat, plon \n\nlonl=0 #0 #\nlonr=150#360#\nlats=15 #0 #\nlatn=70 #90 #\nlat_sp = 20\nlon_sp = 30\n\nnrow = 3\nncol = 1\nbmlo = 0.1\ntitle_font=18\nlabel_font=14\n\ndtime = pd.date_range(start='1995-01-01 00',periods=60, freq='6H',closed=None)\n#dtime = pd.date_range(start='1995-01-01 00',end='1995-01-15 00', freq='6H',closed=None)\ncreate_gif = True #False#\nnfilt=\"T63\"\nlev = [850,500,250]\ncnlvl =[[-8 ,1 ]]\ncnlvl2 = [30,50,100]\nvarname = 'z'\npath = '/home/users/qd201969/ERA5-1HR-lev/'\ndatapath = \"/gws/nopw/j04/ncas_generic/users/renql/\"#t/ERA5_NH_t_1989.nc\nfigdir = \"/home/users/qd201969/uor_track/fig/\"\n\nf = xr.open_dataset(\"%sERA5_subdaily/%s/ERA5_NH_%s_%d.nc\"%(datapath,varname,varname,dtime[0].year))\nlat = f['latitude'].data\nlon = f['longitude'].data\nilon = lon[(lon>=lonl) & (lon<=lonr)]\nilat = lat[(lat>=lats) & (lat<=latn)]\nds = xr.open_dataset(\"/home/users/qd201969/gtopo30_0.9x1.25.nc\")\nphis = ds['PHIS'].sel(lon=ilon,lat=ilat,method=\"nearest\").load()\nphis = phis/9.8 # transfer from m2/s2 to m\ndel ds\ngc.collect()\n\nnl = 0\nfcolors = cmaps.BlueDarkRed18\ncnlevels = np.arange(cnlvl[nl][0], cnlvl[nl][0]+cnlvl[nl][1]*(fcolors.N-1), cnlvl[nl][1])\nnorm = colors.BoundaryNorm(boundaries=cnlevels, ncolors=fcolors.N,extend='both')\n\nparams = {'legend.fontsize': label_font,\n 'axes.labelsize': label_font,\n 'axes.titlesize':label_font,\n 'xtick.labelsize':label_font,\n 'ytick.labelsize':label_font}\nplt.rcParams.update(params)\n\nfor nt in range(len(dtime)):\n fig = plt.figure(figsize=(12,12),dpi=100)\n ax = fig.subplots(nrow,ncol, subplot_kw=dict(projection=ccrs.PlateCarree())) #sharex=True, sharey=True\n for nl in range(len(lev)):\n var = f[varname].sel(time=dtime[nt],level=lev[nl],longitude=ilon,latitude=ilat)\n var.data = var.data/9.8\n\n path2 = \"%sERA5_VOR%d_1hr_%d_DET/\"%(path,lev[nl],dtime[nt].year)\n plat, plon = read_point_fixtime(path2+\"fft_trs_pos\",dtime[nt].strftime('%Y%m%d%H'),lonl,lonr,lats,latn)\n \n fvor = xr.open_dataset(\"%sERA5_VOR%d_1hr_%d_DET_%sfilt.nc\"%(path2,lev[nl],dtime[nt].year,nfilt))\n var1 = fvor['var'].sel(time=calc_frames(dtime[nt]),level = 1,lon=ilon,lat=ilat,method=\"nearest\").load()\n #fvor = xr.open_dataset(\"%sERA5_VOR_1h_dec_jan/ERA5_VOR%d_1hr_dec-jan%d_DET.nc\"%(datapath,lev[nl],dtime[nt].year))\n #var1 = fvor['var138'].sel(time=dtime[nt],lev=float(lev[nl]*100),lat=ilat,lon=ilon,method=\"nearest\").load()\n var1.values = var1.values*1e5\n\n axe = ax[nl]\n axe.add_feature(cfeat.COASTLINE.with_scale('110m'),edgecolor='black', linewidth=0.8, zorder=1) \n axe.set_title(\"%s %dhPa (%d)\"%(dtime[nt].strftime('%Y-%m-%d-%H:00'), lev[nl], len(plat)),fontsize=title_font)\n\n shad = axe.contourf(ilon, ilat, var1, cnlevels,\n transform=ccrs.PlateCarree(),cmap=fcolors,extend='both',norm=norm)\n \n cont = axe.contour(ilon, ilat, var, np.arange(1000,15000,cnlvl2[nl]), \n transform=ccrs.PlateCarree(), colors='gray', linewidths=1.5)\n \n #pint = axe.plot(plon,plat,color='darkviolet', marker='o', markersize=12, transform=ccrs.PlateCarree())\n pint = axe.scatter(plon,plat,10.0**2,color='k', marker='o', transform=ccrs.PlateCarree())\n\n topo = axe.contour(ilon, ilat, phis, [1500,3000],\n transform=ccrs.PlateCarree(),colors='black',linewidths=1.2)\n\n axe.set_yticks(np.arange(lats,latn,lat_sp), crs=ccrs.PlateCarree())\n axe.yaxis.set_major_formatter(LatitudeFormatter(degree_symbol=''))\n axe.set_xticks(np.arange(lonl,lonr,lon_sp), crs=ccrs.PlateCarree())\n axe.xaxis.set_major_formatter(LongitudeFormatter(degree_symbol=''))\n\n position = fig.add_axes([0.85, bmlo+0.1, 0.015, 0.7]) #left, bottom, width, height\n cb = plt.colorbar(shad, cax=position ,orientation='vertical')#, shrink=.9)\n cb.set_label(label='T5~63 Relative Vort (1e5)', size=label_font) #, weight='bold'\n\n plt.tight_layout(rect=(0,bmlo,1,1))\n plt.savefig(figdir+\"filt_vor_%s.png\"%(dtime[nt].strftime('%Y%m%d%H')), bbox_inches='tight',pad_inches=0.01)\n\nif create_gif == True:\n figname = figdir+\"filt_vor_*.png\"\n fn_stream = subprocess.check_output(\"ls \"+figname, shell=True).decode('utf-8')\n fn_list = fn_stream.split()\n print(fn_list[0])\n print('filenumber : '+str(len(fn_list)))\n gif_name = figname.rsplit(\"_\",1)[0]+\".gif\" \n\n frames = []\n for itm in fn_list:\n frame = Image.open(itm)\n frames.append(frame)\n\n frames[0].save(gif_name, save_all=True, append_images=frames[1:],\\\n duration = 1000, loop=0, disposal=1)\n subprocess.run('rm -f %s'%(figname),shell=True)\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # This work is licensed under the Creative Commons Attribution-NonCommercial # 4.0 International License. To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. """Global configuration.""" # ---------------------------------------------------------------------------- # Paths. from facegan import ROOT_PATH result_dir = 'results' data_dir = 'datasets' cache_dir = f'{ROOT_PATH}/data/cache' run_dir_ignore = ['results', 'datasets', 'cache'] # experimental - replace Dense layers with TreeConnect use_treeconnect = False treeconnect_threshold = 1024 # ---------------------------------------------------------------------------- vgg16 = 'vgg16_zhang_perceptual.pkl' model = 'stylegan2-ffhq-config-f.pkl' networks_urls = { 'european': [ 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W', 'generator_model-stylegan2-config-f.pkl' ], 'asian': [ 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9', 'generator_yellow-stylegan2-config-f.pkl' ], 'asian beauty': [ 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj', 'generator_star-stylegan2-config-f.pkl' ], 'baby': [ 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa', 'generator_baby-stylegan2-config-f.pkl' ], }
normal
{ "blob_id": "cb904408486ad9ea8cc0c8ff2ec393e480309a57", "index": 2403, "step-1": "<mask token>\n", "step-2": "<mask token>\nresult_dir = 'results'\ndata_dir = 'datasets'\ncache_dir = f'{ROOT_PATH}/data/cache'\nrun_dir_ignore = ['results', 'datasets', 'cache']\nuse_treeconnect = False\ntreeconnect_threshold = 1024\nvgg16 = 'vgg16_zhang_perceptual.pkl'\nmodel = 'stylegan2-ffhq-config-f.pkl'\nnetworks_urls = {'european': [\n 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W',\n 'generator_model-stylegan2-config-f.pkl'], 'asian': [\n 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9',\n 'generator_yellow-stylegan2-config-f.pkl'], 'asian beauty': [\n 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj',\n 'generator_star-stylegan2-config-f.pkl'], 'baby': [\n 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa',\n 'generator_baby-stylegan2-config-f.pkl']}\n", "step-3": "<mask token>\nfrom facegan import ROOT_PATH\nresult_dir = 'results'\ndata_dir = 'datasets'\ncache_dir = f'{ROOT_PATH}/data/cache'\nrun_dir_ignore = ['results', 'datasets', 'cache']\nuse_treeconnect = False\ntreeconnect_threshold = 1024\nvgg16 = 'vgg16_zhang_perceptual.pkl'\nmodel = 'stylegan2-ffhq-config-f.pkl'\nnetworks_urls = {'european': [\n 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W',\n 'generator_model-stylegan2-config-f.pkl'], 'asian': [\n 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9',\n 'generator_yellow-stylegan2-config-f.pkl'], 'asian beauty': [\n 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj',\n 'generator_star-stylegan2-config-f.pkl'], 'baby': [\n 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa',\n 'generator_baby-stylegan2-config-f.pkl']}\n", "step-4": "# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.\n#\n# This work is licensed under the Creative Commons Attribution-NonCommercial\n# 4.0 International License. To view a copy of this license, visit\n# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to\n# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.\n\"\"\"Global configuration.\"\"\"\n\n# ----------------------------------------------------------------------------\n# Paths.\nfrom facegan import ROOT_PATH\n\nresult_dir = 'results'\ndata_dir = 'datasets'\ncache_dir = f'{ROOT_PATH}/data/cache'\nrun_dir_ignore = ['results', 'datasets', 'cache']\n\n# experimental - replace Dense layers with TreeConnect\nuse_treeconnect = False\ntreeconnect_threshold = 1024\n\n# ----------------------------------------------------------------------------\n\nvgg16 = 'vgg16_zhang_perceptual.pkl'\nmodel = 'stylegan2-ffhq-config-f.pkl'\n\nnetworks_urls = {\n 'european': [\n 'https://drive.google.com/uc?id=1--kh2Em5U1qh-H7Lin9FzppkZCQ18c4W',\n 'generator_model-stylegan2-config-f.pkl'\n ],\n 'asian': [\n 'https://drive.google.com/uc?id=1-3XU6KzIVywFoKXx2zG1hW8mH4OYpyO9',\n 'generator_yellow-stylegan2-config-f.pkl'\n ],\n 'asian beauty': [\n 'https://drive.google.com/uc?id=1-04v78_pI59M0IvhcKxsm3YhK2-plnbj',\n 'generator_star-stylegan2-config-f.pkl'\n ],\n 'baby': [\n 'https://drive.google.com/uc?id=1--684mANXSgC3aDhLc7lPM7OBHWuVRXa',\n 'generator_baby-stylegan2-config-f.pkl'\n ],\n}\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if __name__ == '__main__': dataset = pd.read_csv('./dataset.csv') X_train, X_test, y_train, y_test = train_test_split(dataset['text'], dataset['label'], test_size=0.2, random_state=1, shuffle=True) baseline_pipeline = Pipeline([('vect', TfidfVectorizer(ngram_range=(1, 3))), ('svc', LinearSVC())]) baseline_pipeline.fit(X_train, y_train) print(classification_report(y_test, baseline_pipeline.predict(X_test), digits=4)) <|reserved_special_token_1|> import pandas as pd from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report if __name__ == '__main__': dataset = pd.read_csv('./dataset.csv') X_train, X_test, y_train, y_test = train_test_split(dataset['text'], dataset['label'], test_size=0.2, random_state=1, shuffle=True) baseline_pipeline = Pipeline([('vect', TfidfVectorizer(ngram_range=(1, 3))), ('svc', LinearSVC())]) baseline_pipeline.fit(X_train, y_train) print(classification_report(y_test, baseline_pipeline.predict(X_test), digits=4)) <|reserved_special_token_1|> import pandas as pd from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report if __name__ == "__main__": dataset = pd.read_csv('./dataset.csv') X_train, X_test, y_train, y_test = train_test_split( dataset["text"], dataset["label"], test_size=0.2, random_state=1, shuffle=True ) baseline_pipeline = Pipeline( [("vect", TfidfVectorizer(ngram_range=(1, 3))), ("svc", LinearSVC())] ) baseline_pipeline.fit(X_train, y_train) print(classification_report(y_test, baseline_pipeline.predict(X_test), digits=4))
flexible
{ "blob_id": "f82c961fc1accd362b34a685bac4cc35d98f44ef", "index": 6371, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n dataset = pd.read_csv('./dataset.csv')\n X_train, X_test, y_train, y_test = train_test_split(dataset['text'],\n dataset['label'], test_size=0.2, random_state=1, shuffle=True)\n baseline_pipeline = Pipeline([('vect', TfidfVectorizer(ngram_range=(1, \n 3))), ('svc', LinearSVC())])\n baseline_pipeline.fit(X_train, y_train)\n print(classification_report(y_test, baseline_pipeline.predict(X_test),\n digits=4))\n", "step-3": "import pandas as pd\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.svm import LinearSVC\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import classification_report\nif __name__ == '__main__':\n dataset = pd.read_csv('./dataset.csv')\n X_train, X_test, y_train, y_test = train_test_split(dataset['text'],\n dataset['label'], test_size=0.2, random_state=1, shuffle=True)\n baseline_pipeline = Pipeline([('vect', TfidfVectorizer(ngram_range=(1, \n 3))), ('svc', LinearSVC())])\n baseline_pipeline.fit(X_train, y_train)\n print(classification_report(y_test, baseline_pipeline.predict(X_test),\n digits=4))\n", "step-4": "import pandas as pd\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.feature_extraction.text import TfidfVectorizer\nfrom sklearn.svm import LinearSVC\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.metrics import classification_report\n\nif __name__ == \"__main__\":\n dataset = pd.read_csv('./dataset.csv')\n \n X_train, X_test, y_train, y_test = train_test_split(\n dataset[\"text\"], dataset[\"label\"], test_size=0.2, random_state=1, shuffle=True\n )\n\n baseline_pipeline = Pipeline(\n [(\"vect\", TfidfVectorizer(ngram_range=(1, 3))), (\"svc\", LinearSVC())]\n )\n\n baseline_pipeline.fit(X_train, y_train)\n print(classification_report(y_test, baseline_pipeline.predict(X_test), digits=4))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> def test_config(app): assert app.testing <|reserved_special_token_1|> # testa se uma aplicacao em modo de teste esta sendo construida def test_config(app): assert app.testing
flexible
{ "blob_id": "96d7963faf720a3dc0d96b55ad65ee7ac83c1818", "index": 5798, "step-1": "<mask token>\n", "step-2": "def test_config(app):\n assert app.testing\n", "step-3": "# testa se uma aplicacao em modo de teste esta sendo construida\ndef test_config(app):\n assert app.testing\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
class Component: pass class Entity: def __init__(self, id): self.id = id self.components = {} def add_component(self, component): if type(component) in self.components: raise Exception("This entity already has a component of that type") # Since there is only one of each type of component, they are stored by type self.components[type(component)] = component def has_component(self, component_type): return component_type in self.components def get_component(self, component_type): return self.components[component_type] class System: def __init__(self, *required): self.required = required self.entity_ids = set() def bind_manager(self, manager): self.manager = manager def update(self, deltaTime): self.begin() for entity_id in self.entity_ids: entity = self.manager.get_entity_by_id(entity_id) self.process(entity, deltaTime) self.end() # Overridden in the derived class to specify functionality of system def process(self, entity, deltaTime): pass # Can be overridden if you want to do something before the first entity is processed def begin(self): pass # Can be overridden if you want to do something after the last entity is processed def end(self): pass def update_entity_registration(self, entity): contains = entity.id in self.entity_ids matches = self.matches(entity) # Already exists, but no longer matches if contains and not matches: self.entity_ids.remove(entity.id) # Doesn't exist, but does match elif not contains and matches: self.entity_ids.add(entity.id) def matches(self, entity): for required in self.required: if not entity.has_component(required): return False return True class Manager: def __init__(self): self.entities = {} self.current_id = 0 self.systems = [] def create_entity(self): entity = Entity(self.current_id) self.current_id += 1 self.entities[entity.id] = entity return entity def get_entity_by_id(self, id): return self.entities[id] # Use this to add components, not the entity method!! Wish there was a way to enforce that in python def add_component_to_entity(self, entity, component): entity.add_component(component) self.update_entity_registration(entity) def add_system(self, system): system.bind_manager(self) self.systems.append(system) def update(self, deltaTime): for system in self.systems: system.update(deltaTime) def update_entity_registration(self, entity): for system in self.systems: system.update_entity_registration(entity)
normal
{ "blob_id": "14f7f31fa64799cdc08b1363b945da50841d16b5", "index": 3020, "step-1": "<mask token>\n\n\nclass System:\n <mask token>\n\n def bind_manager(self, manager):\n self.manager = manager\n <mask token>\n\n def process(self, entity, deltaTime):\n pass\n <mask token>\n <mask token>\n\n def update_entity_registration(self, entity):\n contains = entity.id in self.entity_ids\n matches = self.matches(entity)\n if contains and not matches:\n self.entity_ids.remove(entity.id)\n elif not contains and matches:\n self.entity_ids.add(entity.id)\n\n def matches(self, entity):\n for required in self.required:\n if not entity.has_component(required):\n return False\n return True\n\n\nclass Manager:\n\n def __init__(self):\n self.entities = {}\n self.current_id = 0\n self.systems = []\n\n def create_entity(self):\n entity = Entity(self.current_id)\n self.current_id += 1\n self.entities[entity.id] = entity\n return entity\n\n def get_entity_by_id(self, id):\n return self.entities[id]\n\n def add_component_to_entity(self, entity, component):\n entity.add_component(component)\n self.update_entity_registration(entity)\n\n def add_system(self, system):\n system.bind_manager(self)\n self.systems.append(system)\n\n def update(self, deltaTime):\n for system in self.systems:\n system.update(deltaTime)\n\n def update_entity_registration(self, entity):\n for system in self.systems:\n system.update_entity_registration(entity)\n", "step-2": "<mask token>\n\n\nclass System:\n <mask token>\n\n def bind_manager(self, manager):\n self.manager = manager\n\n def update(self, deltaTime):\n self.begin()\n for entity_id in self.entity_ids:\n entity = self.manager.get_entity_by_id(entity_id)\n self.process(entity, deltaTime)\n self.end()\n\n def process(self, entity, deltaTime):\n pass\n <mask token>\n <mask token>\n\n def update_entity_registration(self, entity):\n contains = entity.id in self.entity_ids\n matches = self.matches(entity)\n if contains and not matches:\n self.entity_ids.remove(entity.id)\n elif not contains and matches:\n self.entity_ids.add(entity.id)\n\n def matches(self, entity):\n for required in self.required:\n if not entity.has_component(required):\n return False\n return True\n\n\nclass Manager:\n\n def __init__(self):\n self.entities = {}\n self.current_id = 0\n self.systems = []\n\n def create_entity(self):\n entity = Entity(self.current_id)\n self.current_id += 1\n self.entities[entity.id] = entity\n return entity\n\n def get_entity_by_id(self, id):\n return self.entities[id]\n\n def add_component_to_entity(self, entity, component):\n entity.add_component(component)\n self.update_entity_registration(entity)\n\n def add_system(self, system):\n system.bind_manager(self)\n self.systems.append(system)\n\n def update(self, deltaTime):\n for system in self.systems:\n system.update(deltaTime)\n\n def update_entity_registration(self, entity):\n for system in self.systems:\n system.update_entity_registration(entity)\n", "step-3": "<mask token>\n\n\nclass System:\n\n def __init__(self, *required):\n self.required = required\n self.entity_ids = set()\n\n def bind_manager(self, manager):\n self.manager = manager\n\n def update(self, deltaTime):\n self.begin()\n for entity_id in self.entity_ids:\n entity = self.manager.get_entity_by_id(entity_id)\n self.process(entity, deltaTime)\n self.end()\n\n def process(self, entity, deltaTime):\n pass\n\n def begin(self):\n pass\n\n def end(self):\n pass\n\n def update_entity_registration(self, entity):\n contains = entity.id in self.entity_ids\n matches = self.matches(entity)\n if contains and not matches:\n self.entity_ids.remove(entity.id)\n elif not contains and matches:\n self.entity_ids.add(entity.id)\n\n def matches(self, entity):\n for required in self.required:\n if not entity.has_component(required):\n return False\n return True\n\n\nclass Manager:\n\n def __init__(self):\n self.entities = {}\n self.current_id = 0\n self.systems = []\n\n def create_entity(self):\n entity = Entity(self.current_id)\n self.current_id += 1\n self.entities[entity.id] = entity\n return entity\n\n def get_entity_by_id(self, id):\n return self.entities[id]\n\n def add_component_to_entity(self, entity, component):\n entity.add_component(component)\n self.update_entity_registration(entity)\n\n def add_system(self, system):\n system.bind_manager(self)\n self.systems.append(system)\n\n def update(self, deltaTime):\n for system in self.systems:\n system.update(deltaTime)\n\n def update_entity_registration(self, entity):\n for system in self.systems:\n system.update_entity_registration(entity)\n", "step-4": "<mask token>\n\n\nclass Entity:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass System:\n\n def __init__(self, *required):\n self.required = required\n self.entity_ids = set()\n\n def bind_manager(self, manager):\n self.manager = manager\n\n def update(self, deltaTime):\n self.begin()\n for entity_id in self.entity_ids:\n entity = self.manager.get_entity_by_id(entity_id)\n self.process(entity, deltaTime)\n self.end()\n\n def process(self, entity, deltaTime):\n pass\n\n def begin(self):\n pass\n\n def end(self):\n pass\n\n def update_entity_registration(self, entity):\n contains = entity.id in self.entity_ids\n matches = self.matches(entity)\n if contains and not matches:\n self.entity_ids.remove(entity.id)\n elif not contains and matches:\n self.entity_ids.add(entity.id)\n\n def matches(self, entity):\n for required in self.required:\n if not entity.has_component(required):\n return False\n return True\n\n\nclass Manager:\n\n def __init__(self):\n self.entities = {}\n self.current_id = 0\n self.systems = []\n\n def create_entity(self):\n entity = Entity(self.current_id)\n self.current_id += 1\n self.entities[entity.id] = entity\n return entity\n\n def get_entity_by_id(self, id):\n return self.entities[id]\n\n def add_component_to_entity(self, entity, component):\n entity.add_component(component)\n self.update_entity_registration(entity)\n\n def add_system(self, system):\n system.bind_manager(self)\n self.systems.append(system)\n\n def update(self, deltaTime):\n for system in self.systems:\n system.update(deltaTime)\n\n def update_entity_registration(self, entity):\n for system in self.systems:\n system.update_entity_registration(entity)\n", "step-5": "\nclass Component:\n pass\n\nclass Entity:\n\n def __init__(self, id):\n self.id = id\n self.components = {}\n\n def add_component(self, component):\n if type(component) in self.components:\n raise Exception(\"This entity already has a component of that type\")\n\n # Since there is only one of each type of component, they are stored by type\n self.components[type(component)] = component\n\n def has_component(self, component_type):\n return component_type in self.components\n\n def get_component(self, component_type):\n return self.components[component_type]\n\nclass System:\n\n def __init__(self, *required):\n self.required = required\n self.entity_ids = set()\n\n def bind_manager(self, manager):\n self.manager = manager\n \n def update(self, deltaTime):\n self.begin()\n\n for entity_id in self.entity_ids:\n entity = self.manager.get_entity_by_id(entity_id)\n self.process(entity, deltaTime)\n \n self.end()\n\n # Overridden in the derived class to specify functionality of system\n def process(self, entity, deltaTime):\n pass\n\n # Can be overridden if you want to do something before the first entity is processed\n def begin(self):\n pass\n\n # Can be overridden if you want to do something after the last entity is processed\n def end(self):\n pass\n\n def update_entity_registration(self, entity):\n contains = entity.id in self.entity_ids\n matches = self.matches(entity)\n\n # Already exists, but no longer matches\n if contains and not matches:\n self.entity_ids.remove(entity.id)\n # Doesn't exist, but does match\n elif not contains and matches:\n self.entity_ids.add(entity.id)\n \n def matches(self, entity):\n for required in self.required:\n if not entity.has_component(required):\n return False\n\n return True\n\nclass Manager:\n\n def __init__(self):\n self.entities = {}\n self.current_id = 0\n\n self.systems = []\n \n def create_entity(self):\n entity = Entity(self.current_id)\n self.current_id += 1\n\n self.entities[entity.id] = entity\n return entity\n\n def get_entity_by_id(self, id):\n return self.entities[id]\n\n # Use this to add components, not the entity method!! Wish there was a way to enforce that in python\n def add_component_to_entity(self, entity, component):\n entity.add_component(component)\n self.update_entity_registration(entity)\n \n def add_system(self, system):\n system.bind_manager(self)\n self.systems.append(system)\n\n def update(self, deltaTime):\n for system in self.systems:\n system.update(deltaTime)\n\n def update_entity_registration(self, entity):\n for system in self.systems:\n system.update_entity_registration(entity)\n", "step-ids": [ 13, 14, 17, 18, 24 ] }
[ 13, 14, 17, 18, 24 ]
#!/usr/bin/env python3 """ Greets the Pep Boys. """ for name in "Manny", "Moe", "Jack": print("Hi ya", name + '!')
normal
{ "blob_id": "81ff77064a299b4fcd456f341ecb40ba5afe3295", "index": 1714, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor name in ('Manny', 'Moe', 'Jack'):\n print('Hi ya', name + '!')\n", "step-3": "#!/usr/bin/env python3\n\"\"\" Greets the Pep Boys.\n\"\"\"\n\nfor name in \"Manny\", \"Moe\", \"Jack\":\n print(\"Hi ya\", name + '!')\n\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# Converts text to speech in different accents. Requires pip3 install gTTS from gtts import gTTS import os language_code = """ Language Code -------- ---- Afrikaans af Albanian sq Arabic ar Belarusian be Bulgarian bg Catalan ca Chinese Simplified zh-CN Chinese Traditional zh-TW Croatian hr Czech cs Danish da Dutch nl English en Estonian et Filipino tl Finnish fi French fr Galician gl German de Greek el Hebrew iw Hindi hi Hungarian hu Icelandic is Indonesian id Irish ga Italian it Japanese ja Korean ko Latvian lv Lithuanian lt Macedonian mk Malay ms Maltese mt Norwegian no Persian fa Polish pl Portuguese pt Romanian ro Russian ru Serbian sr Slovak sk Slovenian sl Spanish es Swahili sw Swedish sv Thai th Turkish tr Ukrainian uk Vietnamese vi Welsh cy Yiddish yi """ print("We're going to speak anything you type in a different accent") mytext = input("Please enter some text: ") print(language_code) language = input("Please select the accent: ") # Passing the text and language to the engine myobj = gTTS(text=mytext, lang=language, slow=True) # Saving the converted audio in a mp3 file named texty myobj.save("texty.mp3") # It does create the file but doesnt play. # Also, I wanted it to actually translate to a different language, but all it does is say it in a different accent! os.system("mpg321 texty.mp3")
normal
{ "blob_id": "545053bc2b7c8687622d747673f2ad37b978014c", "index": 3403, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(\"We're going to speak anything you type in a different accent\")\n<mask token>\nprint(language_code)\n<mask token>\nmyobj.save('texty.mp3')\nos.system('mpg321 texty.mp3')\n", "step-3": "<mask token>\nlanguage_code = \"\"\"\nLanguage Code\n-------- ----\nAfrikaans af\nAlbanian sq\nArabic ar\nBelarusian be\nBulgarian bg\nCatalan ca\nChinese Simplified zh-CN\nChinese Traditional zh-TW\nCroatian hr\nCzech cs\nDanish da\nDutch nl\nEnglish en\nEstonian et\nFilipino tl\nFinnish fi\nFrench fr\nGalician gl\nGerman de\nGreek el\nHebrew iw\nHindi hi\nHungarian hu\nIcelandic is\nIndonesian id\nIrish ga\nItalian it\nJapanese ja\nKorean ko\nLatvian lv\nLithuanian lt\nMacedonian mk\nMalay ms\nMaltese mt\nNorwegian no\nPersian fa\nPolish pl\nPortuguese pt\nRomanian ro\nRussian ru\nSerbian sr\nSlovak sk\nSlovenian sl\nSpanish es\nSwahili sw\nSwedish sv\nThai th\nTurkish tr\nUkrainian uk\nVietnamese vi\nWelsh cy\nYiddish yi\n\"\"\"\nprint(\"We're going to speak anything you type in a different accent\")\nmytext = input('Please enter some text: ')\nprint(language_code)\nlanguage = input('Please select the accent: ')\nmyobj = gTTS(text=mytext, lang=language, slow=True)\nmyobj.save('texty.mp3')\nos.system('mpg321 texty.mp3')\n", "step-4": "from gtts import gTTS\nimport os\nlanguage_code = \"\"\"\nLanguage Code\n-------- ----\nAfrikaans af\nAlbanian sq\nArabic ar\nBelarusian be\nBulgarian bg\nCatalan ca\nChinese Simplified zh-CN\nChinese Traditional zh-TW\nCroatian hr\nCzech cs\nDanish da\nDutch nl\nEnglish en\nEstonian et\nFilipino tl\nFinnish fi\nFrench fr\nGalician gl\nGerman de\nGreek el\nHebrew iw\nHindi hi\nHungarian hu\nIcelandic is\nIndonesian id\nIrish ga\nItalian it\nJapanese ja\nKorean ko\nLatvian lv\nLithuanian lt\nMacedonian mk\nMalay ms\nMaltese mt\nNorwegian no\nPersian fa\nPolish pl\nPortuguese pt\nRomanian ro\nRussian ru\nSerbian sr\nSlovak sk\nSlovenian sl\nSpanish es\nSwahili sw\nSwedish sv\nThai th\nTurkish tr\nUkrainian uk\nVietnamese vi\nWelsh cy\nYiddish yi\n\"\"\"\nprint(\"We're going to speak anything you type in a different accent\")\nmytext = input('Please enter some text: ')\nprint(language_code)\nlanguage = input('Please select the accent: ')\nmyobj = gTTS(text=mytext, lang=language, slow=True)\nmyobj.save('texty.mp3')\nos.system('mpg321 texty.mp3')\n", "step-5": "# Converts text to speech in different accents. Requires pip3 install gTTS\nfrom gtts import gTTS\nimport os\n\nlanguage_code = \"\"\"\nLanguage Code\n-------- ----\nAfrikaans af\nAlbanian sq\nArabic ar\nBelarusian be\nBulgarian bg\nCatalan ca\nChinese Simplified zh-CN\nChinese Traditional zh-TW\nCroatian hr\nCzech cs\nDanish da\nDutch nl\nEnglish en\nEstonian et\nFilipino tl\nFinnish fi\nFrench fr\nGalician gl\nGerman de\nGreek el\nHebrew iw\nHindi hi\nHungarian hu\nIcelandic is\nIndonesian id\nIrish ga\nItalian it\nJapanese ja\nKorean ko\nLatvian lv\nLithuanian lt\nMacedonian mk\nMalay ms\nMaltese mt\nNorwegian no\nPersian fa\nPolish pl\nPortuguese pt\nRomanian ro\nRussian ru\nSerbian sr\nSlovak sk\nSlovenian sl\nSpanish es\nSwahili sw\nSwedish sv\nThai th\nTurkish tr\nUkrainian uk\nVietnamese vi\nWelsh cy\nYiddish yi\n\"\"\"\n\nprint(\"We're going to speak anything you type in a different accent\")\nmytext = input(\"Please enter some text: \")\nprint(language_code)\nlanguage = input(\"Please select the accent: \")\n\n# Passing the text and language to the engine\nmyobj = gTTS(text=mytext, lang=language, slow=True)\n\n# Saving the converted audio in a mp3 file named texty\nmyobj.save(\"texty.mp3\")\n\n# It does create the file but doesnt play. \n# Also, I wanted it to actually translate to a different language, but all it does is say it in a different accent!\nos.system(\"mpg321 texty.mp3\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def calculate(x): return x * x <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def calculate(x): return x * x <|reserved_special_token_0|> plt.plot(inputs, outputs) plt.savefig('plot.png') <|reserved_special_token_1|> <|reserved_special_token_0|> def calculate(x): return x * x inputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5] outputs = [calculate(x) for x in inputs] plt.plot(inputs, outputs) plt.savefig('plot.png') <|reserved_special_token_1|> from matplotlib import pyplot as plt def calculate(x): return x * x inputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5] outputs = [calculate(x) for x in inputs] plt.plot(inputs, outputs) plt.savefig('plot.png') <|reserved_special_token_1|> from matplotlib import pyplot as plt # Function for testing # Maps x => x*x def calculate(x): return x * x inputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5] outputs = [calculate(x) for x in inputs] plt.plot(inputs, outputs) plt.savefig("plot.png")
flexible
{ "blob_id": "1b3891565f776064cfcca02fb22ea65853f7e66f", "index": 3629, "step-1": "<mask token>\n\n\ndef calculate(x):\n return x * x\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef calculate(x):\n return x * x\n\n\n<mask token>\nplt.plot(inputs, outputs)\nplt.savefig('plot.png')\n", "step-3": "<mask token>\n\n\ndef calculate(x):\n return x * x\n\n\ninputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5]\noutputs = [calculate(x) for x in inputs]\nplt.plot(inputs, outputs)\nplt.savefig('plot.png')\n", "step-4": "from matplotlib import pyplot as plt\n\n\ndef calculate(x):\n return x * x\n\n\ninputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5]\noutputs = [calculate(x) for x in inputs]\nplt.plot(inputs, outputs)\nplt.savefig('plot.png')\n", "step-5": "from matplotlib import pyplot as plt\n\n# Function for testing\n# Maps x => x*x\ndef calculate(x):\n\treturn x * x\n\n\ninputs = [-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5]\n\noutputs = [calculate(x) for x in inputs]\n\nplt.plot(inputs, outputs)\nplt.savefig(\"plot.png\")", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from django.test import TestCase from student.forms import StudentForm class ModelTest(TestCase): def test_expense_form_valid_data(self): form = StudentForm(data={ 'student_id': 500, 'firstName': "Emre", 'lastName': "Tan", 'department': "Panama", 'mathScore': 100, 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10 }) self.assertTrue(form.is_valid()) def test_expense_form_no_data(self): form = StudentForm(data={}) self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 8) def test_expense_form_invalid_required(self): form = StudentForm(data={ 'student_id': 500, 'firstName': "", 'lastName': "", 'department': "", 'mathScore': 100, 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10 }) self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 3) self.assertEqual(form.errors, { 'firstName': ['This field is required.'], 'lastName': ['This field is required.'], 'department': ['This field is required.'] }) def test_expense_form_invalid_equal_to_max(self): form = StudentForm(data={ 'student_id': 120000, 'firstName': "Berkay", 'lastName': "Tan", 'department': "Bilisim", 'mathScore': 200, 'physicsScore': 150, 'chemistryScore': 150, 'biologyScore': 101 }) self.assertFalse(form.is_valid()) self.assertEqual(len(form.errors), 5) self.assertEqual(form.errors, { 'student_id': ['Ensure this value is less than or equal to 9999.'], 'mathScore': ['Ensure this value is less than or equal to 100.'], 'physicsScore': ['Ensure this value is less than or equal to 100.'], 'chemistryScore': ['Ensure this value is less than or equal to 100.'], 'biologyScore': ['Ensure this value is less than or equal to 100.'], })
normal
{ "blob_id": "6dc7c7de972388f3984a1238a2d62e53c60c622e", "index": 6252, "step-1": "<mask token>\n\n\nclass ModelTest(TestCase):\n\n def test_expense_form_valid_data(self):\n form = StudentForm(data={'student_id': 500, 'firstName': 'Emre',\n 'lastName': 'Tan', 'department': 'Panama', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertTrue(form.is_valid())\n <mask token>\n\n def test_expense_form_invalid_required(self):\n form = StudentForm(data={'student_id': 500, 'firstName': '',\n 'lastName': '', 'department': '', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 3)\n self.assertEqual(form.errors, {'firstName': [\n 'This field is required.'], 'lastName': [\n 'This field is required.'], 'department': [\n 'This field is required.']})\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ModelTest(TestCase):\n\n def test_expense_form_valid_data(self):\n form = StudentForm(data={'student_id': 500, 'firstName': 'Emre',\n 'lastName': 'Tan', 'department': 'Panama', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertTrue(form.is_valid())\n\n def test_expense_form_no_data(self):\n form = StudentForm(data={})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 8)\n\n def test_expense_form_invalid_required(self):\n form = StudentForm(data={'student_id': 500, 'firstName': '',\n 'lastName': '', 'department': '', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 3)\n self.assertEqual(form.errors, {'firstName': [\n 'This field is required.'], 'lastName': [\n 'This field is required.'], 'department': [\n 'This field is required.']})\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ModelTest(TestCase):\n\n def test_expense_form_valid_data(self):\n form = StudentForm(data={'student_id': 500, 'firstName': 'Emre',\n 'lastName': 'Tan', 'department': 'Panama', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertTrue(form.is_valid())\n\n def test_expense_form_no_data(self):\n form = StudentForm(data={})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 8)\n\n def test_expense_form_invalid_required(self):\n form = StudentForm(data={'student_id': 500, 'firstName': '',\n 'lastName': '', 'department': '', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 3)\n self.assertEqual(form.errors, {'firstName': [\n 'This field is required.'], 'lastName': [\n 'This field is required.'], 'department': [\n 'This field is required.']})\n\n def test_expense_form_invalid_equal_to_max(self):\n form = StudentForm(data={'student_id': 120000, 'firstName':\n 'Berkay', 'lastName': 'Tan', 'department': 'Bilisim',\n 'mathScore': 200, 'physicsScore': 150, 'chemistryScore': 150,\n 'biologyScore': 101})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 5)\n self.assertEqual(form.errors, {'student_id': [\n 'Ensure this value is less than or equal to 9999.'],\n 'mathScore': ['Ensure this value is less than or equal to 100.'\n ], 'physicsScore': [\n 'Ensure this value is less than or equal to 100.'],\n 'chemistryScore': [\n 'Ensure this value is less than or equal to 100.'],\n 'biologyScore': [\n 'Ensure this value is less than or equal to 100.']})\n", "step-4": "from django.test import TestCase\nfrom student.forms import StudentForm\n\n\nclass ModelTest(TestCase):\n\n def test_expense_form_valid_data(self):\n form = StudentForm(data={'student_id': 500, 'firstName': 'Emre',\n 'lastName': 'Tan', 'department': 'Panama', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertTrue(form.is_valid())\n\n def test_expense_form_no_data(self):\n form = StudentForm(data={})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 8)\n\n def test_expense_form_invalid_required(self):\n form = StudentForm(data={'student_id': 500, 'firstName': '',\n 'lastName': '', 'department': '', 'mathScore': 100,\n 'physicsScore': 70, 'chemistryScore': 40, 'biologyScore': 10})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 3)\n self.assertEqual(form.errors, {'firstName': [\n 'This field is required.'], 'lastName': [\n 'This field is required.'], 'department': [\n 'This field is required.']})\n\n def test_expense_form_invalid_equal_to_max(self):\n form = StudentForm(data={'student_id': 120000, 'firstName':\n 'Berkay', 'lastName': 'Tan', 'department': 'Bilisim',\n 'mathScore': 200, 'physicsScore': 150, 'chemistryScore': 150,\n 'biologyScore': 101})\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 5)\n self.assertEqual(form.errors, {'student_id': [\n 'Ensure this value is less than or equal to 9999.'],\n 'mathScore': ['Ensure this value is less than or equal to 100.'\n ], 'physicsScore': [\n 'Ensure this value is less than or equal to 100.'],\n 'chemistryScore': [\n 'Ensure this value is less than or equal to 100.'],\n 'biologyScore': [\n 'Ensure this value is less than or equal to 100.']})\n", "step-5": "from django.test import TestCase\nfrom student.forms import StudentForm\n\n\nclass ModelTest(TestCase):\n\n def test_expense_form_valid_data(self):\n form = StudentForm(data={\n 'student_id': 500,\n 'firstName': \"Emre\",\n 'lastName': \"Tan\",\n 'department': \"Panama\",\n 'mathScore': 100,\n 'physicsScore': 70,\n 'chemistryScore': 40,\n 'biologyScore': 10\n })\n\n self.assertTrue(form.is_valid())\n\n def test_expense_form_no_data(self):\n form = StudentForm(data={})\n\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 8)\n\n def test_expense_form_invalid_required(self):\n form = StudentForm(data={\n 'student_id': 500,\n 'firstName': \"\",\n 'lastName': \"\",\n 'department': \"\",\n 'mathScore': 100,\n 'physicsScore': 70,\n 'chemistryScore': 40,\n 'biologyScore': 10\n })\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 3)\n self.assertEqual(form.errors, {\n 'firstName': ['This field is required.'],\n 'lastName': ['This field is required.'],\n 'department': ['This field is required.']\n })\n\n def test_expense_form_invalid_equal_to_max(self):\n form = StudentForm(data={\n 'student_id': 120000,\n 'firstName': \"Berkay\",\n 'lastName': \"Tan\",\n 'department': \"Bilisim\",\n 'mathScore': 200,\n 'physicsScore': 150,\n 'chemistryScore': 150,\n 'biologyScore': 101\n })\n self.assertFalse(form.is_valid())\n self.assertEqual(len(form.errors), 5)\n self.assertEqual(form.errors, {\n 'student_id': ['Ensure this value is less than or equal to 9999.'],\n 'mathScore': ['Ensure this value is less than or equal to 100.'],\n 'physicsScore': ['Ensure this value is less than or equal to 100.'],\n 'chemistryScore': ['Ensure this value is less than or equal to 100.'],\n 'biologyScore': ['Ensure this value is less than or equal to 100.'],\n })\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import json import os from django.conf import settings from django.db import models from jsonfield import JSONField class Word(models.Model): value = models.CharField( max_length=50, verbose_name='Слово' ) spelling = models.CharField( max_length=250, verbose_name='Транскрипция' ) raw_od_article = JSONField( verbose_name='Сырые данные с OD' ) is_active = models.BooleanField( default=True, verbose_name='Используется' ) def __str__(self): return self.value class Meta: ordering = ["value"] verbose_name = "Слово" verbose_name_plural = "Слова" class Meaning(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) value = models.TextField( verbose_name='Значение' ) order = models.PositiveIntegerField( verbose_name="Порядок", default=0 ) examples = JSONField( null=True, blank=True ) def __str__(self): if self.value is None: return '' return self.value[:20] class Meta: ordering = ["order"] verbose_name = "Доп. значение" verbose_name_plural = "Доп. значения" class Pronunciation(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) audio = models.FileField( upload_to='media/audio', verbose_name='Произношение' ) raw_od_data = JSONField( verbose_name='Сырые данные с OD', blank=True, null=True ) is_active = models.BooleanField( default=True, verbose_name='Используется' ) def __str__(self): return "Произношение {}".format(self.word) class Meta: verbose_name = "Произношение" verbose_name_plural = "Произношения" class PronunciationMeta(object): def __init__(self, **kwargs): for k, v in kwargs.items(): setattr(self, k, v) class WordLearningState(models.Model): word = models.ForeignKey( Word, on_delete=models.CASCADE, verbose_name='Слово' ) user = models.ForeignKey( "auth.User", on_delete=models.CASCADE, verbose_name='Пользователь' ) is_user_know_meaning = models.BooleanField( default=False, verbose_name='Выучил значение' ) is_user_know_pronunciation = models.BooleanField( default=False, verbose_name='Выучил произношение' ) usage_count = models.PositiveIntegerField( default=0, verbose_name='Количество показов' ) last_usage_date = models.DateTimeField( auto_now_add=True, verbose_name='Дата последнего показа' ) preferred_pronunciation = models.PositiveIntegerField( default=0, verbose_name='forvo id препочтительного произношения', ) training_session = models.BooleanField( default=False, blank=False, verbose_name='Сеанс обучения' ) def _get_pronunciations_meta(self, word_str): forvo_meta_path = os.path.join( settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str) ) if not os.path.exists(forvo_meta_path): return with open(forvo_meta_path, 'r') as f: data = json.load(f) return data def _get_sounds(self, word_str): ret = [] sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str) print(sounds_path) if not os.path.exists(sounds_path): return [] items = list(os.listdir(sounds_path)) items.sort() for item in items: if item.endswith('.mp3'): ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item)) return ret def get_pronunciations(self): word = self.word forvo_meta = self._get_pronunciations_meta(word.value) if not forvo_meta: return [] ret = [] ct = 0 sounds = self._get_sounds(word.value) slen = len(sounds) prefered_detected = False for item in forvo_meta.get('items') or []: if item.get('code', '') != 'en' or item.get( 'country', '') != 'United States': continue if ct > slen-1: break sound_file = sounds[ct] is_best = self.preferred_pronunciation == item['id'] if is_best: prefered_detected = True ret.append({ 'id': item['id'], 'by': item['username'], 'sex': item['sex'], 'src': sound_file, 'best': is_best }) ct += 1 if ct == 4: break if ret and not prefered_detected: ret[0]['best'] = True return ret def __str__(self): return "Статистика слова {}".format(self.word) class Meta: verbose_name = "Статистика" verbose_name_plural = "Статистика"
normal
{ "blob_id": "067e0129b1a9084bbcee28d1973504299b89afdb", "index": 8911, "step-1": "<mask token>\n\n\nclass Meaning(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-2": "<mask token>\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-3": "<mask token>\n\n\nclass Word(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n ordering = ['value']\n verbose_name = 'Слово'\n verbose_name_plural = 'Слова'\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-4": "<mask token>\n\n\nclass Word(models.Model):\n value = models.CharField(max_length=50, verbose_name='Слово')\n spelling = models.CharField(max_length=250, verbose_name='Транскрипция')\n raw_od_article = JSONField(verbose_name='Сырые данные с OD')\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return self.value\n\n\n class Meta:\n ordering = ['value']\n verbose_name = 'Слово'\n verbose_name_plural = 'Слова'\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n value = models.TextField(verbose_name='Значение')\n order = models.PositiveIntegerField(verbose_name='Порядок', default=0)\n examples = JSONField(null=True, blank=True)\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n\n class Meta:\n ordering = ['order']\n verbose_name = 'Доп. значение'\n verbose_name_plural = 'Доп. значения'\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n audio = models.FileField(upload_to='media/audio', verbose_name=\n 'Произношение')\n raw_od_data = JSONField(verbose_name='Сырые данные с OD', blank=True,\n null=True)\n is_active = models.BooleanField(default=True, verbose_name='Используется')\n\n def __str__(self):\n return 'Произношение {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Произношение'\n verbose_name_plural = 'Произношения'\n\n\nclass PronunciationMeta(object):\n\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(Word, on_delete=models.CASCADE, verbose_name=\n 'Слово')\n user = models.ForeignKey('auth.User', on_delete=models.CASCADE,\n verbose_name='Пользователь')\n is_user_know_meaning = models.BooleanField(default=False, verbose_name=\n 'Выучил значение')\n is_user_know_pronunciation = models.BooleanField(default=False,\n verbose_name='Выучил произношение')\n usage_count = models.PositiveIntegerField(default=0, verbose_name=\n 'Количество показов')\n last_usage_date = models.DateTimeField(auto_now_add=True, verbose_name=\n 'Дата последнего показа')\n preferred_pronunciation = models.PositiveIntegerField(default=0,\n verbose_name='forvo id препочтительного произношения')\n training_session = models.BooleanField(default=False, blank=False,\n verbose_name='Сеанс обучения')\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(settings.BASE_DIR, 'media', 'forvo',\n '{}.json'.format(word_str))\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds',\n word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds',\n word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in (forvo_meta.get('items') or []):\n if item.get('code', '') != 'en' or item.get('country', ''\n ) != 'United States':\n continue\n if ct > slen - 1:\n break\n sound_file = sounds[ct]\n is_best = self.preferred_pronunciation == item['id']\n if is_best:\n prefered_detected = True\n ret.append({'id': item['id'], 'by': item['username'], 'sex':\n item['sex'], 'src': sound_file, 'best': is_best})\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return 'Статистика слова {}'.format(self.word)\n\n\n class Meta:\n verbose_name = 'Статистика'\n verbose_name_plural = 'Статистика'\n", "step-5": "import json\nimport os\n\nfrom django.conf import settings\nfrom django.db import models\nfrom jsonfield import JSONField\n\n\nclass Word(models.Model):\n value = models.CharField(\n max_length=50,\n verbose_name='Слово'\n )\n spelling = models.CharField(\n max_length=250,\n verbose_name='Транскрипция'\n )\n raw_od_article = JSONField(\n verbose_name='Сырые данные с OD'\n )\n\n is_active = models.BooleanField(\n default=True,\n verbose_name='Используется'\n )\n\n def __str__(self):\n return self.value\n\n class Meta:\n ordering = [\"value\"]\n verbose_name = \"Слово\"\n verbose_name_plural = \"Слова\"\n\n\nclass Meaning(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n value = models.TextField(\n verbose_name='Значение'\n )\n order = models.PositiveIntegerField(\n verbose_name=\"Порядок\",\n default=0\n )\n examples = JSONField(\n null=True,\n blank=True\n )\n\n def __str__(self):\n if self.value is None:\n return ''\n return self.value[:20]\n\n class Meta:\n ordering = [\"order\"]\n verbose_name = \"Доп. значение\"\n verbose_name_plural = \"Доп. значения\"\n\n\nclass Pronunciation(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n audio = models.FileField(\n upload_to='media/audio',\n verbose_name='Произношение'\n )\n raw_od_data = JSONField(\n verbose_name='Сырые данные с OD',\n blank=True,\n null=True\n )\n is_active = models.BooleanField(\n default=True,\n verbose_name='Используется'\n )\n\n def __str__(self):\n return \"Произношение {}\".format(self.word)\n\n class Meta:\n verbose_name = \"Произношение\"\n verbose_name_plural = \"Произношения\"\n\n\nclass PronunciationMeta(object):\n def __init__(self, **kwargs):\n for k, v in kwargs.items():\n setattr(self, k, v)\n\nclass WordLearningState(models.Model):\n word = models.ForeignKey(\n Word,\n on_delete=models.CASCADE,\n verbose_name='Слово'\n )\n user = models.ForeignKey(\n \"auth.User\",\n on_delete=models.CASCADE,\n verbose_name='Пользователь'\n )\n is_user_know_meaning = models.BooleanField(\n default=False,\n verbose_name='Выучил значение'\n )\n is_user_know_pronunciation = models.BooleanField(\n default=False,\n verbose_name='Выучил произношение'\n )\n usage_count = models.PositiveIntegerField(\n default=0,\n verbose_name='Количество показов'\n )\n last_usage_date = models.DateTimeField(\n auto_now_add=True,\n verbose_name='Дата последнего показа'\n )\n preferred_pronunciation = models.PositiveIntegerField(\n default=0,\n verbose_name='forvo id препочтительного произношения',\n )\n training_session = models.BooleanField(\n default=False,\n blank=False,\n verbose_name='Сеанс обучения'\n )\n\n def _get_pronunciations_meta(self, word_str):\n forvo_meta_path = os.path.join(\n settings.BASE_DIR, 'media', 'forvo', '{}.json'.format(word_str)\n )\n if not os.path.exists(forvo_meta_path):\n return\n with open(forvo_meta_path, 'r') as f:\n data = json.load(f)\n return data\n\n def _get_sounds(self, word_str):\n ret = []\n sounds_path = os.path.join(settings.BASE_DIR, 'media', 'sounds', word_str)\n print(sounds_path)\n if not os.path.exists(sounds_path):\n return []\n items = list(os.listdir(sounds_path))\n items.sort()\n for item in items:\n if item.endswith('.mp3'):\n ret.append('{}{}/{}/{}'.format(settings.MEDIA_URL, 'sounds', word_str, item))\n return ret\n\n def get_pronunciations(self):\n word = self.word\n forvo_meta = self._get_pronunciations_meta(word.value)\n if not forvo_meta:\n return []\n\n ret = []\n ct = 0\n sounds = self._get_sounds(word.value)\n slen = len(sounds)\n prefered_detected = False\n for item in forvo_meta.get('items') or []:\n\n if item.get('code', '') != 'en' or item.get(\n 'country', '') != 'United States':\n continue\n\n if ct > slen-1:\n break\n\n sound_file = sounds[ct]\n\n is_best = self.preferred_pronunciation == item['id']\n\n if is_best:\n prefered_detected = True\n\n ret.append({\n 'id': item['id'],\n 'by': item['username'],\n 'sex': item['sex'],\n 'src': sound_file,\n 'best': is_best\n })\n\n ct += 1\n if ct == 4:\n break\n if ret and not prefered_detected:\n ret[0]['best'] = True\n return ret\n\n def __str__(self):\n return \"Статистика слова {}\".format(self.word)\n\n class Meta:\n verbose_name = \"Статистика\"\n verbose_name_plural = \"Статистика\"\n", "step-ids": [ 13, 14, 15, 17, 19 ] }
[ 13, 14, 15, 17, 19 ]
def filtra_acima(wires, origem): return [wire for wire in wires if wire[0] > origem ] def filtra_abaixo(wires, destino): return [wire for wire in wires if wire[1] < destino ] def calculate(wires): count = 0 for i in xrange(len(wires)): wires_acima = filtra_acima(wires, wires[i][0]) wires_abaixo = filtra_abaixo(wires_acima, wires[i][1]) count += len(wires_abaixo) return count #print calculate([(1,3), (2,5), (4,1), (6,7)]) #print calculate([(1,10), (5,5), (7,7)]) #print calculate([(1,1), (2,2)]) def read_input(n): wires = [] for i in xrange(n): o, d = map(int, raw_input().split()) wires.append( (o,d) ) return wires for case_number in xrange(int(raw_input())): n, = map(int, raw_input().split()) wires = read_input(n) result = calculate(wires) print 'Case #%d: %s' % (case_number+1, result)
normal
{ "blob_id": "fa8d603fbea287161d31499f96a7fe7e56e8eaa1", "index": 129, "step-1": "def filtra_acima(wires, origem):\n return [wire for wire in wires if wire[0] > origem ]\n\ndef filtra_abaixo(wires, destino):\n return [wire for wire in wires if wire[1] < destino ]\n\ndef calculate(wires):\n count = 0\n for i in xrange(len(wires)):\n wires_acima = filtra_acima(wires, wires[i][0])\n wires_abaixo = filtra_abaixo(wires_acima, wires[i][1])\n \n count += len(wires_abaixo)\n \n return count\n \n#print calculate([(1,3), (2,5), (4,1), (6,7)])\n#print calculate([(1,10), (5,5), (7,7)])\n#print calculate([(1,1), (2,2)])\n\ndef read_input(n):\n wires = []\n for i in xrange(n):\n o, d = map(int, raw_input().split())\n wires.append( (o,d) )\n \n return wires\n\nfor case_number in xrange(int(raw_input())):\n n, = map(int, raw_input().split())\n wires = read_input(n)\n result = calculate(wires)\n print 'Case #%d: %s' % (case_number+1, result)", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class LatestBlessedModelStrategy(resolver.ResolverStrategy): <|reserved_special_token_0|> def _resolve(self, input_dict: Dict[str, List[types.Artifact]], model_channel_key: str, model_blessing_channel_key: str): all_models = input_dict[model_channel_key] all_models.sort(key=lambda a: a.id, reverse=True) all_model_blessings = input_dict[model_blessing_channel_key] all_blessed_model_ids = {a.get_int_custom_property( _CURRENT_MODEL_ID): a for a in all_model_blessings if a. get_int_custom_property(_BLESSED) == 1} result = {model_channel_key: [], model_blessing_channel_key: []} for model in all_models: if model.id in all_blessed_model_ids: result[model_channel_key] = [model] model_blessing = all_blessed_model_ids[model.id] result[model_blessing_channel_key] = [model_blessing] break return result @doc_controls.do_not_generate_docs def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]] ]: """Resolves artifacts from channels by querying MLMD. Args: store: An MLMD MetadataStore object. input_dict: The input_dict to resolve from. Returns: The latest blessed Model and its corresponding ModelBlessing, respectively in the same input channel they were contained to. Raises: RuntimeError: if input_dict contains unsupported artifact types. """ model_channel_key = None model_blessing_channel_key = None assert len(input_dict) == 2, 'Expecting 2 input Channels' for k, artifact_list in input_dict.items(): if not artifact_list: return {key: [] for key in input_dict} artifact = artifact_list[0] if issubclass(type(artifact), standard_artifacts.Model): model_channel_key = k elif issubclass(type(artifact), standard_artifacts.ModelBlessing): model_blessing_channel_key = k else: raise RuntimeError( 'Only expecting Model or ModelBlessing, got %s' % artifact.TYPE_NAME) assert model_channel_key is not None, 'Expecting Model as input' assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input' result = self._resolve(input_dict, model_channel_key, model_blessing_channel_key) return result <|reserved_special_token_1|> <|reserved_special_token_0|> class LatestBlessedModelStrategy(resolver.ResolverStrategy): """LatestBlessedModelStrategy resolves the latest blessed Model artifact. Note that this ResolverStrategy is experimental and is subject to change in terms of both interface and implementation. Don't construct LatestBlessedModelStrategy directly, example usage: ``` model_resolver = Resolver( strategy_class=LatestBlessedModelStrategy, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing), ).with_id('latest_blessed_model_resolver') model_resolver.outputs['model'] ``` """ def _resolve(self, input_dict: Dict[str, List[types.Artifact]], model_channel_key: str, model_blessing_channel_key: str): all_models = input_dict[model_channel_key] all_models.sort(key=lambda a: a.id, reverse=True) all_model_blessings = input_dict[model_blessing_channel_key] all_blessed_model_ids = {a.get_int_custom_property( _CURRENT_MODEL_ID): a for a in all_model_blessings if a. get_int_custom_property(_BLESSED) == 1} result = {model_channel_key: [], model_blessing_channel_key: []} for model in all_models: if model.id in all_blessed_model_ids: result[model_channel_key] = [model] model_blessing = all_blessed_model_ids[model.id] result[model_blessing_channel_key] = [model_blessing] break return result @doc_controls.do_not_generate_docs def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]] ]: """Resolves artifacts from channels by querying MLMD. Args: store: An MLMD MetadataStore object. input_dict: The input_dict to resolve from. Returns: The latest blessed Model and its corresponding ModelBlessing, respectively in the same input channel they were contained to. Raises: RuntimeError: if input_dict contains unsupported artifact types. """ model_channel_key = None model_blessing_channel_key = None assert len(input_dict) == 2, 'Expecting 2 input Channels' for k, artifact_list in input_dict.items(): if not artifact_list: return {key: [] for key in input_dict} artifact = artifact_list[0] if issubclass(type(artifact), standard_artifacts.Model): model_channel_key = k elif issubclass(type(artifact), standard_artifacts.ModelBlessing): model_blessing_channel_key = k else: raise RuntimeError( 'Only expecting Model or ModelBlessing, got %s' % artifact.TYPE_NAME) assert model_channel_key is not None, 'Expecting Model as input' assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input' result = self._resolve(input_dict, model_channel_key, model_blessing_channel_key) return result <|reserved_special_token_1|> <|reserved_special_token_0|> try: from tfx.components.evaluator import constants as eval_consts _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY except ImportError: _CURRENT_MODEL_ID = 'current_model_id' _BLESSED = 'blessed' class LatestBlessedModelStrategy(resolver.ResolverStrategy): """LatestBlessedModelStrategy resolves the latest blessed Model artifact. Note that this ResolverStrategy is experimental and is subject to change in terms of both interface and implementation. Don't construct LatestBlessedModelStrategy directly, example usage: ``` model_resolver = Resolver( strategy_class=LatestBlessedModelStrategy, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing), ).with_id('latest_blessed_model_resolver') model_resolver.outputs['model'] ``` """ def _resolve(self, input_dict: Dict[str, List[types.Artifact]], model_channel_key: str, model_blessing_channel_key: str): all_models = input_dict[model_channel_key] all_models.sort(key=lambda a: a.id, reverse=True) all_model_blessings = input_dict[model_blessing_channel_key] all_blessed_model_ids = {a.get_int_custom_property( _CURRENT_MODEL_ID): a for a in all_model_blessings if a. get_int_custom_property(_BLESSED) == 1} result = {model_channel_key: [], model_blessing_channel_key: []} for model in all_models: if model.id in all_blessed_model_ids: result[model_channel_key] = [model] model_blessing = all_blessed_model_ids[model.id] result[model_blessing_channel_key] = [model_blessing] break return result @doc_controls.do_not_generate_docs def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]] ]: """Resolves artifacts from channels by querying MLMD. Args: store: An MLMD MetadataStore object. input_dict: The input_dict to resolve from. Returns: The latest blessed Model and its corresponding ModelBlessing, respectively in the same input channel they were contained to. Raises: RuntimeError: if input_dict contains unsupported artifact types. """ model_channel_key = None model_blessing_channel_key = None assert len(input_dict) == 2, 'Expecting 2 input Channels' for k, artifact_list in input_dict.items(): if not artifact_list: return {key: [] for key in input_dict} artifact = artifact_list[0] if issubclass(type(artifact), standard_artifacts.Model): model_channel_key = k elif issubclass(type(artifact), standard_artifacts.ModelBlessing): model_blessing_channel_key = k else: raise RuntimeError( 'Only expecting Model or ModelBlessing, got %s' % artifact.TYPE_NAME) assert model_channel_key is not None, 'Expecting Model as input' assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input' result = self._resolve(input_dict, model_channel_key, model_blessing_channel_key) return result <|reserved_special_token_1|> <|reserved_special_token_0|> from typing import Dict, List, Optional from tfx import types from tfx.dsl.components.common import resolver from tfx.types import standard_artifacts from tfx.utils import doc_controls import ml_metadata as mlmd try: from tfx.components.evaluator import constants as eval_consts _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY except ImportError: _CURRENT_MODEL_ID = 'current_model_id' _BLESSED = 'blessed' class LatestBlessedModelStrategy(resolver.ResolverStrategy): """LatestBlessedModelStrategy resolves the latest blessed Model artifact. Note that this ResolverStrategy is experimental and is subject to change in terms of both interface and implementation. Don't construct LatestBlessedModelStrategy directly, example usage: ``` model_resolver = Resolver( strategy_class=LatestBlessedModelStrategy, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing), ).with_id('latest_blessed_model_resolver') model_resolver.outputs['model'] ``` """ def _resolve(self, input_dict: Dict[str, List[types.Artifact]], model_channel_key: str, model_blessing_channel_key: str): all_models = input_dict[model_channel_key] all_models.sort(key=lambda a: a.id, reverse=True) all_model_blessings = input_dict[model_blessing_channel_key] all_blessed_model_ids = {a.get_int_custom_property( _CURRENT_MODEL_ID): a for a in all_model_blessings if a. get_int_custom_property(_BLESSED) == 1} result = {model_channel_key: [], model_blessing_channel_key: []} for model in all_models: if model.id in all_blessed_model_ids: result[model_channel_key] = [model] model_blessing = all_blessed_model_ids[model.id] result[model_blessing_channel_key] = [model_blessing] break return result @doc_controls.do_not_generate_docs def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]] ]: """Resolves artifacts from channels by querying MLMD. Args: store: An MLMD MetadataStore object. input_dict: The input_dict to resolve from. Returns: The latest blessed Model and its corresponding ModelBlessing, respectively in the same input channel they were contained to. Raises: RuntimeError: if input_dict contains unsupported artifact types. """ model_channel_key = None model_blessing_channel_key = None assert len(input_dict) == 2, 'Expecting 2 input Channels' for k, artifact_list in input_dict.items(): if not artifact_list: return {key: [] for key in input_dict} artifact = artifact_list[0] if issubclass(type(artifact), standard_artifacts.Model): model_channel_key = k elif issubclass(type(artifact), standard_artifacts.ModelBlessing): model_blessing_channel_key = k else: raise RuntimeError( 'Only expecting Model or ModelBlessing, got %s' % artifact.TYPE_NAME) assert model_channel_key is not None, 'Expecting Model as input' assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input' result = self._resolve(input_dict, model_channel_key, model_blessing_channel_key) return result <|reserved_special_token_1|> # Copyright 2021 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Experimental Resolver for getting the latest artifact.""" from typing import Dict, List, Optional from tfx import types from tfx.dsl.components.common import resolver from tfx.types import standard_artifacts from tfx.utils import doc_controls import ml_metadata as mlmd try: from tfx.components.evaluator import constants as eval_consts # pylint: disable=g-import-not-at-top _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY except ImportError: # ml-pipelines-sdk package doesn't have tfx.components. _CURRENT_MODEL_ID = 'current_model_id' _BLESSED = 'blessed' class LatestBlessedModelStrategy(resolver.ResolverStrategy): """LatestBlessedModelStrategy resolves the latest blessed Model artifact. Note that this ResolverStrategy is experimental and is subject to change in terms of both interface and implementation. Don't construct LatestBlessedModelStrategy directly, example usage: ``` model_resolver = Resolver( strategy_class=LatestBlessedModelStrategy, model=Channel(type=Model), model_blessing=Channel(type=ModelBlessing), ).with_id('latest_blessed_model_resolver') model_resolver.outputs['model'] ``` """ def _resolve(self, input_dict: Dict[str, List[types.Artifact]], model_channel_key: str, model_blessing_channel_key: str): all_models = input_dict[model_channel_key] all_models.sort(key=lambda a: a.id, reverse=True) all_model_blessings = input_dict[model_blessing_channel_key] # Makes a dict of {model_id : ModelBlessing artifact} for blessed models. all_blessed_model_ids = { a.get_int_custom_property(_CURRENT_MODEL_ID): a for a in all_model_blessings if a.get_int_custom_property(_BLESSED) == 1} result = {model_channel_key: [], model_blessing_channel_key: []} # Iterates all models, if blessed, set as result. As the model list was # sorted, it is guaranteed to get the latest blessed model. for model in all_models: if model.id in all_blessed_model_ids: result[model_channel_key] = [model] model_blessing = all_blessed_model_ids[model.id] result[model_blessing_channel_key] = [model_blessing] break return result @doc_controls.do_not_generate_docs def resolve_artifacts( self, store: mlmd.MetadataStore, input_dict: Dict[str, List[types.Artifact]] ) -> Optional[Dict[str, List[types.Artifact]]]: """Resolves artifacts from channels by querying MLMD. Args: store: An MLMD MetadataStore object. input_dict: The input_dict to resolve from. Returns: The latest blessed Model and its corresponding ModelBlessing, respectively in the same input channel they were contained to. Raises: RuntimeError: if input_dict contains unsupported artifact types. """ model_channel_key = None model_blessing_channel_key = None assert len(input_dict) == 2, 'Expecting 2 input Channels' for k, artifact_list in input_dict.items(): if not artifact_list: # If model or model blessing channel has no artifacts, the min_count # can not be met, short cut to return empty dict here. return {key: [] for key in input_dict} artifact = artifact_list[0] if issubclass(type(artifact), standard_artifacts.Model): model_channel_key = k elif issubclass(type(artifact), standard_artifacts.ModelBlessing): model_blessing_channel_key = k else: raise RuntimeError('Only expecting Model or ModelBlessing, got %s' % artifact.TYPE_NAME) assert model_channel_key is not None, 'Expecting Model as input' assert model_blessing_channel_key is not None, ('Expecting ModelBlessing as' ' input') result = self._resolve(input_dict, model_channel_key, model_blessing_channel_key) return result
flexible
{ "blob_id": "30df17d636c33d2824aad7d7ef6aae7db83615ec", "index": 8058, "step-1": "<mask token>\n\n\nclass LatestBlessedModelStrategy(resolver.ResolverStrategy):\n <mask token>\n\n def _resolve(self, input_dict: Dict[str, List[types.Artifact]],\n model_channel_key: str, model_blessing_channel_key: str):\n all_models = input_dict[model_channel_key]\n all_models.sort(key=lambda a: a.id, reverse=True)\n all_model_blessings = input_dict[model_blessing_channel_key]\n all_blessed_model_ids = {a.get_int_custom_property(\n _CURRENT_MODEL_ID): a for a in all_model_blessings if a.\n get_int_custom_property(_BLESSED) == 1}\n result = {model_channel_key: [], model_blessing_channel_key: []}\n for model in all_models:\n if model.id in all_blessed_model_ids:\n result[model_channel_key] = [model]\n model_blessing = all_blessed_model_ids[model.id]\n result[model_blessing_channel_key] = [model_blessing]\n break\n return result\n\n @doc_controls.do_not_generate_docs\n def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict\n [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]]\n ]:\n \"\"\"Resolves artifacts from channels by querying MLMD.\n\n Args:\n store: An MLMD MetadataStore object.\n input_dict: The input_dict to resolve from.\n\n Returns:\n The latest blessed Model and its corresponding ModelBlessing, respectively\n in the same input channel they were contained to.\n\n Raises:\n RuntimeError: if input_dict contains unsupported artifact types.\n \"\"\"\n model_channel_key = None\n model_blessing_channel_key = None\n assert len(input_dict) == 2, 'Expecting 2 input Channels'\n for k, artifact_list in input_dict.items():\n if not artifact_list:\n return {key: [] for key in input_dict}\n artifact = artifact_list[0]\n if issubclass(type(artifact), standard_artifacts.Model):\n model_channel_key = k\n elif issubclass(type(artifact), standard_artifacts.ModelBlessing):\n model_blessing_channel_key = k\n else:\n raise RuntimeError(\n 'Only expecting Model or ModelBlessing, got %s' %\n artifact.TYPE_NAME)\n assert model_channel_key is not None, 'Expecting Model as input'\n assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input'\n result = self._resolve(input_dict, model_channel_key,\n model_blessing_channel_key)\n return result\n", "step-2": "<mask token>\n\n\nclass LatestBlessedModelStrategy(resolver.ResolverStrategy):\n \"\"\"LatestBlessedModelStrategy resolves the latest blessed Model artifact.\n\n Note that this ResolverStrategy is experimental and is subject to change in\n terms of both interface and implementation.\n\n Don't construct LatestBlessedModelStrategy directly, example usage:\n ```\n model_resolver = Resolver(\n strategy_class=LatestBlessedModelStrategy,\n model=Channel(type=Model),\n model_blessing=Channel(type=ModelBlessing),\n ).with_id('latest_blessed_model_resolver')\n model_resolver.outputs['model']\n ```\n \"\"\"\n\n def _resolve(self, input_dict: Dict[str, List[types.Artifact]],\n model_channel_key: str, model_blessing_channel_key: str):\n all_models = input_dict[model_channel_key]\n all_models.sort(key=lambda a: a.id, reverse=True)\n all_model_blessings = input_dict[model_blessing_channel_key]\n all_blessed_model_ids = {a.get_int_custom_property(\n _CURRENT_MODEL_ID): a for a in all_model_blessings if a.\n get_int_custom_property(_BLESSED) == 1}\n result = {model_channel_key: [], model_blessing_channel_key: []}\n for model in all_models:\n if model.id in all_blessed_model_ids:\n result[model_channel_key] = [model]\n model_blessing = all_blessed_model_ids[model.id]\n result[model_blessing_channel_key] = [model_blessing]\n break\n return result\n\n @doc_controls.do_not_generate_docs\n def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict\n [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]]\n ]:\n \"\"\"Resolves artifacts from channels by querying MLMD.\n\n Args:\n store: An MLMD MetadataStore object.\n input_dict: The input_dict to resolve from.\n\n Returns:\n The latest blessed Model and its corresponding ModelBlessing, respectively\n in the same input channel they were contained to.\n\n Raises:\n RuntimeError: if input_dict contains unsupported artifact types.\n \"\"\"\n model_channel_key = None\n model_blessing_channel_key = None\n assert len(input_dict) == 2, 'Expecting 2 input Channels'\n for k, artifact_list in input_dict.items():\n if not artifact_list:\n return {key: [] for key in input_dict}\n artifact = artifact_list[0]\n if issubclass(type(artifact), standard_artifacts.Model):\n model_channel_key = k\n elif issubclass(type(artifact), standard_artifacts.ModelBlessing):\n model_blessing_channel_key = k\n else:\n raise RuntimeError(\n 'Only expecting Model or ModelBlessing, got %s' %\n artifact.TYPE_NAME)\n assert model_channel_key is not None, 'Expecting Model as input'\n assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input'\n result = self._resolve(input_dict, model_channel_key,\n model_blessing_channel_key)\n return result\n", "step-3": "<mask token>\ntry:\n from tfx.components.evaluator import constants as eval_consts\n _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY\n _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY\nexcept ImportError:\n _CURRENT_MODEL_ID = 'current_model_id'\n _BLESSED = 'blessed'\n\n\nclass LatestBlessedModelStrategy(resolver.ResolverStrategy):\n \"\"\"LatestBlessedModelStrategy resolves the latest blessed Model artifact.\n\n Note that this ResolverStrategy is experimental and is subject to change in\n terms of both interface and implementation.\n\n Don't construct LatestBlessedModelStrategy directly, example usage:\n ```\n model_resolver = Resolver(\n strategy_class=LatestBlessedModelStrategy,\n model=Channel(type=Model),\n model_blessing=Channel(type=ModelBlessing),\n ).with_id('latest_blessed_model_resolver')\n model_resolver.outputs['model']\n ```\n \"\"\"\n\n def _resolve(self, input_dict: Dict[str, List[types.Artifact]],\n model_channel_key: str, model_blessing_channel_key: str):\n all_models = input_dict[model_channel_key]\n all_models.sort(key=lambda a: a.id, reverse=True)\n all_model_blessings = input_dict[model_blessing_channel_key]\n all_blessed_model_ids = {a.get_int_custom_property(\n _CURRENT_MODEL_ID): a for a in all_model_blessings if a.\n get_int_custom_property(_BLESSED) == 1}\n result = {model_channel_key: [], model_blessing_channel_key: []}\n for model in all_models:\n if model.id in all_blessed_model_ids:\n result[model_channel_key] = [model]\n model_blessing = all_blessed_model_ids[model.id]\n result[model_blessing_channel_key] = [model_blessing]\n break\n return result\n\n @doc_controls.do_not_generate_docs\n def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict\n [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]]\n ]:\n \"\"\"Resolves artifacts from channels by querying MLMD.\n\n Args:\n store: An MLMD MetadataStore object.\n input_dict: The input_dict to resolve from.\n\n Returns:\n The latest blessed Model and its corresponding ModelBlessing, respectively\n in the same input channel they were contained to.\n\n Raises:\n RuntimeError: if input_dict contains unsupported artifact types.\n \"\"\"\n model_channel_key = None\n model_blessing_channel_key = None\n assert len(input_dict) == 2, 'Expecting 2 input Channels'\n for k, artifact_list in input_dict.items():\n if not artifact_list:\n return {key: [] for key in input_dict}\n artifact = artifact_list[0]\n if issubclass(type(artifact), standard_artifacts.Model):\n model_channel_key = k\n elif issubclass(type(artifact), standard_artifacts.ModelBlessing):\n model_blessing_channel_key = k\n else:\n raise RuntimeError(\n 'Only expecting Model or ModelBlessing, got %s' %\n artifact.TYPE_NAME)\n assert model_channel_key is not None, 'Expecting Model as input'\n assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input'\n result = self._resolve(input_dict, model_channel_key,\n model_blessing_channel_key)\n return result\n", "step-4": "<mask token>\nfrom typing import Dict, List, Optional\nfrom tfx import types\nfrom tfx.dsl.components.common import resolver\nfrom tfx.types import standard_artifacts\nfrom tfx.utils import doc_controls\nimport ml_metadata as mlmd\ntry:\n from tfx.components.evaluator import constants as eval_consts\n _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY\n _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY\nexcept ImportError:\n _CURRENT_MODEL_ID = 'current_model_id'\n _BLESSED = 'blessed'\n\n\nclass LatestBlessedModelStrategy(resolver.ResolverStrategy):\n \"\"\"LatestBlessedModelStrategy resolves the latest blessed Model artifact.\n\n Note that this ResolverStrategy is experimental and is subject to change in\n terms of both interface and implementation.\n\n Don't construct LatestBlessedModelStrategy directly, example usage:\n ```\n model_resolver = Resolver(\n strategy_class=LatestBlessedModelStrategy,\n model=Channel(type=Model),\n model_blessing=Channel(type=ModelBlessing),\n ).with_id('latest_blessed_model_resolver')\n model_resolver.outputs['model']\n ```\n \"\"\"\n\n def _resolve(self, input_dict: Dict[str, List[types.Artifact]],\n model_channel_key: str, model_blessing_channel_key: str):\n all_models = input_dict[model_channel_key]\n all_models.sort(key=lambda a: a.id, reverse=True)\n all_model_blessings = input_dict[model_blessing_channel_key]\n all_blessed_model_ids = {a.get_int_custom_property(\n _CURRENT_MODEL_ID): a for a in all_model_blessings if a.\n get_int_custom_property(_BLESSED) == 1}\n result = {model_channel_key: [], model_blessing_channel_key: []}\n for model in all_models:\n if model.id in all_blessed_model_ids:\n result[model_channel_key] = [model]\n model_blessing = all_blessed_model_ids[model.id]\n result[model_blessing_channel_key] = [model_blessing]\n break\n return result\n\n @doc_controls.do_not_generate_docs\n def resolve_artifacts(self, store: mlmd.MetadataStore, input_dict: Dict\n [str, List[types.Artifact]]) ->Optional[Dict[str, List[types.Artifact]]\n ]:\n \"\"\"Resolves artifacts from channels by querying MLMD.\n\n Args:\n store: An MLMD MetadataStore object.\n input_dict: The input_dict to resolve from.\n\n Returns:\n The latest blessed Model and its corresponding ModelBlessing, respectively\n in the same input channel they were contained to.\n\n Raises:\n RuntimeError: if input_dict contains unsupported artifact types.\n \"\"\"\n model_channel_key = None\n model_blessing_channel_key = None\n assert len(input_dict) == 2, 'Expecting 2 input Channels'\n for k, artifact_list in input_dict.items():\n if not artifact_list:\n return {key: [] for key in input_dict}\n artifact = artifact_list[0]\n if issubclass(type(artifact), standard_artifacts.Model):\n model_channel_key = k\n elif issubclass(type(artifact), standard_artifacts.ModelBlessing):\n model_blessing_channel_key = k\n else:\n raise RuntimeError(\n 'Only expecting Model or ModelBlessing, got %s' %\n artifact.TYPE_NAME)\n assert model_channel_key is not None, 'Expecting Model as input'\n assert model_blessing_channel_key is not None, 'Expecting ModelBlessing as input'\n result = self._resolve(input_dict, model_channel_key,\n model_blessing_channel_key)\n return result\n", "step-5": "# Copyright 2021 Google LLC. All Rights Reserved.\n#\n# Licensed under the Apache License, Version 2.0 (the \"License\");\n# you may not use this file except in compliance with the License.\n# You may obtain a copy of the License at\n#\n# http://www.apache.org/licenses/LICENSE-2.0\n#\n# Unless required by applicable law or agreed to in writing, software\n# distributed under the License is distributed on an \"AS IS\" BASIS,\n# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n# See the License for the specific language governing permissions and\n# limitations under the License.\n\"\"\"Experimental Resolver for getting the latest artifact.\"\"\"\n\nfrom typing import Dict, List, Optional\n\nfrom tfx import types\nfrom tfx.dsl.components.common import resolver\nfrom tfx.types import standard_artifacts\nfrom tfx.utils import doc_controls\n\nimport ml_metadata as mlmd\n\ntry:\n from tfx.components.evaluator import constants as eval_consts # pylint: disable=g-import-not-at-top\n _CURRENT_MODEL_ID = eval_consts.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY\n _BLESSED = eval_consts.ARTIFACT_PROPERTY_BLESSED_KEY\nexcept ImportError:\n # ml-pipelines-sdk package doesn't have tfx.components.\n _CURRENT_MODEL_ID = 'current_model_id'\n _BLESSED = 'blessed'\n\n\nclass LatestBlessedModelStrategy(resolver.ResolverStrategy):\n \"\"\"LatestBlessedModelStrategy resolves the latest blessed Model artifact.\n\n Note that this ResolverStrategy is experimental and is subject to change in\n terms of both interface and implementation.\n\n Don't construct LatestBlessedModelStrategy directly, example usage:\n ```\n model_resolver = Resolver(\n strategy_class=LatestBlessedModelStrategy,\n model=Channel(type=Model),\n model_blessing=Channel(type=ModelBlessing),\n ).with_id('latest_blessed_model_resolver')\n model_resolver.outputs['model']\n ```\n \"\"\"\n\n def _resolve(self, input_dict: Dict[str, List[types.Artifact]],\n model_channel_key: str, model_blessing_channel_key: str):\n all_models = input_dict[model_channel_key]\n all_models.sort(key=lambda a: a.id, reverse=True)\n all_model_blessings = input_dict[model_blessing_channel_key]\n\n # Makes a dict of {model_id : ModelBlessing artifact} for blessed models.\n all_blessed_model_ids = {\n a.get_int_custom_property(_CURRENT_MODEL_ID): a\n for a in all_model_blessings\n if a.get_int_custom_property(_BLESSED) == 1}\n\n result = {model_channel_key: [], model_blessing_channel_key: []}\n # Iterates all models, if blessed, set as result. As the model list was\n # sorted, it is guaranteed to get the latest blessed model.\n for model in all_models:\n if model.id in all_blessed_model_ids:\n result[model_channel_key] = [model]\n model_blessing = all_blessed_model_ids[model.id]\n result[model_blessing_channel_key] = [model_blessing]\n break\n\n return result\n\n @doc_controls.do_not_generate_docs\n def resolve_artifacts(\n self, store: mlmd.MetadataStore,\n input_dict: Dict[str, List[types.Artifact]]\n ) -> Optional[Dict[str, List[types.Artifact]]]:\n \"\"\"Resolves artifacts from channels by querying MLMD.\n\n Args:\n store: An MLMD MetadataStore object.\n input_dict: The input_dict to resolve from.\n\n Returns:\n The latest blessed Model and its corresponding ModelBlessing, respectively\n in the same input channel they were contained to.\n\n Raises:\n RuntimeError: if input_dict contains unsupported artifact types.\n \"\"\"\n model_channel_key = None\n model_blessing_channel_key = None\n assert len(input_dict) == 2, 'Expecting 2 input Channels'\n for k, artifact_list in input_dict.items():\n if not artifact_list:\n # If model or model blessing channel has no artifacts, the min_count\n # can not be met, short cut to return empty dict here.\n return {key: [] for key in input_dict}\n artifact = artifact_list[0]\n if issubclass(type(artifact), standard_artifacts.Model):\n model_channel_key = k\n elif issubclass(type(artifact), standard_artifacts.ModelBlessing):\n model_blessing_channel_key = k\n else:\n raise RuntimeError('Only expecting Model or ModelBlessing, got %s' %\n artifact.TYPE_NAME)\n assert model_channel_key is not None, 'Expecting Model as input'\n assert model_blessing_channel_key is not None, ('Expecting ModelBlessing as'\n ' input')\n\n result = self._resolve(input_dict, model_channel_key,\n model_blessing_channel_key)\n return result\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
# Identify a vowel class MainInit(object): def __init__(self): self.vowel = str(input("Please type the character: \n")) if len(self.vowel) > 1: print("Invalid number of character") else: Vowel(self.vowel) class Vowel(object): def __init__(self, vowels): self.vowels = vowels self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U'] for j in range(len(self.list)): if self.vowels == self.list[j]: print("The vowel is ", self.list[j]) else: continue MainInit() # # # class MainVowel(object): # def __init__(self): # string = str(input("Please type the character: \n")) # if len(string) > 1: # print("Invalid number of character") # else: # VerifyVowel(string) # # # class VerifyVowel(object): # def __init__(self, string): # self.string = string # if len(string) > 1: # print("Invalid number of character") # else: # if string == 'A' or string == 'a': # print("The vowel is: ", string) # elif string == 'E' or string == 'e': # print("The vowel is: ", string) # elif string == 'I' or string == 'i': # print("The vowel is: ", string) # elif string == 'O' or string == 'o': # print("The vowel is: ", string) # elif string == 'U' or string == 'u': # print("The vowel is: ", string) # else: # print("No valid") # # # MainVowel()
normal
{ "blob_id": "8d9f4bce998857bcc7bc2fda0b519f370bf957fe", "index": 1497, "step-1": "<mask token>\n\n\nclass Vowel(object):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\n<mask token>\n", "step-3": "class MainInit(object):\n <mask token>\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\n<mask token>\n", "step-4": "class MainInit(object):\n\n def __init__(self):\n self.vowel = str(input('Please type the character: \\n'))\n if len(self.vowel) > 1:\n print('Invalid number of character')\n else:\n Vowel(self.vowel)\n\n\nclass Vowel(object):\n\n def __init__(self, vowels):\n self.vowels = vowels\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\n for j in range(len(self.list)):\n if self.vowels == self.list[j]:\n print('The vowel is ', self.list[j])\n else:\n continue\n\n\nMainInit()\n", "step-5": "# Identify a vowel\r\n\r\n\r\nclass MainInit(object):\r\n def __init__(self):\r\n self.vowel = str(input(\"Please type the character: \\n\"))\r\n if len(self.vowel) > 1:\r\n print(\"Invalid number of character\")\r\n else:\r\n Vowel(self.vowel)\r\n\r\n\r\nclass Vowel(object):\r\n def __init__(self, vowels):\r\n self.vowels = vowels\r\n self.list = ['a', 'e', 'i', 'o', 'u', 'A', 'E', 'I', 'O', 'U']\r\n for j in range(len(self.list)):\r\n if self.vowels == self.list[j]:\r\n print(\"The vowel is \", self.list[j])\r\n else:\r\n continue\r\n\r\n\r\nMainInit()\r\n\r\n\r\n#\r\n#\r\n# class MainVowel(object):\r\n# def __init__(self):\r\n# string = str(input(\"Please type the character: \\n\"))\r\n# if len(string) > 1:\r\n# print(\"Invalid number of character\")\r\n# else:\r\n# VerifyVowel(string)\r\n#\r\n#\r\n# class VerifyVowel(object):\r\n# def __init__(self, string):\r\n# self.string = string\r\n# if len(string) > 1:\r\n# print(\"Invalid number of character\")\r\n# else:\r\n# if string == 'A' or string == 'a':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'E' or string == 'e':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'I' or string == 'i':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'O' or string == 'o':\r\n# print(\"The vowel is: \", string)\r\n# elif string == 'U' or string == 'u':\r\n# print(\"The vowel is: \", string)\r\n# else:\r\n# print(\"No valid\")\r\n#\r\n#\r\n# MainVowel()\r\n", "step-ids": [ 1, 2, 3, 5, 6 ] }
[ 1, 2, 3, 5, 6 ]
class Node: def __init__(self, value): self.value = value self.next = None <|reserved_special_token_0|> def array_from_linked_list(head): arr = [] cur = head while cur: arr.append(cur.value) cur = cur.next return arr <|reserved_special_token_0|> <|reserved_special_token_1|> class Node: def __init__(self, value): self.value = value self.next = None def linked_list_from_array(arr): head = Node(arr[0]) cur = head for i in range(1, len(arr)): cur.next = Node(arr[i]) cur = cur.next return head def array_from_linked_list(head): arr = [] cur = head while cur: arr.append(cur.value) cur = cur.next return arr def reverse_linked_list(head): prev = None cur = head while cur: next = cur.next cur.next = prev prev = cur cur = next return prev <|reserved_special_token_0|> <|reserved_special_token_1|> class Node: def __init__(self, value): self.value = value self.next = None def linked_list_from_array(arr): head = Node(arr[0]) cur = head for i in range(1, len(arr)): cur.next = Node(arr[i]) cur = cur.next return head def array_from_linked_list(head): arr = [] cur = head while cur: arr.append(cur.value) cur = cur.next return arr def reverse_linked_list(head): prev = None cur = head while cur: next = cur.next cur.next = prev prev = cur cur = next return prev <|reserved_special_token_0|> print(array) print(rev_array) def reverse_linked_list_section(head, start, end): pass <|reserved_special_token_1|> class Node: def __init__(self, value): self.value = value self.next = None def linked_list_from_array(arr): head = Node(arr[0]) cur = head for i in range(1, len(arr)): cur.next = Node(arr[i]) cur = cur.next return head def array_from_linked_list(head): arr = [] cur = head while cur: arr.append(cur.value) cur = cur.next return arr def reverse_linked_list(head): prev = None cur = head while cur: next = cur.next cur.next = prev prev = cur cur = next return prev array = [9, 1, 2, 3, 6, 8, 11, 5] ll = linked_list_from_array(array) rev_ll = reverse_linked_list(ll) rev_array = array_from_linked_list(rev_ll) print(array) print(rev_array) def reverse_linked_list_section(head, start, end): pass <|reserved_special_token_1|> class Node(): def __init__(self, value): self.value = value self.next = None def linked_list_from_array(arr): head = Node(arr[0]) cur = head for i in range(1, len(arr)): cur.next = Node(arr[i]) cur = cur.next return head def array_from_linked_list(head): arr = [] cur = head while cur: arr.append(cur.value) cur = cur.next return arr def reverse_linked_list(head): prev = None cur = head while cur: next = cur.next # save cur.next = prev # assign next to prev prev = cur cur = next return prev array = [9, 1, 2, 3, 6, 8, 11, 5] ll = linked_list_from_array(array) rev_ll = reverse_linked_list(ll) rev_array = array_from_linked_list(rev_ll) print(array) print(rev_array) def reverse_linked_list_section(head, start, end): pass # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] # (0, 3) => [3, 2, 1, 0, 4, 5, 6, 7, 8, 9] # (2, 4) => [0, 1, 4, 3, 2, 5, 6, 7, 8, 9] # (6, 9) => [0, 1, 2, 3, 4, 5, 9, 8, 7, 6]
flexible
{ "blob_id": "e1eb86480fa4eadabf05f10cc54ff9daa790438c", "index": 3935, "step-1": "class Node:\n\n def __init__(self, value):\n self.value = value\n self.next = None\n\n\n<mask token>\n\n\ndef array_from_linked_list(head):\n arr = []\n cur = head\n while cur:\n arr.append(cur.value)\n cur = cur.next\n return arr\n\n\n<mask token>\n", "step-2": "class Node:\n\n def __init__(self, value):\n self.value = value\n self.next = None\n\n\ndef linked_list_from_array(arr):\n head = Node(arr[0])\n cur = head\n for i in range(1, len(arr)):\n cur.next = Node(arr[i])\n cur = cur.next\n return head\n\n\ndef array_from_linked_list(head):\n arr = []\n cur = head\n while cur:\n arr.append(cur.value)\n cur = cur.next\n return arr\n\n\ndef reverse_linked_list(head):\n prev = None\n cur = head\n while cur:\n next = cur.next\n cur.next = prev\n prev = cur\n cur = next\n return prev\n\n\n<mask token>\n", "step-3": "class Node:\n\n def __init__(self, value):\n self.value = value\n self.next = None\n\n\ndef linked_list_from_array(arr):\n head = Node(arr[0])\n cur = head\n for i in range(1, len(arr)):\n cur.next = Node(arr[i])\n cur = cur.next\n return head\n\n\ndef array_from_linked_list(head):\n arr = []\n cur = head\n while cur:\n arr.append(cur.value)\n cur = cur.next\n return arr\n\n\ndef reverse_linked_list(head):\n prev = None\n cur = head\n while cur:\n next = cur.next\n cur.next = prev\n prev = cur\n cur = next\n return prev\n\n\n<mask token>\nprint(array)\nprint(rev_array)\n\n\ndef reverse_linked_list_section(head, start, end):\n pass\n", "step-4": "class Node:\n\n def __init__(self, value):\n self.value = value\n self.next = None\n\n\ndef linked_list_from_array(arr):\n head = Node(arr[0])\n cur = head\n for i in range(1, len(arr)):\n cur.next = Node(arr[i])\n cur = cur.next\n return head\n\n\ndef array_from_linked_list(head):\n arr = []\n cur = head\n while cur:\n arr.append(cur.value)\n cur = cur.next\n return arr\n\n\ndef reverse_linked_list(head):\n prev = None\n cur = head\n while cur:\n next = cur.next\n cur.next = prev\n prev = cur\n cur = next\n return prev\n\n\narray = [9, 1, 2, 3, 6, 8, 11, 5]\nll = linked_list_from_array(array)\nrev_ll = reverse_linked_list(ll)\nrev_array = array_from_linked_list(rev_ll)\nprint(array)\nprint(rev_array)\n\n\ndef reverse_linked_list_section(head, start, end):\n pass\n", "step-5": "class Node():\n def __init__(self, value):\n self.value = value\n self.next = None\n\ndef linked_list_from_array(arr):\n head = Node(arr[0])\n cur = head\n \n for i in range(1, len(arr)):\n cur.next = Node(arr[i])\n cur = cur.next\n \n return head\n\ndef array_from_linked_list(head):\n arr = []\n cur = head\n\n while cur:\n arr.append(cur.value)\n cur = cur.next\n\n return arr\n\ndef reverse_linked_list(head):\n prev = None\n cur = head\n\n while cur:\n next = cur.next # save\n cur.next = prev # assign next to prev\n prev = cur\n cur = next\n\n return prev\n\narray = [9, 1, 2, 3, 6, 8, 11, 5]\nll = linked_list_from_array(array)\nrev_ll = reverse_linked_list(ll)\nrev_array = array_from_linked_list(rev_ll)\n\nprint(array)\nprint(rev_array)\n\ndef reverse_linked_list_section(head, start, end):\n pass\n\n# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n# (0, 3) => [3, 2, 1, 0, 4, 5, 6, 7, 8, 9]\n# (2, 4) => [0, 1, 4, 3, 2, 5, 6, 7, 8, 9]\n# (6, 9) => [0, 1, 2, 3, 4, 5, 9, 8, 7, 6]\n\n", "step-ids": [ 3, 5, 7, 8, 9 ] }
[ 3, 5, 7, 8, 9 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: def findAndReplacePattern(self, words: List[str], pattern: str) ->List[str ]: def convert(word): table = {} count, converted = 0, '' for w in word: if w in table: converted += table[w] else: converted += str(count) table[w] = str(count) count += 1 return converted p = convert(pattern) answer = [] for word in words: if p == convert(word): answer.append(word) return answer <|reserved_special_token_0|> <|reserved_special_token_1|> class Solution: def findAndReplacePattern(self, words: List[str], pattern: str) -> List[str]: def convert(word): table = {} count, converted = 0, '' for w in word: if w in table: converted += table[w] else: converted += str(count) table[w] = str(count) count += 1 return converted p = convert(pattern) answer = [] for word in words: if p == convert(word): answer.append(word) return answer """ [빠른 풀이] - zip을 이용해서 길이만 비교!!! class Solution: def findAndReplacePattern(self, w: List[str], p: str) -> List[str]: return [i for i in w if len(set(zip(p,i)))==len(set(p))==len(set(i))] """
flexible
{ "blob_id": "e9ea48dec40e75f2fc73f8dcb3b5b975065cf8af", "index": 5854, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n\n\n<mask token>\n", "step-3": "class Solution:\n\n def findAndReplacePattern(self, words: List[str], pattern: str) ->List[str\n ]:\n\n def convert(word):\n table = {}\n count, converted = 0, ''\n for w in word:\n if w in table:\n converted += table[w]\n else:\n converted += str(count)\n table[w] = str(count)\n count += 1\n return converted\n p = convert(pattern)\n answer = []\n for word in words:\n if p == convert(word):\n answer.append(word)\n return answer\n\n\n<mask token>\n", "step-4": "class Solution:\n def findAndReplacePattern(self, words: List[str], pattern: str) -> List[str]:\n def convert(word):\n table = {}\n count, converted = 0, ''\n \n for w in word:\n if w in table:\n converted += table[w]\n else:\n converted += str(count)\n table[w] = str(count)\n count += 1\n return converted\n \n p = convert(pattern)\n answer = []\n for word in words:\n if p == convert(word):\n answer.append(word)\n \n return answer\n\n\"\"\"\n[빠른 풀이]\n- zip을 이용해서 길이만 비교!!!\n\nclass Solution:\n def findAndReplacePattern(self, w: List[str], p: str) -> List[str]:\n\t\t\t\t\treturn [i for i in w if len(set(zip(p,i)))==len(set(p))==len(set(i))]\n\"\"\"", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if __name__ == '__main__': fs = open('./src/keywords.txt', 'rb') keywords = fs.read().decode('utf-8').split(',') fs.close() def find_features(doc): words = set(doc) features = {} for word in keywords: features['contains %s' % word] = word in words return features fs = open('./src/my_classifier.pickle', 'rb') classifier = pickle.load(fs) regex = re.compile('[一-龥]') p = optparse.OptionParser(usage='usage: %prog [options] arg1 arg2', version='%prog 0.1', prog='url-tagger') p.add_option('--url', '-u', help='Your url') p.add_option('--file', '-f', help='Your url file. One line one url') options, arguments = p.parse_args() url_list = [] for key, value in options.__dict__.items(): if value is not None: print('%s: %s' % (key, value)) if key is 'url': url_list.append(value) else: url_file = open(value, 'rb+') for line in url_file.readlines(): url_list.append(str(line, encoding='utf-8').strip()) @asyncio.coroutine def get_docs(url): response = requests.get(url=url, headers={'Accept-Encoding': ''}) html = str(response.content, encoding=response.apparent_encoding, errors='ignore') soup = BeautifulSoup(html, 'lxml') for script in soup(['script', 'style']): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split (' ')) text = ''.join(chunk for chunk in chunks if chunk) return url, text loop = asyncio.get_event_loop() tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)), url_list)) data_list = list(loop.run_until_complete(asyncio.gather(*tasks))) loop.close() results = [(url, classifier.classify(find_features(jieba.lcut(''.join( regex.findall(data)))))) for url, data in data_list] for url, category in results: print('%s: %s' % (url, category)) <|reserved_special_token_1|> import optparse from bs4 import BeautifulSoup import re import jieba import pickle import requests import asyncio if __name__ == '__main__': fs = open('./src/keywords.txt', 'rb') keywords = fs.read().decode('utf-8').split(',') fs.close() def find_features(doc): words = set(doc) features = {} for word in keywords: features['contains %s' % word] = word in words return features fs = open('./src/my_classifier.pickle', 'rb') classifier = pickle.load(fs) regex = re.compile('[一-龥]') p = optparse.OptionParser(usage='usage: %prog [options] arg1 arg2', version='%prog 0.1', prog='url-tagger') p.add_option('--url', '-u', help='Your url') p.add_option('--file', '-f', help='Your url file. One line one url') options, arguments = p.parse_args() url_list = [] for key, value in options.__dict__.items(): if value is not None: print('%s: %s' % (key, value)) if key is 'url': url_list.append(value) else: url_file = open(value, 'rb+') for line in url_file.readlines(): url_list.append(str(line, encoding='utf-8').strip()) @asyncio.coroutine def get_docs(url): response = requests.get(url=url, headers={'Accept-Encoding': ''}) html = str(response.content, encoding=response.apparent_encoding, errors='ignore') soup = BeautifulSoup(html, 'lxml') for script in soup(['script', 'style']): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split (' ')) text = ''.join(chunk for chunk in chunks if chunk) return url, text loop = asyncio.get_event_loop() tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)), url_list)) data_list = list(loop.run_until_complete(asyncio.gather(*tasks))) loop.close() results = [(url, classifier.classify(find_features(jieba.lcut(''.join( regex.findall(data)))))) for url, data in data_list] for url, category in results: print('%s: %s' % (url, category)) <|reserved_special_token_1|> #!/usr/bin/env python3 import optparse from bs4 import BeautifulSoup import re import jieba import pickle import requests import asyncio if __name__ == '__main__': # 读取10000个关键词 fs = open("./src/keywords.txt", "rb") keywords = fs.read().decode("utf-8").split(",") fs.close() # 找出特征 def find_features(doc): words = set(doc) features = {} for word in keywords: features["contains %s" % word] = (word in words) return features # 读取预先做好的nltk分词器 fs = open('./src/my_classifier.pickle', 'rb') classifier = pickle.load(fs) # 匹配中文字符 regex = re.compile("[\u4e00-\u9fa5]") p = optparse.OptionParser(usage="usage: %prog [options] arg1 arg2", version="%prog 0.1", prog="url-tagger") p.add_option("--url", "-u", help="Your url") p.add_option("--file", "-f", help="Your url file. One line one url") (options, arguments) = p.parse_args() url_list = [] for key, value in options.__dict__.items(): if value is not None: print("%s: %s" % (key, value)) if key is "url": url_list.append(value) else: url_file = open(value, "rb+") for line in url_file.readlines(): url_list.append(str(line, encoding="utf-8").strip()) # 异步发起http请求 @asyncio.coroutine def get_docs(url): response = requests.get(url=url, headers={'Accept-Encoding': ''}) # print(response.apparent_encoding) html = str(response.content, encoding=response.apparent_encoding, errors="ignore") soup = BeautifulSoup(html, "lxml") for script in soup(["script", "style"]): script.extract() text = soup.get_text() lines = (line.strip() for line in text.splitlines()) chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) text = "".join(chunk for chunk in chunks if chunk) # print(text) return url, text loop = asyncio.get_event_loop() tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)), url_list)) data_list = list(loop.run_until_complete(asyncio.gather(*tasks))) loop.close() # 分类器进行分类 results = [(url, classifier.classify(find_features(jieba.lcut("".join(regex.findall(data)))))) for (url, data) in data_list] # 打印结果 for (url, category) in results: print("%s: %s" % (url, category))
flexible
{ "blob_id": "88590aef975f7e473ef964ee0c4004cff7e24b07", "index": 1049, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n fs = open('./src/keywords.txt', 'rb')\n keywords = fs.read().decode('utf-8').split(',')\n fs.close()\n\n def find_features(doc):\n words = set(doc)\n features = {}\n for word in keywords:\n features['contains %s' % word] = word in words\n return features\n fs = open('./src/my_classifier.pickle', 'rb')\n classifier = pickle.load(fs)\n regex = re.compile('[一-龥]')\n p = optparse.OptionParser(usage='usage: %prog [options] arg1 arg2',\n version='%prog 0.1', prog='url-tagger')\n p.add_option('--url', '-u', help='Your url')\n p.add_option('--file', '-f', help='Your url file. One line one url')\n options, arguments = p.parse_args()\n url_list = []\n for key, value in options.__dict__.items():\n if value is not None:\n print('%s: %s' % (key, value))\n if key is 'url':\n url_list.append(value)\n else:\n url_file = open(value, 'rb+')\n for line in url_file.readlines():\n url_list.append(str(line, encoding='utf-8').strip())\n\n @asyncio.coroutine\n def get_docs(url):\n response = requests.get(url=url, headers={'Accept-Encoding': ''})\n html = str(response.content, encoding=response.apparent_encoding,\n errors='ignore')\n soup = BeautifulSoup(html, 'lxml')\n for script in soup(['script', 'style']):\n script.extract()\n text = soup.get_text()\n lines = (line.strip() for line in text.splitlines())\n chunks = (phrase.strip() for line in lines for phrase in line.split\n (' '))\n text = ''.join(chunk for chunk in chunks if chunk)\n return url, text\n loop = asyncio.get_event_loop()\n tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)),\n url_list))\n data_list = list(loop.run_until_complete(asyncio.gather(*tasks)))\n loop.close()\n results = [(url, classifier.classify(find_features(jieba.lcut(''.join(\n regex.findall(data)))))) for url, data in data_list]\n for url, category in results:\n print('%s: %s' % (url, category))\n", "step-3": "import optparse\nfrom bs4 import BeautifulSoup\nimport re\nimport jieba\nimport pickle\nimport requests\nimport asyncio\nif __name__ == '__main__':\n fs = open('./src/keywords.txt', 'rb')\n keywords = fs.read().decode('utf-8').split(',')\n fs.close()\n\n def find_features(doc):\n words = set(doc)\n features = {}\n for word in keywords:\n features['contains %s' % word] = word in words\n return features\n fs = open('./src/my_classifier.pickle', 'rb')\n classifier = pickle.load(fs)\n regex = re.compile('[一-龥]')\n p = optparse.OptionParser(usage='usage: %prog [options] arg1 arg2',\n version='%prog 0.1', prog='url-tagger')\n p.add_option('--url', '-u', help='Your url')\n p.add_option('--file', '-f', help='Your url file. One line one url')\n options, arguments = p.parse_args()\n url_list = []\n for key, value in options.__dict__.items():\n if value is not None:\n print('%s: %s' % (key, value))\n if key is 'url':\n url_list.append(value)\n else:\n url_file = open(value, 'rb+')\n for line in url_file.readlines():\n url_list.append(str(line, encoding='utf-8').strip())\n\n @asyncio.coroutine\n def get_docs(url):\n response = requests.get(url=url, headers={'Accept-Encoding': ''})\n html = str(response.content, encoding=response.apparent_encoding,\n errors='ignore')\n soup = BeautifulSoup(html, 'lxml')\n for script in soup(['script', 'style']):\n script.extract()\n text = soup.get_text()\n lines = (line.strip() for line in text.splitlines())\n chunks = (phrase.strip() for line in lines for phrase in line.split\n (' '))\n text = ''.join(chunk for chunk in chunks if chunk)\n return url, text\n loop = asyncio.get_event_loop()\n tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)),\n url_list))\n data_list = list(loop.run_until_complete(asyncio.gather(*tasks)))\n loop.close()\n results = [(url, classifier.classify(find_features(jieba.lcut(''.join(\n regex.findall(data)))))) for url, data in data_list]\n for url, category in results:\n print('%s: %s' % (url, category))\n", "step-4": "#!/usr/bin/env python3\n\nimport optparse\nfrom bs4 import BeautifulSoup\nimport re\nimport jieba\nimport pickle\nimport requests\nimport asyncio\n\nif __name__ == '__main__':\n\n # 读取10000个关键词\n fs = open(\"./src/keywords.txt\", \"rb\")\n keywords = fs.read().decode(\"utf-8\").split(\",\")\n fs.close()\n\n # 找出特征\n def find_features(doc):\n words = set(doc)\n features = {}\n for word in keywords:\n features[\"contains %s\" % word] = (word in words)\n return features\n\n # 读取预先做好的nltk分词器\n fs = open('./src/my_classifier.pickle', 'rb')\n classifier = pickle.load(fs)\n\n # 匹配中文字符\n regex = re.compile(\"[\\u4e00-\\u9fa5]\")\n\n p = optparse.OptionParser(usage=\"usage: %prog [options] arg1 arg2\", version=\"%prog 0.1\", prog=\"url-tagger\")\n p.add_option(\"--url\", \"-u\", help=\"Your url\")\n p.add_option(\"--file\", \"-f\", help=\"Your url file. One line one url\")\n (options, arguments) = p.parse_args()\n\n url_list = []\n for key, value in options.__dict__.items():\n if value is not None:\n print(\"%s: %s\" % (key, value))\n if key is \"url\":\n url_list.append(value)\n else:\n url_file = open(value, \"rb+\")\n for line in url_file.readlines():\n url_list.append(str(line, encoding=\"utf-8\").strip())\n\n\n # 异步发起http请求\n @asyncio.coroutine\n def get_docs(url):\n response = requests.get(url=url, headers={'Accept-Encoding': ''})\n # print(response.apparent_encoding)\n html = str(response.content, encoding=response.apparent_encoding, errors=\"ignore\")\n soup = BeautifulSoup(html, \"lxml\")\n for script in soup([\"script\", \"style\"]):\n script.extract()\n text = soup.get_text()\n lines = (line.strip() for line in text.splitlines())\n chunks = (phrase.strip() for line in lines for phrase in line.split(\" \"))\n text = \"\".join(chunk for chunk in chunks if chunk)\n # print(text)\n return url, text\n\n loop = asyncio.get_event_loop()\n tasks = list(map(lambda url: asyncio.ensure_future(get_docs(url)), url_list))\n data_list = list(loop.run_until_complete(asyncio.gather(*tasks)))\n loop.close()\n\n # 分类器进行分类\n results = [(url, classifier.classify(find_features(jieba.lcut(\"\".join(regex.findall(data)))))) for (url, data)\n in data_list]\n\n # 打印结果\n for (url, category) in results:\n print(\"%s: %s\" % (url, category))\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class ComplexGrid: def __init__(self, startFile): self.weakened = set() self.infected = set() self.flagged = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.weakened: self.weakened.remove(self.pos) self.infected.add(self.pos) self.infectionEvents += 1 elif self.pos in self.infected: self.infected.remove(self.pos) self.flagged.add(self.pos) self.turnRight() elif self.pos in self.flagged: self.flagged.remove(self.pos) self.reverse() else: self.weakened.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 def reverse(self): self.vec = tuple(-x for x in self.vec) <|reserved_special_token_0|> <|reserved_special_token_1|> class Grid: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class ComplexGrid: def __init__(self, startFile): self.weakened = set() self.infected = set() self.flagged = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.weakened: self.weakened.remove(self.pos) self.infected.add(self.pos) self.infectionEvents += 1 elif self.pos in self.infected: self.infected.remove(self.pos) self.flagged.add(self.pos) self.turnRight() elif self.pos in self.flagged: self.flagged.remove(self.pos) self.reverse() else: self.weakened.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 def reverse(self): self.vec = tuple(-x for x in self.vec) <|reserved_special_token_0|> <|reserved_special_token_1|> class Grid: def __init__(self, startFile): self.infected = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.infected: self.infected.remove(self.pos) self.turnRight() else: self.infectionEvents += 1 self.infected.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 class ComplexGrid: def __init__(self, startFile): self.weakened = set() self.infected = set() self.flagged = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.weakened: self.weakened.remove(self.pos) self.infected.add(self.pos) self.infectionEvents += 1 elif self.pos in self.infected: self.infected.remove(self.pos) self.flagged.add(self.pos) self.turnRight() elif self.pos in self.flagged: self.flagged.remove(self.pos) self.reverse() else: self.weakened.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 def reverse(self): self.vec = tuple(-x for x in self.vec) <|reserved_special_token_0|> <|reserved_special_token_1|> class Grid: def __init__(self, startFile): self.infected = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.infected: self.infected.remove(self.pos) self.turnRight() else: self.infectionEvents += 1 self.infected.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 class ComplexGrid: def __init__(self, startFile): self.weakened = set() self.infected = set() self.flagged = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) - 1) / 2) for j, char in enumerate(line): if char == '#': self.infected.add((i, j)) posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = posx, posy self.vec = -1, 0 self.infectionEvents = 0 def update(self): if self.pos in self.weakened: self.weakened.remove(self.pos) self.infected.add(self.pos) self.infectionEvents += 1 elif self.pos in self.infected: self.infected.remove(self.pos) self.flagged.add(self.pos) self.turnRight() elif self.pos in self.flagged: self.flagged.remove(self.pos) self.reverse() else: self.weakened.add(self.pos) self.turnLeft() self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1] def turnLeft(self): if self.vec == (-1, 0): self.vec = 0, -1 elif self.vec == (0, -1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, 1 else: self.vec = -1, 0 def turnRight(self): if self.vec == (-1, 0): self.vec = 0, 1 elif self.vec == (0, 1): self.vec = 1, 0 elif self.vec == (1, 0): self.vec = 0, -1 else: self.vec = -1, 0 def reverse(self): self.vec = tuple(-x for x in self.vec) def main(): file = 'day_22_input.txt' g = Grid(file) for i in range(10000): g.update() print('Part 1: {}'.format(g.infectionEvents)) cg = ComplexGrid(file) for i in range(10000000): if i % 500000 == 0: print(i) cg.update() print('Part 2: {}'.format(cg.infectionEvents)) if __name__ == '__main__': main() <|reserved_special_token_1|> #!/usr/bin/env python # USAGE: day_22_01.py # Michael Chambers, 2017 class Grid: def __init__(self, startFile): # Load initial infected sites # Origin is top-left of input file self.infected = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) -1) / 2) for j, char in enumerate(line): if char == "#": self.infected.add((i, j)) # Set initial position to middle of start grid posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = (posx, posy) self.vec = (-1,0) self.infectionEvents = 0 def update(self): if self.pos in self.infected: self.infected.remove(self.pos) self.turnRight() else: self.infectionEvents += 1 self.infected.add(self.pos) self.turnLeft() self.pos = (self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]) def turnLeft(self): if self.vec == (-1, 0): self.vec = (0, -1) elif self.vec == (0, -1): self.vec = (1,0) elif self.vec == (1, 0): self.vec = (0, 1) else: self.vec = (-1, 0) def turnRight(self): if self.vec == (-1, 0): self.vec = (0, 1) elif self.vec == (0, 1): self.vec = (1, 0) elif self.vec == (1, 0): self.vec = (0, -1) else: self.vec = (-1, 0) class ComplexGrid: # clean : 0 # weakened : 1 # infected : 2 # flagged : 3 def __init__(self, startFile): # Load initial infected sites # Origin is top-left of input file self.weakened = set() self.infected = set() self.flagged = set() posx = 0 with open(startFile, 'r') as fo: for i, line in enumerate(fo): line = line.rstrip() posx = int((len(line) -1) / 2) for j, char in enumerate(line): if char == "#": self.infected.add((i, j)) # Set initial position to middle of start grid posy = int((sum(1 for line in open(startFile)) - 1) / 2) self.pos = (posx, posy) self.vec = (-1,0) self.infectionEvents = 0 def update(self): if self.pos in self.weakened: self.weakened.remove(self.pos) self.infected.add(self.pos) self.infectionEvents += 1 elif self.pos in self.infected: self.infected.remove(self.pos) self.flagged.add(self.pos) self.turnRight() elif self.pos in self.flagged: self.flagged.remove(self.pos) self.reverse() else: self.weakened.add(self.pos) self.turnLeft() self.pos = (self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]) def turnLeft(self): if self.vec == (-1, 0): self.vec = (0, -1) elif self.vec == (0, -1): self.vec = (1,0) elif self.vec == (1, 0): self.vec = (0, 1) else: self.vec = (-1, 0) def turnRight(self): if self.vec == (-1, 0): self.vec = (0, 1) elif self.vec == (0, 1): self.vec = (1, 0) elif self.vec == (1, 0): self.vec = (0, -1) else: self.vec = (-1, 0) def reverse(self): self.vec = tuple(-x for x in self.vec) def main(): file = "day_22_input.txt" # file = "day_22_test.txt" g = Grid(file) # print(g.infected) # print("Pos {} Vec {}".format(g.pos, g.vec)) for i in range(10000): g.update() # print(g.infected) # print("Pos {} Vec {}".format(g.pos, g.vec)) print("Part 1: {}".format(g.infectionEvents)) cg = ComplexGrid(file) for i in range(10000000): if i % 500000 == 0: print(i) cg.update() print("Part 2: {}".format(cg.infectionEvents)) if __name__ == "__main__": main()
flexible
{ "blob_id": "f840624ec11679d576fbb80f8e753c59663a7ee2", "index": 9168, "step-1": "<mask token>\n\n\nclass ComplexGrid:\n\n def __init__(self, startFile):\n self.weakened = set()\n self.infected = set()\n self.flagged = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.weakened:\n self.weakened.remove(self.pos)\n self.infected.add(self.pos)\n self.infectionEvents += 1\n elif self.pos in self.infected:\n self.infected.remove(self.pos)\n self.flagged.add(self.pos)\n self.turnRight()\n elif self.pos in self.flagged:\n self.flagged.remove(self.pos)\n self.reverse()\n else:\n self.weakened.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n def reverse(self):\n self.vec = tuple(-x for x in self.vec)\n\n\n<mask token>\n", "step-2": "class Grid:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass ComplexGrid:\n\n def __init__(self, startFile):\n self.weakened = set()\n self.infected = set()\n self.flagged = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.weakened:\n self.weakened.remove(self.pos)\n self.infected.add(self.pos)\n self.infectionEvents += 1\n elif self.pos in self.infected:\n self.infected.remove(self.pos)\n self.flagged.add(self.pos)\n self.turnRight()\n elif self.pos in self.flagged:\n self.flagged.remove(self.pos)\n self.reverse()\n else:\n self.weakened.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n def reverse(self):\n self.vec = tuple(-x for x in self.vec)\n\n\n<mask token>\n", "step-3": "class Grid:\n\n def __init__(self, startFile):\n self.infected = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.infected:\n self.infected.remove(self.pos)\n self.turnRight()\n else:\n self.infectionEvents += 1\n self.infected.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n\nclass ComplexGrid:\n\n def __init__(self, startFile):\n self.weakened = set()\n self.infected = set()\n self.flagged = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.weakened:\n self.weakened.remove(self.pos)\n self.infected.add(self.pos)\n self.infectionEvents += 1\n elif self.pos in self.infected:\n self.infected.remove(self.pos)\n self.flagged.add(self.pos)\n self.turnRight()\n elif self.pos in self.flagged:\n self.flagged.remove(self.pos)\n self.reverse()\n else:\n self.weakened.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n def reverse(self):\n self.vec = tuple(-x for x in self.vec)\n\n\n<mask token>\n", "step-4": "class Grid:\n\n def __init__(self, startFile):\n self.infected = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.infected:\n self.infected.remove(self.pos)\n self.turnRight()\n else:\n self.infectionEvents += 1\n self.infected.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n\nclass ComplexGrid:\n\n def __init__(self, startFile):\n self.weakened = set()\n self.infected = set()\n self.flagged = set()\n posx = 0\n with open(startFile, 'r') as fo:\n for i, line in enumerate(fo):\n line = line.rstrip()\n posx = int((len(line) - 1) / 2)\n for j, char in enumerate(line):\n if char == '#':\n self.infected.add((i, j))\n posy = int((sum(1 for line in open(startFile)) - 1) / 2)\n self.pos = posx, posy\n self.vec = -1, 0\n self.infectionEvents = 0\n\n def update(self):\n if self.pos in self.weakened:\n self.weakened.remove(self.pos)\n self.infected.add(self.pos)\n self.infectionEvents += 1\n elif self.pos in self.infected:\n self.infected.remove(self.pos)\n self.flagged.add(self.pos)\n self.turnRight()\n elif self.pos in self.flagged:\n self.flagged.remove(self.pos)\n self.reverse()\n else:\n self.weakened.add(self.pos)\n self.turnLeft()\n self.pos = self.pos[0] + self.vec[0], self.pos[1] + self.vec[1]\n\n def turnLeft(self):\n if self.vec == (-1, 0):\n self.vec = 0, -1\n elif self.vec == (0, -1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, 1\n else:\n self.vec = -1, 0\n\n def turnRight(self):\n if self.vec == (-1, 0):\n self.vec = 0, 1\n elif self.vec == (0, 1):\n self.vec = 1, 0\n elif self.vec == (1, 0):\n self.vec = 0, -1\n else:\n self.vec = -1, 0\n\n def reverse(self):\n self.vec = tuple(-x for x in self.vec)\n\n\ndef main():\n file = 'day_22_input.txt'\n g = Grid(file)\n for i in range(10000):\n g.update()\n print('Part 1: {}'.format(g.infectionEvents))\n cg = ComplexGrid(file)\n for i in range(10000000):\n if i % 500000 == 0:\n print(i)\n cg.update()\n print('Part 2: {}'.format(cg.infectionEvents))\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n\n# USAGE: day_22_01.py\n# Michael Chambers, 2017\n\nclass Grid:\n\tdef __init__(self, startFile):\n\t\t# Load initial infected sites\n\t\t# Origin is top-left of input file\n\t\tself.infected = set()\n\t\tposx = 0\n\t\twith open(startFile, 'r') as fo:\n\t\t\tfor i, line in enumerate(fo):\n\t\t\t\tline = line.rstrip()\n\t\t\t\tposx = int((len(line) -1) / 2)\n\t\t\t\tfor j, char in enumerate(line):\n\t\t\t\t\tif char == \"#\":\n\t\t\t\t\t\tself.infected.add((i, j))\n\n\t\t# Set initial position to middle of start grid\n\t\tposy = int((sum(1 for line in open(startFile)) - 1) / 2)\n\t\tself.pos = (posx, posy)\n\t\tself.vec = (-1,0)\n\t\tself.infectionEvents = 0\n\n\tdef update(self):\n\t\tif self.pos in self.infected:\n\t\t\tself.infected.remove(self.pos)\n\t\t\tself.turnRight()\n\t\telse:\n\t\t\tself.infectionEvents += 1\n\t\t\tself.infected.add(self.pos)\n\t\t\tself.turnLeft()\n\t\tself.pos = (self.pos[0] + self.vec[0], self.pos[1] + self.vec[1])\n\n\tdef turnLeft(self):\n\t\tif self.vec == (-1, 0):\n\t\t\tself.vec = (0, -1)\n\t\telif self.vec == (0, -1):\n\t\t\tself.vec = (1,0)\n\t\telif self.vec == (1, 0):\n\t\t\tself.vec = (0, 1)\n\t\telse:\n\t\t\tself.vec = (-1, 0)\n\n\tdef turnRight(self):\n\t\tif self.vec == (-1, 0):\n\t\t\tself.vec = (0, 1)\n\t\telif self.vec == (0, 1):\n\t\t\tself.vec = (1, 0)\n\t\telif self.vec == (1, 0):\n\t\t\tself.vec = (0, -1)\n\t\telse:\n\t\t\tself.vec = (-1, 0)\n\n\nclass ComplexGrid:\n\t# clean : 0\n\t# weakened : 1\n\t# infected : 2\n\t# flagged : 3\n\n\tdef __init__(self, startFile):\n\t\t# Load initial infected sites\n\t\t# Origin is top-left of input file\n\t\tself.weakened = set()\n\t\tself.infected = set()\n\t\tself.flagged = set()\n\t\tposx = 0\n\t\twith open(startFile, 'r') as fo:\n\t\t\tfor i, line in enumerate(fo):\n\t\t\t\tline = line.rstrip()\n\t\t\t\tposx = int((len(line) -1) / 2)\n\t\t\t\tfor j, char in enumerate(line):\n\t\t\t\t\tif char == \"#\":\n\t\t\t\t\t\tself.infected.add((i, j))\n\n\t\t# Set initial position to middle of start grid\n\t\tposy = int((sum(1 for line in open(startFile)) - 1) / 2)\n\t\tself.pos = (posx, posy)\n\t\tself.vec = (-1,0)\n\t\tself.infectionEvents = 0\n\n\tdef update(self):\n\t\tif self.pos in self.weakened:\n\t\t\tself.weakened.remove(self.pos)\n\t\t\tself.infected.add(self.pos)\n\t\t\tself.infectionEvents += 1\n\t\telif self.pos in self.infected:\n\t\t\tself.infected.remove(self.pos)\n\t\t\tself.flagged.add(self.pos)\n\t\t\tself.turnRight()\n\t\telif self.pos in self.flagged:\n\t\t\tself.flagged.remove(self.pos)\n\t\t\tself.reverse()\n\t\telse:\n\t\t\tself.weakened.add(self.pos)\n\t\t\tself.turnLeft()\n\t\tself.pos = (self.pos[0] + self.vec[0], self.pos[1] + self.vec[1])\n\n\tdef turnLeft(self):\n\t\tif self.vec == (-1, 0):\n\t\t\tself.vec = (0, -1)\n\t\telif self.vec == (0, -1):\n\t\t\tself.vec = (1,0)\n\t\telif self.vec == (1, 0):\n\t\t\tself.vec = (0, 1)\n\t\telse:\n\t\t\tself.vec = (-1, 0)\n\n\tdef turnRight(self):\n\t\tif self.vec == (-1, 0):\n\t\t\tself.vec = (0, 1)\n\t\telif self.vec == (0, 1):\n\t\t\tself.vec = (1, 0)\n\t\telif self.vec == (1, 0):\n\t\t\tself.vec = (0, -1)\n\t\telse:\n\t\t\tself.vec = (-1, 0)\t\n\n\tdef reverse(self):\n\t\tself.vec = tuple(-x for x in self.vec)\t\n\ndef main():\n\tfile = \"day_22_input.txt\"\n\t# file = \"day_22_test.txt\"\n\tg = Grid(file)\n\t# print(g.infected)\n\t# print(\"Pos {} Vec {}\".format(g.pos, g.vec))\n\tfor i in range(10000):\n\t\tg.update()\n\t\t# print(g.infected)\n\t\t# print(\"Pos {} Vec {}\".format(g.pos, g.vec))\n\tprint(\"Part 1: {}\".format(g.infectionEvents))\n\n\tcg = ComplexGrid(file)\n\tfor i in range(10000000):\n\t\tif i % 500000 == 0:\n\t\t\tprint(i)\n\t\tcg.update()\n\tprint(\"Part 2: {}\".format(cg.infectionEvents))\n\n\n\nif __name__ == \"__main__\":\n\tmain()\n\n", "step-ids": [ 6, 7, 11, 13, 14 ] }
[ 6, 7, 11, 13, 14 ]
clear ; clc; %-----------------------读入图像-------------------------------------% markbefore=imread('p203.bmp'); markbefore2=rgb2gray(markbefore); mark=im2bw(markbefore2); figure(1); subplot(2,3,1); imshow(mark),title('水印图像'); [rm,cm]=size(mark); cover=imread('pic.bmp'); cover1=imresize(cover,[512,512]); cover_image=rgb2gray(cover1); subplot(2,3,2),imshow(cover_image,[]),title('原始图像'); before=blkproc(cover_image,[8 8],'dct2'); %将载体图像的灰度层分为8×8的小块,每一块内做二维DCT变换,结果记入矩阵before I=mark; alpha=50; %尺度因子,控制水印添加的强度,决定了频域系数被修改的幅度 k1=randn(1,8); %产生两个不同的随机序列 k2=randn(1,8); after=before; %初始化载入水印的结果矩阵 for i=1:rm %在中频段嵌入水印 for j=1:cm x=(i-1)*8; y=(j-1)*8; if mark(i,j)==1 k=k1; else k=k2; end; after(x+1,y+8)=before(x+1,y+8)+alpha*k(1); after(x+2,y+7)=before(x+2,y+7)+alpha*k(2); after(x+3,y+6)=before(x+3,y+6)+alpha*k(3); after(x+4,y+5)=before(x+4,y+5)+alpha*k(4); after(x+5,y+4)=before(x+5,y+4)+alpha*k(5); after(x+6,y+3)=before(x+6,y+3)+alpha*k(6); after(x+7,y+2)=before(x+7,y+2)+alpha*k(7); after(x+8,y+1)=before(x+8,y+1)+alpha*k(8); end; end; result=blkproc(after,[8 8],'idct2'); %将经处理的图像分为8×8的小块,每一块内做二维DCT逆变换 result = uint8(result); imwrite(result,'watermarked.bmp','bmp'); %隐写图像命名为watermarked.bmp subplot(2,3,3),imshow(result,[]),title('隐写图像'); subplot(2,3,4); imshow(result,[]); title('水印图像'); withmark=result; subplot(2,3,4); imshow(result,[]); title('图像'); withmark=result; %------------------------水印提取-----------------------------% % after_2=blkproc(withmark,[8,8],'dct2'); %此步开始提取水印,将灰度层分块进行DCT变换 p=zeros(1,8); %初始化提取数值用的矩阵 mark_2 = zeros(rm,cm); for i=1:rm for j=1:cm x=(i-1)*8;y=(j-1)*8; p(1)=after_2(x+1,y+8); %将之前改变过数值的点的数值提取出来 p(2)=after_2(x+2,y+7); p(3)=after_2(x+3,y+6); p(4)=after_2(x+4,y+5); p(5)=after_2(x+5,y+4); p(6)=after_2(x+6,y+3); p(7)=after_2(x+7,y+2); p(8)=after_2(x+8,y+1); if corr2(p,k1)>corr2(p,k2) %corr2计算两个矩阵的相似度,越接近1相似度越大 mark_2(i,j)=1; %比较提取出来的数值与随机频率k1和k2的相似度,还原水印图样 else mark_2(i,j)=0; end end end subplot(2,3,5); mark_2 = uint8(mark_2); imshow(mark_2,[]),title('提取水印'); subplot(2,3,6); imshow(mark),title('原水印图像');
normal
{ "blob_id": "56d3e59e3e077b1febb834668aba44ce8dba13ae", "index": 635, "step-1": "clear ;\nclc;\n \n%-----------------------读入图像-------------------------------------%\nmarkbefore=imread('p203.bmp');\nmarkbefore2=rgb2gray(markbefore);\nmark=im2bw(markbefore2); \nfigure(1); \nsubplot(2,3,1); \nimshow(mark),title('水印图像'); \n[rm,cm]=size(mark); \ncover=imread('pic.bmp');\ncover1=imresize(cover,[512,512]);\ncover_image=rgb2gray(cover1);\nsubplot(2,3,2),imshow(cover_image,[]),title('原始图像'); \n \nbefore=blkproc(cover_image,[8 8],'dct2'); %将载体图像的灰度层分为8×8的小块,每一块内做二维DCT变换,结果记入矩阵before\nI=mark;\nalpha=50; %尺度因子,控制水印添加的强度,决定了频域系数被修改的幅度\nk1=randn(1,8); %产生两个不同的随机序列\nk2=randn(1,8);\nafter=before; %初始化载入水印的结果矩阵\nfor i=1:rm %在中频段嵌入水印\n for j=1:cm\n x=(i-1)*8;\n y=(j-1)*8;\n if mark(i,j)==1\n k=k1;\n else\n k=k2;\n end;\n after(x+1,y+8)=before(x+1,y+8)+alpha*k(1);\n after(x+2,y+7)=before(x+2,y+7)+alpha*k(2);\n after(x+3,y+6)=before(x+3,y+6)+alpha*k(3);\n after(x+4,y+5)=before(x+4,y+5)+alpha*k(4);\n after(x+5,y+4)=before(x+5,y+4)+alpha*k(5);\n after(x+6,y+3)=before(x+6,y+3)+alpha*k(6);\n after(x+7,y+2)=before(x+7,y+2)+alpha*k(7);\n after(x+8,y+1)=before(x+8,y+1)+alpha*k(8);\n end;\nend;\nresult=blkproc(after,[8 8],'idct2'); %将经处理的图像分为8×8的小块,每一块内做二维DCT逆变换\nresult = uint8(result);\nimwrite(result,'watermarked.bmp','bmp'); %隐写图像命名为watermarked.bmp\nsubplot(2,3,3),imshow(result,[]),title('隐写图像'); \n\n\n subplot(2,3,4);\n imshow(result,[]);\n title('水印图像');\n withmark=result;\n subplot(2,3,4);\n imshow(result,[]);\n title('图像');\n withmark=result;\n\n \n%------------------------水印提取-----------------------------%\n%\nafter_2=blkproc(withmark,[8,8],'dct2'); %此步开始提取水印,将灰度层分块进行DCT变换\np=zeros(1,8); %初始化提取数值用的矩阵\nmark_2 = zeros(rm,cm);\nfor i=1:rm\n for j=1:cm\n x=(i-1)*8;y=(j-1)*8;\n p(1)=after_2(x+1,y+8); %将之前改变过数值的点的数值提取出来\n p(2)=after_2(x+2,y+7);\n p(3)=after_2(x+3,y+6);\n p(4)=after_2(x+4,y+5);\n p(5)=after_2(x+5,y+4);\n p(6)=after_2(x+6,y+3);\n p(7)=after_2(x+7,y+2);\n p(8)=after_2(x+8,y+1);\n if corr2(p,k1)>corr2(p,k2) %corr2计算两个矩阵的相似度,越接近1相似度越大\n mark_2(i,j)=1; %比较提取出来的数值与随机频率k1和k2的相似度,还原水印图样\n else\n mark_2(i,j)=0;\n end\n end\nend\nsubplot(2,3,5);\nmark_2 = uint8(mark_2);\nimshow(mark_2,[]),title('提取水印');\nsubplot(2,3,6);\nimshow(mark),title('原水印图像');\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> ii = [('CookGHP3.py', 2), ('MarrFDI.py', 1), ('GodwWSL2.py', 2), ( 'ChanWS.py', 6), ('SadlMLP.py', 1), ('WilbRLW.py', 1), ('AubePRP2.py', 1), ('MartHSI2.py', 1), ('WilbRLW5.py', 1), ('KnowJMM.py', 1), ( 'AubePRP.py', 2), ('ChalTPW2.py', 1), ('ClarGE2.py', 2), ('CarlTFR.py', 3), ('SeniNSP.py', 4), ('GrimSLE.py', 1), ('RoscTTI3.py', 1), ( 'CookGHP2.py', 1), ('CoolWHM.py', 1), ('DaltJMA.py', 1), ('NewmJLP.py', 1), ('GodwWLN.py', 3), ('MereHHB3.py', 1), ('MartHRW.py', 2), ( 'BentJRP.py', 23), ('ThomGLG.py', 1), ('StorJCC.py', 1), ('LewiMJW.py', 1), ('WilbRLW3.py', 1), ('FitzRNS2.py', 1), ('MartHSI.py', 1), ( 'EvarJSP.py', 5), ('DwigTHH.py', 4), ('TaylIF.py', 1), ('WordWYR.py', 1 ), ('WaylFEP.py', 1)]
flexible
{ "blob_id": "b80ccee42489aefb2858b8491008b252f6a2b9b7", "index": 4864, "step-1": "<mask token>\n", "step-2": "ii = [('CookGHP3.py', 2), ('MarrFDI.py', 1), ('GodwWSL2.py', 2), (\n 'ChanWS.py', 6), ('SadlMLP.py', 1), ('WilbRLW.py', 1), ('AubePRP2.py', \n 1), ('MartHSI2.py', 1), ('WilbRLW5.py', 1), ('KnowJMM.py', 1), (\n 'AubePRP.py', 2), ('ChalTPW2.py', 1), ('ClarGE2.py', 2), ('CarlTFR.py',\n 3), ('SeniNSP.py', 4), ('GrimSLE.py', 1), ('RoscTTI3.py', 1), (\n 'CookGHP2.py', 1), ('CoolWHM.py', 1), ('DaltJMA.py', 1), ('NewmJLP.py',\n 1), ('GodwWLN.py', 3), ('MereHHB3.py', 1), ('MartHRW.py', 2), (\n 'BentJRP.py', 23), ('ThomGLG.py', 1), ('StorJCC.py', 1), ('LewiMJW.py',\n 1), ('WilbRLW3.py', 1), ('FitzRNS2.py', 1), ('MartHSI.py', 1), (\n 'EvarJSP.py', 5), ('DwigTHH.py', 4), ('TaylIF.py', 1), ('WordWYR.py', 1\n ), ('WaylFEP.py', 1)]\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
from django.http import JsonResponse from django.shortcuts import render from phone_number_parser.forms import TextForm import re def parse_text(request): ########################################################################### # # Parse Text is the lone view for this project. A GET request renders a # form with one textarea field. A POST of this form passes the text via an # ajax call in the field 'the_text'. The text is parsed using REGEX for # phone numbers and passed back as a JSON object. # See main.js for the ajax request and success callback function. # ########################################################################### if request.method == 'POST': text = request.POST.get('the_text') phone_number_list = [] matches = re.findall(r'\(?(\d{3})\)?[\.\-]?\s*(\d{3})\s*[\.\-]?\s*(\d{4})', text) for match in matches: phone_number_list.append('({}) {}-{}'.format(match[0], match[1], match[2])) response_data = {'phone_number_list': phone_number_list} return JsonResponse(response_data) else: form = TextForm() return render(request, 'phone_number_parser/index.html', {'form': form})
normal
{ "blob_id": "d27a7ca04e12d50aca5a9f9db199102dbeb4e9f1", "index": 7678, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_text(request):\n if request.method == 'POST':\n text = request.POST.get('the_text')\n phone_number_list = []\n matches = re.findall(\n '\\\\(?(\\\\d{3})\\\\)?[\\\\.\\\\-]?\\\\s*(\\\\d{3})\\\\s*[\\\\.\\\\-]?\\\\s*(\\\\d{4})',\n text)\n for match in matches:\n phone_number_list.append('({}) {}-{}'.format(match[0], match[1],\n match[2]))\n response_data = {'phone_number_list': phone_number_list}\n return JsonResponse(response_data)\n else:\n form = TextForm()\n return render(request, 'phone_number_parser/index.html', {'form': form}\n )\n", "step-3": "from django.http import JsonResponse\nfrom django.shortcuts import render\nfrom phone_number_parser.forms import TextForm\nimport re\n\n\ndef parse_text(request):\n if request.method == 'POST':\n text = request.POST.get('the_text')\n phone_number_list = []\n matches = re.findall(\n '\\\\(?(\\\\d{3})\\\\)?[\\\\.\\\\-]?\\\\s*(\\\\d{3})\\\\s*[\\\\.\\\\-]?\\\\s*(\\\\d{4})',\n text)\n for match in matches:\n phone_number_list.append('({}) {}-{}'.format(match[0], match[1],\n match[2]))\n response_data = {'phone_number_list': phone_number_list}\n return JsonResponse(response_data)\n else:\n form = TextForm()\n return render(request, 'phone_number_parser/index.html', {'form': form}\n )\n", "step-4": "from django.http import JsonResponse\nfrom django.shortcuts import render\nfrom phone_number_parser.forms import TextForm\nimport re\n\n\ndef parse_text(request):\n ###########################################################################\n #\n # Parse Text is the lone view for this project. A GET request renders a\n # form with one textarea field. A POST of this form passes the text via an\n # ajax call in the field 'the_text'. The text is parsed using REGEX for\n # phone numbers and passed back as a JSON object.\n # See main.js for the ajax request and success callback function.\n #\n ###########################################################################\n\n if request.method == 'POST':\n text = request.POST.get('the_text')\n phone_number_list = []\n matches = re.findall(r'\\(?(\\d{3})\\)?[\\.\\-]?\\s*(\\d{3})\\s*[\\.\\-]?\\s*(\\d{4})', text)\n for match in matches:\n phone_number_list.append('({}) {}-{}'.format(match[0], match[1], match[2]))\n\n response_data = {'phone_number_list': phone_number_list}\n\n return JsonResponse(response_data)\n\n else:\n form = TextForm()\n\n return render(request, 'phone_number_parser/index.html', {'form': form})\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Logistic(object): <|reserved_special_token_0|> def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ weight, intercept = initialize_with_zeros(self._x_train.shape[0]) parameters, grads, costs = optimize(weight, intercept, self. _x_train, self._y_train, self.num_iteration, self.learning_rate) weight = parameters['w'] intercept = parameters['b'] y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) print('train accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_train - self._y_train)) * 100)) print('test accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_test - self._x_test)) * 100)) return {'costs': costs, 'Y_prediction_test': y_prediction_test, 'Y_prediction_train': y_prediction_train, 'w': weight, 'b': intercept, 'learning_rate': self.learning_rate, 'num_iterations': self.num_iteration} <|reserved_special_token_1|> <|reserved_special_token_0|> class Logistic(object): """ This class provides the flexibility to run logistic regression to your data set """ def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ weight, intercept = initialize_with_zeros(self._x_train.shape[0]) parameters, grads, costs = optimize(weight, intercept, self. _x_train, self._y_train, self.num_iteration, self.learning_rate) weight = parameters['w'] intercept = parameters['b'] y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) print('train accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_train - self._y_train)) * 100)) print('test accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_test - self._x_test)) * 100)) return {'costs': costs, 'Y_prediction_test': y_prediction_test, 'Y_prediction_train': y_prediction_train, 'w': weight, 'b': intercept, 'learning_rate': self.learning_rate, 'num_iterations': self.num_iteration} <|reserved_special_token_1|> <|reserved_special_token_0|> def predict(weight, intercept, x_vector): """ Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X """ m = x_vector.shape[1] y_prediction = np.zeros((1, m)) weight = weight.reshape(x_vector.shape[0], 1) yhat = sigmoid(np.dot(weight.T, x_vector) + intercept) for i in range(yhat.shape[1]): if yhat[0][i] > 0.5: y_prediction[0][i] = 1 else: y_prediction[0][i] = 0 assert y_prediction.shape == (1, m) return y_prediction class Logistic(object): """ This class provides the flexibility to run logistic regression to your data set """ def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ weight, intercept = initialize_with_zeros(self._x_train.shape[0]) parameters, grads, costs = optimize(weight, intercept, self. _x_train, self._y_train, self.num_iteration, self.learning_rate) weight = parameters['w'] intercept = parameters['b'] y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) print('train accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_train - self._y_train)) * 100)) print('test accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_test - self._x_test)) * 100)) return {'costs': costs, 'Y_prediction_test': y_prediction_test, 'Y_prediction_train': y_prediction_train, 'w': weight, 'b': intercept, 'learning_rate': self.learning_rate, 'num_iterations': self.num_iteration} <|reserved_special_token_1|> from function import * from .propogation import optimize from .initialize import initialize_with_zeros def predict(weight, intercept, x_vector): """ Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X """ m = x_vector.shape[1] y_prediction = np.zeros((1, m)) weight = weight.reshape(x_vector.shape[0], 1) yhat = sigmoid(np.dot(weight.T, x_vector) + intercept) for i in range(yhat.shape[1]): if yhat[0][i] > 0.5: y_prediction[0][i] = 1 else: y_prediction[0][i] = 0 assert y_prediction.shape == (1, m) return y_prediction class Logistic(object): """ This class provides the flexibility to run logistic regression to your data set """ def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ weight, intercept = initialize_with_zeros(self._x_train.shape[0]) parameters, grads, costs = optimize(weight, intercept, self. _x_train, self._y_train, self.num_iteration, self.learning_rate) weight = parameters['w'] intercept = parameters['b'] y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) print('train accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_train - self._y_train)) * 100)) print('test accuracy: {} %'.format(100 - np.mean(np.abs( y_prediction_test - self._x_test)) * 100)) return {'costs': costs, 'Y_prediction_test': y_prediction_test, 'Y_prediction_train': y_prediction_train, 'w': weight, 'b': intercept, 'learning_rate': self.learning_rate, 'num_iterations': self.num_iteration} <|reserved_special_token_1|> from function import * from .propogation import optimize from .initialize import initialize_with_zeros def predict(weight, intercept, x_vector): """ Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b) Arguments: w -- weights, a numpy array of size (num_px * num_px * 3, 1) b -- bias, a scalar X -- data of size (num_px * num_px * 3, number of examples) Returns: Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X """ m = x_vector.shape[1] y_prediction = np.zeros((1, m)) weight = weight.reshape(x_vector.shape[0], 1) # Compute vector "A" predicting the probabilities of a cat being present in the picture yhat = sigmoid(np.dot(weight.T, x_vector) + intercept) for i in range(yhat.shape[1]): # Convert probabilities A[0,i] to actual predictions p[0,i] if yhat[0][i] > 0.5: y_prediction[0][i] = 1 else: y_prediction[0][i] = 0 assert (y_prediction.shape == (1, m)) return y_prediction class Logistic(object): """ This class provides the flexibility to run logistic regression to your data set """ def __init__(self, *args, **kwargs): """ Initializing the model parameter :param args: :param kwargs: X_train, Y_train, X_test, Y_test, num_iterations = 2000, learning_rate = 0.5 """ # Initializing the test & training set self._x_train = kwargs['X_train'] self._y_train = kwargs['Y_train'] self._x_test = kwargs['X_test'] self._y_test = kwargs['Y_test'] self.num_iteration = kwargs['num_iteration'] self.learning_rate = kwargs['learning_rate'] def fit(self): """ function will fit the model with initialized parameter :return: costs, y_prediction_test, y_prediction_train, weight, intercept, self.learning_rate, self.num_iteration """ # initialize parameters with zeros (≈ 1 line of code) weight, intercept = initialize_with_zeros(self._x_train.shape[0]) # Gradient descent (≈ 1 line of code) parameters, grads, costs = optimize(weight, intercept, self._x_train, self._y_train, self.num_iteration, self.learning_rate ) # Retrieve parameters w and b from dictionary "parameters" weight = parameters["w"] intercept = parameters["b"] # Predict test/train set examples (≈ 2 lines of code) y_prediction_test = predict(weight, intercept, self._x_test) y_prediction_train = predict(weight, intercept, self._x_train) # Print train/test Errors print("train accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_train - self._y_train)) * 100)) print("test accuracy: {} %".format(100 - np.mean(np.abs(y_prediction_test - self._x_test)) * 100)) return {"costs": costs, "Y_prediction_test": y_prediction_test, "Y_prediction_train": y_prediction_train, "w": weight, "b": intercept, "learning_rate": self.learning_rate, "num_iterations": self.num_iteration}
flexible
{ "blob_id": "63360ec9693a916375b49d0881008b1d7d4ec953", "index": 4546, "step-1": "<mask token>\n\n\nclass Logistic(object):\n <mask token>\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-2": "<mask token>\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-3": "<mask token>\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n assert y_prediction.shape == (1, m)\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-4": "from function import *\nfrom .propogation import optimize\nfrom .initialize import initialize_with_zeros\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n assert y_prediction.shape == (1, m)\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n parameters, grads, costs = optimize(weight, intercept, self.\n _x_train, self._y_train, self.num_iteration, self.learning_rate)\n weight = parameters['w']\n intercept = parameters['b']\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n print('train accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_train - self._y_train)) * 100))\n print('test accuracy: {} %'.format(100 - np.mean(np.abs(\n y_prediction_test - self._x_test)) * 100))\n return {'costs': costs, 'Y_prediction_test': y_prediction_test,\n 'Y_prediction_train': y_prediction_train, 'w': weight, 'b':\n intercept, 'learning_rate': self.learning_rate,\n 'num_iterations': self.num_iteration}\n", "step-5": "from function import *\nfrom .propogation import optimize\nfrom .initialize import initialize_with_zeros\n\n\ndef predict(weight, intercept, x_vector):\n \"\"\"\n Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)\n\n Arguments:\n w -- weights, a numpy array of size (num_px * num_px * 3, 1)\n b -- bias, a scalar\n X -- data of size (num_px * num_px * 3, number of examples)\n\n Returns:\n Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X\n \"\"\"\n\n m = x_vector.shape[1]\n y_prediction = np.zeros((1, m))\n weight = weight.reshape(x_vector.shape[0], 1)\n\n # Compute vector \"A\" predicting the probabilities of a cat being present in the picture\n yhat = sigmoid(np.dot(weight.T, x_vector) + intercept)\n for i in range(yhat.shape[1]):\n\n # Convert probabilities A[0,i] to actual predictions p[0,i]\n if yhat[0][i] > 0.5:\n y_prediction[0][i] = 1\n else:\n y_prediction[0][i] = 0\n\n assert (y_prediction.shape == (1, m))\n\n return y_prediction\n\n\nclass Logistic(object):\n \"\"\"\n This class provides the flexibility to run\n logistic regression to your data set\n \"\"\"\n\n def __init__(self, *args, **kwargs):\n \"\"\"\n Initializing the model parameter\n :param args:\n :param kwargs:\n X_train,\n Y_train,\n X_test,\n Y_test,\n num_iterations = 2000,\n learning_rate = 0.5\n \"\"\"\n # Initializing the test & training set\n self._x_train = kwargs['X_train']\n self._y_train = kwargs['Y_train']\n self._x_test = kwargs['X_test']\n self._y_test = kwargs['Y_test']\n\n self.num_iteration = kwargs['num_iteration']\n self.learning_rate = kwargs['learning_rate']\n\n def fit(self):\n \"\"\"\n function will fit the model with initialized parameter\n :return:\n costs,\n y_prediction_test,\n y_prediction_train,\n weight,\n intercept,\n self.learning_rate,\n self.num_iteration\n \"\"\"\n # initialize parameters with zeros (≈ 1 line of code)\n weight, intercept = initialize_with_zeros(self._x_train.shape[0])\n\n # Gradient descent (≈ 1 line of code)\n parameters, grads, costs = optimize(weight,\n intercept,\n self._x_train,\n self._y_train,\n self.num_iteration,\n self.learning_rate\n )\n\n # Retrieve parameters w and b from dictionary \"parameters\"\n weight = parameters[\"w\"]\n intercept = parameters[\"b\"]\n\n # Predict test/train set examples (≈ 2 lines of code)\n y_prediction_test = predict(weight, intercept, self._x_test)\n y_prediction_train = predict(weight, intercept, self._x_train)\n\n # Print train/test Errors\n print(\"train accuracy: {} %\".format(100 - np.mean(np.abs(y_prediction_train - self._y_train)) * 100))\n print(\"test accuracy: {} %\".format(100 - np.mean(np.abs(y_prediction_test - self._x_test)) * 100))\n\n return {\"costs\": costs,\n \"Y_prediction_test\": y_prediction_test,\n \"Y_prediction_train\": y_prediction_train,\n \"w\": weight,\n \"b\": intercept,\n \"learning_rate\": self.learning_rate,\n \"num_iterations\": self.num_iteration}\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from PenaltyTracker import PenaltyTracker from DatabaseManager import DatabaseManager import unittest,os,sys,shutil, filecmp class TestingPenaltyTracker(unittest.TestCase): @classmethod def setUpClass(cls): cls.testPTDatabase = os.path.join( os.getcwd(), "Tests", "test_penalty.db") cls.testPenaltyTracker = PenaltyTracker() cls.testPenaltyTracker.setDatabaseLocation(cls.testPTDatabase) cls.testPenaltyTracker.setSeason("PenaltyTracker") cls.testPenaltyTracker.createAndSetDatabaseManager() controlPath = os.path.join(os.getcwd(), "Tests", "season_test_10-24-16.db") cls.controlDatabase = DatabaseManager(controlPath, "PenaltyTracker") @classmethod def tearDownClass(cls): cls.testPenaltyTracker = None cls.controlDatabase = None os.remove( os.path.join( os.getcwd(), "Tests", "test_penalty.db") ) def testGameUrls(self): self.testPenaltyTracker.setTargetDate("2016-02-26") numberOfGames = len( self.testPenaltyTracker.GetGameURLS() ) self.assertEqual( numberOfGames, 5 ) def testSetDBLocation(self): self.assertNotEqual(self.testPenaltyTracker.databaseManager, None ) def testPenaltyProcessing(self): # generate the test data self.testPenaltyTracker.setTargetDate("2016-10-24") self.testPenaltyTracker.run(); self.assertEqual( self.controlDatabase.getHighestID(), self.testPenaltyTracker.databaseManager.getHighestID() ) getAllCommand = "SELECT * FROM PenaltyTracker" controlRows = self.controlDatabase.getData(getAllCommand) testRows = self.testPenaltyTracker.databaseManager.getData(getAllCommand) self.assertEqual(controlRows, testRows)
normal
{ "blob_id": "607d8bc79caa9d767bdb7e77a5db52295d90236f", "index": 1759, "step-1": "<mask token>\n\n\nclass TestingPenaltyTracker(unittest.TestCase):\n <mask token>\n\n @classmethod\n def tearDownClass(cls):\n cls.testPenaltyTracker = None\n cls.controlDatabase = None\n os.remove(os.path.join(os.getcwd(), 'Tests', 'test_penalty.db'))\n <mask token>\n <mask token>\n\n def testPenaltyProcessing(self):\n self.testPenaltyTracker.setTargetDate('2016-10-24')\n self.testPenaltyTracker.run()\n self.assertEqual(self.controlDatabase.getHighestID(), self.\n testPenaltyTracker.databaseManager.getHighestID())\n getAllCommand = 'SELECT * FROM PenaltyTracker'\n controlRows = self.controlDatabase.getData(getAllCommand)\n testRows = self.testPenaltyTracker.databaseManager.getData(\n getAllCommand)\n self.assertEqual(controlRows, testRows)\n", "step-2": "<mask token>\n\n\nclass TestingPenaltyTracker(unittest.TestCase):\n <mask token>\n\n @classmethod\n def tearDownClass(cls):\n cls.testPenaltyTracker = None\n cls.controlDatabase = None\n os.remove(os.path.join(os.getcwd(), 'Tests', 'test_penalty.db'))\n\n def testGameUrls(self):\n self.testPenaltyTracker.setTargetDate('2016-02-26')\n numberOfGames = len(self.testPenaltyTracker.GetGameURLS())\n self.assertEqual(numberOfGames, 5)\n\n def testSetDBLocation(self):\n self.assertNotEqual(self.testPenaltyTracker.databaseManager, None)\n\n def testPenaltyProcessing(self):\n self.testPenaltyTracker.setTargetDate('2016-10-24')\n self.testPenaltyTracker.run()\n self.assertEqual(self.controlDatabase.getHighestID(), self.\n testPenaltyTracker.databaseManager.getHighestID())\n getAllCommand = 'SELECT * FROM PenaltyTracker'\n controlRows = self.controlDatabase.getData(getAllCommand)\n testRows = self.testPenaltyTracker.databaseManager.getData(\n getAllCommand)\n self.assertEqual(controlRows, testRows)\n", "step-3": "<mask token>\n\n\nclass TestingPenaltyTracker(unittest.TestCase):\n\n @classmethod\n def setUpClass(cls):\n cls.testPTDatabase = os.path.join(os.getcwd(), 'Tests',\n 'test_penalty.db')\n cls.testPenaltyTracker = PenaltyTracker()\n cls.testPenaltyTracker.setDatabaseLocation(cls.testPTDatabase)\n cls.testPenaltyTracker.setSeason('PenaltyTracker')\n cls.testPenaltyTracker.createAndSetDatabaseManager()\n controlPath = os.path.join(os.getcwd(), 'Tests',\n 'season_test_10-24-16.db')\n cls.controlDatabase = DatabaseManager(controlPath, 'PenaltyTracker')\n\n @classmethod\n def tearDownClass(cls):\n cls.testPenaltyTracker = None\n cls.controlDatabase = None\n os.remove(os.path.join(os.getcwd(), 'Tests', 'test_penalty.db'))\n\n def testGameUrls(self):\n self.testPenaltyTracker.setTargetDate('2016-02-26')\n numberOfGames = len(self.testPenaltyTracker.GetGameURLS())\n self.assertEqual(numberOfGames, 5)\n\n def testSetDBLocation(self):\n self.assertNotEqual(self.testPenaltyTracker.databaseManager, None)\n\n def testPenaltyProcessing(self):\n self.testPenaltyTracker.setTargetDate('2016-10-24')\n self.testPenaltyTracker.run()\n self.assertEqual(self.controlDatabase.getHighestID(), self.\n testPenaltyTracker.databaseManager.getHighestID())\n getAllCommand = 'SELECT * FROM PenaltyTracker'\n controlRows = self.controlDatabase.getData(getAllCommand)\n testRows = self.testPenaltyTracker.databaseManager.getData(\n getAllCommand)\n self.assertEqual(controlRows, testRows)\n", "step-4": "from PenaltyTracker import PenaltyTracker\nfrom DatabaseManager import DatabaseManager\nimport unittest, os, sys, shutil, filecmp\n\n\nclass TestingPenaltyTracker(unittest.TestCase):\n\n @classmethod\n def setUpClass(cls):\n cls.testPTDatabase = os.path.join(os.getcwd(), 'Tests',\n 'test_penalty.db')\n cls.testPenaltyTracker = PenaltyTracker()\n cls.testPenaltyTracker.setDatabaseLocation(cls.testPTDatabase)\n cls.testPenaltyTracker.setSeason('PenaltyTracker')\n cls.testPenaltyTracker.createAndSetDatabaseManager()\n controlPath = os.path.join(os.getcwd(), 'Tests',\n 'season_test_10-24-16.db')\n cls.controlDatabase = DatabaseManager(controlPath, 'PenaltyTracker')\n\n @classmethod\n def tearDownClass(cls):\n cls.testPenaltyTracker = None\n cls.controlDatabase = None\n os.remove(os.path.join(os.getcwd(), 'Tests', 'test_penalty.db'))\n\n def testGameUrls(self):\n self.testPenaltyTracker.setTargetDate('2016-02-26')\n numberOfGames = len(self.testPenaltyTracker.GetGameURLS())\n self.assertEqual(numberOfGames, 5)\n\n def testSetDBLocation(self):\n self.assertNotEqual(self.testPenaltyTracker.databaseManager, None)\n\n def testPenaltyProcessing(self):\n self.testPenaltyTracker.setTargetDate('2016-10-24')\n self.testPenaltyTracker.run()\n self.assertEqual(self.controlDatabase.getHighestID(), self.\n testPenaltyTracker.databaseManager.getHighestID())\n getAllCommand = 'SELECT * FROM PenaltyTracker'\n controlRows = self.controlDatabase.getData(getAllCommand)\n testRows = self.testPenaltyTracker.databaseManager.getData(\n getAllCommand)\n self.assertEqual(controlRows, testRows)\n", "step-5": "from PenaltyTracker import PenaltyTracker\nfrom DatabaseManager import DatabaseManager\nimport unittest,os,sys,shutil, filecmp\n\nclass TestingPenaltyTracker(unittest.TestCase):\n @classmethod\n def setUpClass(cls):\n cls.testPTDatabase = os.path.join( os.getcwd(), \"Tests\", \"test_penalty.db\")\n cls.testPenaltyTracker = PenaltyTracker()\n cls.testPenaltyTracker.setDatabaseLocation(cls.testPTDatabase)\n cls.testPenaltyTracker.setSeason(\"PenaltyTracker\")\n cls.testPenaltyTracker.createAndSetDatabaseManager()\n\n controlPath = os.path.join(os.getcwd(), \"Tests\", \"season_test_10-24-16.db\")\n cls.controlDatabase = DatabaseManager(controlPath, \"PenaltyTracker\")\n\n @classmethod\n def tearDownClass(cls):\n cls.testPenaltyTracker = None\n cls.controlDatabase = None\n os.remove( os.path.join( os.getcwd(), \"Tests\", \"test_penalty.db\") )\n\n def testGameUrls(self):\n self.testPenaltyTracker.setTargetDate(\"2016-02-26\")\n numberOfGames = len( self.testPenaltyTracker.GetGameURLS() )\n self.assertEqual( numberOfGames, 5 )\n\n def testSetDBLocation(self):\n self.assertNotEqual(self.testPenaltyTracker.databaseManager, None )\n\n def testPenaltyProcessing(self):\n # generate the test data\n self.testPenaltyTracker.setTargetDate(\"2016-10-24\") \n self.testPenaltyTracker.run();\n\n self.assertEqual( self.controlDatabase.getHighestID(), self.testPenaltyTracker.databaseManager.getHighestID() )\n \n getAllCommand = \"SELECT * FROM PenaltyTracker\"\n controlRows = self.controlDatabase.getData(getAllCommand)\n testRows = self.testPenaltyTracker.databaseManager.getData(getAllCommand)\n self.assertEqual(controlRows, testRows)\n\n\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> for lab in labels: print(lab) <|reserved_special_token_1|> <|reserved_special_token_0|> labels = np.load('DataVariationOther/w1_s500/targetTestNP.npy') for lab in labels: print(lab) <|reserved_special_token_1|> import numpy as np labels = np.load('DataVariationOther/w1_s500/targetTestNP.npy') for lab in labels: print(lab)
flexible
{ "blob_id": "a83988e936d9dee4838db61c8eb8ec108f5ecd3f", "index": 4669, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor lab in labels:\n print(lab)\n", "step-3": "<mask token>\nlabels = np.load('DataVariationOther/w1_s500/targetTestNP.npy')\nfor lab in labels:\n print(lab)\n", "step-4": "import numpy as np\nlabels = np.load('DataVariationOther/w1_s500/targetTestNP.npy')\nfor lab in labels:\n print(lab)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#------------------------------------------------------------------------------ # Copyright (c) 2011, Enthought, Inc. # All rights reserved. #------------------------------------------------------------------------------ import wx from .wx_control import WXControl from ...components.image_view import AbstractTkImageView class wxBitmapWidget(wx.Panel): """ A wx.Panel subclass which paints a provided wx.Bitmap. This differs from wx.StaticBitmap in that it provides the option to scale the provided bitmap to the bounds of the widget. If the widget is set to scale its contents, low quality scaling will occur during resize, with a high quality pass performed once resizing as finished. """ def __init__(self, parent): """ Initialize a wxBitmapWidget. Parameters ---------- parent : wx.Window The wx.Window object which serves as the widget parent. """ super(wxBitmapWidget, self).__init__(parent) self._bitmap = None self._scaled_contents = False self._preserve_aspect_ratio = False self._allow_upscaling = False self._resize_timer = None self._resizing = False self.Bind(wx.EVT_PAINT, self.OnPaint) #-------------------------------------------------------------------------- # Private API #-------------------------------------------------------------------------- def OnPaint(self, event): """ The paint event handler for the widget. """ bmp = self._bitmap if bmp is None: return bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight() if bmp_width == 0 or bmp_height == 0: return evt_x = 0 evt_y = 0 evt_width, evt_height = self.GetSize().asTuple() if not self._scaled_contents: # If the image isn't scaled, it is centered if possible. # Otherwise, it's painted at the origin and clipped. paint_x = max(0, int((evt_width / 2. - bmp_width / 2.) + evt_x)) paint_y = max(0, int((evt_height / 2. - bmp_height / 2.) + evt_y)) paint_width = bmp_width paint_height = bmp_height else: # If the image *is* scaled, it's scaled size depends on the # size of the paint area as well as the other scaling flags. if self._preserve_aspect_ratio: bmp_ratio = float(bmp_width) / bmp_height evt_ratio = float(evt_width) / evt_height if evt_ratio >= bmp_ratio: if self._allow_upscaling: paint_height = evt_height else: paint_height = min(bmp_height, evt_height) paint_width = int(paint_height * bmp_ratio) else: if self._allow_upscaling: paint_width = evt_width else: paint_width = min(bmp_width, evt_width) paint_height = int(paint_width / bmp_ratio) else: if self._allow_upscaling: paint_height = evt_height paint_width = evt_width else: paint_height = min(bmp_height, evt_height) paint_width = min(bmp_width, evt_width) # In all cases of scaling, we know that the scaled image is # no larger than the paint area, and can thus be centered. paint_x = int((evt_width / 2. - paint_width / 2.) + evt_x) paint_y = int((evt_height / 2. - paint_height / 2.) + evt_y) # Scale the bitmap if needed, using a faster method if the # image is currently being resized if paint_width != bmp_width or paint_height != bmp_height: img = bmp.ConvertToImage() if self._resizing: quality = wx.IMAGE_QUALITY_NORMAL else: quality = wx.IMAGE_QUALITY_HIGH img.Rescale(paint_width, paint_height, quality) bmp = wx.BitmapFromImage(img) # Finally, draw the bitmap into the computed location dc = wx.PaintDC(self) dc.DrawBitmap(bmp, paint_x, paint_y) def OnResize(self, event): """ The resize event handler for the widget. This method is only bound and called when content scaling is enabled. It starts(restarts) a timer to perform a high quality scaled repaint when resizing is finished. """ self._resizing = True self._resize_timer.Start(60, True) def OnResizeEnd(self, event): """ The repaint timer event handler. This method is only bound and called when content scaling is enabled and resizing has completed. It triggers a high quality repaint. """ self._resizing = False self.Refresh() #-------------------------------------------------------------------------- # Public API #-------------------------------------------------------------------------- def GetBestSize(self): """ Overridden method to return the size of the bitmap as the best size for the widget. """ bmp = self._bitmap return wx.Size(bmp.GetWidth(), bmp.GetHeight()) def GetBestSizeTuple(self): """ Overridden method to return the size of the bitmap as the best size for the widget. """ return self.GetBestSize().asTuple() def GetBitmap(self, bitmap): """ Get the underlying wx.Bitmap used to paint the control. Returns ------- result : wx.Bitmap or None The bitmap being used to paint the control, or None if no bitmap has been supplied. """ return self._bitmap def SetBitmap(self, bitmap): """ Set the underlying wx.Bitmap and refresh the widget. Parameters ---------- bitmap : wx.Bitmap The bitmap to paint on the widget. """ self._bitmap = bitmap self.Refresh() def GetScaledContents(self): """ Whether or not the bitmap is scaled to fit the bounds. Returns ------- result : bool Whether or not the bitmap is scaled to fit the bounds of the widget. """ return self._scaled_contents def SetScaledContents(self, scaled): """ Set whether or not the bitmap should be scaled to fit the bounds of the widget. Parameters ---------- scaled : bool Whether or not to scale the bitmap to fit the bounds of the widget. """ if scaled: if not self._scaled_contents: self._scaled_contents = True self._resize_timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.OnResizeEnd) self.Bind(wx.EVT_SIZE, self.OnResize) else: if self._scaled_contents: self._scaled_contents = False self._timer = None self.Unbind(wx.EVT_TIMER, handler=self.OnResizeEnd) self.Unbind(wx.EVT_SIZE, handler=self.OnResize) self.Refresh() def GetPreserveAspectRatio(self): """ Returns whether or not the aspect ratio of the image is maintained during a resize. """ return self._preserve_aspect_ratio def SetPreserveAspectRatio(self, preserve): """ Set whether or not to preserve the image aspect ratio. Parameters ---------- preserve : bool If True then the aspect ratio of the image will be preserved if it is scaled to fit. Otherwise, the aspect ratio will be ignored. """ self._preserve_aspect_ratio = preserve self.Refresh() def GetAllowUpscaling(self): """ Returns whether or not the image can be scaled greater than its natural size. """ return self._allow_upscaling def SetAllowUpscaling(self, allow): """ Set whether or not to allow the image to be scaled beyond its natural size. Parameters ---------- allow : bool If True, then the image may be scaled larger than its natural if it is scaled to fit. If False, the image will never be scaled larger than its natural size. In either case, the image may be scaled smaller. """ self._allow_upscaling = allow self.Refresh() class WXImageView(WXControl, AbstractTkImageView): """ A Wx implementation of ImageView. """ #: The internal cached size hint which is used to determine whether #: of not a size hint updated event should be emitted when the text #: in the label changes _cached_size_hint = None #-------------------------------------------------------------------------- # Setup methods #-------------------------------------------------------------------------- def create(self, parent): """ Creates the underlying wxBitmapWidget control. """ self.widget = wxBitmapWidget(parent) def initialize(self): """ Initializes the attributes on the underlying control. """ super(WXImageView, self).initialize() shell = self.shell_obj self.set_image(shell.image) self.set_scale_to_fit(shell.scale_to_fit) self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio) self.set_allow_upscaling(shell.allow_upscaling) #-------------------------------------------------------------------------- # Implementation #-------------------------------------------------------------------------- def shell_image_changed(self, image): """ The change handler for the 'image' attribute on the shell component. """ self.set_image(image) def shell_scale_to_fit_changed(self, scale_to_fit): """ The change handler for the 'scale_to_fit' attribute on the shell component. """ self.set_scale_to_fit(scale_to_fit) def shell_preserve_aspect_ratio_changed(self, preserve): """ The change handler for the 'preserve_aspect_ratio' attribute on the shell component. """ self.set_preserve_aspect_ratio(preserve) def shell_allow_upscaling_changed(self, allow): """ The change handler for the 'allow_upscaling' attribute on the shell component. """ self.set_allow_upscaling(allow) #-------------------------------------------------------------------------- # Widget Update Methods #-------------------------------------------------------------------------- def set_image(self, image): """ Sets the image on the underlying wxBitmapWidget. """ bmp = image.as_wxBitmap() if image is not None else None self.widget.SetBitmap(bmp) # Emit a size hint updated event if the size hint has actually # changed. This is an optimization so that a constraints update # only occurs when the size hint has actually changed. This # logic must be implemented here so that the label has been # updated before the new size hint is computed. Placing this # logic on the shell object would not guarantee that the label # has been updated at the time the change handler is called. cached = self._cached_size_hint hint = self._cached_size_hint = self.size_hint() if cached != hint: self.shell_obj.size_hint_updated() def set_scale_to_fit(self, scale_to_fit): """ Sets whether or not the image scales with the underlying control. """ self.widget.SetScaledContents(scale_to_fit) def set_preserve_aspect_ratio(self, preserve): """ Sets whether or not to preserve the aspect ratio of the image when scaling. """ self.widget.SetPreserveAspectRatio(preserve) def set_allow_upscaling(self, allow): """ Sets whether or not the image will scale beyond its natural size. """ self.widget.SetAllowUpscaling(allow)
normal
{ "blob_id": "d4198c2c3706e03ba1bce3e31c5139f01248a184", "index": 5161, "step-1": "<mask token>\n\n\nclass wxBitmapWidget(wx.Panel):\n <mask token>\n\n def __init__(self, parent):\n \"\"\" Initialize a wxBitmapWidget.\n\n Parameters\n ----------\n parent : wx.Window\n The wx.Window object which serves as the widget parent.\n \n \"\"\"\n super(wxBitmapWidget, self).__init__(parent)\n self._bitmap = None\n self._scaled_contents = False\n self._preserve_aspect_ratio = False\n self._allow_upscaling = False\n self._resize_timer = None\n self._resizing = False\n self.Bind(wx.EVT_PAINT, self.OnPaint)\n\n def OnPaint(self, event):\n \"\"\" The paint event handler for the widget.\n\n \"\"\"\n bmp = self._bitmap\n if bmp is None:\n return\n bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight()\n if bmp_width == 0 or bmp_height == 0:\n return\n evt_x = 0\n evt_y = 0\n evt_width, evt_height = self.GetSize().asTuple()\n if not self._scaled_contents:\n paint_x = max(0, int(evt_width / 2.0 - bmp_width / 2.0 + evt_x))\n paint_y = max(0, int(evt_height / 2.0 - bmp_height / 2.0 + evt_y))\n paint_width = bmp_width\n paint_height = bmp_height\n else:\n if self._preserve_aspect_ratio:\n bmp_ratio = float(bmp_width) / bmp_height\n evt_ratio = float(evt_width) / evt_height\n if evt_ratio >= bmp_ratio:\n if self._allow_upscaling:\n paint_height = evt_height\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = int(paint_height * bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_width = evt_width\n else:\n paint_width = min(bmp_width, evt_width)\n paint_height = int(paint_width / bmp_ratio)\n elif self._allow_upscaling:\n paint_height = evt_height\n paint_width = evt_width\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = min(bmp_width, evt_width)\n paint_x = int(evt_width / 2.0 - paint_width / 2.0 + evt_x)\n paint_y = int(evt_height / 2.0 - paint_height / 2.0 + evt_y)\n if paint_width != bmp_width or paint_height != bmp_height:\n img = bmp.ConvertToImage()\n if self._resizing:\n quality = wx.IMAGE_QUALITY_NORMAL\n else:\n quality = wx.IMAGE_QUALITY_HIGH\n img.Rescale(paint_width, paint_height, quality)\n bmp = wx.BitmapFromImage(img)\n dc = wx.PaintDC(self)\n dc.DrawBitmap(bmp, paint_x, paint_y)\n\n def OnResize(self, event):\n \"\"\" The resize event handler for the widget.\n\n This method is only bound and called when content scaling is\n enabled. It starts(restarts) a timer to perform a high quality\n scaled repaint when resizing is finished.\n\n \"\"\"\n self._resizing = True\n self._resize_timer.Start(60, True)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def SetAllowUpscaling(self, allow):\n \"\"\" Set whether or not to allow the image to be scaled beyond\n its natural size.\n\n Parameters\n ----------\n allow : bool\n If True, then the image may be scaled larger than its \n natural if it is scaled to fit. If False, the image will\n never be scaled larger than its natural size. In either\n case, the image may be scaled smaller.\n\n \"\"\"\n self._allow_upscaling = allow\n self.Refresh()\n\n\nclass WXImageView(WXControl, AbstractTkImageView):\n \"\"\" A Wx implementation of ImageView.\n\n \"\"\"\n _cached_size_hint = None\n\n def create(self, parent):\n \"\"\" Creates the underlying wxBitmapWidget control.\n\n \"\"\"\n self.widget = wxBitmapWidget(parent)\n\n def initialize(self):\n \"\"\" Initializes the attributes on the underlying control.\n\n \"\"\"\n super(WXImageView, self).initialize()\n shell = self.shell_obj\n self.set_image(shell.image)\n self.set_scale_to_fit(shell.scale_to_fit)\n self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio)\n self.set_allow_upscaling(shell.allow_upscaling)\n\n def shell_image_changed(self, image):\n \"\"\" The change handler for the 'image' attribute on the shell \n component.\n\n \"\"\"\n self.set_image(image)\n\n def shell_scale_to_fit_changed(self, scale_to_fit):\n \"\"\" The change handler for the 'scale_to_fit' attribute on the \n shell component.\n\n \"\"\"\n self.set_scale_to_fit(scale_to_fit)\n\n def shell_preserve_aspect_ratio_changed(self, preserve):\n \"\"\" The change handler for the 'preserve_aspect_ratio' attribute\n on the shell component.\n\n \"\"\"\n self.set_preserve_aspect_ratio(preserve)\n\n def shell_allow_upscaling_changed(self, allow):\n \"\"\" The change handler for the 'allow_upscaling' attribute on \n the shell component.\n\n \"\"\"\n self.set_allow_upscaling(allow)\n\n def set_image(self, image):\n \"\"\" Sets the image on the underlying wxBitmapWidget.\n\n \"\"\"\n bmp = image.as_wxBitmap() if image is not None else None\n self.widget.SetBitmap(bmp)\n cached = self._cached_size_hint\n hint = self._cached_size_hint = self.size_hint()\n if cached != hint:\n self.shell_obj.size_hint_updated()\n\n def set_scale_to_fit(self, scale_to_fit):\n \"\"\" Sets whether or not the image scales with the underlying \n control.\n\n \"\"\"\n self.widget.SetScaledContents(scale_to_fit)\n\n def set_preserve_aspect_ratio(self, preserve):\n \"\"\" Sets whether or not to preserve the aspect ratio of the \n image when scaling.\n\n \"\"\"\n self.widget.SetPreserveAspectRatio(preserve)\n\n def set_allow_upscaling(self, allow):\n \"\"\" Sets whether or not the image will scale beyond its natural\n size.\n\n \"\"\"\n self.widget.SetAllowUpscaling(allow)\n", "step-2": "<mask token>\n\n\nclass wxBitmapWidget(wx.Panel):\n <mask token>\n\n def __init__(self, parent):\n \"\"\" Initialize a wxBitmapWidget.\n\n Parameters\n ----------\n parent : wx.Window\n The wx.Window object which serves as the widget parent.\n \n \"\"\"\n super(wxBitmapWidget, self).__init__(parent)\n self._bitmap = None\n self._scaled_contents = False\n self._preserve_aspect_ratio = False\n self._allow_upscaling = False\n self._resize_timer = None\n self._resizing = False\n self.Bind(wx.EVT_PAINT, self.OnPaint)\n\n def OnPaint(self, event):\n \"\"\" The paint event handler for the widget.\n\n \"\"\"\n bmp = self._bitmap\n if bmp is None:\n return\n bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight()\n if bmp_width == 0 or bmp_height == 0:\n return\n evt_x = 0\n evt_y = 0\n evt_width, evt_height = self.GetSize().asTuple()\n if not self._scaled_contents:\n paint_x = max(0, int(evt_width / 2.0 - bmp_width / 2.0 + evt_x))\n paint_y = max(0, int(evt_height / 2.0 - bmp_height / 2.0 + evt_y))\n paint_width = bmp_width\n paint_height = bmp_height\n else:\n if self._preserve_aspect_ratio:\n bmp_ratio = float(bmp_width) / bmp_height\n evt_ratio = float(evt_width) / evt_height\n if evt_ratio >= bmp_ratio:\n if self._allow_upscaling:\n paint_height = evt_height\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = int(paint_height * bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_width = evt_width\n else:\n paint_width = min(bmp_width, evt_width)\n paint_height = int(paint_width / bmp_ratio)\n elif self._allow_upscaling:\n paint_height = evt_height\n paint_width = evt_width\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = min(bmp_width, evt_width)\n paint_x = int(evt_width / 2.0 - paint_width / 2.0 + evt_x)\n paint_y = int(evt_height / 2.0 - paint_height / 2.0 + evt_y)\n if paint_width != bmp_width or paint_height != bmp_height:\n img = bmp.ConvertToImage()\n if self._resizing:\n quality = wx.IMAGE_QUALITY_NORMAL\n else:\n quality = wx.IMAGE_QUALITY_HIGH\n img.Rescale(paint_width, paint_height, quality)\n bmp = wx.BitmapFromImage(img)\n dc = wx.PaintDC(self)\n dc.DrawBitmap(bmp, paint_x, paint_y)\n\n def OnResize(self, event):\n \"\"\" The resize event handler for the widget.\n\n This method is only bound and called when content scaling is\n enabled. It starts(restarts) a timer to perform a high quality\n scaled repaint when resizing is finished.\n\n \"\"\"\n self._resizing = True\n self._resize_timer.Start(60, True)\n <mask token>\n <mask token>\n <mask token>\n\n def GetBitmap(self, bitmap):\n \"\"\" Get the underlying wx.Bitmap used to paint the control.\n\n Returns\n -------\n result : wx.Bitmap or None\n The bitmap being used to paint the control, or None if\n no bitmap has been supplied.\n\n \"\"\"\n return self._bitmap\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def SetPreserveAspectRatio(self, preserve):\n \"\"\" Set whether or not to preserve the image aspect ratio.\n\n Parameters\n ----------\n preserve : bool\n If True then the aspect ratio of the image will be preserved\n if it is scaled to fit. Otherwise, the aspect ratio will be\n ignored.\n\n \"\"\"\n self._preserve_aspect_ratio = preserve\n self.Refresh()\n <mask token>\n\n def SetAllowUpscaling(self, allow):\n \"\"\" Set whether or not to allow the image to be scaled beyond\n its natural size.\n\n Parameters\n ----------\n allow : bool\n If True, then the image may be scaled larger than its \n natural if it is scaled to fit. If False, the image will\n never be scaled larger than its natural size. In either\n case, the image may be scaled smaller.\n\n \"\"\"\n self._allow_upscaling = allow\n self.Refresh()\n\n\nclass WXImageView(WXControl, AbstractTkImageView):\n \"\"\" A Wx implementation of ImageView.\n\n \"\"\"\n _cached_size_hint = None\n\n def create(self, parent):\n \"\"\" Creates the underlying wxBitmapWidget control.\n\n \"\"\"\n self.widget = wxBitmapWidget(parent)\n\n def initialize(self):\n \"\"\" Initializes the attributes on the underlying control.\n\n \"\"\"\n super(WXImageView, self).initialize()\n shell = self.shell_obj\n self.set_image(shell.image)\n self.set_scale_to_fit(shell.scale_to_fit)\n self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio)\n self.set_allow_upscaling(shell.allow_upscaling)\n\n def shell_image_changed(self, image):\n \"\"\" The change handler for the 'image' attribute on the shell \n component.\n\n \"\"\"\n self.set_image(image)\n\n def shell_scale_to_fit_changed(self, scale_to_fit):\n \"\"\" The change handler for the 'scale_to_fit' attribute on the \n shell component.\n\n \"\"\"\n self.set_scale_to_fit(scale_to_fit)\n\n def shell_preserve_aspect_ratio_changed(self, preserve):\n \"\"\" The change handler for the 'preserve_aspect_ratio' attribute\n on the shell component.\n\n \"\"\"\n self.set_preserve_aspect_ratio(preserve)\n\n def shell_allow_upscaling_changed(self, allow):\n \"\"\" The change handler for the 'allow_upscaling' attribute on \n the shell component.\n\n \"\"\"\n self.set_allow_upscaling(allow)\n\n def set_image(self, image):\n \"\"\" Sets the image on the underlying wxBitmapWidget.\n\n \"\"\"\n bmp = image.as_wxBitmap() if image is not None else None\n self.widget.SetBitmap(bmp)\n cached = self._cached_size_hint\n hint = self._cached_size_hint = self.size_hint()\n if cached != hint:\n self.shell_obj.size_hint_updated()\n\n def set_scale_to_fit(self, scale_to_fit):\n \"\"\" Sets whether or not the image scales with the underlying \n control.\n\n \"\"\"\n self.widget.SetScaledContents(scale_to_fit)\n\n def set_preserve_aspect_ratio(self, preserve):\n \"\"\" Sets whether or not to preserve the aspect ratio of the \n image when scaling.\n\n \"\"\"\n self.widget.SetPreserveAspectRatio(preserve)\n\n def set_allow_upscaling(self, allow):\n \"\"\" Sets whether or not the image will scale beyond its natural\n size.\n\n \"\"\"\n self.widget.SetAllowUpscaling(allow)\n", "step-3": "<mask token>\n\n\nclass wxBitmapWidget(wx.Panel):\n <mask token>\n\n def __init__(self, parent):\n \"\"\" Initialize a wxBitmapWidget.\n\n Parameters\n ----------\n parent : wx.Window\n The wx.Window object which serves as the widget parent.\n \n \"\"\"\n super(wxBitmapWidget, self).__init__(parent)\n self._bitmap = None\n self._scaled_contents = False\n self._preserve_aspect_ratio = False\n self._allow_upscaling = False\n self._resize_timer = None\n self._resizing = False\n self.Bind(wx.EVT_PAINT, self.OnPaint)\n\n def OnPaint(self, event):\n \"\"\" The paint event handler for the widget.\n\n \"\"\"\n bmp = self._bitmap\n if bmp is None:\n return\n bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight()\n if bmp_width == 0 or bmp_height == 0:\n return\n evt_x = 0\n evt_y = 0\n evt_width, evt_height = self.GetSize().asTuple()\n if not self._scaled_contents:\n paint_x = max(0, int(evt_width / 2.0 - bmp_width / 2.0 + evt_x))\n paint_y = max(0, int(evt_height / 2.0 - bmp_height / 2.0 + evt_y))\n paint_width = bmp_width\n paint_height = bmp_height\n else:\n if self._preserve_aspect_ratio:\n bmp_ratio = float(bmp_width) / bmp_height\n evt_ratio = float(evt_width) / evt_height\n if evt_ratio >= bmp_ratio:\n if self._allow_upscaling:\n paint_height = evt_height\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = int(paint_height * bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_width = evt_width\n else:\n paint_width = min(bmp_width, evt_width)\n paint_height = int(paint_width / bmp_ratio)\n elif self._allow_upscaling:\n paint_height = evt_height\n paint_width = evt_width\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = min(bmp_width, evt_width)\n paint_x = int(evt_width / 2.0 - paint_width / 2.0 + evt_x)\n paint_y = int(evt_height / 2.0 - paint_height / 2.0 + evt_y)\n if paint_width != bmp_width or paint_height != bmp_height:\n img = bmp.ConvertToImage()\n if self._resizing:\n quality = wx.IMAGE_QUALITY_NORMAL\n else:\n quality = wx.IMAGE_QUALITY_HIGH\n img.Rescale(paint_width, paint_height, quality)\n bmp = wx.BitmapFromImage(img)\n dc = wx.PaintDC(self)\n dc.DrawBitmap(bmp, paint_x, paint_y)\n\n def OnResize(self, event):\n \"\"\" The resize event handler for the widget.\n\n This method is only bound and called when content scaling is\n enabled. It starts(restarts) a timer to perform a high quality\n scaled repaint when resizing is finished.\n\n \"\"\"\n self._resizing = True\n self._resize_timer.Start(60, True)\n <mask token>\n\n def GetBestSize(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n bmp = self._bitmap\n return wx.Size(bmp.GetWidth(), bmp.GetHeight())\n\n def GetBestSizeTuple(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n return self.GetBestSize().asTuple()\n\n def GetBitmap(self, bitmap):\n \"\"\" Get the underlying wx.Bitmap used to paint the control.\n\n Returns\n -------\n result : wx.Bitmap or None\n The bitmap being used to paint the control, or None if\n no bitmap has been supplied.\n\n \"\"\"\n return self._bitmap\n\n def SetBitmap(self, bitmap):\n \"\"\" Set the underlying wx.Bitmap and refresh the widget.\n\n Parameters\n ----------\n bitmap : wx.Bitmap\n The bitmap to paint on the widget.\n \n \"\"\"\n self._bitmap = bitmap\n self.Refresh()\n\n def GetScaledContents(self):\n \"\"\" Whether or not the bitmap is scaled to fit the bounds.\n\n Returns\n -------\n result : bool\n Whether or not the bitmap is scaled to fit the bounds of\n the widget.\n \n \"\"\"\n return self._scaled_contents\n <mask token>\n\n def GetPreserveAspectRatio(self):\n \"\"\" Returns whether or not the aspect ratio of the image is \n maintained during a resize.\n\n \"\"\"\n return self._preserve_aspect_ratio\n\n def SetPreserveAspectRatio(self, preserve):\n \"\"\" Set whether or not to preserve the image aspect ratio.\n\n Parameters\n ----------\n preserve : bool\n If True then the aspect ratio of the image will be preserved\n if it is scaled to fit. Otherwise, the aspect ratio will be\n ignored.\n\n \"\"\"\n self._preserve_aspect_ratio = preserve\n self.Refresh()\n <mask token>\n\n def SetAllowUpscaling(self, allow):\n \"\"\" Set whether or not to allow the image to be scaled beyond\n its natural size.\n\n Parameters\n ----------\n allow : bool\n If True, then the image may be scaled larger than its \n natural if it is scaled to fit. If False, the image will\n never be scaled larger than its natural size. In either\n case, the image may be scaled smaller.\n\n \"\"\"\n self._allow_upscaling = allow\n self.Refresh()\n\n\nclass WXImageView(WXControl, AbstractTkImageView):\n \"\"\" A Wx implementation of ImageView.\n\n \"\"\"\n _cached_size_hint = None\n\n def create(self, parent):\n \"\"\" Creates the underlying wxBitmapWidget control.\n\n \"\"\"\n self.widget = wxBitmapWidget(parent)\n\n def initialize(self):\n \"\"\" Initializes the attributes on the underlying control.\n\n \"\"\"\n super(WXImageView, self).initialize()\n shell = self.shell_obj\n self.set_image(shell.image)\n self.set_scale_to_fit(shell.scale_to_fit)\n self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio)\n self.set_allow_upscaling(shell.allow_upscaling)\n\n def shell_image_changed(self, image):\n \"\"\" The change handler for the 'image' attribute on the shell \n component.\n\n \"\"\"\n self.set_image(image)\n\n def shell_scale_to_fit_changed(self, scale_to_fit):\n \"\"\" The change handler for the 'scale_to_fit' attribute on the \n shell component.\n\n \"\"\"\n self.set_scale_to_fit(scale_to_fit)\n\n def shell_preserve_aspect_ratio_changed(self, preserve):\n \"\"\" The change handler for the 'preserve_aspect_ratio' attribute\n on the shell component.\n\n \"\"\"\n self.set_preserve_aspect_ratio(preserve)\n\n def shell_allow_upscaling_changed(self, allow):\n \"\"\" The change handler for the 'allow_upscaling' attribute on \n the shell component.\n\n \"\"\"\n self.set_allow_upscaling(allow)\n\n def set_image(self, image):\n \"\"\" Sets the image on the underlying wxBitmapWidget.\n\n \"\"\"\n bmp = image.as_wxBitmap() if image is not None else None\n self.widget.SetBitmap(bmp)\n cached = self._cached_size_hint\n hint = self._cached_size_hint = self.size_hint()\n if cached != hint:\n self.shell_obj.size_hint_updated()\n\n def set_scale_to_fit(self, scale_to_fit):\n \"\"\" Sets whether or not the image scales with the underlying \n control.\n\n \"\"\"\n self.widget.SetScaledContents(scale_to_fit)\n\n def set_preserve_aspect_ratio(self, preserve):\n \"\"\" Sets whether or not to preserve the aspect ratio of the \n image when scaling.\n\n \"\"\"\n self.widget.SetPreserveAspectRatio(preserve)\n\n def set_allow_upscaling(self, allow):\n \"\"\" Sets whether or not the image will scale beyond its natural\n size.\n\n \"\"\"\n self.widget.SetAllowUpscaling(allow)\n", "step-4": "<mask token>\n\n\nclass wxBitmapWidget(wx.Panel):\n <mask token>\n\n def __init__(self, parent):\n \"\"\" Initialize a wxBitmapWidget.\n\n Parameters\n ----------\n parent : wx.Window\n The wx.Window object which serves as the widget parent.\n \n \"\"\"\n super(wxBitmapWidget, self).__init__(parent)\n self._bitmap = None\n self._scaled_contents = False\n self._preserve_aspect_ratio = False\n self._allow_upscaling = False\n self._resize_timer = None\n self._resizing = False\n self.Bind(wx.EVT_PAINT, self.OnPaint)\n\n def OnPaint(self, event):\n \"\"\" The paint event handler for the widget.\n\n \"\"\"\n bmp = self._bitmap\n if bmp is None:\n return\n bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight()\n if bmp_width == 0 or bmp_height == 0:\n return\n evt_x = 0\n evt_y = 0\n evt_width, evt_height = self.GetSize().asTuple()\n if not self._scaled_contents:\n paint_x = max(0, int(evt_width / 2.0 - bmp_width / 2.0 + evt_x))\n paint_y = max(0, int(evt_height / 2.0 - bmp_height / 2.0 + evt_y))\n paint_width = bmp_width\n paint_height = bmp_height\n else:\n if self._preserve_aspect_ratio:\n bmp_ratio = float(bmp_width) / bmp_height\n evt_ratio = float(evt_width) / evt_height\n if evt_ratio >= bmp_ratio:\n if self._allow_upscaling:\n paint_height = evt_height\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = int(paint_height * bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_width = evt_width\n else:\n paint_width = min(bmp_width, evt_width)\n paint_height = int(paint_width / bmp_ratio)\n elif self._allow_upscaling:\n paint_height = evt_height\n paint_width = evt_width\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = min(bmp_width, evt_width)\n paint_x = int(evt_width / 2.0 - paint_width / 2.0 + evt_x)\n paint_y = int(evt_height / 2.0 - paint_height / 2.0 + evt_y)\n if paint_width != bmp_width or paint_height != bmp_height:\n img = bmp.ConvertToImage()\n if self._resizing:\n quality = wx.IMAGE_QUALITY_NORMAL\n else:\n quality = wx.IMAGE_QUALITY_HIGH\n img.Rescale(paint_width, paint_height, quality)\n bmp = wx.BitmapFromImage(img)\n dc = wx.PaintDC(self)\n dc.DrawBitmap(bmp, paint_x, paint_y)\n\n def OnResize(self, event):\n \"\"\" The resize event handler for the widget.\n\n This method is only bound and called when content scaling is\n enabled. It starts(restarts) a timer to perform a high quality\n scaled repaint when resizing is finished.\n\n \"\"\"\n self._resizing = True\n self._resize_timer.Start(60, True)\n\n def OnResizeEnd(self, event):\n \"\"\" The repaint timer event handler.\n\n This method is only bound and called when content scaling is\n enabled and resizing has completed. It triggers a high quality\n repaint.\n\n \"\"\"\n self._resizing = False\n self.Refresh()\n\n def GetBestSize(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n bmp = self._bitmap\n return wx.Size(bmp.GetWidth(), bmp.GetHeight())\n\n def GetBestSizeTuple(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n return self.GetBestSize().asTuple()\n\n def GetBitmap(self, bitmap):\n \"\"\" Get the underlying wx.Bitmap used to paint the control.\n\n Returns\n -------\n result : wx.Bitmap or None\n The bitmap being used to paint the control, or None if\n no bitmap has been supplied.\n\n \"\"\"\n return self._bitmap\n\n def SetBitmap(self, bitmap):\n \"\"\" Set the underlying wx.Bitmap and refresh the widget.\n\n Parameters\n ----------\n bitmap : wx.Bitmap\n The bitmap to paint on the widget.\n \n \"\"\"\n self._bitmap = bitmap\n self.Refresh()\n\n def GetScaledContents(self):\n \"\"\" Whether or not the bitmap is scaled to fit the bounds.\n\n Returns\n -------\n result : bool\n Whether or not the bitmap is scaled to fit the bounds of\n the widget.\n \n \"\"\"\n return self._scaled_contents\n\n def SetScaledContents(self, scaled):\n \"\"\" Set whether or not the bitmap should be scaled to fit the\n bounds of the widget.\n\n Parameters\n ----------\n scaled : bool\n Whether or not to scale the bitmap to fit the bounds of the\n widget.\n \n \"\"\"\n if scaled:\n if not self._scaled_contents:\n self._scaled_contents = True\n self._resize_timer = wx.Timer(self)\n self.Bind(wx.EVT_TIMER, self.OnResizeEnd)\n self.Bind(wx.EVT_SIZE, self.OnResize)\n elif self._scaled_contents:\n self._scaled_contents = False\n self._timer = None\n self.Unbind(wx.EVT_TIMER, handler=self.OnResizeEnd)\n self.Unbind(wx.EVT_SIZE, handler=self.OnResize)\n self.Refresh()\n\n def GetPreserveAspectRatio(self):\n \"\"\" Returns whether or not the aspect ratio of the image is \n maintained during a resize.\n\n \"\"\"\n return self._preserve_aspect_ratio\n\n def SetPreserveAspectRatio(self, preserve):\n \"\"\" Set whether or not to preserve the image aspect ratio.\n\n Parameters\n ----------\n preserve : bool\n If True then the aspect ratio of the image will be preserved\n if it is scaled to fit. Otherwise, the aspect ratio will be\n ignored.\n\n \"\"\"\n self._preserve_aspect_ratio = preserve\n self.Refresh()\n\n def GetAllowUpscaling(self):\n \"\"\" Returns whether or not the image can be scaled greater than\n its natural size.\n\n \"\"\"\n return self._allow_upscaling\n\n def SetAllowUpscaling(self, allow):\n \"\"\" Set whether or not to allow the image to be scaled beyond\n its natural size.\n\n Parameters\n ----------\n allow : bool\n If True, then the image may be scaled larger than its \n natural if it is scaled to fit. If False, the image will\n never be scaled larger than its natural size. In either\n case, the image may be scaled smaller.\n\n \"\"\"\n self._allow_upscaling = allow\n self.Refresh()\n\n\nclass WXImageView(WXControl, AbstractTkImageView):\n \"\"\" A Wx implementation of ImageView.\n\n \"\"\"\n _cached_size_hint = None\n\n def create(self, parent):\n \"\"\" Creates the underlying wxBitmapWidget control.\n\n \"\"\"\n self.widget = wxBitmapWidget(parent)\n\n def initialize(self):\n \"\"\" Initializes the attributes on the underlying control.\n\n \"\"\"\n super(WXImageView, self).initialize()\n shell = self.shell_obj\n self.set_image(shell.image)\n self.set_scale_to_fit(shell.scale_to_fit)\n self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio)\n self.set_allow_upscaling(shell.allow_upscaling)\n\n def shell_image_changed(self, image):\n \"\"\" The change handler for the 'image' attribute on the shell \n component.\n\n \"\"\"\n self.set_image(image)\n\n def shell_scale_to_fit_changed(self, scale_to_fit):\n \"\"\" The change handler for the 'scale_to_fit' attribute on the \n shell component.\n\n \"\"\"\n self.set_scale_to_fit(scale_to_fit)\n\n def shell_preserve_aspect_ratio_changed(self, preserve):\n \"\"\" The change handler for the 'preserve_aspect_ratio' attribute\n on the shell component.\n\n \"\"\"\n self.set_preserve_aspect_ratio(preserve)\n\n def shell_allow_upscaling_changed(self, allow):\n \"\"\" The change handler for the 'allow_upscaling' attribute on \n the shell component.\n\n \"\"\"\n self.set_allow_upscaling(allow)\n\n def set_image(self, image):\n \"\"\" Sets the image on the underlying wxBitmapWidget.\n\n \"\"\"\n bmp = image.as_wxBitmap() if image is not None else None\n self.widget.SetBitmap(bmp)\n cached = self._cached_size_hint\n hint = self._cached_size_hint = self.size_hint()\n if cached != hint:\n self.shell_obj.size_hint_updated()\n\n def set_scale_to_fit(self, scale_to_fit):\n \"\"\" Sets whether or not the image scales with the underlying \n control.\n\n \"\"\"\n self.widget.SetScaledContents(scale_to_fit)\n\n def set_preserve_aspect_ratio(self, preserve):\n \"\"\" Sets whether or not to preserve the aspect ratio of the \n image when scaling.\n\n \"\"\"\n self.widget.SetPreserveAspectRatio(preserve)\n\n def set_allow_upscaling(self, allow):\n \"\"\" Sets whether or not the image will scale beyond its natural\n size.\n\n \"\"\"\n self.widget.SetAllowUpscaling(allow)\n", "step-5": "#------------------------------------------------------------------------------\n# Copyright (c) 2011, Enthought, Inc.\n# All rights reserved.\n#------------------------------------------------------------------------------\nimport wx\n\nfrom .wx_control import WXControl\n\nfrom ...components.image_view import AbstractTkImageView\n\n\nclass wxBitmapWidget(wx.Panel):\n \"\"\" A wx.Panel subclass which paints a provided wx.Bitmap. \n\n This differs from wx.StaticBitmap in that it provides the option to\n scale the provided bitmap to the bounds of the widget. If the widget\n is set to scale its contents, low quality scaling will occur during\n resize, with a high quality pass performed once resizing as finished.\n\n \"\"\"\n def __init__(self, parent):\n \"\"\" Initialize a wxBitmapWidget.\n\n Parameters\n ----------\n parent : wx.Window\n The wx.Window object which serves as the widget parent.\n \n \"\"\"\n super(wxBitmapWidget, self).__init__(parent)\n self._bitmap = None\n self._scaled_contents = False\n self._preserve_aspect_ratio = False\n self._allow_upscaling = False\n self._resize_timer = None\n self._resizing = False\n self.Bind(wx.EVT_PAINT, self.OnPaint)\n\n #--------------------------------------------------------------------------\n # Private API\n #--------------------------------------------------------------------------\n def OnPaint(self, event):\n \"\"\" The paint event handler for the widget.\n\n \"\"\"\n bmp = self._bitmap\n if bmp is None:\n return\n\n bmp_width, bmp_height = bmp.GetWidth(), bmp.GetHeight()\n if bmp_width == 0 or bmp_height == 0:\n return\n\n evt_x = 0\n evt_y = 0\n evt_width, evt_height = self.GetSize().asTuple()\n\n if not self._scaled_contents:\n # If the image isn't scaled, it is centered if possible.\n # Otherwise, it's painted at the origin and clipped.\n paint_x = max(0, int((evt_width / 2. - bmp_width / 2.) + evt_x))\n paint_y = max(0, int((evt_height / 2. - bmp_height / 2.) + evt_y))\n paint_width = bmp_width\n paint_height = bmp_height\n else:\n # If the image *is* scaled, it's scaled size depends on the \n # size of the paint area as well as the other scaling flags.\n if self._preserve_aspect_ratio:\n bmp_ratio = float(bmp_width) / bmp_height\n evt_ratio = float(evt_width) / evt_height\n if evt_ratio >= bmp_ratio:\n if self._allow_upscaling:\n paint_height = evt_height\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = int(paint_height * bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_width = evt_width\n else:\n paint_width = min(bmp_width, evt_width)\n paint_height = int(paint_width / bmp_ratio)\n else:\n if self._allow_upscaling:\n paint_height = evt_height\n paint_width = evt_width\n else:\n paint_height = min(bmp_height, evt_height)\n paint_width = min(bmp_width, evt_width)\n # In all cases of scaling, we know that the scaled image is\n # no larger than the paint area, and can thus be centered.\n paint_x = int((evt_width / 2. - paint_width / 2.) + evt_x)\n paint_y = int((evt_height / 2. - paint_height / 2.) + evt_y)\n\n # Scale the bitmap if needed, using a faster method if the\n # image is currently being resized\n if paint_width != bmp_width or paint_height != bmp_height:\n img = bmp.ConvertToImage()\n if self._resizing:\n quality = wx.IMAGE_QUALITY_NORMAL\n else:\n quality = wx.IMAGE_QUALITY_HIGH\n img.Rescale(paint_width, paint_height, quality)\n bmp = wx.BitmapFromImage(img)\n\n # Finally, draw the bitmap into the computed location\n dc = wx.PaintDC(self)\n dc.DrawBitmap(bmp, paint_x, paint_y)\n\n def OnResize(self, event):\n \"\"\" The resize event handler for the widget.\n\n This method is only bound and called when content scaling is\n enabled. It starts(restarts) a timer to perform a high quality\n scaled repaint when resizing is finished.\n\n \"\"\"\n self._resizing = True\n self._resize_timer.Start(60, True)\n\n def OnResizeEnd(self, event):\n \"\"\" The repaint timer event handler.\n\n This method is only bound and called when content scaling is\n enabled and resizing has completed. It triggers a high quality\n repaint.\n\n \"\"\"\n self._resizing = False\n self.Refresh()\n\n #--------------------------------------------------------------------------\n # Public API\n #--------------------------------------------------------------------------\n def GetBestSize(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n bmp = self._bitmap\n return wx.Size(bmp.GetWidth(), bmp.GetHeight())\n\n def GetBestSizeTuple(self):\n \"\"\" Overridden method to return the size of the bitmap as the \n best size for the widget.\n\n \"\"\"\n return self.GetBestSize().asTuple()\n\n def GetBitmap(self, bitmap):\n \"\"\" Get the underlying wx.Bitmap used to paint the control.\n\n Returns\n -------\n result : wx.Bitmap or None\n The bitmap being used to paint the control, or None if\n no bitmap has been supplied.\n\n \"\"\"\n return self._bitmap\n\n def SetBitmap(self, bitmap):\n \"\"\" Set the underlying wx.Bitmap and refresh the widget.\n\n Parameters\n ----------\n bitmap : wx.Bitmap\n The bitmap to paint on the widget.\n \n \"\"\"\n self._bitmap = bitmap\n self.Refresh()\n\n def GetScaledContents(self):\n \"\"\" Whether or not the bitmap is scaled to fit the bounds.\n\n Returns\n -------\n result : bool\n Whether or not the bitmap is scaled to fit the bounds of\n the widget.\n \n \"\"\"\n return self._scaled_contents\n \n def SetScaledContents(self, scaled):\n \"\"\" Set whether or not the bitmap should be scaled to fit the\n bounds of the widget.\n\n Parameters\n ----------\n scaled : bool\n Whether or not to scale the bitmap to fit the bounds of the\n widget.\n \n \"\"\"\n if scaled:\n if not self._scaled_contents:\n self._scaled_contents = True\n self._resize_timer = wx.Timer(self)\n self.Bind(wx.EVT_TIMER, self.OnResizeEnd)\n self.Bind(wx.EVT_SIZE, self.OnResize)\n else:\n if self._scaled_contents:\n self._scaled_contents = False\n self._timer = None\n self.Unbind(wx.EVT_TIMER, handler=self.OnResizeEnd)\n self.Unbind(wx.EVT_SIZE, handler=self.OnResize)\n self.Refresh()\n\n def GetPreserveAspectRatio(self):\n \"\"\" Returns whether or not the aspect ratio of the image is \n maintained during a resize.\n\n \"\"\"\n return self._preserve_aspect_ratio\n\n def SetPreserveAspectRatio(self, preserve):\n \"\"\" Set whether or not to preserve the image aspect ratio.\n\n Parameters\n ----------\n preserve : bool\n If True then the aspect ratio of the image will be preserved\n if it is scaled to fit. Otherwise, the aspect ratio will be\n ignored.\n\n \"\"\"\n self._preserve_aspect_ratio = preserve\n self.Refresh()\n \n def GetAllowUpscaling(self):\n \"\"\" Returns whether or not the image can be scaled greater than\n its natural size.\n\n \"\"\"\n return self._allow_upscaling\n\n def SetAllowUpscaling(self, allow):\n \"\"\" Set whether or not to allow the image to be scaled beyond\n its natural size.\n\n Parameters\n ----------\n allow : bool\n If True, then the image may be scaled larger than its \n natural if it is scaled to fit. If False, the image will\n never be scaled larger than its natural size. In either\n case, the image may be scaled smaller.\n\n \"\"\"\n self._allow_upscaling = allow\n self.Refresh()\n\n\nclass WXImageView(WXControl, AbstractTkImageView):\n \"\"\" A Wx implementation of ImageView.\n\n \"\"\"\n #: The internal cached size hint which is used to determine whether\n #: of not a size hint updated event should be emitted when the text\n #: in the label changes\n _cached_size_hint = None\n\n #--------------------------------------------------------------------------\n # Setup methods\n #--------------------------------------------------------------------------\n def create(self, parent):\n \"\"\" Creates the underlying wxBitmapWidget control.\n\n \"\"\"\n self.widget = wxBitmapWidget(parent)\n\n def initialize(self):\n \"\"\" Initializes the attributes on the underlying control.\n\n \"\"\"\n super(WXImageView, self).initialize()\n shell = self.shell_obj\n self.set_image(shell.image)\n self.set_scale_to_fit(shell.scale_to_fit)\n self.set_preserve_aspect_ratio(shell.preserve_aspect_ratio)\n self.set_allow_upscaling(shell.allow_upscaling)\n\n #--------------------------------------------------------------------------\n # Implementation\n #--------------------------------------------------------------------------\n def shell_image_changed(self, image):\n \"\"\" The change handler for the 'image' attribute on the shell \n component.\n\n \"\"\"\n self.set_image(image)\n \n def shell_scale_to_fit_changed(self, scale_to_fit):\n \"\"\" The change handler for the 'scale_to_fit' attribute on the \n shell component.\n\n \"\"\"\n self.set_scale_to_fit(scale_to_fit)\n\n def shell_preserve_aspect_ratio_changed(self, preserve):\n \"\"\" The change handler for the 'preserve_aspect_ratio' attribute\n on the shell component.\n\n \"\"\"\n self.set_preserve_aspect_ratio(preserve)\n\n def shell_allow_upscaling_changed(self, allow):\n \"\"\" The change handler for the 'allow_upscaling' attribute on \n the shell component.\n\n \"\"\"\n self.set_allow_upscaling(allow)\n\n #--------------------------------------------------------------------------\n # Widget Update Methods\n #--------------------------------------------------------------------------\n def set_image(self, image):\n \"\"\" Sets the image on the underlying wxBitmapWidget.\n\n \"\"\"\n bmp = image.as_wxBitmap() if image is not None else None\n self.widget.SetBitmap(bmp)\n # Emit a size hint updated event if the size hint has actually\n # changed. This is an optimization so that a constraints update\n # only occurs when the size hint has actually changed. This \n # logic must be implemented here so that the label has been\n # updated before the new size hint is computed. Placing this\n # logic on the shell object would not guarantee that the label\n # has been updated at the time the change handler is called.\n cached = self._cached_size_hint\n hint = self._cached_size_hint = self.size_hint()\n if cached != hint:\n self.shell_obj.size_hint_updated()\n \n def set_scale_to_fit(self, scale_to_fit): \n \"\"\" Sets whether or not the image scales with the underlying \n control.\n\n \"\"\"\n self.widget.SetScaledContents(scale_to_fit)\n\n def set_preserve_aspect_ratio(self, preserve):\n \"\"\" Sets whether or not to preserve the aspect ratio of the \n image when scaling.\n\n \"\"\"\n self.widget.SetPreserveAspectRatio(preserve)\n\n def set_allow_upscaling(self, allow):\n \"\"\" Sets whether or not the image will scale beyond its natural\n size.\n\n \"\"\"\n self.widget.SetAllowUpscaling(allow)\n\n", "step-ids": [ 18, 20, 25, 28, 31 ] }
[ 18, 20, 25, 28, 31 ]
#print pathToConnectionsList(['A','C','B','D','E']) #['EA','CB','AC','BD', 'DE'] #print independantPathPieces() #print pathToConnectionsList(pathGenerator()) #print geneFormatToPathSegmentsMini(['CD', 'AB', 'BE', 'EC']) #DA #print independantPathPieces(['EAC', 'CBD', 'ACB', 'BDE', 'DEA']) #print greedyCrossover(['EC', 'CD', 'AB', 'BE','DF','FA'],['EC', 'XX', 'XX', 'XX','XX','xx'], 3) #['ABECD', '', '__', '__'] # def joinPathBits(pathBits): # index = 0 # for index in range(len(pathBits)): # # figure out nex and prev point # while matchFound: # matchFound = False # next = pathBits[index][-1] # prev = pathBits[index][0] # while True # index2 = 1 # if next == pathBits[index2][0] and next != '_': # join one way # matchFound = True # elif prev == pathBits[index2][-1] and prev != '_': # join another # matchFound = True # def findpaths(segments): # path_starts = {} # path_start:path # path_ends = {} # path_end:path # starts = {} # start:end of a segment # #path_prefixes = [] # for segment in segments: # starts[segment[0]] = segment[1] # for start in starts: # next = segment[start] # if next in starts: # a longer path's been found def writeToGene(toOrFromPos,whichCodon,whichGene,whatToWrite): if toOrFromPos == 'to': pos = 1 if toOrFromPos == 'from': pos = 0 #print "which codon: " + str(whichCodon) #print "postion: " + str(pos) # check if whichgene[whichcodon is empty] if whichCodon == 88: return whichGene # this may be the worlds ugliest hack, depending on # _ not being a reserved char aka being in the charset but also depending on the num of cities # in the prob to be less that 88 spot = whichGene[whichCodon] val = whichGene[whichCodon][pos] #print "current value: " + str(val) if val == whatToWrite: return whichGene if val == "_": #spot = ['',''] #print "spot:" #print spot spot = list(spot) spot[pos] = whatToWrite #print "spot:" #print spot #check if val is empty newGene = whichGene[0:whichCodon] + ["".join(spot)] + whichGene[whichCodon+1:len(whichGene)] return newGene return "ERROR, NON CONSISTANT VALUE ALREADY IN POS." #print writeToGene('to',2,['__','__','__','__','__','__','xx','xx'],'o') #writeToGene('to',3,['','','','','','','',''],"x") def tspGeneTemplater(gene,locCodes): # assumes that it gets a valid gene which was constructed by common elements in two parents and an additional random element from on parent. gene = codeBlankSpots(gene) genecopy = gene charset = theCharset() for codonLoc in range(len(gene)): codon = gene[codonLoc] if codon !='__': whereFrom = codon[0] whereTo = codon[1] current = locCodes[codonLoc] whereFromIndex = charset.index(whereFrom) whereToIndex = charset.index(whereTo) current = locCodes[codonLoc] genecopy = writeToGene('from',whereToIndex,genecopy,current) genecopy = writeToGene('to',whereFromIndex,genecopy,current) #at this point we should have a template!!!! # that we can fill in. return genecopy #print tspGeneTemplater(['BD', 'CA', '_B', 'A_'], theCharset()) def templateToGene(gene): # GETS A FULLY TEMPLATED GENE # MUST NOW FILL UP THE CHARS TO MAKE A VALID GENE! WHAT A DAUNTING TASK!! # FIRST WE GET THE CHARSETS WE ARE WORKING WITH # ONE FOR TO AND ONE FOR FROM POSITIONS #init chars = theCharset()[0:len(gene)] toChars = chars fromChars = chars # remove already existing chars for codon in gene: if codon[0] != "_": fromChars = fromChars.replace(codon[0],'',1) if codon[1] != "_": toChars = toChars.replace(codon[1],'',1) else: anEmptyToSpot = gene.index(codon) currentLoc = chars[anEmptyToSpot] # now we have a list of to and from chars that need to be placed in a valid configuration. # choose a blank spot to start from (anEmptyTospot) gene = writeToGene('from',anEmptyToSpot,gene,currentLoc) cont = True while cont: toLoc = random.choice(toChars) toChars = toChars.replace(toLoc,'',1) gene = writeToGene('from',anEmptyToSpot,gene,currentLoc) currentLoc = toLoc writeToGene('to',2,['__','__','x_','__','__','__','xx','xx'],'o') return connectionList def geneFormatToPathSegments(gene): charset = theCharset() segments = [] for i in range(len(gene)): spot = charset[i] if gene[i] != '__': segment = str(gene[i][0]) + str(spot) + str(gene[i][1]) segments.append(segment) return segments def indPathPieces(segmentsList): for thisSegment in segmentsList: for anotherSegment in segmentsList: if thisSegment[1:2] == anotherSegment[-2:]: newSegment = thisSegment def independantPathPieces(path_segments = []): # TAKES EDGE SEGMENTS FOR EACH GENE OR SOME SUBSET OF GENES AND MAKES A STRING PATH OF MIN LENGTH #path_segments = ['LOP','BAC','FYZ','CDF','REX', 'XWL'] #path_segments = ['EAC','CBD'] path_segments = ['EA','CB','AC','BD', 'DE'] # CAREFUL: THERE IS SOME INSANITY LOGIC GOING ON HERE! #print "path seg: " + str(path_segments) index = 0 while index < len(path_segments): next = path_segments[index][-1] for j in range(len(path_segments)): prev = path_segments[j][0] print "next: " + next print "prev: " + prev print "index:" + str(index) print path_segments if (next == prev) and (next != '_') : path_segments[index] = path_segments[index] + path_segments[j][1:] path_segments[j] = '_' next = path_segments[index][-1] #index -=1 print path_segments index +=1 path_segments = [x for x in path_segments if x != '_'] #print "path seg: " + str(path_segments) return path_segments def makeTSPGeneX(numLocations): # this time we are going to do things smarter. if numLocations < 3 or numLocations > 94: print "MAX LOCATIONS IS 94, MIN LOCATIONS IS 3." quit() # intialize locationsCharset = theCharset()[0:numLocations] path = pathMaker(numLocations) #fromLocations = locationsCharset locIndex = dict() locValue = dict() # BUILD THE INDEX AND VALUE DICTS for i in range(numLocations): locIndex[locationsCharset[i]] = i locValue[i] = locationsCharset[i] connectionList = ["" for x in range(numLocations)] return connectionList def completeTSPGene(pGene): # this time we are going to do things smarter. numLocations = len(pGene) # intialize locationsCharset = theCharset()[0:numLocations] toLocations = locationsCharset fromLocations = locationsCharset locIndex = dict() locValue = dict() # BUILD THE INDEX AND VALUE DICTS for i in range(numLocations): locIndex[locationsCharset[i]] = i locValue[i] = locationsCharset[i] #connectionList = ["__" for x in range(numLocations)] # remove existing options from charsrets. for codon in pGene: if codon[0] != "_": fromLocations = fromLocations.replace(codon[0],'',1) if codon[1] != "_": toLocations = toLocations.replace(codon[1],'',1) else: # grab details about a codon where the to location is empty. anEmptyToSpot = pGene.index(codon) currentLoc = locationsCharset[anEmptyToSpot] # we define an empty fromLoc, we have a currentLoc, and we get a toLoc! fromLoc = "_" #toLoc = random.choice(toLocations) #toLocations = toLocations.replace(currentLoc, "") for i in range(numLocations+1): print len(toLocations) print len(fromLocations) print "wherefrom: " + fromLoc print "currentloc: " + currentLoc print "to locs options: " + str(toLocations) print "from locs: " + str(fromLocations) print pGene print #place the from loc in the from position of the current loc if fromLoc != "_": pGene[locIndex[currentLoc]] = str(fromLoc) + str(pGene[locIndex[currentLoc]][1]) fromLocations = fromLocations.replace(fromLoc,'',1) if len(toLocations) == 0: pGene[locIndex[currentLoc]] = str(fromLoc[0] ) + str(pGene[locIndex[currentLoc]][1]) return pGene toLoc = pGene[locIndex[currentLoc]][1] if toLoc == "_": # get a to loc only if needed #if len(toLocations) == 2 and len(fromLocations) == 1 and (fromLocations == toLoc) toLoc = currentLoc while (toLoc == currentLoc) or (toLoc == fromLoc) : if len(toLocations) == 0: toLoc = locValue[anEmptyToSpot] else: toLoc = random.choice(toLocations) toLocations = toLocations.replace(toLoc, "") #place it in the to position of the current loc pGene[locIndex[currentLoc]] = str(pGene[locIndex[currentLoc]][0]) + str(toLoc) #prepare to move to the new loc! fromLoc = currentLoc currentLoc = toLoc pGene[locIndex[currentLoc]] = str(fromLoc) + str(pGene[locIndex[currentLoc]][0]) return pGene #print completeTSPGene(['__','CD','_B','B_','__','__','AC','FI','HA'])
normal
{ "blob_id": "b4a96d5df56acd545e9919e202c462ee710a0339", "index": 5339, "step-1": "#print pathToConnectionsList(['A','C','B','D','E'])\n#['EA','CB','AC','BD', 'DE']\n#print independantPathPieces()\n#print pathToConnectionsList(pathGenerator())\n#print geneFormatToPathSegmentsMini(['CD', 'AB', 'BE', 'EC']) #DA\n#print independantPathPieces(['EAC', 'CBD', 'ACB', 'BDE', 'DEA'])\n#print greedyCrossover(['EC', 'CD', 'AB', 'BE','DF','FA'],['EC', 'XX', 'XX', 'XX','XX','xx'], 3)\n\n\n#['ABECD', '', '__', '__']\n\n# def joinPathBits(pathBits):\n# \tindex = 0\n# \tfor index in range(len(pathBits)):\n# \t\t# figure out nex and prev point\n\t\t\n# \t\twhile matchFound:\n# \t\t\tmatchFound = False\n# \t\t\tnext = pathBits[index][-1]\n# \t\t\tprev = pathBits[index][0]\n\n# \t\t\twhile True\n# \t\t\tindex2 = 1\t\t\t\t\n# \t\t\tif next == pathBits[index2][0] and next != '_':\n# \t\t\t\tjoin one way\n# \t\t\t\tmatchFound = True\n# \t\t\telif prev == pathBits[index2][-1] and prev != '_':\n# \t\t\t\tjoin another\n# \t\t\t\tmatchFound = True\n\n\n\n# def findpaths(segments):\n# \tpath_starts = {} # path_start:path\n# \tpath_ends = {} # path_end:path\n# \tstarts = {} # start:end of a segment\n# \t#path_prefixes = []\n# \tfor segment in segments:\n# \t\tstarts[segment[0]] = segment[1]\n# \tfor start in starts:\n# \t\tnext = segment[start]\n# \t\tif next in starts: # a longer path's been found\n\ndef writeToGene(toOrFromPos,whichCodon,whichGene,whatToWrite):\n\tif toOrFromPos == 'to': pos = 1\n\tif toOrFromPos == 'from': pos = 0\n\t#print \"which codon: \" + str(whichCodon)\n\t#print \"postion: \" + str(pos) \n\t# check if whichgene[whichcodon is empty]\n\t\n\tif whichCodon == 88: return whichGene # this may be the worlds ugliest hack, depending on\n\t# _ not being a reserved char aka being in the charset but also depending on the num of cities\n\t# in the prob to be less that 88\n\t\n\tspot = whichGene[whichCodon]\n\tval = whichGene[whichCodon][pos]\n\t#print \"current value: \" + str(val)\n\n\tif val == whatToWrite: return whichGene\n\tif val == \"_\":\n\t\t#spot = ['','']\n\t\t#print \"spot:\"\n\t\t#print spot\n\t\tspot = list(spot)\n\t\tspot[pos] = whatToWrite\n\t\t#print \"spot:\"\n\t\t#print spot\n\n\t\t#check if val is empty\n\t\tnewGene = whichGene[0:whichCodon] + [\"\".join(spot)] + whichGene[whichCodon+1:len(whichGene)]\n\t\treturn newGene\n\t\n\treturn \"ERROR, NON CONSISTANT VALUE ALREADY IN POS.\"\n\n#print writeToGene('to',2,['__','__','__','__','__','__','xx','xx'],'o')\n#writeToGene('to',3,['','','','','','','',''],\"x\")\n\n\n\ndef tspGeneTemplater(gene,locCodes):\n\t# assumes that it gets a valid gene which was constructed by common elements in two parents and an additional random element from on parent.\n\tgene = codeBlankSpots(gene)\n\tgenecopy = gene\n\tcharset = theCharset()\n\n\tfor codonLoc in range(len(gene)):\n\t\tcodon = gene[codonLoc]\n\t\tif codon !='__':\n\t\t\twhereFrom = codon[0]\n\t\t\twhereTo = codon[1]\n\t\t\tcurrent = locCodes[codonLoc]\n\n\t\t\twhereFromIndex = charset.index(whereFrom) \n\t\t\twhereToIndex = charset.index(whereTo)\n\t\t\tcurrent = locCodes[codonLoc]\n\n\t\t\tgenecopy = writeToGene('from',whereToIndex,genecopy,current)\n\t\t\tgenecopy = writeToGene('to',whereFromIndex,genecopy,current)\n\n\t#at this point we should have a template!!!!\n\t# that we can fill in.\n\treturn genecopy\n\n#print tspGeneTemplater(['BD', 'CA', '_B', 'A_'], theCharset())\n\ndef templateToGene(gene):\n\t# GETS A FULLY TEMPLATED GENE\n\t# MUST NOW FILL UP THE CHARS TO MAKE A VALID GENE! WHAT A DAUNTING TASK!!\n\n\t# FIRST WE GET THE CHARSETS WE ARE WORKING WITH\n\t# ONE FOR TO AND ONE FOR FROM POSITIONS\n\t#init\n\tchars = theCharset()[0:len(gene)]\n\ttoChars = chars\n\tfromChars = chars\n\n\t# remove already existing chars\n\tfor codon in gene:\n\t\tif codon[0] != \"_\": fromChars = fromChars.replace(codon[0],'',1)\n\t\tif codon[1] != \"_\":\n\t\t\ttoChars = toChars.replace(codon[1],'',1)\n\t\telse:\n\t\t\tanEmptyToSpot = gene.index(codon)\n\t\t\tcurrentLoc = chars[anEmptyToSpot]\n\n\t# now we have a list of to and from chars that need to be placed in a valid configuration.\n\t# choose a blank spot to start from (anEmptyTospot)\n\tgene = writeToGene('from',anEmptyToSpot,gene,currentLoc)\n\tcont = True\n\twhile cont:\t\n\t\ttoLoc = random.choice(toChars)\n\t\ttoChars = toChars.replace(toLoc,'',1)\n\t\tgene = writeToGene('from',anEmptyToSpot,gene,currentLoc)\n\n\t\tcurrentLoc = toLoc\n\n\twriteToGene('to',2,['__','__','x_','__','__','__','xx','xx'],'o')\n\treturn connectionList\n\n\ndef geneFormatToPathSegments(gene):\n\tcharset = theCharset()\n\tsegments = []\n\tfor i in range(len(gene)):\n\t\tspot = charset[i]\n\t\tif gene[i] != '__':\n\t\t\tsegment = str(gene[i][0]) + str(spot) + str(gene[i][1])\n\t\t\tsegments.append(segment)\n\treturn segments\n\n\n\ndef indPathPieces(segmentsList):\n\tfor thisSegment in segmentsList:\n\n\t\tfor anotherSegment in segmentsList:\n\t\t\tif thisSegment[1:2] == anotherSegment[-2:]:\n\t\t\t\tnewSegment = thisSegment\n\ndef independantPathPieces(path_segments = []):\n\t# TAKES EDGE SEGMENTS FOR EACH GENE OR SOME SUBSET OF GENES AND MAKES A STRING PATH OF MIN LENGTH\n\t#path_segments = ['LOP','BAC','FYZ','CDF','REX', 'XWL']\n\t#path_segments = ['EAC','CBD']\n\tpath_segments = ['EA','CB','AC','BD', 'DE']\n\t# CAREFUL: THERE IS SOME INSANITY LOGIC GOING ON HERE!\n\t#print \"path seg: \" + str(path_segments)\n\tindex = 0\n\twhile index < len(path_segments):\n\t\tnext = path_segments[index][-1]\n\t\t\n\t\n\t\tfor j in range(len(path_segments)):\n\t\t\tprev = path_segments[j][0]\n\t\t\tprint \"next: \" + next\n\t\t\tprint \"prev: \" + prev\n\t\t\tprint \"index:\" + str(index)\n\t\t\tprint path_segments\n\t\t\tif (next == prev) and (next != '_') :\n\t\t\t\tpath_segments[index] = path_segments[index] + path_segments[j][1:]\n\t\t\t\tpath_segments[j] = '_'\n\t\t\t\tnext = path_segments[index][-1]\n\t\t\t\t#index -=1\n\n\t\t\tprint path_segments\n\t\tindex +=1\n\tpath_segments = [x for x in path_segments if x != '_']\n\t#print \"path seg: \" + str(path_segments)\n\treturn path_segments\n\n\tdef makeTSPGeneX(numLocations):\n\t# this time we are going to do things smarter.\n\tif numLocations < 3 or numLocations > 94:\n\t\tprint \"MAX LOCATIONS IS 94, MIN LOCATIONS IS 3.\"\n\t\tquit()\n\n\t# intialize\n\tlocationsCharset = theCharset()[0:numLocations]\n\tpath = pathMaker(numLocations)\n\t#fromLocations = locationsCharset\n\n\tlocIndex = dict()\n\tlocValue = dict()\n\t\n\t# BUILD THE INDEX AND VALUE DICTS\n\tfor i in range(numLocations):\n\t\tlocIndex[locationsCharset[i]] = i\n\t\tlocValue[i] = locationsCharset[i]\n\t\tconnectionList = [\"\" for x in range(numLocations)]\n\n\treturn connectionList\n\n\ndef completeTSPGene(pGene):\n\t# this time we are going to do things smarter.\n\tnumLocations = len(pGene) \n\n\t# intialize\n\tlocationsCharset = theCharset()[0:numLocations]\n\ttoLocations = locationsCharset\n\tfromLocations = locationsCharset\n\n\tlocIndex = dict()\n\tlocValue = dict()\n\t\n\t# BUILD THE INDEX AND VALUE DICTS\n\tfor i in range(numLocations):\n\t\tlocIndex[locationsCharset[i]] = i\n\t\tlocValue[i] = locationsCharset[i]\n\t\t#connectionList = [\"__\" for x in range(numLocations)]\n\n\t# remove existing options from charsrets.\n\tfor codon in pGene:\n\t\tif codon[0] != \"_\": fromLocations = fromLocations.replace(codon[0],'',1)\n\t\tif codon[1] != \"_\":\n\t\t\ttoLocations = toLocations.replace(codon[1],'',1)\n\t\telse:\n\t\t\t# grab details about a codon where the to location is empty. \n\t\t\tanEmptyToSpot = pGene.index(codon)\n\t\t\tcurrentLoc = locationsCharset[anEmptyToSpot]\n\n\t# we define an empty fromLoc, we have a currentLoc, and we get a toLoc!\n\tfromLoc = \"_\"\n\t#toLoc = random.choice(toLocations)\n\t#toLocations = toLocations.replace(currentLoc, \"\")\n\n\t\n\tfor i in range(numLocations+1):\n\t\tprint len(toLocations)\n\t\tprint len(fromLocations)\n\t\tprint \"wherefrom: \" + fromLoc\n\t\tprint \"currentloc: \" + currentLoc\n\t\tprint \"to locs options: \" + str(toLocations)\n\t\tprint \"from locs: \" + str(fromLocations)\n\t\tprint pGene\n\t\tprint \n\t\t#place the from loc in the from position of the current loc\n\t\tif fromLoc != \"_\": \n\t\t\tpGene[locIndex[currentLoc]] = str(fromLoc) + str(pGene[locIndex[currentLoc]][1])\n\t\t\tfromLocations = fromLocations.replace(fromLoc,'',1)\n\n\n\t\tif len(toLocations) == 0:\n\t\t\tpGene[locIndex[currentLoc]] = str(fromLoc[0] ) + str(pGene[locIndex[currentLoc]][1])\n\t\t\treturn pGene\n\n\t\ttoLoc = pGene[locIndex[currentLoc]][1]\n\t\tif toLoc == \"_\":\n\t\t\t# get a to loc only if needed\n\t\t\t#if len(toLocations) == 2 and len(fromLocations) == 1 and (fromLocations == toLoc)\n\n\t\t\ttoLoc = currentLoc\n\t\t\twhile (toLoc == currentLoc) or (toLoc == fromLoc) :\n\t\t\t\tif len(toLocations) == 0:\n\t\t\t\t\ttoLoc = locValue[anEmptyToSpot]\n\t\t\t\telse:\t\t\t\n\t\t\t\t\ttoLoc = random.choice(toLocations)\n\t\t\ttoLocations = toLocations.replace(toLoc, \"\")\n\n\t\t#place it in the to position of the current loc\n\t\tpGene[locIndex[currentLoc]] = str(pGene[locIndex[currentLoc]][0]) + str(toLoc)\n\n\t\t#prepare to move to the new loc!\n\t\tfromLoc = currentLoc\n\t\tcurrentLoc = toLoc\n\n\tpGene[locIndex[currentLoc]] = str(fromLoc) + str(pGene[locIndex[currentLoc]][0])\n\treturn pGene\n\n#print completeTSPGene(['__','CD','_B','B_','__','__','AC','FI','HA'])", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('gestionadmin', '0133_auto_20200618_1339')] operations = [migrations.RemoveField(model_name='comprasenc', name= 'empleado')] <|reserved_special_token_1|> from django.db import migrations class Migration(migrations.Migration): dependencies = [('gestionadmin', '0133_auto_20200618_1339')] operations = [migrations.RemoveField(model_name='comprasenc', name= 'empleado')] <|reserved_special_token_1|> # Generated by Django 2.2.6 on 2020-06-18 14:16 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('gestionadmin', '0133_auto_20200618_1339'), ] operations = [ migrations.RemoveField( model_name='comprasenc', name='empleado', ), ]
flexible
{ "blob_id": "f96a7bef48e7df2899343029a2fae9697125a5b2", "index": 5203, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('gestionadmin', '0133_auto_20200618_1339')]\n operations = [migrations.RemoveField(model_name='comprasenc', name=\n 'empleado')]\n", "step-4": "from django.db import migrations\n\n\nclass Migration(migrations.Migration):\n dependencies = [('gestionadmin', '0133_auto_20200618_1339')]\n operations = [migrations.RemoveField(model_name='comprasenc', name=\n 'empleado')]\n", "step-5": "# Generated by Django 2.2.6 on 2020-06-18 14:16\n\nfrom django.db import migrations\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('gestionadmin', '0133_auto_20200618_1339'),\n ]\n\n operations = [\n migrations.RemoveField(\n model_name='comprasenc',\n name='empleado',\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/local/bin/python3.3 ''' http://projecteuler.net/problem=127() abc-hits Problem 127 The radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42. We shall define the triplet of positive integers (a, b, c) to be an abc-hit if: GCD(a, b) = GCD(a, c) = GCD(b, c) = 1 a < b a + b = c rad(abc) < c For example, (5, 27, 32) is an abc-hit, because: GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1 5 < 27 5 + 27 = 32 rad(4320) = 30 < 32 It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c < 1000, with ∑c = 12523. Find ∑c for c < 120000. ''' ''' Notes on problem 127(): Very slow ''' from PE_factors import genFactors from PE_basic import product def problem127(): GOAL = 120000 rad = {} # rad[6] = {2,3}, radn[8] = {2} for primes in genFactors(GOAL): rad[product(primes)] = (set(primes), product(set(primes))) def relprime(s, t): return s & t == set() found = 0 total = 0 for b in range(1, GOAL): for a in range(1, min(b, GOAL - b)): c = a + b x, y, z = rad[a], rad[b], rad[c] if x[0] & y[0] != set(): continue if x[1] * y[1] * z[1] < c: found += 1 total += c return total if __name__ == "__main__": print(problem127() == 18407904)
normal
{ "blob_id": "646f6a0afc3dc129250c26270dda4355b8cea080", "index": 1003, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef problem127():\n GOAL = 120000\n rad = {}\n for primes in genFactors(GOAL):\n rad[product(primes)] = set(primes), product(set(primes))\n\n def relprime(s, t):\n return s & t == set()\n found = 0\n total = 0\n for b in range(1, GOAL):\n for a in range(1, min(b, GOAL - b)):\n c = a + b\n x, y, z = rad[a], rad[b], rad[c]\n if x[0] & y[0] != set():\n continue\n if x[1] * y[1] * z[1] < c:\n found += 1\n total += c\n return total\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef problem127():\n GOAL = 120000\n rad = {}\n for primes in genFactors(GOAL):\n rad[product(primes)] = set(primes), product(set(primes))\n\n def relprime(s, t):\n return s & t == set()\n found = 0\n total = 0\n for b in range(1, GOAL):\n for a in range(1, min(b, GOAL - b)):\n c = a + b\n x, y, z = rad[a], rad[b], rad[c]\n if x[0] & y[0] != set():\n continue\n if x[1] * y[1] * z[1] < c:\n found += 1\n total += c\n return total\n\n\nif __name__ == '__main__':\n print(problem127() == 18407904)\n", "step-4": "<mask token>\nfrom PE_factors import genFactors\nfrom PE_basic import product\n\n\ndef problem127():\n GOAL = 120000\n rad = {}\n for primes in genFactors(GOAL):\n rad[product(primes)] = set(primes), product(set(primes))\n\n def relprime(s, t):\n return s & t == set()\n found = 0\n total = 0\n for b in range(1, GOAL):\n for a in range(1, min(b, GOAL - b)):\n c = a + b\n x, y, z = rad[a], rad[b], rad[c]\n if x[0] & y[0] != set():\n continue\n if x[1] * y[1] * z[1] < c:\n found += 1\n total += c\n return total\n\n\nif __name__ == '__main__':\n print(problem127() == 18407904)\n", "step-5": "#!/usr/local/bin/python3.3\n\n'''\nhttp://projecteuler.net/problem=127()\nabc-hits\nProblem 127\nThe radical of n, rad(n), is the product of distinct prime factors of n. For example, 504 = 23 × 32 × 7, so rad(504) = 2 × 3 × 7 = 42.\n\nWe shall define the triplet of positive integers (a, b, c) to be an abc-hit if:\n\nGCD(a, b) = GCD(a, c) = GCD(b, c) = 1\na < b\na + b = c\nrad(abc) < c\nFor example, (5, 27, 32) is an abc-hit, because:\n\nGCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1\n5 < 27\n5 + 27 = 32\nrad(4320) = 30 < 32\nIt turns out that abc-hits are quite rare and there are only thirty-one abc-hits for c < 1000, with ∑c = 12523.\n\nFind ∑c for c < 120000.\n'''\n\n'''\nNotes on problem 127():\nVery slow\n'''\n\nfrom PE_factors import genFactors\nfrom PE_basic import product\n\ndef problem127():\n GOAL = 120000\n\n rad = {} # rad[6] = {2,3}, radn[8] = {2}\n for primes in genFactors(GOAL):\n rad[product(primes)] = (set(primes), product(set(primes)))\n\n def relprime(s, t):\n return s & t == set()\n\n found = 0\n total = 0\n for b in range(1, GOAL):\n for a in range(1, min(b, GOAL - b)):\n c = a + b\n x, y, z = rad[a], rad[b], rad[c]\n if x[0] & y[0] != set():\n continue\n if x[1] * y[1] * z[1] < c:\n found += 1\n total += c\n return total\n\n\nif __name__ == \"__main__\":\n print(problem127() == 18407904)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> message += """ Enter 'quit' to stop entering toppings""" <|reserved_special_token_0|> while True: pizza = input(message1) topping = input(message) if topping == 'quit': break else: pizzas[pizza] = topping print(pizzas) <|reserved_special_token_1|> message1 = 'What Pizza do you want?' message = 'What type of Pizza topping do you want?' message += """ Enter 'quit' to stop entering toppings""" pizzas = {} while True: pizza = input(message1) topping = input(message) if topping == 'quit': break else: pizzas[pizza] = topping print(pizzas) <|reserved_special_token_1|> #def pizzaTopping(): message1 = "What Pizza do you want?" message = "What type of Pizza topping do you want?" message += "\n Enter 'quit' to stop entering toppings" pizzas = {} while True: pizza = input(message1) topping = input(message) if topping == "quit": break else: pizzas[pizza] = topping #toppings.append(topping) #return toppings #print(pizzaTopping()) #print('We will add the following toppings: ' + str(toppings)) print(pizzas)
flexible
{ "blob_id": "bb3cba9847f2318a5043975e4b659265a7442177", "index": 6309, "step-1": "<mask token>\n", "step-2": "<mask token>\nmessage += \"\"\"\n Enter 'quit' to stop entering toppings\"\"\"\n<mask token>\nwhile True:\n pizza = input(message1)\n topping = input(message)\n if topping == 'quit':\n break\n else:\n pizzas[pizza] = topping\nprint(pizzas)\n", "step-3": "message1 = 'What Pizza do you want?'\nmessage = 'What type of Pizza topping do you want?'\nmessage += \"\"\"\n Enter 'quit' to stop entering toppings\"\"\"\npizzas = {}\nwhile True:\n pizza = input(message1)\n topping = input(message)\n if topping == 'quit':\n break\n else:\n pizzas[pizza] = topping\nprint(pizzas)\n", "step-4": "#def pizzaTopping():\nmessage1 = \"What Pizza do you want?\"\nmessage = \"What type of Pizza topping do you want?\"\nmessage += \"\\n Enter 'quit' to stop entering toppings\" \n\npizzas = {}\n\n\nwhile True:\n pizza = input(message1)\n topping = input(message)\n\n if topping == \"quit\":\n break\n else:\n pizzas[pizza] = topping\n #toppings.append(topping)\n\n\n#return toppings\n#print(pizzaTopping())\n#print('We will add the following toppings: ' + str(toppings))\nprint(pizzas)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def format_amount(a): return a.replace(',', '').strip().replace('%', '').replace('$', '') <|reserved_special_token_0|> <|reserved_special_token_1|> def format_amount(a): return a.replace(',', '').strip().replace('%', '').replace('$', '') def create_json(gdp, coords): line_list = gdp.split('\n') column_list = [x.split('\t') for x in line_list if x != ''] line_list = coords.split('\n') coord_list = [x.split(',') for x in line_list if x != ''] coord_dict = {} for i in coord_list: coord_dict[format_amount(i[0])] = i[1:] out = """// This file is automatically generated by game-statics/utils/countryRON.py. // Please do not edit.""" out += '\n[' for index in range(len(column_list)): coords = coord_dict[format_amount(column_list[index][1])] print(coords) out += '(' out += 'name:"' + format_amount(column_list[index][1]) + '",' out += 'gdp:' + format_amount(column_list[index][2]) + ',' out += 'population:' + format_amount(column_list[index][5]) + ',' out += 'lat:' + format_amount(coords[1]) + ',' out += 'long:' + format_amount(coords[2]) + '' out += ')' if index != len(column_list) - 1: out += ',' out += ']' return out def create_file(): data = create_json(d, coords) file = open('../assets/Countries.ron', 'w', encoding='utf8') file.write(data) file.close() <|reserved_special_token_0|> <|reserved_special_token_1|> def format_amount(a): return a.replace(',', '').strip().replace('%', '').replace('$', '') def create_json(gdp, coords): line_list = gdp.split('\n') column_list = [x.split('\t') for x in line_list if x != ''] line_list = coords.split('\n') coord_list = [x.split(',') for x in line_list if x != ''] coord_dict = {} for i in coord_list: coord_dict[format_amount(i[0])] = i[1:] out = """// This file is automatically generated by game-statics/utils/countryRON.py. // Please do not edit.""" out += '\n[' for index in range(len(column_list)): coords = coord_dict[format_amount(column_list[index][1])] print(coords) out += '(' out += 'name:"' + format_amount(column_list[index][1]) + '",' out += 'gdp:' + format_amount(column_list[index][2]) + ',' out += 'population:' + format_amount(column_list[index][5]) + ',' out += 'lat:' + format_amount(coords[1]) + ',' out += 'long:' + format_amount(coords[2]) + '' out += ')' if index != len(column_list) - 1: out += ',' out += ']' return out def create_file(): data = create_json(d, coords) file = open('../assets/Countries.ron', 'w', encoding='utf8') file.write(data) file.close() <|reserved_special_token_0|> create_file() <|reserved_special_token_1|> def format_amount(a): return a.replace(',', '').strip().replace('%', '').replace('$', '') def create_json(gdp, coords): line_list = gdp.split('\n') column_list = [x.split('\t') for x in line_list if x != ''] line_list = coords.split('\n') coord_list = [x.split(',') for x in line_list if x != ''] coord_dict = {} for i in coord_list: coord_dict[format_amount(i[0])] = i[1:] out = """// This file is automatically generated by game-statics/utils/countryRON.py. // Please do not edit.""" out += '\n[' for index in range(len(column_list)): coords = coord_dict[format_amount(column_list[index][1])] print(coords) out += '(' out += 'name:"' + format_amount(column_list[index][1]) + '",' out += 'gdp:' + format_amount(column_list[index][2]) + ',' out += 'population:' + format_amount(column_list[index][5]) + ',' out += 'lat:' + format_amount(coords[1]) + ',' out += 'long:' + format_amount(coords[2]) + '' out += ')' if index != len(column_list) - 1: out += ',' out += ']' return out def create_file(): data = create_json(d, coords) file = open('../assets/Countries.ron', 'w', encoding='utf8') file.write(data) file.close() d = """ 1 United States $19,485,394,000,000 $19.485 trillion 2.27% 325,084,756 $59,939 24.08% 2 China $12,237,700,479,375 $12.238 trillion 6.90% 1,421,021,791 $8,612 15.12% 3 Japan $4,872,415,104,315 $4.872 trillion 1.71% 127,502,725 $38,214 6.02% 4 Germany $3,693,204,332,230 $3.693 trillion 2.22% 82,658,409 $44,680 4.56% 5 India $2,650,725,335,364 $2.651 trillion 6.68% 1,338,676,785 $1,980 3.28% 6 United Kingdom $2,637,866,340,434 $2.638 trillion 1.79% 66,727,461 $39,532 3.26% 7 France $2,582,501,307,216 $2.583 trillion 1.82% 64,842,509 $39,827 3.19% 8 Brazil $2,053,594,877,013 $2.054 trillion 0.98% 207,833,823 $9,881 2.54% 9 Italy $1,943,835,376,342 $1.944 trillion 1.50% 60,673,701 $32,038 2.40% 10 Canada $1,647,120,175,449 $1.647 trillion 3.05% 36,732,095 $44,841 2.04% 11 Russia $1,578,417,211,937 $1.578 trillion 1.55% 145,530,082 $10,846 1.95% 12 South Korea $1,530,750,923,149 $1.531 trillion 3.06% 51,096,415 $29,958 1.89% 13 Australia $1,323,421,072,479 $1.323 trillion 1.96% 24,584,620 $53,831 1.64% 14 Spain $1,314,314,164,402 $1.314 trillion 3.05% 46,647,428 $28,175 1.62% 15 Mexico $1,150,887,823,404 $1.151 trillion 2.04% 124,777,324 $9,224 1.42% 16 Indonesia $1,015,420,587,285 $1.015 trillion 5.07% 264,650,963 $3,837 1.25% 17 Turkey $851,549,299,635 $852 billion 7.44% 81,116,450 $10,498 1.05% 18 Netherlands $830,572,618,850 $831 billion 3.16% 17,021,347 $48,796 1.03% 19 Saudi Arabia $686,738,400,000 $687 billion -0.86% 33,101,179 $20,747 0.85% 20 Switzerland $678,965,423,322 $679 billion 1.09% 8,455,804 $80,296 0.84% 21 Argentina $637,430,331,479 $637 billion 2.85% 43,937,140 $14,508 0.79% 22 Sweden $535,607,385,506 $536 billion 2.29% 9,904,896 $54,075 0.66% 23 Poland $526,465,839,003 $526 billion 4.81% 37,953,180 $13,871 0.65% 24 Belgium $494,763,551,891 $495 billion 1.73% 11,419,748 $43,325 0.61% 25 Thailand $455,302,682,986 $455 billion 3.91% 69,209,810 $6,579 0.56% 26 Iran $454,012,768,724 $454 billion 3.76% 80,673,883 $5,628 0.56% 27 Austria $416,835,975,862 $417 billion 3.04% 8,819,901 $47,261 0.52% 28 Norway $399,488,897,844 $399 billion 1.92% 5,296,326 $75,428 0.49% 29 United Arab Emirates $382,575,085,092 $383 billion 0.79% 9,487,203 $40,325 0.47% 30 Nigeria $375,745,486,521 $376 billion 0.81% 190,873,244 $1,969 0.46% 31 Israel $353,268,411,919 $353 billion 3.33% 8,243,848 $42,852 0.44% 32 South Africa $348,871,647,960 $349 billion 1.32% 57,009,756 $6,120 0.43% 33 Hong Kong $341,449,340,451 $341 billion 3.79% 7,306,322 $46,733 0.42% 34 Ireland $331,430,014,003 $331 billion 7.80% 4,753,279 $69,727 0.41% 35 Denmark $329,865,537,183 $330 billion 2.24% 5,732,274 $57,545 0.41% 36 Singapore $323,907,234,412 $324 billion 3.62% 5,708,041 $56,746 0.40% 37 Malaysia $314,710,259,511 $315 billion 5.90% 31,104,646 $10,118 0.39% 38 Colombia $314,457,601,860 $314 billion 1.79% 48,909,839 $6,429 0.39% 39 Philippines $313,595,208,737 $314 billion 6.68% 105,172,925 $2,982 0.39% 40 Pakistan $304,951,818,494 $305 billion 5.70% 207,906,209 $1,467 0.38% 41 Chile $277,075,944,402 $277 billion 1.49% 18,470,439 $15,001 0.34% 42 Finland $252,301,837,573 $252 billion 2.63% 5,511,371 $45,778 0.31% 43 Bangladesh $249,723,862,487 $250 billion 7.28% 159,685,424 $1,564 0.31% 44 Egypt $235,369,129,338 $235 billion 4.18% 96,442,591 $2,441 0.29% 45 Vietnam $223,779,865,815 $224 billion 6.81% 94,600,648 $2,366 0.28% 46 Portugal $219,308,128,887 $219 billion 2.68% 10,288,527 $21,316 0.27% 47 Czech Republic $215,913,545,038 $216 billion 4.29% 10,641,034 $20,291 0.27% 48 Romania $211,883,923,504 $212 billion 7.26% 19,653,969 $10,781 0.26% 49 Peru $211,389,272,242 $211 billion 2.53% 31,444,298 $6,723 0.26% 50 New Zealand $204,139,049,909 $204 billion 3.03% 4,702,034 $43,415 0.25% 51 Greece $203,085,551,429 $203 billion 1.35% 10,569,450 $19,214 0.25% 52 Iraq $192,060,810,811 $192 billion -2.07% 37,552,781 $5,114 0.24% 53 Algeria $167,555,280,113 $168 billion 1.60% 41,389,189 $4,048 0.21% 54 Qatar $166,928,571,429 $167 billion 1.58% 2,724,728 $61,264 0.21% 55 Kazakhstan $162,886,867,832 $163 billion 4.10% 18,080,019 $9,009 0.20% 56 Hungary $139,761,138,103 $140 billion 3.99% 9,729,823 $14,364 0.17% 57 Angola $122,123,822,334 $122 billion -0.15% 29,816,766 $4,096 0.15% 58 Kuwait $120,126,277,613 $120 billion -2.87% 4,056,099 $29,616 0.15% 59 Sudan $117,487,857,143 $117 billion 4.28% 40,813,397 $2,879 0.15% 60 Ukraine $112,154,185,121 $112 billion 2.52% 44,487,709 $2,521 0.14% 61 Morocco $109,708,728,849 $110 billion 4.09% 35,581,255 $3,083 0.14% 62 Ecuador $104,295,862,000 $104 billion 2.37% 16,785,361 $6,214 0.13% 63 Cuba $96,851,000,000 $96.85 billion 1.78% 11,339,254 $8,541 0.12% 64 Slovakia $95,617,670,260 $95.62 billion 3.40% 5,447,900 $17,551 0.12% 65 Sri Lanka $87,357,205,923 $87.36 billion 3.31% 21,128,032 $4,135 0.11% 66 Ethiopia $80,561,496,134 $80.56 billion 10.25% 106,399,924 $757 0.10% 67 Kenya $79,263,075,749 $79.26 billion 4.87% 50,221,142 $1,578 0.10% 68 Dominican Republic $75,931,656,815 $75.93 billion 4.55% 10,513,104 $7,223 0.09% 69 Guatemala $75,620,095,538 $75.62 billion 2.76% 16,914,970 $4,471 0.09% 70 Oman $70,783,875,163 $70.78 billion -0.27% 4,665,928 $15,170 0.09% 71 Myanmar $67,068,745,521 $67.07 billion 6.76% 53,382,523 $1,256 0.08% 72 Luxembourg $62,316,359,824 $62.32 billion 2.30% 591,910 $105,280 0.08% 73 Panama $62,283,756,584 $62.28 billion 5.32% 4,106,769 $15,166 0.08% 74 Ghana $58,996,776,238 $59.00 billion 8.14% 29,121,465 $2,026 0.07% 75 Bulgaria $58,220,973,783 $58.22 billion 3.81% 7,102,444 $8,197 0.07% 76 Costa Rica $57,285,984,448 $57.29 billion 3.28% 4,949,954 $11,573 0.07% 77 Uruguay $56,156,972,158 $56.16 billion 2.66% 3,436,641 $16,341 0.07% 78 Croatia $55,213,087,271 $55.21 billion 2.92% 4,182,857 $13,200 0.07% 79 Belarus $54,456,465,473 $54.46 billion 2.42% 9,450,231 $5,762 0.07% 80 Lebanon $53,576,985,687 $53.58 billion 1.53% 6,819,373 $7,857 0.07% 81 Tanzania $53,320,625,959 $53.32 billion 7.10% 54,660,339 $975 0.07% 82 Macau $50,361,201,096 $50.36 billion 9.10% 622,585 $80,890 0.06% 83 Uzbekistan $49,677,172,714 $49.68 billion 5.30% 31,959,785 $1,554 0.06% 84 Slovenia $48,769,655,479 $48.77 billion 5.00% 2,076,394 $23,488 0.06% 85 Lithuania $47,544,459,559 $47.54 billion 3.83% 2,845,414 $16,709 0.06% 86 Serbia $41,431,648,801 $41.43 billion 1.87% 8,829,628 $4,692 0.05% 87 Azerbaijan $40,747,792,238 $40.75 billion 0.10% 9,845,320 $4,139 0.05% 88 Jordan $40,068,308,451 $40.07 billion 1.97% 9,785,843 $4,095 0.05% 89 Tunisia $39,952,095,561 $39.95 billion 1.96% 11,433,443 $3,494 0.05% 90 Paraguay $39,667,400,816 $39.67 billion 5.21% 6,867,061 $5,776 0.05% 91 Libya $38,107,728,083 $38.11 billion 26.68% 6,580,724 $5,791 0.05% 92 Turkmenistan $37,926,285,714 $37.93 billion 6.50% 5,757,667 $6,587 0.05% 93 DR Congo $37,642,482,562 $37.64 billion 3.70% 81,398,764 $462 0.05% 94 Bolivia $37,508,642,113 $37.51 billion 4.20% 11,192,855 $3,351 0.05% 95 Côte d'Ivoire $37,353,276,059 $37.35 billion 7.70% 24,437,470 $1,529 0.05% 96 Bahrain $35,432,686,170 $35.43 billion 3.88% 1,494,076 $23,715 0.04% 97 Cameroon $34,922,782,311 $34.92 billion 3.55% 24,566,073 $1,422 0.04% 98 Yemen $31,267,675,216 $31.27 billion -5.94% 27,834,819 $1,123 0.04% 99 Latvia $30,463,302,414 $30.46 billion 4.55% 1,951,097 $15,613 0.04% 100 Estonia $26,611,651,599 $26.61 billion 4.85% 1,319,390 $20,170 0.03% 101 Uganda $25,995,031,850 $26.00 billion 3.86% 41,166,588 $631 0.03% 102 Zambia $25,868,142,073 $25.87 billion 3.40% 16,853,599 $1,535 0.03% 103 Nepal $24,880,266,905 $24.88 billion 7.91% 27,632,681 $900 0.03% 104 El Salvador $24,805,439,600 $24.81 billion 2.32% 6,388,126 $3,883 0.03% 105 Iceland $24,488,467,010 $24.49 billion 3.64% 334,393 $73,233 0.03% 106 Honduras $22,978,532,897 $22.98 billion 4.79% 9,429,013 $2,437 0.03% 107 Cambodia $22,158,209,503 $22.16 billion 7.10% 16,009,409 $1,384 0.03% 108 Trinidad and Tobago $22,079,017,627 $22.08 billion -2.34% 1,384,059 $15,952 0.03% 109 Cyprus $22,054,225,828 $22.05 billion 4.23% 1,179,678 $18,695 0.03% 110 Zimbabwe $22,040,902,300 $22.04 billion 4.70% 14,236,595 $1,548 0.03% 111 Senegal $21,070,225,735 $21.07 billion 7.15% 15,419,355 $1,366 0.03% 112 Papua New Guinea $20,536,314,601 $20.54 billion 2.55% 8,438,036 $2,434 0.03% 113 Afghanistan $19,543,976,895 $19.54 billion 2.67% 36,296,113 $538 0.02% 114 Bosnia and Herzegovina $18,054,854,789 $18.05 billion 3.19% 3,351,525 $5,387 0.02% 115 Botswana $17,406,565,823 $17.41 billion 2.36% 2,205,080 $7,894 0.02% 116 Laos $16,853,087,485 $16.85 billion 6.89% 6,953,035 $2,424 0.02% 117 Mali $15,334,336,144 $15.33 billion 5.40% 18,512,430 $828 0.02% 118 Georgia $15,081,338,092 $15.08 billion 4.83% 4,008,716 $3,762 0.02% 119 Gabon $15,013,950,984 $15.01 billion 0.50% 2,064,823 $7,271 0.02% 120 Jamaica $14,781,107,822 $14.78 billion 0.98% 2,920,848 $5,061 0.02% 121 Palestine $14,498,100,000 $14.50 billion 3.14% 4,747,227 $3,054 0.02% 122 Nicaragua $13,814,261,536 $13.81 billion 4.86% 6,384,846 $2,164 0.02% 123 Mauritius $13,266,427,697 $13.27 billion 3.82% 1,264,499 $10,491 0.02% 124 Namibia $13,253,698,015 $13.25 billion -0.95% 2,402,633 $5,516 0.02% 125 Albania $13,038,538,300 $13.04 billion 3.84% 2,884,169 $4,521 0.02% 126 Mozambique $12,645,508,634 $12.65 billion 3.74% 28,649,018 $441 0.02% 127 Malta $12,518,134,319 $12.52 billion 6.42% 437,933 $28,585 0.02% 128 Burkina Faso $12,322,864,245 $12.32 billion 6.30% 19,193,234 $642 0.02% 129 Equatorial Guinea $12,293,579,173 $12.29 billion -4.92% 1,262,002 $9,741 0.02% 130 Bahamas $12,162,100,000 $12.16 billion 1.44% 381,755 $31,858 0.02% 131 Brunei $12,128,089,002 $12.13 billion 1.33% 424,473 $28,572 0.01% 132 Armenia $11,536,590,636 $11.54 billion 7.50% 2,944,791 $3,918 0.01% 133 Madagascar $11,499,803,807 $11.50 billion 4.17% 25,570,512 $450 0.01% 134 Mongolia $11,433,635,876 $11.43 billion 5.30% 3,113,786 $3,672 0.01% 135 North Macedonia $11,279,509,014 $11.28 billion 0.24% 2,081,996 $5,418 0.01% 136 Guinea $10,472,514,515 $10.47 billion 10.60% 12,067,519 $868 0.01% 137 Chad $9,871,247,732 $9.87 billion -2.95% 15,016,753 $657 0.01% 138 Benin $9,246,696,924 $9.25 billion 5.84% 11,175,198 $827 0.01% 139 Rwanda $9,135,454,442 $9.14 billion 6.06% 11,980,961 $762 0.01% 140 Congo $8,701,334,800 $8.70 billion -3.10% 5,110,695 $1,703 0.01% 141 Haiti $8,408,150,518 $8.41 billion 1.17% 10,982,366 $766 0.01% 142 Moldova $8,128,493,432 $8.13 billion 4.50% 4,059,684 $2,002 0.01% 143 Niger $8,119,710,126 $8.12 billion 4.89% 21,602,382 $376 0.01% 144 Kyrgyzstan $7,564,738,836 $7.56 billion 4.58% 6,189,733 $1,222 0.01% 145 Tajikistan $7,146,449,583 $7.15 billion 7.62% 8,880,268 $805 0.01% 146 Malawi $6,303,292,264 $6.30 billion 4.00% 17,670,196 $357 0.01% 147 Guam $5,859,000,000 $5.86 billion 0.19% 164,281 $35,665 0.01% 148 Fiji $5,061,202,767 $5.06 billion 3.80% 877,459 $5,768 0.01% 149 Mauritania $5,024,708,656 $5.02 billion 3.50% 4,282,570 $1,173 0.01% 150 Maldives $4,865,546,027 $4.87 billion 6.91% 496,402 $9,802 0.01% 151 Montenegro $4,844,592,067 $4.84 billion 4.70% 627,563 $7,720 0.01% 152 Togo $4,757,776,485 $4.76 billion 4.40% 7,698,474 $618 0.01% 153 Barbados $4,673,500,000 $4.67 billion 1.00% 286,232 $16,328 0.01% 154 Eswatini $4,433,664,364 $4.43 billion 1.87% 1,124,805 $3,942 0.01% 155 Sierra Leone $3,775,047,334 $3.78 billion 4.21% 7,488,423 $504 0.00% 156 Guyana $3,621,046,005 $3.62 billion 2.92% 775,222 $4,671 0.00% 157 Liberia $3,285,455,000 $3.29 billion 2.47% 4,702,226 $699 0.00% 158 Burundi $3,172,416,146 $3.17 billion 0.50% 10,827,019 $293 0.00% 159 Andorra $3,012,914,131 $3.01 billion 1.87% 77,001 $39,128 0.00% 160 Suriname $2,995,827,901 $3.00 billion 1.69% 570,496 $5,251 0.00% 161 Timor-Leste $2,954,621,000 $2.95 billion -8.00% 1,243,258 $2,377 0.00% 162 Aruba $2,700,558,659 $2.70 billion 1.33% 105,366 $25,630 0.00% 163 Lesotho $2,578,265,358 $2.58 billion -2.29% 2,091,534 $1,233 0.00% 164 Bhutan $2,528,007,911 $2.53 billion 4.63% 745,563 $3,391 0.00% 165 Central African Republic $1,949,411,659 $1.95 billion 4.30% 4,596,023 $424 0.00% 166 Belize $1,862,614,800 $1.86 billion 1.44% 375,769 $4,957 0.00% 167 Cape Verde $1,772,706,451 $1.77 billion 4.01% 537,498 $3,298 0.00% 168 Saint Lucia $1,737,504,296 $1.74 billion 3.82% 180,954 $9,602 0.00% 169 San Marino $1,632,860,041 $1.63 billion 1.50% 33,671 $48,495 0.00% 170 Northern Mariana Islands $1,593,000,000 $1.59 billion 25.14% 56,562 $28,164 0.00% 171 Antigua and Barbuda $1,510,084,751 $1.51 billion 3.03% 95,426 $15,825 0.00% 172 Seychelles $1,497,959,569 $1.50 billion 5.28% 96,418 $15,536 0.00% 173 Gambia $1,489,464,788 $1.49 billion 4.56% 2,213,889 $673 0.00% 174 Guinea-Bissau $1,346,841,897 $1.35 billion 5.92% 1,828,145 $737 0.00% 175 Solomon Islands $1,303,453,622 $1.30 billion 3.24% 636,039 $2,049 0.00% 176 Grenada $1,126,882,296 $1.13 billion 5.06% 110,874 $10,164 0.00% 177 Comoros $1,068,124,330 $1.07 billion 2.71% 813,892 $1,312 0.00% 178 Saint Kitts and Nevis $992,007,403 $992 million 1.17% 52,045 $19,061 0.00% 179 Vanuatu $862,879,789 $863 million 4.50% 285,510 $3,022 0.00% 180 Samoa $840,927,997 $841 million 2.70% 195,352 $4,305 0.00% 181 Saint Vincent and the Grenadines $785,222,509 $785 million 0.86% 109,827 $7,150 0.00% 182 American Samoa $634,000,000 $634 million -5.38% 55,620 $11,399 0.00% 183 Dominica $496,727,000 $497 million -9.53% 71,458 $6,951 0.00% 184 Tonga $427,659,795 $428 million 2.70% 101,998 $4,193 0.00% 185 São Tomé and Príncipe $392,570,293 $393 million 3.87% 207,089 $1,896 0.00% 186 Micronesia $336,427,500 $336 million 3.20% 532,899 $631 0.00% 187 Palau $289,823,500 $290 million -3.57% 17,808 $16,275 0.00% 188 Marshall Islands $204,173,430 $204 million 3.60% 58,058 $3,517 0.00% 189 Kiribati $185,572,502 $186 million 0.33% 114,158 $1,626 0.00% 190 Tuvalu $39,731,317 $40 million 3.24% 11,370 $3,494 0.00%""" coords = """Abkhazia,Sukhumi,43.001525,41.023415 Afghanistan,Kabul,34.575503,69.240073 Aland Islands,Mariehamn,60.1,19.933333 Albania,Tirana,41.327546,19.818698 Algeria,Algiers,36.752887,3.042048 American Samoa,Pago Pago,-14.275632,-170.702036 Andorra,Andorra la Vella,42.506317,1.521835 Angola,Luanda,-8.839988,13.289437 Anguilla,The Valley,18.214813,-63.057441 Antarctica,South Pole,-90,0 Antigua and Barbuda,Saint John's,17.12741,-61.846772 Argentina,Buenos Aires,-34.603684,-58.381559 Armenia,Yerevan,40.179186,44.499103 Aruba,Oranjestad,12.509204,-70.008631 Australia,Canberra,-35.282,149.128684 Austria,Vienna,48.208174,16.373819 Azerbaijan,Baku,40.409262,49.867092 Bahamas,Nassau,25.047984,-77.355413 Bahrain,Manama,26.228516,50.58605 Bangladesh,Dhaka,23.810332,90.412518 Barbados,Bridgetown,13.113222,-59.598809 Belarus,Minsk,53.90454,27.561524 Belgium,Brussels,50.85034,4.35171 Belize,Belmopan,17.251011,-88.75902 Benin,Porto-Novo,6.496857,2.628852 Bermuda,Hamilton,32.294816,-64.781375 Bhutan,Thimphu,27.472792,89.639286 Bolivia,La Paz,-16.489689,-68.119294 Bosnia and Herzegovina,Sarajevo,43.856259,18.413076 Botswana,Gaborone,-24.628208,25.923147 Bouvet Island,Bouvet Island,-54.43,3.38 Brazil,Brasília,-15.794229,-47.882166 British Indian Ocean Territory,Camp Justice,21.3419,55.4778 British Virgin Islands,Road Town,18.428612,-64.618466 Brunei,Bandar Seri Begawan,4.903052,114.939821 Bulgaria,Sofia,42.697708,23.321868 Burkina Faso,Ouagadougou,12.371428,-1.51966 Burundi,Bujumbura,-3.361378,29.359878 Cambodia,Phnom Penh,11.544873,104.892167 Cameroon,Yaoundé,3.848033,11.502075 Canada,Ottawa,45.42153,-75.697193 Cape Verde,Praia,14.93305,-23.513327 Cayman Islands,George Town,19.286932,-81.367439 Central African Republic,Bangui,4.394674,18.55819 Chad,N'Djamena,12.134846,15.055742 Chile,Santiago,-33.44889,-70.669265 China,Beijing,39.904211,116.407395 Christmas Island,Flying Fish Cove,-10.420686,105.679379 Cocos (Keeling) Islands,West Island,-12.188834,96.829316 Colombia,Bogotá,4.710989,-74.072092 Comoros,Moroni,-11.717216,43.247315 DR Congo,Kinshasa,-4.441931,15.266293 Congo,Brazzaville,-4.26336,15.242885 Cook Islands,Avarua,-21.212901,-159.782306 Costa Rica,San José,9.928069,-84.090725 Côte d'Ivoire,Yamoussoukro,6.827623,-5.289343 Croatia,Zagreb ,45.815011,15.981919 Cuba,Havana,23.05407,-82.345189 Curaçao,Willemstad,12.122422,-68.882423 Cyprus,Nicosia,35.185566,33.382276 Czech Republic,Prague,50.075538,14.4378 Denmark,Copenhagen,55.676097,12.568337 Djibouti,Djibouti,11.572077,43.145647 Dominica,Roseau,15.309168,-61.379355 Dominican Republic,Santo Domingo,18.486058,-69.931212 Ecuador,Quito,-0.180653,-78.467838 Egypt,Cairo,30.04442,31.235712 El Salvador,San Salvador,13.69294,-89.218191 Equatorial Guinea,Malabo,3.750412,8.737104 Eritrea,Asmara,15.322877,38.925052 Estonia,Tallinn,59.436961,24.753575 Ethiopia,Addis Ababa,8.980603,38.757761 Falkland Islands (Islas Malvinas),Stanley,-51.697713,-57.851663 Faroe Islands,Tórshavn,62.007864,-6.790982 Fiji,Suva,-18.124809,178.450079 Finland,Helsinki,60.173324,24.941025 France,Paris,48.856614,2.352222 French Guiana,Cayenne,4.92242,-52.313453 French Polynesia,Papeete,-17.551625,-149.558476 French Southern Territories,Saint-Pierre ,-21.3419,55.4778 Gabon,Libreville,0.416198,9.467268 Gambia,Banjul,13.454876,-16.579032 Georgia,Tbilisi,41.715138,44.827096 Germany,Berlin,52.520007,13.404954 Ghana,Accra,5.603717,-0.186964 Gibraltar,Gibraltar,36.140773,-5.353599 Greece,Athens,37.983917,23.72936 Greenland,Nuuk,64.18141,-51.694138 Grenada,Saint George's,12.056098,-61.7488 Guadeloupe,Basse-Terre,16.014453,-61.706411 Guam,Hagåtña,13.470891,144.751278 Guatemala,Guatemala City,14.634915,-90.506882 Guernsey,Saint Peter Port,49.455443,-2.536871 Guinea,Conakry,9.641185,-13.578401 Guinea-Bissau,Bissau,11.881655,-15.617794 Guyana,Georgetown,6.801279,-58.155125 Haiti,Port-au-Prince,18.594395,-72.307433 Honduras,Tegucigalpa,14.072275,-87.192136 Hong Kong,Hong Kong,22.396428,114.109497 Hungary,Budapest,47.497912,19.040235 Iceland,Reykjavík,64.126521,-21.817439 India,New Delhi,28.613939,77.209021 Indonesia,Jakarta,-6.208763,106.845599 Iran,Tehran,35.689198,51.388974 Iraq,Baghdad,33.312806,44.361488 Ireland,Dublin,53.349805,-6.26031 Isle of Man,Douglas,54.152337,-4.486123 Israel,Tel Aviv,32.0853,34.781768 Italy,Rome,41.902784,12.496366 Jamaica,Kingston,18.042327,-76.802893 Japan,Tokyo,35.709026,139.731992 Jersey,Saint Helier,49.186823,-2.106568 Jordan,Amman,31.956578,35.945695 Kazakhstan,Astana,51.160523,71.470356 Kenya,Nairobi,-1.292066,36.821946 Kiribati,Tarawa Atoll,1.451817,172.971662 Kosovo,Pristina,42.662914,21.165503 Kuwait,Kuwait City,29.375859,47.977405 Kyrgyzstan,Bishkek,42.874621,74.569762 Laos,Vientiane,17.975706,102.633104 Latvia,Riga,56.949649,24.105186 Lebanon,Beirut,33.888629,35.495479 Lesotho,Maseru,-29.363219,27.51436 Liberia,Monrovia,6.290743,-10.760524 Libya,Tripoli,32.887209,13.191338 Liechtenstein,Vaduz,47.14103,9.520928 Lithuania,Vilnius,54.687156,25.279651 Luxembourg,Luxembourg,49.611621,6.131935 Macau,Macau,22.166667,113.55 North Macedonia,Skopje,41.997346,21.427996 Madagascar,Antananarivo,-18.87919,47.507905 Malawi,Lilongwe,-13.962612,33.774119 Malaysia,Kuala Lumpur,3.139003,101.686855 Maldives,Malé,4.175496,73.509347 Mali,Bamako,12.639232,-8.002889 Malta,Valletta,35.898909,14.514553 Marshall Islands,Majuro,7.116421,171.185774 Martinique,Fort-de-France,14.616065,-61.05878 Mauritania,Nouakchott,18.07353,-15.958237 Mauritius,Port Louis,-20.166896,57.502332 Mayotte,Mamoudzou,-12.780949,45.227872 Mexico,Mexico City,19.432608,-99.133208 Micronesia,Palikir,6.914712,158.161027 Moldova,Chisinau,47.010453,28.86381 Monaco,Monaco,43.737411,7.420816 Mongolia,Ulaanbaatar,47.886399,106.905744 Montenegro,Podgorica,42.43042,19.259364 Montserrat,Plymouth,16.706523,-62.215738 Morocco,Rabat,33.97159,-6.849813 Mozambique,Maputo,-25.891968,32.605135 Myanmar,Naypyidaw,19.763306,96.07851 Nagorno-Karabakh Republic,Stepanakert,39.826385,46.763595 Namibia,Windhoek,-22.560881,17.065755 Nauru,Yaren,-0.546686,166.921091 Nepal,Kathmandu,27.717245,85.323961 Netherlands,Amsterdam,52.370216,4.895168 Netherlands Antilles,Willemstad ,12.1091242,-68.9316546 New Caledonia,Nouméa,-22.255823,166.450524 New Zealand,Wellington,-41.28646,174.776236 Nicaragua,Managua,12.114993,-86.236174 Niger,Niamey,13.511596,2.125385 Nigeria,Abuja,9.076479,7.398574 Niue,Alofi,-19.055371,-169.917871 Norfolk Island,Kingston,-29.056394,167.959588 North Korea,Pyongyang,39.039219,125.762524 Northern Cyprus,Nicosia,35.185566,33.382276 Northern Mariana Islands,Saipan,15.177801,145.750967 Norway,Oslo,59.913869,10.752245 Oman,Muscat,23.58589,58.405923 Pakistan,Islamabad,33.729388,73.093146 Palau,Ngerulmud,7.500384,134.624289 Palestine,Ramallah,31.9073509,35.5354719 Panama,Panama City,9.101179,-79.402864 Papua New Guinea,Port Moresby,-9.4438,147.180267 Paraguay,Asuncion,-25.26374,-57.575926 Peru,Lima,-12.046374,-77.042793 Philippines,Manila,14.599512,120.98422 Pitcairn Islands,Adamstown,-25.06629,-130.100464 Poland,Warsaw,52.229676,21.012229 Portugal,Lisbon,38.722252,-9.139337 Puerto Rico,San Juan,18.466334,-66.105722 Qatar,Doha,25.285447,51.53104 Réunion,Saint-Denis,-20.882057,55.450675 Romania,Bucharest,44.426767,26.102538 Russia,Moscow,55.755826,37.6173 Rwanda,Kigali,-1.957875,30.112735 Saint Pierre and Miquelon,Saint Pierre,46.775846,-56.180636 Saint Vincent and the Grenadines,Kingstown,13.160025,-61.224816 Samoa,Apia,-13.850696,-171.751355 San Marino,San Marino,43.935591,12.447281 São Tomé and Príncipe,São Tomé,0.330192,6.733343 Saudi Arabia,Riyadh,24.749403,46.902838 Senegal,Dakar,14.764504,-17.366029 Serbia,Belgrade,44.786568,20.448922 Seychelles,Victoria,-4.619143,55.451315 Sierra Leone,Freetown,8.465677,-13.231722 Singapore,Singapore,1.280095,103.850949 Slovakia,Bratislava,48.145892,17.107137 Slovenia,Ljubljana,46.056947,14.505751 Solomon Islands,Honiara,-9.445638,159.9729 Somalia,Mogadishu,2.046934,45.318162 South Africa,Pretoria,-25.747868,28.229271 South Georgia and the South Sandwich Islands,King Edward Point,-54.28325,-36.493735 South Korea,Seoul,37.566535,126.977969 South Ossetia,Tskhinvali,42.22146,43.964405 South Sudan,Juba,4.859363,31.57125 Spain,Madrid,40.416775,-3.70379 Sri Lanka,Sri Jayawardenepura Kotte,6.89407,79.902478 Saint Barthélemy,Gustavia,17.896435,-62.852201 Saint Kitts and Nevis,Basseterre,17.302606,-62.717692 Saint Lucia,Castries,14.010109,-60.987469 Saint Martin,Marigot,18.067519,-63.082466 Sudan,Khartoum,15.500654,32.559899 Suriname,Paramaribo,5.852036,-55.203828 Svalbard and Jan Mayen,Longyearbyen ,78.062,22.055 Eswatini,Mbabane,-26.305448,31.136672 Sweden,Stockholm,59.329323,18.068581 Switzerland,Bern,46.947974,7.447447 Syria,Damascus,33.513807,36.276528 Taiwan,Taipei,25.032969,121.565418 Tajikistan,Dushanbe,38.559772,68.787038 Tanzania,Dodoma,-6.162959,35.751607 Thailand,Bangkok,13.756331,100.501765 Timor-Leste,Dili,-8.556856,125.560314 Togo,Lomé,6.172497,1.231362 Tokelau,Nukunonu,-9.2005,-171.848 Tonga,Nukuʻalofa,-21.139342,-175.204947 Transnistria,Tiraspol,46.848185,29.596805 Trinidad and Tobago,Port of Spain,10.654901,-61.501926 Tristan da Cunha,Edinburgh of the Seven Seas,-37.068042,-12.311315 Tunisia,Tunis,36.806495,10.181532 Turkey,Ankara,39.933364,32.859742 Turkmenistan,Ashgabat,37.960077,58.326063 Turks and Caicos Islands,Cockburn Town,21.467458,-71.13891 Tuvalu,Funafuti,-8.520066,179.198128 U.S. Virgin Islands,Charlotte Amalie,18.3419,-64.930701 Uganda,Kampala,0.347596,32.58252 Ukraine,Kiev,50.4501,30.5234 United Arab Emirates,Abu Dhabi,24.299174,54.697277 United Kingdom,London,51.507351,-0.127758 United States,Washington,38.907192,-77.036871 Uruguay,Montevideo,-34.901113,-56.164531 Uzbekistan,Tashkent,41.299496,69.240073 Vanuatu,Port Vila,-17.733251,168.327325 Vatican City,Vatican City,41.902179,12.453601 Venezuela,Caracas,10.480594,-66.903606 Vietnam,Hanoi,21.027764,105.83416 Wallis and Futuna,Mata-Utu,-13.282509,-176.176447 Western Sahara,El Aaiún,27.125287,-13.1625 Yemen,Sana'a,15.369445,44.191007 Zambia,Lusaka,-15.387526,28.322817 Zimbabwe,Harare,-17.825166,31.03351""" create_file() <|reserved_special_token_1|> def format_amount(a): return a.replace(",","").strip().replace("%","").replace("$","") def create_json(gdp, coords): # ------------ Split gdp data ------------ # line_list=gdp.split('\n') column_list = [x.split('\t') for x in line_list if x!=""] # ------------ Split coord data ------------ # line_list=coords.split('\n') coord_list = [x.split(',') for x in line_list if x!=""] coord_dict = {} for i in coord_list: coord_dict[format_amount(i[0])] = i[1:] # ------------ Begin File ------------ # out = "// This file is automatically generated by game-statics/utils/countryRON.py.\n// Please do not edit." out += "\n[" # -------- Add country list -------- # for index in range(len(column_list)): coords = coord_dict[format_amount(column_list[index][1]) ] print(coords) out += "(" out+='name:"' + format_amount(column_list[index][1]) + '",' out+='gdp:' + format_amount(column_list[index][2]) + ',' out+='population:' + format_amount(column_list[index][5]) + ',' out+='lat:' + format_amount(coords [1]) + ',' out+='long:' + format_amount(coords [2]) + '' out+=")" if index!=len(column_list)-1: out+=',' # ----------- End File ----------- # out+="]" return out def create_file(): data = create_json(d, coords) file = open("../assets/Countries.ron","w",encoding='utf8') file.write(data) file.close() # Copied from https://www.worldometers.info/gdp/gdp-by-country/ # Country GDP GDP formated GDP change Population GDP per capita share of word GDP d=''' 1 United States $19,485,394,000,000 $19.485 trillion 2.27% 325,084,756 $59,939 24.08% 2 China $12,237,700,479,375 $12.238 trillion 6.90% 1,421,021,791 $8,612 15.12% 3 Japan $4,872,415,104,315 $4.872 trillion 1.71% 127,502,725 $38,214 6.02% 4 Germany $3,693,204,332,230 $3.693 trillion 2.22% 82,658,409 $44,680 4.56% 5 India $2,650,725,335,364 $2.651 trillion 6.68% 1,338,676,785 $1,980 3.28% 6 United Kingdom $2,637,866,340,434 $2.638 trillion 1.79% 66,727,461 $39,532 3.26% 7 France $2,582,501,307,216 $2.583 trillion 1.82% 64,842,509 $39,827 3.19% 8 Brazil $2,053,594,877,013 $2.054 trillion 0.98% 207,833,823 $9,881 2.54% 9 Italy $1,943,835,376,342 $1.944 trillion 1.50% 60,673,701 $32,038 2.40% 10 Canada $1,647,120,175,449 $1.647 trillion 3.05% 36,732,095 $44,841 2.04% 11 Russia $1,578,417,211,937 $1.578 trillion 1.55% 145,530,082 $10,846 1.95% 12 South Korea $1,530,750,923,149 $1.531 trillion 3.06% 51,096,415 $29,958 1.89% 13 Australia $1,323,421,072,479 $1.323 trillion 1.96% 24,584,620 $53,831 1.64% 14 Spain $1,314,314,164,402 $1.314 trillion 3.05% 46,647,428 $28,175 1.62% 15 Mexico $1,150,887,823,404 $1.151 trillion 2.04% 124,777,324 $9,224 1.42% 16 Indonesia $1,015,420,587,285 $1.015 trillion 5.07% 264,650,963 $3,837 1.25% 17 Turkey $851,549,299,635 $852 billion 7.44% 81,116,450 $10,498 1.05% 18 Netherlands $830,572,618,850 $831 billion 3.16% 17,021,347 $48,796 1.03% 19 Saudi Arabia $686,738,400,000 $687 billion -0.86% 33,101,179 $20,747 0.85% 20 Switzerland $678,965,423,322 $679 billion 1.09% 8,455,804 $80,296 0.84% 21 Argentina $637,430,331,479 $637 billion 2.85% 43,937,140 $14,508 0.79% 22 Sweden $535,607,385,506 $536 billion 2.29% 9,904,896 $54,075 0.66% 23 Poland $526,465,839,003 $526 billion 4.81% 37,953,180 $13,871 0.65% 24 Belgium $494,763,551,891 $495 billion 1.73% 11,419,748 $43,325 0.61% 25 Thailand $455,302,682,986 $455 billion 3.91% 69,209,810 $6,579 0.56% 26 Iran $454,012,768,724 $454 billion 3.76% 80,673,883 $5,628 0.56% 27 Austria $416,835,975,862 $417 billion 3.04% 8,819,901 $47,261 0.52% 28 Norway $399,488,897,844 $399 billion 1.92% 5,296,326 $75,428 0.49% 29 United Arab Emirates $382,575,085,092 $383 billion 0.79% 9,487,203 $40,325 0.47% 30 Nigeria $375,745,486,521 $376 billion 0.81% 190,873,244 $1,969 0.46% 31 Israel $353,268,411,919 $353 billion 3.33% 8,243,848 $42,852 0.44% 32 South Africa $348,871,647,960 $349 billion 1.32% 57,009,756 $6,120 0.43% 33 Hong Kong $341,449,340,451 $341 billion 3.79% 7,306,322 $46,733 0.42% 34 Ireland $331,430,014,003 $331 billion 7.80% 4,753,279 $69,727 0.41% 35 Denmark $329,865,537,183 $330 billion 2.24% 5,732,274 $57,545 0.41% 36 Singapore $323,907,234,412 $324 billion 3.62% 5,708,041 $56,746 0.40% 37 Malaysia $314,710,259,511 $315 billion 5.90% 31,104,646 $10,118 0.39% 38 Colombia $314,457,601,860 $314 billion 1.79% 48,909,839 $6,429 0.39% 39 Philippines $313,595,208,737 $314 billion 6.68% 105,172,925 $2,982 0.39% 40 Pakistan $304,951,818,494 $305 billion 5.70% 207,906,209 $1,467 0.38% 41 Chile $277,075,944,402 $277 billion 1.49% 18,470,439 $15,001 0.34% 42 Finland $252,301,837,573 $252 billion 2.63% 5,511,371 $45,778 0.31% 43 Bangladesh $249,723,862,487 $250 billion 7.28% 159,685,424 $1,564 0.31% 44 Egypt $235,369,129,338 $235 billion 4.18% 96,442,591 $2,441 0.29% 45 Vietnam $223,779,865,815 $224 billion 6.81% 94,600,648 $2,366 0.28% 46 Portugal $219,308,128,887 $219 billion 2.68% 10,288,527 $21,316 0.27% 47 Czech Republic $215,913,545,038 $216 billion 4.29% 10,641,034 $20,291 0.27% 48 Romania $211,883,923,504 $212 billion 7.26% 19,653,969 $10,781 0.26% 49 Peru $211,389,272,242 $211 billion 2.53% 31,444,298 $6,723 0.26% 50 New Zealand $204,139,049,909 $204 billion 3.03% 4,702,034 $43,415 0.25% 51 Greece $203,085,551,429 $203 billion 1.35% 10,569,450 $19,214 0.25% 52 Iraq $192,060,810,811 $192 billion -2.07% 37,552,781 $5,114 0.24% 53 Algeria $167,555,280,113 $168 billion 1.60% 41,389,189 $4,048 0.21% 54 Qatar $166,928,571,429 $167 billion 1.58% 2,724,728 $61,264 0.21% 55 Kazakhstan $162,886,867,832 $163 billion 4.10% 18,080,019 $9,009 0.20% 56 Hungary $139,761,138,103 $140 billion 3.99% 9,729,823 $14,364 0.17% 57 Angola $122,123,822,334 $122 billion -0.15% 29,816,766 $4,096 0.15% 58 Kuwait $120,126,277,613 $120 billion -2.87% 4,056,099 $29,616 0.15% 59 Sudan $117,487,857,143 $117 billion 4.28% 40,813,397 $2,879 0.15% 60 Ukraine $112,154,185,121 $112 billion 2.52% 44,487,709 $2,521 0.14% 61 Morocco $109,708,728,849 $110 billion 4.09% 35,581,255 $3,083 0.14% 62 Ecuador $104,295,862,000 $104 billion 2.37% 16,785,361 $6,214 0.13% 63 Cuba $96,851,000,000 $96.85 billion 1.78% 11,339,254 $8,541 0.12% 64 Slovakia $95,617,670,260 $95.62 billion 3.40% 5,447,900 $17,551 0.12% 65 Sri Lanka $87,357,205,923 $87.36 billion 3.31% 21,128,032 $4,135 0.11% 66 Ethiopia $80,561,496,134 $80.56 billion 10.25% 106,399,924 $757 0.10% 67 Kenya $79,263,075,749 $79.26 billion 4.87% 50,221,142 $1,578 0.10% 68 Dominican Republic $75,931,656,815 $75.93 billion 4.55% 10,513,104 $7,223 0.09% 69 Guatemala $75,620,095,538 $75.62 billion 2.76% 16,914,970 $4,471 0.09% 70 Oman $70,783,875,163 $70.78 billion -0.27% 4,665,928 $15,170 0.09% 71 Myanmar $67,068,745,521 $67.07 billion 6.76% 53,382,523 $1,256 0.08% 72 Luxembourg $62,316,359,824 $62.32 billion 2.30% 591,910 $105,280 0.08% 73 Panama $62,283,756,584 $62.28 billion 5.32% 4,106,769 $15,166 0.08% 74 Ghana $58,996,776,238 $59.00 billion 8.14% 29,121,465 $2,026 0.07% 75 Bulgaria $58,220,973,783 $58.22 billion 3.81% 7,102,444 $8,197 0.07% 76 Costa Rica $57,285,984,448 $57.29 billion 3.28% 4,949,954 $11,573 0.07% 77 Uruguay $56,156,972,158 $56.16 billion 2.66% 3,436,641 $16,341 0.07% 78 Croatia $55,213,087,271 $55.21 billion 2.92% 4,182,857 $13,200 0.07% 79 Belarus $54,456,465,473 $54.46 billion 2.42% 9,450,231 $5,762 0.07% 80 Lebanon $53,576,985,687 $53.58 billion 1.53% 6,819,373 $7,857 0.07% 81 Tanzania $53,320,625,959 $53.32 billion 7.10% 54,660,339 $975 0.07% 82 Macau $50,361,201,096 $50.36 billion 9.10% 622,585 $80,890 0.06% 83 Uzbekistan $49,677,172,714 $49.68 billion 5.30% 31,959,785 $1,554 0.06% 84 Slovenia $48,769,655,479 $48.77 billion 5.00% 2,076,394 $23,488 0.06% 85 Lithuania $47,544,459,559 $47.54 billion 3.83% 2,845,414 $16,709 0.06% 86 Serbia $41,431,648,801 $41.43 billion 1.87% 8,829,628 $4,692 0.05% 87 Azerbaijan $40,747,792,238 $40.75 billion 0.10% 9,845,320 $4,139 0.05% 88 Jordan $40,068,308,451 $40.07 billion 1.97% 9,785,843 $4,095 0.05% 89 Tunisia $39,952,095,561 $39.95 billion 1.96% 11,433,443 $3,494 0.05% 90 Paraguay $39,667,400,816 $39.67 billion 5.21% 6,867,061 $5,776 0.05% 91 Libya $38,107,728,083 $38.11 billion 26.68% 6,580,724 $5,791 0.05% 92 Turkmenistan $37,926,285,714 $37.93 billion 6.50% 5,757,667 $6,587 0.05% 93 DR Congo $37,642,482,562 $37.64 billion 3.70% 81,398,764 $462 0.05% 94 Bolivia $37,508,642,113 $37.51 billion 4.20% 11,192,855 $3,351 0.05% 95 Côte d'Ivoire $37,353,276,059 $37.35 billion 7.70% 24,437,470 $1,529 0.05% 96 Bahrain $35,432,686,170 $35.43 billion 3.88% 1,494,076 $23,715 0.04% 97 Cameroon $34,922,782,311 $34.92 billion 3.55% 24,566,073 $1,422 0.04% 98 Yemen $31,267,675,216 $31.27 billion -5.94% 27,834,819 $1,123 0.04% 99 Latvia $30,463,302,414 $30.46 billion 4.55% 1,951,097 $15,613 0.04% 100 Estonia $26,611,651,599 $26.61 billion 4.85% 1,319,390 $20,170 0.03% 101 Uganda $25,995,031,850 $26.00 billion 3.86% 41,166,588 $631 0.03% 102 Zambia $25,868,142,073 $25.87 billion 3.40% 16,853,599 $1,535 0.03% 103 Nepal $24,880,266,905 $24.88 billion 7.91% 27,632,681 $900 0.03% 104 El Salvador $24,805,439,600 $24.81 billion 2.32% 6,388,126 $3,883 0.03% 105 Iceland $24,488,467,010 $24.49 billion 3.64% 334,393 $73,233 0.03% 106 Honduras $22,978,532,897 $22.98 billion 4.79% 9,429,013 $2,437 0.03% 107 Cambodia $22,158,209,503 $22.16 billion 7.10% 16,009,409 $1,384 0.03% 108 Trinidad and Tobago $22,079,017,627 $22.08 billion -2.34% 1,384,059 $15,952 0.03% 109 Cyprus $22,054,225,828 $22.05 billion 4.23% 1,179,678 $18,695 0.03% 110 Zimbabwe $22,040,902,300 $22.04 billion 4.70% 14,236,595 $1,548 0.03% 111 Senegal $21,070,225,735 $21.07 billion 7.15% 15,419,355 $1,366 0.03% 112 Papua New Guinea $20,536,314,601 $20.54 billion 2.55% 8,438,036 $2,434 0.03% 113 Afghanistan $19,543,976,895 $19.54 billion 2.67% 36,296,113 $538 0.02% 114 Bosnia and Herzegovina $18,054,854,789 $18.05 billion 3.19% 3,351,525 $5,387 0.02% 115 Botswana $17,406,565,823 $17.41 billion 2.36% 2,205,080 $7,894 0.02% 116 Laos $16,853,087,485 $16.85 billion 6.89% 6,953,035 $2,424 0.02% 117 Mali $15,334,336,144 $15.33 billion 5.40% 18,512,430 $828 0.02% 118 Georgia $15,081,338,092 $15.08 billion 4.83% 4,008,716 $3,762 0.02% 119 Gabon $15,013,950,984 $15.01 billion 0.50% 2,064,823 $7,271 0.02% 120 Jamaica $14,781,107,822 $14.78 billion 0.98% 2,920,848 $5,061 0.02% 121 Palestine $14,498,100,000 $14.50 billion 3.14% 4,747,227 $3,054 0.02% 122 Nicaragua $13,814,261,536 $13.81 billion 4.86% 6,384,846 $2,164 0.02% 123 Mauritius $13,266,427,697 $13.27 billion 3.82% 1,264,499 $10,491 0.02% 124 Namibia $13,253,698,015 $13.25 billion -0.95% 2,402,633 $5,516 0.02% 125 Albania $13,038,538,300 $13.04 billion 3.84% 2,884,169 $4,521 0.02% 126 Mozambique $12,645,508,634 $12.65 billion 3.74% 28,649,018 $441 0.02% 127 Malta $12,518,134,319 $12.52 billion 6.42% 437,933 $28,585 0.02% 128 Burkina Faso $12,322,864,245 $12.32 billion 6.30% 19,193,234 $642 0.02% 129 Equatorial Guinea $12,293,579,173 $12.29 billion -4.92% 1,262,002 $9,741 0.02% 130 Bahamas $12,162,100,000 $12.16 billion 1.44% 381,755 $31,858 0.02% 131 Brunei $12,128,089,002 $12.13 billion 1.33% 424,473 $28,572 0.01% 132 Armenia $11,536,590,636 $11.54 billion 7.50% 2,944,791 $3,918 0.01% 133 Madagascar $11,499,803,807 $11.50 billion 4.17% 25,570,512 $450 0.01% 134 Mongolia $11,433,635,876 $11.43 billion 5.30% 3,113,786 $3,672 0.01% 135 North Macedonia $11,279,509,014 $11.28 billion 0.24% 2,081,996 $5,418 0.01% 136 Guinea $10,472,514,515 $10.47 billion 10.60% 12,067,519 $868 0.01% 137 Chad $9,871,247,732 $9.87 billion -2.95% 15,016,753 $657 0.01% 138 Benin $9,246,696,924 $9.25 billion 5.84% 11,175,198 $827 0.01% 139 Rwanda $9,135,454,442 $9.14 billion 6.06% 11,980,961 $762 0.01% 140 Congo $8,701,334,800 $8.70 billion -3.10% 5,110,695 $1,703 0.01% 141 Haiti $8,408,150,518 $8.41 billion 1.17% 10,982,366 $766 0.01% 142 Moldova $8,128,493,432 $8.13 billion 4.50% 4,059,684 $2,002 0.01% 143 Niger $8,119,710,126 $8.12 billion 4.89% 21,602,382 $376 0.01% 144 Kyrgyzstan $7,564,738,836 $7.56 billion 4.58% 6,189,733 $1,222 0.01% 145 Tajikistan $7,146,449,583 $7.15 billion 7.62% 8,880,268 $805 0.01% 146 Malawi $6,303,292,264 $6.30 billion 4.00% 17,670,196 $357 0.01% 147 Guam $5,859,000,000 $5.86 billion 0.19% 164,281 $35,665 0.01% 148 Fiji $5,061,202,767 $5.06 billion 3.80% 877,459 $5,768 0.01% 149 Mauritania $5,024,708,656 $5.02 billion 3.50% 4,282,570 $1,173 0.01% 150 Maldives $4,865,546,027 $4.87 billion 6.91% 496,402 $9,802 0.01% 151 Montenegro $4,844,592,067 $4.84 billion 4.70% 627,563 $7,720 0.01% 152 Togo $4,757,776,485 $4.76 billion 4.40% 7,698,474 $618 0.01% 153 Barbados $4,673,500,000 $4.67 billion 1.00% 286,232 $16,328 0.01% 154 Eswatini $4,433,664,364 $4.43 billion 1.87% 1,124,805 $3,942 0.01% 155 Sierra Leone $3,775,047,334 $3.78 billion 4.21% 7,488,423 $504 0.00% 156 Guyana $3,621,046,005 $3.62 billion 2.92% 775,222 $4,671 0.00% 157 Liberia $3,285,455,000 $3.29 billion 2.47% 4,702,226 $699 0.00% 158 Burundi $3,172,416,146 $3.17 billion 0.50% 10,827,019 $293 0.00% 159 Andorra $3,012,914,131 $3.01 billion 1.87% 77,001 $39,128 0.00% 160 Suriname $2,995,827,901 $3.00 billion 1.69% 570,496 $5,251 0.00% 161 Timor-Leste $2,954,621,000 $2.95 billion -8.00% 1,243,258 $2,377 0.00% 162 Aruba $2,700,558,659 $2.70 billion 1.33% 105,366 $25,630 0.00% 163 Lesotho $2,578,265,358 $2.58 billion -2.29% 2,091,534 $1,233 0.00% 164 Bhutan $2,528,007,911 $2.53 billion 4.63% 745,563 $3,391 0.00% 165 Central African Republic $1,949,411,659 $1.95 billion 4.30% 4,596,023 $424 0.00% 166 Belize $1,862,614,800 $1.86 billion 1.44% 375,769 $4,957 0.00% 167 Cape Verde $1,772,706,451 $1.77 billion 4.01% 537,498 $3,298 0.00% 168 Saint Lucia $1,737,504,296 $1.74 billion 3.82% 180,954 $9,602 0.00% 169 San Marino $1,632,860,041 $1.63 billion 1.50% 33,671 $48,495 0.00% 170 Northern Mariana Islands $1,593,000,000 $1.59 billion 25.14% 56,562 $28,164 0.00% 171 Antigua and Barbuda $1,510,084,751 $1.51 billion 3.03% 95,426 $15,825 0.00% 172 Seychelles $1,497,959,569 $1.50 billion 5.28% 96,418 $15,536 0.00% 173 Gambia $1,489,464,788 $1.49 billion 4.56% 2,213,889 $673 0.00% 174 Guinea-Bissau $1,346,841,897 $1.35 billion 5.92% 1,828,145 $737 0.00% 175 Solomon Islands $1,303,453,622 $1.30 billion 3.24% 636,039 $2,049 0.00% 176 Grenada $1,126,882,296 $1.13 billion 5.06% 110,874 $10,164 0.00% 177 Comoros $1,068,124,330 $1.07 billion 2.71% 813,892 $1,312 0.00% 178 Saint Kitts and Nevis $992,007,403 $992 million 1.17% 52,045 $19,061 0.00% 179 Vanuatu $862,879,789 $863 million 4.50% 285,510 $3,022 0.00% 180 Samoa $840,927,997 $841 million 2.70% 195,352 $4,305 0.00% 181 Saint Vincent and the Grenadines $785,222,509 $785 million 0.86% 109,827 $7,150 0.00% 182 American Samoa $634,000,000 $634 million -5.38% 55,620 $11,399 0.00% 183 Dominica $496,727,000 $497 million -9.53% 71,458 $6,951 0.00% 184 Tonga $427,659,795 $428 million 2.70% 101,998 $4,193 0.00% 185 São Tomé and Príncipe $392,570,293 $393 million 3.87% 207,089 $1,896 0.00% 186 Micronesia $336,427,500 $336 million 3.20% 532,899 $631 0.00% 187 Palau $289,823,500 $290 million -3.57% 17,808 $16,275 0.00% 188 Marshall Islands $204,173,430 $204 million 3.60% 58,058 $3,517 0.00% 189 Kiribati $185,572,502 $186 million 0.33% 114,158 $1,626 0.00% 190 Tuvalu $39,731,317 $40 million 3.24% 11,370 $3,494 0.00%''' coords = '''Abkhazia,Sukhumi,43.001525,41.023415 Afghanistan,Kabul,34.575503,69.240073 Aland Islands,Mariehamn,60.1,19.933333 Albania,Tirana,41.327546,19.818698 Algeria,Algiers,36.752887,3.042048 American Samoa,Pago Pago,-14.275632,-170.702036 Andorra,Andorra la Vella,42.506317,1.521835 Angola,Luanda,-8.839988,13.289437 Anguilla,The Valley,18.214813,-63.057441 Antarctica,South Pole,-90,0 Antigua and Barbuda,Saint John's,17.12741,-61.846772 Argentina,Buenos Aires,-34.603684,-58.381559 Armenia,Yerevan,40.179186,44.499103 Aruba,Oranjestad,12.509204,-70.008631 Australia,Canberra,-35.282,149.128684 Austria,Vienna,48.208174,16.373819 Azerbaijan,Baku,40.409262,49.867092 Bahamas,Nassau,25.047984,-77.355413 Bahrain,Manama,26.228516,50.58605 Bangladesh,Dhaka,23.810332,90.412518 Barbados,Bridgetown,13.113222,-59.598809 Belarus,Minsk,53.90454,27.561524 Belgium,Brussels,50.85034,4.35171 Belize,Belmopan,17.251011,-88.75902 Benin,Porto-Novo,6.496857,2.628852 Bermuda,Hamilton,32.294816,-64.781375 Bhutan,Thimphu,27.472792,89.639286 Bolivia,La Paz,-16.489689,-68.119294 Bosnia and Herzegovina,Sarajevo,43.856259,18.413076 Botswana,Gaborone,-24.628208,25.923147 Bouvet Island,Bouvet Island,-54.43,3.38 Brazil,Brasília,-15.794229,-47.882166 British Indian Ocean Territory,Camp Justice,21.3419,55.4778 British Virgin Islands,Road Town,18.428612,-64.618466 Brunei,Bandar Seri Begawan,4.903052,114.939821 Bulgaria,Sofia,42.697708,23.321868 Burkina Faso,Ouagadougou,12.371428,-1.51966 Burundi,Bujumbura,-3.361378,29.359878 Cambodia,Phnom Penh,11.544873,104.892167 Cameroon,Yaoundé,3.848033,11.502075 Canada,Ottawa,45.42153,-75.697193 Cape Verde,Praia,14.93305,-23.513327 Cayman Islands,George Town,19.286932,-81.367439 Central African Republic,Bangui,4.394674,18.55819 Chad,N'Djamena,12.134846,15.055742 Chile,Santiago,-33.44889,-70.669265 China,Beijing,39.904211,116.407395 Christmas Island,Flying Fish Cove,-10.420686,105.679379 Cocos (Keeling) Islands,West Island,-12.188834,96.829316 Colombia,Bogotá,4.710989,-74.072092 Comoros,Moroni,-11.717216,43.247315 DR Congo,Kinshasa,-4.441931,15.266293 Congo,Brazzaville,-4.26336,15.242885 Cook Islands,Avarua,-21.212901,-159.782306 Costa Rica,San José,9.928069,-84.090725 Côte d'Ivoire,Yamoussoukro,6.827623,-5.289343 Croatia,Zagreb ,45.815011,15.981919 Cuba,Havana,23.05407,-82.345189 Curaçao,Willemstad,12.122422,-68.882423 Cyprus,Nicosia,35.185566,33.382276 Czech Republic,Prague,50.075538,14.4378 Denmark,Copenhagen,55.676097,12.568337 Djibouti,Djibouti,11.572077,43.145647 Dominica,Roseau,15.309168,-61.379355 Dominican Republic,Santo Domingo,18.486058,-69.931212 Ecuador,Quito,-0.180653,-78.467838 Egypt,Cairo,30.04442,31.235712 El Salvador,San Salvador,13.69294,-89.218191 Equatorial Guinea,Malabo,3.750412,8.737104 Eritrea,Asmara,15.322877,38.925052 Estonia,Tallinn,59.436961,24.753575 Ethiopia,Addis Ababa,8.980603,38.757761 Falkland Islands (Islas Malvinas),Stanley,-51.697713,-57.851663 Faroe Islands,Tórshavn,62.007864,-6.790982 Fiji,Suva,-18.124809,178.450079 Finland,Helsinki,60.173324,24.941025 France,Paris,48.856614,2.352222 French Guiana,Cayenne,4.92242,-52.313453 French Polynesia,Papeete,-17.551625,-149.558476 French Southern Territories,Saint-Pierre ,-21.3419,55.4778 Gabon,Libreville,0.416198,9.467268 Gambia,Banjul,13.454876,-16.579032 Georgia,Tbilisi,41.715138,44.827096 Germany,Berlin,52.520007,13.404954 Ghana,Accra,5.603717,-0.186964 Gibraltar,Gibraltar,36.140773,-5.353599 Greece,Athens,37.983917,23.72936 Greenland,Nuuk,64.18141,-51.694138 Grenada,Saint George's,12.056098,-61.7488 Guadeloupe,Basse-Terre,16.014453,-61.706411 Guam,Hagåtña,13.470891,144.751278 Guatemala,Guatemala City,14.634915,-90.506882 Guernsey,Saint Peter Port,49.455443,-2.536871 Guinea,Conakry,9.641185,-13.578401 Guinea-Bissau,Bissau,11.881655,-15.617794 Guyana,Georgetown,6.801279,-58.155125 Haiti,Port-au-Prince,18.594395,-72.307433 Honduras,Tegucigalpa,14.072275,-87.192136 Hong Kong,Hong Kong,22.396428,114.109497 Hungary,Budapest,47.497912,19.040235 Iceland,Reykjavík,64.126521,-21.817439 India,New Delhi,28.613939,77.209021 Indonesia,Jakarta,-6.208763,106.845599 Iran,Tehran,35.689198,51.388974 Iraq,Baghdad,33.312806,44.361488 Ireland,Dublin,53.349805,-6.26031 Isle of Man,Douglas,54.152337,-4.486123 Israel,Tel Aviv,32.0853,34.781768 Italy,Rome,41.902784,12.496366 Jamaica,Kingston,18.042327,-76.802893 Japan,Tokyo,35.709026,139.731992 Jersey,Saint Helier,49.186823,-2.106568 Jordan,Amman,31.956578,35.945695 Kazakhstan,Astana,51.160523,71.470356 Kenya,Nairobi,-1.292066,36.821946 Kiribati,Tarawa Atoll,1.451817,172.971662 Kosovo,Pristina,42.662914,21.165503 Kuwait,Kuwait City,29.375859,47.977405 Kyrgyzstan,Bishkek,42.874621,74.569762 Laos,Vientiane,17.975706,102.633104 Latvia,Riga,56.949649,24.105186 Lebanon,Beirut,33.888629,35.495479 Lesotho,Maseru,-29.363219,27.51436 Liberia,Monrovia,6.290743,-10.760524 Libya,Tripoli,32.887209,13.191338 Liechtenstein,Vaduz,47.14103,9.520928 Lithuania,Vilnius,54.687156,25.279651 Luxembourg,Luxembourg,49.611621,6.131935 Macau,Macau,22.166667,113.55 North Macedonia,Skopje,41.997346,21.427996 Madagascar,Antananarivo,-18.87919,47.507905 Malawi,Lilongwe,-13.962612,33.774119 Malaysia,Kuala Lumpur,3.139003,101.686855 Maldives,Malé,4.175496,73.509347 Mali,Bamako,12.639232,-8.002889 Malta,Valletta,35.898909,14.514553 Marshall Islands,Majuro,7.116421,171.185774 Martinique,Fort-de-France,14.616065,-61.05878 Mauritania,Nouakchott,18.07353,-15.958237 Mauritius,Port Louis,-20.166896,57.502332 Mayotte,Mamoudzou,-12.780949,45.227872 Mexico,Mexico City,19.432608,-99.133208 Micronesia,Palikir,6.914712,158.161027 Moldova,Chisinau,47.010453,28.86381 Monaco,Monaco,43.737411,7.420816 Mongolia,Ulaanbaatar,47.886399,106.905744 Montenegro,Podgorica,42.43042,19.259364 Montserrat,Plymouth,16.706523,-62.215738 Morocco,Rabat,33.97159,-6.849813 Mozambique,Maputo,-25.891968,32.605135 Myanmar,Naypyidaw,19.763306,96.07851 Nagorno-Karabakh Republic,Stepanakert,39.826385,46.763595 Namibia,Windhoek,-22.560881,17.065755 Nauru,Yaren,-0.546686,166.921091 Nepal,Kathmandu,27.717245,85.323961 Netherlands,Amsterdam,52.370216,4.895168 Netherlands Antilles,Willemstad ,12.1091242,-68.9316546 New Caledonia,Nouméa,-22.255823,166.450524 New Zealand,Wellington,-41.28646,174.776236 Nicaragua,Managua,12.114993,-86.236174 Niger,Niamey,13.511596,2.125385 Nigeria,Abuja,9.076479,7.398574 Niue,Alofi,-19.055371,-169.917871 Norfolk Island,Kingston,-29.056394,167.959588 North Korea,Pyongyang,39.039219,125.762524 Northern Cyprus,Nicosia,35.185566,33.382276 Northern Mariana Islands,Saipan,15.177801,145.750967 Norway,Oslo,59.913869,10.752245 Oman,Muscat,23.58589,58.405923 Pakistan,Islamabad,33.729388,73.093146 Palau,Ngerulmud,7.500384,134.624289 Palestine,Ramallah,31.9073509,35.5354719 Panama,Panama City,9.101179,-79.402864 Papua New Guinea,Port Moresby,-9.4438,147.180267 Paraguay,Asuncion,-25.26374,-57.575926 Peru,Lima,-12.046374,-77.042793 Philippines,Manila,14.599512,120.98422 Pitcairn Islands,Adamstown,-25.06629,-130.100464 Poland,Warsaw,52.229676,21.012229 Portugal,Lisbon,38.722252,-9.139337 Puerto Rico,San Juan,18.466334,-66.105722 Qatar,Doha,25.285447,51.53104 Réunion,Saint-Denis,-20.882057,55.450675 Romania,Bucharest,44.426767,26.102538 Russia,Moscow,55.755826,37.6173 Rwanda,Kigali,-1.957875,30.112735 Saint Pierre and Miquelon,Saint Pierre,46.775846,-56.180636 Saint Vincent and the Grenadines,Kingstown,13.160025,-61.224816 Samoa,Apia,-13.850696,-171.751355 San Marino,San Marino,43.935591,12.447281 São Tomé and Príncipe,São Tomé,0.330192,6.733343 Saudi Arabia,Riyadh,24.749403,46.902838 Senegal,Dakar,14.764504,-17.366029 Serbia,Belgrade,44.786568,20.448922 Seychelles,Victoria,-4.619143,55.451315 Sierra Leone,Freetown,8.465677,-13.231722 Singapore,Singapore,1.280095,103.850949 Slovakia,Bratislava,48.145892,17.107137 Slovenia,Ljubljana,46.056947,14.505751 Solomon Islands,Honiara,-9.445638,159.9729 Somalia,Mogadishu,2.046934,45.318162 South Africa,Pretoria,-25.747868,28.229271 South Georgia and the South Sandwich Islands,King Edward Point,-54.28325,-36.493735 South Korea,Seoul,37.566535,126.977969 South Ossetia,Tskhinvali,42.22146,43.964405 South Sudan,Juba,4.859363,31.57125 Spain,Madrid,40.416775,-3.70379 Sri Lanka,Sri Jayawardenepura Kotte,6.89407,79.902478 Saint Barthélemy,Gustavia,17.896435,-62.852201 Saint Kitts and Nevis,Basseterre,17.302606,-62.717692 Saint Lucia,Castries,14.010109,-60.987469 Saint Martin,Marigot,18.067519,-63.082466 Sudan,Khartoum,15.500654,32.559899 Suriname,Paramaribo,5.852036,-55.203828 Svalbard and Jan Mayen,Longyearbyen ,78.062,22.055 Eswatini,Mbabane,-26.305448,31.136672 Sweden,Stockholm,59.329323,18.068581 Switzerland,Bern,46.947974,7.447447 Syria,Damascus,33.513807,36.276528 Taiwan,Taipei,25.032969,121.565418 Tajikistan,Dushanbe,38.559772,68.787038 Tanzania,Dodoma,-6.162959,35.751607 Thailand,Bangkok,13.756331,100.501765 Timor-Leste,Dili,-8.556856,125.560314 Togo,Lomé,6.172497,1.231362 Tokelau,Nukunonu,-9.2005,-171.848 Tonga,Nukuʻalofa,-21.139342,-175.204947 Transnistria,Tiraspol,46.848185,29.596805 Trinidad and Tobago,Port of Spain,10.654901,-61.501926 Tristan da Cunha,Edinburgh of the Seven Seas,-37.068042,-12.311315 Tunisia,Tunis,36.806495,10.181532 Turkey,Ankara,39.933364,32.859742 Turkmenistan,Ashgabat,37.960077,58.326063 Turks and Caicos Islands,Cockburn Town,21.467458,-71.13891 Tuvalu,Funafuti,-8.520066,179.198128 U.S. Virgin Islands,Charlotte Amalie,18.3419,-64.930701 Uganda,Kampala,0.347596,32.58252 Ukraine,Kiev,50.4501,30.5234 United Arab Emirates,Abu Dhabi,24.299174,54.697277 United Kingdom,London,51.507351,-0.127758 United States,Washington,38.907192,-77.036871 Uruguay,Montevideo,-34.901113,-56.164531 Uzbekistan,Tashkent,41.299496,69.240073 Vanuatu,Port Vila,-17.733251,168.327325 Vatican City,Vatican City,41.902179,12.453601 Venezuela,Caracas,10.480594,-66.903606 Vietnam,Hanoi,21.027764,105.83416 Wallis and Futuna,Mata-Utu,-13.282509,-176.176447 Western Sahara,El Aaiún,27.125287,-13.1625 Yemen,Sana'a,15.369445,44.191007 Zambia,Lusaka,-15.387526,28.322817 Zimbabwe,Harare,-17.825166,31.03351''' create_file()
flexible
{ "blob_id": "1cbc37655e28ab3082fc31baf119cb2bab96379b", "index": 3661, "step-1": "def format_amount(a):\n return a.replace(',', '').strip().replace('%', '').replace('$', '')\n\n\n<mask token>\n", "step-2": "def format_amount(a):\n return a.replace(',', '').strip().replace('%', '').replace('$', '')\n\n\ndef create_json(gdp, coords):\n line_list = gdp.split('\\n')\n column_list = [x.split('\\t') for x in line_list if x != '']\n line_list = coords.split('\\n')\n coord_list = [x.split(',') for x in line_list if x != '']\n coord_dict = {}\n for i in coord_list:\n coord_dict[format_amount(i[0])] = i[1:]\n out = \"\"\"// This file is automatically generated by game-statics/utils/countryRON.py.\n// Please do not edit.\"\"\"\n out += '\\n['\n for index in range(len(column_list)):\n coords = coord_dict[format_amount(column_list[index][1])]\n print(coords)\n out += '('\n out += 'name:\"' + format_amount(column_list[index][1]) + '\",'\n out += 'gdp:' + format_amount(column_list[index][2]) + ','\n out += 'population:' + format_amount(column_list[index][5]) + ','\n out += 'lat:' + format_amount(coords[1]) + ','\n out += 'long:' + format_amount(coords[2]) + ''\n out += ')'\n if index != len(column_list) - 1:\n out += ','\n out += ']'\n return out\n\n\ndef create_file():\n data = create_json(d, coords)\n file = open('../assets/Countries.ron', 'w', encoding='utf8')\n file.write(data)\n file.close()\n\n\n<mask token>\n", "step-3": "def format_amount(a):\n return a.replace(',', '').strip().replace('%', '').replace('$', '')\n\n\ndef create_json(gdp, coords):\n line_list = gdp.split('\\n')\n column_list = [x.split('\\t') for x in line_list if x != '']\n line_list = coords.split('\\n')\n coord_list = [x.split(',') for x in line_list if x != '']\n coord_dict = {}\n for i in coord_list:\n coord_dict[format_amount(i[0])] = i[1:]\n out = \"\"\"// This file is automatically generated by game-statics/utils/countryRON.py.\n// Please do not edit.\"\"\"\n out += '\\n['\n for index in range(len(column_list)):\n coords = coord_dict[format_amount(column_list[index][1])]\n print(coords)\n out += '('\n out += 'name:\"' + format_amount(column_list[index][1]) + '\",'\n out += 'gdp:' + format_amount(column_list[index][2]) + ','\n out += 'population:' + format_amount(column_list[index][5]) + ','\n out += 'lat:' + format_amount(coords[1]) + ','\n out += 'long:' + format_amount(coords[2]) + ''\n out += ')'\n if index != len(column_list) - 1:\n out += ','\n out += ']'\n return out\n\n\ndef create_file():\n data = create_json(d, coords)\n file = open('../assets/Countries.ron', 'w', encoding='utf8')\n file.write(data)\n file.close()\n\n\n<mask token>\ncreate_file()\n", "step-4": "def format_amount(a):\n return a.replace(',', '').strip().replace('%', '').replace('$', '')\n\n\ndef create_json(gdp, coords):\n line_list = gdp.split('\\n')\n column_list = [x.split('\\t') for x in line_list if x != '']\n line_list = coords.split('\\n')\n coord_list = [x.split(',') for x in line_list if x != '']\n coord_dict = {}\n for i in coord_list:\n coord_dict[format_amount(i[0])] = i[1:]\n out = \"\"\"// This file is automatically generated by game-statics/utils/countryRON.py.\n// Please do not edit.\"\"\"\n out += '\\n['\n for index in range(len(column_list)):\n coords = coord_dict[format_amount(column_list[index][1])]\n print(coords)\n out += '('\n out += 'name:\"' + format_amount(column_list[index][1]) + '\",'\n out += 'gdp:' + format_amount(column_list[index][2]) + ','\n out += 'population:' + format_amount(column_list[index][5]) + ','\n out += 'lat:' + format_amount(coords[1]) + ','\n out += 'long:' + format_amount(coords[2]) + ''\n out += ')'\n if index != len(column_list) - 1:\n out += ','\n out += ']'\n return out\n\n\ndef create_file():\n data = create_json(d, coords)\n file = open('../assets/Countries.ron', 'w', encoding='utf8')\n file.write(data)\n file.close()\n\n\nd = \"\"\"\n1\t United States\t $19,485,394,000,000\t $19.485 trillion\t 2.27%\t 325,084,756\t $59,939\t 24.08%\n2\t China\t $12,237,700,479,375\t $12.238 trillion\t 6.90%\t 1,421,021,791\t $8,612\t 15.12%\n3\t Japan\t $4,872,415,104,315\t $4.872 trillion\t 1.71%\t 127,502,725\t $38,214\t 6.02%\n4\t Germany\t $3,693,204,332,230\t $3.693 trillion\t 2.22%\t 82,658,409\t $44,680\t 4.56%\n5\t India\t $2,650,725,335,364\t $2.651 trillion\t 6.68%\t 1,338,676,785\t $1,980\t 3.28%\n6\t United Kingdom\t $2,637,866,340,434\t $2.638 trillion\t 1.79%\t 66,727,461\t $39,532\t 3.26%\n7\t France\t $2,582,501,307,216\t $2.583 trillion\t 1.82%\t 64,842,509\t $39,827\t 3.19%\n8\t Brazil\t $2,053,594,877,013\t $2.054 trillion\t 0.98%\t 207,833,823\t $9,881\t 2.54%\n9\t Italy\t $1,943,835,376,342\t $1.944 trillion\t 1.50%\t 60,673,701\t $32,038\t 2.40%\n10\t Canada\t $1,647,120,175,449\t $1.647 trillion\t 3.05%\t 36,732,095\t $44,841\t 2.04%\n11\t Russia\t $1,578,417,211,937\t $1.578 trillion\t 1.55%\t 145,530,082\t $10,846\t 1.95%\n12\t South Korea\t $1,530,750,923,149\t $1.531 trillion\t 3.06%\t 51,096,415\t $29,958\t 1.89%\n13\t Australia\t $1,323,421,072,479\t $1.323 trillion\t 1.96%\t 24,584,620\t $53,831\t 1.64%\n14\t Spain\t $1,314,314,164,402\t $1.314 trillion\t 3.05%\t 46,647,428\t $28,175\t 1.62%\n15\t Mexico\t $1,150,887,823,404\t $1.151 trillion\t 2.04%\t 124,777,324\t $9,224\t 1.42%\n16\t Indonesia\t $1,015,420,587,285\t $1.015 trillion\t 5.07%\t 264,650,963\t $3,837\t 1.25%\n17\t Turkey\t $851,549,299,635\t $852 billion\t 7.44%\t 81,116,450\t $10,498\t 1.05%\n18\t Netherlands\t $830,572,618,850\t $831 billion\t 3.16%\t 17,021,347\t $48,796\t 1.03%\n19\t Saudi Arabia\t $686,738,400,000\t $687 billion\t -0.86%\t 33,101,179\t $20,747\t 0.85%\n20\t Switzerland\t $678,965,423,322\t $679 billion\t 1.09%\t 8,455,804\t $80,296\t 0.84%\n21\t Argentina\t $637,430,331,479\t $637 billion\t 2.85%\t 43,937,140\t $14,508\t 0.79%\n22\t Sweden\t $535,607,385,506\t $536 billion\t 2.29%\t 9,904,896\t $54,075\t 0.66%\n23\t Poland\t $526,465,839,003\t $526 billion\t 4.81%\t 37,953,180\t $13,871\t 0.65%\n24\t Belgium\t $494,763,551,891\t $495 billion\t 1.73%\t 11,419,748\t $43,325\t 0.61%\n25\t Thailand\t $455,302,682,986\t $455 billion\t 3.91%\t 69,209,810\t $6,579\t 0.56%\n26\t Iran\t $454,012,768,724\t $454 billion\t 3.76%\t 80,673,883\t $5,628\t 0.56%\n27\t Austria\t $416,835,975,862\t $417 billion\t 3.04%\t 8,819,901\t $47,261\t 0.52%\n28\t Norway\t $399,488,897,844\t $399 billion\t 1.92%\t 5,296,326\t $75,428\t 0.49%\n29\t United Arab Emirates\t $382,575,085,092\t $383 billion\t 0.79%\t 9,487,203\t $40,325\t 0.47%\n30\t Nigeria\t $375,745,486,521\t $376 billion\t 0.81%\t 190,873,244\t $1,969\t 0.46%\n31\t Israel\t $353,268,411,919\t $353 billion\t 3.33%\t 8,243,848\t $42,852\t 0.44%\n32\t South Africa\t $348,871,647,960\t $349 billion\t 1.32%\t 57,009,756\t $6,120\t 0.43%\n33\t Hong Kong\t $341,449,340,451\t $341 billion\t 3.79%\t 7,306,322\t $46,733\t 0.42%\n34\t Ireland\t $331,430,014,003\t $331 billion\t 7.80%\t 4,753,279\t $69,727\t 0.41%\n35\t Denmark\t $329,865,537,183\t $330 billion\t 2.24%\t 5,732,274\t $57,545\t 0.41%\n36\t Singapore\t $323,907,234,412\t $324 billion\t 3.62%\t 5,708,041\t $56,746\t 0.40%\n37\t Malaysia\t $314,710,259,511\t $315 billion\t 5.90%\t 31,104,646\t $10,118\t 0.39%\n38\t Colombia\t $314,457,601,860\t $314 billion\t 1.79%\t 48,909,839\t $6,429\t 0.39%\n39\t Philippines\t $313,595,208,737\t $314 billion\t 6.68%\t 105,172,925\t $2,982\t 0.39%\n40\t Pakistan\t $304,951,818,494\t $305 billion\t 5.70%\t 207,906,209\t $1,467\t 0.38%\n41\t Chile\t $277,075,944,402\t $277 billion\t 1.49%\t 18,470,439\t $15,001\t 0.34%\n42\t Finland\t $252,301,837,573\t $252 billion\t 2.63%\t 5,511,371\t $45,778\t 0.31%\n43\t Bangladesh\t $249,723,862,487\t $250 billion\t 7.28%\t 159,685,424\t $1,564\t 0.31%\n44\t Egypt\t $235,369,129,338\t $235 billion\t 4.18%\t 96,442,591\t $2,441\t 0.29%\n45\t Vietnam\t $223,779,865,815\t $224 billion\t 6.81%\t 94,600,648\t $2,366\t 0.28%\n46\t Portugal\t $219,308,128,887\t $219 billion\t 2.68%\t 10,288,527\t $21,316\t 0.27%\n47\t Czech Republic\t $215,913,545,038\t $216 billion\t 4.29%\t 10,641,034\t $20,291\t 0.27%\n48\t Romania\t $211,883,923,504\t $212 billion\t 7.26%\t 19,653,969\t $10,781\t 0.26%\n49\t Peru\t $211,389,272,242\t $211 billion\t 2.53%\t 31,444,298\t $6,723\t 0.26%\n50\t New Zealand\t $204,139,049,909\t $204 billion\t 3.03%\t 4,702,034\t $43,415\t 0.25%\n51\t Greece\t $203,085,551,429\t $203 billion\t 1.35%\t 10,569,450\t $19,214\t 0.25%\n52\t Iraq\t $192,060,810,811\t $192 billion\t -2.07%\t 37,552,781\t $5,114\t 0.24%\n53\t Algeria\t $167,555,280,113\t $168 billion\t 1.60%\t 41,389,189\t $4,048\t 0.21%\n54\t Qatar\t $166,928,571,429\t $167 billion\t 1.58%\t 2,724,728\t $61,264\t 0.21%\n55\t Kazakhstan\t $162,886,867,832\t $163 billion\t 4.10%\t 18,080,019\t $9,009\t 0.20%\n56\t Hungary\t $139,761,138,103\t $140 billion\t 3.99%\t 9,729,823\t $14,364\t 0.17%\n57\t Angola\t $122,123,822,334\t $122 billion\t -0.15%\t 29,816,766\t $4,096\t 0.15%\n58\t Kuwait\t $120,126,277,613\t $120 billion\t -2.87%\t 4,056,099\t $29,616\t 0.15%\n59\t Sudan\t $117,487,857,143\t $117 billion\t 4.28%\t 40,813,397\t $2,879\t 0.15%\n60\t Ukraine\t $112,154,185,121\t $112 billion\t 2.52%\t 44,487,709\t $2,521\t 0.14%\n61\t Morocco\t $109,708,728,849\t $110 billion\t 4.09%\t 35,581,255\t $3,083\t 0.14%\n62\t Ecuador\t $104,295,862,000\t $104 billion\t 2.37%\t 16,785,361\t $6,214\t 0.13%\n63\t Cuba\t $96,851,000,000\t $96.85 billion\t 1.78%\t 11,339,254\t $8,541\t 0.12%\n64\t Slovakia\t $95,617,670,260\t $95.62 billion\t 3.40%\t 5,447,900\t $17,551\t 0.12%\n65\t Sri Lanka\t $87,357,205,923\t $87.36 billion\t 3.31%\t 21,128,032\t $4,135\t 0.11%\n66\t Ethiopia\t $80,561,496,134\t $80.56 billion\t 10.25%\t 106,399,924\t $757\t 0.10%\n67\t Kenya\t $79,263,075,749\t $79.26 billion\t 4.87%\t 50,221,142\t $1,578\t 0.10%\n68\t Dominican Republic\t $75,931,656,815\t $75.93 billion\t 4.55%\t 10,513,104\t $7,223\t 0.09%\n69\t Guatemala\t $75,620,095,538\t $75.62 billion\t 2.76%\t 16,914,970\t $4,471\t 0.09%\n70\t Oman\t $70,783,875,163\t $70.78 billion\t -0.27%\t 4,665,928\t $15,170\t 0.09%\n71\t Myanmar\t $67,068,745,521\t $67.07 billion\t 6.76%\t 53,382,523\t $1,256\t 0.08%\n72\t Luxembourg\t $62,316,359,824\t $62.32 billion\t 2.30%\t 591,910\t $105,280\t 0.08%\n73\t Panama\t $62,283,756,584\t $62.28 billion\t 5.32%\t 4,106,769\t $15,166\t 0.08%\n74\t Ghana\t $58,996,776,238\t $59.00 billion\t 8.14%\t 29,121,465\t $2,026\t 0.07%\n75\t Bulgaria\t $58,220,973,783\t $58.22 billion\t 3.81%\t 7,102,444\t $8,197\t 0.07%\n76\t Costa Rica\t $57,285,984,448\t $57.29 billion\t 3.28%\t 4,949,954\t $11,573\t 0.07%\n77\t Uruguay\t $56,156,972,158\t $56.16 billion\t 2.66%\t 3,436,641\t $16,341\t 0.07%\n78\t Croatia\t $55,213,087,271\t $55.21 billion\t 2.92%\t 4,182,857\t $13,200\t 0.07%\n79\t Belarus\t $54,456,465,473\t $54.46 billion\t 2.42%\t 9,450,231\t $5,762\t 0.07%\n80\t Lebanon\t $53,576,985,687\t $53.58 billion\t 1.53%\t 6,819,373\t $7,857\t 0.07%\n81\t Tanzania\t $53,320,625,959\t $53.32 billion\t 7.10%\t 54,660,339\t $975\t 0.07%\n82\t Macau\t $50,361,201,096\t $50.36 billion\t 9.10%\t 622,585\t $80,890\t 0.06%\n83\t Uzbekistan\t $49,677,172,714\t $49.68 billion\t 5.30%\t 31,959,785\t $1,554\t 0.06%\n84\t Slovenia\t $48,769,655,479\t $48.77 billion\t 5.00%\t 2,076,394\t $23,488\t 0.06%\n85\t Lithuania\t $47,544,459,559\t $47.54 billion\t 3.83%\t 2,845,414\t $16,709\t 0.06%\n86\t Serbia\t $41,431,648,801\t $41.43 billion\t 1.87%\t 8,829,628\t $4,692\t 0.05%\n87\t Azerbaijan\t $40,747,792,238\t $40.75 billion\t 0.10%\t 9,845,320\t $4,139\t 0.05%\n88\t Jordan\t $40,068,308,451\t $40.07 billion\t 1.97%\t 9,785,843\t $4,095\t 0.05%\n89\t Tunisia\t $39,952,095,561\t $39.95 billion\t 1.96%\t 11,433,443\t $3,494\t 0.05%\n90\t Paraguay\t $39,667,400,816\t $39.67 billion\t 5.21%\t 6,867,061\t $5,776\t 0.05%\n91\t Libya\t $38,107,728,083\t $38.11 billion\t 26.68%\t 6,580,724\t $5,791\t 0.05%\n92\t Turkmenistan\t $37,926,285,714\t $37.93 billion\t 6.50%\t 5,757,667\t $6,587\t 0.05%\n93\t DR Congo\t $37,642,482,562\t $37.64 billion\t 3.70%\t 81,398,764\t $462\t 0.05%\n94\t Bolivia\t $37,508,642,113\t $37.51 billion\t 4.20%\t 11,192,855\t $3,351\t 0.05%\n95\t Côte d'Ivoire\t $37,353,276,059\t $37.35 billion\t 7.70%\t 24,437,470\t $1,529\t 0.05%\n96\t Bahrain\t $35,432,686,170\t $35.43 billion\t 3.88%\t 1,494,076\t $23,715\t 0.04%\n97\t Cameroon\t $34,922,782,311\t $34.92 billion\t 3.55%\t 24,566,073\t $1,422\t 0.04%\n98\t Yemen\t $31,267,675,216\t $31.27 billion\t -5.94%\t 27,834,819\t $1,123\t 0.04%\n99\t Latvia\t $30,463,302,414\t $30.46 billion\t 4.55%\t 1,951,097\t $15,613\t 0.04%\n100\t Estonia\t $26,611,651,599\t $26.61 billion\t 4.85%\t 1,319,390\t $20,170\t 0.03%\n101\t Uganda\t $25,995,031,850\t $26.00 billion\t 3.86%\t 41,166,588\t $631\t 0.03%\n102\t Zambia\t $25,868,142,073\t $25.87 billion\t 3.40%\t 16,853,599\t $1,535\t 0.03%\n103\t Nepal\t $24,880,266,905\t $24.88 billion\t 7.91%\t 27,632,681\t $900\t 0.03%\n104\t El Salvador\t $24,805,439,600\t $24.81 billion\t 2.32%\t 6,388,126\t $3,883\t 0.03%\n105\t Iceland\t $24,488,467,010\t $24.49 billion\t 3.64%\t 334,393\t $73,233\t 0.03%\n106\t Honduras\t $22,978,532,897\t $22.98 billion\t 4.79%\t 9,429,013\t $2,437\t 0.03%\n107\t Cambodia\t $22,158,209,503\t $22.16 billion\t 7.10%\t 16,009,409\t $1,384\t 0.03%\n108\t Trinidad and Tobago\t $22,079,017,627\t $22.08 billion\t -2.34%\t 1,384,059\t $15,952\t 0.03%\n109\t Cyprus\t $22,054,225,828\t $22.05 billion\t 4.23%\t 1,179,678\t $18,695\t 0.03%\n110\t Zimbabwe\t $22,040,902,300\t $22.04 billion\t 4.70%\t 14,236,595\t $1,548\t 0.03%\n111\t Senegal\t $21,070,225,735\t $21.07 billion\t 7.15%\t 15,419,355\t $1,366\t 0.03%\n112\t Papua New Guinea\t $20,536,314,601\t $20.54 billion\t 2.55%\t 8,438,036\t $2,434\t 0.03%\n113\t Afghanistan\t $19,543,976,895\t $19.54 billion\t 2.67%\t 36,296,113\t $538\t 0.02%\n114\t Bosnia and Herzegovina\t $18,054,854,789\t $18.05 billion\t 3.19%\t 3,351,525\t $5,387\t 0.02%\n115\t Botswana\t $17,406,565,823\t $17.41 billion\t 2.36%\t 2,205,080\t $7,894\t 0.02%\n116\t Laos\t $16,853,087,485\t $16.85 billion\t 6.89%\t 6,953,035\t $2,424\t 0.02%\n117\t Mali\t $15,334,336,144\t $15.33 billion\t 5.40%\t 18,512,430\t $828\t 0.02%\n118\t Georgia\t $15,081,338,092\t $15.08 billion\t 4.83%\t 4,008,716\t $3,762\t 0.02%\n119\t Gabon\t $15,013,950,984\t $15.01 billion\t 0.50%\t 2,064,823\t $7,271\t 0.02%\n120\t Jamaica\t $14,781,107,822\t $14.78 billion\t 0.98%\t 2,920,848\t $5,061\t 0.02%\n121\t Palestine\t $14,498,100,000\t $14.50 billion\t 3.14%\t 4,747,227\t $3,054\t 0.02%\n122\t Nicaragua\t $13,814,261,536\t $13.81 billion\t 4.86%\t 6,384,846\t $2,164\t 0.02%\n123\t Mauritius\t $13,266,427,697\t $13.27 billion\t 3.82%\t 1,264,499\t $10,491\t 0.02%\n124\t Namibia\t $13,253,698,015\t $13.25 billion\t -0.95%\t 2,402,633\t $5,516\t 0.02%\n125\t Albania\t $13,038,538,300\t $13.04 billion\t 3.84%\t 2,884,169\t $4,521\t 0.02%\n126\t Mozambique\t $12,645,508,634\t $12.65 billion\t 3.74%\t 28,649,018\t $441\t 0.02%\n127\t Malta\t $12,518,134,319\t $12.52 billion\t 6.42%\t 437,933\t $28,585\t 0.02%\n128\t Burkina Faso\t $12,322,864,245\t $12.32 billion\t 6.30%\t 19,193,234\t $642\t 0.02%\n129\t Equatorial Guinea\t $12,293,579,173\t $12.29 billion\t -4.92%\t 1,262,002\t $9,741\t 0.02%\n130\t Bahamas\t $12,162,100,000\t $12.16 billion\t 1.44%\t 381,755\t $31,858\t 0.02%\n131\t Brunei\t $12,128,089,002\t $12.13 billion\t 1.33%\t 424,473\t $28,572\t 0.01%\n132\t Armenia\t $11,536,590,636\t $11.54 billion\t 7.50%\t 2,944,791\t $3,918\t 0.01%\n133\t Madagascar\t $11,499,803,807\t $11.50 billion\t 4.17%\t 25,570,512\t $450\t 0.01%\n134\t Mongolia\t $11,433,635,876\t $11.43 billion\t 5.30%\t 3,113,786\t $3,672\t 0.01%\n135\t North Macedonia\t $11,279,509,014\t $11.28 billion\t 0.24%\t 2,081,996\t $5,418\t 0.01%\n136\t Guinea\t $10,472,514,515\t $10.47 billion\t 10.60%\t 12,067,519\t $868\t 0.01%\n137\t Chad\t $9,871,247,732\t $9.87 billion\t -2.95%\t 15,016,753\t $657\t 0.01%\n138\t Benin\t $9,246,696,924\t $9.25 billion\t 5.84%\t 11,175,198\t $827\t 0.01%\n139\t Rwanda\t $9,135,454,442\t $9.14 billion\t 6.06%\t 11,980,961\t $762\t 0.01%\n140\t Congo\t $8,701,334,800\t $8.70 billion\t -3.10%\t 5,110,695\t $1,703\t 0.01%\n141\t Haiti\t $8,408,150,518\t $8.41 billion\t 1.17%\t 10,982,366\t $766\t 0.01%\n142\t Moldova\t $8,128,493,432\t $8.13 billion\t 4.50%\t 4,059,684\t $2,002\t 0.01%\n143\t Niger\t $8,119,710,126\t $8.12 billion\t 4.89%\t 21,602,382\t $376\t 0.01%\n144\t Kyrgyzstan\t $7,564,738,836\t $7.56 billion\t 4.58%\t 6,189,733\t $1,222\t 0.01%\n145\t Tajikistan\t $7,146,449,583\t $7.15 billion\t 7.62%\t 8,880,268\t $805\t 0.01%\n146\t Malawi\t $6,303,292,264\t $6.30 billion\t 4.00%\t 17,670,196\t $357\t 0.01%\n147\t Guam\t $5,859,000,000\t $5.86 billion\t 0.19%\t 164,281\t $35,665\t 0.01%\n148\t Fiji\t $5,061,202,767\t $5.06 billion\t 3.80%\t 877,459\t $5,768\t 0.01%\n149\t Mauritania\t $5,024,708,656\t $5.02 billion\t 3.50%\t 4,282,570\t $1,173\t 0.01%\n150\t Maldives\t $4,865,546,027\t $4.87 billion\t 6.91%\t 496,402\t $9,802\t 0.01%\n151\t Montenegro\t $4,844,592,067\t $4.84 billion\t 4.70%\t 627,563\t $7,720\t 0.01%\n152\t Togo\t $4,757,776,485\t $4.76 billion\t 4.40%\t 7,698,474\t $618\t 0.01%\n153\t Barbados\t $4,673,500,000\t $4.67 billion\t 1.00%\t 286,232\t $16,328\t 0.01%\n154\t Eswatini\t $4,433,664,364\t $4.43 billion\t 1.87%\t 1,124,805\t $3,942\t 0.01%\n155\t Sierra Leone\t $3,775,047,334\t $3.78 billion\t 4.21%\t 7,488,423\t $504\t 0.00%\n156\t Guyana\t $3,621,046,005\t $3.62 billion\t 2.92%\t 775,222\t $4,671\t 0.00%\n157\t Liberia\t $3,285,455,000\t $3.29 billion\t 2.47%\t 4,702,226\t $699\t 0.00%\n158\t Burundi\t $3,172,416,146\t $3.17 billion\t 0.50%\t 10,827,019\t $293\t 0.00%\n159\t Andorra\t $3,012,914,131\t $3.01 billion\t 1.87%\t 77,001\t $39,128\t 0.00%\n160\t Suriname\t $2,995,827,901\t $3.00 billion\t 1.69%\t 570,496\t $5,251\t 0.00%\n161\t Timor-Leste\t $2,954,621,000\t $2.95 billion\t -8.00%\t 1,243,258\t $2,377\t 0.00%\n162\t Aruba\t $2,700,558,659\t $2.70 billion\t 1.33%\t 105,366\t $25,630\t 0.00%\n163\t Lesotho\t $2,578,265,358\t $2.58 billion\t -2.29%\t 2,091,534\t $1,233\t 0.00%\n164\t Bhutan\t $2,528,007,911\t $2.53 billion\t 4.63%\t 745,563\t $3,391\t 0.00%\n165\t Central African Republic\t $1,949,411,659\t $1.95 billion\t 4.30%\t 4,596,023\t $424\t 0.00%\n166\t Belize\t $1,862,614,800\t $1.86 billion\t 1.44%\t 375,769\t $4,957\t 0.00%\n167\t Cape Verde\t $1,772,706,451\t $1.77 billion\t 4.01%\t 537,498\t $3,298\t 0.00%\n168\t Saint Lucia\t $1,737,504,296\t $1.74 billion\t 3.82%\t 180,954\t $9,602\t 0.00%\n169\t San Marino\t $1,632,860,041\t $1.63 billion\t 1.50%\t 33,671\t $48,495\t 0.00%\n170\t Northern Mariana Islands\t $1,593,000,000\t $1.59 billion\t 25.14%\t 56,562\t $28,164\t 0.00%\n171\t Antigua and Barbuda\t $1,510,084,751\t $1.51 billion\t 3.03%\t 95,426\t $15,825\t 0.00%\n172\t Seychelles\t $1,497,959,569\t $1.50 billion\t 5.28%\t 96,418\t $15,536\t 0.00%\n173\t Gambia\t $1,489,464,788\t $1.49 billion\t 4.56%\t 2,213,889\t $673\t 0.00%\n174\t Guinea-Bissau\t $1,346,841,897\t $1.35 billion\t 5.92%\t 1,828,145\t $737\t 0.00%\n175\t Solomon Islands\t $1,303,453,622\t $1.30 billion\t 3.24%\t 636,039\t $2,049\t 0.00%\n176\t Grenada\t $1,126,882,296\t $1.13 billion\t 5.06%\t 110,874\t $10,164\t 0.00%\n177\t Comoros\t $1,068,124,330\t $1.07 billion\t 2.71%\t 813,892\t $1,312\t 0.00%\n178\t Saint Kitts and Nevis\t $992,007,403\t $992 million\t 1.17%\t 52,045\t $19,061\t 0.00%\n179\t Vanuatu\t $862,879,789\t $863 million\t 4.50%\t 285,510\t $3,022\t 0.00%\n180\t Samoa\t $840,927,997\t $841 million\t 2.70%\t 195,352\t $4,305\t 0.00%\n181\t Saint Vincent and the Grenadines\t $785,222,509\t $785 million\t 0.86%\t 109,827\t $7,150\t 0.00%\n182\t American Samoa\t $634,000,000\t $634 million\t -5.38%\t 55,620\t $11,399\t 0.00%\n183\t Dominica\t $496,727,000\t $497 million\t -9.53%\t 71,458\t $6,951\t 0.00%\n184\t Tonga\t $427,659,795\t $428 million\t 2.70%\t 101,998\t $4,193\t 0.00%\n185\t São Tomé and Príncipe\t $392,570,293\t $393 million\t 3.87%\t 207,089\t $1,896\t 0.00%\n186\t Micronesia\t $336,427,500\t $336 million\t 3.20%\t 532,899\t $631\t 0.00%\n187\t Palau\t $289,823,500\t $290 million\t -3.57%\t 17,808\t $16,275\t 0.00%\n188\t Marshall Islands\t $204,173,430\t $204 million\t 3.60%\t 58,058\t $3,517\t 0.00%\n189\t Kiribati\t $185,572,502\t $186 million\t 0.33%\t 114,158\t $1,626\t 0.00%\n190\t Tuvalu\t $39,731,317\t $40 million\t 3.24%\t 11,370\t $3,494\t 0.00%\"\"\"\ncoords = \"\"\"Abkhazia,Sukhumi,43.001525,41.023415\nAfghanistan,Kabul,34.575503,69.240073\nAland Islands,Mariehamn,60.1,19.933333\nAlbania,Tirana,41.327546,19.818698\nAlgeria,Algiers,36.752887,3.042048\nAmerican Samoa,Pago Pago,-14.275632,-170.702036\nAndorra,Andorra la Vella,42.506317,1.521835\nAngola,Luanda,-8.839988,13.289437\nAnguilla,The Valley,18.214813,-63.057441\nAntarctica,South Pole,-90,0\nAntigua and Barbuda,Saint John's,17.12741,-61.846772\nArgentina,Buenos Aires,-34.603684,-58.381559\nArmenia,Yerevan,40.179186,44.499103\nAruba,Oranjestad,12.509204,-70.008631\nAustralia,Canberra,-35.282,149.128684\nAustria,Vienna,48.208174,16.373819\nAzerbaijan,Baku,40.409262,49.867092\nBahamas,Nassau,25.047984,-77.355413\nBahrain,Manama,26.228516,50.58605\nBangladesh,Dhaka,23.810332,90.412518\nBarbados,Bridgetown,13.113222,-59.598809\nBelarus,Minsk,53.90454,27.561524\nBelgium,Brussels,50.85034,4.35171\nBelize,Belmopan,17.251011,-88.75902\nBenin,Porto-Novo,6.496857,2.628852\nBermuda,Hamilton,32.294816,-64.781375\nBhutan,Thimphu,27.472792,89.639286\nBolivia,La Paz,-16.489689,-68.119294\nBosnia and Herzegovina,Sarajevo,43.856259,18.413076\nBotswana,Gaborone,-24.628208,25.923147\nBouvet Island,Bouvet Island,-54.43,3.38\nBrazil,Brasília,-15.794229,-47.882166\nBritish Indian Ocean Territory,Camp Justice,21.3419,55.4778\nBritish Virgin Islands,Road Town,18.428612,-64.618466\nBrunei,Bandar Seri Begawan,4.903052,114.939821\nBulgaria,Sofia,42.697708,23.321868\nBurkina Faso,Ouagadougou,12.371428,-1.51966\nBurundi,Bujumbura,-3.361378,29.359878\nCambodia,Phnom Penh,11.544873,104.892167\nCameroon,Yaoundé,3.848033,11.502075\nCanada,Ottawa,45.42153,-75.697193\nCape Verde,Praia,14.93305,-23.513327\nCayman Islands,George Town,19.286932,-81.367439\nCentral African Republic,Bangui,4.394674,18.55819\nChad,N'Djamena,12.134846,15.055742\nChile,Santiago,-33.44889,-70.669265\nChina,Beijing,39.904211,116.407395\nChristmas Island,Flying Fish Cove,-10.420686,105.679379\nCocos (Keeling) Islands,West Island,-12.188834,96.829316\nColombia,Bogotá,4.710989,-74.072092\nComoros,Moroni,-11.717216,43.247315\nDR Congo,Kinshasa,-4.441931,15.266293\nCongo,Brazzaville,-4.26336,15.242885\nCook Islands,Avarua,-21.212901,-159.782306\nCosta Rica,San José,9.928069,-84.090725\nCôte d'Ivoire,Yamoussoukro,6.827623,-5.289343\nCroatia,Zagreb ,45.815011,15.981919\nCuba,Havana,23.05407,-82.345189\nCuraçao,Willemstad,12.122422,-68.882423\nCyprus,Nicosia,35.185566,33.382276\nCzech Republic,Prague,50.075538,14.4378\nDenmark,Copenhagen,55.676097,12.568337\nDjibouti,Djibouti,11.572077,43.145647\nDominica,Roseau,15.309168,-61.379355\nDominican Republic,Santo Domingo,18.486058,-69.931212\nEcuador,Quito,-0.180653,-78.467838\nEgypt,Cairo,30.04442,31.235712\nEl Salvador,San Salvador,13.69294,-89.218191\nEquatorial Guinea,Malabo,3.750412,8.737104\nEritrea,Asmara,15.322877,38.925052\nEstonia,Tallinn,59.436961,24.753575\nEthiopia,Addis Ababa,8.980603,38.757761\nFalkland Islands (Islas Malvinas),Stanley,-51.697713,-57.851663\nFaroe Islands,Tórshavn,62.007864,-6.790982\nFiji,Suva,-18.124809,178.450079\nFinland,Helsinki,60.173324,24.941025\nFrance,Paris,48.856614,2.352222\nFrench Guiana,Cayenne,4.92242,-52.313453\nFrench Polynesia,Papeete,-17.551625,-149.558476\nFrench Southern Territories,Saint-Pierre ,-21.3419,55.4778\nGabon,Libreville,0.416198,9.467268\nGambia,Banjul,13.454876,-16.579032\nGeorgia,Tbilisi,41.715138,44.827096\nGermany,Berlin,52.520007,13.404954\nGhana,Accra,5.603717,-0.186964\nGibraltar,Gibraltar,36.140773,-5.353599\nGreece,Athens,37.983917,23.72936\nGreenland,Nuuk,64.18141,-51.694138\nGrenada,Saint George's,12.056098,-61.7488\nGuadeloupe,Basse-Terre,16.014453,-61.706411\nGuam,Hagåtña,13.470891,144.751278\nGuatemala,Guatemala City,14.634915,-90.506882\nGuernsey,Saint Peter Port,49.455443,-2.536871\nGuinea,Conakry,9.641185,-13.578401\nGuinea-Bissau,Bissau,11.881655,-15.617794\nGuyana,Georgetown,6.801279,-58.155125\nHaiti,Port-au-Prince,18.594395,-72.307433\nHonduras,Tegucigalpa,14.072275,-87.192136\nHong Kong,Hong Kong,22.396428,114.109497\nHungary,Budapest,47.497912,19.040235\nIceland,Reykjavík,64.126521,-21.817439\nIndia,New Delhi,28.613939,77.209021\nIndonesia,Jakarta,-6.208763,106.845599\nIran,Tehran,35.689198,51.388974\nIraq,Baghdad,33.312806,44.361488\nIreland,Dublin,53.349805,-6.26031\nIsle of Man,Douglas,54.152337,-4.486123\nIsrael,Tel Aviv,32.0853,34.781768\nItaly,Rome,41.902784,12.496366\nJamaica,Kingston,18.042327,-76.802893\nJapan,Tokyo,35.709026,139.731992\nJersey,Saint Helier,49.186823,-2.106568\nJordan,Amman,31.956578,35.945695\nKazakhstan,Astana,51.160523,71.470356\nKenya,Nairobi,-1.292066,36.821946\nKiribati,Tarawa Atoll,1.451817,172.971662\nKosovo,Pristina,42.662914,21.165503\nKuwait,Kuwait City,29.375859,47.977405\nKyrgyzstan,Bishkek,42.874621,74.569762\nLaos,Vientiane,17.975706,102.633104\nLatvia,Riga,56.949649,24.105186\nLebanon,Beirut,33.888629,35.495479\nLesotho,Maseru,-29.363219,27.51436\nLiberia,Monrovia,6.290743,-10.760524\nLibya,Tripoli,32.887209,13.191338\nLiechtenstein,Vaduz,47.14103,9.520928\nLithuania,Vilnius,54.687156,25.279651\nLuxembourg,Luxembourg,49.611621,6.131935\nMacau,Macau,22.166667,113.55\nNorth Macedonia,Skopje,41.997346,21.427996\nMadagascar,Antananarivo,-18.87919,47.507905\nMalawi,Lilongwe,-13.962612,33.774119\nMalaysia,Kuala Lumpur,3.139003,101.686855\nMaldives,Malé,4.175496,73.509347\nMali,Bamako,12.639232,-8.002889\nMalta,Valletta,35.898909,14.514553\nMarshall Islands,Majuro,7.116421,171.185774\nMartinique,Fort-de-France,14.616065,-61.05878\nMauritania,Nouakchott,18.07353,-15.958237\nMauritius,Port Louis,-20.166896,57.502332\nMayotte,Mamoudzou,-12.780949,45.227872\nMexico,Mexico City,19.432608,-99.133208\nMicronesia,Palikir,6.914712,158.161027\nMoldova,Chisinau,47.010453,28.86381\nMonaco,Monaco,43.737411,7.420816\nMongolia,Ulaanbaatar,47.886399,106.905744\nMontenegro,Podgorica,42.43042,19.259364\nMontserrat,Plymouth,16.706523,-62.215738\nMorocco,Rabat,33.97159,-6.849813\nMozambique,Maputo,-25.891968,32.605135\nMyanmar,Naypyidaw,19.763306,96.07851\nNagorno-Karabakh Republic,Stepanakert,39.826385,46.763595\nNamibia,Windhoek,-22.560881,17.065755\nNauru,Yaren,-0.546686,166.921091\nNepal,Kathmandu,27.717245,85.323961\nNetherlands,Amsterdam,52.370216,4.895168\nNetherlands Antilles,Willemstad ,12.1091242,-68.9316546\nNew Caledonia,Nouméa,-22.255823,166.450524\nNew Zealand,Wellington,-41.28646,174.776236\nNicaragua,Managua,12.114993,-86.236174\nNiger,Niamey,13.511596,2.125385\nNigeria,Abuja,9.076479,7.398574\nNiue,Alofi,-19.055371,-169.917871\nNorfolk Island,Kingston,-29.056394,167.959588\nNorth Korea,Pyongyang,39.039219,125.762524\nNorthern Cyprus,Nicosia,35.185566,33.382276\nNorthern Mariana Islands,Saipan,15.177801,145.750967\nNorway,Oslo,59.913869,10.752245\nOman,Muscat,23.58589,58.405923\nPakistan,Islamabad,33.729388,73.093146\nPalau,Ngerulmud,7.500384,134.624289\nPalestine,Ramallah,31.9073509,35.5354719\nPanama,Panama City,9.101179,-79.402864\nPapua New Guinea,Port Moresby,-9.4438,147.180267\nParaguay,Asuncion,-25.26374,-57.575926\nPeru,Lima,-12.046374,-77.042793\nPhilippines,Manila,14.599512,120.98422\nPitcairn Islands,Adamstown,-25.06629,-130.100464\nPoland,Warsaw,52.229676,21.012229\nPortugal,Lisbon,38.722252,-9.139337\nPuerto Rico,San Juan,18.466334,-66.105722\nQatar,Doha,25.285447,51.53104\nRéunion,Saint-Denis,-20.882057,55.450675\nRomania,Bucharest,44.426767,26.102538\nRussia,Moscow,55.755826,37.6173\nRwanda,Kigali,-1.957875,30.112735\nSaint Pierre and Miquelon,Saint Pierre,46.775846,-56.180636\nSaint Vincent and the Grenadines,Kingstown,13.160025,-61.224816\nSamoa,Apia,-13.850696,-171.751355\nSan Marino,San Marino,43.935591,12.447281\nSão Tomé and Príncipe,São Tomé,0.330192,6.733343\nSaudi Arabia,Riyadh,24.749403,46.902838\nSenegal,Dakar,14.764504,-17.366029\nSerbia,Belgrade,44.786568,20.448922\nSeychelles,Victoria,-4.619143,55.451315\nSierra Leone,Freetown,8.465677,-13.231722\nSingapore,Singapore,1.280095,103.850949\nSlovakia,Bratislava,48.145892,17.107137\nSlovenia,Ljubljana,46.056947,14.505751\nSolomon Islands,Honiara,-9.445638,159.9729\nSomalia,Mogadishu,2.046934,45.318162\nSouth Africa,Pretoria,-25.747868,28.229271\nSouth Georgia and the South Sandwich Islands,King Edward Point,-54.28325,-36.493735\nSouth Korea,Seoul,37.566535,126.977969\nSouth Ossetia,Tskhinvali,42.22146,43.964405\nSouth Sudan,Juba,4.859363,31.57125\nSpain,Madrid,40.416775,-3.70379\nSri Lanka,Sri Jayawardenepura Kotte,6.89407,79.902478\nSaint Barthélemy,Gustavia,17.896435,-62.852201\nSaint Kitts and Nevis,Basseterre,17.302606,-62.717692\nSaint Lucia,Castries,14.010109,-60.987469\nSaint Martin,Marigot,18.067519,-63.082466\nSudan,Khartoum,15.500654,32.559899\nSuriname,Paramaribo,5.852036,-55.203828\nSvalbard and Jan Mayen,Longyearbyen ,78.062,22.055\nEswatini,Mbabane,-26.305448,31.136672\nSweden,Stockholm,59.329323,18.068581\nSwitzerland,Bern,46.947974,7.447447\nSyria,Damascus,33.513807,36.276528\nTaiwan,Taipei,25.032969,121.565418\nTajikistan,Dushanbe,38.559772,68.787038\nTanzania,Dodoma,-6.162959,35.751607\nThailand,Bangkok,13.756331,100.501765\nTimor-Leste,Dili,-8.556856,125.560314\nTogo,Lomé,6.172497,1.231362\nTokelau,Nukunonu,-9.2005,-171.848\nTonga,Nukuʻalofa,-21.139342,-175.204947\nTransnistria,Tiraspol,46.848185,29.596805\nTrinidad and Tobago,Port of Spain,10.654901,-61.501926\nTristan da Cunha,Edinburgh of the Seven Seas,-37.068042,-12.311315\nTunisia,Tunis,36.806495,10.181532\nTurkey,Ankara,39.933364,32.859742\nTurkmenistan,Ashgabat,37.960077,58.326063\nTurks and Caicos Islands,Cockburn Town,21.467458,-71.13891\nTuvalu,Funafuti,-8.520066,179.198128\nU.S. Virgin Islands,Charlotte Amalie,18.3419,-64.930701\nUganda,Kampala,0.347596,32.58252\nUkraine,Kiev,50.4501,30.5234\nUnited Arab Emirates,Abu Dhabi,24.299174,54.697277\nUnited Kingdom,London,51.507351,-0.127758\nUnited States,Washington,38.907192,-77.036871\nUruguay,Montevideo,-34.901113,-56.164531\nUzbekistan,Tashkent,41.299496,69.240073\nVanuatu,Port Vila,-17.733251,168.327325\nVatican City,Vatican City,41.902179,12.453601\nVenezuela,Caracas,10.480594,-66.903606\nVietnam,Hanoi,21.027764,105.83416\nWallis and Futuna,Mata-Utu,-13.282509,-176.176447\nWestern Sahara,El Aaiún,27.125287,-13.1625\nYemen,Sana'a,15.369445,44.191007\nZambia,Lusaka,-15.387526,28.322817\nZimbabwe,Harare,-17.825166,31.03351\"\"\"\ncreate_file()\n", "step-5": "def format_amount(a):\n\treturn a.replace(\",\",\"\").strip().replace(\"%\",\"\").replace(\"$\",\"\")\n\ndef create_json(gdp, coords):\n\n\t# ------------ Split gdp data ------------ #\n\tline_list=gdp.split('\\n')\n\tcolumn_list = [x.split('\\t') for x in line_list if x!=\"\"]\n\n\t# ------------ Split coord data ------------ #\n\tline_list=coords.split('\\n')\n\tcoord_list = [x.split(',') for x in line_list if x!=\"\"]\n\tcoord_dict = {}\n\tfor i in coord_list:\n\t\tcoord_dict[format_amount(i[0])] = i[1:]\n\n\n\t# ------------ Begin File ------------ #\n\tout = \"// This file is automatically generated by game-statics/utils/countryRON.py.\\n// Please do not edit.\"\n\tout += \"\\n[\"\n\n\t# -------- Add country list -------- #\n\tfor index in range(len(column_list)):\n\t\tcoords = coord_dict[format_amount(column_list[index][1]) ]\n\t\tprint(coords)\n\n\t\tout += \"(\"\n\t\tout+='name:\"' + format_amount(column_list[index][1]) + '\",'\n\t\tout+='gdp:' + format_amount(column_list[index][2]) + ','\n\t\tout+='population:' + format_amount(column_list[index][5]) + ','\n\t\tout+='lat:' + format_amount(coords [1]) + ','\n\t\tout+='long:' + format_amount(coords [2]) + ''\n\t\tout+=\")\"\n\t\tif index!=len(column_list)-1:\n\t\t\tout+=','\n\n\t# ----------- End File ----------- #\n\tout+=\"]\"\n\n\n\t\n\n\treturn out\n\ndef create_file():\n\tdata = create_json(d, coords)\n\tfile = open(\"../assets/Countries.ron\",\"w\",encoding='utf8') \n \n\tfile.write(data) \n \n\tfile.close() \n\n# Copied from https://www.worldometers.info/gdp/gdp-by-country/\n#\tCountry\t\t\tGDP\t\t\t\t\tGDP formated\t\tGDP change\tPopulation\tGDP per capita share of word GDP\nd='''\n1\t United States\t $19,485,394,000,000\t $19.485 trillion\t 2.27%\t 325,084,756\t $59,939\t 24.08%\n2\t China\t $12,237,700,479,375\t $12.238 trillion\t 6.90%\t 1,421,021,791\t $8,612\t 15.12%\n3\t Japan\t $4,872,415,104,315\t $4.872 trillion\t 1.71%\t 127,502,725\t $38,214\t 6.02%\n4\t Germany\t $3,693,204,332,230\t $3.693 trillion\t 2.22%\t 82,658,409\t $44,680\t 4.56%\n5\t India\t $2,650,725,335,364\t $2.651 trillion\t 6.68%\t 1,338,676,785\t $1,980\t 3.28%\n6\t United Kingdom\t $2,637,866,340,434\t $2.638 trillion\t 1.79%\t 66,727,461\t $39,532\t 3.26%\n7\t France\t $2,582,501,307,216\t $2.583 trillion\t 1.82%\t 64,842,509\t $39,827\t 3.19%\n8\t Brazil\t $2,053,594,877,013\t $2.054 trillion\t 0.98%\t 207,833,823\t $9,881\t 2.54%\n9\t Italy\t $1,943,835,376,342\t $1.944 trillion\t 1.50%\t 60,673,701\t $32,038\t 2.40%\n10\t Canada\t $1,647,120,175,449\t $1.647 trillion\t 3.05%\t 36,732,095\t $44,841\t 2.04%\n11\t Russia\t $1,578,417,211,937\t $1.578 trillion\t 1.55%\t 145,530,082\t $10,846\t 1.95%\n12\t South Korea\t $1,530,750,923,149\t $1.531 trillion\t 3.06%\t 51,096,415\t $29,958\t 1.89%\n13\t Australia\t $1,323,421,072,479\t $1.323 trillion\t 1.96%\t 24,584,620\t $53,831\t 1.64%\n14\t Spain\t $1,314,314,164,402\t $1.314 trillion\t 3.05%\t 46,647,428\t $28,175\t 1.62%\n15\t Mexico\t $1,150,887,823,404\t $1.151 trillion\t 2.04%\t 124,777,324\t $9,224\t 1.42%\n16\t Indonesia\t $1,015,420,587,285\t $1.015 trillion\t 5.07%\t 264,650,963\t $3,837\t 1.25%\n17\t Turkey\t $851,549,299,635\t $852 billion\t 7.44%\t 81,116,450\t $10,498\t 1.05%\n18\t Netherlands\t $830,572,618,850\t $831 billion\t 3.16%\t 17,021,347\t $48,796\t 1.03%\n19\t Saudi Arabia\t $686,738,400,000\t $687 billion\t -0.86%\t 33,101,179\t $20,747\t 0.85%\n20\t Switzerland\t $678,965,423,322\t $679 billion\t 1.09%\t 8,455,804\t $80,296\t 0.84%\n21\t Argentina\t $637,430,331,479\t $637 billion\t 2.85%\t 43,937,140\t $14,508\t 0.79%\n22\t Sweden\t $535,607,385,506\t $536 billion\t 2.29%\t 9,904,896\t $54,075\t 0.66%\n23\t Poland\t $526,465,839,003\t $526 billion\t 4.81%\t 37,953,180\t $13,871\t 0.65%\n24\t Belgium\t $494,763,551,891\t $495 billion\t 1.73%\t 11,419,748\t $43,325\t 0.61%\n25\t Thailand\t $455,302,682,986\t $455 billion\t 3.91%\t 69,209,810\t $6,579\t 0.56%\n26\t Iran\t $454,012,768,724\t $454 billion\t 3.76%\t 80,673,883\t $5,628\t 0.56%\n27\t Austria\t $416,835,975,862\t $417 billion\t 3.04%\t 8,819,901\t $47,261\t 0.52%\n28\t Norway\t $399,488,897,844\t $399 billion\t 1.92%\t 5,296,326\t $75,428\t 0.49%\n29\t United Arab Emirates\t $382,575,085,092\t $383 billion\t 0.79%\t 9,487,203\t $40,325\t 0.47%\n30\t Nigeria\t $375,745,486,521\t $376 billion\t 0.81%\t 190,873,244\t $1,969\t 0.46%\n31\t Israel\t $353,268,411,919\t $353 billion\t 3.33%\t 8,243,848\t $42,852\t 0.44%\n32\t South Africa\t $348,871,647,960\t $349 billion\t 1.32%\t 57,009,756\t $6,120\t 0.43%\n33\t Hong Kong\t $341,449,340,451\t $341 billion\t 3.79%\t 7,306,322\t $46,733\t 0.42%\n34\t Ireland\t $331,430,014,003\t $331 billion\t 7.80%\t 4,753,279\t $69,727\t 0.41%\n35\t Denmark\t $329,865,537,183\t $330 billion\t 2.24%\t 5,732,274\t $57,545\t 0.41%\n36\t Singapore\t $323,907,234,412\t $324 billion\t 3.62%\t 5,708,041\t $56,746\t 0.40%\n37\t Malaysia\t $314,710,259,511\t $315 billion\t 5.90%\t 31,104,646\t $10,118\t 0.39%\n38\t Colombia\t $314,457,601,860\t $314 billion\t 1.79%\t 48,909,839\t $6,429\t 0.39%\n39\t Philippines\t $313,595,208,737\t $314 billion\t 6.68%\t 105,172,925\t $2,982\t 0.39%\n40\t Pakistan\t $304,951,818,494\t $305 billion\t 5.70%\t 207,906,209\t $1,467\t 0.38%\n41\t Chile\t $277,075,944,402\t $277 billion\t 1.49%\t 18,470,439\t $15,001\t 0.34%\n42\t Finland\t $252,301,837,573\t $252 billion\t 2.63%\t 5,511,371\t $45,778\t 0.31%\n43\t Bangladesh\t $249,723,862,487\t $250 billion\t 7.28%\t 159,685,424\t $1,564\t 0.31%\n44\t Egypt\t $235,369,129,338\t $235 billion\t 4.18%\t 96,442,591\t $2,441\t 0.29%\n45\t Vietnam\t $223,779,865,815\t $224 billion\t 6.81%\t 94,600,648\t $2,366\t 0.28%\n46\t Portugal\t $219,308,128,887\t $219 billion\t 2.68%\t 10,288,527\t $21,316\t 0.27%\n47\t Czech Republic\t $215,913,545,038\t $216 billion\t 4.29%\t 10,641,034\t $20,291\t 0.27%\n48\t Romania\t $211,883,923,504\t $212 billion\t 7.26%\t 19,653,969\t $10,781\t 0.26%\n49\t Peru\t $211,389,272,242\t $211 billion\t 2.53%\t 31,444,298\t $6,723\t 0.26%\n50\t New Zealand\t $204,139,049,909\t $204 billion\t 3.03%\t 4,702,034\t $43,415\t 0.25%\n51\t Greece\t $203,085,551,429\t $203 billion\t 1.35%\t 10,569,450\t $19,214\t 0.25%\n52\t Iraq\t $192,060,810,811\t $192 billion\t -2.07%\t 37,552,781\t $5,114\t 0.24%\n53\t Algeria\t $167,555,280,113\t $168 billion\t 1.60%\t 41,389,189\t $4,048\t 0.21%\n54\t Qatar\t $166,928,571,429\t $167 billion\t 1.58%\t 2,724,728\t $61,264\t 0.21%\n55\t Kazakhstan\t $162,886,867,832\t $163 billion\t 4.10%\t 18,080,019\t $9,009\t 0.20%\n56\t Hungary\t $139,761,138,103\t $140 billion\t 3.99%\t 9,729,823\t $14,364\t 0.17%\n57\t Angola\t $122,123,822,334\t $122 billion\t -0.15%\t 29,816,766\t $4,096\t 0.15%\n58\t Kuwait\t $120,126,277,613\t $120 billion\t -2.87%\t 4,056,099\t $29,616\t 0.15%\n59\t Sudan\t $117,487,857,143\t $117 billion\t 4.28%\t 40,813,397\t $2,879\t 0.15%\n60\t Ukraine\t $112,154,185,121\t $112 billion\t 2.52%\t 44,487,709\t $2,521\t 0.14%\n61\t Morocco\t $109,708,728,849\t $110 billion\t 4.09%\t 35,581,255\t $3,083\t 0.14%\n62\t Ecuador\t $104,295,862,000\t $104 billion\t 2.37%\t 16,785,361\t $6,214\t 0.13%\n63\t Cuba\t $96,851,000,000\t $96.85 billion\t 1.78%\t 11,339,254\t $8,541\t 0.12%\n64\t Slovakia\t $95,617,670,260\t $95.62 billion\t 3.40%\t 5,447,900\t $17,551\t 0.12%\n65\t Sri Lanka\t $87,357,205,923\t $87.36 billion\t 3.31%\t 21,128,032\t $4,135\t 0.11%\n66\t Ethiopia\t $80,561,496,134\t $80.56 billion\t 10.25%\t 106,399,924\t $757\t 0.10%\n67\t Kenya\t $79,263,075,749\t $79.26 billion\t 4.87%\t 50,221,142\t $1,578\t 0.10%\n68\t Dominican Republic\t $75,931,656,815\t $75.93 billion\t 4.55%\t 10,513,104\t $7,223\t 0.09%\n69\t Guatemala\t $75,620,095,538\t $75.62 billion\t 2.76%\t 16,914,970\t $4,471\t 0.09%\n70\t Oman\t $70,783,875,163\t $70.78 billion\t -0.27%\t 4,665,928\t $15,170\t 0.09%\n71\t Myanmar\t $67,068,745,521\t $67.07 billion\t 6.76%\t 53,382,523\t $1,256\t 0.08%\n72\t Luxembourg\t $62,316,359,824\t $62.32 billion\t 2.30%\t 591,910\t $105,280\t 0.08%\n73\t Panama\t $62,283,756,584\t $62.28 billion\t 5.32%\t 4,106,769\t $15,166\t 0.08%\n74\t Ghana\t $58,996,776,238\t $59.00 billion\t 8.14%\t 29,121,465\t $2,026\t 0.07%\n75\t Bulgaria\t $58,220,973,783\t $58.22 billion\t 3.81%\t 7,102,444\t $8,197\t 0.07%\n76\t Costa Rica\t $57,285,984,448\t $57.29 billion\t 3.28%\t 4,949,954\t $11,573\t 0.07%\n77\t Uruguay\t $56,156,972,158\t $56.16 billion\t 2.66%\t 3,436,641\t $16,341\t 0.07%\n78\t Croatia\t $55,213,087,271\t $55.21 billion\t 2.92%\t 4,182,857\t $13,200\t 0.07%\n79\t Belarus\t $54,456,465,473\t $54.46 billion\t 2.42%\t 9,450,231\t $5,762\t 0.07%\n80\t Lebanon\t $53,576,985,687\t $53.58 billion\t 1.53%\t 6,819,373\t $7,857\t 0.07%\n81\t Tanzania\t $53,320,625,959\t $53.32 billion\t 7.10%\t 54,660,339\t $975\t 0.07%\n82\t Macau\t $50,361,201,096\t $50.36 billion\t 9.10%\t 622,585\t $80,890\t 0.06%\n83\t Uzbekistan\t $49,677,172,714\t $49.68 billion\t 5.30%\t 31,959,785\t $1,554\t 0.06%\n84\t Slovenia\t $48,769,655,479\t $48.77 billion\t 5.00%\t 2,076,394\t $23,488\t 0.06%\n85\t Lithuania\t $47,544,459,559\t $47.54 billion\t 3.83%\t 2,845,414\t $16,709\t 0.06%\n86\t Serbia\t $41,431,648,801\t $41.43 billion\t 1.87%\t 8,829,628\t $4,692\t 0.05%\n87\t Azerbaijan\t $40,747,792,238\t $40.75 billion\t 0.10%\t 9,845,320\t $4,139\t 0.05%\n88\t Jordan\t $40,068,308,451\t $40.07 billion\t 1.97%\t 9,785,843\t $4,095\t 0.05%\n89\t Tunisia\t $39,952,095,561\t $39.95 billion\t 1.96%\t 11,433,443\t $3,494\t 0.05%\n90\t Paraguay\t $39,667,400,816\t $39.67 billion\t 5.21%\t 6,867,061\t $5,776\t 0.05%\n91\t Libya\t $38,107,728,083\t $38.11 billion\t 26.68%\t 6,580,724\t $5,791\t 0.05%\n92\t Turkmenistan\t $37,926,285,714\t $37.93 billion\t 6.50%\t 5,757,667\t $6,587\t 0.05%\n93\t DR Congo\t $37,642,482,562\t $37.64 billion\t 3.70%\t 81,398,764\t $462\t 0.05%\n94\t Bolivia\t $37,508,642,113\t $37.51 billion\t 4.20%\t 11,192,855\t $3,351\t 0.05%\n95\t Côte d'Ivoire\t $37,353,276,059\t $37.35 billion\t 7.70%\t 24,437,470\t $1,529\t 0.05%\n96\t Bahrain\t $35,432,686,170\t $35.43 billion\t 3.88%\t 1,494,076\t $23,715\t 0.04%\n97\t Cameroon\t $34,922,782,311\t $34.92 billion\t 3.55%\t 24,566,073\t $1,422\t 0.04%\n98\t Yemen\t $31,267,675,216\t $31.27 billion\t -5.94%\t 27,834,819\t $1,123\t 0.04%\n99\t Latvia\t $30,463,302,414\t $30.46 billion\t 4.55%\t 1,951,097\t $15,613\t 0.04%\n100\t Estonia\t $26,611,651,599\t $26.61 billion\t 4.85%\t 1,319,390\t $20,170\t 0.03%\n101\t Uganda\t $25,995,031,850\t $26.00 billion\t 3.86%\t 41,166,588\t $631\t 0.03%\n102\t Zambia\t $25,868,142,073\t $25.87 billion\t 3.40%\t 16,853,599\t $1,535\t 0.03%\n103\t Nepal\t $24,880,266,905\t $24.88 billion\t 7.91%\t 27,632,681\t $900\t 0.03%\n104\t El Salvador\t $24,805,439,600\t $24.81 billion\t 2.32%\t 6,388,126\t $3,883\t 0.03%\n105\t Iceland\t $24,488,467,010\t $24.49 billion\t 3.64%\t 334,393\t $73,233\t 0.03%\n106\t Honduras\t $22,978,532,897\t $22.98 billion\t 4.79%\t 9,429,013\t $2,437\t 0.03%\n107\t Cambodia\t $22,158,209,503\t $22.16 billion\t 7.10%\t 16,009,409\t $1,384\t 0.03%\n108\t Trinidad and Tobago\t $22,079,017,627\t $22.08 billion\t -2.34%\t 1,384,059\t $15,952\t 0.03%\n109\t Cyprus\t $22,054,225,828\t $22.05 billion\t 4.23%\t 1,179,678\t $18,695\t 0.03%\n110\t Zimbabwe\t $22,040,902,300\t $22.04 billion\t 4.70%\t 14,236,595\t $1,548\t 0.03%\n111\t Senegal\t $21,070,225,735\t $21.07 billion\t 7.15%\t 15,419,355\t $1,366\t 0.03%\n112\t Papua New Guinea\t $20,536,314,601\t $20.54 billion\t 2.55%\t 8,438,036\t $2,434\t 0.03%\n113\t Afghanistan\t $19,543,976,895\t $19.54 billion\t 2.67%\t 36,296,113\t $538\t 0.02%\n114\t Bosnia and Herzegovina\t $18,054,854,789\t $18.05 billion\t 3.19%\t 3,351,525\t $5,387\t 0.02%\n115\t Botswana\t $17,406,565,823\t $17.41 billion\t 2.36%\t 2,205,080\t $7,894\t 0.02%\n116\t Laos\t $16,853,087,485\t $16.85 billion\t 6.89%\t 6,953,035\t $2,424\t 0.02%\n117\t Mali\t $15,334,336,144\t $15.33 billion\t 5.40%\t 18,512,430\t $828\t 0.02%\n118\t Georgia\t $15,081,338,092\t $15.08 billion\t 4.83%\t 4,008,716\t $3,762\t 0.02%\n119\t Gabon\t $15,013,950,984\t $15.01 billion\t 0.50%\t 2,064,823\t $7,271\t 0.02%\n120\t Jamaica\t $14,781,107,822\t $14.78 billion\t 0.98%\t 2,920,848\t $5,061\t 0.02%\n121\t Palestine\t $14,498,100,000\t $14.50 billion\t 3.14%\t 4,747,227\t $3,054\t 0.02%\n122\t Nicaragua\t $13,814,261,536\t $13.81 billion\t 4.86%\t 6,384,846\t $2,164\t 0.02%\n123\t Mauritius\t $13,266,427,697\t $13.27 billion\t 3.82%\t 1,264,499\t $10,491\t 0.02%\n124\t Namibia\t $13,253,698,015\t $13.25 billion\t -0.95%\t 2,402,633\t $5,516\t 0.02%\n125\t Albania\t $13,038,538,300\t $13.04 billion\t 3.84%\t 2,884,169\t $4,521\t 0.02%\n126\t Mozambique\t $12,645,508,634\t $12.65 billion\t 3.74%\t 28,649,018\t $441\t 0.02%\n127\t Malta\t $12,518,134,319\t $12.52 billion\t 6.42%\t 437,933\t $28,585\t 0.02%\n128\t Burkina Faso\t $12,322,864,245\t $12.32 billion\t 6.30%\t 19,193,234\t $642\t 0.02%\n129\t Equatorial Guinea\t $12,293,579,173\t $12.29 billion\t -4.92%\t 1,262,002\t $9,741\t 0.02%\n130\t Bahamas\t $12,162,100,000\t $12.16 billion\t 1.44%\t 381,755\t $31,858\t 0.02%\n131\t Brunei\t $12,128,089,002\t $12.13 billion\t 1.33%\t 424,473\t $28,572\t 0.01%\n132\t Armenia\t $11,536,590,636\t $11.54 billion\t 7.50%\t 2,944,791\t $3,918\t 0.01%\n133\t Madagascar\t $11,499,803,807\t $11.50 billion\t 4.17%\t 25,570,512\t $450\t 0.01%\n134\t Mongolia\t $11,433,635,876\t $11.43 billion\t 5.30%\t 3,113,786\t $3,672\t 0.01%\n135\t North Macedonia\t $11,279,509,014\t $11.28 billion\t 0.24%\t 2,081,996\t $5,418\t 0.01%\n136\t Guinea\t $10,472,514,515\t $10.47 billion\t 10.60%\t 12,067,519\t $868\t 0.01%\n137\t Chad\t $9,871,247,732\t $9.87 billion\t -2.95%\t 15,016,753\t $657\t 0.01%\n138\t Benin\t $9,246,696,924\t $9.25 billion\t 5.84%\t 11,175,198\t $827\t 0.01%\n139\t Rwanda\t $9,135,454,442\t $9.14 billion\t 6.06%\t 11,980,961\t $762\t 0.01%\n140\t Congo\t $8,701,334,800\t $8.70 billion\t -3.10%\t 5,110,695\t $1,703\t 0.01%\n141\t Haiti\t $8,408,150,518\t $8.41 billion\t 1.17%\t 10,982,366\t $766\t 0.01%\n142\t Moldova\t $8,128,493,432\t $8.13 billion\t 4.50%\t 4,059,684\t $2,002\t 0.01%\n143\t Niger\t $8,119,710,126\t $8.12 billion\t 4.89%\t 21,602,382\t $376\t 0.01%\n144\t Kyrgyzstan\t $7,564,738,836\t $7.56 billion\t 4.58%\t 6,189,733\t $1,222\t 0.01%\n145\t Tajikistan\t $7,146,449,583\t $7.15 billion\t 7.62%\t 8,880,268\t $805\t 0.01%\n146\t Malawi\t $6,303,292,264\t $6.30 billion\t 4.00%\t 17,670,196\t $357\t 0.01%\n147\t Guam\t $5,859,000,000\t $5.86 billion\t 0.19%\t 164,281\t $35,665\t 0.01%\n148\t Fiji\t $5,061,202,767\t $5.06 billion\t 3.80%\t 877,459\t $5,768\t 0.01%\n149\t Mauritania\t $5,024,708,656\t $5.02 billion\t 3.50%\t 4,282,570\t $1,173\t 0.01%\n150\t Maldives\t $4,865,546,027\t $4.87 billion\t 6.91%\t 496,402\t $9,802\t 0.01%\n151\t Montenegro\t $4,844,592,067\t $4.84 billion\t 4.70%\t 627,563\t $7,720\t 0.01%\n152\t Togo\t $4,757,776,485\t $4.76 billion\t 4.40%\t 7,698,474\t $618\t 0.01%\n153\t Barbados\t $4,673,500,000\t $4.67 billion\t 1.00%\t 286,232\t $16,328\t 0.01%\n154\t Eswatini\t $4,433,664,364\t $4.43 billion\t 1.87%\t 1,124,805\t $3,942\t 0.01%\n155\t Sierra Leone\t $3,775,047,334\t $3.78 billion\t 4.21%\t 7,488,423\t $504\t 0.00%\n156\t Guyana\t $3,621,046,005\t $3.62 billion\t 2.92%\t 775,222\t $4,671\t 0.00%\n157\t Liberia\t $3,285,455,000\t $3.29 billion\t 2.47%\t 4,702,226\t $699\t 0.00%\n158\t Burundi\t $3,172,416,146\t $3.17 billion\t 0.50%\t 10,827,019\t $293\t 0.00%\n159\t Andorra\t $3,012,914,131\t $3.01 billion\t 1.87%\t 77,001\t $39,128\t 0.00%\n160\t Suriname\t $2,995,827,901\t $3.00 billion\t 1.69%\t 570,496\t $5,251\t 0.00%\n161\t Timor-Leste\t $2,954,621,000\t $2.95 billion\t -8.00%\t 1,243,258\t $2,377\t 0.00%\n162\t Aruba\t $2,700,558,659\t $2.70 billion\t 1.33%\t 105,366\t $25,630\t 0.00%\n163\t Lesotho\t $2,578,265,358\t $2.58 billion\t -2.29%\t 2,091,534\t $1,233\t 0.00%\n164\t Bhutan\t $2,528,007,911\t $2.53 billion\t 4.63%\t 745,563\t $3,391\t 0.00%\n165\t Central African Republic\t $1,949,411,659\t $1.95 billion\t 4.30%\t 4,596,023\t $424\t 0.00%\n166\t Belize\t $1,862,614,800\t $1.86 billion\t 1.44%\t 375,769\t $4,957\t 0.00%\n167\t Cape Verde\t $1,772,706,451\t $1.77 billion\t 4.01%\t 537,498\t $3,298\t 0.00%\n168\t Saint Lucia\t $1,737,504,296\t $1.74 billion\t 3.82%\t 180,954\t $9,602\t 0.00%\n169\t San Marino\t $1,632,860,041\t $1.63 billion\t 1.50%\t 33,671\t $48,495\t 0.00%\n170\t Northern Mariana Islands\t $1,593,000,000\t $1.59 billion\t 25.14%\t 56,562\t $28,164\t 0.00%\n171\t Antigua and Barbuda\t $1,510,084,751\t $1.51 billion\t 3.03%\t 95,426\t $15,825\t 0.00%\n172\t Seychelles\t $1,497,959,569\t $1.50 billion\t 5.28%\t 96,418\t $15,536\t 0.00%\n173\t Gambia\t $1,489,464,788\t $1.49 billion\t 4.56%\t 2,213,889\t $673\t 0.00%\n174\t Guinea-Bissau\t $1,346,841,897\t $1.35 billion\t 5.92%\t 1,828,145\t $737\t 0.00%\n175\t Solomon Islands\t $1,303,453,622\t $1.30 billion\t 3.24%\t 636,039\t $2,049\t 0.00%\n176\t Grenada\t $1,126,882,296\t $1.13 billion\t 5.06%\t 110,874\t $10,164\t 0.00%\n177\t Comoros\t $1,068,124,330\t $1.07 billion\t 2.71%\t 813,892\t $1,312\t 0.00%\n178\t Saint Kitts and Nevis\t $992,007,403\t $992 million\t 1.17%\t 52,045\t $19,061\t 0.00%\n179\t Vanuatu\t $862,879,789\t $863 million\t 4.50%\t 285,510\t $3,022\t 0.00%\n180\t Samoa\t $840,927,997\t $841 million\t 2.70%\t 195,352\t $4,305\t 0.00%\n181\t Saint Vincent and the Grenadines\t $785,222,509\t $785 million\t 0.86%\t 109,827\t $7,150\t 0.00%\n182\t American Samoa\t $634,000,000\t $634 million\t -5.38%\t 55,620\t $11,399\t 0.00%\n183\t Dominica\t $496,727,000\t $497 million\t -9.53%\t 71,458\t $6,951\t 0.00%\n184\t Tonga\t $427,659,795\t $428 million\t 2.70%\t 101,998\t $4,193\t 0.00%\n185\t São Tomé and Príncipe\t $392,570,293\t $393 million\t 3.87%\t 207,089\t $1,896\t 0.00%\n186\t Micronesia\t $336,427,500\t $336 million\t 3.20%\t 532,899\t $631\t 0.00%\n187\t Palau\t $289,823,500\t $290 million\t -3.57%\t 17,808\t $16,275\t 0.00%\n188\t Marshall Islands\t $204,173,430\t $204 million\t 3.60%\t 58,058\t $3,517\t 0.00%\n189\t Kiribati\t $185,572,502\t $186 million\t 0.33%\t 114,158\t $1,626\t 0.00%\n190\t Tuvalu\t $39,731,317\t $40 million\t 3.24%\t 11,370\t $3,494\t 0.00%'''\n\ncoords = '''Abkhazia,Sukhumi,43.001525,41.023415\nAfghanistan,Kabul,34.575503,69.240073\nAland Islands,Mariehamn,60.1,19.933333\nAlbania,Tirana,41.327546,19.818698\nAlgeria,Algiers,36.752887,3.042048\nAmerican Samoa,Pago Pago,-14.275632,-170.702036\nAndorra,Andorra la Vella,42.506317,1.521835\nAngola,Luanda,-8.839988,13.289437\nAnguilla,The Valley,18.214813,-63.057441\nAntarctica,South Pole,-90,0\nAntigua and Barbuda,Saint John's,17.12741,-61.846772\nArgentina,Buenos Aires,-34.603684,-58.381559\nArmenia,Yerevan,40.179186,44.499103\nAruba,Oranjestad,12.509204,-70.008631\nAustralia,Canberra,-35.282,149.128684\nAustria,Vienna,48.208174,16.373819\nAzerbaijan,Baku,40.409262,49.867092\nBahamas,Nassau,25.047984,-77.355413\nBahrain,Manama,26.228516,50.58605\nBangladesh,Dhaka,23.810332,90.412518\nBarbados,Bridgetown,13.113222,-59.598809\nBelarus,Minsk,53.90454,27.561524\nBelgium,Brussels,50.85034,4.35171\nBelize,Belmopan,17.251011,-88.75902\nBenin,Porto-Novo,6.496857,2.628852\nBermuda,Hamilton,32.294816,-64.781375\nBhutan,Thimphu,27.472792,89.639286\nBolivia,La Paz,-16.489689,-68.119294\nBosnia and Herzegovina,Sarajevo,43.856259,18.413076\nBotswana,Gaborone,-24.628208,25.923147\nBouvet Island,Bouvet Island,-54.43,3.38\nBrazil,Brasília,-15.794229,-47.882166\nBritish Indian Ocean Territory,Camp Justice,21.3419,55.4778\nBritish Virgin Islands,Road Town,18.428612,-64.618466\nBrunei,Bandar Seri Begawan,4.903052,114.939821\nBulgaria,Sofia,42.697708,23.321868\nBurkina Faso,Ouagadougou,12.371428,-1.51966\nBurundi,Bujumbura,-3.361378,29.359878\nCambodia,Phnom Penh,11.544873,104.892167\nCameroon,Yaoundé,3.848033,11.502075\nCanada,Ottawa,45.42153,-75.697193\nCape Verde,Praia,14.93305,-23.513327\nCayman Islands,George Town,19.286932,-81.367439\nCentral African Republic,Bangui,4.394674,18.55819\nChad,N'Djamena,12.134846,15.055742\nChile,Santiago,-33.44889,-70.669265\nChina,Beijing,39.904211,116.407395\nChristmas Island,Flying Fish Cove,-10.420686,105.679379\nCocos (Keeling) Islands,West Island,-12.188834,96.829316\nColombia,Bogotá,4.710989,-74.072092\nComoros,Moroni,-11.717216,43.247315\nDR Congo,Kinshasa,-4.441931,15.266293\nCongo,Brazzaville,-4.26336,15.242885\nCook Islands,Avarua,-21.212901,-159.782306\nCosta Rica,San José,9.928069,-84.090725\nCôte d'Ivoire,Yamoussoukro,6.827623,-5.289343\nCroatia,Zagreb ,45.815011,15.981919\nCuba,Havana,23.05407,-82.345189\nCuraçao,Willemstad,12.122422,-68.882423\nCyprus,Nicosia,35.185566,33.382276\nCzech Republic,Prague,50.075538,14.4378\nDenmark,Copenhagen,55.676097,12.568337\nDjibouti,Djibouti,11.572077,43.145647\nDominica,Roseau,15.309168,-61.379355\nDominican Republic,Santo Domingo,18.486058,-69.931212\nEcuador,Quito,-0.180653,-78.467838\nEgypt,Cairo,30.04442,31.235712\nEl Salvador,San Salvador,13.69294,-89.218191\nEquatorial Guinea,Malabo,3.750412,8.737104\nEritrea,Asmara,15.322877,38.925052\nEstonia,Tallinn,59.436961,24.753575\nEthiopia,Addis Ababa,8.980603,38.757761\nFalkland Islands (Islas Malvinas),Stanley,-51.697713,-57.851663\nFaroe Islands,Tórshavn,62.007864,-6.790982\nFiji,Suva,-18.124809,178.450079\nFinland,Helsinki,60.173324,24.941025\nFrance,Paris,48.856614,2.352222\nFrench Guiana,Cayenne,4.92242,-52.313453\nFrench Polynesia,Papeete,-17.551625,-149.558476\nFrench Southern Territories,Saint-Pierre ,-21.3419,55.4778\nGabon,Libreville,0.416198,9.467268\nGambia,Banjul,13.454876,-16.579032\nGeorgia,Tbilisi,41.715138,44.827096\nGermany,Berlin,52.520007,13.404954\nGhana,Accra,5.603717,-0.186964\nGibraltar,Gibraltar,36.140773,-5.353599\nGreece,Athens,37.983917,23.72936\nGreenland,Nuuk,64.18141,-51.694138\nGrenada,Saint George's,12.056098,-61.7488\nGuadeloupe,Basse-Terre,16.014453,-61.706411\nGuam,Hagåtña,13.470891,144.751278\nGuatemala,Guatemala City,14.634915,-90.506882\nGuernsey,Saint Peter Port,49.455443,-2.536871\nGuinea,Conakry,9.641185,-13.578401\nGuinea-Bissau,Bissau,11.881655,-15.617794\nGuyana,Georgetown,6.801279,-58.155125\nHaiti,Port-au-Prince,18.594395,-72.307433\nHonduras,Tegucigalpa,14.072275,-87.192136\nHong Kong,Hong Kong,22.396428,114.109497\nHungary,Budapest,47.497912,19.040235\nIceland,Reykjavík,64.126521,-21.817439\nIndia,New Delhi,28.613939,77.209021\nIndonesia,Jakarta,-6.208763,106.845599\nIran,Tehran,35.689198,51.388974\nIraq,Baghdad,33.312806,44.361488\nIreland,Dublin,53.349805,-6.26031\nIsle of Man,Douglas,54.152337,-4.486123\nIsrael,Tel Aviv,32.0853,34.781768\nItaly,Rome,41.902784,12.496366\nJamaica,Kingston,18.042327,-76.802893\nJapan,Tokyo,35.709026,139.731992\nJersey,Saint Helier,49.186823,-2.106568\nJordan,Amman,31.956578,35.945695\nKazakhstan,Astana,51.160523,71.470356\nKenya,Nairobi,-1.292066,36.821946\nKiribati,Tarawa Atoll,1.451817,172.971662\nKosovo,Pristina,42.662914,21.165503\nKuwait,Kuwait City,29.375859,47.977405\nKyrgyzstan,Bishkek,42.874621,74.569762\nLaos,Vientiane,17.975706,102.633104\nLatvia,Riga,56.949649,24.105186\nLebanon,Beirut,33.888629,35.495479\nLesotho,Maseru,-29.363219,27.51436\nLiberia,Monrovia,6.290743,-10.760524\nLibya,Tripoli,32.887209,13.191338\nLiechtenstein,Vaduz,47.14103,9.520928\nLithuania,Vilnius,54.687156,25.279651\nLuxembourg,Luxembourg,49.611621,6.131935\nMacau,Macau,22.166667,113.55\nNorth Macedonia,Skopje,41.997346,21.427996\nMadagascar,Antananarivo,-18.87919,47.507905\nMalawi,Lilongwe,-13.962612,33.774119\nMalaysia,Kuala Lumpur,3.139003,101.686855\nMaldives,Malé,4.175496,73.509347\nMali,Bamako,12.639232,-8.002889\nMalta,Valletta,35.898909,14.514553\nMarshall Islands,Majuro,7.116421,171.185774\nMartinique,Fort-de-France,14.616065,-61.05878\nMauritania,Nouakchott,18.07353,-15.958237\nMauritius,Port Louis,-20.166896,57.502332\nMayotte,Mamoudzou,-12.780949,45.227872\nMexico,Mexico City,19.432608,-99.133208\nMicronesia,Palikir,6.914712,158.161027\nMoldova,Chisinau,47.010453,28.86381\nMonaco,Monaco,43.737411,7.420816\nMongolia,Ulaanbaatar,47.886399,106.905744\nMontenegro,Podgorica,42.43042,19.259364\nMontserrat,Plymouth,16.706523,-62.215738\nMorocco,Rabat,33.97159,-6.849813\nMozambique,Maputo,-25.891968,32.605135\nMyanmar,Naypyidaw,19.763306,96.07851\nNagorno-Karabakh Republic,Stepanakert,39.826385,46.763595\nNamibia,Windhoek,-22.560881,17.065755\nNauru,Yaren,-0.546686,166.921091\nNepal,Kathmandu,27.717245,85.323961\nNetherlands,Amsterdam,52.370216,4.895168\nNetherlands Antilles,Willemstad ,12.1091242,-68.9316546\nNew Caledonia,Nouméa,-22.255823,166.450524\nNew Zealand,Wellington,-41.28646,174.776236\nNicaragua,Managua,12.114993,-86.236174\nNiger,Niamey,13.511596,2.125385\nNigeria,Abuja,9.076479,7.398574\nNiue,Alofi,-19.055371,-169.917871\nNorfolk Island,Kingston,-29.056394,167.959588\nNorth Korea,Pyongyang,39.039219,125.762524\nNorthern Cyprus,Nicosia,35.185566,33.382276\nNorthern Mariana Islands,Saipan,15.177801,145.750967\nNorway,Oslo,59.913869,10.752245\nOman,Muscat,23.58589,58.405923\nPakistan,Islamabad,33.729388,73.093146\nPalau,Ngerulmud,7.500384,134.624289\nPalestine,Ramallah,31.9073509,35.5354719\nPanama,Panama City,9.101179,-79.402864\nPapua New Guinea,Port Moresby,-9.4438,147.180267\nParaguay,Asuncion,-25.26374,-57.575926\nPeru,Lima,-12.046374,-77.042793\nPhilippines,Manila,14.599512,120.98422\nPitcairn Islands,Adamstown,-25.06629,-130.100464\nPoland,Warsaw,52.229676,21.012229\nPortugal,Lisbon,38.722252,-9.139337\nPuerto Rico,San Juan,18.466334,-66.105722\nQatar,Doha,25.285447,51.53104\nRéunion,Saint-Denis,-20.882057,55.450675\nRomania,Bucharest,44.426767,26.102538\nRussia,Moscow,55.755826,37.6173\nRwanda,Kigali,-1.957875,30.112735\nSaint Pierre and Miquelon,Saint Pierre,46.775846,-56.180636\nSaint Vincent and the Grenadines,Kingstown,13.160025,-61.224816\nSamoa,Apia,-13.850696,-171.751355\nSan Marino,San Marino,43.935591,12.447281\nSão Tomé and Príncipe,São Tomé,0.330192,6.733343\nSaudi Arabia,Riyadh,24.749403,46.902838\nSenegal,Dakar,14.764504,-17.366029\nSerbia,Belgrade,44.786568,20.448922\nSeychelles,Victoria,-4.619143,55.451315\nSierra Leone,Freetown,8.465677,-13.231722\nSingapore,Singapore,1.280095,103.850949\nSlovakia,Bratislava,48.145892,17.107137\nSlovenia,Ljubljana,46.056947,14.505751\nSolomon Islands,Honiara,-9.445638,159.9729\nSomalia,Mogadishu,2.046934,45.318162\nSouth Africa,Pretoria,-25.747868,28.229271\nSouth Georgia and the South Sandwich Islands,King Edward Point,-54.28325,-36.493735\nSouth Korea,Seoul,37.566535,126.977969\nSouth Ossetia,Tskhinvali,42.22146,43.964405\nSouth Sudan,Juba,4.859363,31.57125\nSpain,Madrid,40.416775,-3.70379\nSri Lanka,Sri Jayawardenepura Kotte,6.89407,79.902478\nSaint Barthélemy,Gustavia,17.896435,-62.852201\nSaint Kitts and Nevis,Basseterre,17.302606,-62.717692\nSaint Lucia,Castries,14.010109,-60.987469\nSaint Martin,Marigot,18.067519,-63.082466\nSudan,Khartoum,15.500654,32.559899\nSuriname,Paramaribo,5.852036,-55.203828\nSvalbard and Jan Mayen,Longyearbyen ,78.062,22.055\nEswatini,Mbabane,-26.305448,31.136672\nSweden,Stockholm,59.329323,18.068581\nSwitzerland,Bern,46.947974,7.447447\nSyria,Damascus,33.513807,36.276528\nTaiwan,Taipei,25.032969,121.565418\nTajikistan,Dushanbe,38.559772,68.787038\nTanzania,Dodoma,-6.162959,35.751607\nThailand,Bangkok,13.756331,100.501765\nTimor-Leste,Dili,-8.556856,125.560314\nTogo,Lomé,6.172497,1.231362\nTokelau,Nukunonu,-9.2005,-171.848\nTonga,Nukuʻalofa,-21.139342,-175.204947\nTransnistria,Tiraspol,46.848185,29.596805\nTrinidad and Tobago,Port of Spain,10.654901,-61.501926\nTristan da Cunha,Edinburgh of the Seven Seas,-37.068042,-12.311315\nTunisia,Tunis,36.806495,10.181532\nTurkey,Ankara,39.933364,32.859742\nTurkmenistan,Ashgabat,37.960077,58.326063\nTurks and Caicos Islands,Cockburn Town,21.467458,-71.13891\nTuvalu,Funafuti,-8.520066,179.198128\nU.S. Virgin Islands,Charlotte Amalie,18.3419,-64.930701\nUganda,Kampala,0.347596,32.58252\nUkraine,Kiev,50.4501,30.5234\nUnited Arab Emirates,Abu Dhabi,24.299174,54.697277\nUnited Kingdom,London,51.507351,-0.127758\nUnited States,Washington,38.907192,-77.036871\nUruguay,Montevideo,-34.901113,-56.164531\nUzbekistan,Tashkent,41.299496,69.240073\nVanuatu,Port Vila,-17.733251,168.327325\nVatican City,Vatican City,41.902179,12.453601\nVenezuela,Caracas,10.480594,-66.903606\nVietnam,Hanoi,21.027764,105.83416\nWallis and Futuna,Mata-Utu,-13.282509,-176.176447\nWestern Sahara,El Aaiún,27.125287,-13.1625\nYemen,Sana'a,15.369445,44.191007\nZambia,Lusaka,-15.387526,28.322817\nZimbabwe,Harare,-17.825166,31.03351'''\n\ncreate_file()\n\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('Site', '0004_arquivopdf')] operations = [migrations.CreateModel(name='historico', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('criados', models.DateField( auto_now_add=True, verbose_name='Criação')), ('modificado', models. DateField(auto_now=True, verbose_name='Atualização')), ('ativo', models.BooleanField(default=True, verbose_name='Ativo?')), ( 'titulo', models.CharField(max_length=100, verbose_name='Título')), ('imagem', stdimage.models.StdImageField(upload_to='img_historico', verbose_name='Imagem')), ('subtitulo01', models.CharField( max_length=100, verbose_name='Subtítulo01')), ('descricao01', models.TextField(max_length=200, verbose_name= 'Subtítulo01 Descrição')), ('subtitulo02', models.CharField( max_length=100, verbose_name='Subtítulo02')), ('descricao02', models.TextField(max_length=200, verbose_name= 'Subtítulo02 Descrição')), ('contador01', models.CharField( max_length=50, verbose_name='contador01')), ('valor01', models. TextField(max_length=6, verbose_name='valor contador01')), ( 'contador02', models.CharField(max_length=50, verbose_name= 'contador02')), ('valor02', models.TextField(max_length=6, verbose_name='valor contador02')), ('contador03', models.CharField( max_length=50, verbose_name='contador03')), ('valor03', models. TextField(max_length=6, verbose_name='valor contador03')), ( 'subtitulo03', models.CharField(max_length=100, verbose_name= 'Subtítulo03')), ('descricao03', models.TextField(max_length=200, verbose_name='Subtítulo03 Descrição'))], options={'verbose_name': 'Notícia', 'verbose_name_plural': 'Noticias'}), migrations.AddField (model_name='arquivopdf', name='descricao', field=models.TextField( default=1, max_length=200, verbose_name='Descrição'), preserve_default=False), migrations.AddField(model_name= 'arquivopdf', name='titulo', field=models.CharField(default=1, max_length=100, verbose_name='Título'), preserve_default=False)] <|reserved_special_token_1|> from django.db import migrations, models import stdimage.models class Migration(migrations.Migration): dependencies = [('Site', '0004_arquivopdf')] operations = [migrations.CreateModel(name='historico', fields=[('id', models.AutoField(auto_created=True, primary_key=True, serialize= False, verbose_name='ID')), ('criados', models.DateField( auto_now_add=True, verbose_name='Criação')), ('modificado', models. DateField(auto_now=True, verbose_name='Atualização')), ('ativo', models.BooleanField(default=True, verbose_name='Ativo?')), ( 'titulo', models.CharField(max_length=100, verbose_name='Título')), ('imagem', stdimage.models.StdImageField(upload_to='img_historico', verbose_name='Imagem')), ('subtitulo01', models.CharField( max_length=100, verbose_name='Subtítulo01')), ('descricao01', models.TextField(max_length=200, verbose_name= 'Subtítulo01 Descrição')), ('subtitulo02', models.CharField( max_length=100, verbose_name='Subtítulo02')), ('descricao02', models.TextField(max_length=200, verbose_name= 'Subtítulo02 Descrição')), ('contador01', models.CharField( max_length=50, verbose_name='contador01')), ('valor01', models. TextField(max_length=6, verbose_name='valor contador01')), ( 'contador02', models.CharField(max_length=50, verbose_name= 'contador02')), ('valor02', models.TextField(max_length=6, verbose_name='valor contador02')), ('contador03', models.CharField( max_length=50, verbose_name='contador03')), ('valor03', models. TextField(max_length=6, verbose_name='valor contador03')), ( 'subtitulo03', models.CharField(max_length=100, verbose_name= 'Subtítulo03')), ('descricao03', models.TextField(max_length=200, verbose_name='Subtítulo03 Descrição'))], options={'verbose_name': 'Notícia', 'verbose_name_plural': 'Noticias'}), migrations.AddField (model_name='arquivopdf', name='descricao', field=models.TextField( default=1, max_length=200, verbose_name='Descrição'), preserve_default=False), migrations.AddField(model_name= 'arquivopdf', name='titulo', field=models.CharField(default=1, max_length=100, verbose_name='Título'), preserve_default=False)] <|reserved_special_token_1|> # Generated by Django 3.1.5 on 2021-02-24 18:34 from django.db import migrations, models import stdimage.models class Migration(migrations.Migration): dependencies = [ ('Site', '0004_arquivopdf'), ] operations = [ migrations.CreateModel( name='historico', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('criados', models.DateField(auto_now_add=True, verbose_name='Criação')), ('modificado', models.DateField(auto_now=True, verbose_name='Atualização')), ('ativo', models.BooleanField(default=True, verbose_name='Ativo?')), ('titulo', models.CharField(max_length=100, verbose_name='Título')), ('imagem', stdimage.models.StdImageField(upload_to='img_historico', verbose_name='Imagem')), ('subtitulo01', models.CharField(max_length=100, verbose_name='Subtítulo01')), ('descricao01', models.TextField(max_length=200, verbose_name='Subtítulo01 Descrição')), ('subtitulo02', models.CharField(max_length=100, verbose_name='Subtítulo02')), ('descricao02', models.TextField(max_length=200, verbose_name='Subtítulo02 Descrição')), ('contador01', models.CharField(max_length=50, verbose_name='contador01')), ('valor01', models.TextField(max_length=6, verbose_name='valor contador01')), ('contador02', models.CharField(max_length=50, verbose_name='contador02')), ('valor02', models.TextField(max_length=6, verbose_name='valor contador02')), ('contador03', models.CharField(max_length=50, verbose_name='contador03')), ('valor03', models.TextField(max_length=6, verbose_name='valor contador03')), ('subtitulo03', models.CharField(max_length=100, verbose_name='Subtítulo03')), ('descricao03', models.TextField(max_length=200, verbose_name='Subtítulo03 Descrição')), ], options={ 'verbose_name': 'Notícia', 'verbose_name_plural': 'Noticias', }, ), migrations.AddField( model_name='arquivopdf', name='descricao', field=models.TextField(default=1, max_length=200, verbose_name='Descrição'), preserve_default=False, ), migrations.AddField( model_name='arquivopdf', name='titulo', field=models.CharField(default=1, max_length=100, verbose_name='Título'), preserve_default=False, ), ]
flexible
{ "blob_id": "321147f2e2d8caf6d9224e2a8969f51ded48baf7", "index": 8130, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Site', '0004_arquivopdf')]\n operations = [migrations.CreateModel(name='historico', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('criados', models.DateField(\n auto_now_add=True, verbose_name='Criação')), ('modificado', models.\n DateField(auto_now=True, verbose_name='Atualização')), ('ativo',\n models.BooleanField(default=True, verbose_name='Ativo?')), (\n 'titulo', models.CharField(max_length=100, verbose_name='Título')),\n ('imagem', stdimage.models.StdImageField(upload_to='img_historico',\n verbose_name='Imagem')), ('subtitulo01', models.CharField(\n max_length=100, verbose_name='Subtítulo01')), ('descricao01',\n models.TextField(max_length=200, verbose_name=\n 'Subtítulo01 Descrição')), ('subtitulo02', models.CharField(\n max_length=100, verbose_name='Subtítulo02')), ('descricao02',\n models.TextField(max_length=200, verbose_name=\n 'Subtítulo02 Descrição')), ('contador01', models.CharField(\n max_length=50, verbose_name='contador01')), ('valor01', models.\n TextField(max_length=6, verbose_name='valor contador01')), (\n 'contador02', models.CharField(max_length=50, verbose_name=\n 'contador02')), ('valor02', models.TextField(max_length=6,\n verbose_name='valor contador02')), ('contador03', models.CharField(\n max_length=50, verbose_name='contador03')), ('valor03', models.\n TextField(max_length=6, verbose_name='valor contador03')), (\n 'subtitulo03', models.CharField(max_length=100, verbose_name=\n 'Subtítulo03')), ('descricao03', models.TextField(max_length=200,\n verbose_name='Subtítulo03 Descrição'))], options={'verbose_name':\n 'Notícia', 'verbose_name_plural': 'Noticias'}), migrations.AddField\n (model_name='arquivopdf', name='descricao', field=models.TextField(\n default=1, max_length=200, verbose_name='Descrição'),\n preserve_default=False), migrations.AddField(model_name=\n 'arquivopdf', name='titulo', field=models.CharField(default=1,\n max_length=100, verbose_name='Título'), preserve_default=False)]\n", "step-4": "from django.db import migrations, models\nimport stdimage.models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Site', '0004_arquivopdf')]\n operations = [migrations.CreateModel(name='historico', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('criados', models.DateField(\n auto_now_add=True, verbose_name='Criação')), ('modificado', models.\n DateField(auto_now=True, verbose_name='Atualização')), ('ativo',\n models.BooleanField(default=True, verbose_name='Ativo?')), (\n 'titulo', models.CharField(max_length=100, verbose_name='Título')),\n ('imagem', stdimage.models.StdImageField(upload_to='img_historico',\n verbose_name='Imagem')), ('subtitulo01', models.CharField(\n max_length=100, verbose_name='Subtítulo01')), ('descricao01',\n models.TextField(max_length=200, verbose_name=\n 'Subtítulo01 Descrição')), ('subtitulo02', models.CharField(\n max_length=100, verbose_name='Subtítulo02')), ('descricao02',\n models.TextField(max_length=200, verbose_name=\n 'Subtítulo02 Descrição')), ('contador01', models.CharField(\n max_length=50, verbose_name='contador01')), ('valor01', models.\n TextField(max_length=6, verbose_name='valor contador01')), (\n 'contador02', models.CharField(max_length=50, verbose_name=\n 'contador02')), ('valor02', models.TextField(max_length=6,\n verbose_name='valor contador02')), ('contador03', models.CharField(\n max_length=50, verbose_name='contador03')), ('valor03', models.\n TextField(max_length=6, verbose_name='valor contador03')), (\n 'subtitulo03', models.CharField(max_length=100, verbose_name=\n 'Subtítulo03')), ('descricao03', models.TextField(max_length=200,\n verbose_name='Subtítulo03 Descrição'))], options={'verbose_name':\n 'Notícia', 'verbose_name_plural': 'Noticias'}), migrations.AddField\n (model_name='arquivopdf', name='descricao', field=models.TextField(\n default=1, max_length=200, verbose_name='Descrição'),\n preserve_default=False), migrations.AddField(model_name=\n 'arquivopdf', name='titulo', field=models.CharField(default=1,\n max_length=100, verbose_name='Título'), preserve_default=False)]\n", "step-5": "# Generated by Django 3.1.5 on 2021-02-24 18:34\n\nfrom django.db import migrations, models\nimport stdimage.models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('Site', '0004_arquivopdf'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='historico',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('criados', models.DateField(auto_now_add=True, verbose_name='Criação')),\n ('modificado', models.DateField(auto_now=True, verbose_name='Atualização')),\n ('ativo', models.BooleanField(default=True, verbose_name='Ativo?')),\n ('titulo', models.CharField(max_length=100, verbose_name='Título')),\n ('imagem', stdimage.models.StdImageField(upload_to='img_historico', verbose_name='Imagem')),\n ('subtitulo01', models.CharField(max_length=100, verbose_name='Subtítulo01')),\n ('descricao01', models.TextField(max_length=200, verbose_name='Subtítulo01 Descrição')),\n ('subtitulo02', models.CharField(max_length=100, verbose_name='Subtítulo02')),\n ('descricao02', models.TextField(max_length=200, verbose_name='Subtítulo02 Descrição')),\n ('contador01', models.CharField(max_length=50, verbose_name='contador01')),\n ('valor01', models.TextField(max_length=6, verbose_name='valor contador01')),\n ('contador02', models.CharField(max_length=50, verbose_name='contador02')),\n ('valor02', models.TextField(max_length=6, verbose_name='valor contador02')),\n ('contador03', models.CharField(max_length=50, verbose_name='contador03')),\n ('valor03', models.TextField(max_length=6, verbose_name='valor contador03')),\n ('subtitulo03', models.CharField(max_length=100, verbose_name='Subtítulo03')),\n ('descricao03', models.TextField(max_length=200, verbose_name='Subtítulo03 Descrição')),\n ],\n options={\n 'verbose_name': 'Notícia',\n 'verbose_name_plural': 'Noticias',\n },\n ),\n migrations.AddField(\n model_name='arquivopdf',\n name='descricao',\n field=models.TextField(default=1, max_length=200, verbose_name='Descrição'),\n preserve_default=False,\n ),\n migrations.AddField(\n model_name='arquivopdf',\n name='titulo',\n field=models.CharField(default=1, max_length=100, verbose_name='Título'),\n preserve_default=False,\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.db import models from helpers.models import BaseAbstractModel from Auth.models import Profile # from Jobs.models import UserJob from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. class Notification(BaseAbstractModel): title = models.CharField(max_length=200) body = models.TextField() recipients = models.ManyToManyField(to=Profile, related_name='notifications', related_query_name='notification') time_stamp = models.DateTimeField(auto_now_add=True) read = models.BooleanField(default=False) # @receiver(post_save, sender=UserJob) # def job_handler(sender, instance, **kwargs): # if instance.is_active: # profile_list = instance.author.profile.all() # subscribed_users = profile_list.filter( # Q(user__notification_subscription__in_app_notifications=True) | Q( # user__notification_subscription__email_notifications=True)) # email_subscribed_users = profile_list.filter( # user__notification_subscription__email_notifications=True) # if(subscribed_users.count() >= 1): # notification = Notification.objects.create( # title="New Job on Twous", # body=re.sub(' +', ' ', "{} has published another job \ # titled {}".format( # instance.author.first_name.capitalize(), # instance.title))) # notification.recipients.add(*subscribed_users) # if(email_subscribed_users.count() >= 1): # send_emails_to_recipients(notification, email_subscribed_users) # notification.save()
normal
{ "blob_id": "1066f86d3a35e892ca2a7054dfc89fe79f1d32c8", "index": 7496, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Notification(BaseAbstractModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Notification(BaseAbstractModel):\n title = models.CharField(max_length=200)\n body = models.TextField()\n recipients = models.ManyToManyField(to=Profile, related_name=\n 'notifications', related_query_name='notification')\n time_stamp = models.DateTimeField(auto_now_add=True)\n read = models.BooleanField(default=False)\n", "step-4": "from django.db import models\nfrom helpers.models import BaseAbstractModel\nfrom Auth.models import Profile\nfrom django.db.models.signals import post_save\nfrom django.dispatch import receiver\n\n\nclass Notification(BaseAbstractModel):\n title = models.CharField(max_length=200)\n body = models.TextField()\n recipients = models.ManyToManyField(to=Profile, related_name=\n 'notifications', related_query_name='notification')\n time_stamp = models.DateTimeField(auto_now_add=True)\n read = models.BooleanField(default=False)\n", "step-5": "from django.db import models\nfrom helpers.models import BaseAbstractModel\nfrom Auth.models import Profile\n# from Jobs.models import UserJob\nfrom django.db.models.signals import post_save\nfrom django.dispatch import receiver\n# Create your models here.\nclass Notification(BaseAbstractModel):\n title = models.CharField(max_length=200)\n body = models.TextField()\n recipients = models.ManyToManyField(to=Profile,\n related_name='notifications',\n related_query_name='notification')\n time_stamp = models.DateTimeField(auto_now_add=True)\n read = models.BooleanField(default=False)\n\n# @receiver(post_save, sender=UserJob)\n# def job_handler(sender, instance, **kwargs):\n# if instance.is_active:\n# profile_list = instance.author.profile.all()\n# subscribed_users = profile_list.filter(\n# Q(user__notification_subscription__in_app_notifications=True) | Q(\n# user__notification_subscription__email_notifications=True))\n\n# email_subscribed_users = profile_list.filter(\n# user__notification_subscription__email_notifications=True)\n# if(subscribed_users.count() >= 1):\n\n# notification = Notification.objects.create(\n# title=\"New Job on Twous\",\n# body=re.sub(' +', ' ', \"{} has published another job \\\n# titled {}\".format(\n# instance.author.first_name.capitalize(),\n# instance.title)))\n# notification.recipients.add(*subscribed_users)\n\n# if(email_subscribed_users.count() >= 1):\n# send_emails_to_recipients(notification, email_subscribed_users)\n\n# notification.save()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> admin.site.register(TutorialsReview) admin.site.register(TutorialsReviewComment) <|reserved_special_token_1|> from django.contrib import admin from .models import TutorialsReview, TutorialsReviewComment admin.site.register(TutorialsReview) admin.site.register(TutorialsReviewComment)
flexible
{ "blob_id": "fea0619263b081f60ed0a4e178ef777a8d5dc988", "index": 6500, "step-1": "<mask token>\n", "step-2": "<mask token>\nadmin.site.register(TutorialsReview)\nadmin.site.register(TutorialsReviewComment)\n", "step-3": "from django.contrib import admin\nfrom .models import TutorialsReview, TutorialsReviewComment\nadmin.site.register(TutorialsReview)\nadmin.site.register(TutorialsReviewComment)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
list1 = [('北京大洋路', '红蛋', '散框批发', '120-125', '44', '落', '8车'), ('北京回龙观', '红蛋', '散框批发', '124', '44', '落', ''), ('北京石门', '红蛋', '散框批发', '124', '44', '落', '')] mysql_data = [] import numpy as np for l in list1: array = np.array(l) tolist = array.tolist() tolist.insert(0, 'ppp') tolist.append('lll') mysql_data.append(tolist) print(mysql_data) import requests headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36' } get = requests.get('http://www.baidu.com', headers=headers) print(get.text)
normal
{ "blob_id": "896d836ede533bad24f4077e5ba964105d96bf7a", "index": 9485, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor l in list1:\n array = np.array(l)\n tolist = array.tolist()\n tolist.insert(0, 'ppp')\n tolist.append('lll')\n mysql_data.append(tolist)\nprint(mysql_data)\n<mask token>\nprint(get.text)\n", "step-3": "list1 = [('北京大洋路', '红蛋', '散框批发', '120-125', '44', '落', '8车'), ('北京回龙观',\n '红蛋', '散框批发', '124', '44', '落', ''), ('北京石门', '红蛋', '散框批发', '124', '44',\n '落', '')]\nmysql_data = []\n<mask token>\nfor l in list1:\n array = np.array(l)\n tolist = array.tolist()\n tolist.insert(0, 'ppp')\n tolist.append('lll')\n mysql_data.append(tolist)\nprint(mysql_data)\n<mask token>\nheaders = {'User-Agent':\n 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36'\n }\nget = requests.get('http://www.baidu.com', headers=headers)\nprint(get.text)\n", "step-4": "list1 = [('北京大洋路', '红蛋', '散框批发', '120-125', '44', '落', '8车'), ('北京回龙观',\n '红蛋', '散框批发', '124', '44', '落', ''), ('北京石门', '红蛋', '散框批发', '124', '44',\n '落', '')]\nmysql_data = []\nimport numpy as np\nfor l in list1:\n array = np.array(l)\n tolist = array.tolist()\n tolist.insert(0, 'ppp')\n tolist.append('lll')\n mysql_data.append(tolist)\nprint(mysql_data)\nimport requests\nheaders = {'User-Agent':\n 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/77.0.3865.120 Safari/537.36'\n }\nget = requests.get('http://www.baidu.com', headers=headers)\nprint(get.text)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) <|reserved_special_token_0|> def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') if __name__ == '__main__': main() <|reserved_special_token_1|> <|reserved_special_token_0|> dprogram = """ img(i1). img(i2). addition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2. nn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X). """ class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2), nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU (True)) self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP('programs/mnist.txt') for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) output = model(data) test.parameters = output.tolist() test.normalize_probs() value = sum(target.tolist()) observation = ':- not addition(i1,i2,' + str(value) + ').' gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'. format(epoch, batch_idx * len(data), len(train_loader. dataset), 100.0 * batch_idx / len(train_loader), loss. item())) print(observation) print('Output: {}'.format(output.data.tolist())) print('Gradient: {}'.format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'. format(test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset))) def main(): parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help= 'number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help= 'random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar= 'N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar= 'N', help= 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)' ) args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device('cuda' if use_cuda else 'cpu') kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([transforms .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data', train=False, transform=transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args. test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if args.save_model: torch.save(model.state_dict(), 'mnist_cnn.pt') if __name__ == '__main__': main() <|reserved_special_token_1|> from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import sys import json import math from klpmln import MVPP dprogram = ''' img(i1). img(i2). addition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2. nn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X). ''' class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.encoder = nn.Sequential( nn.Conv2d(1, 6, 5), # 6 is the output chanel size; 5 is the kernal size; 1 (chanel) 28 28 -> 6 24 24 nn.MaxPool2d(2, 2), # kernal size 2; stride size 2; 6 24 24 -> 6 12 12 nn.ReLU(True), # inplace=True means that it will modify the input directly thus save memory nn.Conv2d(6, 16, 5), # 6 12 12 -> 16 8 8 nn.MaxPool2d(2, 2), # 16 8 8 -> 16 4 4 nn.ReLU(True) ) self.classifier = nn.Sequential( nn.Linear(16 * 4 * 4, 120), nn.ReLU(), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1) ) def forward(self, x): x = self.encoder(x) x = x.view(-1, 16 * 4 * 4) x = self.classifier(x) # return F.log_softmax(x, dim=1) return x def train(args, model, device, train_loader, optimizer, epoch): model.train() test = MVPP("programs/mnist.txt") for batch_idx, (data, target) in enumerate(train_loader): for inner_iter in range(1): data, target = data.to(device), target.to(device) # optimizer.zero_grad() output = model(data) # test = MVPP("programs/mnist.txt") test.parameters = output.tolist() test.normalize_probs() # construct observation addition(i1, i2, sum) value = sum(target.tolist()) observation = ":- not addition(i1,i2,"+ str(value) + ")." # we calculate gradients with exact computation gradients = test.gradients_one_obs(observation) if device.type == 'cuda': grad_by_prob = -1 * torch.cuda.FloatTensor(gradients) else: grad_by_prob = -1 * torch.FloatTensor(gradients) loss = F.nll_loss(output, target) output.backward(grad_by_prob, retain_graph=True) if (batch_idx+1) % args.multiExampleNum == 0 and inner_iter == 0: optimizer.step() optimizer.zero_grad() # optimizer.step() if batch_idx % args.log_interval == 0 and inner_iter == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) print(observation) print("Output: {}".format(output.data.tolist())) print("Gradient: {}".format(grad_by_prob)) def test(args, model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) def main(): # Training settings parser = argparse.ArgumentParser(description='PyTorch MNIST Example') parser.add_argument('--batch-size', type=int, default=2, metavar='N', help='input batch size for training (default: 2)') parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=1, metavar='N', help='number of epochs to train (default: 1)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=1000, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=False, help='For Saving the current Model') parser.add_argument('--multiExampleNum', type=int, default=1, metavar='N', help='input the number of examples whose gradients are accumulated before back-propogation (default: 10)') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() torch.manual_seed(args.seed) device = torch.device("cuda" if use_cuda else "cpu") kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.batch_size, shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args.test_batch_size, shuffle=True, **kwargs) model = Net().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) for epoch in range(1, args.epochs + 1): train(args, model, device, train_loader, optimizer, epoch) test(args, model, device, test_loader) if (args.save_model): torch.save(model.state_dict(),"mnist_cnn.pt") if __name__ == '__main__': main()
flexible
{ "blob_id": "70b08b9e8c1510a9be48a4bc1de39c6c85b36eed", "index": 2426, "step-1": "<mask token>\n\n\nclass Net(nn.Module):\n\n def __init__(self):\n super(Net, self).__init__()\n self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2),\n nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU\n (True))\n self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU\n (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1)\n )\n\n def forward(self, x):\n x = self.encoder(x)\n x = x.view(-1, 16 * 4 * 4)\n x = self.classifier(x)\n return x\n\n\ndef train(args, model, device, train_loader, optimizer, epoch):\n model.train()\n test = MVPP('programs/mnist.txt')\n for batch_idx, (data, target) in enumerate(train_loader):\n for inner_iter in range(1):\n data, target = data.to(device), target.to(device)\n output = model(data)\n test.parameters = output.tolist()\n test.normalize_probs()\n value = sum(target.tolist())\n observation = ':- not addition(i1,i2,' + str(value) + ').'\n gradients = test.gradients_one_obs(observation)\n if device.type == 'cuda':\n grad_by_prob = -1 * torch.cuda.FloatTensor(gradients)\n else:\n grad_by_prob = -1 * torch.FloatTensor(gradients)\n loss = F.nll_loss(output, target)\n output.backward(grad_by_prob, retain_graph=True)\n if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0:\n optimizer.step()\n optimizer.zero_grad()\n if batch_idx % args.log_interval == 0 and inner_iter == 0:\n print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.\n format(epoch, batch_idx * len(data), len(train_loader.\n dataset), 100.0 * batch_idx / len(train_loader), loss.\n item()))\n print(observation)\n print('Output: {}'.format(output.data.tolist()))\n print('Gradient: {}'.format(grad_by_prob))\n\n\n<mask token>\n\n\ndef main():\n parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n parser.add_argument('--batch-size', type=int, default=2, metavar='N',\n help='input batch size for training (default: 2)')\n parser.add_argument('--test-batch-size', type=int, default=1000,\n metavar='N', help='input batch size for testing (default: 1000)')\n parser.add_argument('--epochs', type=int, default=1, metavar='N', help=\n 'number of epochs to train (default: 1)')\n parser.add_argument('--lr', type=float, default=0.001, metavar='LR',\n help='learning rate (default: 0.01)')\n parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n help='SGD momentum (default: 0.5)')\n parser.add_argument('--no-cuda', action='store_true', default=False,\n help='disables CUDA training')\n parser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\n parser.add_argument('--log-interval', type=int, default=1000, metavar=\n 'N', help='how many batches to wait before logging training status')\n parser.add_argument('--save-model', action='store_true', default=False,\n help='For Saving the current Model')\n parser.add_argument('--multiExampleNum', type=int, default=1, metavar=\n 'N', help=\n 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)'\n )\n args = parser.parse_args()\n use_cuda = not args.no_cuda and torch.cuda.is_available()\n torch.manual_seed(args.seed)\n device = torch.device('cuda' if use_cuda else 'cpu')\n kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}\n train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=True, download=True, transform=transforms.Compose([transforms\n .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])),\n batch_size=args.batch_size, shuffle=True, **kwargs)\n test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=False, transform=transforms.Compose([transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.\n test_batch_size, shuffle=True, **kwargs)\n model = Net().to(device)\n optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n for epoch in range(1, args.epochs + 1):\n train(args, model, device, train_loader, optimizer, epoch)\n test(args, model, device, test_loader)\n if args.save_model:\n torch.save(model.state_dict(), 'mnist_cnn.pt')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Net(nn.Module):\n\n def __init__(self):\n super(Net, self).__init__()\n self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2),\n nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU\n (True))\n self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU\n (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1)\n )\n\n def forward(self, x):\n x = self.encoder(x)\n x = x.view(-1, 16 * 4 * 4)\n x = self.classifier(x)\n return x\n\n\ndef train(args, model, device, train_loader, optimizer, epoch):\n model.train()\n test = MVPP('programs/mnist.txt')\n for batch_idx, (data, target) in enumerate(train_loader):\n for inner_iter in range(1):\n data, target = data.to(device), target.to(device)\n output = model(data)\n test.parameters = output.tolist()\n test.normalize_probs()\n value = sum(target.tolist())\n observation = ':- not addition(i1,i2,' + str(value) + ').'\n gradients = test.gradients_one_obs(observation)\n if device.type == 'cuda':\n grad_by_prob = -1 * torch.cuda.FloatTensor(gradients)\n else:\n grad_by_prob = -1 * torch.FloatTensor(gradients)\n loss = F.nll_loss(output, target)\n output.backward(grad_by_prob, retain_graph=True)\n if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0:\n optimizer.step()\n optimizer.zero_grad()\n if batch_idx % args.log_interval == 0 and inner_iter == 0:\n print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.\n format(epoch, batch_idx * len(data), len(train_loader.\n dataset), 100.0 * batch_idx / len(train_loader), loss.\n item()))\n print(observation)\n print('Output: {}'.format(output.data.tolist()))\n print('Gradient: {}'.format(grad_by_prob))\n\n\ndef test(args, model, device, test_loader):\n model.eval()\n test_loss = 0\n correct = 0\n with torch.no_grad():\n for data, target in test_loader:\n data, target = data.to(device), target.to(device)\n output = model(data)\n test_loss += F.nll_loss(output, target, reduction='sum').item()\n pred = output.argmax(dim=1, keepdim=True)\n correct += pred.eq(target.view_as(pred)).sum().item()\n test_loss /= len(test_loader.dataset)\n print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.\n format(test_loss, correct, len(test_loader.dataset), 100.0 *\n correct / len(test_loader.dataset)))\n\n\ndef main():\n parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n parser.add_argument('--batch-size', type=int, default=2, metavar='N',\n help='input batch size for training (default: 2)')\n parser.add_argument('--test-batch-size', type=int, default=1000,\n metavar='N', help='input batch size for testing (default: 1000)')\n parser.add_argument('--epochs', type=int, default=1, metavar='N', help=\n 'number of epochs to train (default: 1)')\n parser.add_argument('--lr', type=float, default=0.001, metavar='LR',\n help='learning rate (default: 0.01)')\n parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n help='SGD momentum (default: 0.5)')\n parser.add_argument('--no-cuda', action='store_true', default=False,\n help='disables CUDA training')\n parser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\n parser.add_argument('--log-interval', type=int, default=1000, metavar=\n 'N', help='how many batches to wait before logging training status')\n parser.add_argument('--save-model', action='store_true', default=False,\n help='For Saving the current Model')\n parser.add_argument('--multiExampleNum', type=int, default=1, metavar=\n 'N', help=\n 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)'\n )\n args = parser.parse_args()\n use_cuda = not args.no_cuda and torch.cuda.is_available()\n torch.manual_seed(args.seed)\n device = torch.device('cuda' if use_cuda else 'cpu')\n kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}\n train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=True, download=True, transform=transforms.Compose([transforms\n .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])),\n batch_size=args.batch_size, shuffle=True, **kwargs)\n test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=False, transform=transforms.Compose([transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.\n test_batch_size, shuffle=True, **kwargs)\n model = Net().to(device)\n optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n for epoch in range(1, args.epochs + 1):\n train(args, model, device, train_loader, optimizer, epoch)\n test(args, model, device, test_loader)\n if args.save_model:\n torch.save(model.state_dict(), 'mnist_cnn.pt')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Net(nn.Module):\n\n def __init__(self):\n super(Net, self).__init__()\n self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2),\n nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU\n (True))\n self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU\n (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1)\n )\n\n def forward(self, x):\n x = self.encoder(x)\n x = x.view(-1, 16 * 4 * 4)\n x = self.classifier(x)\n return x\n\n\ndef train(args, model, device, train_loader, optimizer, epoch):\n model.train()\n test = MVPP('programs/mnist.txt')\n for batch_idx, (data, target) in enumerate(train_loader):\n for inner_iter in range(1):\n data, target = data.to(device), target.to(device)\n output = model(data)\n test.parameters = output.tolist()\n test.normalize_probs()\n value = sum(target.tolist())\n observation = ':- not addition(i1,i2,' + str(value) + ').'\n gradients = test.gradients_one_obs(observation)\n if device.type == 'cuda':\n grad_by_prob = -1 * torch.cuda.FloatTensor(gradients)\n else:\n grad_by_prob = -1 * torch.FloatTensor(gradients)\n loss = F.nll_loss(output, target)\n output.backward(grad_by_prob, retain_graph=True)\n if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0:\n optimizer.step()\n optimizer.zero_grad()\n if batch_idx % args.log_interval == 0 and inner_iter == 0:\n print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.\n format(epoch, batch_idx * len(data), len(train_loader.\n dataset), 100.0 * batch_idx / len(train_loader), loss.\n item()))\n print(observation)\n print('Output: {}'.format(output.data.tolist()))\n print('Gradient: {}'.format(grad_by_prob))\n\n\ndef test(args, model, device, test_loader):\n model.eval()\n test_loss = 0\n correct = 0\n with torch.no_grad():\n for data, target in test_loader:\n data, target = data.to(device), target.to(device)\n output = model(data)\n test_loss += F.nll_loss(output, target, reduction='sum').item()\n pred = output.argmax(dim=1, keepdim=True)\n correct += pred.eq(target.view_as(pred)).sum().item()\n test_loss /= len(test_loader.dataset)\n print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.\n format(test_loss, correct, len(test_loader.dataset), 100.0 *\n correct / len(test_loader.dataset)))\n\n\ndef main():\n parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n parser.add_argument('--batch-size', type=int, default=2, metavar='N',\n help='input batch size for training (default: 2)')\n parser.add_argument('--test-batch-size', type=int, default=1000,\n metavar='N', help='input batch size for testing (default: 1000)')\n parser.add_argument('--epochs', type=int, default=1, metavar='N', help=\n 'number of epochs to train (default: 1)')\n parser.add_argument('--lr', type=float, default=0.001, metavar='LR',\n help='learning rate (default: 0.01)')\n parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n help='SGD momentum (default: 0.5)')\n parser.add_argument('--no-cuda', action='store_true', default=False,\n help='disables CUDA training')\n parser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\n parser.add_argument('--log-interval', type=int, default=1000, metavar=\n 'N', help='how many batches to wait before logging training status')\n parser.add_argument('--save-model', action='store_true', default=False,\n help='For Saving the current Model')\n parser.add_argument('--multiExampleNum', type=int, default=1, metavar=\n 'N', help=\n 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)'\n )\n args = parser.parse_args()\n use_cuda = not args.no_cuda and torch.cuda.is_available()\n torch.manual_seed(args.seed)\n device = torch.device('cuda' if use_cuda else 'cpu')\n kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}\n train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=True, download=True, transform=transforms.Compose([transforms\n .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])),\n batch_size=args.batch_size, shuffle=True, **kwargs)\n test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=False, transform=transforms.Compose([transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.\n test_batch_size, shuffle=True, **kwargs)\n model = Net().to(device)\n optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n for epoch in range(1, args.epochs + 1):\n train(args, model, device, train_loader, optimizer, epoch)\n test(args, model, device, test_loader)\n if args.save_model:\n torch.save(model.state_dict(), 'mnist_cnn.pt')\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\ndprogram = \"\"\"\nimg(i1). img(i2).\n\naddition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2.\n\nnn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X).\n\"\"\"\n\n\nclass Net(nn.Module):\n\n def __init__(self):\n super(Net, self).__init__()\n self.encoder = nn.Sequential(nn.Conv2d(1, 6, 5), nn.MaxPool2d(2, 2),\n nn.ReLU(True), nn.Conv2d(6, 16, 5), nn.MaxPool2d(2, 2), nn.ReLU\n (True))\n self.classifier = nn.Sequential(nn.Linear(16 * 4 * 4, 120), nn.ReLU\n (), nn.Linear(120, 84), nn.ReLU(), nn.Linear(84, 10), nn.Softmax(1)\n )\n\n def forward(self, x):\n x = self.encoder(x)\n x = x.view(-1, 16 * 4 * 4)\n x = self.classifier(x)\n return x\n\n\ndef train(args, model, device, train_loader, optimizer, epoch):\n model.train()\n test = MVPP('programs/mnist.txt')\n for batch_idx, (data, target) in enumerate(train_loader):\n for inner_iter in range(1):\n data, target = data.to(device), target.to(device)\n output = model(data)\n test.parameters = output.tolist()\n test.normalize_probs()\n value = sum(target.tolist())\n observation = ':- not addition(i1,i2,' + str(value) + ').'\n gradients = test.gradients_one_obs(observation)\n if device.type == 'cuda':\n grad_by_prob = -1 * torch.cuda.FloatTensor(gradients)\n else:\n grad_by_prob = -1 * torch.FloatTensor(gradients)\n loss = F.nll_loss(output, target)\n output.backward(grad_by_prob, retain_graph=True)\n if (batch_idx + 1) % args.multiExampleNum == 0 and inner_iter == 0:\n optimizer.step()\n optimizer.zero_grad()\n if batch_idx % args.log_interval == 0 and inner_iter == 0:\n print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.\n format(epoch, batch_idx * len(data), len(train_loader.\n dataset), 100.0 * batch_idx / len(train_loader), loss.\n item()))\n print(observation)\n print('Output: {}'.format(output.data.tolist()))\n print('Gradient: {}'.format(grad_by_prob))\n\n\ndef test(args, model, device, test_loader):\n model.eval()\n test_loss = 0\n correct = 0\n with torch.no_grad():\n for data, target in test_loader:\n data, target = data.to(device), target.to(device)\n output = model(data)\n test_loss += F.nll_loss(output, target, reduction='sum').item()\n pred = output.argmax(dim=1, keepdim=True)\n correct += pred.eq(target.view_as(pred)).sum().item()\n test_loss /= len(test_loader.dataset)\n print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.\n format(test_loss, correct, len(test_loader.dataset), 100.0 *\n correct / len(test_loader.dataset)))\n\n\ndef main():\n parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n parser.add_argument('--batch-size', type=int, default=2, metavar='N',\n help='input batch size for training (default: 2)')\n parser.add_argument('--test-batch-size', type=int, default=1000,\n metavar='N', help='input batch size for testing (default: 1000)')\n parser.add_argument('--epochs', type=int, default=1, metavar='N', help=\n 'number of epochs to train (default: 1)')\n parser.add_argument('--lr', type=float, default=0.001, metavar='LR',\n help='learning rate (default: 0.01)')\n parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n help='SGD momentum (default: 0.5)')\n parser.add_argument('--no-cuda', action='store_true', default=False,\n help='disables CUDA training')\n parser.add_argument('--seed', type=int, default=1, metavar='S', help=\n 'random seed (default: 1)')\n parser.add_argument('--log-interval', type=int, default=1000, metavar=\n 'N', help='how many batches to wait before logging training status')\n parser.add_argument('--save-model', action='store_true', default=False,\n help='For Saving the current Model')\n parser.add_argument('--multiExampleNum', type=int, default=1, metavar=\n 'N', help=\n 'input the number of examples whose gradients are accumulated before back-propogation (default: 10)'\n )\n args = parser.parse_args()\n use_cuda = not args.no_cuda and torch.cuda.is_available()\n torch.manual_seed(args.seed)\n device = torch.device('cuda' if use_cuda else 'cpu')\n kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}\n train_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=True, download=True, transform=transforms.Compose([transforms\n .ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])),\n batch_size=args.batch_size, shuffle=True, **kwargs)\n test_loader = torch.utils.data.DataLoader(datasets.MNIST('../data',\n train=False, transform=transforms.Compose([transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))])), batch_size=args.\n test_batch_size, shuffle=True, **kwargs)\n model = Net().to(device)\n optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n for epoch in range(1, args.epochs + 1):\n train(args, model, device, train_loader, optimizer, epoch)\n test(args, model, device, test_loader)\n if args.save_model:\n torch.save(model.state_dict(), 'mnist_cnn.pt')\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from __future__ import print_function\nimport argparse\nimport torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\nfrom torchvision import datasets, transforms\n\nimport sys\nimport json\nimport math\n\nfrom klpmln import MVPP\n\ndprogram = '''\nimg(i1). img(i2).\n\naddition(A,B,N) :- digit(A,1,N1), digit(B,1,N2), N=N1+N2.\n\nnn(m(X,1), digit, [0,1,2,3,4,5,6,7,8,9]) :- img(X).\n'''\n\nclass Net(nn.Module):\n def __init__(self):\n super(Net, self).__init__()\n self.encoder = nn.Sequential(\n nn.Conv2d(1, 6, 5), # 6 is the output chanel size; 5 is the kernal size; 1 (chanel) 28 28 -> 6 24 24\n nn.MaxPool2d(2, 2), # kernal size 2; stride size 2; 6 24 24 -> 6 12 12\n nn.ReLU(True), # inplace=True means that it will modify the input directly thus save memory\n nn.Conv2d(6, 16, 5), # 6 12 12 -> 16 8 8\n nn.MaxPool2d(2, 2), # 16 8 8 -> 16 4 4\n nn.ReLU(True) \n )\n self.classifier = nn.Sequential(\n nn.Linear(16 * 4 * 4, 120),\n nn.ReLU(),\n nn.Linear(120, 84),\n nn.ReLU(),\n nn.Linear(84, 10),\n nn.Softmax(1)\n )\n\n def forward(self, x):\n x = self.encoder(x)\n x = x.view(-1, 16 * 4 * 4)\n x = self.classifier(x)\n # return F.log_softmax(x, dim=1)\n return x\n\n\n \ndef train(args, model, device, train_loader, optimizer, epoch):\n model.train()\n test = MVPP(\"programs/mnist.txt\")\n for batch_idx, (data, target) in enumerate(train_loader):\n for inner_iter in range(1):\n data, target = data.to(device), target.to(device)\n # optimizer.zero_grad()\n output = model(data)\n\n # test = MVPP(\"programs/mnist.txt\")\n test.parameters = output.tolist()\n test.normalize_probs()\n\n # construct observation addition(i1, i2, sum)\n value = sum(target.tolist())\n observation = \":- not addition(i1,i2,\"+ str(value) + \").\"\n\n # we calculate gradients with exact computation\n gradients = test.gradients_one_obs(observation)\n\n if device.type == 'cuda':\n grad_by_prob = -1 * torch.cuda.FloatTensor(gradients)\n else:\n grad_by_prob = -1 * torch.FloatTensor(gradients)\n\n loss = F.nll_loss(output, target)\n\n output.backward(grad_by_prob, retain_graph=True)\n if (batch_idx+1) % args.multiExampleNum == 0 and inner_iter == 0:\n optimizer.step()\n optimizer.zero_grad()\n # optimizer.step()\n if batch_idx % args.log_interval == 0 and inner_iter == 0:\n print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n epoch, batch_idx * len(data), len(train_loader.dataset),\n 100. * batch_idx / len(train_loader), loss.item()))\n print(observation)\n print(\"Output: {}\".format(output.data.tolist()))\n print(\"Gradient: {}\".format(grad_by_prob))\n\ndef test(args, model, device, test_loader):\n model.eval()\n test_loss = 0\n correct = 0\n with torch.no_grad():\n for data, target in test_loader:\n data, target = data.to(device), target.to(device)\n output = model(data)\n test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss\n pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability\n correct += pred.eq(target.view_as(pred)).sum().item()\n\n test_loss /= len(test_loader.dataset)\n\n print('\\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\\n'.format(\n test_loss, correct, len(test_loader.dataset),\n 100. * correct / len(test_loader.dataset)))\n\ndef main():\n # Training settings\n parser = argparse.ArgumentParser(description='PyTorch MNIST Example')\n parser.add_argument('--batch-size', type=int, default=2, metavar='N',\n help='input batch size for training (default: 2)')\n parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',\n help='input batch size for testing (default: 1000)')\n parser.add_argument('--epochs', type=int, default=1, metavar='N',\n help='number of epochs to train (default: 1)')\n parser.add_argument('--lr', type=float, default=0.001, metavar='LR',\n help='learning rate (default: 0.01)')\n parser.add_argument('--momentum', type=float, default=0.5, metavar='M',\n help='SGD momentum (default: 0.5)')\n parser.add_argument('--no-cuda', action='store_true', default=False,\n help='disables CUDA training')\n parser.add_argument('--seed', type=int, default=1, metavar='S',\n help='random seed (default: 1)')\n parser.add_argument('--log-interval', type=int, default=1000, metavar='N',\n help='how many batches to wait before logging training status')\n \n parser.add_argument('--save-model', action='store_true', default=False,\n help='For Saving the current Model')\n\n parser.add_argument('--multiExampleNum', type=int, default=1, metavar='N',\n help='input the number of examples whose gradients are accumulated before back-propogation (default: 10)')\n args = parser.parse_args()\n use_cuda = not args.no_cuda and torch.cuda.is_available()\n\n torch.manual_seed(args.seed)\n\n device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n\n kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}\n train_loader = torch.utils.data.DataLoader(\n datasets.MNIST('../data', train=True, download=True,\n transform=transforms.Compose([\n transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))\n ])),\n batch_size=args.batch_size, shuffle=True, **kwargs)\n test_loader = torch.utils.data.DataLoader(\n datasets.MNIST('../data', train=False, transform=transforms.Compose([\n transforms.ToTensor(),\n transforms.Normalize((0.1307,), (0.3081,))\n ])),\n batch_size=args.test_batch_size, shuffle=True, **kwargs)\n\n\n model = Net().to(device)\n optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)\n # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)\n\n \n\n\n\n for epoch in range(1, args.epochs + 1):\n train(args, model, device, train_loader, optimizer, epoch)\n test(args, model, device, test_loader)\n\n if (args.save_model):\n torch.save(model.state_dict(),\"mnist_cnn.pt\")\n \nif __name__ == '__main__':\n main()\n", "step-ids": [ 5, 6, 7, 8, 10 ] }
[ 5, 6, 7, 8, 10 ]
<|reserved_special_token_0|> def translate(src, tgt, text): mname = f'stas/wmt19-{src}-{tgt}' tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) encoded = tokenizer.encode(text, return_tensors='pt') output = model.generate(encoded, num_beams=5, early_stopping=True)[0] decoded = tokenizer.decode(output, skip_special_tokens=True) return decoded <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src') <|reserved_special_token_0|> logging.disable(logging.INFO) <|reserved_special_token_0|> def translate(src, tgt, text): mname = f'stas/wmt19-{src}-{tgt}' tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) encoded = tokenizer.encode(text, return_tensors='pt') output = model.generate(encoded, num_beams=5, early_stopping=True)[0] decoded = tokenizer.decode(output, skip_special_tokens=True) return decoded def paraphrase(src, tgt, text): return translate(tgt, src, translate(src, tgt, text)) <|reserved_special_token_0|> print('Paraphrasing:') print(f'en : {text}') print(f'en-ru-en: {en_ru}') print(f'en-de-en: {en_de}') <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src') <|reserved_special_token_0|> logging.disable(logging.INFO) <|reserved_special_token_0|> def translate(src, tgt, text): mname = f'stas/wmt19-{src}-{tgt}' tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) encoded = tokenizer.encode(text, return_tensors='pt') output = model.generate(encoded, num_beams=5, early_stopping=True)[0] decoded = tokenizer.decode(output, skip_special_tokens=True) return decoded def paraphrase(src, tgt, text): return translate(tgt, src, translate(src, tgt, text)) text = ( 'Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?' ) en_ru = paraphrase('en', 'ru', text) en_de = paraphrase('en', 'de', text) print('Paraphrasing:') print(f'en : {text}') print(f'en-ru-en: {en_ru}') print(f'en-de-en: {en_de}') <|reserved_special_token_1|> import sys sys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src') import logging logging.disable(logging.INFO) from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration def translate(src, tgt, text): mname = f'stas/wmt19-{src}-{tgt}' tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) encoded = tokenizer.encode(text, return_tensors='pt') output = model.generate(encoded, num_beams=5, early_stopping=True)[0] decoded = tokenizer.decode(output, skip_special_tokens=True) return decoded def paraphrase(src, tgt, text): return translate(tgt, src, translate(src, tgt, text)) text = ( 'Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?' ) en_ru = paraphrase('en', 'ru', text) en_de = paraphrase('en', 'de', text) print('Paraphrasing:') print(f'en : {text}') print(f'en-ru-en: {en_ru}') print(f'en-de-en: {en_de}') <|reserved_special_token_1|> #!/usr/bin/env python # coding: utf-8 import sys sys.path.insert(0, "/code/huggingface/transformers-fair-wmt/src") import logging logging.disable(logging.INFO) # disable INFO and DEBUG logger everywhere from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration def translate(src, tgt, text): # to switch to local model #mname = "/code/huggingface/transformers-fair-wmt/data/wmt19-{src}-{tgt}" # s3 uploaded model mname = f"stas/wmt19-{src}-{tgt}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) encoded = tokenizer.encode(text, return_tensors='pt') # print(encoded) output = model.generate(encoded, num_beams=5, early_stopping=True)[0] # print(output) decoded = tokenizer.decode(output, skip_special_tokens=True) #print(decoded) return decoded def paraphrase(src, tgt, text): return translate(tgt, src, translate(src, tgt, text)) #text = """Here's a little song I wrote. You might want to sing it note for note. Don't worry, be happy. In every life we have some trouble. But when you worry you make it double. Don't worry, be happy. Don't worry, be happy now.""" text = "Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?" en_ru = paraphrase('en', 'ru', text) en_de = paraphrase('en', 'de', text) # print together to avoid the logger noise :( print("Paraphrasing:") print(f"en : {text}") print(f"en-ru-en: {en_ru}") print(f"en-de-en: {en_de}") # Paraphrasing: # en : Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today? # en-ru-en: Every morning when I wake up, I have a delightful joy - the joy of being Salvador Dali - and I ask myself in delight: What wonderful things is this Salvador Dali going to do today? # en-de-en: Every morning when I wake up, I experience an extraordinary joy - the joy of being Salvador Dalí - and I wonder with delight: what wonderful things will this Salvador Dalí do today?
flexible
{ "blob_id": "7864138459caf469a0148420718b2282598141de", "index": 6674, "step-1": "<mask token>\n\n\ndef translate(src, tgt, text):\n mname = f'stas/wmt19-{src}-{tgt}'\n tokenizer = FSMTTokenizer.from_pretrained(mname)\n model = FSMTForConditionalGeneration.from_pretrained(mname)\n encoded = tokenizer.encode(text, return_tensors='pt')\n output = model.generate(encoded, num_beams=5, early_stopping=True)[0]\n decoded = tokenizer.decode(output, skip_special_tokens=True)\n return decoded\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src')\n<mask token>\nlogging.disable(logging.INFO)\n<mask token>\n\n\ndef translate(src, tgt, text):\n mname = f'stas/wmt19-{src}-{tgt}'\n tokenizer = FSMTTokenizer.from_pretrained(mname)\n model = FSMTForConditionalGeneration.from_pretrained(mname)\n encoded = tokenizer.encode(text, return_tensors='pt')\n output = model.generate(encoded, num_beams=5, early_stopping=True)[0]\n decoded = tokenizer.decode(output, skip_special_tokens=True)\n return decoded\n\n\ndef paraphrase(src, tgt, text):\n return translate(tgt, src, translate(src, tgt, text))\n\n\n<mask token>\nprint('Paraphrasing:')\nprint(f'en : {text}')\nprint(f'en-ru-en: {en_ru}')\nprint(f'en-de-en: {en_de}')\n", "step-3": "<mask token>\nsys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src')\n<mask token>\nlogging.disable(logging.INFO)\n<mask token>\n\n\ndef translate(src, tgt, text):\n mname = f'stas/wmt19-{src}-{tgt}'\n tokenizer = FSMTTokenizer.from_pretrained(mname)\n model = FSMTForConditionalGeneration.from_pretrained(mname)\n encoded = tokenizer.encode(text, return_tensors='pt')\n output = model.generate(encoded, num_beams=5, early_stopping=True)[0]\n decoded = tokenizer.decode(output, skip_special_tokens=True)\n return decoded\n\n\ndef paraphrase(src, tgt, text):\n return translate(tgt, src, translate(src, tgt, text))\n\n\ntext = (\n 'Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?'\n )\nen_ru = paraphrase('en', 'ru', text)\nen_de = paraphrase('en', 'de', text)\nprint('Paraphrasing:')\nprint(f'en : {text}')\nprint(f'en-ru-en: {en_ru}')\nprint(f'en-de-en: {en_de}')\n", "step-4": "import sys\nsys.path.insert(0, '/code/huggingface/transformers-fair-wmt/src')\nimport logging\nlogging.disable(logging.INFO)\nfrom transformers.tokenization_fsmt import FSMTTokenizer\nfrom transformers.modeling_fsmt import FSMTForConditionalGeneration\n\n\ndef translate(src, tgt, text):\n mname = f'stas/wmt19-{src}-{tgt}'\n tokenizer = FSMTTokenizer.from_pretrained(mname)\n model = FSMTForConditionalGeneration.from_pretrained(mname)\n encoded = tokenizer.encode(text, return_tensors='pt')\n output = model.generate(encoded, num_beams=5, early_stopping=True)[0]\n decoded = tokenizer.decode(output, skip_special_tokens=True)\n return decoded\n\n\ndef paraphrase(src, tgt, text):\n return translate(tgt, src, translate(src, tgt, text))\n\n\ntext = (\n 'Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?'\n )\nen_ru = paraphrase('en', 'ru', text)\nen_de = paraphrase('en', 'de', text)\nprint('Paraphrasing:')\nprint(f'en : {text}')\nprint(f'en-ru-en: {en_ru}')\nprint(f'en-de-en: {en_de}')\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\nimport sys\nsys.path.insert(0, \"/code/huggingface/transformers-fair-wmt/src\")\n\nimport logging\nlogging.disable(logging.INFO) # disable INFO and DEBUG logger everywhere\n\nfrom transformers.tokenization_fsmt import FSMTTokenizer\nfrom transformers.modeling_fsmt import FSMTForConditionalGeneration\n\ndef translate(src, tgt, text):\n # to switch to local model\n #mname = \"/code/huggingface/transformers-fair-wmt/data/wmt19-{src}-{tgt}\"\n # s3 uploaded model\n mname = f\"stas/wmt19-{src}-{tgt}\"\n tokenizer = FSMTTokenizer.from_pretrained(mname)\n model = FSMTForConditionalGeneration.from_pretrained(mname)\n\n encoded = tokenizer.encode(text, return_tensors='pt')\n # print(encoded)\n\n output = model.generate(encoded, num_beams=5, early_stopping=True)[0]\n # print(output)\n\n decoded = tokenizer.decode(output, skip_special_tokens=True)\n #print(decoded)\n return decoded\n\ndef paraphrase(src, tgt, text):\n return translate(tgt, src, translate(src, tgt, text))\n\n#text = \"\"\"Here's a little song I wrote. You might want to sing it note for note. Don't worry, be happy. In every life we have some trouble. But when you worry you make it double. Don't worry, be happy. Don't worry, be happy now.\"\"\"\n\ntext = \"Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?\"\n\nen_ru = paraphrase('en', 'ru', text)\nen_de = paraphrase('en', 'de', text)\n# print together to avoid the logger noise :(\nprint(\"Paraphrasing:\")\nprint(f\"en : {text}\")\nprint(f\"en-ru-en: {en_ru}\")\nprint(f\"en-de-en: {en_de}\")\n\n# Paraphrasing:\n# en : Every morning when I wake up, I experience an exquisite joy - the joy of being Salvador Dalí - and I ask myself in rapture: What wonderful things is this Salvador Dalí going to accomplish today?\n# en-ru-en: Every morning when I wake up, I have a delightful joy - the joy of being Salvador Dali - and I ask myself in delight: What wonderful things is this Salvador Dali going to do today?\n# en-de-en: Every morning when I wake up, I experience an extraordinary joy - the joy of being Salvador Dalí - and I wonder with delight: what wonderful things will this Salvador Dalí do today?\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import sys, os; sys.path.insert(0,'..'); sys.path.insert(0,'../NEURON'); from tests.cells.NEURONCellTest import NEURONCellTest from tests.cells.NeuroMLCellTest import NeuroMLCellTest class NEURON(NEURONCellTest): def __init__(self): super(NEURON, self).__init__() self.path = "../NEURON/granule.hoc" self.label = "granule" self.resultsFile = "results/cells/granule/NEURON.json" self.currentRange = (-0.01, 0.1) def prepare(self, h): # Build the network with 1GC sys.path.append(os.getcwd()) import customsim import modeldata customsim.setup(1, 1) model = modeldata.getmodel() cell = model.granules[110821] # The GC of the first MC h.celsius = 24 return cell class NeuroML(NeuroMLCellTest): def __init__(self): super(NeuroML, self).__init__() self.path = "../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml" self.label = "granule" self.resultsFile = "results/cells/granule/NeuroML.json" self.id = "Granule_0_110821" self.currentRange = (-0.01, 0.1) def prepare(self, h): # Load the cell hoc h.load_file(self.id+".hoc") cell = getattr(h,self.id)() h.celsius = 24 return cell
normal
{ "blob_id": "6dbafbcf126c37edb2187eb28c01e2c1125c1c64", "index": 7134, "step-1": "<mask token>\n\n\nclass NEURON(NEURONCellTest):\n\n def __init__(self):\n super(NEURON, self).__init__()\n self.path = '../NEURON/granule.hoc'\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NEURON.json'\n self.currentRange = -0.01, 0.1\n <mask token>\n\n\nclass NeuroML(NeuroMLCellTest):\n\n def __init__(self):\n super(NeuroML, self).__init__()\n self.path = (\n '../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml')\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NeuroML.json'\n self.id = 'Granule_0_110821'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n h.load_file(self.id + '.hoc')\n cell = getattr(h, self.id)()\n h.celsius = 24\n return cell\n", "step-2": "<mask token>\n\n\nclass NEURON(NEURONCellTest):\n\n def __init__(self):\n super(NEURON, self).__init__()\n self.path = '../NEURON/granule.hoc'\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NEURON.json'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n sys.path.append(os.getcwd())\n import customsim\n import modeldata\n customsim.setup(1, 1)\n model = modeldata.getmodel()\n cell = model.granules[110821]\n h.celsius = 24\n return cell\n\n\nclass NeuroML(NeuroMLCellTest):\n\n def __init__(self):\n super(NeuroML, self).__init__()\n self.path = (\n '../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml')\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NeuroML.json'\n self.id = 'Granule_0_110821'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n h.load_file(self.id + '.hoc')\n cell = getattr(h, self.id)()\n h.celsius = 24\n return cell\n", "step-3": "<mask token>\nsys.path.insert(0, '..')\nsys.path.insert(0, '../NEURON')\n<mask token>\n\n\nclass NEURON(NEURONCellTest):\n\n def __init__(self):\n super(NEURON, self).__init__()\n self.path = '../NEURON/granule.hoc'\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NEURON.json'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n sys.path.append(os.getcwd())\n import customsim\n import modeldata\n customsim.setup(1, 1)\n model = modeldata.getmodel()\n cell = model.granules[110821]\n h.celsius = 24\n return cell\n\n\nclass NeuroML(NeuroMLCellTest):\n\n def __init__(self):\n super(NeuroML, self).__init__()\n self.path = (\n '../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml')\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NeuroML.json'\n self.id = 'Granule_0_110821'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n h.load_file(self.id + '.hoc')\n cell = getattr(h, self.id)()\n h.celsius = 24\n return cell\n", "step-4": "import sys, os\nsys.path.insert(0, '..')\nsys.path.insert(0, '../NEURON')\nfrom tests.cells.NEURONCellTest import NEURONCellTest\nfrom tests.cells.NeuroMLCellTest import NeuroMLCellTest\n\n\nclass NEURON(NEURONCellTest):\n\n def __init__(self):\n super(NEURON, self).__init__()\n self.path = '../NEURON/granule.hoc'\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NEURON.json'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n sys.path.append(os.getcwd())\n import customsim\n import modeldata\n customsim.setup(1, 1)\n model = modeldata.getmodel()\n cell = model.granules[110821]\n h.celsius = 24\n return cell\n\n\nclass NeuroML(NeuroMLCellTest):\n\n def __init__(self):\n super(NeuroML, self).__init__()\n self.path = (\n '../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml')\n self.label = 'granule'\n self.resultsFile = 'results/cells/granule/NeuroML.json'\n self.id = 'Granule_0_110821'\n self.currentRange = -0.01, 0.1\n\n def prepare(self, h):\n h.load_file(self.id + '.hoc')\n cell = getattr(h, self.id)()\n h.celsius = 24\n return cell\n", "step-5": "import sys, os; sys.path.insert(0,'..'); sys.path.insert(0,'../NEURON');\r\nfrom tests.cells.NEURONCellTest import NEURONCellTest\r\nfrom tests.cells.NeuroMLCellTest import NeuroMLCellTest\r\n\r\nclass NEURON(NEURONCellTest):\r\n\r\n def __init__(self):\r\n super(NEURON, self).__init__()\r\n\r\n self.path = \"../NEURON/granule.hoc\"\r\n self.label = \"granule\"\r\n self.resultsFile = \"results/cells/granule/NEURON.json\"\r\n self.currentRange = (-0.01, 0.1)\r\n\r\n def prepare(self, h):\r\n\r\n # Build the network with 1GC\r\n sys.path.append(os.getcwd())\r\n import customsim\r\n import modeldata\r\n customsim.setup(1, 1)\r\n model = modeldata.getmodel()\r\n cell = model.granules[110821] # The GC of the first MC\r\n\r\n h.celsius = 24\r\n\r\n return cell\r\n\r\nclass NeuroML(NeuroMLCellTest):\r\n def __init__(self):\r\n super(NeuroML, self).__init__()\r\n\r\n self.path = \"../NeuroML2/GranuleCells/Exported/Granule_0_110821.cell.nml\"\r\n self.label = \"granule\"\r\n self.resultsFile = \"results/cells/granule/NeuroML.json\"\r\n self.id = \"Granule_0_110821\"\r\n self.currentRange = (-0.01, 0.1)\r\n\r\n def prepare(self, h):\r\n # Load the cell hoc\r\n h.load_file(self.id+\".hoc\")\r\n\r\n cell = getattr(h,self.id)()\r\n\r\n h.celsius = 24\r\n\r\n return cell\r\n\r\n\r\n\r\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Migration(migrations.Migration): dependencies = [('lectures', '0003_auto_20210805_1954')] operations = [migrations.RenameField(model_name='lecture', old_name= 'is_requird', new_name='is_required')] <|reserved_special_token_1|> from django.db import migrations class Migration(migrations.Migration): dependencies = [('lectures', '0003_auto_20210805_1954')] operations = [migrations.RenameField(model_name='lecture', old_name= 'is_requird', new_name='is_required')] <|reserved_special_token_1|> # Generated by Django 3.2.5 on 2021-08-05 23:59 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('lectures', '0003_auto_20210805_1954'), ] operations = [ migrations.RenameField( model_name='lecture', old_name='is_requird', new_name='is_required', ), ]
flexible
{ "blob_id": "e5bf4518f3834c73c3743d4c711a8d1a4ce3b944", "index": 6788, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('lectures', '0003_auto_20210805_1954')]\n operations = [migrations.RenameField(model_name='lecture', old_name=\n 'is_requird', new_name='is_required')]\n", "step-4": "from django.db import migrations\n\n\nclass Migration(migrations.Migration):\n dependencies = [('lectures', '0003_auto_20210805_1954')]\n operations = [migrations.RenameField(model_name='lecture', old_name=\n 'is_requird', new_name='is_required')]\n", "step-5": "# Generated by Django 3.2.5 on 2021-08-05 23:59\n\nfrom django.db import migrations\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('lectures', '0003_auto_20210805_1954'),\n ]\n\n operations = [\n migrations.RenameField(\n model_name='lecture',\n old_name='is_requird',\n new_name='is_required',\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, Lasso, Ridge from sklearn import tree import pickle as pk X = pk.load(file=open('../data/temp/train.pkl', 'rb')) y = pk.load(file=open('../data/temp/label.pkl', 'rb')) X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7) def train_model(model_name): if model_name == "LinearRegression": model = LinearRegression() model.fit(X_train, y_train) score = model.score(X_test, y_test) print(score) if model_name == "Lasso": model = Lasso(alpha=1) model.fit(X_train, y_train) score = model.score(X_test, y_test) print(score) if model_name == "Ridge": model = Ridge(alpha=1) model.fit(X_train, y_train) score = model.score(X_test, y_test) print(score) if model_name == "tree": model = tree.DecisionTreeRegressor() model.fit(X_train, y_train) score = model.score(X_test, y_test) print(score) if __name__ == '__main__': model_chosen = "Lasso" train_model(model_chosen)
normal
{ "blob_id": "539726df0e631c7a8edabf50fd739ee0497e3e97", "index": 5557, "step-1": "<mask token>\n\n\ndef train_model(model_name):\n if model_name == 'LinearRegression':\n model = LinearRegression()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Lasso':\n model = Lasso(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Ridge':\n model = Ridge(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'tree':\n model = tree.DecisionTreeRegressor()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef train_model(model_name):\n if model_name == 'LinearRegression':\n model = LinearRegression()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Lasso':\n model = Lasso(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Ridge':\n model = Ridge(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'tree':\n model = tree.DecisionTreeRegressor()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n\nif __name__ == '__main__':\n model_chosen = 'Lasso'\n train_model(model_chosen)\n", "step-3": "<mask token>\nX = pk.load(file=open('../data/temp/train.pkl', 'rb'))\ny = pk.load(file=open('../data/temp/label.pkl', 'rb'))\nX_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7)\n\n\ndef train_model(model_name):\n if model_name == 'LinearRegression':\n model = LinearRegression()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Lasso':\n model = Lasso(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Ridge':\n model = Ridge(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'tree':\n model = tree.DecisionTreeRegressor()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n\nif __name__ == '__main__':\n model_chosen = 'Lasso'\n train_model(model_chosen)\n", "step-4": "from sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LinearRegression, Lasso, Ridge\nfrom sklearn import tree\nimport pickle as pk\nX = pk.load(file=open('../data/temp/train.pkl', 'rb'))\ny = pk.load(file=open('../data/temp/label.pkl', 'rb'))\nX_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7)\n\n\ndef train_model(model_name):\n if model_name == 'LinearRegression':\n model = LinearRegression()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Lasso':\n model = Lasso(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'Ridge':\n model = Ridge(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n if model_name == 'tree':\n model = tree.DecisionTreeRegressor()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n\nif __name__ == '__main__':\n model_chosen = 'Lasso'\n train_model(model_chosen)\n", "step-5": "from sklearn.model_selection import train_test_split\nfrom sklearn.linear_model import LinearRegression, Lasso, Ridge\nfrom sklearn import tree\nimport pickle as pk\n\nX = pk.load(file=open('../data/temp/train.pkl', 'rb'))\ny = pk.load(file=open('../data/temp/label.pkl', 'rb'))\n\nX_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7)\n\n\ndef train_model(model_name):\n if model_name == \"LinearRegression\":\n model = LinearRegression()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n if model_name == \"Lasso\":\n model = Lasso(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n if model_name == \"Ridge\":\n model = Ridge(alpha=1)\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n if model_name == \"tree\":\n model = tree.DecisionTreeRegressor()\n model.fit(X_train, y_train)\n score = model.score(X_test, y_test)\n print(score)\n\n\nif __name__ == '__main__':\n model_chosen = \"Lasso\"\n train_model(model_chosen)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from random import random import numpy as np class TemperatureSensor: sensor_type = "temperature" unit="celsius" instance_id="283h62gsj" #initialisation def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature): self.average_temperature = average_temperature self.temperature_variation = temperature_variation self.min_temperature = min_temperature self.max_temperature= max_temperature self.value = 0.0 #initialise current temp value #sensing def sense(self): #self.value = self.value + self.simple_random() self.value = self.complex_random() + self.noise() return self.value #noise def noise(self): self.noise_value = np.random.normal(0,1) return self.noise_value #helper function for generating values with min temp as its base def simple_random(self): value = self.min_temperature + (random() * (self.max_temperature - self.min_temperature)) #so that it is in the range return value def complex_random(self): value = self.average_temperature * (1 + (self.temperature_variation/100) * (1 * random() -1)) value = max(value,self.min_temperature) value = min(value,self.max_temperature) return value #creating instance of sensor ts = TemperatureSensor(25,10,16,35)
normal
{ "blob_id": "bc890f0f40a7e9c916628d491e473b5ecfa9bb9b", "index": 740, "step-1": "<mask token>\n\n\nclass TemperatureSensor:\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, average_temperature, temperature_variation,\n min_temperature, max_temperature):\n self.average_temperature = average_temperature\n self.temperature_variation = temperature_variation\n self.min_temperature = min_temperature\n self.max_temperature = max_temperature\n self.value = 0.0\n <mask token>\n\n def noise(self):\n self.noise_value = np.random.normal(0, 1)\n return self.noise_value\n\n def simple_random(self):\n value = self.min_temperature + random() * (self.max_temperature -\n self.min_temperature)\n return value\n\n def complex_random(self):\n value = self.average_temperature * (1 + self.temperature_variation /\n 100 * (1 * random() - 1))\n value = max(value, self.min_temperature)\n value = min(value, self.max_temperature)\n return value\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TemperatureSensor:\n sensor_type = 'temperature'\n unit = 'celsius'\n instance_id = '283h62gsj'\n\n def __init__(self, average_temperature, temperature_variation,\n min_temperature, max_temperature):\n self.average_temperature = average_temperature\n self.temperature_variation = temperature_variation\n self.min_temperature = min_temperature\n self.max_temperature = max_temperature\n self.value = 0.0\n\n def sense(self):\n self.value = self.complex_random() + self.noise()\n return self.value\n\n def noise(self):\n self.noise_value = np.random.normal(0, 1)\n return self.noise_value\n\n def simple_random(self):\n value = self.min_temperature + random() * (self.max_temperature -\n self.min_temperature)\n return value\n\n def complex_random(self):\n value = self.average_temperature * (1 + self.temperature_variation /\n 100 * (1 * random() - 1))\n value = max(value, self.min_temperature)\n value = min(value, self.max_temperature)\n return value\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TemperatureSensor:\n sensor_type = 'temperature'\n unit = 'celsius'\n instance_id = '283h62gsj'\n\n def __init__(self, average_temperature, temperature_variation,\n min_temperature, max_temperature):\n self.average_temperature = average_temperature\n self.temperature_variation = temperature_variation\n self.min_temperature = min_temperature\n self.max_temperature = max_temperature\n self.value = 0.0\n\n def sense(self):\n self.value = self.complex_random() + self.noise()\n return self.value\n\n def noise(self):\n self.noise_value = np.random.normal(0, 1)\n return self.noise_value\n\n def simple_random(self):\n value = self.min_temperature + random() * (self.max_temperature -\n self.min_temperature)\n return value\n\n def complex_random(self):\n value = self.average_temperature * (1 + self.temperature_variation /\n 100 * (1 * random() - 1))\n value = max(value, self.min_temperature)\n value = min(value, self.max_temperature)\n return value\n\n\nts = TemperatureSensor(25, 10, 16, 35)\n", "step-4": "from random import random\nimport numpy as np\n\n\nclass TemperatureSensor:\n sensor_type = 'temperature'\n unit = 'celsius'\n instance_id = '283h62gsj'\n\n def __init__(self, average_temperature, temperature_variation,\n min_temperature, max_temperature):\n self.average_temperature = average_temperature\n self.temperature_variation = temperature_variation\n self.min_temperature = min_temperature\n self.max_temperature = max_temperature\n self.value = 0.0\n\n def sense(self):\n self.value = self.complex_random() + self.noise()\n return self.value\n\n def noise(self):\n self.noise_value = np.random.normal(0, 1)\n return self.noise_value\n\n def simple_random(self):\n value = self.min_temperature + random() * (self.max_temperature -\n self.min_temperature)\n return value\n\n def complex_random(self):\n value = self.average_temperature * (1 + self.temperature_variation /\n 100 * (1 * random() - 1))\n value = max(value, self.min_temperature)\n value = min(value, self.max_temperature)\n return value\n\n\nts = TemperatureSensor(25, 10, 16, 35)\n", "step-5": "from random import random\r\n\r\nimport numpy as np\r\n\r\nclass TemperatureSensor:\r\n sensor_type = \"temperature\"\r\n unit=\"celsius\"\r\n instance_id=\"283h62gsj\"\r\n \r\n #initialisation\r\n \r\n def __init__(self, average_temperature, temperature_variation, min_temperature, max_temperature):\r\n self.average_temperature = average_temperature\r\n self.temperature_variation = temperature_variation\r\n self.min_temperature = min_temperature \r\n self.max_temperature= max_temperature\r\n self.value = 0.0 #initialise current temp value\r\n \r\n #sensing \r\n def sense(self):\r\n #self.value = self.value + self.simple_random()\r\n self.value = self.complex_random() + self.noise()\r\n return self.value\r\n \r\n #noise\r\n def noise(self):\r\n self.noise_value = np.random.normal(0,1)\r\n return self.noise_value\r\n \r\n #helper function for generating values with min temp as its base\r\n def simple_random(self):\r\n value = self.min_temperature + (random() * (self.max_temperature - self.min_temperature)) #so that it is in the range\r\n return value\r\n \r\n def complex_random(self):\r\n value = self.average_temperature * (1 + (self.temperature_variation/100) * (1 * random() -1))\r\n value = max(value,self.min_temperature)\r\n value = min(value,self.max_temperature)\r\n return value\r\n \r\n#creating instance of sensor\r\nts = TemperatureSensor(25,10,16,35)\r\n\r\n", "step-ids": [ 5, 7, 8, 9, 10 ] }
[ 5, 7, 8, 9, 10 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> paramiko.util.log_to_file('syslogin.log') <|reserved_special_token_0|> t.connect(username=jumpuser, password=jumppass) <|reserved_special_token_0|> sftp.put(localpath, remotepath) sftp.close() <|reserved_special_token_0|> ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) <|reserved_special_token_0|> channel.settimeout(10) <|reserved_special_token_0|> channel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' + remotepath + '\n') while not buff.endswith(passinfo): try: resp = channel.recv(9999) except Exception as e: print('Error info: ' + str(e)) channel.close() ssh.close() sys.exit() buff += resp if not buff.find('yes/no') == -1: channel.send('yes\n') buff = '' channel.send(password + '\n') <|reserved_special_token_0|> while not buff.endswith('# '): resp = channel.recv(9999) if not resp.find(passinfo) == -1: print('Error info: Auth failed.') channel.close() ssh.close() sys.exit() buff += resp print(buff) channel.close() ssh.close() <|reserved_special_token_1|> <|reserved_special_token_0|> jumpip = '192.168.10.1' jumpuser = 'jackie' jumppass = '123456' hostname = '192.168.10.2' user = 'root' password = '654321' tmpdir = '/tmp' remotedir = '/data' localpath = '/home/nginx_access.tar.gz' tmppath = tmpdir + '/nginx_access.tar.gz' remotepath = remotedir + '/nginx_access_hd.tar.gz' port = 22 passinfo = "'s password: " paramiko.util.log_to_file('syslogin.log') t = paramiko.Transport((jumpip, port)) t.connect(username=jumpuser, password=jumppass) sftp = paramiko.SFTPClient.from_transport(t) sftp.put(localpath, remotepath) sftp.close() ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) channel = ssh.invoke_shell() channel.settimeout(10) buff = '' resp = '' channel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' + remotepath + '\n') while not buff.endswith(passinfo): try: resp = channel.recv(9999) except Exception as e: print('Error info: ' + str(e)) channel.close() ssh.close() sys.exit() buff += resp if not buff.find('yes/no') == -1: channel.send('yes\n') buff = '' channel.send(password + '\n') buff = '' while not buff.endswith('# '): resp = channel.recv(9999) if not resp.find(passinfo) == -1: print('Error info: Auth failed.') channel.close() ssh.close() sys.exit() buff += resp print(buff) channel.close() ssh.close() <|reserved_special_token_1|> import paramiko import os, sys, time jumpip = '192.168.10.1' jumpuser = 'jackie' jumppass = '123456' hostname = '192.168.10.2' user = 'root' password = '654321' tmpdir = '/tmp' remotedir = '/data' localpath = '/home/nginx_access.tar.gz' tmppath = tmpdir + '/nginx_access.tar.gz' remotepath = remotedir + '/nginx_access_hd.tar.gz' port = 22 passinfo = "'s password: " paramiko.util.log_to_file('syslogin.log') t = paramiko.Transport((jumpip, port)) t.connect(username=jumpuser, password=jumppass) sftp = paramiko.SFTPClient.from_transport(t) sftp.put(localpath, remotepath) sftp.close() ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) channel = ssh.invoke_shell() channel.settimeout(10) buff = '' resp = '' channel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' + remotepath + '\n') while not buff.endswith(passinfo): try: resp = channel.recv(9999) except Exception as e: print('Error info: ' + str(e)) channel.close() ssh.close() sys.exit() buff += resp if not buff.find('yes/no') == -1: channel.send('yes\n') buff = '' channel.send(password + '\n') buff = '' while not buff.endswith('# '): resp = channel.recv(9999) if not resp.find(passinfo) == -1: print('Error info: Auth failed.') channel.close() ssh.close() sys.exit() buff += resp print(buff) channel.close() ssh.close() <|reserved_special_token_1|> #!/usr/bin/env python3 # coding=utf-8 # title :paramiko_sftp.py # description : # author :JackieTsui # organization :pytoday.org # date :1/16/18 9:22 PM # email :[email protected] # notes : # ================================================== # Import the module needed to run the script import paramiko import os,sys,time jumpip = "192.168.10.1" jumpuser = "jackie" jumppass = "123456" hostname = "192.168.10.2" user = "root" password = "654321" tmpdir = "/tmp" remotedir = "/data" localpath = "/home/nginx_access.tar.gz" tmppath = tmpdir + "/nginx_access.tar.gz" remotepath = remotedir + "/nginx_access_hd.tar.gz" port = 22 passinfo = "'s password: " paramiko.util.log_to_file('syslogin.log') t = paramiko.Transport((jumpip, port)) t.connect(username=jumpuser, password=jumppass) sftp = paramiko.SFTPClient.from_transport(t) sftp.put(localpath, remotepath) sftp.close() ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) channel = ssh.invoke_shell() channel.settimeout(10) buff = "" resp = "" channel.send("scp " + tmppath + " " + user + "@" + hostname + ":" + remotepath + "\n") while not buff.endswith(passinfo): try: resp = channel.recv(9999) except Exception as e: print("Error info: " + str(e)) channel.close() ssh.close() sys.exit() buff += resp if not buff.find("yes/no") == -1: channel.send("yes\n") buff = "" channel.send(password + "\n") buff = "" while not buff.endswith("# "): resp = channel.recv(9999) if not resp.find(passinfo) == -1: print("Error info: Auth failed.") channel.close() ssh.close() sys.exit() buff += resp print(buff) channel.close() ssh.close()
flexible
{ "blob_id": "64cf6b03fb68be8a23c6e87c8d68d0a42db0eb54", "index": 6451, "step-1": "<mask token>\n", "step-2": "<mask token>\nparamiko.util.log_to_file('syslogin.log')\n<mask token>\nt.connect(username=jumpuser, password=jumppass)\n<mask token>\nsftp.put(localpath, remotepath)\nsftp.close()\n<mask token>\nssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())\n<mask token>\nchannel.settimeout(10)\n<mask token>\nchannel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' +\n remotepath + '\\n')\nwhile not buff.endswith(passinfo):\n try:\n resp = channel.recv(9999)\n except Exception as e:\n print('Error info: ' + str(e))\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\n if not buff.find('yes/no') == -1:\n channel.send('yes\\n')\n buff = ''\nchannel.send(password + '\\n')\n<mask token>\nwhile not buff.endswith('# '):\n resp = channel.recv(9999)\n if not resp.find(passinfo) == -1:\n print('Error info: Auth failed.')\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\nprint(buff)\nchannel.close()\nssh.close()\n", "step-3": "<mask token>\njumpip = '192.168.10.1'\njumpuser = 'jackie'\njumppass = '123456'\nhostname = '192.168.10.2'\nuser = 'root'\npassword = '654321'\ntmpdir = '/tmp'\nremotedir = '/data'\nlocalpath = '/home/nginx_access.tar.gz'\ntmppath = tmpdir + '/nginx_access.tar.gz'\nremotepath = remotedir + '/nginx_access_hd.tar.gz'\nport = 22\npassinfo = \"'s password: \"\nparamiko.util.log_to_file('syslogin.log')\nt = paramiko.Transport((jumpip, port))\nt.connect(username=jumpuser, password=jumppass)\nsftp = paramiko.SFTPClient.from_transport(t)\nsftp.put(localpath, remotepath)\nsftp.close()\nssh = paramiko.SSHClient()\nssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())\nchannel = ssh.invoke_shell()\nchannel.settimeout(10)\nbuff = ''\nresp = ''\nchannel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' +\n remotepath + '\\n')\nwhile not buff.endswith(passinfo):\n try:\n resp = channel.recv(9999)\n except Exception as e:\n print('Error info: ' + str(e))\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\n if not buff.find('yes/no') == -1:\n channel.send('yes\\n')\n buff = ''\nchannel.send(password + '\\n')\nbuff = ''\nwhile not buff.endswith('# '):\n resp = channel.recv(9999)\n if not resp.find(passinfo) == -1:\n print('Error info: Auth failed.')\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\nprint(buff)\nchannel.close()\nssh.close()\n", "step-4": "import paramiko\nimport os, sys, time\njumpip = '192.168.10.1'\njumpuser = 'jackie'\njumppass = '123456'\nhostname = '192.168.10.2'\nuser = 'root'\npassword = '654321'\ntmpdir = '/tmp'\nremotedir = '/data'\nlocalpath = '/home/nginx_access.tar.gz'\ntmppath = tmpdir + '/nginx_access.tar.gz'\nremotepath = remotedir + '/nginx_access_hd.tar.gz'\nport = 22\npassinfo = \"'s password: \"\nparamiko.util.log_to_file('syslogin.log')\nt = paramiko.Transport((jumpip, port))\nt.connect(username=jumpuser, password=jumppass)\nsftp = paramiko.SFTPClient.from_transport(t)\nsftp.put(localpath, remotepath)\nsftp.close()\nssh = paramiko.SSHClient()\nssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())\nchannel = ssh.invoke_shell()\nchannel.settimeout(10)\nbuff = ''\nresp = ''\nchannel.send('scp ' + tmppath + ' ' + user + '@' + hostname + ':' +\n remotepath + '\\n')\nwhile not buff.endswith(passinfo):\n try:\n resp = channel.recv(9999)\n except Exception as e:\n print('Error info: ' + str(e))\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\n if not buff.find('yes/no') == -1:\n channel.send('yes\\n')\n buff = ''\nchannel.send(password + '\\n')\nbuff = ''\nwhile not buff.endswith('# '):\n resp = channel.recv(9999)\n if not resp.find(passinfo) == -1:\n print('Error info: Auth failed.')\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\nprint(buff)\nchannel.close()\nssh.close()\n", "step-5": "#!/usr/bin/env python3\n# coding=utf-8\n# title :paramiko_sftp.py\n# description :\n# author :JackieTsui\n# organization :pytoday.org\n# date :1/16/18 9:22 PM\n# email :[email protected]\n# notes :\n# ==================================================\n\n# Import the module needed to run the script\nimport paramiko\nimport os,sys,time\n\n\njumpip = \"192.168.10.1\"\njumpuser = \"jackie\"\njumppass = \"123456\"\nhostname = \"192.168.10.2\"\nuser = \"root\"\npassword = \"654321\"\n\ntmpdir = \"/tmp\"\nremotedir = \"/data\"\nlocalpath = \"/home/nginx_access.tar.gz\"\ntmppath = tmpdir + \"/nginx_access.tar.gz\"\nremotepath = remotedir + \"/nginx_access_hd.tar.gz\"\nport = 22\npassinfo = \"'s password: \"\nparamiko.util.log_to_file('syslogin.log')\n\nt = paramiko.Transport((jumpip, port))\nt.connect(username=jumpuser, password=jumppass)\nsftp = paramiko.SFTPClient.from_transport(t)\nsftp.put(localpath, remotepath)\nsftp.close()\n\nssh = paramiko.SSHClient()\nssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())\n\nchannel = ssh.invoke_shell()\nchannel.settimeout(10)\n\nbuff = \"\"\nresp = \"\"\nchannel.send(\"scp \" + tmppath + \" \" + user + \"@\" + hostname + \":\" + remotepath + \"\\n\")\nwhile not buff.endswith(passinfo):\n try:\n resp = channel.recv(9999)\n except Exception as e:\n print(\"Error info: \" + str(e))\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\n if not buff.find(\"yes/no\") == -1:\n channel.send(\"yes\\n\")\n buff = \"\"\n\nchannel.send(password + \"\\n\")\n\nbuff = \"\"\nwhile not buff.endswith(\"# \"):\n resp = channel.recv(9999)\n if not resp.find(passinfo) == -1:\n print(\"Error info: Auth failed.\")\n channel.close()\n ssh.close()\n sys.exit()\n buff += resp\n\nprint(buff)\nchannel.close()\nssh.close()\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class DirectorySearchHandler(BaseHandler): def initialize(self): super(DirectorySearchHandler, self).initialize() <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def ajax_get(self, uuid, isweb): print('=' * 20) print(uuid) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') csw.getrecordbyid(id=[uuid]) print('-' * 20) print(csw.getrecordbyid(id=[uuid])) if isweb == '1': rec = csw.records.get(uuid) else: birds_query = PropertyIsLike('csw:AnyText', uuid) csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True, hopcount=2) print(csw.results) for key in csw.records: rec = csw.records[key] out_dict = {'title': '', 'uid': '', 'sizhi': ''} self.render('../torcms_dde/search/show_rec.html', kws=out_dict, meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo= self.userinfo) class MyXML: def __init__(self, in_ele): self.element = in_ele def uid(self): for sub_ele in self.element.iter(): if 'identifier' == sub_ele.tag.split('}')[1]: return sub_ele.text def recordPosition(self): for sub_ele in self.element.iter(): if 'recordPosition' == sub_ele.tag.split('}')[1]: return sub_ele.text def sizhi(self): out_arr = [0, 0, 0, 0] for sub_ele in self.element.iter(): if 'LowerCorner' == sub_ele.tag.split('}')[1]: t1 = sub_ele.text.split(' ') out_arr[0] = float(t1[0]) out_arr[2] = float(t1[1]) if 'UpperCorner' == sub_ele.tag.split('}')[1]: t2 = sub_ele.text.split(' ') out_arr[1] = float(t2[0]) out_arr[3] = float(t2[1]) return out_arr def title(self): for sub_ele in self.element.iter(): if 'title' == sub_ele.tag.split('}')[1]: return sub_ele.text <|reserved_special_token_1|> <|reserved_special_token_0|> class DirectorySearchHandler(BaseHandler): def initialize(self): super(DirectorySearchHandler, self).initialize() <|reserved_special_token_0|> <|reserved_special_token_0|> def search(self, keyw, isweb, ldrt, max_num): post_data = self.get_request_arguments() startnum = post_data.get('startnum', 0) startposition = int(startnum) * int(max_num) + 1 print(',' * 50) print(startnum) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') if ldrt: print('=' * 40) print(type(ldrt)) print(ldrt) print('=' * 40) xx_ldrt = [float(x) for x in ldrt.split(',')] xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]] print(xx_ldrt) bbox_query = BBox(xx_ldrt) if isweb == '1': csw.getrecords2(constraints=[bbox_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format( keyw)) csw.getrecords2(constraints=[birds_query, bbox_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2) elif isweb == '1': birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2 ) print('-' * 20) print(isweb) print(csw.results) for rec in csw.records: print(rec) self.render('../torcms_dde/search/show_result.html', meta_results= csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum ) def ajax_get(self, uuid, isweb): print('=' * 20) print(uuid) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') csw.getrecordbyid(id=[uuid]) print('-' * 20) print(csw.getrecordbyid(id=[uuid])) if isweb == '1': rec = csw.records.get(uuid) else: birds_query = PropertyIsLike('csw:AnyText', uuid) csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True, hopcount=2) print(csw.results) for key in csw.records: rec = csw.records[key] out_dict = {'title': '', 'uid': '', 'sizhi': ''} self.render('../torcms_dde/search/show_rec.html', kws=out_dict, meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo= self.userinfo) class MyXML: def __init__(self, in_ele): self.element = in_ele def uid(self): for sub_ele in self.element.iter(): if 'identifier' == sub_ele.tag.split('}')[1]: return sub_ele.text def recordPosition(self): for sub_ele in self.element.iter(): if 'recordPosition' == sub_ele.tag.split('}')[1]: return sub_ele.text def sizhi(self): out_arr = [0, 0, 0, 0] for sub_ele in self.element.iter(): if 'LowerCorner' == sub_ele.tag.split('}')[1]: t1 = sub_ele.text.split(' ') out_arr[0] = float(t1[0]) out_arr[2] = float(t1[1]) if 'UpperCorner' == sub_ele.tag.split('}')[1]: t2 = sub_ele.text.split(' ') out_arr[1] = float(t2[0]) out_arr[3] = float(t2[1]) return out_arr def title(self): for sub_ele in self.element.iter(): if 'title' == sub_ele.tag.split('}')[1]: return sub_ele.text <|reserved_special_token_1|> <|reserved_special_token_0|> class DirectorySearchHandler(BaseHandler): def initialize(self): super(DirectorySearchHandler, self).initialize() <|reserved_special_token_0|> def list(self, keyw): keyw = 'data' csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query_like], maxrecords=20) print('-' * 20) print(csw.results) for rec in csw.results: print(rec) self.render('../torcms_dde/search/meta_index.html', meta_results= csw.records, userinfo=self.userinfo) def search(self, keyw, isweb, ldrt, max_num): post_data = self.get_request_arguments() startnum = post_data.get('startnum', 0) startposition = int(startnum) * int(max_num) + 1 print(',' * 50) print(startnum) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') if ldrt: print('=' * 40) print(type(ldrt)) print(ldrt) print('=' * 40) xx_ldrt = [float(x) for x in ldrt.split(',')] xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]] print(xx_ldrt) bbox_query = BBox(xx_ldrt) if isweb == '1': csw.getrecords2(constraints=[bbox_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format( keyw)) csw.getrecords2(constraints=[birds_query, bbox_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2) elif isweb == '1': birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2 ) print('-' * 20) print(isweb) print(csw.results) for rec in csw.records: print(rec) self.render('../torcms_dde/search/show_result.html', meta_results= csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum ) def ajax_get(self, uuid, isweb): print('=' * 20) print(uuid) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') csw.getrecordbyid(id=[uuid]) print('-' * 20) print(csw.getrecordbyid(id=[uuid])) if isweb == '1': rec = csw.records.get(uuid) else: birds_query = PropertyIsLike('csw:AnyText', uuid) csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True, hopcount=2) print(csw.results) for key in csw.records: rec = csw.records[key] out_dict = {'title': '', 'uid': '', 'sizhi': ''} self.render('../torcms_dde/search/show_rec.html', kws=out_dict, meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo= self.userinfo) class MyXML: def __init__(self, in_ele): self.element = in_ele def uid(self): for sub_ele in self.element.iter(): if 'identifier' == sub_ele.tag.split('}')[1]: return sub_ele.text def recordPosition(self): for sub_ele in self.element.iter(): if 'recordPosition' == sub_ele.tag.split('}')[1]: return sub_ele.text def sizhi(self): out_arr = [0, 0, 0, 0] for sub_ele in self.element.iter(): if 'LowerCorner' == sub_ele.tag.split('}')[1]: t1 = sub_ele.text.split(' ') out_arr[0] = float(t1[0]) out_arr[2] = float(t1[1]) if 'UpperCorner' == sub_ele.tag.split('}')[1]: t2 = sub_ele.text.split(' ') out_arr[1] = float(t2[0]) out_arr[3] = float(t2[1]) return out_arr def title(self): for sub_ele in self.element.iter(): if 'title' == sub_ele.tag.split('}')[1]: return sub_ele.text <|reserved_special_token_1|> import tornado.web import tornado.escape from torcms.core.base_handler import BaseHandler from owslib.csw import CatalogueServiceWeb from owslib.fes import PropertyIsEqualTo, PropertyIsLike, BBox class DirectorySearchHandler(BaseHandler): def initialize(self): super(DirectorySearchHandler, self).initialize() def get(self, url_str=''): url_arr = self.parse_url(url_str) if len(url_str) > 0: url_arr = url_str.split('/') if url_str == '': self.list('') elif url_arr[0] == 'search': if len(url_arr[0]) >= 3: self.search(url_arr[1], url_arr[2], url_arr[3], url_arr[4]) else: self.search(url_arr[1], url_arr[2], '', 10) elif url_arr[0] == 'view': self.ajax_get(url_arr[1], url_arr[2]) def list(self, keyw): keyw = 'data' csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query_like], maxrecords=20) print('-' * 20) print(csw.results) for rec in csw.results: print(rec) self.render('../torcms_dde/search/meta_index.html', meta_results= csw.records, userinfo=self.userinfo) def search(self, keyw, isweb, ldrt, max_num): post_data = self.get_request_arguments() startnum = post_data.get('startnum', 0) startposition = int(startnum) * int(max_num) + 1 print(',' * 50) print(startnum) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') if ldrt: print('=' * 40) print(type(ldrt)) print(ldrt) print('=' * 40) xx_ldrt = [float(x) for x in ldrt.split(',')] xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]] print(xx_ldrt) bbox_query = BBox(xx_ldrt) if isweb == '1': csw.getrecords2(constraints=[bbox_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format( keyw)) csw.getrecords2(constraints=[birds_query, bbox_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2) elif isweb == '1': birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], startposition= startposition, maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2 ) print('-' * 20) print(isweb) print(csw.results) for rec in csw.records: print(rec) self.render('../torcms_dde/search/show_result.html', meta_results= csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum ) def ajax_get(self, uuid, isweb): print('=' * 20) print(uuid) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') csw.getrecordbyid(id=[uuid]) print('-' * 20) print(csw.getrecordbyid(id=[uuid])) if isweb == '1': rec = csw.records.get(uuid) else: birds_query = PropertyIsLike('csw:AnyText', uuid) csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True, hopcount=2) print(csw.results) for key in csw.records: rec = csw.records[key] out_dict = {'title': '', 'uid': '', 'sizhi': ''} self.render('../torcms_dde/search/show_rec.html', kws=out_dict, meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo= self.userinfo) class MyXML: def __init__(self, in_ele): self.element = in_ele def uid(self): for sub_ele in self.element.iter(): if 'identifier' == sub_ele.tag.split('}')[1]: return sub_ele.text def recordPosition(self): for sub_ele in self.element.iter(): if 'recordPosition' == sub_ele.tag.split('}')[1]: return sub_ele.text def sizhi(self): out_arr = [0, 0, 0, 0] for sub_ele in self.element.iter(): if 'LowerCorner' == sub_ele.tag.split('}')[1]: t1 = sub_ele.text.split(' ') out_arr[0] = float(t1[0]) out_arr[2] = float(t1[1]) if 'UpperCorner' == sub_ele.tag.split('}')[1]: t2 = sub_ele.text.split(' ') out_arr[1] = float(t2[0]) out_arr[3] = float(t2[1]) return out_arr def title(self): for sub_ele in self.element.iter(): if 'title' == sub_ele.tag.split('}')[1]: return sub_ele.text <|reserved_special_token_1|> import tornado.web import tornado.escape from torcms.core.base_handler import BaseHandler from owslib.csw import CatalogueServiceWeb from owslib.fes import PropertyIsEqualTo, PropertyIsLike, BBox class DirectorySearchHandler(BaseHandler): def initialize(self): super(DirectorySearchHandler, self).initialize() def get(self, url_str=''): url_arr = self.parse_url(url_str) if len(url_str) > 0: url_arr = url_str.split('/') # if url_str == '': # self.render('metadata/meta_index.html') if url_str == '': self.list('') elif url_arr[0] == 'search': if len(url_arr[0]) >= 3: self.search(url_arr[1], url_arr[2], url_arr[3], url_arr[4]) else: self.search(url_arr[1], url_arr[2], '', 10) elif url_arr[0] == 'view': self.ajax_get(url_arr[1], url_arr[2]) # def post(self, *args, **kwargs): # post_data = self.get_request_arguments() # keyword = post_data.get('keyw9', '') # isweb = post_data.get('isweb', '1') # ldrt = post_data.get('ldrt', '') # maxrecords = post_data.get('maxrecords', 20) # # self.redirect('/directory_search/search/{0}/{1}/{2}/{3}'.format(keyword, isweb, ldrt, maxrecords)) # def search(self, keyw): # # print('====' * 40) # # print(post_data) # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0} # &maximumRecords=5&startRecord=5&outputFormat=application/json'.format( # keyw) # r = requests.get(url) # pprint.pprint(r.text) # self.parseXML(r.text.encode(encoding='UTF-8')) def list(self, keyw): # print('====' * 40) # print(post_data) keyw = 'data' csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query_like], maxrecords=20) print('-' * 20) print(csw.results) for rec in csw.results: print(rec) # out_dic = {} # for rec in csw.records: # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}\ # maximumRecords=5&startRecord=5&outputFormat=application/json'.format( # keyw) # r = requests.get(url) # pprint.pprint(r.text) self.render('../torcms_dde/search/meta_index.html', meta_results=csw.records, userinfo=self.userinfo) # self.parseXML(r.text.encode(encoding='UTF-8')) def search(self, keyw, isweb, ldrt, max_num): # print('=' * 40) # print(ldrt) post_data = self.get_request_arguments() startnum = post_data.get('startnum', 0) startposition = int(startnum) * int(max_num) +1 print("," * 50) print(startnum) csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') # birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) if ldrt: print('=' * 40) print(type(ldrt)) print(ldrt) print('=' * 40) xx_ldrt = [float(x) for x in ldrt.split(',')] xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]] print(xx_ldrt) bbox_query = BBox(xx_ldrt) if isweb == '1': # birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[bbox_query], startposition=startposition,maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query, bbox_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2) else: if isweb == '1': birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], startposition=startposition,maxrecords=max_num) else: birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw)) csw.getrecords2(constraints=[birds_query], maxrecords=max_num, startposition=startposition, distributedsearch=True, hopcount=2) print('-' * 20) print(isweb) print(csw.results) for rec in csw.records: print(rec) # out_dic = {} # for rec in csw.records: # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}& # maximumRecords=5&startRecord=5&outputFormat=application/json'.format( # keyw) # r = requests.get(url) # pprint.pprint(r.text) self.render('../torcms_dde/search/show_result.html', meta_results=csw.records, userinfo=self.userinfo, isweb=isweb, startnum = startnum ) # self.parseXML(r.text.encode(encoding='UTF-8')) # def get_result(self, post_data): # print('====' * 40) # print(post_data) # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0} # &maximumRecords=5&startRecord=5'.format( # post_data['keyw'][0]) # r = requests.get(url) # pprint.pprint(r.text) # self.parseXML(r.text.encode(encoding='UTF-8')) # # data = urllib.request.Request(url) def ajax_get(self, uuid, isweb): print('=' * 20) print(uuid) # uuid = uuid.split(':')[-1] csw = CatalogueServiceWeb('https://drr.ikcest.org/csw') # birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw)) csw.getrecordbyid(id=[uuid]) print('-' * 20) print(csw.getrecordbyid(id=[uuid])) if isweb == '1': rec = csw.records.get(uuid) else: birds_query = PropertyIsLike('csw:AnyText', uuid) csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True, hopcount=2) print(csw.results) for key in csw.records: rec = csw.records[key] out_dict = { 'title': '', 'uid': '', 'sizhi': '', } self.render('../torcms_dde/search/show_rec.html', kws=out_dict, # meta_rec=csw.records.get(uuid), meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo=self.userinfo ) # # # def parseXML(self, data): # # tree = etree.fromstring(data) # # root = tree.getroot() # uu = tree.findall('zs:record', tree.nsmap) # # meta_arr = [] # for x in uu: # meta_arr.append(MyXML(x)) # # print(x.element('ows:LowerCorner')) # # uu = etree.SubElement(x, "LowerCorner") # # for sub_ele in x.iter(): # # print(sub_ele.tag) # # if 'title' == sub_ele.tag.split('}')[1]: # # print(sub_ele.text) # # if 'LowerCorner' == sub_ele.tag.split('}')[1]: # # print(sub_ele.text) # # self.render('metadata/show_result.html', # meta_arr=meta_arr) class MyXML(): def __init__(self, in_ele): self.element = in_ele def uid(self): for sub_ele in self.element.iter(): if 'identifier' == sub_ele.tag.split('}')[1]: return sub_ele.text def recordPosition(self): for sub_ele in self.element.iter(): if 'recordPosition' == sub_ele.tag.split('}')[1]: return sub_ele.text def sizhi(self): out_arr = [0, 0, 0, 0] for sub_ele in self.element.iter(): if 'LowerCorner' == sub_ele.tag.split('}')[1]: t1 = sub_ele.text.split(' ') out_arr[0] = float(t1[0]) out_arr[2] = float(t1[1]) if 'UpperCorner' == sub_ele.tag.split('}')[1]: t2 = sub_ele.text.split(' ') out_arr[1] = float(t2[0]) out_arr[3] = float(t2[1]) return out_arr def title(self): for sub_ele in self.element.iter(): if 'title' == sub_ele.tag.split('}')[1]: return sub_ele.text
flexible
{ "blob_id": "72ce7c48c9d1a7bcdbaead12648d03970663a11e", "index": 3227, "step-1": "<mask token>\n\n\nclass DirectorySearchHandler(BaseHandler):\n\n def initialize(self):\n super(DirectorySearchHandler, self).initialize()\n <mask token>\n <mask token>\n <mask token>\n\n def ajax_get(self, uuid, isweb):\n print('=' * 20)\n print(uuid)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n csw.getrecordbyid(id=[uuid])\n print('-' * 20)\n print(csw.getrecordbyid(id=[uuid]))\n if isweb == '1':\n rec = csw.records.get(uuid)\n else:\n birds_query = PropertyIsLike('csw:AnyText', uuid)\n csw.getrecords2(constraints=[birds_query], maxrecords=20,\n startposition=0, distributedsearch=True, hopcount=2)\n print(csw.results)\n for key in csw.records:\n rec = csw.records[key]\n out_dict = {'title': '', 'uid': '', 'sizhi': ''}\n self.render('../torcms_dde/search/show_rec.html', kws=out_dict,\n meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo=\n self.userinfo)\n\n\nclass MyXML:\n\n def __init__(self, in_ele):\n self.element = in_ele\n\n def uid(self):\n for sub_ele in self.element.iter():\n if 'identifier' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def recordPosition(self):\n for sub_ele in self.element.iter():\n if 'recordPosition' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def sizhi(self):\n out_arr = [0, 0, 0, 0]\n for sub_ele in self.element.iter():\n if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n t1 = sub_ele.text.split(' ')\n out_arr[0] = float(t1[0])\n out_arr[2] = float(t1[1])\n if 'UpperCorner' == sub_ele.tag.split('}')[1]:\n t2 = sub_ele.text.split(' ')\n out_arr[1] = float(t2[0])\n out_arr[3] = float(t2[1])\n return out_arr\n\n def title(self):\n for sub_ele in self.element.iter():\n if 'title' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n", "step-2": "<mask token>\n\n\nclass DirectorySearchHandler(BaseHandler):\n\n def initialize(self):\n super(DirectorySearchHandler, self).initialize()\n <mask token>\n <mask token>\n\n def search(self, keyw, isweb, ldrt, max_num):\n post_data = self.get_request_arguments()\n startnum = post_data.get('startnum', 0)\n startposition = int(startnum) * int(max_num) + 1\n print(',' * 50)\n print(startnum)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n if ldrt:\n print('=' * 40)\n print(type(ldrt))\n print(ldrt)\n print('=' * 40)\n xx_ldrt = [float(x) for x in ldrt.split(',')]\n xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]]\n print(xx_ldrt)\n bbox_query = BBox(xx_ldrt)\n if isweb == '1':\n csw.getrecords2(constraints=[bbox_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(\n keyw))\n csw.getrecords2(constraints=[birds_query, bbox_query],\n maxrecords=max_num, startposition=startposition,\n distributedsearch=True, hopcount=2)\n elif isweb == '1':\n birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], maxrecords=max_num,\n startposition=startposition, distributedsearch=True, hopcount=2\n )\n print('-' * 20)\n print(isweb)\n print(csw.results)\n for rec in csw.records:\n print(rec)\n self.render('../torcms_dde/search/show_result.html', meta_results=\n csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum\n )\n\n def ajax_get(self, uuid, isweb):\n print('=' * 20)\n print(uuid)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n csw.getrecordbyid(id=[uuid])\n print('-' * 20)\n print(csw.getrecordbyid(id=[uuid]))\n if isweb == '1':\n rec = csw.records.get(uuid)\n else:\n birds_query = PropertyIsLike('csw:AnyText', uuid)\n csw.getrecords2(constraints=[birds_query], maxrecords=20,\n startposition=0, distributedsearch=True, hopcount=2)\n print(csw.results)\n for key in csw.records:\n rec = csw.records[key]\n out_dict = {'title': '', 'uid': '', 'sizhi': ''}\n self.render('../torcms_dde/search/show_rec.html', kws=out_dict,\n meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo=\n self.userinfo)\n\n\nclass MyXML:\n\n def __init__(self, in_ele):\n self.element = in_ele\n\n def uid(self):\n for sub_ele in self.element.iter():\n if 'identifier' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def recordPosition(self):\n for sub_ele in self.element.iter():\n if 'recordPosition' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def sizhi(self):\n out_arr = [0, 0, 0, 0]\n for sub_ele in self.element.iter():\n if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n t1 = sub_ele.text.split(' ')\n out_arr[0] = float(t1[0])\n out_arr[2] = float(t1[1])\n if 'UpperCorner' == sub_ele.tag.split('}')[1]:\n t2 = sub_ele.text.split(' ')\n out_arr[1] = float(t2[0])\n out_arr[3] = float(t2[1])\n return out_arr\n\n def title(self):\n for sub_ele in self.element.iter():\n if 'title' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n", "step-3": "<mask token>\n\n\nclass DirectorySearchHandler(BaseHandler):\n\n def initialize(self):\n super(DirectorySearchHandler, self).initialize()\n <mask token>\n\n def list(self, keyw):\n keyw = 'data'\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query_like], maxrecords=20)\n print('-' * 20)\n print(csw.results)\n for rec in csw.results:\n print(rec)\n self.render('../torcms_dde/search/meta_index.html', meta_results=\n csw.records, userinfo=self.userinfo)\n\n def search(self, keyw, isweb, ldrt, max_num):\n post_data = self.get_request_arguments()\n startnum = post_data.get('startnum', 0)\n startposition = int(startnum) * int(max_num) + 1\n print(',' * 50)\n print(startnum)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n if ldrt:\n print('=' * 40)\n print(type(ldrt))\n print(ldrt)\n print('=' * 40)\n xx_ldrt = [float(x) for x in ldrt.split(',')]\n xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]]\n print(xx_ldrt)\n bbox_query = BBox(xx_ldrt)\n if isweb == '1':\n csw.getrecords2(constraints=[bbox_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(\n keyw))\n csw.getrecords2(constraints=[birds_query, bbox_query],\n maxrecords=max_num, startposition=startposition,\n distributedsearch=True, hopcount=2)\n elif isweb == '1':\n birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], maxrecords=max_num,\n startposition=startposition, distributedsearch=True, hopcount=2\n )\n print('-' * 20)\n print(isweb)\n print(csw.results)\n for rec in csw.records:\n print(rec)\n self.render('../torcms_dde/search/show_result.html', meta_results=\n csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum\n )\n\n def ajax_get(self, uuid, isweb):\n print('=' * 20)\n print(uuid)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n csw.getrecordbyid(id=[uuid])\n print('-' * 20)\n print(csw.getrecordbyid(id=[uuid]))\n if isweb == '1':\n rec = csw.records.get(uuid)\n else:\n birds_query = PropertyIsLike('csw:AnyText', uuid)\n csw.getrecords2(constraints=[birds_query], maxrecords=20,\n startposition=0, distributedsearch=True, hopcount=2)\n print(csw.results)\n for key in csw.records:\n rec = csw.records[key]\n out_dict = {'title': '', 'uid': '', 'sizhi': ''}\n self.render('../torcms_dde/search/show_rec.html', kws=out_dict,\n meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo=\n self.userinfo)\n\n\nclass MyXML:\n\n def __init__(self, in_ele):\n self.element = in_ele\n\n def uid(self):\n for sub_ele in self.element.iter():\n if 'identifier' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def recordPosition(self):\n for sub_ele in self.element.iter():\n if 'recordPosition' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def sizhi(self):\n out_arr = [0, 0, 0, 0]\n for sub_ele in self.element.iter():\n if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n t1 = sub_ele.text.split(' ')\n out_arr[0] = float(t1[0])\n out_arr[2] = float(t1[1])\n if 'UpperCorner' == sub_ele.tag.split('}')[1]:\n t2 = sub_ele.text.split(' ')\n out_arr[1] = float(t2[0])\n out_arr[3] = float(t2[1])\n return out_arr\n\n def title(self):\n for sub_ele in self.element.iter():\n if 'title' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n", "step-4": "import tornado.web\nimport tornado.escape\nfrom torcms.core.base_handler import BaseHandler\nfrom owslib.csw import CatalogueServiceWeb\nfrom owslib.fes import PropertyIsEqualTo, PropertyIsLike, BBox\n\n\nclass DirectorySearchHandler(BaseHandler):\n\n def initialize(self):\n super(DirectorySearchHandler, self).initialize()\n\n def get(self, url_str=''):\n url_arr = self.parse_url(url_str)\n if len(url_str) > 0:\n url_arr = url_str.split('/')\n if url_str == '':\n self.list('')\n elif url_arr[0] == 'search':\n if len(url_arr[0]) >= 3:\n self.search(url_arr[1], url_arr[2], url_arr[3], url_arr[4])\n else:\n self.search(url_arr[1], url_arr[2], '', 10)\n elif url_arr[0] == 'view':\n self.ajax_get(url_arr[1], url_arr[2])\n\n def list(self, keyw):\n keyw = 'data'\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query_like], maxrecords=20)\n print('-' * 20)\n print(csw.results)\n for rec in csw.results:\n print(rec)\n self.render('../torcms_dde/search/meta_index.html', meta_results=\n csw.records, userinfo=self.userinfo)\n\n def search(self, keyw, isweb, ldrt, max_num):\n post_data = self.get_request_arguments()\n startnum = post_data.get('startnum', 0)\n startposition = int(startnum) * int(max_num) + 1\n print(',' * 50)\n print(startnum)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n if ldrt:\n print('=' * 40)\n print(type(ldrt))\n print(ldrt)\n print('=' * 40)\n xx_ldrt = [float(x) for x in ldrt.split(',')]\n xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]]\n print(xx_ldrt)\n bbox_query = BBox(xx_ldrt)\n if isweb == '1':\n csw.getrecords2(constraints=[bbox_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(\n keyw))\n csw.getrecords2(constraints=[birds_query, bbox_query],\n maxrecords=max_num, startposition=startposition,\n distributedsearch=True, hopcount=2)\n elif isweb == '1':\n birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], startposition=\n startposition, maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], maxrecords=max_num,\n startposition=startposition, distributedsearch=True, hopcount=2\n )\n print('-' * 20)\n print(isweb)\n print(csw.results)\n for rec in csw.records:\n print(rec)\n self.render('../torcms_dde/search/show_result.html', meta_results=\n csw.records, userinfo=self.userinfo, isweb=isweb, startnum=startnum\n )\n\n def ajax_get(self, uuid, isweb):\n print('=' * 20)\n print(uuid)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n csw.getrecordbyid(id=[uuid])\n print('-' * 20)\n print(csw.getrecordbyid(id=[uuid]))\n if isweb == '1':\n rec = csw.records.get(uuid)\n else:\n birds_query = PropertyIsLike('csw:AnyText', uuid)\n csw.getrecords2(constraints=[birds_query], maxrecords=20,\n startposition=0, distributedsearch=True, hopcount=2)\n print(csw.results)\n for key in csw.records:\n rec = csw.records[key]\n out_dict = {'title': '', 'uid': '', 'sizhi': ''}\n self.render('../torcms_dde/search/show_rec.html', kws=out_dict,\n meta_rec=rec, unescape=tornado.escape.xhtml_unescape, userinfo=\n self.userinfo)\n\n\nclass MyXML:\n\n def __init__(self, in_ele):\n self.element = in_ele\n\n def uid(self):\n for sub_ele in self.element.iter():\n if 'identifier' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def recordPosition(self):\n for sub_ele in self.element.iter():\n if 'recordPosition' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def sizhi(self):\n out_arr = [0, 0, 0, 0]\n for sub_ele in self.element.iter():\n if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n t1 = sub_ele.text.split(' ')\n out_arr[0] = float(t1[0])\n out_arr[2] = float(t1[1])\n if 'UpperCorner' == sub_ele.tag.split('}')[1]:\n t2 = sub_ele.text.split(' ')\n out_arr[1] = float(t2[0])\n out_arr[3] = float(t2[1])\n return out_arr\n\n def title(self):\n for sub_ele in self.element.iter():\n if 'title' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n", "step-5": "import tornado.web\nimport tornado.escape\nfrom torcms.core.base_handler import BaseHandler\nfrom owslib.csw import CatalogueServiceWeb\nfrom owslib.fes import PropertyIsEqualTo, PropertyIsLike, BBox\n\n\nclass DirectorySearchHandler(BaseHandler):\n def initialize(self):\n super(DirectorySearchHandler, self).initialize()\n\n def get(self, url_str=''):\n url_arr = self.parse_url(url_str)\n if len(url_str) > 0:\n url_arr = url_str.split('/')\n # if url_str == '':\n # self.render('metadata/meta_index.html')\n\n if url_str == '':\n self.list('')\n elif url_arr[0] == 'search':\n if len(url_arr[0]) >= 3:\n self.search(url_arr[1], url_arr[2], url_arr[3], url_arr[4])\n else:\n self.search(url_arr[1], url_arr[2], '', 10)\n\n elif url_arr[0] == 'view':\n self.ajax_get(url_arr[1], url_arr[2])\n\n # def post(self, *args, **kwargs):\n # post_data = self.get_request_arguments()\n # keyword = post_data.get('keyw9', '')\n # isweb = post_data.get('isweb', '1')\n # ldrt = post_data.get('ldrt', '')\n # maxrecords = post_data.get('maxrecords', 20)\n #\n # self.redirect('/directory_search/search/{0}/{1}/{2}/{3}'.format(keyword, isweb, ldrt, maxrecords))\n\n # def search(self, keyw):\n # # print('====' * 40)\n # # print(post_data)\n # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}\n # &maximumRecords=5&startRecord=5&outputFormat=application/json'.format(\n # keyw)\n # r = requests.get(url)\n # pprint.pprint(r.text)\n # self.parseXML(r.text.encode(encoding='UTF-8'))\n def list(self, keyw):\n # print('====' * 40)\n # print(post_data)\n keyw = 'data'\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query_like], maxrecords=20)\n print('-' * 20)\n print(csw.results)\n\n for rec in csw.results:\n print(rec)\n\n # out_dic = {}\n # for rec in csw.records:\n # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}\\\n # maximumRecords=5&startRecord=5&outputFormat=application/json'.format(\n # keyw)\n # r = requests.get(url)\n # pprint.pprint(r.text)\n\n self.render('../torcms_dde/search/meta_index.html',\n meta_results=csw.records,\n userinfo=self.userinfo)\n\n # self.parseXML(r.text.encode(encoding='UTF-8'))\n\n def search(self, keyw, isweb, ldrt, max_num):\n # print('=' * 40)\n # print(ldrt)\n post_data = self.get_request_arguments()\n startnum = post_data.get('startnum', 0)\n\n startposition = int(startnum) * int(max_num) +1\n print(\",\" * 50)\n print(startnum)\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n # birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n\n\n if ldrt:\n print('=' * 40)\n print(type(ldrt))\n print(ldrt)\n print('=' * 40)\n\n xx_ldrt = [float(x) for x in ldrt.split(',')]\n\n xx_ldrt = [xx_ldrt[1], xx_ldrt[0], xx_ldrt[3], xx_ldrt[2]]\n\n print(xx_ldrt)\n\n bbox_query = BBox(xx_ldrt)\n if isweb == '1':\n\n # birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[bbox_query], startposition=startposition,maxrecords=max_num)\n\n else:\n\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query, bbox_query], maxrecords=max_num, startposition=startposition,\n distributedsearch=True,\n hopcount=2)\n else:\n if isweb == '1':\n\n birds_query = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], startposition=startposition,maxrecords=max_num)\n else:\n birds_query = PropertyIsLike('csw:AnyText', '%{0}%'.format(keyw))\n csw.getrecords2(constraints=[birds_query], maxrecords=max_num, startposition=startposition, distributedsearch=True,\n hopcount=2)\n print('-' * 20)\n print(isweb)\n print(csw.results)\n\n for rec in csw.records:\n print(rec)\n\n # out_dic = {}\n # for rec in csw.records:\n\n # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}&\n # maximumRecords=5&startRecord=5&outputFormat=application/json'.format(\n # keyw)\n # r = requests.get(url)\n # pprint.pprint(r.text)\n\n self.render('../torcms_dde/search/show_result.html',\n meta_results=csw.records,\n userinfo=self.userinfo,\n isweb=isweb,\n startnum = startnum\n )\n\n # self.parseXML(r.text.encode(encoding='UTF-8'))\n\n # def get_result(self, post_data):\n # print('====' * 40)\n # print(post_data)\n # url = 'http://meta.osgeo.cn/pycsw/csw.py?mode=sru&operation=searchRetrieve&query={0}\n # &maximumRecords=5&startRecord=5'.format(\n # post_data['keyw'][0])\n # r = requests.get(url)\n # pprint.pprint(r.text)\n # self.parseXML(r.text.encode(encoding='UTF-8'))\n # # data = urllib.request.Request(url)\n\n def ajax_get(self, uuid, isweb):\n print('=' * 20)\n print(uuid)\n # uuid = uuid.split(':')[-1]\n csw = CatalogueServiceWeb('https://drr.ikcest.org/csw')\n # birds_query_like = PropertyIsLike('dc:title', '%{0}%'.format(keyw))\n\n csw.getrecordbyid(id=[uuid])\n print('-' * 20)\n print(csw.getrecordbyid(id=[uuid]))\n if isweb == '1':\n rec = csw.records.get(uuid)\n else:\n birds_query = PropertyIsLike('csw:AnyText', uuid)\n csw.getrecords2(constraints=[birds_query], maxrecords=20, startposition=0, distributedsearch=True,\n hopcount=2)\n print(csw.results)\n for key in csw.records:\n rec = csw.records[key]\n\n out_dict = {\n 'title': '',\n 'uid': '',\n 'sizhi': '',\n\n }\n\n self.render('../torcms_dde/search/show_rec.html',\n kws=out_dict,\n # meta_rec=csw.records.get(uuid),\n meta_rec=rec,\n unescape=tornado.escape.xhtml_unescape,\n userinfo=self.userinfo\n )\n\n # #\n # def parseXML(self, data):\n #\n # tree = etree.fromstring(data)\n # # root = tree.getroot()\n # uu = tree.findall('zs:record', tree.nsmap)\n #\n # meta_arr = []\n # for x in uu:\n # meta_arr.append(MyXML(x))\n # # print(x.element('ows:LowerCorner'))\n # # uu = etree.SubElement(x, \"LowerCorner\")\n # # for sub_ele in x.iter():\n # # print(sub_ele.tag)\n # # if 'title' == sub_ele.tag.split('}')[1]:\n # # print(sub_ele.text)\n # # if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n # # print(sub_ele.text)\n #\n # self.render('metadata/show_result.html',\n # meta_arr=meta_arr)\n\n\nclass MyXML():\n def __init__(self, in_ele):\n self.element = in_ele\n\n def uid(self):\n for sub_ele in self.element.iter():\n if 'identifier' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def recordPosition(self):\n for sub_ele in self.element.iter():\n if 'recordPosition' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n\n def sizhi(self):\n out_arr = [0, 0, 0, 0]\n for sub_ele in self.element.iter():\n if 'LowerCorner' == sub_ele.tag.split('}')[1]:\n t1 = sub_ele.text.split(' ')\n out_arr[0] = float(t1[0])\n out_arr[2] = float(t1[1])\n if 'UpperCorner' == sub_ele.tag.split('}')[1]:\n t2 = sub_ele.text.split(' ')\n out_arr[1] = float(t2[0])\n out_arr[3] = float(t2[1])\n return out_arr\n\n def title(self):\n for sub_ele in self.element.iter():\n if 'title' == sub_ele.tag.split('}')[1]:\n return sub_ele.text\n", "step-ids": [ 9, 10, 11, 13, 14 ] }
[ 9, 10, 11, 13, 14 ]
from bs4 import BeautifulSoup from pprint import pprint from scraper.sas.sas_models import SASEvent, SASCategory, SASCategoryStage, SASEventStage from scraper.base_models.models import Event, Category, CategoryStage, EventStage, Participant, Result from scraper.sas.sas_config import DESTINATION_URL, MTB_EVENT_TYPE, YEARS from scraper import db from datetime import datetime import urllib import json import time def scrape_sas(): pprint("Scraping Events") get_mtb_events() pprint("Getting categories and stages") for event in db.session.query(SASEvent): pprint(event.event_id) get_categories_and_stages(event.event_reference, event.event_id) #time.sleep(2) for event_stage in db.session.query(SASEventStage): pprint("Getting event stage results") base_event_stage = db.session.query(EventStage).filter(EventStage.id==event_stage.event_stage_id).first() if (base_event_stage.results): pprint("Event has results") else: write_stage_results(event_stage.stage_reference, event_stage.event_stage_id, "event") for category_stage in db.session.query(SASCategoryStage): pprint("Getting category stage results") base_category_stage = db.session.query(CategoryStage).filter(CategoryStage.id==category_stage.category_stage_id).first() if (base_category_stage.results): pprint("Category stage has results") else: write_stage_results(category_stage.stage_reference, category_stage.category_stage_id, "category") for category in db.session.query(SASCategory): pprint("Getting category results") base_category = db.session.query(Category).filter(Category.id==category.category_id).first() if (base_category.results): pprint("Category has results") else: if (not base_category.category_stages): write_category_results(category.stage_reference, category.id) else: pprint("No results but has category stages") pprint("Scrape Complete") def get_mtb_events(): for year in YEARS: url = ("%s/participants/event-results/fetch-series-by-type?event_type=%s&event_year=%d" % (DESTINATION_URL, MTB_EVENT_TYPE, year)) try: page = urllib.request.urlopen(url) content = page.read().decode("utf-8") json_content = json.loads(content) soup = BeautifulSoup(json_content['HTML'], "html.parser") anchors = soup.find_all('a') except (urllib.error.HTTPError, urllib.error.ConnectionResetError): pass for anchor in anchors: event_reference = anchor["href"] divs = anchor.find_all('div') for div in divs: if ("event-date" in div["class"]): event_date = (div.find(text=True)) elif ("event-title" in div["class"]): event_name = (div.find(text=True)) db_date = datetime.strptime(event_date, '%d %b %Y') db_event = Event(event_name, db_date) db_check = db.session.query(Event.title).filter(Event.title==event_name) if not (db.session.query(db_check.exists()).scalar()): db.session.add(db_event) db.session.flush() sas_event = SASEvent(db_event.id, event_reference) db.session.add(sas_event) db.session.commit() def get_categories_and_stages(event_reference, event_id): event = db.session.query(Event).filter(Event.id==event_id).first() if (event.categories or event.event_stages): pprint("Event Exists") else: url = (DESTINATION_URL + event_reference) try: page = urllib.request.urlopen(url) except (urllib.error.HTTPError, urllib.error.URLError): return soup = BeautifulSoup(page, "html.parser") check_stages = get_categories(soup, event_id) def get_categories(soup, event_id): category_div = soup.find('div', attrs={"id" : "category_container"}) #Check to see if event has categories first if category_div: divs = category_div.find_all('div') for div in divs: if div.has_attr("data-event-category-id"): #Event has categories category_reference = div["data-event-category-id"] category_name = div["data-loading-text"] category_own_stage_reference = div["data-event-stage-id"] db_category = Category(category_name, event_id) #Check both name and event id to allow duplicate names db_category_check = db.session.query(Category.name).filter( (Category.name==category_name) & (Category.event_id==event_id)) #Check SAS category for duplicates as well db_sas_category_check = db.session.query(SASCategory).filter( (SASCategory.category_reference==category_reference) & (SASCategory.stage_reference==category_own_stage_reference)) if not (db.session.query(db_category_check.exists()).scalar()): db.session.add(db_category) db.session.flush() if not (db.session.query(db_sas_category_check.exists()).scalar()): db_sas_category = SASCategory(category_reference, category_own_stage_reference, db_category.id) db.session.add(db_sas_category) db.session.flush() db.session.commit() if (div["data-multiple-event-stages"] == "1"): #Event has stages with their own categories get_category_stages(soup, db_category.id, category_reference) else: #Event does not have categories get_event_stages(soup, event_id) def get_category_stages(soup, category_id, category_reference): stage_group_div = soup.find('div', attrs={"id" : ("ec_" + category_reference)}) stage_divs = stage_group_div.find_all('div') for stage_div in stage_divs: if stage_div.has_attr("data-stage-id"): category_stage_reference = stage_div["data-stage-id"] category_stage_name = stage_div["data-loading-text"] db_category_stage = CategoryStage(category_stage_name, category_id) #Check both name and category id to allow duplicate names db_category_stage_check = db.session.query(CategoryStage.name).filter( (CategoryStage.name==category_stage_name) & (CategoryStage.category_id==category_id)) if not (db.session.query(db_category_stage_check.exists()).scalar()): db.session.add(db_category_stage) db.session.flush() db_sas_category_stage = SASCategoryStage(db_category_stage.id, category_stage_reference) db.session.add(db_sas_category_stage) db.session.flush() db.session.commit() def get_event_stages(soup, event_id): all_event_stage_divs = soup.find('div', class_ = "row categories_stages event-sub-types") #Check if event has stages if all_event_stage_divs: event_stage_divs = all_event_stage_divs.find_all ('div') for event_stage_div in event_stage_divs: if event_stage_div.has_attr("data-stage-id"): #Event has stages and no categories event_stage_reference = event_stage_div["data-stage-id"] event_stage_name = event_stage_div["data-loading-text"] db_event_stage = EventStage(event_stage_name, event_id) #Check if it exists by name and ID and add if it doesn't db_event_stage_check = db.session.query(EventStage.name).filter( (EventStage.name==event_stage_name) & (EventStage.event_id==event_id)) if not (db.session.query(db_event_stage_check.exists()).scalar()): db.session.add(db_event_stage) db.session.flush() db_sas_event_stage = SASEventStage(db_event_stage.id, event_stage_reference) db.session.add(db_sas_event_stage) db.session.flush() db.session.commit() else: #Event has no stages or categories #create new stage for just the overall results, unless event has no results event_stage_reference_div = soup.find('div', class_ = "result-row load-results") if event_stage_reference_div: if event_stage_reference_div.has_attr("data-stage"): event_stage_reference = event_stage_reference_div["data-stage"] sas_event = db.session.query(SASEvent).filter(SASEvent.event_id==event_id).first() db_event_stage_check = db.session.query(EventStage.name).filter( (EventStage.name=="Overall Results") & (EventStage.event_id==sas_event.event_id)) if not (db.session.query(db_event_stage_check.exists()).scalar()): db_event_stage = EventStage("Overall Results", sas_event.event_id) db.session.add(db_event_stage) db.session.flush() db_sas_event_stage = SASEventStage(db_event_stage.id, event_stage_reference) db.session.add(db_sas_event_stage) db.session.commit() def get_results(event_reference): url = ("%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999" % (DESTINATION_URL, event_reference)) pprint(url) try: page = urllib.request.urlopen(url) except (urllib.error.HTTPError, urllib.error.ConnectionResetError): return content = page.read().decode("utf-8") json_content = json.loads(content) json_results = json_content['rows'] return json_results def write_stage_results(stage_reference, stage_id, stage_type): results = get_results(stage_reference) category_stage_id = None event_stage_id = None if (stage_type=="event"): event_stage_id = stage_id elif (stage_type=="category"): category_stage_id = stage_id if results: for result in results: participant_id = get_participant(result) db_result_check = db.session.query(Result).filter( (Result.position==result['overall_pos']) & (Result.gender_position==result['gender_pos']) & (Result.time==result['time_taken_seconds']) & (Result.event_stage_id==event_stage_id) & (Result.category_stage_id==category_stage_id)) if not (db.session.query(db_result_check.exists()).scalar()): if (stage_type=="category"): db_result = Result(result['overall_pos'], participant_id, result['gender_pos'], result['time_taken_seconds'], None, category_stage_id, None) elif (stage_type=="event"): db_result = Result(result['overall_pos'], participant_id, result['gender_pos'], result['time_taken_seconds'], event_stage_id, None, None) db.session.add(db_result) db.session.commit() def write_category_results(category_reference, category_id): results = get_results(category_reference) for result in results: participant_id = get_participant(result) db_result_check = db.session.query(Result).filter( (Result.position==result['overall_pos']) & (Result.gender_position==result['gender_pos']) & (Result.time==result['time_taken_seconds']) & (Result.category_id==category_id)).first() if not db_result_check: db_category_result = Result(result['overall_pos'], participant_id, result['gender_pos'], result['time_taken_seconds'], None, None, category_id) db.session.add(db_category_result) db.session.commit() def get_participant(result): if result['date_of_birth']: birth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d').date() else: birth_date = None db_participant_check = db.session.query(Participant).filter( (Participant.first_name==result['first_name']) & (Participant.last_name==result['last_name']) & (Participant.sex==result['person_sex']) & (Participant.birth_date==birth_date)) if not (db.session.query(db_participant_check.exists()).scalar()): db_participant = Participant(result['first_name'], result['last_name'], result['person_sex'], birth_date) db.session.add(db_participant) db.session.commit() return db_participant.id else: return db_participant_check.first().id
normal
{ "blob_id": "ecc351cf95254e0bbc5021eff11c500fa0950bd3", "index": 2653, "step-1": "<mask token>\n\n\ndef scrape_sas():\n pprint('Scraping Events')\n get_mtb_events()\n pprint('Getting categories and stages')\n for event in db.session.query(SASEvent):\n pprint(event.event_id)\n get_categories_and_stages(event.event_reference, event.event_id)\n for event_stage in db.session.query(SASEventStage):\n pprint('Getting event stage results')\n base_event_stage = db.session.query(EventStage).filter(EventStage.\n id == event_stage.event_stage_id).first()\n if base_event_stage.results:\n pprint('Event has results')\n else:\n write_stage_results(event_stage.stage_reference, event_stage.\n event_stage_id, 'event')\n for category_stage in db.session.query(SASCategoryStage):\n pprint('Getting category stage results')\n base_category_stage = db.session.query(CategoryStage).filter(\n CategoryStage.id == category_stage.category_stage_id).first()\n if base_category_stage.results:\n pprint('Category stage has results')\n else:\n write_stage_results(category_stage.stage_reference,\n category_stage.category_stage_id, 'category')\n for category in db.session.query(SASCategory):\n pprint('Getting category results')\n base_category = db.session.query(Category).filter(Category.id ==\n category.category_id).first()\n if base_category.results:\n pprint('Category has results')\n elif not base_category.category_stages:\n write_category_results(category.stage_reference, category.id)\n else:\n pprint('No results but has category stages')\n pprint('Scrape Complete')\n\n\n<mask token>\n\n\ndef get_categories_and_stages(event_reference, event_id):\n event = db.session.query(Event).filter(Event.id == event_id).first()\n if event.categories or event.event_stages:\n pprint('Event Exists')\n else:\n url = DESTINATION_URL + event_reference\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.URLError):\n return\n soup = BeautifulSoup(page, 'html.parser')\n check_stages = get_categories(soup, event_id)\n\n\ndef get_categories(soup, event_id):\n category_div = soup.find('div', attrs={'id': 'category_container'})\n if category_div:\n divs = category_div.find_all('div')\n for div in divs:\n if div.has_attr('data-event-category-id'):\n category_reference = div['data-event-category-id']\n category_name = div['data-loading-text']\n category_own_stage_reference = div['data-event-stage-id']\n db_category = Category(category_name, event_id)\n db_category_check = db.session.query(Category.name).filter(\n (Category.name == category_name) & (Category.event_id ==\n event_id))\n db_sas_category_check = db.session.query(SASCategory).filter(\n (SASCategory.category_reference == category_reference) &\n (SASCategory.stage_reference ==\n category_own_stage_reference))\n if not db.session.query(db_category_check.exists()).scalar():\n db.session.add(db_category)\n db.session.flush()\n if not db.session.query(db_sas_category_check.exists()\n ).scalar():\n db_sas_category = SASCategory(category_reference,\n category_own_stage_reference, db_category.id)\n db.session.add(db_sas_category)\n db.session.flush()\n db.session.commit()\n if div['data-multiple-event-stages'] == '1':\n get_category_stages(soup, db_category.id,\n category_reference)\n else:\n get_event_stages(soup, event_id)\n\n\n<mask token>\n\n\ndef get_event_stages(soup, event_id):\n all_event_stage_divs = soup.find('div', class_=\n 'row categories_stages event-sub-types')\n if all_event_stage_divs:\n event_stage_divs = all_event_stage_divs.find_all('div')\n for event_stage_div in event_stage_divs:\n if event_stage_div.has_attr('data-stage-id'):\n event_stage_reference = event_stage_div['data-stage-id']\n event_stage_name = event_stage_div['data-loading-text']\n db_event_stage = EventStage(event_stage_name, event_id)\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == event_stage_name) & (\n EventStage.event_id == event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.flush()\n db.session.commit()\n else:\n event_stage_reference_div = soup.find('div', class_=\n 'result-row load-results')\n if event_stage_reference_div:\n if event_stage_reference_div.has_attr('data-stage'):\n event_stage_reference = event_stage_reference_div['data-stage']\n sas_event = db.session.query(SASEvent).filter(SASEvent.\n event_id == event_id).first()\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == 'Overall Results') & (\n EventStage.event_id == sas_event.event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db_event_stage = EventStage('Overall Results',\n sas_event.event_id)\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.commit()\n\n\ndef get_results(event_reference):\n url = (\n '%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999'\n % (DESTINATION_URL, event_reference))\n pprint(url)\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n return\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n json_results = json_content['rows']\n return json_results\n\n\ndef write_stage_results(stage_reference, stage_id, stage_type):\n results = get_results(stage_reference)\n category_stage_id = None\n event_stage_id = None\n if stage_type == 'event':\n event_stage_id = stage_id\n elif stage_type == 'category':\n category_stage_id = stage_id\n if results:\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.\n position == result['overall_pos']) & (Result.\n gender_position == result['gender_pos']) & (Result.time ==\n result['time_taken_seconds']) & (Result.event_stage_id ==\n event_stage_id) & (Result.category_stage_id ==\n category_stage_id))\n if not db.session.query(db_result_check.exists()).scalar():\n if stage_type == 'category':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, category_stage_id, None)\n elif stage_type == 'event':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], event_stage_id, None, None)\n db.session.add(db_result)\n db.session.commit()\n\n\ndef write_category_results(category_reference, category_id):\n results = get_results(category_reference)\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.position ==\n result['overall_pos']) & (Result.gender_position == result[\n 'gender_pos']) & (Result.time == result['time_taken_seconds']) &\n (Result.category_id == category_id)).first()\n if not db_result_check:\n db_category_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, None, category_id)\n db.session.add(db_category_result)\n db.session.commit()\n\n\ndef get_participant(result):\n if result['date_of_birth']:\n birth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d'\n ).date()\n else:\n birth_date = None\n db_participant_check = db.session.query(Participant).filter((\n Participant.first_name == result['first_name']) & (Participant.\n last_name == result['last_name']) & (Participant.sex == result[\n 'person_sex']) & (Participant.birth_date == birth_date))\n if not db.session.query(db_participant_check.exists()).scalar():\n db_participant = Participant(result['first_name'], result[\n 'last_name'], result['person_sex'], birth_date)\n db.session.add(db_participant)\n db.session.commit()\n return db_participant.id\n else:\n return db_participant_check.first().id\n", "step-2": "<mask token>\n\n\ndef scrape_sas():\n pprint('Scraping Events')\n get_mtb_events()\n pprint('Getting categories and stages')\n for event in db.session.query(SASEvent):\n pprint(event.event_id)\n get_categories_and_stages(event.event_reference, event.event_id)\n for event_stage in db.session.query(SASEventStage):\n pprint('Getting event stage results')\n base_event_stage = db.session.query(EventStage).filter(EventStage.\n id == event_stage.event_stage_id).first()\n if base_event_stage.results:\n pprint('Event has results')\n else:\n write_stage_results(event_stage.stage_reference, event_stage.\n event_stage_id, 'event')\n for category_stage in db.session.query(SASCategoryStage):\n pprint('Getting category stage results')\n base_category_stage = db.session.query(CategoryStage).filter(\n CategoryStage.id == category_stage.category_stage_id).first()\n if base_category_stage.results:\n pprint('Category stage has results')\n else:\n write_stage_results(category_stage.stage_reference,\n category_stage.category_stage_id, 'category')\n for category in db.session.query(SASCategory):\n pprint('Getting category results')\n base_category = db.session.query(Category).filter(Category.id ==\n category.category_id).first()\n if base_category.results:\n pprint('Category has results')\n elif not base_category.category_stages:\n write_category_results(category.stage_reference, category.id)\n else:\n pprint('No results but has category stages')\n pprint('Scrape Complete')\n\n\n<mask token>\n\n\ndef get_categories_and_stages(event_reference, event_id):\n event = db.session.query(Event).filter(Event.id == event_id).first()\n if event.categories or event.event_stages:\n pprint('Event Exists')\n else:\n url = DESTINATION_URL + event_reference\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.URLError):\n return\n soup = BeautifulSoup(page, 'html.parser')\n check_stages = get_categories(soup, event_id)\n\n\ndef get_categories(soup, event_id):\n category_div = soup.find('div', attrs={'id': 'category_container'})\n if category_div:\n divs = category_div.find_all('div')\n for div in divs:\n if div.has_attr('data-event-category-id'):\n category_reference = div['data-event-category-id']\n category_name = div['data-loading-text']\n category_own_stage_reference = div['data-event-stage-id']\n db_category = Category(category_name, event_id)\n db_category_check = db.session.query(Category.name).filter(\n (Category.name == category_name) & (Category.event_id ==\n event_id))\n db_sas_category_check = db.session.query(SASCategory).filter(\n (SASCategory.category_reference == category_reference) &\n (SASCategory.stage_reference ==\n category_own_stage_reference))\n if not db.session.query(db_category_check.exists()).scalar():\n db.session.add(db_category)\n db.session.flush()\n if not db.session.query(db_sas_category_check.exists()\n ).scalar():\n db_sas_category = SASCategory(category_reference,\n category_own_stage_reference, db_category.id)\n db.session.add(db_sas_category)\n db.session.flush()\n db.session.commit()\n if div['data-multiple-event-stages'] == '1':\n get_category_stages(soup, db_category.id,\n category_reference)\n else:\n get_event_stages(soup, event_id)\n\n\ndef get_category_stages(soup, category_id, category_reference):\n stage_group_div = soup.find('div', attrs={'id': 'ec_' + category_reference}\n )\n stage_divs = stage_group_div.find_all('div')\n for stage_div in stage_divs:\n if stage_div.has_attr('data-stage-id'):\n category_stage_reference = stage_div['data-stage-id']\n category_stage_name = stage_div['data-loading-text']\n db_category_stage = CategoryStage(category_stage_name, category_id)\n db_category_stage_check = db.session.query(CategoryStage.name\n ).filter((CategoryStage.name == category_stage_name) & (\n CategoryStage.category_id == category_id))\n if not db.session.query(db_category_stage_check.exists()).scalar():\n db.session.add(db_category_stage)\n db.session.flush()\n db_sas_category_stage = SASCategoryStage(db_category_stage.\n id, category_stage_reference)\n db.session.add(db_sas_category_stage)\n db.session.flush()\n db.session.commit()\n\n\ndef get_event_stages(soup, event_id):\n all_event_stage_divs = soup.find('div', class_=\n 'row categories_stages event-sub-types')\n if all_event_stage_divs:\n event_stage_divs = all_event_stage_divs.find_all('div')\n for event_stage_div in event_stage_divs:\n if event_stage_div.has_attr('data-stage-id'):\n event_stage_reference = event_stage_div['data-stage-id']\n event_stage_name = event_stage_div['data-loading-text']\n db_event_stage = EventStage(event_stage_name, event_id)\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == event_stage_name) & (\n EventStage.event_id == event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.flush()\n db.session.commit()\n else:\n event_stage_reference_div = soup.find('div', class_=\n 'result-row load-results')\n if event_stage_reference_div:\n if event_stage_reference_div.has_attr('data-stage'):\n event_stage_reference = event_stage_reference_div['data-stage']\n sas_event = db.session.query(SASEvent).filter(SASEvent.\n event_id == event_id).first()\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == 'Overall Results') & (\n EventStage.event_id == sas_event.event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db_event_stage = EventStage('Overall Results',\n sas_event.event_id)\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.commit()\n\n\ndef get_results(event_reference):\n url = (\n '%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999'\n % (DESTINATION_URL, event_reference))\n pprint(url)\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n return\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n json_results = json_content['rows']\n return json_results\n\n\ndef write_stage_results(stage_reference, stage_id, stage_type):\n results = get_results(stage_reference)\n category_stage_id = None\n event_stage_id = None\n if stage_type == 'event':\n event_stage_id = stage_id\n elif stage_type == 'category':\n category_stage_id = stage_id\n if results:\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.\n position == result['overall_pos']) & (Result.\n gender_position == result['gender_pos']) & (Result.time ==\n result['time_taken_seconds']) & (Result.event_stage_id ==\n event_stage_id) & (Result.category_stage_id ==\n category_stage_id))\n if not db.session.query(db_result_check.exists()).scalar():\n if stage_type == 'category':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, category_stage_id, None)\n elif stage_type == 'event':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], event_stage_id, None, None)\n db.session.add(db_result)\n db.session.commit()\n\n\ndef write_category_results(category_reference, category_id):\n results = get_results(category_reference)\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.position ==\n result['overall_pos']) & (Result.gender_position == result[\n 'gender_pos']) & (Result.time == result['time_taken_seconds']) &\n (Result.category_id == category_id)).first()\n if not db_result_check:\n db_category_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, None, category_id)\n db.session.add(db_category_result)\n db.session.commit()\n\n\ndef get_participant(result):\n if result['date_of_birth']:\n birth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d'\n ).date()\n else:\n birth_date = None\n db_participant_check = db.session.query(Participant).filter((\n Participant.first_name == result['first_name']) & (Participant.\n last_name == result['last_name']) & (Participant.sex == result[\n 'person_sex']) & (Participant.birth_date == birth_date))\n if not db.session.query(db_participant_check.exists()).scalar():\n db_participant = Participant(result['first_name'], result[\n 'last_name'], result['person_sex'], birth_date)\n db.session.add(db_participant)\n db.session.commit()\n return db_participant.id\n else:\n return db_participant_check.first().id\n", "step-3": "<mask token>\n\n\ndef scrape_sas():\n pprint('Scraping Events')\n get_mtb_events()\n pprint('Getting categories and stages')\n for event in db.session.query(SASEvent):\n pprint(event.event_id)\n get_categories_and_stages(event.event_reference, event.event_id)\n for event_stage in db.session.query(SASEventStage):\n pprint('Getting event stage results')\n base_event_stage = db.session.query(EventStage).filter(EventStage.\n id == event_stage.event_stage_id).first()\n if base_event_stage.results:\n pprint('Event has results')\n else:\n write_stage_results(event_stage.stage_reference, event_stage.\n event_stage_id, 'event')\n for category_stage in db.session.query(SASCategoryStage):\n pprint('Getting category stage results')\n base_category_stage = db.session.query(CategoryStage).filter(\n CategoryStage.id == category_stage.category_stage_id).first()\n if base_category_stage.results:\n pprint('Category stage has results')\n else:\n write_stage_results(category_stage.stage_reference,\n category_stage.category_stage_id, 'category')\n for category in db.session.query(SASCategory):\n pprint('Getting category results')\n base_category = db.session.query(Category).filter(Category.id ==\n category.category_id).first()\n if base_category.results:\n pprint('Category has results')\n elif not base_category.category_stages:\n write_category_results(category.stage_reference, category.id)\n else:\n pprint('No results but has category stages')\n pprint('Scrape Complete')\n\n\ndef get_mtb_events():\n for year in YEARS:\n url = (\n '%s/participants/event-results/fetch-series-by-type?event_type=%s&event_year=%d'\n % (DESTINATION_URL, MTB_EVENT_TYPE, year))\n try:\n page = urllib.request.urlopen(url)\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n soup = BeautifulSoup(json_content['HTML'], 'html.parser')\n anchors = soup.find_all('a')\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n pass\n for anchor in anchors:\n event_reference = anchor['href']\n divs = anchor.find_all('div')\n for div in divs:\n if 'event-date' in div['class']:\n event_date = div.find(text=True)\n elif 'event-title' in div['class']:\n event_name = div.find(text=True)\n db_date = datetime.strptime(event_date, '%d %b %Y')\n db_event = Event(event_name, db_date)\n db_check = db.session.query(Event.title).filter(Event.title ==\n event_name)\n if not db.session.query(db_check.exists()).scalar():\n db.session.add(db_event)\n db.session.flush()\n sas_event = SASEvent(db_event.id, event_reference)\n db.session.add(sas_event)\n db.session.commit()\n\n\ndef get_categories_and_stages(event_reference, event_id):\n event = db.session.query(Event).filter(Event.id == event_id).first()\n if event.categories or event.event_stages:\n pprint('Event Exists')\n else:\n url = DESTINATION_URL + event_reference\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.URLError):\n return\n soup = BeautifulSoup(page, 'html.parser')\n check_stages = get_categories(soup, event_id)\n\n\ndef get_categories(soup, event_id):\n category_div = soup.find('div', attrs={'id': 'category_container'})\n if category_div:\n divs = category_div.find_all('div')\n for div in divs:\n if div.has_attr('data-event-category-id'):\n category_reference = div['data-event-category-id']\n category_name = div['data-loading-text']\n category_own_stage_reference = div['data-event-stage-id']\n db_category = Category(category_name, event_id)\n db_category_check = db.session.query(Category.name).filter(\n (Category.name == category_name) & (Category.event_id ==\n event_id))\n db_sas_category_check = db.session.query(SASCategory).filter(\n (SASCategory.category_reference == category_reference) &\n (SASCategory.stage_reference ==\n category_own_stage_reference))\n if not db.session.query(db_category_check.exists()).scalar():\n db.session.add(db_category)\n db.session.flush()\n if not db.session.query(db_sas_category_check.exists()\n ).scalar():\n db_sas_category = SASCategory(category_reference,\n category_own_stage_reference, db_category.id)\n db.session.add(db_sas_category)\n db.session.flush()\n db.session.commit()\n if div['data-multiple-event-stages'] == '1':\n get_category_stages(soup, db_category.id,\n category_reference)\n else:\n get_event_stages(soup, event_id)\n\n\ndef get_category_stages(soup, category_id, category_reference):\n stage_group_div = soup.find('div', attrs={'id': 'ec_' + category_reference}\n )\n stage_divs = stage_group_div.find_all('div')\n for stage_div in stage_divs:\n if stage_div.has_attr('data-stage-id'):\n category_stage_reference = stage_div['data-stage-id']\n category_stage_name = stage_div['data-loading-text']\n db_category_stage = CategoryStage(category_stage_name, category_id)\n db_category_stage_check = db.session.query(CategoryStage.name\n ).filter((CategoryStage.name == category_stage_name) & (\n CategoryStage.category_id == category_id))\n if not db.session.query(db_category_stage_check.exists()).scalar():\n db.session.add(db_category_stage)\n db.session.flush()\n db_sas_category_stage = SASCategoryStage(db_category_stage.\n id, category_stage_reference)\n db.session.add(db_sas_category_stage)\n db.session.flush()\n db.session.commit()\n\n\ndef get_event_stages(soup, event_id):\n all_event_stage_divs = soup.find('div', class_=\n 'row categories_stages event-sub-types')\n if all_event_stage_divs:\n event_stage_divs = all_event_stage_divs.find_all('div')\n for event_stage_div in event_stage_divs:\n if event_stage_div.has_attr('data-stage-id'):\n event_stage_reference = event_stage_div['data-stage-id']\n event_stage_name = event_stage_div['data-loading-text']\n db_event_stage = EventStage(event_stage_name, event_id)\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == event_stage_name) & (\n EventStage.event_id == event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.flush()\n db.session.commit()\n else:\n event_stage_reference_div = soup.find('div', class_=\n 'result-row load-results')\n if event_stage_reference_div:\n if event_stage_reference_div.has_attr('data-stage'):\n event_stage_reference = event_stage_reference_div['data-stage']\n sas_event = db.session.query(SASEvent).filter(SASEvent.\n event_id == event_id).first()\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == 'Overall Results') & (\n EventStage.event_id == sas_event.event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db_event_stage = EventStage('Overall Results',\n sas_event.event_id)\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.commit()\n\n\ndef get_results(event_reference):\n url = (\n '%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999'\n % (DESTINATION_URL, event_reference))\n pprint(url)\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n return\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n json_results = json_content['rows']\n return json_results\n\n\ndef write_stage_results(stage_reference, stage_id, stage_type):\n results = get_results(stage_reference)\n category_stage_id = None\n event_stage_id = None\n if stage_type == 'event':\n event_stage_id = stage_id\n elif stage_type == 'category':\n category_stage_id = stage_id\n if results:\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.\n position == result['overall_pos']) & (Result.\n gender_position == result['gender_pos']) & (Result.time ==\n result['time_taken_seconds']) & (Result.event_stage_id ==\n event_stage_id) & (Result.category_stage_id ==\n category_stage_id))\n if not db.session.query(db_result_check.exists()).scalar():\n if stage_type == 'category':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, category_stage_id, None)\n elif stage_type == 'event':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], event_stage_id, None, None)\n db.session.add(db_result)\n db.session.commit()\n\n\ndef write_category_results(category_reference, category_id):\n results = get_results(category_reference)\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.position ==\n result['overall_pos']) & (Result.gender_position == result[\n 'gender_pos']) & (Result.time == result['time_taken_seconds']) &\n (Result.category_id == category_id)).first()\n if not db_result_check:\n db_category_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, None, category_id)\n db.session.add(db_category_result)\n db.session.commit()\n\n\ndef get_participant(result):\n if result['date_of_birth']:\n birth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d'\n ).date()\n else:\n birth_date = None\n db_participant_check = db.session.query(Participant).filter((\n Participant.first_name == result['first_name']) & (Participant.\n last_name == result['last_name']) & (Participant.sex == result[\n 'person_sex']) & (Participant.birth_date == birth_date))\n if not db.session.query(db_participant_check.exists()).scalar():\n db_participant = Participant(result['first_name'], result[\n 'last_name'], result['person_sex'], birth_date)\n db.session.add(db_participant)\n db.session.commit()\n return db_participant.id\n else:\n return db_participant_check.first().id\n", "step-4": "from bs4 import BeautifulSoup\nfrom pprint import pprint\nfrom scraper.sas.sas_models import SASEvent, SASCategory, SASCategoryStage, SASEventStage\nfrom scraper.base_models.models import Event, Category, CategoryStage, EventStage, Participant, Result\nfrom scraper.sas.sas_config import DESTINATION_URL, MTB_EVENT_TYPE, YEARS\nfrom scraper import db\nfrom datetime import datetime\nimport urllib\nimport json\nimport time\n\n\ndef scrape_sas():\n pprint('Scraping Events')\n get_mtb_events()\n pprint('Getting categories and stages')\n for event in db.session.query(SASEvent):\n pprint(event.event_id)\n get_categories_and_stages(event.event_reference, event.event_id)\n for event_stage in db.session.query(SASEventStage):\n pprint('Getting event stage results')\n base_event_stage = db.session.query(EventStage).filter(EventStage.\n id == event_stage.event_stage_id).first()\n if base_event_stage.results:\n pprint('Event has results')\n else:\n write_stage_results(event_stage.stage_reference, event_stage.\n event_stage_id, 'event')\n for category_stage in db.session.query(SASCategoryStage):\n pprint('Getting category stage results')\n base_category_stage = db.session.query(CategoryStage).filter(\n CategoryStage.id == category_stage.category_stage_id).first()\n if base_category_stage.results:\n pprint('Category stage has results')\n else:\n write_stage_results(category_stage.stage_reference,\n category_stage.category_stage_id, 'category')\n for category in db.session.query(SASCategory):\n pprint('Getting category results')\n base_category = db.session.query(Category).filter(Category.id ==\n category.category_id).first()\n if base_category.results:\n pprint('Category has results')\n elif not base_category.category_stages:\n write_category_results(category.stage_reference, category.id)\n else:\n pprint('No results but has category stages')\n pprint('Scrape Complete')\n\n\ndef get_mtb_events():\n for year in YEARS:\n url = (\n '%s/participants/event-results/fetch-series-by-type?event_type=%s&event_year=%d'\n % (DESTINATION_URL, MTB_EVENT_TYPE, year))\n try:\n page = urllib.request.urlopen(url)\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n soup = BeautifulSoup(json_content['HTML'], 'html.parser')\n anchors = soup.find_all('a')\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n pass\n for anchor in anchors:\n event_reference = anchor['href']\n divs = anchor.find_all('div')\n for div in divs:\n if 'event-date' in div['class']:\n event_date = div.find(text=True)\n elif 'event-title' in div['class']:\n event_name = div.find(text=True)\n db_date = datetime.strptime(event_date, '%d %b %Y')\n db_event = Event(event_name, db_date)\n db_check = db.session.query(Event.title).filter(Event.title ==\n event_name)\n if not db.session.query(db_check.exists()).scalar():\n db.session.add(db_event)\n db.session.flush()\n sas_event = SASEvent(db_event.id, event_reference)\n db.session.add(sas_event)\n db.session.commit()\n\n\ndef get_categories_and_stages(event_reference, event_id):\n event = db.session.query(Event).filter(Event.id == event_id).first()\n if event.categories or event.event_stages:\n pprint('Event Exists')\n else:\n url = DESTINATION_URL + event_reference\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.URLError):\n return\n soup = BeautifulSoup(page, 'html.parser')\n check_stages = get_categories(soup, event_id)\n\n\ndef get_categories(soup, event_id):\n category_div = soup.find('div', attrs={'id': 'category_container'})\n if category_div:\n divs = category_div.find_all('div')\n for div in divs:\n if div.has_attr('data-event-category-id'):\n category_reference = div['data-event-category-id']\n category_name = div['data-loading-text']\n category_own_stage_reference = div['data-event-stage-id']\n db_category = Category(category_name, event_id)\n db_category_check = db.session.query(Category.name).filter(\n (Category.name == category_name) & (Category.event_id ==\n event_id))\n db_sas_category_check = db.session.query(SASCategory).filter(\n (SASCategory.category_reference == category_reference) &\n (SASCategory.stage_reference ==\n category_own_stage_reference))\n if not db.session.query(db_category_check.exists()).scalar():\n db.session.add(db_category)\n db.session.flush()\n if not db.session.query(db_sas_category_check.exists()\n ).scalar():\n db_sas_category = SASCategory(category_reference,\n category_own_stage_reference, db_category.id)\n db.session.add(db_sas_category)\n db.session.flush()\n db.session.commit()\n if div['data-multiple-event-stages'] == '1':\n get_category_stages(soup, db_category.id,\n category_reference)\n else:\n get_event_stages(soup, event_id)\n\n\ndef get_category_stages(soup, category_id, category_reference):\n stage_group_div = soup.find('div', attrs={'id': 'ec_' + category_reference}\n )\n stage_divs = stage_group_div.find_all('div')\n for stage_div in stage_divs:\n if stage_div.has_attr('data-stage-id'):\n category_stage_reference = stage_div['data-stage-id']\n category_stage_name = stage_div['data-loading-text']\n db_category_stage = CategoryStage(category_stage_name, category_id)\n db_category_stage_check = db.session.query(CategoryStage.name\n ).filter((CategoryStage.name == category_stage_name) & (\n CategoryStage.category_id == category_id))\n if not db.session.query(db_category_stage_check.exists()).scalar():\n db.session.add(db_category_stage)\n db.session.flush()\n db_sas_category_stage = SASCategoryStage(db_category_stage.\n id, category_stage_reference)\n db.session.add(db_sas_category_stage)\n db.session.flush()\n db.session.commit()\n\n\ndef get_event_stages(soup, event_id):\n all_event_stage_divs = soup.find('div', class_=\n 'row categories_stages event-sub-types')\n if all_event_stage_divs:\n event_stage_divs = all_event_stage_divs.find_all('div')\n for event_stage_div in event_stage_divs:\n if event_stage_div.has_attr('data-stage-id'):\n event_stage_reference = event_stage_div['data-stage-id']\n event_stage_name = event_stage_div['data-loading-text']\n db_event_stage = EventStage(event_stage_name, event_id)\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == event_stage_name) & (\n EventStage.event_id == event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.flush()\n db.session.commit()\n else:\n event_stage_reference_div = soup.find('div', class_=\n 'result-row load-results')\n if event_stage_reference_div:\n if event_stage_reference_div.has_attr('data-stage'):\n event_stage_reference = event_stage_reference_div['data-stage']\n sas_event = db.session.query(SASEvent).filter(SASEvent.\n event_id == event_id).first()\n db_event_stage_check = db.session.query(EventStage.name\n ).filter((EventStage.name == 'Overall Results') & (\n EventStage.event_id == sas_event.event_id))\n if not db.session.query(db_event_stage_check.exists()).scalar(\n ):\n db_event_stage = EventStage('Overall Results',\n sas_event.event_id)\n db.session.add(db_event_stage)\n db.session.flush()\n db_sas_event_stage = SASEventStage(db_event_stage.id,\n event_stage_reference)\n db.session.add(db_sas_event_stage)\n db.session.commit()\n\n\ndef get_results(event_reference):\n url = (\n '%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999'\n % (DESTINATION_URL, event_reference))\n pprint(url)\n try:\n page = urllib.request.urlopen(url)\n except (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n return\n content = page.read().decode('utf-8')\n json_content = json.loads(content)\n json_results = json_content['rows']\n return json_results\n\n\ndef write_stage_results(stage_reference, stage_id, stage_type):\n results = get_results(stage_reference)\n category_stage_id = None\n event_stage_id = None\n if stage_type == 'event':\n event_stage_id = stage_id\n elif stage_type == 'category':\n category_stage_id = stage_id\n if results:\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.\n position == result['overall_pos']) & (Result.\n gender_position == result['gender_pos']) & (Result.time ==\n result['time_taken_seconds']) & (Result.event_stage_id ==\n event_stage_id) & (Result.category_stage_id ==\n category_stage_id))\n if not db.session.query(db_result_check.exists()).scalar():\n if stage_type == 'category':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, category_stage_id, None)\n elif stage_type == 'event':\n db_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], event_stage_id, None, None)\n db.session.add(db_result)\n db.session.commit()\n\n\ndef write_category_results(category_reference, category_id):\n results = get_results(category_reference)\n for result in results:\n participant_id = get_participant(result)\n db_result_check = db.session.query(Result).filter((Result.position ==\n result['overall_pos']) & (Result.gender_position == result[\n 'gender_pos']) & (Result.time == result['time_taken_seconds']) &\n (Result.category_id == category_id)).first()\n if not db_result_check:\n db_category_result = Result(result['overall_pos'],\n participant_id, result['gender_pos'], result[\n 'time_taken_seconds'], None, None, category_id)\n db.session.add(db_category_result)\n db.session.commit()\n\n\ndef get_participant(result):\n if result['date_of_birth']:\n birth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d'\n ).date()\n else:\n birth_date = None\n db_participant_check = db.session.query(Participant).filter((\n Participant.first_name == result['first_name']) & (Participant.\n last_name == result['last_name']) & (Participant.sex == result[\n 'person_sex']) & (Participant.birth_date == birth_date))\n if not db.session.query(db_participant_check.exists()).scalar():\n db_participant = Participant(result['first_name'], result[\n 'last_name'], result['person_sex'], birth_date)\n db.session.add(db_participant)\n db.session.commit()\n return db_participant.id\n else:\n return db_participant_check.first().id\n", "step-5": "from bs4 import BeautifulSoup\nfrom pprint import pprint \nfrom scraper.sas.sas_models import SASEvent, SASCategory, SASCategoryStage, SASEventStage\nfrom scraper.base_models.models import Event, Category, CategoryStage, EventStage, Participant, Result\nfrom scraper.sas.sas_config import DESTINATION_URL, MTB_EVENT_TYPE, YEARS\nfrom scraper import db\nfrom datetime import datetime\nimport urllib\nimport json \nimport time\n\ndef scrape_sas():\n\tpprint(\"Scraping Events\")\n\tget_mtb_events()\n\tpprint(\"Getting categories and stages\")\n\tfor event in db.session.query(SASEvent):\n\t\tpprint(event.event_id)\n\t\tget_categories_and_stages(event.event_reference, event.event_id)\n\t\t#time.sleep(2)\n\tfor event_stage in db.session.query(SASEventStage):\n\t\tpprint(\"Getting event stage results\")\n\t\tbase_event_stage = db.session.query(EventStage).filter(EventStage.id==event_stage.event_stage_id).first()\n\t\tif (base_event_stage.results):\n\t\t\tpprint(\"Event has results\")\n\t\telse:\n\t\t\twrite_stage_results(event_stage.stage_reference, event_stage.event_stage_id, \"event\")\n\tfor category_stage in db.session.query(SASCategoryStage):\n\t\tpprint(\"Getting category stage results\")\n\t\tbase_category_stage = db.session.query(CategoryStage).filter(CategoryStage.id==category_stage.category_stage_id).first()\n\t\tif (base_category_stage.results):\n\t\t\tpprint(\"Category stage has results\")\n\t\telse: \n\t\t\twrite_stage_results(category_stage.stage_reference, category_stage.category_stage_id, \"category\")\n\tfor category in db.session.query(SASCategory):\n\t\tpprint(\"Getting category results\")\n\t\tbase_category = db.session.query(Category).filter(Category.id==category.category_id).first()\n\t\tif (base_category.results):\n\t\t\tpprint(\"Category has results\")\n\t\telse: \n\t\t\tif (not base_category.category_stages):\n\t\t\t\twrite_category_results(category.stage_reference, category.id)\n\t\t\telse:\n\t\t\t\tpprint(\"No results but has category stages\")\n\tpprint(\"Scrape Complete\")\n\ndef get_mtb_events(): \n\tfor year in YEARS: \n\t\turl = (\"%s/participants/event-results/fetch-series-by-type?event_type=%s&event_year=%d\" % \n\t\t\t (DESTINATION_URL, MTB_EVENT_TYPE, year))\n\t\ttry: \n\t\t\tpage = urllib.request.urlopen(url)\n\t\t\tcontent = page.read().decode(\"utf-8\")\n\t\t\tjson_content = json.loads(content)\n\t\t\tsoup = BeautifulSoup(json_content['HTML'], \"html.parser\")\n\t\t\tanchors = soup.find_all('a')\n\t\texcept (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n\t\t\tpass\n\t\tfor anchor in anchors: \n\t\t\tevent_reference = anchor[\"href\"]\n\t\t\tdivs = anchor.find_all('div')\n\t\t\tfor div in divs:\n\t\t\t\tif (\"event-date\" in div[\"class\"]):\n\t\t\t\t\tevent_date = (div.find(text=True))\n\t\t\t\telif (\"event-title\" in div[\"class\"]):\n\t\t\t\t\tevent_name = (div.find(text=True))\n\t\t\tdb_date = datetime.strptime(event_date, '%d %b %Y')\n\t\t\tdb_event = Event(event_name, db_date)\n\t\t\tdb_check = db.session.query(Event.title).filter(Event.title==event_name)\n\t\t\tif not (db.session.query(db_check.exists()).scalar()):\n\t\t\t\tdb.session.add(db_event)\n\t\t\t\tdb.session.flush()\n\t\t\t\tsas_event = SASEvent(db_event.id, event_reference)\n\t\t\t\tdb.session.add(sas_event)\n\t\t\t\tdb.session.commit()\n\ndef get_categories_and_stages(event_reference, event_id):\n\tevent = db.session.query(Event).filter(Event.id==event_id).first()\n\tif (event.categories or event.event_stages):\n\t\tpprint(\"Event Exists\")\n\telse: \n\t\turl = (DESTINATION_URL + event_reference)\n\t\ttry: \n\t\t\tpage = urllib.request.urlopen(url)\n\t\texcept (urllib.error.HTTPError, urllib.error.URLError):\n\t\t\treturn\n\t\tsoup = BeautifulSoup(page, \"html.parser\")\n\t\tcheck_stages = get_categories(soup, event_id)\n\ndef get_categories(soup, event_id):\n\tcategory_div = soup.find('div', attrs={\"id\" : \"category_container\"})\n\t#Check to see if event has categories first\n\tif category_div:\n\t\tdivs = category_div.find_all('div')\n\t\tfor div in divs: \n\t\t\tif div.has_attr(\"data-event-category-id\"):\n\t\t\t\t#Event has categories\n\t\t\t\tcategory_reference = div[\"data-event-category-id\"]\n\t\t\t\tcategory_name = div[\"data-loading-text\"]\n\t\t\t\tcategory_own_stage_reference = div[\"data-event-stage-id\"]\n\t\t\t\tdb_category = Category(category_name, event_id)\n\t\t\t\t#Check both name and event id to allow duplicate names \n\t\t\t\tdb_category_check = db.session.query(Category.name).filter(\n\t\t\t\t(Category.name==category_name) &\n\t\t\t\t(Category.event_id==event_id))\n\t\t\t\t#Check SAS category for duplicates as well \n\t\t\t\tdb_sas_category_check = db.session.query(SASCategory).filter(\n\t\t\t\t(SASCategory.category_reference==category_reference) &\n\t\t\t\t(SASCategory.stage_reference==category_own_stage_reference))\n\t\t\t\tif not (db.session.query(db_category_check.exists()).scalar()):\n\t\t\t\t\tdb.session.add(db_category)\n\t\t\t\t\tdb.session.flush()\n\t\t\t\t\tif not (db.session.query(db_sas_category_check.exists()).scalar()):\n\t\t\t\t\t\tdb_sas_category = SASCategory(category_reference, category_own_stage_reference, db_category.id)\n\t\t\t\t\t\tdb.session.add(db_sas_category)\n\t\t\t\t\t\tdb.session.flush()\n\t\t\t\t\t\tdb.session.commit()\t\t\t\n\t\t\t\t\tif (div[\"data-multiple-event-stages\"] == \"1\"):\n\t\t\t\t\t\t#Event has stages with their own categories\n\t\t\t\t\t\tget_category_stages(soup, db_category.id, category_reference)\n\telse:\n\t\t#Event does not have categories\n\t\tget_event_stages(soup, event_id)\n\n\ndef get_category_stages(soup, category_id, category_reference):\n\tstage_group_div = soup.find('div', attrs={\"id\" : (\"ec_\" + category_reference)})\n\tstage_divs = stage_group_div.find_all('div')\n\tfor stage_div in stage_divs: \n\t\tif stage_div.has_attr(\"data-stage-id\"):\n\t\t\tcategory_stage_reference = stage_div[\"data-stage-id\"]\n\t\t\tcategory_stage_name = stage_div[\"data-loading-text\"]\n\t\t\tdb_category_stage = CategoryStage(category_stage_name, category_id)\n\t\t\t#Check both name and category id to allow duplicate names \n\t\t\tdb_category_stage_check = db.session.query(CategoryStage.name).filter(\n\t\t\t\t(CategoryStage.name==category_stage_name) &\n\t\t\t\t(CategoryStage.category_id==category_id))\n\t\t\tif not (db.session.query(db_category_stage_check.exists()).scalar()):\n\t\t\t\tdb.session.add(db_category_stage)\n\t\t\t\tdb.session.flush()\n\t\t\t\tdb_sas_category_stage = SASCategoryStage(db_category_stage.id, category_stage_reference)\n\t\t\t\tdb.session.add(db_sas_category_stage)\n\t\t\t\tdb.session.flush()\n\t\t\t\tdb.session.commit()\n\ndef get_event_stages(soup, event_id):\n\tall_event_stage_divs = soup.find('div', class_ = \"row categories_stages event-sub-types\")\n\t#Check if event has stages\n\tif all_event_stage_divs:\n\t\tevent_stage_divs = all_event_stage_divs.find_all ('div')\n\t\tfor event_stage_div in event_stage_divs: \n\t\t\tif event_stage_div.has_attr(\"data-stage-id\"):\n\t\t\t\t#Event has stages and no categories\n\t\t\t\tevent_stage_reference = event_stage_div[\"data-stage-id\"]\n\t\t\t\tevent_stage_name = event_stage_div[\"data-loading-text\"]\n\t\t\t\tdb_event_stage = EventStage(event_stage_name, event_id)\n\t\t\t\t#Check if it exists by name and ID and add if it doesn't\n\t\t\t\tdb_event_stage_check = db.session.query(EventStage.name).filter(\n\t\t\t\t\t(EventStage.name==event_stage_name) &\n\t\t\t\t\t(EventStage.event_id==event_id))\n\t\t\t\tif not (db.session.query(db_event_stage_check.exists()).scalar()):\n\t\t\t\t\tdb.session.add(db_event_stage)\n\t\t\t\t\tdb.session.flush()\n\t\t\t\t\tdb_sas_event_stage = SASEventStage(db_event_stage.id, event_stage_reference)\n\t\t\t\t\tdb.session.add(db_sas_event_stage)\n\t\t\t\t\tdb.session.flush()\n\t\t\t\t\tdb.session.commit()\n\telse: \n\t\t#Event has no stages or categories\n\t\t#create new stage for just the overall results, unless event has no results\n\t\tevent_stage_reference_div = soup.find('div', class_ = \"result-row load-results\")\n\t\tif event_stage_reference_div:\n\t\t\tif event_stage_reference_div.has_attr(\"data-stage\"):\n\t\t\t\tevent_stage_reference = event_stage_reference_div[\"data-stage\"]\n\t\t\t\tsas_event = db.session.query(SASEvent).filter(SASEvent.event_id==event_id).first()\n\t\t\t\tdb_event_stage_check = db.session.query(EventStage.name).filter(\n\t\t\t\t\t(EventStage.name==\"Overall Results\") &\n\t\t\t\t\t(EventStage.event_id==sas_event.event_id))\n\t\t\t\tif not (db.session.query(db_event_stage_check.exists()).scalar()):\n\t\t\t\t\tdb_event_stage = EventStage(\"Overall Results\", sas_event.event_id)\n\t\t\t\t\tdb.session.add(db_event_stage)\n\t\t\t\t\tdb.session.flush()\n\t\t\t\t\tdb_sas_event_stage = SASEventStage(db_event_stage.id, event_stage_reference)\n\t\t\t\t\tdb.session.add(db_sas_event_stage)\n\t\t\t\t\tdb.session.commit()\n\ndef get_results(event_reference): \n\turl = (\"%s/participants/event-results/add-results?stage_id=%s&from=0&count=9999\" % \n\t\t\t (DESTINATION_URL, event_reference))\n\tpprint(url)\n\ttry: \n\t\tpage = urllib.request.urlopen(url)\n\texcept (urllib.error.HTTPError, urllib.error.ConnectionResetError):\n\t\treturn\n\tcontent = page.read().decode(\"utf-8\")\n\tjson_content = json.loads(content)\n\tjson_results = json_content['rows']\n\treturn json_results\n\ndef write_stage_results(stage_reference, stage_id, stage_type):\n\tresults = get_results(stage_reference)\n\tcategory_stage_id = None\n\tevent_stage_id = None\n\tif (stage_type==\"event\"):\n\t\tevent_stage_id = stage_id\n\telif (stage_type==\"category\"):\n\t\tcategory_stage_id = stage_id\n\tif results:\n\t\tfor result in results: \n\t\t\tparticipant_id = get_participant(result)\n\t\t\tdb_result_check = db.session.query(Result).filter(\n\t\t\t\t(Result.position==result['overall_pos']) &\n\t\t\t\t(Result.gender_position==result['gender_pos']) & \n\t\t\t\t(Result.time==result['time_taken_seconds']) & \n\t\t\t\t(Result.event_stage_id==event_stage_id) &\n\t\t\t\t(Result.category_stage_id==category_stage_id))\n\t\t\tif not (db.session.query(db_result_check.exists()).scalar()):\n\t\t\t\tif (stage_type==\"category\"): \n\t\t\t\t\tdb_result = Result(result['overall_pos'], participant_id, result['gender_pos'],\n\t\t\t\t\tresult['time_taken_seconds'], None, category_stage_id, None)\n\t\t\t\telif (stage_type==\"event\"):\n\t\t\t\t\tdb_result = Result(result['overall_pos'], participant_id, result['gender_pos'],\n\t\t\t\t result['time_taken_seconds'], event_stage_id, None, None)\n\t\t\t\tdb.session.add(db_result)\n\t\t\t\tdb.session.commit()\n\ndef write_category_results(category_reference, category_id):\n\tresults = get_results(category_reference)\n\tfor result in results: \n\t\tparticipant_id = get_participant(result)\n\n\t\tdb_result_check = db.session.query(Result).filter(\n\t\t\t(Result.position==result['overall_pos']) &\n\t\t\t(Result.gender_position==result['gender_pos']) & \n\t\t\t(Result.time==result['time_taken_seconds']) & \n\t\t\t(Result.category_id==category_id)).first()\n\t\tif not db_result_check:\n\t\t\tdb_category_result = Result(result['overall_pos'], participant_id,\n\t\t\tresult['gender_pos'], result['time_taken_seconds'], None, None, category_id)\n\t\t\tdb.session.add(db_category_result)\n\t\t\tdb.session.commit()\n\ndef get_participant(result):\n\tif result['date_of_birth']:\n\t\tbirth_date = datetime.strptime(result['date_of_birth'], '%Y-%m-%d').date()\n\telse:\n\t\tbirth_date = None\n\tdb_participant_check = db.session.query(Participant).filter(\n\t\t(Participant.first_name==result['first_name']) &\n\t\t(Participant.last_name==result['last_name']) & \n\t\t(Participant.sex==result['person_sex']) & \n\t\t(Participant.birth_date==birth_date))\n\tif not (db.session.query(db_participant_check.exists()).scalar()):\n\t\tdb_participant = Participant(result['first_name'], result['last_name'],\n\t\tresult['person_sex'], birth_date)\n\t\tdb.session.add(db_participant)\n\t\tdb.session.commit()\n\t\treturn db_participant.id\n\telse: \n\t\treturn db_participant_check.first().id\n\n\n\n", "step-ids": [ 8, 9, 10, 11, 12 ] }
[ 8, 9, 10, 11, 12 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> assert len(kwic.kwic(mystr)) == 3 <|reserved_special_token_1|> <|reserved_special_token_0|> mystr = """hello world my test apples oranges""" assert len(kwic.kwic(mystr)) == 3 <|reserved_special_token_1|> import kwic mystr = """hello world my test apples oranges""" assert len(kwic.kwic(mystr)) == 3 <|reserved_special_token_1|> import kwic mystr = "hello world\nmy test\napples oranges" #asseirt(kwic0.kwic(mystr) == []) #assert(kwic1.kwic(mystr) == [mystr]) #assert(len(kwic3.kwic(mystr))==2) assert len(kwic.kwic(mystr)) == 3
flexible
{ "blob_id": "1f21fdc9a198b31bb0d5bd6dd8f46a1b3b28ec94", "index": 6773, "step-1": "<mask token>\n", "step-2": "<mask token>\nassert len(kwic.kwic(mystr)) == 3\n", "step-3": "<mask token>\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n", "step-4": "import kwic\nmystr = \"\"\"hello world\nmy test\napples oranges\"\"\"\nassert len(kwic.kwic(mystr)) == 3\n", "step-5": "import kwic\n\n\nmystr = \"hello world\\nmy test\\napples oranges\"\n#asseirt(kwic0.kwic(mystr) == [])\n#assert(kwic1.kwic(mystr) == [mystr])\n#assert(len(kwic3.kwic(mystr))==2)\nassert len(kwic.kwic(mystr)) == 3\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# import tensorflow as tf # from tensorflow.examples.tutorials.mnist import input_data # mnist = input_data.read_data_sets('/tmp/data/',one_hot=True) # def build_CNN_clasifier(x): # x_image = tf.reshape (x, [-1,28,28,1]) # # #layer1 # w_conv1 = tf.Variable(tf.truncated_normal(shape = [5,5,1,32],stddev= 5e-2)) # b_conv1 = tf.Variable(tf.constant(0.1,shape=[32])) # h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image,w_conv1,stride=[1,1,1,1,],padding='SAME')+b_conv1) # h_pool1 = tf.nn.max_pool(h_conv1,ksize=[1,2,2,1],strides = [1,2,2,1],padding='SAME') # # #layer2 # w_conv2 = tf.Variable(tf.truncated_normal(shape=[5,5,32,64],stddev = 5e-2)) # b_conv2 = tf.Variable(tf.constant(0.1,shape=[64])) # h_conv2 = tf.nn.relu(tf.nn.conv2d(h_conv1,w_conv2,strides=[1,1,1,1],padding='SAME')+b_conv2) # # h_pool2 = tf.nn.max_pool(h_conv2,ksize=[1,2,2,1],strides= [1,2,2,1],padding='SAME') # # #fully-connected layer # w_fc_1 = tf.Variable(tf.truncated_normal(shape=[7*7*64,1024],stddev=5e-2)) # b_fc_1 = tf.Variable(tf.constant(0.1,shape=[1024])) # h_pool2_flat= tf.reshape(h_pool2,[-1,7*7*64]) # h_fc_1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc_1)+b_fc_1) # # # # # with tf.Session() as sess: # sess.run(x_image, feed_dict={x:mnist}) # print(x_image) # print(x_image.shape) import numpy as np def conv1d(x, w, p=0, s=1): w_rot = np.array(w[::-1]) x_padded = np.array(x) if p > 0: zero_pad = np.zeros(shape=p) x_padded = np.concatenate([zero_pad, x_padded, zero_pad]) res = [] for i in range(0, int((len(x)+2*p-len(w))/s)+1): j = s*i; res.append(np.sum(x_padded[j:j+w_rot.shape[0]] * w_rot)) return np.array(res) ## Testing: x = [1, 0, 2, 3, 0, 1, 1] w = [2, 1, 3] print('Conv1d Implementation: ', conv1d(x, w, p=0, s=1)) print('Numpy Results: ', np.convolve(x, w, mode='valid')) import tensorflow as tf i = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i') k = tf.constant([2, 1, 3], dtype=tf.float32, name='k') print(i, '\n', k, '\n') data = tf.reshape(i, [1, int(i.shape[0]), 1], name='data') kernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel') print(data, '\n', kernel, '\n') res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID')) #res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'SAME')) #res = tf.squeeze(tf.nn.conv1d(data, kernel, 2, 'SAME’)) #res = tf.nn.conv1d(data, kernel, 2, 'SAME') with tf.Session() as sess: print(sess.run(res)) print(sess.run(data))
normal
{ "blob_id": "a336434abc526357db0536955885cf076ee60f59", "index": 7220, "step-1": "<mask token>\n\n\ndef conv1d(x, w, p=0, s=1):\n w_rot = np.array(w[::-1])\n x_padded = np.array(x)\n if p > 0:\n zero_pad = np.zeros(shape=p)\n x_padded = np.concatenate([zero_pad, x_padded, zero_pad])\n res = []\n for i in range(0, int((len(x) + 2 * p - len(w)) / s) + 1):\n j = s * i\n res.append(np.sum(x_padded[j:j + w_rot.shape[0]] * w_rot))\n return np.array(res)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef conv1d(x, w, p=0, s=1):\n w_rot = np.array(w[::-1])\n x_padded = np.array(x)\n if p > 0:\n zero_pad = np.zeros(shape=p)\n x_padded = np.concatenate([zero_pad, x_padded, zero_pad])\n res = []\n for i in range(0, int((len(x) + 2 * p - len(w)) / s) + 1):\n j = s * i\n res.append(np.sum(x_padded[j:j + w_rot.shape[0]] * w_rot))\n return np.array(res)\n\n\n<mask token>\nprint('Conv1d Implementation: ', conv1d(x, w, p=0, s=1))\nprint('Numpy Results: ', np.convolve(x, w, mode='valid'))\n<mask token>\nprint(i, '\\n', k, '\\n')\n<mask token>\nprint(data, '\\n', kernel, '\\n')\n<mask token>\nwith tf.Session() as sess:\n print(sess.run(res))\n print(sess.run(data))\n", "step-3": "<mask token>\n\n\ndef conv1d(x, w, p=0, s=1):\n w_rot = np.array(w[::-1])\n x_padded = np.array(x)\n if p > 0:\n zero_pad = np.zeros(shape=p)\n x_padded = np.concatenate([zero_pad, x_padded, zero_pad])\n res = []\n for i in range(0, int((len(x) + 2 * p - len(w)) / s) + 1):\n j = s * i\n res.append(np.sum(x_padded[j:j + w_rot.shape[0]] * w_rot))\n return np.array(res)\n\n\nx = [1, 0, 2, 3, 0, 1, 1]\nw = [2, 1, 3]\nprint('Conv1d Implementation: ', conv1d(x, w, p=0, s=1))\nprint('Numpy Results: ', np.convolve(x, w, mode='valid'))\n<mask token>\ni = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i')\nk = tf.constant([2, 1, 3], dtype=tf.float32, name='k')\nprint(i, '\\n', k, '\\n')\ndata = tf.reshape(i, [1, int(i.shape[0]), 1], name='data')\nkernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel')\nprint(data, '\\n', kernel, '\\n')\nres = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID'))\nwith tf.Session() as sess:\n print(sess.run(res))\n print(sess.run(data))\n", "step-4": "import numpy as np\n\n\ndef conv1d(x, w, p=0, s=1):\n w_rot = np.array(w[::-1])\n x_padded = np.array(x)\n if p > 0:\n zero_pad = np.zeros(shape=p)\n x_padded = np.concatenate([zero_pad, x_padded, zero_pad])\n res = []\n for i in range(0, int((len(x) + 2 * p - len(w)) / s) + 1):\n j = s * i\n res.append(np.sum(x_padded[j:j + w_rot.shape[0]] * w_rot))\n return np.array(res)\n\n\nx = [1, 0, 2, 3, 0, 1, 1]\nw = [2, 1, 3]\nprint('Conv1d Implementation: ', conv1d(x, w, p=0, s=1))\nprint('Numpy Results: ', np.convolve(x, w, mode='valid'))\nimport tensorflow as tf\ni = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i')\nk = tf.constant([2, 1, 3], dtype=tf.float32, name='k')\nprint(i, '\\n', k, '\\n')\ndata = tf.reshape(i, [1, int(i.shape[0]), 1], name='data')\nkernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel')\nprint(data, '\\n', kernel, '\\n')\nres = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID'))\nwith tf.Session() as sess:\n print(sess.run(res))\n print(sess.run(data))\n", "step-5": "# import tensorflow as tf\n\n# from tensorflow.examples.tutorials.mnist import input_data\n# mnist = input_data.read_data_sets('/tmp/data/',one_hot=True)\n# def build_CNN_clasifier(x):\n# x_image = tf.reshape (x, [-1,28,28,1])\n#\n# #layer1\n# w_conv1 = tf.Variable(tf.truncated_normal(shape = [5,5,1,32],stddev= 5e-2))\n# b_conv1 = tf.Variable(tf.constant(0.1,shape=[32]))\n# h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image,w_conv1,stride=[1,1,1,1,],padding='SAME')+b_conv1)\n# h_pool1 = tf.nn.max_pool(h_conv1,ksize=[1,2,2,1],strides = [1,2,2,1],padding='SAME')\n#\n# #layer2\n # w_conv2 = tf.Variable(tf.truncated_normal(shape=[5,5,32,64],stddev = 5e-2))\n # b_conv2 = tf.Variable(tf.constant(0.1,shape=[64]))\n # h_conv2 = tf.nn.relu(tf.nn.conv2d(h_conv1,w_conv2,strides=[1,1,1,1],padding='SAME')+b_conv2)\n #\n # h_pool2 = tf.nn.max_pool(h_conv2,ksize=[1,2,2,1],strides= [1,2,2,1],padding='SAME')\n #\n # #fully-connected layer\n # w_fc_1 = tf.Variable(tf.truncated_normal(shape=[7*7*64,1024],stddev=5e-2))\n # b_fc_1 = tf.Variable(tf.constant(0.1,shape=[1024]))\n # h_pool2_flat= tf.reshape(h_pool2,[-1,7*7*64])\n # h_fc_1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc_1)+b_fc_1)\n #\n #\n #\n #\n # with tf.Session() as sess:\n # sess.run(x_image, feed_dict={x:mnist})\n # print(x_image)\n # print(x_image.shape)\n\n\nimport numpy as np\n\ndef conv1d(x, w, p=0, s=1):\n w_rot = np.array(w[::-1])\n\n x_padded = np.array(x)\n if p > 0:\n zero_pad = np.zeros(shape=p)\n x_padded = np.concatenate([zero_pad, x_padded, zero_pad])\n res = []\n for i in range(0, int((len(x)+2*p-len(w))/s)+1):\n j = s*i;\n res.append(np.sum(x_padded[j:j+w_rot.shape[0]] * w_rot))\n\n return np.array(res)\n## Testing:\nx = [1, 0, 2, 3, 0, 1, 1]\nw = [2, 1, 3]\nprint('Conv1d Implementation: ', conv1d(x, w, p=0, s=1))\nprint('Numpy Results: ', np.convolve(x, w, mode='valid'))\n\n\n\n\n\n\nimport tensorflow as tf\ni = tf.constant([1, 0, 2, 3, 0, 1, 1], dtype=tf.float32, name='i')\nk = tf.constant([2, 1, 3], dtype=tf.float32, name='k')\nprint(i, '\\n', k, '\\n')\ndata = tf.reshape(i, [1, int(i.shape[0]), 1], name='data')\nkernel = tf.reshape(k, [int(k.shape[0]), 1, 1], name='kernel')\nprint(data, '\\n', kernel, '\\n')\nres = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'VALID'))\n#res = tf.squeeze(tf.nn.conv1d(data, kernel, 1, 'SAME'))\n#res = tf.squeeze(tf.nn.conv1d(data, kernel, 2, 'SAME’))\n#res = tf.nn.conv1d(data, kernel, 2, 'SAME')\nwith tf.Session() as sess:\n print(sess.run(res))\n print(sess.run(data))", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> class Instruction(QWidget): <|reserved_special_token_0|> def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) def show_game(self): self.parent().show_game() <|reserved_special_token_1|> import sys from PyQt5 import uic from PyQt5.QtWidgets import QWidget from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap class Instruction(QWidget): def __init__(self): super().__init__() uic.loadUi('../ui/instruction.ui', self) self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) def show_game(self): self.parent().show_game() <|reserved_special_token_1|> import sys from PyQt5 import uic from PyQt5.QtWidgets import QWidget from PyQt5.QtCore import Qt from PyQt5.QtGui import QPixmap class Instruction(QWidget): def __init__(self): super().__init__() # Set UI file uic.loadUi('../ui/instruction.ui', self) # Connect handlers of buttons self.OK_btn.clicked.connect(self.show_game) self.set_background_instruction() # Set background of the windows def set_background_instruction(self): img = QPixmap('../images/background_instruction.jpg') self.background_instruction.setPixmap(img) # Show window of the game def show_game(self): self.parent().show_game()
flexible
{ "blob_id": "da30cea4cfb1ffccabe708fe15e5a633b06d299f", "index": 2265, "step-1": "<mask token>\n\n\nclass Instruction(QWidget):\n <mask token>\n\n def set_background_instruction(self):\n img = QPixmap('../images/background_instruction.jpg')\n self.background_instruction.setPixmap(img)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Instruction(QWidget):\n\n def __init__(self):\n super().__init__()\n uic.loadUi('../ui/instruction.ui', self)\n self.OK_btn.clicked.connect(self.show_game)\n self.set_background_instruction()\n\n def set_background_instruction(self):\n img = QPixmap('../images/background_instruction.jpg')\n self.background_instruction.setPixmap(img)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Instruction(QWidget):\n\n def __init__(self):\n super().__init__()\n uic.loadUi('../ui/instruction.ui', self)\n self.OK_btn.clicked.connect(self.show_game)\n self.set_background_instruction()\n\n def set_background_instruction(self):\n img = QPixmap('../images/background_instruction.jpg')\n self.background_instruction.setPixmap(img)\n\n def show_game(self):\n self.parent().show_game()\n", "step-4": "import sys\nfrom PyQt5 import uic\nfrom PyQt5.QtWidgets import QWidget\nfrom PyQt5.QtCore import Qt\nfrom PyQt5.QtGui import QPixmap\n\n\nclass Instruction(QWidget):\n\n def __init__(self):\n super().__init__()\n uic.loadUi('../ui/instruction.ui', self)\n self.OK_btn.clicked.connect(self.show_game)\n self.set_background_instruction()\n\n def set_background_instruction(self):\n img = QPixmap('../images/background_instruction.jpg')\n self.background_instruction.setPixmap(img)\n\n def show_game(self):\n self.parent().show_game()\n", "step-5": "import sys\nfrom PyQt5 import uic\nfrom PyQt5.QtWidgets import QWidget\nfrom PyQt5.QtCore import Qt\nfrom PyQt5.QtGui import QPixmap\n\n\nclass Instruction(QWidget):\n def __init__(self):\n super().__init__()\n\n # Set UI file\n uic.loadUi('../ui/instruction.ui', self)\n\n # Connect handlers of buttons\n self.OK_btn.clicked.connect(self.show_game)\n\n self.set_background_instruction()\n\n # Set background of the windows\n def set_background_instruction(self):\n img = QPixmap('../images/background_instruction.jpg')\n self.background_instruction.setPixmap(img)\n\n # Show window of the game\n def show_game(self):\n self.parent().show_game()\n ", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> class ycombinatorParser: <|reserved_special_token_0|> def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage = parsed_body.xpath('//a[@class="morelink"]') try: nexthref = nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body, rownumber): def jsonWriteLine(rownumber, title, autor, url, site): line = ( """{"Rownumber": %d, "title": "%s", "autor": "%s", "url": "%s", "site": "%s", } """ % (rownumber, title, autor, url, site)) return line def getNews(rownews): newsdict = {} for news in rownews: newsdict['title'] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict['url'] = i.get('href') newsdict['site'] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict['autor'] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title = datadict['title'] url = datadict['url'] site = datadict['site'] except KeyError: autor = datadict['autor'] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json', mode='a') as f: json.dump(rowdata, f) rownumber += 1 if rownumber > 2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> with open('nix.json', mode='w') as f: json.dump('', f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body, rownumber) - 1 pageparse = siteurl + getNextPage(pageparse) if pageparse == siteurl: pageflag = False <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ycombinatorParser: siteurl = 'https://news.ycombinator.com/' def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage = parsed_body.xpath('//a[@class="morelink"]') try: nexthref = nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body, rownumber): def jsonWriteLine(rownumber, title, autor, url, site): line = ( """{"Rownumber": %d, "title": "%s", "autor": "%s", "url": "%s", "site": "%s", } """ % (rownumber, title, autor, url, site)) return line def getNews(rownews): newsdict = {} for news in rownews: newsdict['title'] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict['url'] = i.get('href') newsdict['site'] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict['autor'] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title = datadict['title'] url = datadict['url'] site = datadict['site'] except KeyError: autor = datadict['autor'] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json', mode='a') as f: json.dump(rowdata, f) rownumber += 1 if rownumber > 2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) pageflag = True rownumber = 1 pageparse = siteurl with open('nix.json', mode='w') as f: json.dump('', f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body, rownumber) - 1 pageparse = siteurl + getNextPage(pageparse) if pageparse == siteurl: pageflag = False <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ycombinatorParser: siteurl = 'https://news.ycombinator.com/' def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage = parsed_body.xpath('//a[@class="morelink"]') try: nexthref = nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body, rownumber): def jsonWriteLine(rownumber, title, autor, url, site): line = ( """{"Rownumber": %d, "title": "%s", "autor": "%s", "url": "%s", "site": "%s", } """ % (rownumber, title, autor, url, site)) return line def getNews(rownews): newsdict = {} for news in rownews: newsdict['title'] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict['url'] = i.get('href') newsdict['site'] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict['autor'] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title = datadict['title'] url = datadict['url'] site = datadict['site'] except KeyError: autor = datadict['autor'] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json', mode='a') as f: json.dump(rowdata, f) rownumber += 1 if rownumber > 2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) pageflag = True rownumber = 1 pageparse = siteurl with open('nix.json', mode='w') as f: json.dump('', f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body, rownumber) - 1 pageparse = siteurl + getNextPage(pageparse) if pageparse == siteurl: pageflag = False if __name__ == '__main__': ycombinatorParser() <|reserved_special_token_1|> import requests import csv from lxml import html import json class ycombinatorParser: siteurl = 'https://news.ycombinator.com/' def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage = parsed_body.xpath('//a[@class="morelink"]') try: nexthref = nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body, rownumber): def jsonWriteLine(rownumber, title, autor, url, site): line = ( """{"Rownumber": %d, "title": "%s", "autor": "%s", "url": "%s", "site": "%s", } """ % (rownumber, title, autor, url, site)) return line def getNews(rownews): newsdict = {} for news in rownews: newsdict['title'] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict['url'] = i.get('href') newsdict['site'] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict['autor'] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title = datadict['title'] url = datadict['url'] site = datadict['site'] except KeyError: autor = datadict['autor'] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json', mode='a') as f: json.dump(rowdata, f) rownumber += 1 if rownumber > 2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) pageflag = True rownumber = 1 pageparse = siteurl with open('nix.json', mode='w') as f: json.dump('', f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body, rownumber) - 1 pageparse = siteurl + getNextPage(pageparse) if pageparse == siteurl: pageflag = False if __name__ == '__main__': ycombinatorParser() <|reserved_special_token_1|> # -*- coding: utf-8 -*- import requests import csv from lxml import html import json class ycombinatorParser(): siteurl = 'https://news.ycombinator.com/' def getNextPage(pageurl): response = requests.get(pageurl) parsed_body = html.fromstring(response.text) nextpage=parsed_body.xpath('//a[@class="morelink"]') try: nexthref=nextpage[0].get('href') except IndexError: nexthref = '' return nexthref def parsePage(parsed_body,rownumber): def jsonWriteLine(rownumber,title,autor,url,site): line = '{"Rownumber": %d,\n "title": "%s",\n "autor": "%s",\n "url": "%s",\n "site": "%s",\n }\n' %(rownumber,title,autor,url,site) #print line return line def getNews(rownews): newsdict = {} for news in rownews: newsdict["title"] = ''.join(news.xpath('./a/text()')) for i in news.xpath('./a'): newsdict["url"] = i.get('href') newsdict["site"] = ''.join(news.xpath('./span/a/span/text()')) return newsdict def getAuthor(rowautor): authordict = {} for author in rowautor: authordict["autor"] = ''.join(author.xpath('./a[1]/text()')) return authordict for row in parsed_body.xpath('//tr'): rownews = row.xpath('./td[@class="title"][2]') rowautor = row.xpath('./td[@class="subtext"][1]') datadict = {} rowdata = {} if rownews: datadict = getNews(rownews) if rowautor: for author in rowautor: datadict = getAuthor(rowautor) if datadict: autor = '' try: title=datadict["title"] url=datadict["url"] site=datadict["site"] except KeyError: autor = datadict["autor"] if autor: rowdata['rownumber'] = str(rownumber) rowdata['title'] = str(title) rowdata['autor'] = str(autor) rowdata['url'] = str(url) rowdata['site'] = str(site) with open('nix.json',mode='a') as f: json.dump(rowdata,f) #outputfile.write(jsonWriteLine(rownumber,title,autor,url,site)) #print jsonWriteLine(rownumber,title,autor,url,site) rownumber += 1 if rownumber>2: exit() return rownumber def __unicode__(self): return unicode(self.rowdata) pageflag = True rownumber = 1 pageparse = siteurl with open('nix.json',mode='w') as f: json.dump('',f) while pageflag: response = requests.get(pageparse) parsed_body = html.fromstring(response.text) rownumber = parsePage(parsed_body,rownumber)-1 pageparse = siteurl+getNextPage(pageparse) if pageparse == siteurl: pageflag = False if __name__ == '__main__': ycombinatorParser()
flexible
{ "blob_id": "87c27711c0089ca2c7e5c7d0e9edb51b9d4008d9", "index": 6717, "step-1": "<mask token>\n\n\nclass ycombinatorParser:\n <mask token>\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n <mask token>\n <mask token>\n <mask token>\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n", "step-4": "import requests\nimport csv\nfrom lxml import html\nimport json\n\n\nclass ycombinatorParser:\n siteurl = 'https://news.ycombinator.com/'\n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage = parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref = nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref\n\n def parsePage(parsed_body, rownumber):\n\n def jsonWriteLine(rownumber, title, autor, url, site):\n line = (\n \"\"\"{\"Rownumber\": %d,\n \"title\": \"%s\",\n \"autor\": \"%s\",\n \"url\": \"%s\",\n \"site\": \"%s\",\n }\n\"\"\"\n % (rownumber, title, autor, url, site))\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict['title'] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict['url'] = i.get('href')\n newsdict['site'] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict['autor'] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n if datadict:\n autor = ''\n try:\n title = datadict['title']\n url = datadict['url']\n site = datadict['site']\n except KeyError:\n autor = datadict['autor']\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n with open('nix.json', mode='a') as f:\n json.dump(rowdata, f)\n rownumber += 1\n if rownumber > 2:\n exit()\n return rownumber\n\n def __unicode__(self):\n return unicode(self.rowdata)\n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json', mode='w') as f:\n json.dump('', f)\n while pageflag:\n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text)\n rownumber = parsePage(parsed_body, rownumber) - 1\n pageparse = siteurl + getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\n\n\nif __name__ == '__main__':\n ycombinatorParser()\n", "step-5": "# -*- coding: utf-8 -*-\nimport requests\nimport csv\nfrom lxml import html\nimport json\n\nclass ycombinatorParser():\n siteurl = 'https://news.ycombinator.com/' \n\n def getNextPage(pageurl):\n response = requests.get(pageurl)\n parsed_body = html.fromstring(response.text)\n nextpage=parsed_body.xpath('//a[@class=\"morelink\"]')\n try:\n nexthref=nextpage[0].get('href')\n except IndexError:\n nexthref = ''\n return nexthref \n\n\n def parsePage(parsed_body,rownumber):\n def jsonWriteLine(rownumber,title,autor,url,site):\n line = '{\"Rownumber\": %d,\\n \"title\": \"%s\",\\n \"autor\": \"%s\",\\n \"url\": \"%s\",\\n \"site\": \"%s\",\\n }\\n' %(rownumber,title,autor,url,site)\n #print line\n return line\n\n def getNews(rownews):\n newsdict = {}\n for news in rownews:\n newsdict[\"title\"] = ''.join(news.xpath('./a/text()'))\n for i in news.xpath('./a'):\n newsdict[\"url\"] = i.get('href')\n newsdict[\"site\"] = ''.join(news.xpath('./span/a/span/text()'))\n return newsdict\n\n def getAuthor(rowautor):\n authordict = {}\n for author in rowautor:\n authordict[\"autor\"] = ''.join(author.xpath('./a[1]/text()'))\n return authordict\n\n for row in parsed_body.xpath('//tr'):\n rownews = row.xpath('./td[@class=\"title\"][2]')\n rowautor = row.xpath('./td[@class=\"subtext\"][1]')\n datadict = {}\n rowdata = {}\n if rownews:\n datadict = getNews(rownews)\n if rowautor:\n for author in rowautor:\n datadict = getAuthor(rowautor)\n\n if datadict:\n autor = ''\n try:\n title=datadict[\"title\"]\n url=datadict[\"url\"]\n site=datadict[\"site\"]\n except KeyError:\n autor = datadict[\"autor\"]\n\n if autor:\n rowdata['rownumber'] = str(rownumber)\n rowdata['title'] = str(title)\n rowdata['autor'] = str(autor)\n rowdata['url'] = str(url)\n rowdata['site'] = str(site)\n \n with open('nix.json',mode='a') as f:\n json.dump(rowdata,f)\n \n #outputfile.write(jsonWriteLine(rownumber,title,autor,url,site)) \n \n #print jsonWriteLine(rownumber,title,autor,url,site)\n rownumber += 1\n if rownumber>2:\n exit()\n return rownumber\n \n def __unicode__(self):\n return unicode(self.rowdata)\n \n pageflag = True\n rownumber = 1\n pageparse = siteurl\n with open('nix.json',mode='w') as f:\n json.dump('',f)\n while pageflag: \n response = requests.get(pageparse)\n parsed_body = html.fromstring(response.text) \n\n rownumber = parsePage(parsed_body,rownumber)-1\n\n pageparse = siteurl+getNextPage(pageparse)\n if pageparse == siteurl:\n pageflag = False\nif __name__ == '__main__':\n ycombinatorParser()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#!/usr/bin/env python3 # -*- coding=utf-8 -*- # description: # author:jack # create_time: 2017/12/30 """ 卡片基类 """ import logging class BaseCard(object): def __init__(self, field=[]): self.data = {} self.support_set_field = field def add_cue_words(self, arr): """ 为卡片添加cue words 提示用户输入 :param arr: :return: """ if arr: if isinstance(arr, str): arr = [arr] if 'cueWords' in self.data: self.data['cueWords'] = self.data['cueWords'] else: self.data['cueWords'] = [] self.data['cueWords'].extend(arr) return self def set_anchor(self, url, anchor_text): """ 设置卡片链接 :param url: 比如:http(s)://.... :param anchor_text: 链接显示的文字 :return: """ if url: self.data['url'] = url if anchor_text: self.data['anchorText'] = anchor_text return self def get_data(self): return self.data def __getattr__(self, item): """ 添加魔术方法 :param item: :return: """ # 获取操作类型 set operation = item[0:3] # 获取被操作的属性 set_xxxx 获取xxxx field = item[4:] if operation == 'set' and field and (field.lower() in self.support_set_field): def function(*args): self.data[field.lower()] = args[0] return function else: def function(*args): logging.info("不支持 %s_%s" % (operation, field)) print('不支持', operation, field) return function if __name__ == '__main__': pass
normal
{ "blob_id": "93e5852df00733c024a59d37699bae58bd893030", "index": 112, "step-1": "<mask token>\n\n\nclass BaseCard(object):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __getattr__(self, item):\n \"\"\"\n 添加魔术方法\n :param item:\n :return:\n \"\"\"\n operation = item[0:3]\n field = item[4:]\n if operation == 'set' and field and field.lower(\n ) in self.support_set_field:\n\n def function(*args):\n self.data[field.lower()] = args[0]\n return function\n else:\n\n def function(*args):\n logging.info('不支持 %s_%s' % (operation, field))\n print('不支持', operation, field)\n return function\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass BaseCard(object):\n <mask token>\n <mask token>\n <mask token>\n\n def get_data(self):\n return self.data\n\n def __getattr__(self, item):\n \"\"\"\n 添加魔术方法\n :param item:\n :return:\n \"\"\"\n operation = item[0:3]\n field = item[4:]\n if operation == 'set' and field and field.lower(\n ) in self.support_set_field:\n\n def function(*args):\n self.data[field.lower()] = args[0]\n return function\n else:\n\n def function(*args):\n logging.info('不支持 %s_%s' % (operation, field))\n print('不支持', operation, field)\n return function\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass BaseCard(object):\n\n def __init__(self, field=[]):\n self.data = {}\n self.support_set_field = field\n <mask token>\n <mask token>\n\n def get_data(self):\n return self.data\n\n def __getattr__(self, item):\n \"\"\"\n 添加魔术方法\n :param item:\n :return:\n \"\"\"\n operation = item[0:3]\n field = item[4:]\n if operation == 'set' and field and field.lower(\n ) in self.support_set_field:\n\n def function(*args):\n self.data[field.lower()] = args[0]\n return function\n else:\n\n def function(*args):\n logging.info('不支持 %s_%s' % (operation, field))\n print('不支持', operation, field)\n return function\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass BaseCard(object):\n\n def __init__(self, field=[]):\n self.data = {}\n self.support_set_field = field\n\n def add_cue_words(self, arr):\n \"\"\"\n 为卡片添加cue words 提示用户输入\n :param arr:\n :return:\n \"\"\"\n if arr:\n if isinstance(arr, str):\n arr = [arr]\n if 'cueWords' in self.data:\n self.data['cueWords'] = self.data['cueWords']\n else:\n self.data['cueWords'] = []\n self.data['cueWords'].extend(arr)\n return self\n\n def set_anchor(self, url, anchor_text):\n \"\"\"\n 设置卡片链接\n :param url: 比如:http(s)://....\n :param anchor_text: 链接显示的文字\n :return:\n \"\"\"\n if url:\n self.data['url'] = url\n if anchor_text:\n self.data['anchorText'] = anchor_text\n return self\n\n def get_data(self):\n return self.data\n\n def __getattr__(self, item):\n \"\"\"\n 添加魔术方法\n :param item:\n :return:\n \"\"\"\n operation = item[0:3]\n field = item[4:]\n if operation == 'set' and field and field.lower(\n ) in self.support_set_field:\n\n def function(*args):\n self.data[field.lower()] = args[0]\n return function\n else:\n\n def function(*args):\n logging.info('不支持 %s_%s' % (operation, field))\n print('不支持', operation, field)\n return function\n\n\nif __name__ == '__main__':\n pass\n", "step-5": "#!/usr/bin/env python3\n# -*- coding=utf-8 -*-\n\n# description:\n# author:jack\n# create_time: 2017/12/30\n\"\"\"\n卡片基类\n\"\"\"\nimport logging\n\n\nclass BaseCard(object):\n\n def __init__(self, field=[]):\n self.data = {}\n self.support_set_field = field\n\n def add_cue_words(self, arr):\n \"\"\"\n 为卡片添加cue words 提示用户输入\n :param arr:\n :return:\n \"\"\"\n\n if arr:\n if isinstance(arr, str):\n arr = [arr]\n\n if 'cueWords' in self.data:\n self.data['cueWords'] = self.data['cueWords']\n else:\n self.data['cueWords'] = []\n\n self.data['cueWords'].extend(arr)\n return self\n\n def set_anchor(self, url, anchor_text):\n \"\"\"\n 设置卡片链接\n :param url: 比如:http(s)://....\n :param anchor_text: 链接显示的文字\n :return:\n \"\"\"\n\n if url:\n self.data['url'] = url\n if anchor_text:\n self.data['anchorText'] = anchor_text\n return self\n\n def get_data(self):\n return self.data\n\n def __getattr__(self, item):\n \"\"\"\n 添加魔术方法\n :param item:\n :return:\n \"\"\"\n # 获取操作类型 set\n operation = item[0:3]\n # 获取被操作的属性 set_xxxx 获取xxxx\n field = item[4:]\n if operation == 'set' and field and (field.lower() in self.support_set_field):\n def function(*args):\n self.data[field.lower()] = args[0]\n return function\n else:\n def function(*args):\n logging.info(\"不支持 %s_%s\" % (operation, field))\n print('不支持', operation, field)\n\n return function\n\n\nif __name__ == '__main__':\n pass\n", "step-ids": [ 2, 3, 4, 7, 9 ] }
[ 2, 3, 4, 7, 9 ]
from flask import Flask, request, jsonify from flask_sqlalchemy import SQLAlchemy from flask_marshmallow import Marshmallow import os # Init app app = Flask(__name__) basedir = os.path.abspath(os.path.dirname(__file__)) # Database app.config['SQLALCHEM_DATABASE_URI'] = 'sqlite///' + \ os.path.join(basedir, 'db.sqlite') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False # Init db db = SQLAlchemy(app) # Init ma ma = Marshmallow(app) # Product Class/Model class Product(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(100), unique=True) description = db.Column(db.String(200)) price = db.Column(db.Float) qty = db.Column(db.Integer) # Product Schema class ProductSchema(ma.Schema): class Meta: fields = ('id', 'name', 'description', 'price', 'qty') # Init schema product_schema = ProductSchema(strict=True) product_schema = ProductSchema(many=True, strict=True) # Run Server if __name__ == '__main__': app.run(debug=True)
normal
{ "blob_id": "ccb131171472d0a92d571e94453be97b323b4484", "index": 7081, "step-1": "<mask token>\n\n\nclass ProductSchema(ma.Schema):\n\n\n class Meta:\n fields = 'id', 'name', 'description', 'price', 'qty'\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Product(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n name = db.Column(db.String(100), unique=True)\n description = db.Column(db.String(200))\n price = db.Column(db.Float)\n qty = db.Column(db.Integer)\n\n\nclass ProductSchema(ma.Schema):\n\n\n class Meta:\n fields = 'id', 'name', 'description', 'price', 'qty'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Product(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n name = db.Column(db.String(100), unique=True)\n description = db.Column(db.String(200))\n price = db.Column(db.Float)\n qty = db.Column(db.Integer)\n\n\nclass ProductSchema(ma.Schema):\n\n\n class Meta:\n fields = 'id', 'name', 'description', 'price', 'qty'\n\n\n<mask token>\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "<mask token>\napp = Flask(__name__)\nbasedir = os.path.abspath(os.path.dirname(__file__))\napp.config['SQLALCHEM_DATABASE_URI'] = 'sqlite///' + os.path.join(basedir,\n 'db.sqlite')\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\ndb = SQLAlchemy(app)\nma = Marshmallow(app)\n\n\nclass Product(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n name = db.Column(db.String(100), unique=True)\n description = db.Column(db.String(200))\n price = db.Column(db.Float)\n qty = db.Column(db.Integer)\n\n\nclass ProductSchema(ma.Schema):\n\n\n class Meta:\n fields = 'id', 'name', 'description', 'price', 'qty'\n\n\nproduct_schema = ProductSchema(strict=True)\nproduct_schema = ProductSchema(many=True, strict=True)\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask, request, jsonify\nfrom flask_sqlalchemy import SQLAlchemy\nfrom flask_marshmallow import Marshmallow\nimport os\n\n# Init app\napp = Flask(__name__)\nbasedir = os.path.abspath(os.path.dirname(__file__))\n# Database\napp.config['SQLALCHEM_DATABASE_URI'] = 'sqlite///' + \\\n os.path.join(basedir, 'db.sqlite')\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\n# Init db\ndb = SQLAlchemy(app)\n# Init ma\nma = Marshmallow(app)\n\n# Product Class/Model\n\n\nclass Product(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n name = db.Column(db.String(100), unique=True)\n description = db.Column(db.String(200))\n price = db.Column(db.Float)\n qty = db.Column(db.Integer)\n\n \n\n# Product Schema\n\n\nclass ProductSchema(ma.Schema):\n class Meta:\n fields = ('id', 'name', 'description', 'price', 'qty')\n\n\n# Init schema\nproduct_schema = ProductSchema(strict=True)\nproduct_schema = ProductSchema(many=True, strict=True)\n\n\n\n# Run Server\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-ids": [ 1, 3, 4, 5, 7 ] }
[ 1, 3, 4, 5, 7 ]
from joecceasy import Easy def main(): paths = ['..','.'] absOfEntries = [ i.abs for i in Easy.WalkAnIter(paths) ] for i in absOfEntries: print( i ) if __name__=='__main__': main() """ def main(maxEntries = 99): i = -1 print( "Walker test, Walking current directory:" ) for entry in Easy.WalkAnIter( ['.'] ): i += 1 ## because i start at -1, 1st run of line will be 0 if i > maxEntries: break print(entry.abs) print( ' \n ' ) """ #isFileByPython = os.path.isfile(entry.abs) # print( 'entry: ', entry.name, 'f', entry.isFile, 'd', entry.isDir, # 'fa', entry.isFileAt, 'da', entry.isDirAt, 'pf', isFileByPython, se#p=' ') #end='' ) #print( entry.abs, entry.isFileAt, entry.isDirAt, sep=' ' ) #print( entry.__dict__ )
normal
{ "blob_id": "b720a52f1c2e6e6be7c0887cd94441d248382242", "index": 1836, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n paths = ['..', '.']\n absOfEntries = [i.abs for i in Easy.WalkAnIter(paths)]\n for i in absOfEntries:\n print(i)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n paths = ['..', '.']\n absOfEntries = [i.abs for i in Easy.WalkAnIter(paths)]\n for i in absOfEntries:\n print(i)\n\n\nif __name__ == '__main__':\n main()\n<mask token>\n", "step-4": "from joecceasy import Easy\n\n\ndef main():\n paths = ['..', '.']\n absOfEntries = [i.abs for i in Easy.WalkAnIter(paths)]\n for i in absOfEntries:\n print(i)\n\n\nif __name__ == '__main__':\n main()\n<mask token>\n", "step-5": "from joecceasy import Easy\r\n\r\ndef main():\r\n \r\n paths = ['..','.']\r\n absOfEntries = [ i.abs for i in Easy.WalkAnIter(paths) ]\r\n for i in absOfEntries:\r\n print( i )\r\n \r\nif __name__=='__main__':\r\n main()\r\n \r\n \r\n\"\"\"\r\ndef main(maxEntries = 99):\r\n i = -1\r\n print( \"Walker test, Walking current directory:\" )\r\n for entry in Easy.WalkAnIter( ['.'] ):\r\n i += 1 ## because i start at -1, 1st run of line will be 0\r\n if i > maxEntries:\r\n break\r\n print(entry.abs)\r\n print( ' \\n ' )\r\n\"\"\"\r\n\r\n#isFileByPython = os.path.isfile(entry.abs)\r\n# print( 'entry: ', entry.name, 'f', entry.isFile, 'd', entry.isDir,\r\n# 'fa', entry.isFileAt, 'da', entry.isDirAt, 'pf', isFileByPython, se#p=' ')\r\n#end='' )\r\n#print( entry.abs, entry.isFileAt, entry.isDirAt, sep=' ' )\r\n#print( entry.__dict__ )", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> @app.route('/verify', methods=['GET', 'POST']) def verify(): content = request.get_json(silent=True, force=True) print(content) if content == None: return jsonify('No json data is sent.') sig = content.get('sig') payload = content.get('payload') message = payload.get('message') pk = payload.get('pk') platform = payload.get('platform') if platform == 'Ethereum': encoded_msg = eth_account.messages.encode_defunct(text=json.dumps( payload)) result = eth_account.Account.recover_message(encoded_msg, signature=sig ) == pk else: result = algosdk.util.verify_bytes(json.dumps(payload).encode( 'utf-8'), sig, pk) return jsonify(result) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @app.route('/verify', methods=['GET', 'POST']) def verify(): content = request.get_json(silent=True, force=True) print(content) if content == None: return jsonify('No json data is sent.') sig = content.get('sig') payload = content.get('payload') message = payload.get('message') pk = payload.get('pk') platform = payload.get('platform') if platform == 'Ethereum': encoded_msg = eth_account.messages.encode_defunct(text=json.dumps( payload)) result = eth_account.Account.recover_message(encoded_msg, signature=sig ) == pk else: result = algosdk.util.verify_bytes(json.dumps(payload).encode( 'utf-8'), sig, pk) return jsonify(result) if __name__ == '__main__': app.run(port='5002') <|reserved_special_token_1|> <|reserved_special_token_0|> app = Flask(__name__) api = Api(app) app.url_map.strict_slashes = False @app.route('/verify', methods=['GET', 'POST']) def verify(): content = request.get_json(silent=True, force=True) print(content) if content == None: return jsonify('No json data is sent.') sig = content.get('sig') payload = content.get('payload') message = payload.get('message') pk = payload.get('pk') platform = payload.get('platform') if platform == 'Ethereum': encoded_msg = eth_account.messages.encode_defunct(text=json.dumps( payload)) result = eth_account.Account.recover_message(encoded_msg, signature=sig ) == pk else: result = algosdk.util.verify_bytes(json.dumps(payload).encode( 'utf-8'), sig, pk) return jsonify(result) if __name__ == '__main__': app.run(port='5002') <|reserved_special_token_1|> from flask import Flask, request, jsonify from flask_restful import Api import json import eth_account import algosdk app = Flask(__name__) api = Api(app) app.url_map.strict_slashes = False @app.route('/verify', methods=['GET', 'POST']) def verify(): content = request.get_json(silent=True, force=True) print(content) if content == None: return jsonify('No json data is sent.') sig = content.get('sig') payload = content.get('payload') message = payload.get('message') pk = payload.get('pk') platform = payload.get('platform') if platform == 'Ethereum': encoded_msg = eth_account.messages.encode_defunct(text=json.dumps( payload)) result = eth_account.Account.recover_message(encoded_msg, signature=sig ) == pk else: result = algosdk.util.verify_bytes(json.dumps(payload).encode( 'utf-8'), sig, pk) return jsonify(result) if __name__ == '__main__': app.run(port='5002') <|reserved_special_token_1|> from flask import Flask, request, jsonify from flask_restful import Api import json import eth_account import algosdk app = Flask(__name__) api = Api(app) app.url_map.strict_slashes = False @app.route('/verify', methods=['GET','POST']) def verify(): content = request.get_json(silent=True, force=True) #Check if signature is valid print(content) if content == None: return jsonify("No json data is sent.") sig = content.get('sig') payload = content.get('payload') message = payload.get('message') pk = payload.get('pk') platform = payload.get('platform') if platform == "Ethereum": encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(payload)) result = eth_account.Account.recover_message(encoded_msg,signature=sig) == pk else: result = algosdk.util.verify_bytes(json.dumps(payload).encode('utf-8'), sig, pk) return jsonify(result) if __name__ == '__main__': app.run(port='5002')
flexible
{ "blob_id": "8bae45de54535e7b0788aa12717645ae9f193664", "index": 8113, "step-1": "<mask token>\n\n\[email protected]('/verify', methods=['GET', 'POST'])\ndef verify():\n content = request.get_json(silent=True, force=True)\n print(content)\n if content == None:\n return jsonify('No json data is sent.')\n sig = content.get('sig')\n payload = content.get('payload')\n message = payload.get('message')\n pk = payload.get('pk')\n platform = payload.get('platform')\n if platform == 'Ethereum':\n encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(\n payload))\n result = eth_account.Account.recover_message(encoded_msg, signature=sig\n ) == pk\n else:\n result = algosdk.util.verify_bytes(json.dumps(payload).encode(\n 'utf-8'), sig, pk)\n return jsonify(result)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/verify', methods=['GET', 'POST'])\ndef verify():\n content = request.get_json(silent=True, force=True)\n print(content)\n if content == None:\n return jsonify('No json data is sent.')\n sig = content.get('sig')\n payload = content.get('payload')\n message = payload.get('message')\n pk = payload.get('pk')\n platform = payload.get('platform')\n if platform == 'Ethereum':\n encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(\n payload))\n result = eth_account.Account.recover_message(encoded_msg, signature=sig\n ) == pk\n else:\n result = algosdk.util.verify_bytes(json.dumps(payload).encode(\n 'utf-8'), sig, pk)\n return jsonify(result)\n\n\nif __name__ == '__main__':\n app.run(port='5002')\n", "step-3": "<mask token>\napp = Flask(__name__)\napi = Api(app)\napp.url_map.strict_slashes = False\n\n\[email protected]('/verify', methods=['GET', 'POST'])\ndef verify():\n content = request.get_json(silent=True, force=True)\n print(content)\n if content == None:\n return jsonify('No json data is sent.')\n sig = content.get('sig')\n payload = content.get('payload')\n message = payload.get('message')\n pk = payload.get('pk')\n platform = payload.get('platform')\n if platform == 'Ethereum':\n encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(\n payload))\n result = eth_account.Account.recover_message(encoded_msg, signature=sig\n ) == pk\n else:\n result = algosdk.util.verify_bytes(json.dumps(payload).encode(\n 'utf-8'), sig, pk)\n return jsonify(result)\n\n\nif __name__ == '__main__':\n app.run(port='5002')\n", "step-4": "from flask import Flask, request, jsonify\nfrom flask_restful import Api\nimport json\nimport eth_account\nimport algosdk\napp = Flask(__name__)\napi = Api(app)\napp.url_map.strict_slashes = False\n\n\[email protected]('/verify', methods=['GET', 'POST'])\ndef verify():\n content = request.get_json(silent=True, force=True)\n print(content)\n if content == None:\n return jsonify('No json data is sent.')\n sig = content.get('sig')\n payload = content.get('payload')\n message = payload.get('message')\n pk = payload.get('pk')\n platform = payload.get('platform')\n if platform == 'Ethereum':\n encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(\n payload))\n result = eth_account.Account.recover_message(encoded_msg, signature=sig\n ) == pk\n else:\n result = algosdk.util.verify_bytes(json.dumps(payload).encode(\n 'utf-8'), sig, pk)\n return jsonify(result)\n\n\nif __name__ == '__main__':\n app.run(port='5002')\n", "step-5": "from flask import Flask, request, jsonify\nfrom flask_restful import Api\nimport json\nimport eth_account\nimport algosdk\n\napp = Flask(__name__)\napi = Api(app)\napp.url_map.strict_slashes = False\n\[email protected]('/verify', methods=['GET','POST'])\ndef verify():\n content = request.get_json(silent=True, force=True)\n #Check if signature is valid\n print(content)\n if content == None:\n return jsonify(\"No json data is sent.\")\n sig = content.get('sig')\n payload = content.get('payload')\n message = payload.get('message')\n pk = payload.get('pk')\n platform = payload.get('platform')\n if platform == \"Ethereum\":\n encoded_msg = eth_account.messages.encode_defunct(text=json.dumps(payload))\n result = eth_account.Account.recover_message(encoded_msg,signature=sig) == pk\n else:\n result = algosdk.util.verify_bytes(json.dumps(payload).encode('utf-8'), sig, pk)\n return jsonify(result)\n\n\nif __name__ == '__main__':\n app.run(port='5002')\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> STOP_WORDS = set( """ あそこ あたり あちら あっち あと あな あなた あれ いくつ いつ いま いや いろいろ うち おおまか おまえ おれ がい かく かたち かやの から がら きた くせ ここ こっち こと ごと こちら ごっちゃ これ これら ごろ さまざま さらい さん しかた しよう すか ずつ すね すべて ぜんぶ そう そこ そちら そっち そで それ それぞれ それなり たくさん たち たび ため だめ ちゃ ちゃん てん とおり とき どこ どこか ところ どちら どっか どっち どれ なか なかば なに など なん はじめ はず はるか ひと ひとつ ふく ぶり べつ へん ぺん ほう ほか まさ まし まとも まま みたい みつ みなさん みんな もと もの もん やつ よう よそ わけ わたし ハイ 上 中 下 字 年 月 日 時 分 秒 週 火 水 木 金 土 国 都 道 府 県 市 区 町 村 各 第 方 何 的 度 文 者 性 体 人 他 今 部 課 係 外 類 達 気 室 口 誰 用 界 会 首 男 女 別 話 私 屋 店 家 場 等 見 際 観 段 略 例 系 論 形 間 地 員 線 点 書 品 力 法 感 作 元 手 数 彼 彼女 子 内 楽 喜 怒 哀 輪 頃 化 境 俺 奴 高 校 婦 伸 紀 誌 レ 行 列 事 士 台 集 様 所 歴 器 名 情 連 毎 式 簿 回 匹 個 席 束 歳 目 通 面 円 玉 枚 前 後 左 右 次 先 春 夏 秋 冬 一 二 三 四 五 六 七 八 九 十 百 千 万 億 兆 下記 上記 時間 今回 前回 場合 一つ 年生 自分 ヶ所 ヵ所 カ所 箇所 ヶ月 ヵ月 カ月 箇月 名前 本当 確か 時点 全部 関係 近く 方法 我々 違い 多く 扱い 新た その後 半ば 結局 様々 以前 以後 以降 未満 以上 以下 幾つ 毎日 自体 向こう 何人 手段 同じ 感じ """ .split()) <|reserved_special_token_1|> """Copied from http://svn.sourceforge.jp/svnroot/slothlib/CSharp/Version1/SlothLib/NLP/Filter/StopWord/word/Japanese.txt""" STOP_WORDS = set( """ あそこ あたり あちら あっち あと あな あなた あれ いくつ いつ いま いや いろいろ うち おおまか おまえ おれ がい かく かたち かやの から がら きた くせ ここ こっち こと ごと こちら ごっちゃ これ これら ごろ さまざま さらい さん しかた しよう すか ずつ すね すべて ぜんぶ そう そこ そちら そっち そで それ それぞれ それなり たくさん たち たび ため だめ ちゃ ちゃん てん とおり とき どこ どこか ところ どちら どっか どっち どれ なか なかば なに など なん はじめ はず はるか ひと ひとつ ふく ぶり べつ へん ぺん ほう ほか まさ まし まとも まま みたい みつ みなさん みんな もと もの もん やつ よう よそ わけ わたし ハイ 上 中 下 字 年 月 日 時 分 秒 週 火 水 木 金 土 国 都 道 府 県 市 区 町 村 各 第 方 何 的 度 文 者 性 体 人 他 今 部 課 係 外 類 達 気 室 口 誰 用 界 会 首 男 女 別 話 私 屋 店 家 場 等 見 際 観 段 略 例 系 論 形 間 地 員 線 点 書 品 力 法 感 作 元 手 数 彼 彼女 子 内 楽 喜 怒 哀 輪 頃 化 境 俺 奴 高 校 婦 伸 紀 誌 レ 行 列 事 士 台 集 様 所 歴 器 名 情 連 毎 式 簿 回 匹 個 席 束 歳 目 通 面 円 玉 枚 前 後 左 右 次 先 春 夏 秋 冬 一 二 三 四 五 六 七 八 九 十 百 千 万 億 兆 下記 上記 時間 今回 前回 場合 一つ 年生 自分 ヶ所 ヵ所 カ所 箇所 ヶ月 ヵ月 カ月 箇月 名前 本当 確か 時点 全部 関係 近く 方法 我々 違い 多く 扱い 新た その後 半ば 結局 様々 以前 以後 以降 未満 以上 以下 幾つ 毎日 自体 向こう 何人 手段 同じ 感じ """.split() )
flexible
{ "blob_id": "254afebcc909c805d1e4972a0910eb4451d1e64e", "index": 8704, "step-1": "<mask token>\n", "step-2": "<mask token>\nSTOP_WORDS = set(\n \"\"\"\nあそこ\nあたり\nあちら\nあっち\nあと\nあな\nあなた\nあれ\nいくつ\nいつ\nいま\nいや\nいろいろ\nうち\nおおまか\nおまえ\nおれ\nがい\nかく\nかたち\nかやの\nから\nがら\nきた\nくせ\nここ\nこっち\nこと\nごと\nこちら\nごっちゃ\nこれ\nこれら\nごろ\nさまざま\nさらい\nさん\nしかた\nしよう\nすか\nずつ\nすね\nすべて\nぜんぶ\nそう\nそこ\nそちら\nそっち\nそで\nそれ\nそれぞれ\nそれなり\nたくさん\nたち\nたび\nため\nだめ\nちゃ\nちゃん\nてん\nとおり\nとき\nどこ\nどこか\nところ\nどちら\nどっか\nどっち\nどれ\nなか\nなかば\nなに\nなど\nなん\nはじめ\nはず\nはるか\nひと\nひとつ\nふく\nぶり\nべつ\nへん\nぺん\nほう\nほか\nまさ\nまし\nまとも\nまま\nみたい\nみつ\nみなさん\nみんな\nもと\nもの\nもん\nやつ\nよう\nよそ\nわけ\nわたし\nハイ\n上\n中\n下\n字\n年\n月\n日\n時\n分\n秒\n週\n火\n水\n木\n金\n土\n国\n都\n道\n府\n県\n市\n区\n町\n村\n\n\n各\n第\n方\n何\n的\n度\n文\n者\n性\n体\n人\n他\n今\n部\n課\n係\n外\n類\n達\n気\n室\n口\n誰\n用\n界\n会\n首\n男\n女\n別\n話\n私\n屋\n店\n家\n場\n等\n見\n際\n観\n段\n略\n例\n系\n論\n形\n間\n地\n員\n線\n点\n書\n品\n力\n法\n感\n作\n元\n手\n数\n彼\n彼女\n子\n内\n楽\n喜\n怒\n哀\n輪\n頃\n化\n境\n俺\n奴\n高\n校\n婦\n伸\n紀\n誌\nレ\n行\n列\n事\n士\n台\n集\n様\n所\n歴\n器\n名\n情\n連\n毎\n式\n簿\n\n\n\n\n回\n匹\n個\n席\n束\n歳\n目\n通\n面\n円\n玉\n枚\n\n前\n後\n左\n右\n次\n先\n\n春\n夏\n秋\n冬\n\n\n\n一\n二\n三\n四\n五\n六\n七\n八\n九\n十\n百\n千\n万\n億\n兆\n\n\n下記\n上記\n時間\n今回\n前回\n場合\n一つ\n年生\n自分\nヶ所\nヵ所\nカ所\n箇所\nヶ月\nヵ月\nカ月\n箇月\n名前\n本当\n確か\n時点\n全部\n関係\n近く\n方法\n我々\n違い\n多く\n扱い\n新た\nその後\n半ば\n結局\n様々\n以前\n以後\n以降\n未満\n以上\n以下\n幾つ\n毎日\n自体\n向こう\n何人\n手段\n同じ\n感じ\n\"\"\"\n .split())\n", "step-3": "\"\"\"Copied from http://svn.sourceforge.jp/svnroot/slothlib/CSharp/Version1/SlothLib/NLP/Filter/StopWord/word/Japanese.txt\"\"\"\nSTOP_WORDS = set(\n \"\"\"\nあそこ\nあたり\nあちら\nあっち\nあと\nあな\nあなた\nあれ\nいくつ\nいつ\nいま\nいや\nいろいろ\nうち\nおおまか\nおまえ\nおれ\nがい\nかく\nかたち\nかやの\nから\nがら\nきた\nくせ\nここ\nこっち\nこと\nごと\nこちら\nごっちゃ\nこれ\nこれら\nごろ\nさまざま\nさらい\nさん\nしかた\nしよう\nすか\nずつ\nすね\nすべて\nぜんぶ\nそう\nそこ\nそちら\nそっち\nそで\nそれ\nそれぞれ\nそれなり\nたくさん\nたち\nたび\nため\nだめ\nちゃ\nちゃん\nてん\nとおり\nとき\nどこ\nどこか\nところ\nどちら\nどっか\nどっち\nどれ\nなか\nなかば\nなに\nなど\nなん\nはじめ\nはず\nはるか\nひと\nひとつ\nふく\nぶり\nべつ\nへん\nぺん\nほう\nほか\nまさ\nまし\nまとも\nまま\nみたい\nみつ\nみなさん\nみんな\nもと\nもの\nもん\nやつ\nよう\nよそ\nわけ\nわたし\nハイ\n上\n中\n下\n字\n年\n月\n日\n時\n分\n秒\n週\n火\n水\n木\n金\n土\n国\n都\n道\n府\n県\n市\n区\n町\n村\n\n\n各\n第\n方\n何\n的\n度\n文\n者\n性\n体\n人\n他\n今\n部\n課\n係\n外\n類\n達\n気\n室\n口\n誰\n用\n界\n会\n首\n男\n女\n別\n話\n私\n屋\n店\n家\n場\n等\n見\n際\n観\n段\n略\n例\n系\n論\n形\n間\n地\n員\n線\n点\n書\n品\n力\n法\n感\n作\n元\n手\n数\n彼\n彼女\n子\n内\n楽\n喜\n怒\n哀\n輪\n頃\n化\n境\n俺\n奴\n高\n校\n婦\n伸\n紀\n誌\nレ\n行\n列\n事\n士\n台\n集\n様\n所\n歴\n器\n名\n情\n連\n毎\n式\n簿\n\n\n\n\n回\n匹\n個\n席\n束\n歳\n目\n通\n面\n円\n玉\n枚\n\n前\n後\n左\n右\n次\n先\n\n春\n夏\n秋\n冬\n\n\n\n一\n二\n三\n四\n五\n六\n七\n八\n九\n十\n百\n千\n万\n億\n兆\n\n\n下記\n上記\n時間\n今回\n前回\n場合\n一つ\n年生\n自分\nヶ所\nヵ所\nカ所\n箇所\nヶ月\nヵ月\nカ月\n箇月\n名前\n本当\n確か\n時点\n全部\n関係\n近く\n方法\n我々\n違い\n多く\n扱い\n新た\nその後\n半ば\n結局\n様々\n以前\n以後\n以降\n未満\n以上\n以下\n幾つ\n毎日\n自体\n向こう\n何人\n手段\n同じ\n感じ\n\"\"\".split()\n)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# csv URL url = "https://covid19-dashboard.ages.at/data/CovidFallzahlen.csv" # read csv from URL import pandas as pd import geopandas as gpd import numpy as np df=pd.read_csv(url,sep=";") df.to_csv("/var/www/FlaskApp/FlaskApp/data/covid_data.csv",sep=";",index=False) # transforming timestamps to proper DateTime format import datetime as dt from datetime import datetime import time timestamps = [] for i in df["MeldeDatum"]: i = i.replace(".","") i = i.replace(":","") timestamps.append(dt.datetime.strptime(i, "%d%m%Y %H%M%S")) df["MeldeDatum"] = timestamps df = df.drop(["Meldedat"], axis=1) # get List of State Names states = list(df["Bundesland"].unique()) # append total hospitalizations to DF l_temp = [] for a,b in zip(df["FZHosp"],df["FZICU"]): l_temp.append(a+b) df["Hospitalizations_total"] = l_temp # append total ICU capacity to DF l_temp = [] for a,b in zip(df["FZICU"],df["FZICUFree"]): l_temp.append(a+b) df["ICU_capacity"] = l_temp # append ICU occupancy percentages to DF l_temp = [] for a,b in zip(df["FZICU"],df["ICU_capacity"]): try: l_temp.append(100.0 * float(a)/float(b)) except ZeroDivisionError: l_temp.append(0.0) df["ICU_perc"] = l_temp # create list of dataframes by Bundesland ls_df = [] for i in states: temp = df[df["Bundesland"]==i] ls_df.append(temp) # importing adm0 and adm1 shapefilesas geopandas dataframes adm1 = gpd.read_file("/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_1.shp") adm0 = gpd.read_file("/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_0.shp") #writing to json #adm1.to_file("data/austria_adm1.geojson", driver="GeoJSON") #adm0.to_file("data/austria_adm0.geojson", driver="GeoJSON") # save CSV after manipulating & rounding df = df.round(1) df.to_csv("/var/www/FlaskApp/FlaskApp/data/ICU_data.csv") # create most recent DF for map most_recent_date = df['MeldeDatum'].max() df2 = df.loc[df['MeldeDatum'] == most_recent_date] df2.to_pickle("/var/www/FlaskApp/FlaskApp/data/df2.pkl") # join geometries with most recent data per state df_map =gpd.read_file("/var/www/FlaskApp/FlaskApp/data/austria_adm1.geojson") df_map["Bundesland"] = df_map["NAME_1"] df_map = pd.merge(df2,df_map,on="Bundesland") df_map = gpd.GeoDataFrame(df_map, geometry="geometry") df_map.to_pickle("/var/www/FlaskApp/FlaskApp/data/df_map.pkl") # drop unused columns and save file in data folder df_map.drop(["BundeslandID","GID_0","NAME_0","NAME_1","GID_1","VARNAME_1","NL_NAME_1","TYPE_1","ENGTYPE_1","CC_1","HASC_1","test_value"],axis=1).to_csv("/var/www/FlaskApp/FlaskApp/data/df_map.csv",index=False) """ CREATE DFs FOR UPDATE GRAPHS """ df_perc = pd.DataFrame({ "MeldeDatum": np.asarray(df.loc[df['Bundesland'] == "Alle"]["MeldeDatum"]), "Alle": np.asarray(df.loc[df['Bundesland'] == "Alle"]["ICU_perc"]), "Burgenland": np.asarray(df.loc[df["Bundesland"] == "Burgenland"]["ICU_perc"]), "Kärnten": np.asarray(df.loc[df['Bundesland'] == "Kärnten"]["ICU_perc"]), "Niederösterreich": np.asarray(df.loc[df["Bundesland"] == "Niederösterreich"]["ICU_perc"]), "Oberösterreich": np.asarray(df.loc[df['Bundesland'] == "Oberösterreich"]["ICU_perc"]), "Salzburg": np.asarray(df.loc[df["Bundesland"] == "Salzburg"]["ICU_perc"]), "Steiermark": np.asarray(df.loc[df['Bundesland'] == "Steiermark"]["ICU_perc"]), "Tirol": np.asarray(df.loc[df["Bundesland"] == "Tirol"]["ICU_perc"]), "Vorarlberg": np.asarray(df.loc[df['Bundesland'] == "Vorarlberg"]["ICU_perc"]), "Wien": np.asarray(df.loc[df["Bundesland"] == "Wien"]["ICU_perc"]), }) df_perc.to_pickle("/var/www/FlaskApp/FlaskApp/data/df_perc.pkl") df_FZICU = pd.DataFrame({ "MeldeDatum": np.asarray(df.loc[df['Bundesland'] == "Alle"]["MeldeDatum"]), "Alle": np.asarray(df.loc[df['Bundesland'] == "Alle"]["FZICU"]), "Burgenland": np.asarray(df.loc[df["Bundesland"] == "Burgenland"]["FZICU"]), "Kärnten": np.asarray(df.loc[df['Bundesland'] == "Kärnten"]["FZICU"]), "Niederösterreich": np.asarray(df.loc[df["Bundesland"] == "Niederösterreich"]["FZICU"]), "Oberösterreich": np.asarray(df.loc[df['Bundesland'] == "Oberösterreich"]["FZICU"]), "Salzburg": np.asarray(df.loc[df["Bundesland"] == "Salzburg"]["FZICU"]), "Steiermark": np.asarray(df.loc[df['Bundesland'] == "Steiermark"]["FZICU"]), "Tirol": np.asarray(df.loc[df["Bundesland"] == "Tirol"]["FZICU"]), "Vorarlberg": np.asarray(df.loc[df['Bundesland'] == "Vorarlberg"]["FZICU"]), "Wien": np.asarray(df.loc[df["Bundesland"] == "Wien"]["FZICU"]), }) df_FZICU.to_pickle("/var/www/FlaskApp/FlaskApp/data/df_FZICU.pkl") df_ICU_cap = pd.DataFrame({ "MeldeDatum": np.asarray(df.loc[df['Bundesland'] == "Alle"]["MeldeDatum"]), "Alle": np.asarray(df.loc[df['Bundesland'] == "Alle"]["ICU_capacity"]), "Burgenland": np.asarray(df.loc[df["Bundesland"] == "Burgenland"]["ICU_capacity"]), "Kärnten": np.asarray(df.loc[df['Bundesland'] == "Kärnten"]["ICU_capacity"]), "Niederösterreich": np.asarray(df.loc[df["Bundesland"] == "Niederösterreich"]["ICU_capacity"]), "Oberösterreich": np.asarray(df.loc[df['Bundesland'] == "Oberösterreich"]["ICU_capacity"]), "Salzburg": np.asarray(df.loc[df["Bundesland"] == "Salzburg"]["ICU_capacity"]), "Steiermark": np.asarray(df.loc[df['Bundesland'] == "Steiermark"]["ICU_capacity"]), "Tirol": np.asarray(df.loc[df["Bundesland"] == "Tirol"]["ICU_capacity"]), "Vorarlberg": np.asarray(df.loc[df['Bundesland'] == "Vorarlberg"]["ICU_capacity"]), "Wien": np.asarray(df.loc[df["Bundesland"] == "Wien"]["ICU_capacity"]), }) df_ICU_cap.to_pickle("/var/www/FlaskApp/FlaskApp/data/df_ICU_cap.pkl") # Writing to logfile file_object = open('/var/www/FlaskApp/FlaskApp/log.txt', 'a') now = datetime.now() # current date and time date_time = now.strftime("%m/%d/%Y, %H:%M:%S") file_object.write('Success: '+date_time+"\n") file_object.close() """ DB CONNECTOR """ # DB create string from csv for COVID data import csv with open('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', 'r') as f: instr = "" reader = csv.reader(f,delimiter=";") #print(reader) next(reader) # Skip the header row. for row in reader: instr=instr+("INSERT INTO icu_data VALUES ('"+str(row[0])+"','"+str(row[1])+"','"+str(row[2])+"','"+str(row[3])+"','"+str(row[4])+"','"+str(row[5])+"','"+str(row[6])+"','"+str(row[7])+"','"+str(row[8])+"');" ) # DB create string from csv for MAP data import csv import sys csv.field_size_limit(sys.maxsize) with open('/var/www/FlaskApp/FlaskApp/data/df_map.csv', 'r') as f: instr_map = "" reader = csv.reader(f,delimiter=",") #print(reader) next(reader) # Skip the header row. for row in reader: instr_map=instr_map+("INSERT INTO icu_map VALUES ('"+str(row[0])+"','"+str(row[1])+"','"+str(row[2])+"','"+str(row[3])+"','"+str(row[4])+"','"+str(row[5])+"','"+str(row[6])+"','"+str(row[7])+"','"+str(row[8])+"','"+str(row[9])+"','"+str(row[10])+"');" ) """ connecting to DB, parsing SQL statements """ def csv_parser(statement): import psycopg2 return_ls = [] try: connection = psycopg2.connect(user="icu_bot", password="5B2xwP8h4Ln4Y8Xs", host="85.214.150.208", port="5432", database="ICU") cursor = connection.cursor() sql_Query = statement #print(sql_Query) cursor.execute(sql_Query) connection.commit() #print("Selecting rows from mobile table using cursor.fetchall") #mobile_records = cursor.fetchall() #print("Print each row and it's columns values") #for row in mobile_records: # return_ls.append(list(row)) except (Exception, psycopg2.Error) as error : print ("Error while fetching data from PostgreSQL: ", error) finally: #closing database connection. if(connection): cursor.close() connection.close() #print("PostgreSQL connection is closed") return return_ls # update database in postgis csv_parser("DELETE FROM icu_data") csv_parser(instr) # Update map data in server csv_parser("DELETE FROM icu_map") csv_parser(instr_map) """ GeoServer Connector """ try: df_geojson = pd.read_json("https://zgis187.geo.sbg.ac.at/geoserver/IPSDI_WT20/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=IPSDI_WT20%3Aicu_map&maxFeatures=50&outputFormat=application%2Fjson") df_geojson.to_pickle("/var/www/FlaskApp/FlaskApp/data/df_geojson.pkl") except: print("an exception occured connecting to the geoserver")
normal
{ "blob_id": "516ea681a55255e4c98e7106393180f9ad2e0250", "index": 8455, "step-1": "<mask token>\n\n\ndef csv_parser(statement):\n import psycopg2\n return_ls = []\n try:\n connection = psycopg2.connect(user='icu_bot', password=\n '5B2xwP8h4Ln4Y8Xs', host='85.214.150.208', port='5432',\n database='ICU')\n cursor = connection.cursor()\n sql_Query = statement\n cursor.execute(sql_Query)\n connection.commit()\n except (Exception, psycopg2.Error) as error:\n print('Error while fetching data from PostgreSQL: ', error)\n finally:\n if connection:\n cursor.close()\n connection.close()\n return return_ls\n\n\n<mask token>\n", "step-2": "<mask token>\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', sep=';', index=\n False)\n<mask token>\nfor i in df['MeldeDatum']:\n i = i.replace('.', '')\n i = i.replace(':', '')\n timestamps.append(dt.datetime.strptime(i, '%d%m%Y %H%M%S'))\n<mask token>\nfor a, b in zip(df['FZHosp'], df['FZICU']):\n l_temp.append(a + b)\n<mask token>\nfor a, b in zip(df['FZICU'], df['FZICUFree']):\n l_temp.append(a + b)\n<mask token>\nfor a, b in zip(df['FZICU'], df['ICU_capacity']):\n try:\n l_temp.append(100.0 * float(a) / float(b))\n except ZeroDivisionError:\n l_temp.append(0.0)\n<mask token>\nfor i in states:\n temp = df[df['Bundesland'] == i]\n ls_df.append(temp)\n<mask token>\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/ICU_data.csv')\n<mask token>\ndf2.to_pickle('/var/www/FlaskApp/FlaskApp/data/df2.pkl')\n<mask token>\ndf_map.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_map.pkl')\ndf_map.drop(['BundeslandID', 'GID_0', 'NAME_0', 'NAME_1', 'GID_1',\n 'VARNAME_1', 'NL_NAME_1', 'TYPE_1', 'ENGTYPE_1', 'CC_1', 'HASC_1',\n 'test_value'], axis=1).to_csv('/var/www/FlaskApp/FlaskApp/data/df_map.csv',\n index=False)\n<mask token>\ndf_perc.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_perc.pkl')\n<mask token>\ndf_FZICU.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_FZICU.pkl')\n<mask token>\ndf_ICU_cap.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_ICU_cap.pkl')\n<mask token>\nfile_object.write('Success: ' + date_time + '\\n')\nfile_object.close()\n<mask token>\nwith open('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', 'r') as f:\n instr = ''\n reader = csv.reader(f, delimiter=';')\n next(reader)\n for row in reader:\n instr = instr + (\"INSERT INTO icu_data VALUES ('\" + str(row[0]) +\n \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(row[3]) +\n \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" + str(row[6]) +\n \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"');\")\n<mask token>\ncsv.field_size_limit(sys.maxsize)\nwith open('/var/www/FlaskApp/FlaskApp/data/df_map.csv', 'r') as f:\n instr_map = ''\n reader = csv.reader(f, delimiter=',')\n next(reader)\n for row in reader:\n instr_map = instr_map + (\"INSERT INTO icu_map VALUES ('\" + str(row[\n 0]) + \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(\n row[3]) + \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" +\n str(row[6]) + \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"','\" +\n str(row[9]) + \"','\" + str(row[10]) + \"');\")\n<mask token>\n\n\ndef csv_parser(statement):\n import psycopg2\n return_ls = []\n try:\n connection = psycopg2.connect(user='icu_bot', password=\n '5B2xwP8h4Ln4Y8Xs', host='85.214.150.208', port='5432',\n database='ICU')\n cursor = connection.cursor()\n sql_Query = statement\n cursor.execute(sql_Query)\n connection.commit()\n except (Exception, psycopg2.Error) as error:\n print('Error while fetching data from PostgreSQL: ', error)\n finally:\n if connection:\n cursor.close()\n connection.close()\n return return_ls\n\n\ncsv_parser('DELETE FROM icu_data')\ncsv_parser(instr)\ncsv_parser('DELETE FROM icu_map')\ncsv_parser(instr_map)\n<mask token>\ntry:\n df_geojson = pd.read_json(\n 'https://zgis187.geo.sbg.ac.at/geoserver/IPSDI_WT20/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=IPSDI_WT20%3Aicu_map&maxFeatures=50&outputFormat=application%2Fjson'\n )\n df_geojson.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_geojson.pkl')\nexcept:\n print('an exception occured connecting to the geoserver')\n", "step-3": "url = 'https://covid19-dashboard.ages.at/data/CovidFallzahlen.csv'\n<mask token>\ndf = pd.read_csv(url, sep=';')\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', sep=';', index=\n False)\n<mask token>\ntimestamps = []\nfor i in df['MeldeDatum']:\n i = i.replace('.', '')\n i = i.replace(':', '')\n timestamps.append(dt.datetime.strptime(i, '%d%m%Y %H%M%S'))\ndf['MeldeDatum'] = timestamps\ndf = df.drop(['Meldedat'], axis=1)\nstates = list(df['Bundesland'].unique())\nl_temp = []\nfor a, b in zip(df['FZHosp'], df['FZICU']):\n l_temp.append(a + b)\ndf['Hospitalizations_total'] = l_temp\nl_temp = []\nfor a, b in zip(df['FZICU'], df['FZICUFree']):\n l_temp.append(a + b)\ndf['ICU_capacity'] = l_temp\nl_temp = []\nfor a, b in zip(df['FZICU'], df['ICU_capacity']):\n try:\n l_temp.append(100.0 * float(a) / float(b))\n except ZeroDivisionError:\n l_temp.append(0.0)\ndf['ICU_perc'] = l_temp\nls_df = []\nfor i in states:\n temp = df[df['Bundesland'] == i]\n ls_df.append(temp)\nadm1 = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_1.shp')\nadm0 = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_0.shp')\ndf = df.round(1)\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/ICU_data.csv')\nmost_recent_date = df['MeldeDatum'].max()\ndf2 = df.loc[df['MeldeDatum'] == most_recent_date]\ndf2.to_pickle('/var/www/FlaskApp/FlaskApp/data/df2.pkl')\ndf_map = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/austria_adm1.geojson')\ndf_map['Bundesland'] = df_map['NAME_1']\ndf_map = pd.merge(df2, df_map, on='Bundesland')\ndf_map = gpd.GeoDataFrame(df_map, geometry='geometry')\ndf_map.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_map.pkl')\ndf_map.drop(['BundeslandID', 'GID_0', 'NAME_0', 'NAME_1', 'GID_1',\n 'VARNAME_1', 'NL_NAME_1', 'TYPE_1', 'ENGTYPE_1', 'CC_1', 'HASC_1',\n 'test_value'], axis=1).to_csv('/var/www/FlaskApp/FlaskApp/data/df_map.csv',\n index=False)\n<mask token>\ndf_perc = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['ICU_perc']), 'Burgenland': np.asarray(df.loc[df['Bundesland'] ==\n 'Burgenland']['ICU_perc']), 'Kärnten': np.asarray(df.loc[df[\n 'Bundesland'] == 'Kärnten']['ICU_perc']), 'Niederösterreich': np.\n asarray(df.loc[df['Bundesland'] == 'Niederösterreich']['ICU_perc']),\n 'Oberösterreich': np.asarray(df.loc[df['Bundesland'] ==\n 'Oberösterreich']['ICU_perc']), 'Salzburg': np.asarray(df.loc[df[\n 'Bundesland'] == 'Salzburg']['ICU_perc']), 'Steiermark': np.asarray(df.\n loc[df['Bundesland'] == 'Steiermark']['ICU_perc']), 'Tirol': np.asarray\n (df.loc[df['Bundesland'] == 'Tirol']['ICU_perc']), 'Vorarlberg': np.\n asarray(df.loc[df['Bundesland'] == 'Vorarlberg']['ICU_perc']), 'Wien':\n np.asarray(df.loc[df['Bundesland'] == 'Wien']['ICU_perc'])})\ndf_perc.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_perc.pkl')\ndf_FZICU = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['FZICU']), 'Burgenland': np.asarray(df.loc[df['Bundesland'] ==\n 'Burgenland']['FZICU']), 'Kärnten': np.asarray(df.loc[df['Bundesland'] ==\n 'Kärnten']['FZICU']), 'Niederösterreich': np.asarray(df.loc[df[\n 'Bundesland'] == 'Niederösterreich']['FZICU']), 'Oberösterreich': np.\n asarray(df.loc[df['Bundesland'] == 'Oberösterreich']['FZICU']),\n 'Salzburg': np.asarray(df.loc[df['Bundesland'] == 'Salzburg']['FZICU']),\n 'Steiermark': np.asarray(df.loc[df['Bundesland'] == 'Steiermark'][\n 'FZICU']), 'Tirol': np.asarray(df.loc[df['Bundesland'] == 'Tirol'][\n 'FZICU']), 'Vorarlberg': np.asarray(df.loc[df['Bundesland'] ==\n 'Vorarlberg']['FZICU']), 'Wien': np.asarray(df.loc[df['Bundesland'] ==\n 'Wien']['FZICU'])})\ndf_FZICU.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_FZICU.pkl')\ndf_ICU_cap = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['ICU_capacity']), 'Burgenland': np.asarray(df.loc[df[\n 'Bundesland'] == 'Burgenland']['ICU_capacity']), 'Kärnten': np.asarray(\n df.loc[df['Bundesland'] == 'Kärnten']['ICU_capacity']),\n 'Niederösterreich': np.asarray(df.loc[df['Bundesland'] ==\n 'Niederösterreich']['ICU_capacity']), 'Oberösterreich': np.asarray(df.\n loc[df['Bundesland'] == 'Oberösterreich']['ICU_capacity']), 'Salzburg':\n np.asarray(df.loc[df['Bundesland'] == 'Salzburg']['ICU_capacity']),\n 'Steiermark': np.asarray(df.loc[df['Bundesland'] == 'Steiermark'][\n 'ICU_capacity']), 'Tirol': np.asarray(df.loc[df['Bundesland'] ==\n 'Tirol']['ICU_capacity']), 'Vorarlberg': np.asarray(df.loc[df[\n 'Bundesland'] == 'Vorarlberg']['ICU_capacity']), 'Wien': np.asarray(df.\n loc[df['Bundesland'] == 'Wien']['ICU_capacity'])})\ndf_ICU_cap.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_ICU_cap.pkl')\nfile_object = open('/var/www/FlaskApp/FlaskApp/log.txt', 'a')\nnow = datetime.now()\ndate_time = now.strftime('%m/%d/%Y, %H:%M:%S')\nfile_object.write('Success: ' + date_time + '\\n')\nfile_object.close()\n<mask token>\nwith open('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', 'r') as f:\n instr = ''\n reader = csv.reader(f, delimiter=';')\n next(reader)\n for row in reader:\n instr = instr + (\"INSERT INTO icu_data VALUES ('\" + str(row[0]) +\n \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(row[3]) +\n \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" + str(row[6]) +\n \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"');\")\n<mask token>\ncsv.field_size_limit(sys.maxsize)\nwith open('/var/www/FlaskApp/FlaskApp/data/df_map.csv', 'r') as f:\n instr_map = ''\n reader = csv.reader(f, delimiter=',')\n next(reader)\n for row in reader:\n instr_map = instr_map + (\"INSERT INTO icu_map VALUES ('\" + str(row[\n 0]) + \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(\n row[3]) + \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" +\n str(row[6]) + \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"','\" +\n str(row[9]) + \"','\" + str(row[10]) + \"');\")\n<mask token>\n\n\ndef csv_parser(statement):\n import psycopg2\n return_ls = []\n try:\n connection = psycopg2.connect(user='icu_bot', password=\n '5B2xwP8h4Ln4Y8Xs', host='85.214.150.208', port='5432',\n database='ICU')\n cursor = connection.cursor()\n sql_Query = statement\n cursor.execute(sql_Query)\n connection.commit()\n except (Exception, psycopg2.Error) as error:\n print('Error while fetching data from PostgreSQL: ', error)\n finally:\n if connection:\n cursor.close()\n connection.close()\n return return_ls\n\n\ncsv_parser('DELETE FROM icu_data')\ncsv_parser(instr)\ncsv_parser('DELETE FROM icu_map')\ncsv_parser(instr_map)\n<mask token>\ntry:\n df_geojson = pd.read_json(\n 'https://zgis187.geo.sbg.ac.at/geoserver/IPSDI_WT20/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=IPSDI_WT20%3Aicu_map&maxFeatures=50&outputFormat=application%2Fjson'\n )\n df_geojson.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_geojson.pkl')\nexcept:\n print('an exception occured connecting to the geoserver')\n", "step-4": "url = 'https://covid19-dashboard.ages.at/data/CovidFallzahlen.csv'\nimport pandas as pd\nimport geopandas as gpd\nimport numpy as np\ndf = pd.read_csv(url, sep=';')\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', sep=';', index=\n False)\nimport datetime as dt\nfrom datetime import datetime\nimport time\ntimestamps = []\nfor i in df['MeldeDatum']:\n i = i.replace('.', '')\n i = i.replace(':', '')\n timestamps.append(dt.datetime.strptime(i, '%d%m%Y %H%M%S'))\ndf['MeldeDatum'] = timestamps\ndf = df.drop(['Meldedat'], axis=1)\nstates = list(df['Bundesland'].unique())\nl_temp = []\nfor a, b in zip(df['FZHosp'], df['FZICU']):\n l_temp.append(a + b)\ndf['Hospitalizations_total'] = l_temp\nl_temp = []\nfor a, b in zip(df['FZICU'], df['FZICUFree']):\n l_temp.append(a + b)\ndf['ICU_capacity'] = l_temp\nl_temp = []\nfor a, b in zip(df['FZICU'], df['ICU_capacity']):\n try:\n l_temp.append(100.0 * float(a) / float(b))\n except ZeroDivisionError:\n l_temp.append(0.0)\ndf['ICU_perc'] = l_temp\nls_df = []\nfor i in states:\n temp = df[df['Bundesland'] == i]\n ls_df.append(temp)\nadm1 = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_1.shp')\nadm0 = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_0.shp')\ndf = df.round(1)\ndf.to_csv('/var/www/FlaskApp/FlaskApp/data/ICU_data.csv')\nmost_recent_date = df['MeldeDatum'].max()\ndf2 = df.loc[df['MeldeDatum'] == most_recent_date]\ndf2.to_pickle('/var/www/FlaskApp/FlaskApp/data/df2.pkl')\ndf_map = gpd.read_file('/var/www/FlaskApp/FlaskApp/data/austria_adm1.geojson')\ndf_map['Bundesland'] = df_map['NAME_1']\ndf_map = pd.merge(df2, df_map, on='Bundesland')\ndf_map = gpd.GeoDataFrame(df_map, geometry='geometry')\ndf_map.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_map.pkl')\ndf_map.drop(['BundeslandID', 'GID_0', 'NAME_0', 'NAME_1', 'GID_1',\n 'VARNAME_1', 'NL_NAME_1', 'TYPE_1', 'ENGTYPE_1', 'CC_1', 'HASC_1',\n 'test_value'], axis=1).to_csv('/var/www/FlaskApp/FlaskApp/data/df_map.csv',\n index=False)\n<mask token>\ndf_perc = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['ICU_perc']), 'Burgenland': np.asarray(df.loc[df['Bundesland'] ==\n 'Burgenland']['ICU_perc']), 'Kärnten': np.asarray(df.loc[df[\n 'Bundesland'] == 'Kärnten']['ICU_perc']), 'Niederösterreich': np.\n asarray(df.loc[df['Bundesland'] == 'Niederösterreich']['ICU_perc']),\n 'Oberösterreich': np.asarray(df.loc[df['Bundesland'] ==\n 'Oberösterreich']['ICU_perc']), 'Salzburg': np.asarray(df.loc[df[\n 'Bundesland'] == 'Salzburg']['ICU_perc']), 'Steiermark': np.asarray(df.\n loc[df['Bundesland'] == 'Steiermark']['ICU_perc']), 'Tirol': np.asarray\n (df.loc[df['Bundesland'] == 'Tirol']['ICU_perc']), 'Vorarlberg': np.\n asarray(df.loc[df['Bundesland'] == 'Vorarlberg']['ICU_perc']), 'Wien':\n np.asarray(df.loc[df['Bundesland'] == 'Wien']['ICU_perc'])})\ndf_perc.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_perc.pkl')\ndf_FZICU = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['FZICU']), 'Burgenland': np.asarray(df.loc[df['Bundesland'] ==\n 'Burgenland']['FZICU']), 'Kärnten': np.asarray(df.loc[df['Bundesland'] ==\n 'Kärnten']['FZICU']), 'Niederösterreich': np.asarray(df.loc[df[\n 'Bundesland'] == 'Niederösterreich']['FZICU']), 'Oberösterreich': np.\n asarray(df.loc[df['Bundesland'] == 'Oberösterreich']['FZICU']),\n 'Salzburg': np.asarray(df.loc[df['Bundesland'] == 'Salzburg']['FZICU']),\n 'Steiermark': np.asarray(df.loc[df['Bundesland'] == 'Steiermark'][\n 'FZICU']), 'Tirol': np.asarray(df.loc[df['Bundesland'] == 'Tirol'][\n 'FZICU']), 'Vorarlberg': np.asarray(df.loc[df['Bundesland'] ==\n 'Vorarlberg']['FZICU']), 'Wien': np.asarray(df.loc[df['Bundesland'] ==\n 'Wien']['FZICU'])})\ndf_FZICU.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_FZICU.pkl')\ndf_ICU_cap = pd.DataFrame({'MeldeDatum': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['MeldeDatum']), 'Alle': np.asarray(df.loc[df['Bundesland'] ==\n 'Alle']['ICU_capacity']), 'Burgenland': np.asarray(df.loc[df[\n 'Bundesland'] == 'Burgenland']['ICU_capacity']), 'Kärnten': np.asarray(\n df.loc[df['Bundesland'] == 'Kärnten']['ICU_capacity']),\n 'Niederösterreich': np.asarray(df.loc[df['Bundesland'] ==\n 'Niederösterreich']['ICU_capacity']), 'Oberösterreich': np.asarray(df.\n loc[df['Bundesland'] == 'Oberösterreich']['ICU_capacity']), 'Salzburg':\n np.asarray(df.loc[df['Bundesland'] == 'Salzburg']['ICU_capacity']),\n 'Steiermark': np.asarray(df.loc[df['Bundesland'] == 'Steiermark'][\n 'ICU_capacity']), 'Tirol': np.asarray(df.loc[df['Bundesland'] ==\n 'Tirol']['ICU_capacity']), 'Vorarlberg': np.asarray(df.loc[df[\n 'Bundesland'] == 'Vorarlberg']['ICU_capacity']), 'Wien': np.asarray(df.\n loc[df['Bundesland'] == 'Wien']['ICU_capacity'])})\ndf_ICU_cap.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_ICU_cap.pkl')\nfile_object = open('/var/www/FlaskApp/FlaskApp/log.txt', 'a')\nnow = datetime.now()\ndate_time = now.strftime('%m/%d/%Y, %H:%M:%S')\nfile_object.write('Success: ' + date_time + '\\n')\nfile_object.close()\n<mask token>\nimport csv\nwith open('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', 'r') as f:\n instr = ''\n reader = csv.reader(f, delimiter=';')\n next(reader)\n for row in reader:\n instr = instr + (\"INSERT INTO icu_data VALUES ('\" + str(row[0]) +\n \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(row[3]) +\n \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" + str(row[6]) +\n \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"');\")\nimport csv\nimport sys\ncsv.field_size_limit(sys.maxsize)\nwith open('/var/www/FlaskApp/FlaskApp/data/df_map.csv', 'r') as f:\n instr_map = ''\n reader = csv.reader(f, delimiter=',')\n next(reader)\n for row in reader:\n instr_map = instr_map + (\"INSERT INTO icu_map VALUES ('\" + str(row[\n 0]) + \"','\" + str(row[1]) + \"','\" + str(row[2]) + \"','\" + str(\n row[3]) + \"','\" + str(row[4]) + \"','\" + str(row[5]) + \"','\" +\n str(row[6]) + \"','\" + str(row[7]) + \"','\" + str(row[8]) + \"','\" +\n str(row[9]) + \"','\" + str(row[10]) + \"');\")\n<mask token>\n\n\ndef csv_parser(statement):\n import psycopg2\n return_ls = []\n try:\n connection = psycopg2.connect(user='icu_bot', password=\n '5B2xwP8h4Ln4Y8Xs', host='85.214.150.208', port='5432',\n database='ICU')\n cursor = connection.cursor()\n sql_Query = statement\n cursor.execute(sql_Query)\n connection.commit()\n except (Exception, psycopg2.Error) as error:\n print('Error while fetching data from PostgreSQL: ', error)\n finally:\n if connection:\n cursor.close()\n connection.close()\n return return_ls\n\n\ncsv_parser('DELETE FROM icu_data')\ncsv_parser(instr)\ncsv_parser('DELETE FROM icu_map')\ncsv_parser(instr_map)\n<mask token>\ntry:\n df_geojson = pd.read_json(\n 'https://zgis187.geo.sbg.ac.at/geoserver/IPSDI_WT20/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=IPSDI_WT20%3Aicu_map&maxFeatures=50&outputFormat=application%2Fjson'\n )\n df_geojson.to_pickle('/var/www/FlaskApp/FlaskApp/data/df_geojson.pkl')\nexcept:\n print('an exception occured connecting to the geoserver')\n", "step-5": "# csv URL\nurl = \"https://covid19-dashboard.ages.at/data/CovidFallzahlen.csv\"\n\n# read csv from URL\nimport pandas as pd\nimport geopandas as gpd\nimport numpy as np\ndf=pd.read_csv(url,sep=\";\")\ndf.to_csv(\"/var/www/FlaskApp/FlaskApp/data/covid_data.csv\",sep=\";\",index=False)\n\n# transforming timestamps to proper DateTime format\nimport datetime as dt\nfrom datetime import datetime\nimport time\ntimestamps = []\nfor i in df[\"MeldeDatum\"]:\n i = i.replace(\".\",\"\")\n i = i.replace(\":\",\"\")\n timestamps.append(dt.datetime.strptime(i, \"%d%m%Y %H%M%S\"))\ndf[\"MeldeDatum\"] = timestamps\ndf = df.drop([\"Meldedat\"], axis=1)\n\n# get List of State Names\nstates = list(df[\"Bundesland\"].unique())\n\n# append total hospitalizations to DF\nl_temp = []\nfor a,b in zip(df[\"FZHosp\"],df[\"FZICU\"]):\n l_temp.append(a+b)\ndf[\"Hospitalizations_total\"] = l_temp\n\n# append total ICU capacity to DF\nl_temp = []\nfor a,b in zip(df[\"FZICU\"],df[\"FZICUFree\"]):\n l_temp.append(a+b)\ndf[\"ICU_capacity\"] = l_temp\n\n# append ICU occupancy percentages to DF\nl_temp = []\nfor a,b in zip(df[\"FZICU\"],df[\"ICU_capacity\"]):\n try:\n l_temp.append(100.0 * float(a)/float(b))\n except ZeroDivisionError:\n l_temp.append(0.0)\ndf[\"ICU_perc\"] = l_temp\n\n# create list of dataframes by Bundesland\nls_df = []\nfor i in states:\n temp = df[df[\"Bundesland\"]==i]\n ls_df.append(temp)\n \n# importing adm0 and adm1 shapefilesas geopandas dataframes\nadm1 = gpd.read_file(\"/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_1.shp\")\nadm0 = gpd.read_file(\"/var/www/FlaskApp/FlaskApp/data/gadm36_AUT_0.shp\")\n\n#writing to json\n#adm1.to_file(\"data/austria_adm1.geojson\", driver=\"GeoJSON\")\n#adm0.to_file(\"data/austria_adm0.geojson\", driver=\"GeoJSON\") \n\n# save CSV after manipulating & rounding\ndf = df.round(1)\ndf.to_csv(\"/var/www/FlaskApp/FlaskApp/data/ICU_data.csv\")\n\n# create most recent DF for map\nmost_recent_date = df['MeldeDatum'].max()\ndf2 = df.loc[df['MeldeDatum'] == most_recent_date]\ndf2.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df2.pkl\")\n\n# join geometries with most recent data per state\ndf_map =gpd.read_file(\"/var/www/FlaskApp/FlaskApp/data/austria_adm1.geojson\")\ndf_map[\"Bundesland\"] = df_map[\"NAME_1\"]\ndf_map = pd.merge(df2,df_map,on=\"Bundesland\")\ndf_map = gpd.GeoDataFrame(df_map, geometry=\"geometry\")\ndf_map.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df_map.pkl\")\n# drop unused columns and save file in data folder\ndf_map.drop([\"BundeslandID\",\"GID_0\",\"NAME_0\",\"NAME_1\",\"GID_1\",\"VARNAME_1\",\"NL_NAME_1\",\"TYPE_1\",\"ENGTYPE_1\",\"CC_1\",\"HASC_1\",\"test_value\"],axis=1).to_csv(\"/var/www/FlaskApp/FlaskApp/data/df_map.csv\",index=False)\n\n\n\"\"\"\nCREATE DFs FOR UPDATE GRAPHS\n\"\"\"\ndf_perc = pd.DataFrame({\n \"MeldeDatum\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"MeldeDatum\"]),\n \"Alle\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"ICU_perc\"]),\n \"Burgenland\": np.asarray(df.loc[df[\"Bundesland\"] == \"Burgenland\"][\"ICU_perc\"]),\n \"Kärnten\": np.asarray(df.loc[df['Bundesland'] == \"Kärnten\"][\"ICU_perc\"]),\n \"Niederösterreich\": np.asarray(df.loc[df[\"Bundesland\"] == \"Niederösterreich\"][\"ICU_perc\"]),\n \"Oberösterreich\": np.asarray(df.loc[df['Bundesland'] == \"Oberösterreich\"][\"ICU_perc\"]),\n \"Salzburg\": np.asarray(df.loc[df[\"Bundesland\"] == \"Salzburg\"][\"ICU_perc\"]),\n \"Steiermark\": np.asarray(df.loc[df['Bundesland'] == \"Steiermark\"][\"ICU_perc\"]),\n \"Tirol\": np.asarray(df.loc[df[\"Bundesland\"] == \"Tirol\"][\"ICU_perc\"]),\n \"Vorarlberg\": np.asarray(df.loc[df['Bundesland'] == \"Vorarlberg\"][\"ICU_perc\"]),\n \"Wien\": np.asarray(df.loc[df[\"Bundesland\"] == \"Wien\"][\"ICU_perc\"]),\n})\ndf_perc.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df_perc.pkl\")\n\ndf_FZICU = pd.DataFrame({\n \"MeldeDatum\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"MeldeDatum\"]),\n \"Alle\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"FZICU\"]),\n \"Burgenland\": np.asarray(df.loc[df[\"Bundesland\"] == \"Burgenland\"][\"FZICU\"]),\n \"Kärnten\": np.asarray(df.loc[df['Bundesland'] == \"Kärnten\"][\"FZICU\"]),\n \"Niederösterreich\": np.asarray(df.loc[df[\"Bundesland\"] == \"Niederösterreich\"][\"FZICU\"]),\n \"Oberösterreich\": np.asarray(df.loc[df['Bundesland'] == \"Oberösterreich\"][\"FZICU\"]),\n \"Salzburg\": np.asarray(df.loc[df[\"Bundesland\"] == \"Salzburg\"][\"FZICU\"]),\n \"Steiermark\": np.asarray(df.loc[df['Bundesland'] == \"Steiermark\"][\"FZICU\"]),\n \"Tirol\": np.asarray(df.loc[df[\"Bundesland\"] == \"Tirol\"][\"FZICU\"]),\n \"Vorarlberg\": np.asarray(df.loc[df['Bundesland'] == \"Vorarlberg\"][\"FZICU\"]),\n \"Wien\": np.asarray(df.loc[df[\"Bundesland\"] == \"Wien\"][\"FZICU\"]),\n})\ndf_FZICU.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df_FZICU.pkl\")\n\ndf_ICU_cap = pd.DataFrame({\n \"MeldeDatum\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"MeldeDatum\"]),\n \"Alle\": np.asarray(df.loc[df['Bundesland'] == \"Alle\"][\"ICU_capacity\"]),\n \"Burgenland\": np.asarray(df.loc[df[\"Bundesland\"] == \"Burgenland\"][\"ICU_capacity\"]),\n \"Kärnten\": np.asarray(df.loc[df['Bundesland'] == \"Kärnten\"][\"ICU_capacity\"]),\n \"Niederösterreich\": np.asarray(df.loc[df[\"Bundesland\"] == \"Niederösterreich\"][\"ICU_capacity\"]),\n \"Oberösterreich\": np.asarray(df.loc[df['Bundesland'] == \"Oberösterreich\"][\"ICU_capacity\"]),\n \"Salzburg\": np.asarray(df.loc[df[\"Bundesland\"] == \"Salzburg\"][\"ICU_capacity\"]),\n \"Steiermark\": np.asarray(df.loc[df['Bundesland'] == \"Steiermark\"][\"ICU_capacity\"]),\n \"Tirol\": np.asarray(df.loc[df[\"Bundesland\"] == \"Tirol\"][\"ICU_capacity\"]),\n \"Vorarlberg\": np.asarray(df.loc[df['Bundesland'] == \"Vorarlberg\"][\"ICU_capacity\"]),\n \"Wien\": np.asarray(df.loc[df[\"Bundesland\"] == \"Wien\"][\"ICU_capacity\"]),\n})\ndf_ICU_cap.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df_ICU_cap.pkl\")\n\n# Writing to logfile\nfile_object = open('/var/www/FlaskApp/FlaskApp/log.txt', 'a')\nnow = datetime.now() # current date and time\ndate_time = now.strftime(\"%m/%d/%Y, %H:%M:%S\")\nfile_object.write('Success: '+date_time+\"\\n\")\nfile_object.close()\n\n\n\n\"\"\"\n\nDB CONNECTOR\n\n\"\"\"\n\n# DB create string from csv for COVID data\nimport csv\nwith open('/var/www/FlaskApp/FlaskApp/data/covid_data.csv', 'r') as f:\n instr = \"\"\n reader = csv.reader(f,delimiter=\";\")\n #print(reader)\n next(reader) # Skip the header row.\n for row in reader:\n instr=instr+(\"INSERT INTO icu_data VALUES ('\"+str(row[0])+\"','\"+str(row[1])+\"','\"+str(row[2])+\"','\"+str(row[3])+\"','\"+str(row[4])+\"','\"+str(row[5])+\"','\"+str(row[6])+\"','\"+str(row[7])+\"','\"+str(row[8])+\"');\" ) \n\n# DB create string from csv for MAP data\nimport csv\nimport sys\ncsv.field_size_limit(sys.maxsize)\nwith open('/var/www/FlaskApp/FlaskApp/data/df_map.csv', 'r') as f:\n instr_map = \"\"\n reader = csv.reader(f,delimiter=\",\")\n #print(reader)\n next(reader) # Skip the header row.\n for row in reader:\n instr_map=instr_map+(\"INSERT INTO icu_map VALUES ('\"+str(row[0])+\"','\"+str(row[1])+\"','\"+str(row[2])+\"','\"+str(row[3])+\"','\"+str(row[4])+\"','\"+str(row[5])+\"','\"+str(row[6])+\"','\"+str(row[7])+\"','\"+str(row[8])+\"','\"+str(row[9])+\"','\"+str(row[10])+\"');\" )\n\n\"\"\" connecting to DB, parsing SQL statements \"\"\"\ndef csv_parser(statement):\n import psycopg2\n return_ls = []\n try:\n connection = psycopg2.connect(user=\"icu_bot\",\n password=\"5B2xwP8h4Ln4Y8Xs\",\n host=\"85.214.150.208\",\n port=\"5432\",\n database=\"ICU\")\n cursor = connection.cursor()\n sql_Query = statement\n #print(sql_Query)\n cursor.execute(sql_Query)\n connection.commit()\n #print(\"Selecting rows from mobile table using cursor.fetchall\")\n #mobile_records = cursor.fetchall() \n \n #print(\"Print each row and it's columns values\")\n #for row in mobile_records:\n # return_ls.append(list(row))\n \n except (Exception, psycopg2.Error) as error :\n print (\"Error while fetching data from PostgreSQL: \", error)\n \n finally:\n #closing database connection.\n if(connection):\n cursor.close()\n connection.close()\n #print(\"PostgreSQL connection is closed\")\n \n return return_ls\n\n\n# update database in postgis\ncsv_parser(\"DELETE FROM icu_data\")\ncsv_parser(instr)\n\n# Update map data in server\ncsv_parser(\"DELETE FROM icu_map\")\ncsv_parser(instr_map)\n\n\n\n\"\"\"\nGeoServer Connector\n\"\"\"\ntry:\n\tdf_geojson = pd.read_json(\"https://zgis187.geo.sbg.ac.at/geoserver/IPSDI_WT20/ows?service=WFS&version=1.0.0&request=GetFeature&typeName=IPSDI_WT20%3Aicu_map&maxFeatures=50&outputFormat=application%2Fjson\")\n\tdf_geojson.to_pickle(\"/var/www/FlaskApp/FlaskApp/data/df_geojson.pkl\")\nexcept:\n\tprint(\"an exception occured connecting to the geoserver\")\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def solution(files): ans = [] for i, file in enumerate(files): head, number, tail = divide(file) ans.append((head, number, i)) ans.sort(key=lambda x: [x[0], x[1], x[2]]) answer = [] for h, n, i in ans: answer.append(files[i]) return answer <|reserved_special_token_1|> def divide(file): index = 0 head = '' while True: if file[index].isnumeric(): head_index = index break if file[index].isalpha(): head += file[index].lower() else: head += file[index] index += 1 while True: if index >= len(file): number = int(file[head_index:]) tail = '' break if not file[index].isnumeric(): number = int(file[head_index:index]) tail = file[index:] break index += 1 return head, number, tail def solution(files): ans = [] for i, file in enumerate(files): head, number, tail = divide(file) ans.append((head, number, i)) ans.sort(key=lambda x: [x[0], x[1], x[2]]) answer = [] for h, n, i in ans: answer.append(files[i]) return answer
flexible
{ "blob_id": "75837ab778e94693151de1c17b59e12f8b2336d3", "index": 8341, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef solution(files):\n ans = []\n for i, file in enumerate(files):\n head, number, tail = divide(file)\n ans.append((head, number, i))\n ans.sort(key=lambda x: [x[0], x[1], x[2]])\n answer = []\n for h, n, i in ans:\n answer.append(files[i])\n return answer\n", "step-3": "def divide(file):\n index = 0\n head = ''\n while True:\n if file[index].isnumeric():\n head_index = index\n break\n if file[index].isalpha():\n head += file[index].lower()\n else:\n head += file[index]\n index += 1\n while True:\n if index >= len(file):\n number = int(file[head_index:])\n tail = ''\n break\n if not file[index].isnumeric():\n number = int(file[head_index:index])\n tail = file[index:]\n break\n index += 1\n return head, number, tail\n\n\ndef solution(files):\n ans = []\n for i, file in enumerate(files):\n head, number, tail = divide(file)\n ans.append((head, number, i))\n ans.sort(key=lambda x: [x[0], x[1], x[2]])\n answer = []\n for h, n, i in ans:\n answer.append(files[i])\n return answer\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> sys.path.insert(0, os.path.abspath('adjust_schedule_function')) <|reserved_special_token_1|> import sys, os sys.path.insert(0, os.path.abspath('adjust_schedule_function')) <|reserved_special_token_1|> import sys, os sys.path.insert(0, os.path.abspath("adjust_schedule_function"))
flexible
{ "blob_id": "19126e5041841ab1320730ae82d66c6900cf31bd", "index": 9145, "step-1": "<mask token>\n", "step-2": "<mask token>\nsys.path.insert(0, os.path.abspath('adjust_schedule_function'))\n", "step-3": "import sys, os\nsys.path.insert(0, os.path.abspath('adjust_schedule_function'))\n", "step-4": "import sys, os\n\nsys.path.insert(0, os.path.abspath(\"adjust_schedule_function\"))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def login(username, password): data = {'login': username, 'pwd': password, 'lang': ''} r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php', data=data, allow_redirects=False) if (r.headers['Location'] == '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect' ): return False return True <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def login(username, password): data = {'login': username, 'pwd': password, 'lang': ''} r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php', data=data, allow_redirects=False) if (r.headers['Location'] == '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect' ): return False return True if login('michelle', 'michelle'): print('Login Successfull[+]') <|reserved_special_token_1|> import requests def login(username, password): data = {'login': username, 'pwd': password, 'lang': ''} r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php', data=data, allow_redirects=False) if (r.headers['Location'] == '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect' ): return False return True if login('michelle', 'michelle'): print('Login Successfull[+]') <|reserved_special_token_1|> import requests def login(username, password): data = {'login':username,'pwd':password,'lang':''} r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php', data=data, allow_redirects=False) if r.headers['Location'] == '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect': return False return True # import pdb;pdb.set_trace() if login("michelle", "michelle"): print("Login Successfull[+]")
flexible
{ "blob_id": "ae84b449c8919f14954633b14993e6291501bc24", "index": 1019, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef login(username, password):\n data = {'login': username, 'pwd': password, 'lang': ''}\n r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php',\n data=data, allow_redirects=False)\n if (r.headers['Location'] ==\n '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect'\n ):\n return False\n return True\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef login(username, password):\n data = {'login': username, 'pwd': password, 'lang': ''}\n r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php',\n data=data, allow_redirects=False)\n if (r.headers['Location'] ==\n '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect'\n ):\n return False\n return True\n\n\nif login('michelle', 'michelle'):\n print('Login Successfull[+]')\n", "step-4": "import requests\n\n\ndef login(username, password):\n data = {'login': username, 'pwd': password, 'lang': ''}\n r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php',\n data=data, allow_redirects=False)\n if (r.headers['Location'] ==\n '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect'\n ):\n return False\n return True\n\n\nif login('michelle', 'michelle'):\n print('Login Successfull[+]')\n", "step-5": "import requests\n\ndef login(username, password):\n data = {'login':username,'pwd':password,'lang':''}\n r = requests.post('http://dms-pit.htb/seeddms51x/seeddms/op/op.Login.php', data=data, allow_redirects=False)\n if r.headers['Location'] == '../out/out.Login.php?msg=Error+signing+in.+User+ID+or+password+incorrect':\n return False\n return True\n # import pdb;pdb.set_trace()\n\n\nif login(\"michelle\", \"michelle\"):\n print(\"Login Successfull[+]\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> finalImg.save('Q2.jpg') <|reserved_special_token_1|> <|reserved_special_token_0|> filename = 'hw0_data/westbrook.jpg' im = Image.open(filename) imgs = np.array(im) imgsDiv2 = np.trunc(imgs / 2) imgInt = imgsDiv2.astype(np.int) imgInt = imgInt[:, :, :3] finalImg = Image.fromarray(np.uint8(imgInt)) finalImg.save('Q2.jpg') <|reserved_special_token_1|> <|reserved_special_token_0|> from PIL import Image import numpy as np filename = 'hw0_data/westbrook.jpg' im = Image.open(filename) imgs = np.array(im) imgsDiv2 = np.trunc(imgs / 2) imgInt = imgsDiv2.astype(np.int) imgInt = imgInt[:, :, :3] finalImg = Image.fromarray(np.uint8(imgInt)) finalImg.save('Q2.jpg') <|reserved_special_token_1|> #!/usr/bin/env python #!-*-coding:utf-8 -*- """ @version: python3.7 @author: ‘v-enshi‘ @license: Apache Licence @contact: [email protected] @site: @software: PyCharm @file: Images_fade.py @time: 2019/1/16 17:17 """ from PIL import Image import numpy as np filename = "hw0_data/westbrook.jpg" im=Image.open(filename) #open the image imgs = np.array(im) #transform to array imgsDiv2 = np.trunc(imgs/2) imgInt = imgsDiv2.astype(np.int) imgInt = imgInt[:,:,:3] finalImg = Image.fromarray(np.uint8(imgInt)) finalImg.save("Q2.jpg") #注意img如果是uint16的矩阵而不转为uint8的话,Image.fromarray这句会报错
flexible
{ "blob_id": "6e78d1fb2364d334f47fea89b065d859c025ca2f", "index": 5648, "step-1": "<mask token>\n", "step-2": "<mask token>\nfinalImg.save('Q2.jpg')\n", "step-3": "<mask token>\nfilename = 'hw0_data/westbrook.jpg'\nim = Image.open(filename)\nimgs = np.array(im)\nimgsDiv2 = np.trunc(imgs / 2)\nimgInt = imgsDiv2.astype(np.int)\nimgInt = imgInt[:, :, :3]\nfinalImg = Image.fromarray(np.uint8(imgInt))\nfinalImg.save('Q2.jpg')\n", "step-4": "<mask token>\nfrom PIL import Image\nimport numpy as np\nfilename = 'hw0_data/westbrook.jpg'\nim = Image.open(filename)\nimgs = np.array(im)\nimgsDiv2 = np.trunc(imgs / 2)\nimgInt = imgsDiv2.astype(np.int)\nimgInt = imgInt[:, :, :3]\nfinalImg = Image.fromarray(np.uint8(imgInt))\nfinalImg.save('Q2.jpg')\n", "step-5": "#!/usr/bin/env python\n#!-*-coding:utf-8 -*-\n\"\"\"\n@version: python3.7\n@author: ‘v-enshi‘\n@license: Apache Licence \n@contact: [email protected]\n@site: \n@software: PyCharm\n@file: Images_fade.py\n@time: 2019/1/16 17:17\n\"\"\"\nfrom PIL import Image\nimport numpy as np\n\nfilename = \"hw0_data/westbrook.jpg\"\nim=Image.open(filename) #open the image\n\nimgs = np.array(im) #transform to array\n\n\nimgsDiv2 = np.trunc(imgs/2)\nimgInt = imgsDiv2.astype(np.int)\nimgInt = imgInt[:,:,:3]\n\nfinalImg = Image.fromarray(np.uint8(imgInt))\nfinalImg.save(\"Q2.jpg\")\n#注意img如果是uint16的矩阵而不转为uint8的话,Image.fromarray这句会报错\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(proto_images_se_list.shape) print(proto_images_bse_list.shape) np.save('Data/SE_prototypes.npy', proto_images_se_list) np.save('Data/BSE_prototypes.npy', proto_images_bse_list) <|reserved_special_token_1|> <|reserved_special_token_0|> IMG_WIDTH = 768 IMG_HEIGHT = 768 proto_images_se = glob.glob('Clonky-prototypy/*_3*') proto_images_bse = glob.glob('Clonky-prototypy/*_4*') proto_images_se_list = crop_reshape(proto_images_se) proto_images_bse_list = crop_reshape(proto_images_bse) proto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH, IMG_HEIGHT) proto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH, IMG_HEIGHT) print(proto_images_se_list.shape) print(proto_images_bse_list.shape) np.save('Data/SE_prototypes.npy', proto_images_se_list) np.save('Data/BSE_prototypes.npy', proto_images_bse_list) <|reserved_special_token_1|> <|reserved_special_token_0|> import glob import numpy as np import cv2 from reshape_util import crop_reshape from reshape_util import reshape_normalize IMG_WIDTH = 768 IMG_HEIGHT = 768 proto_images_se = glob.glob('Clonky-prototypy/*_3*') proto_images_bse = glob.glob('Clonky-prototypy/*_4*') proto_images_se_list = crop_reshape(proto_images_se) proto_images_bse_list = crop_reshape(proto_images_bse) proto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH, IMG_HEIGHT) proto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH, IMG_HEIGHT) print(proto_images_se_list.shape) print(proto_images_bse_list.shape) np.save('Data/SE_prototypes.npy', proto_images_se_list) np.save('Data/BSE_prototypes.npy', proto_images_bse_list) <|reserved_special_token_1|> ''' Copyright (c) 2021, Štěpán Beneš The purpose of this script it to take the 5 BSE and 5 SE hand-picked prototype images and turn them into the same shape and format as the rest of the data. Prototype images are resized to 768x768, the info bar is cropped off. Afterwards the images are normalized to float32 in range [0,1] and reshaped into Keras Input shape of (len(images), width, height, 1). Finally they are saved for further use during anomaly detection with siamese networks. ''' import glob import numpy as np import cv2 from reshape_util import crop_reshape from reshape_util import reshape_normalize IMG_WIDTH = 768 IMG_HEIGHT = 768 proto_images_se = glob.glob('Clonky-prototypy/*_3*') proto_images_bse = glob.glob('Clonky-prototypy/*_4*') proto_images_se_list = crop_reshape(proto_images_se) proto_images_bse_list = crop_reshape(proto_images_bse) proto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH, IMG_HEIGHT) proto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH, IMG_HEIGHT) print(proto_images_se_list.shape) print(proto_images_bse_list.shape) np.save("Data/SE_prototypes.npy", proto_images_se_list) np.save("Data/BSE_prototypes.npy", proto_images_bse_list)
flexible
{ "blob_id": "af7af5d1048d2b0968e831aad89d5baf30cab608", "index": 3210, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(proto_images_se_list.shape)\nprint(proto_images_bse_list.shape)\nnp.save('Data/SE_prototypes.npy', proto_images_se_list)\nnp.save('Data/BSE_prototypes.npy', proto_images_bse_list)\n", "step-3": "<mask token>\nIMG_WIDTH = 768\nIMG_HEIGHT = 768\nproto_images_se = glob.glob('Clonky-prototypy/*_3*')\nproto_images_bse = glob.glob('Clonky-prototypy/*_4*')\nproto_images_se_list = crop_reshape(proto_images_se)\nproto_images_bse_list = crop_reshape(proto_images_bse)\nproto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH,\n IMG_HEIGHT)\nproto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH,\n IMG_HEIGHT)\nprint(proto_images_se_list.shape)\nprint(proto_images_bse_list.shape)\nnp.save('Data/SE_prototypes.npy', proto_images_se_list)\nnp.save('Data/BSE_prototypes.npy', proto_images_bse_list)\n", "step-4": "<mask token>\nimport glob\nimport numpy as np\nimport cv2\nfrom reshape_util import crop_reshape\nfrom reshape_util import reshape_normalize\nIMG_WIDTH = 768\nIMG_HEIGHT = 768\nproto_images_se = glob.glob('Clonky-prototypy/*_3*')\nproto_images_bse = glob.glob('Clonky-prototypy/*_4*')\nproto_images_se_list = crop_reshape(proto_images_se)\nproto_images_bse_list = crop_reshape(proto_images_bse)\nproto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH,\n IMG_HEIGHT)\nproto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH,\n IMG_HEIGHT)\nprint(proto_images_se_list.shape)\nprint(proto_images_bse_list.shape)\nnp.save('Data/SE_prototypes.npy', proto_images_se_list)\nnp.save('Data/BSE_prototypes.npy', proto_images_bse_list)\n", "step-5": "'''\nCopyright (c) 2021, Štěpán Beneš\n\n\nThe purpose of this script it to take the 5 BSE and 5 SE hand-picked prototype\nimages and turn them into the same shape and format as the rest of the data.\n\nPrototype images are resized to 768x768, the info bar is cropped off. Afterwards\nthe images are normalized to float32 in range [0,1] and reshaped into Keras Input\nshape of (len(images), width, height, 1). Finally they are saved for further use\nduring anomaly detection with siamese networks.\n'''\nimport glob\nimport numpy as np\nimport cv2\n\nfrom reshape_util import crop_reshape\nfrom reshape_util import reshape_normalize\n\n\nIMG_WIDTH = 768\nIMG_HEIGHT = 768\n\nproto_images_se = glob.glob('Clonky-prototypy/*_3*')\nproto_images_bse = glob.glob('Clonky-prototypy/*_4*')\n\nproto_images_se_list = crop_reshape(proto_images_se)\nproto_images_bse_list = crop_reshape(proto_images_bse)\n\nproto_images_se_list = reshape_normalize(proto_images_se_list, IMG_WIDTH, IMG_HEIGHT)\nproto_images_bse_list = reshape_normalize(proto_images_bse_list, IMG_WIDTH, IMG_HEIGHT)\n\nprint(proto_images_se_list.shape)\nprint(proto_images_bse_list.shape)\n\nnp.save(\"Data/SE_prototypes.npy\", proto_images_se_list)\nnp.save(\"Data/BSE_prototypes.npy\", proto_images_bse_list)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def to_string(pessoa): for linha in pessoa: print('id: {}\nNome: {}'.format(linha[0], linha[1])) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def to_string(pessoa): for linha in pessoa: print('id: {}\nNome: {}'.format(linha[0], linha[1])) if __name__ == '__main__': con = sqlite3.connect('lab05-ex01.sqlite') cursor = con.cursor() cursor.execute('SELECT * FROM Pessoa') print(cursor.fetchall()) nome = input('Nome da pessoa: ') clausula = nome, cursor.execute('SELECT * FROM Pessoa WHERE nome = ?', clausula) pessoa = cursor.fetchall() to_string(pessoa) cursor.close() con.close() <|reserved_special_token_1|> import sqlite3 def to_string(pessoa): for linha in pessoa: print('id: {}\nNome: {}'.format(linha[0], linha[1])) if __name__ == '__main__': con = sqlite3.connect('lab05-ex01.sqlite') cursor = con.cursor() cursor.execute('SELECT * FROM Pessoa') print(cursor.fetchall()) nome = input('Nome da pessoa: ') clausula = nome, cursor.execute('SELECT * FROM Pessoa WHERE nome = ?', clausula) pessoa = cursor.fetchall() to_string(pessoa) cursor.close() con.close() <|reserved_special_token_1|> import sqlite3 def to_string(pessoa): for linha in pessoa: print('id: {}\nNome: {}'.format(linha[0], linha[1])) if __name__ == '__main__': con = sqlite3.connect('lab05-ex01.sqlite') cursor = con.cursor() cursor.execute("SELECT * FROM Pessoa") print(cursor.fetchall()) nome = input("Nome da pessoa: ") clausula = (nome,) cursor.execute("SELECT * FROM Pessoa WHERE nome = ?", clausula) pessoa = cursor.fetchall() to_string(pessoa) cursor.close() con.close()
flexible
{ "blob_id": "4246773a8da61ff21d5faa8ab8ad2d7e75fafb60", "index": 3058, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef to_string(pessoa):\n for linha in pessoa:\n print('id: {}\\nNome: {}'.format(linha[0], linha[1]))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef to_string(pessoa):\n for linha in pessoa:\n print('id: {}\\nNome: {}'.format(linha[0], linha[1]))\n\n\nif __name__ == '__main__':\n con = sqlite3.connect('lab05-ex01.sqlite')\n cursor = con.cursor()\n cursor.execute('SELECT * FROM Pessoa')\n print(cursor.fetchall())\n nome = input('Nome da pessoa: ')\n clausula = nome,\n cursor.execute('SELECT * FROM Pessoa WHERE nome = ?', clausula)\n pessoa = cursor.fetchall()\n to_string(pessoa)\n cursor.close()\n con.close()\n", "step-4": "import sqlite3\n\n\ndef to_string(pessoa):\n for linha in pessoa:\n print('id: {}\\nNome: {}'.format(linha[0], linha[1]))\n\n\nif __name__ == '__main__':\n con = sqlite3.connect('lab05-ex01.sqlite')\n cursor = con.cursor()\n cursor.execute('SELECT * FROM Pessoa')\n print(cursor.fetchall())\n nome = input('Nome da pessoa: ')\n clausula = nome,\n cursor.execute('SELECT * FROM Pessoa WHERE nome = ?', clausula)\n pessoa = cursor.fetchall()\n to_string(pessoa)\n cursor.close()\n con.close()\n", "step-5": "import sqlite3\n\n\ndef to_string(pessoa):\n for linha in pessoa:\n print('id: {}\\nNome: {}'.format(linha[0], linha[1]))\n\nif __name__ == '__main__':\n\n con = sqlite3.connect('lab05-ex01.sqlite')\n\n cursor = con.cursor()\n\n cursor.execute(\"SELECT * FROM Pessoa\")\n print(cursor.fetchall())\n\n nome = input(\"Nome da pessoa: \")\n clausula = (nome,)\n\n cursor.execute(\"SELECT * FROM Pessoa WHERE nome = ?\", clausula)\n pessoa = cursor.fetchall()\n to_string(pessoa)\n\n\n cursor.close()\n con.close()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django import forms from .models import User,Profile from django.contrib.auth.forms import UserCreationForm class ProfileForm(forms.ModelForm): ''' Form for the profile ''' class Meta: model = Profile exclude = ('user',) ## we will create the user with the signals class SignUpForm(UserCreationForm): ''' Sign up form fetching form the User creation form and the email and password is necessary not the user ''' class Meta: model = User fields = ('email','password1','password2')
normal
{ "blob_id": "7c3569c43d27ba605c0dba420690e18d7f849965", "index": 7372, "step-1": "<mask token>\n\n\nclass SignUpForm(UserCreationForm):\n \"\"\" Sign up form fetching form the User creation form\n and the email and password is necessary not the user \"\"\"\n\n\n class Meta:\n model = User\n fields = 'email', 'password1', 'password2'\n", "step-2": "<mask token>\n\n\nclass ProfileForm(forms.ModelForm):\n <mask token>\n\n\n class Meta:\n model = Profile\n exclude = 'user',\n\n\nclass SignUpForm(UserCreationForm):\n \"\"\" Sign up form fetching form the User creation form\n and the email and password is necessary not the user \"\"\"\n\n\n class Meta:\n model = User\n fields = 'email', 'password1', 'password2'\n", "step-3": "<mask token>\n\n\nclass ProfileForm(forms.ModelForm):\n \"\"\" Form for the profile \"\"\"\n\n\n class Meta:\n model = Profile\n exclude = 'user',\n\n\nclass SignUpForm(UserCreationForm):\n \"\"\" Sign up form fetching form the User creation form\n and the email and password is necessary not the user \"\"\"\n\n\n class Meta:\n model = User\n fields = 'email', 'password1', 'password2'\n", "step-4": "from django import forms\nfrom .models import User, Profile\nfrom django.contrib.auth.forms import UserCreationForm\n\n\nclass ProfileForm(forms.ModelForm):\n \"\"\" Form for the profile \"\"\"\n\n\n class Meta:\n model = Profile\n exclude = 'user',\n\n\nclass SignUpForm(UserCreationForm):\n \"\"\" Sign up form fetching form the User creation form\n and the email and password is necessary not the user \"\"\"\n\n\n class Meta:\n model = User\n fields = 'email', 'password1', 'password2'\n", "step-5": "from django import forms\nfrom .models import User,Profile\nfrom django.contrib.auth.forms import UserCreationForm\n\n\nclass ProfileForm(forms.ModelForm):\n ''' Form for the profile '''\n class Meta:\n model = Profile\n exclude = ('user',) ## we will create the user with the signals\n\n\n\n\nclass SignUpForm(UserCreationForm):\n ''' Sign up form fetching form the User creation form\n and the email and password is necessary not the user '''\n class Meta:\n model = User\n fields = ('email','password1','password2')\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import pandas as pd import glob import string import os ALLOWED_CHARS = string.ascii_letters + "-,. \"()'" def concat_all_data(path : str = 'Data/*.csv', save_path : str = 'Data/final.csv'): csvs = glob.glob(path) li = [] for csv in csvs: df = pd.read_csv(csv) li.append(df) final_df = pd.concat(li) final_df.to_csv(save_path) def clean_csv(path : str, save_pth : str): df = pd.read_csv(path) df = remove_dups_df(df) df = remove_invalid_rows_df(df) df.to_csv(save_pth) def remove_dups_df(df : pd.DataFrame): df.sort_values("name", inplace = True) df.drop_duplicates(subset="name", keep=False, inplace=True) return df def remove_invalid_rows_df(df : pd.DataFrame): return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))] df = pd.DataFrame(columns=['count', 'name']) f = open("fbnames.txt", "r") count = 0 save_every = 2000 for line in f: count += 1 split = line.split() df = df.append({'count':split[0], 'name':split[1].capitalize()}, ignore_index=True) if count % save_every == 0: df.to_csv("fbnames.csv") df.to_csv("fbnames.csv") files = os.listdir("namesbystate/") df = pd.DataFrame(columns=['count', 'name']) count = 0 save_every = 2000 for file in files: f = open(f"namesbystate\{file}", "r") count = 0 for line in f: count += 1 split = line.split(",") df = df.append({"count":int(split[4]),"name":split[3]}, ignore_index=True) if save_every % count == 0: df = df.groupby(['name']).sum() df.to_csv("namesbystates.csv") df.groupby(['name']).sum() df.to_csv("namesbystates.csv")
normal
{ "blob_id": "0a5e30483c1fde10410c442a1ccd1f79bfb329c8", "index": 8457, "step-1": "<mask token>\n\n\ndef concat_all_data(path: str='Data/*.csv', save_path: str='Data/final.csv'):\n csvs = glob.glob(path)\n li = []\n for csv in csvs:\n df = pd.read_csv(csv)\n li.append(df)\n final_df = pd.concat(li)\n final_df.to_csv(save_path)\n\n\ndef clean_csv(path: str, save_pth: str):\n df = pd.read_csv(path)\n df = remove_dups_df(df)\n df = remove_invalid_rows_df(df)\n df.to_csv(save_pth)\n\n\ndef remove_dups_df(df: pd.DataFrame):\n df.sort_values('name', inplace=True)\n df.drop_duplicates(subset='name', keep=False, inplace=True)\n return df\n\n\ndef remove_invalid_rows_df(df: pd.DataFrame):\n return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef concat_all_data(path: str='Data/*.csv', save_path: str='Data/final.csv'):\n csvs = glob.glob(path)\n li = []\n for csv in csvs:\n df = pd.read_csv(csv)\n li.append(df)\n final_df = pd.concat(li)\n final_df.to_csv(save_path)\n\n\ndef clean_csv(path: str, save_pth: str):\n df = pd.read_csv(path)\n df = remove_dups_df(df)\n df = remove_invalid_rows_df(df)\n df.to_csv(save_pth)\n\n\ndef remove_dups_df(df: pd.DataFrame):\n df.sort_values('name', inplace=True)\n df.drop_duplicates(subset='name', keep=False, inplace=True)\n return df\n\n\ndef remove_invalid_rows_df(df: pd.DataFrame):\n return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))]\n\n\n<mask token>\nfor line in f:\n count += 1\n split = line.split()\n df = df.append({'count': split[0], 'name': split[1].capitalize()},\n ignore_index=True)\n if count % save_every == 0:\n df.to_csv('fbnames.csv')\ndf.to_csv('fbnames.csv')\n<mask token>\nfor file in files:\n f = open(f'namesbystate\\\\{file}', 'r')\n count = 0\n for line in f:\n count += 1\n split = line.split(',')\n df = df.append({'count': int(split[4]), 'name': split[3]},\n ignore_index=True)\n if save_every % count == 0:\n df = df.groupby(['name']).sum()\n df.to_csv('namesbystates.csv')\ndf.groupby(['name']).sum()\ndf.to_csv('namesbystates.csv')\n", "step-3": "<mask token>\nALLOWED_CHARS = string.ascii_letters + '-,. \"()\\''\n\n\ndef concat_all_data(path: str='Data/*.csv', save_path: str='Data/final.csv'):\n csvs = glob.glob(path)\n li = []\n for csv in csvs:\n df = pd.read_csv(csv)\n li.append(df)\n final_df = pd.concat(li)\n final_df.to_csv(save_path)\n\n\ndef clean_csv(path: str, save_pth: str):\n df = pd.read_csv(path)\n df = remove_dups_df(df)\n df = remove_invalid_rows_df(df)\n df.to_csv(save_pth)\n\n\ndef remove_dups_df(df: pd.DataFrame):\n df.sort_values('name', inplace=True)\n df.drop_duplicates(subset='name', keep=False, inplace=True)\n return df\n\n\ndef remove_invalid_rows_df(df: pd.DataFrame):\n return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))]\n\n\ndf = pd.DataFrame(columns=['count', 'name'])\nf = open('fbnames.txt', 'r')\ncount = 0\nsave_every = 2000\nfor line in f:\n count += 1\n split = line.split()\n df = df.append({'count': split[0], 'name': split[1].capitalize()},\n ignore_index=True)\n if count % save_every == 0:\n df.to_csv('fbnames.csv')\ndf.to_csv('fbnames.csv')\nfiles = os.listdir('namesbystate/')\ndf = pd.DataFrame(columns=['count', 'name'])\ncount = 0\nsave_every = 2000\nfor file in files:\n f = open(f'namesbystate\\\\{file}', 'r')\n count = 0\n for line in f:\n count += 1\n split = line.split(',')\n df = df.append({'count': int(split[4]), 'name': split[3]},\n ignore_index=True)\n if save_every % count == 0:\n df = df.groupby(['name']).sum()\n df.to_csv('namesbystates.csv')\ndf.groupby(['name']).sum()\ndf.to_csv('namesbystates.csv')\n", "step-4": "import pandas as pd\nimport glob\nimport string\nimport os\nALLOWED_CHARS = string.ascii_letters + '-,. \"()\\''\n\n\ndef concat_all_data(path: str='Data/*.csv', save_path: str='Data/final.csv'):\n csvs = glob.glob(path)\n li = []\n for csv in csvs:\n df = pd.read_csv(csv)\n li.append(df)\n final_df = pd.concat(li)\n final_df.to_csv(save_path)\n\n\ndef clean_csv(path: str, save_pth: str):\n df = pd.read_csv(path)\n df = remove_dups_df(df)\n df = remove_invalid_rows_df(df)\n df.to_csv(save_pth)\n\n\ndef remove_dups_df(df: pd.DataFrame):\n df.sort_values('name', inplace=True)\n df.drop_duplicates(subset='name', keep=False, inplace=True)\n return df\n\n\ndef remove_invalid_rows_df(df: pd.DataFrame):\n return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))]\n\n\ndf = pd.DataFrame(columns=['count', 'name'])\nf = open('fbnames.txt', 'r')\ncount = 0\nsave_every = 2000\nfor line in f:\n count += 1\n split = line.split()\n df = df.append({'count': split[0], 'name': split[1].capitalize()},\n ignore_index=True)\n if count % save_every == 0:\n df.to_csv('fbnames.csv')\ndf.to_csv('fbnames.csv')\nfiles = os.listdir('namesbystate/')\ndf = pd.DataFrame(columns=['count', 'name'])\ncount = 0\nsave_every = 2000\nfor file in files:\n f = open(f'namesbystate\\\\{file}', 'r')\n count = 0\n for line in f:\n count += 1\n split = line.split(',')\n df = df.append({'count': int(split[4]), 'name': split[3]},\n ignore_index=True)\n if save_every % count == 0:\n df = df.groupby(['name']).sum()\n df.to_csv('namesbystates.csv')\ndf.groupby(['name']).sum()\ndf.to_csv('namesbystates.csv')\n", "step-5": "import pandas as pd \nimport glob\nimport string \nimport os\n\nALLOWED_CHARS = string.ascii_letters + \"-,. \\\"()'\"\n\ndef concat_all_data(path : str = 'Data/*.csv', save_path : str = 'Data/final.csv'):\n csvs = glob.glob(path)\n\n li = []\n\n for csv in csvs:\n df = pd.read_csv(csv)\n li.append(df)\n\n final_df = pd.concat(li)\n\n final_df.to_csv(save_path)\n\ndef clean_csv(path : str, save_pth : str):\n df = pd.read_csv(path)\n df = remove_dups_df(df)\n df = remove_invalid_rows_df(df)\n\n df.to_csv(save_pth)\n\ndef remove_dups_df(df : pd.DataFrame):\n df.sort_values(\"name\", inplace = True)\n df.drop_duplicates(subset=\"name\", keep=False, inplace=True)\n\n return df\n\ndef remove_invalid_rows_df(df : pd.DataFrame):\n return df[df['name'].apply(lambda x: set(x).issubset(ALLOWED_CHARS))]\n\ndf = pd.DataFrame(columns=['count', 'name'])\n\nf = open(\"fbnames.txt\", \"r\")\ncount = 0\nsave_every = 2000\n\nfor line in f:\n count += 1\n split = line.split()\n df = df.append({'count':split[0], 'name':split[1].capitalize()}, ignore_index=True)\n \n if count % save_every == 0:\n df.to_csv(\"fbnames.csv\")\n\ndf.to_csv(\"fbnames.csv\")\n\n\nfiles = os.listdir(\"namesbystate/\")\n\ndf = pd.DataFrame(columns=['count', 'name'])\n\n\n\ncount = 0\nsave_every = 2000\n\nfor file in files:\n f = open(f\"namesbystate\\{file}\", \"r\")\n count = 0\n for line in f:\n count += 1\n split = line.split(\",\")\n df = df.append({\"count\":int(split[4]),\"name\":split[3]}, ignore_index=True)\n if save_every % count == 0:\n df = df.groupby(['name']).sum()\n df.to_csv(\"namesbystates.csv\")\n\ndf.groupby(['name']).sum()\ndf.to_csv(\"namesbystates.csv\")", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
#!/usr/bin/python from setuptools import setup, find_packages import os EXTRAS_REQUIRES = dict( test=[ 'pytest>=2.2.4', 'mock>=0.8.0', 'tempdirs>=0.0.8', ], dev=[ 'ipython>=0.13', ], ) # Tests always depend on all other requirements, except dev for k,v in EXTRAS_REQUIRES.iteritems(): if k == 'test' or k == 'dev': continue EXTRAS_REQUIRES['test'] += v # Pypi package documentation root = os.path.dirname(__file__) path = os.path.join(root, 'README.rst') with open(path) as fp: long_description = fp.read() setup( name='linkins', version='0.0.7.4', description=( 'Links a directory structure and optionally executes ' 'user-defined scripts at each level of the directory ' 'hierarchy' ), long_description=long_description, author='Andres Buritica', author_email='[email protected]', maintainer='Andres Buritica', maintainer_email='[email protected]', url='https://github.com/thelinuxkid/linkins', license='MIT', packages = find_packages(), test_suite='nose.collector', install_requires=[ 'setuptools', ], extras_require=EXTRAS_REQUIRES, entry_points={ 'console_scripts': [ 'linkins = linkins.cli:main', ], }, classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7' ], )
normal
{ "blob_id": "f531af47431055866db72f6a7181580da461853d", "index": 6780, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor k, v in EXTRAS_REQUIRES.iteritems():\n if k == 'test' or k == 'dev':\n continue\n EXTRAS_REQUIRES['test'] += v\n<mask token>\nwith open(path) as fp:\n long_description = fp.read()\nsetup(name='linkins', version='0.0.7.4', description=\n 'Links a directory structure and optionally executes user-defined scripts at each level of the directory hierarchy'\n , long_description=long_description, author='Andres Buritica',\n author_email='[email protected]', maintainer='Andres Buritica',\n maintainer_email='[email protected]', url=\n 'https://github.com/thelinuxkid/linkins', license='MIT', packages=\n find_packages(), test_suite='nose.collector', install_requires=[\n 'setuptools'], extras_require=EXTRAS_REQUIRES, entry_points={\n 'console_scripts': ['linkins = linkins.cli:main']}, classifiers=[\n 'Development Status :: 4 - Beta', 'Intended Audience :: Developers',\n 'Natural Language :: English', 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python', 'Programming Language :: Python :: 2.7'])\n", "step-3": "<mask token>\nEXTRAS_REQUIRES = dict(test=['pytest>=2.2.4', 'mock>=0.8.0',\n 'tempdirs>=0.0.8'], dev=['ipython>=0.13'])\nfor k, v in EXTRAS_REQUIRES.iteritems():\n if k == 'test' or k == 'dev':\n continue\n EXTRAS_REQUIRES['test'] += v\nroot = os.path.dirname(__file__)\npath = os.path.join(root, 'README.rst')\nwith open(path) as fp:\n long_description = fp.read()\nsetup(name='linkins', version='0.0.7.4', description=\n 'Links a directory structure and optionally executes user-defined scripts at each level of the directory hierarchy'\n , long_description=long_description, author='Andres Buritica',\n author_email='[email protected]', maintainer='Andres Buritica',\n maintainer_email='[email protected]', url=\n 'https://github.com/thelinuxkid/linkins', license='MIT', packages=\n find_packages(), test_suite='nose.collector', install_requires=[\n 'setuptools'], extras_require=EXTRAS_REQUIRES, entry_points={\n 'console_scripts': ['linkins = linkins.cli:main']}, classifiers=[\n 'Development Status :: 4 - Beta', 'Intended Audience :: Developers',\n 'Natural Language :: English', 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python', 'Programming Language :: Python :: 2.7'])\n", "step-4": "from setuptools import setup, find_packages\nimport os\nEXTRAS_REQUIRES = dict(test=['pytest>=2.2.4', 'mock>=0.8.0',\n 'tempdirs>=0.0.8'], dev=['ipython>=0.13'])\nfor k, v in EXTRAS_REQUIRES.iteritems():\n if k == 'test' or k == 'dev':\n continue\n EXTRAS_REQUIRES['test'] += v\nroot = os.path.dirname(__file__)\npath = os.path.join(root, 'README.rst')\nwith open(path) as fp:\n long_description = fp.read()\nsetup(name='linkins', version='0.0.7.4', description=\n 'Links a directory structure and optionally executes user-defined scripts at each level of the directory hierarchy'\n , long_description=long_description, author='Andres Buritica',\n author_email='[email protected]', maintainer='Andres Buritica',\n maintainer_email='[email protected]', url=\n 'https://github.com/thelinuxkid/linkins', license='MIT', packages=\n find_packages(), test_suite='nose.collector', install_requires=[\n 'setuptools'], extras_require=EXTRAS_REQUIRES, entry_points={\n 'console_scripts': ['linkins = linkins.cli:main']}, classifiers=[\n 'Development Status :: 4 - Beta', 'Intended Audience :: Developers',\n 'Natural Language :: English', 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python', 'Programming Language :: Python :: 2.7'])\n", "step-5": "#!/usr/bin/python\nfrom setuptools import setup, find_packages\nimport os\n\nEXTRAS_REQUIRES = dict(\n test=[\n 'pytest>=2.2.4',\n 'mock>=0.8.0',\n 'tempdirs>=0.0.8',\n ],\n dev=[\n 'ipython>=0.13',\n ],\n )\n\n# Tests always depend on all other requirements, except dev\nfor k,v in EXTRAS_REQUIRES.iteritems():\n if k == 'test' or k == 'dev':\n continue\n EXTRAS_REQUIRES['test'] += v\n\n# Pypi package documentation\nroot = os.path.dirname(__file__)\npath = os.path.join(root, 'README.rst')\nwith open(path) as fp:\n long_description = fp.read()\n\nsetup(\n name='linkins',\n version='0.0.7.4',\n description=(\n 'Links a directory structure and optionally executes '\n 'user-defined scripts at each level of the directory '\n 'hierarchy'\n ),\n long_description=long_description,\n author='Andres Buritica',\n author_email='[email protected]',\n maintainer='Andres Buritica',\n maintainer_email='[email protected]',\n url='https://github.com/thelinuxkid/linkins',\n license='MIT',\n packages = find_packages(),\n test_suite='nose.collector',\n install_requires=[\n 'setuptools',\n ],\n extras_require=EXTRAS_REQUIRES,\n entry_points={\n 'console_scripts': [\n 'linkins = linkins.cli:main',\n ],\n },\n classifiers=[\n 'Development Status :: 4 - Beta',\n 'Intended Audience :: Developers',\n 'Natural Language :: English',\n 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python',\n 'Programming Language :: Python :: 2.7'\n ],\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> ''' 8-6. 도시 이름 도시와 국가 이름을 받는 city_country() 함수를 만드세요. 이 함수는 다음과 같은 문자열을 반환해야 합니다. 'Santiago, Chile' - 최소한 세 개의 도시-국가 쌍으로 함수를 호출하고 반환값을 출력하세요. Output: santiago, chile ushuaia, argentina longyearbyen, svalbard '''
flexible
{ "blob_id": "2d5abcd75dcbeb1baa3f387035bdcc3b7adbfe3f", "index": 7856, "step-1": "<mask token>\n", "step-2": "'''\n8-6. 도시 이름\n도시와 국가 이름을 받는 city_country() 함수를 만드세요. 이 함수는 다음과 같은 문자열을 반환해야 합니다.\n'Santiago, Chile'\n- 최소한 세 개의 도시-국가 쌍으로 함수를 호출하고 반환값을 출력하세요.\n\nOutput:\nsantiago, chile\nushuaia, argentina\nlongyearbyen, svalbard\n'''\n\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
"""Gaussian mixture model, with Stochastic EM algorithm.""" import numpy as np from sklearn.mixture.gaussian_mixture import _estimate_gaussian_parameters, _compute_precision_cholesky from Core.gllim import MyGMM class SEMGaussianMixture(MyGMM): """Remarque : on utilise la variable Y pour les observations, au lieu de X dans la classe parente.""" def _compute_Z_conditionnal_density(self,Y): """ Calcule les proba conditionnelles de Z_i sachant Y_i :param Y: Observations (n_samples,n_features) :return: matrice stochastique (en ligne) (n_samples,n_components) """ proba_cond = np.exp(self._estimate_weighted_log_prob(Y)) # Pi_k * g_k(yi) s = proba_cond.sum(axis=1)[:,np.newaxis] # sum_k (Pi_k * g_k(yi)) return proba_cond / s #On normalise def _draw_conditionnal_Z(self,Y): """ Tire un échantillon de loi Z sachant Y :param Y: Observations (n_samples, n_features) :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek """ M = self._compute_Z_conditionnal_density(Y) s = M.cumsum(axis=1) r = np.random.rand(M.shape[0])[:,np.newaxis] zi = (s < r).sum(axis=1)[:,np.newaxis] I = np.empty(M.shape) I[:] = np.arange(M.shape[1]) return (I == zi).astype(float) def threshold(self,Z,n_features): pik = Z.sum(axis=0) return (pik >= (n_features + 1)).prod() def _m_step(self, Y, log_resp): """M step. Parameters ---------- Y : array-like, shape (n_samples, n_features) log_resp : array-like, shape (n_samples, n_components) Logarithm of the posterior probabilities (or responsibilities) of the point of each sample in Y. """ Z = self._draw_conditionnal_Z(Y) while not self.threshold(Z,Y.shape[1]): #Condition de seuil Z = self._draw_conditionnal_Z(Y) print("Ajustement au seuil") n_samples, _ = Y.shape self.weights_, self.means_, self.covariances_ = ( _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.covariance_type)) self.weights_ /= n_samples self.precisions_cholesky_ = _compute_precision_cholesky( self.covariances_, self.covariance_type) self._m_step_callback(Y) class SAEMGaussianMixture(SEMGaussianMixture): def _print_verbose_msg_iter_end(self, n_iter, diff_ll): super()._print_verbose_msg_iter_end(n_iter,diff_ll) self.current_iter = n_iter + 1 #Prochaine itération def _m_step(self, Y, log_resp): """M step. Parameters ---------- Y : array-like, shape (n_samples, n_features) log_resp : array-like, shape (n_samples, n_components) Logarithm of the posterior probabilities (or responsibilities) of the point of each sample in Y. """ Z = self._draw_conditionnal_Z(Y) i = 0 while i < 10 and not self.threshold(Z, Y.shape[1]): # Condition de seuil Z = self._draw_conditionnal_Z(Y) i += 1 print("Ajustement au seuil") n_samples, _ = Y.shape SEMweights_, SEMmeans_, SEMcovariances_ = ( _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.covariance_type)) SEMweights_ /= n_samples EMweights_, EMmeans_, EMcovariances_ = ( _estimate_gaussian_parameters(Y, np.exp(log_resp), self.reg_covar, self.covariance_type)) EMweights_ /= n_samples r = self.current_iter gr = self.gamma(r) self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_ self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_ self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_ self.precisions_cholesky_ = _compute_precision_cholesky( self.covariances_, self.covariance_type) self._m_step_callback(Y) @staticmethod def gamma(r): return 1 / np.sqrt( r + 1)
normal
{ "blob_id": "39475626b7e3e0f4c8143b300c002a2eb50cc23a", "index": 9341, "step-1": "<mask token>\n\n\nclass SEMGaussianMixture(MyGMM):\n <mask token>\n <mask token>\n\n def _draw_conditionnal_Z(self, Y):\n \"\"\"\n Tire un échantillon de loi Z sachant Y\n\n :param Y: Observations (n_samples, n_features)\n :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek\n \"\"\"\n M = self._compute_Z_conditionnal_density(Y)\n s = M.cumsum(axis=1)\n r = np.random.rand(M.shape[0])[:, np.newaxis]\n zi = (s < r).sum(axis=1)[:, np.newaxis]\n I = np.empty(M.shape)\n I[:] = np.arange(M.shape[1])\n return (I == zi).astype(float)\n\n def threshold(self, Z, n_features):\n pik = Z.sum(axis=0)\n return (pik >= n_features + 1).prod()\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n while not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n self.weights_, self.means_, self.covariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n self.weights_ /= n_samples\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n\nclass SAEMGaussianMixture(SEMGaussianMixture):\n\n def _print_verbose_msg_iter_end(self, n_iter, diff_ll):\n super()._print_verbose_msg_iter_end(n_iter, diff_ll)\n self.current_iter = n_iter + 1\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n i = 0\n while i < 10 and not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n i += 1\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n SEMweights_, SEMmeans_, SEMcovariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n SEMweights_ /= n_samples\n EMweights_, EMmeans_, EMcovariances_ = _estimate_gaussian_parameters(Y,\n np.exp(log_resp), self.reg_covar, self.covariance_type)\n EMweights_ /= n_samples\n r = self.current_iter\n gr = self.gamma(r)\n self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_\n self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_\n self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n @staticmethod\n def gamma(r):\n return 1 / np.sqrt(r + 1)\n", "step-2": "<mask token>\n\n\nclass SEMGaussianMixture(MyGMM):\n <mask token>\n\n def _compute_Z_conditionnal_density(self, Y):\n \"\"\"\n Calcule les proba conditionnelles de Z_i sachant Y_i\n :param Y: Observations (n_samples,n_features)\n :return: matrice stochastique (en ligne) (n_samples,n_components)\n \"\"\"\n proba_cond = np.exp(self._estimate_weighted_log_prob(Y))\n s = proba_cond.sum(axis=1)[:, np.newaxis]\n return proba_cond / s\n\n def _draw_conditionnal_Z(self, Y):\n \"\"\"\n Tire un échantillon de loi Z sachant Y\n\n :param Y: Observations (n_samples, n_features)\n :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek\n \"\"\"\n M = self._compute_Z_conditionnal_density(Y)\n s = M.cumsum(axis=1)\n r = np.random.rand(M.shape[0])[:, np.newaxis]\n zi = (s < r).sum(axis=1)[:, np.newaxis]\n I = np.empty(M.shape)\n I[:] = np.arange(M.shape[1])\n return (I == zi).astype(float)\n\n def threshold(self, Z, n_features):\n pik = Z.sum(axis=0)\n return (pik >= n_features + 1).prod()\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n while not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n self.weights_, self.means_, self.covariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n self.weights_ /= n_samples\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n\nclass SAEMGaussianMixture(SEMGaussianMixture):\n\n def _print_verbose_msg_iter_end(self, n_iter, diff_ll):\n super()._print_verbose_msg_iter_end(n_iter, diff_ll)\n self.current_iter = n_iter + 1\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n i = 0\n while i < 10 and not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n i += 1\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n SEMweights_, SEMmeans_, SEMcovariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n SEMweights_ /= n_samples\n EMweights_, EMmeans_, EMcovariances_ = _estimate_gaussian_parameters(Y,\n np.exp(log_resp), self.reg_covar, self.covariance_type)\n EMweights_ /= n_samples\n r = self.current_iter\n gr = self.gamma(r)\n self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_\n self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_\n self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n @staticmethod\n def gamma(r):\n return 1 / np.sqrt(r + 1)\n", "step-3": "<mask token>\n\n\nclass SEMGaussianMixture(MyGMM):\n \"\"\"Remarque : on utilise la variable Y pour les observations, au lieu de X dans la classe parente.\"\"\"\n\n def _compute_Z_conditionnal_density(self, Y):\n \"\"\"\n Calcule les proba conditionnelles de Z_i sachant Y_i\n :param Y: Observations (n_samples,n_features)\n :return: matrice stochastique (en ligne) (n_samples,n_components)\n \"\"\"\n proba_cond = np.exp(self._estimate_weighted_log_prob(Y))\n s = proba_cond.sum(axis=1)[:, np.newaxis]\n return proba_cond / s\n\n def _draw_conditionnal_Z(self, Y):\n \"\"\"\n Tire un échantillon de loi Z sachant Y\n\n :param Y: Observations (n_samples, n_features)\n :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek\n \"\"\"\n M = self._compute_Z_conditionnal_density(Y)\n s = M.cumsum(axis=1)\n r = np.random.rand(M.shape[0])[:, np.newaxis]\n zi = (s < r).sum(axis=1)[:, np.newaxis]\n I = np.empty(M.shape)\n I[:] = np.arange(M.shape[1])\n return (I == zi).astype(float)\n\n def threshold(self, Z, n_features):\n pik = Z.sum(axis=0)\n return (pik >= n_features + 1).prod()\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n while not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n self.weights_, self.means_, self.covariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n self.weights_ /= n_samples\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n\nclass SAEMGaussianMixture(SEMGaussianMixture):\n\n def _print_verbose_msg_iter_end(self, n_iter, diff_ll):\n super()._print_verbose_msg_iter_end(n_iter, diff_ll)\n self.current_iter = n_iter + 1\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n i = 0\n while i < 10 and not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n i += 1\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n SEMweights_, SEMmeans_, SEMcovariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n SEMweights_ /= n_samples\n EMweights_, EMmeans_, EMcovariances_ = _estimate_gaussian_parameters(Y,\n np.exp(log_resp), self.reg_covar, self.covariance_type)\n EMweights_ /= n_samples\n r = self.current_iter\n gr = self.gamma(r)\n self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_\n self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_\n self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n @staticmethod\n def gamma(r):\n return 1 / np.sqrt(r + 1)\n", "step-4": "<mask token>\nimport numpy as np\nfrom sklearn.mixture.gaussian_mixture import _estimate_gaussian_parameters, _compute_precision_cholesky\nfrom Core.gllim import MyGMM\n\n\nclass SEMGaussianMixture(MyGMM):\n \"\"\"Remarque : on utilise la variable Y pour les observations, au lieu de X dans la classe parente.\"\"\"\n\n def _compute_Z_conditionnal_density(self, Y):\n \"\"\"\n Calcule les proba conditionnelles de Z_i sachant Y_i\n :param Y: Observations (n_samples,n_features)\n :return: matrice stochastique (en ligne) (n_samples,n_components)\n \"\"\"\n proba_cond = np.exp(self._estimate_weighted_log_prob(Y))\n s = proba_cond.sum(axis=1)[:, np.newaxis]\n return proba_cond / s\n\n def _draw_conditionnal_Z(self, Y):\n \"\"\"\n Tire un échantillon de loi Z sachant Y\n\n :param Y: Observations (n_samples, n_features)\n :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek\n \"\"\"\n M = self._compute_Z_conditionnal_density(Y)\n s = M.cumsum(axis=1)\n r = np.random.rand(M.shape[0])[:, np.newaxis]\n zi = (s < r).sum(axis=1)[:, np.newaxis]\n I = np.empty(M.shape)\n I[:] = np.arange(M.shape[1])\n return (I == zi).astype(float)\n\n def threshold(self, Z, n_features):\n pik = Z.sum(axis=0)\n return (pik >= n_features + 1).prod()\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n while not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n self.weights_, self.means_, self.covariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n self.weights_ /= n_samples\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n\nclass SAEMGaussianMixture(SEMGaussianMixture):\n\n def _print_verbose_msg_iter_end(self, n_iter, diff_ll):\n super()._print_verbose_msg_iter_end(n_iter, diff_ll)\n self.current_iter = n_iter + 1\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n i = 0\n while i < 10 and not self.threshold(Z, Y.shape[1]):\n Z = self._draw_conditionnal_Z(Y)\n i += 1\n print('Ajustement au seuil')\n n_samples, _ = Y.shape\n SEMweights_, SEMmeans_, SEMcovariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar, self.\n covariance_type))\n SEMweights_ /= n_samples\n EMweights_, EMmeans_, EMcovariances_ = _estimate_gaussian_parameters(Y,\n np.exp(log_resp), self.reg_covar, self.covariance_type)\n EMweights_ /= n_samples\n r = self.current_iter\n gr = self.gamma(r)\n self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_\n self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_\n self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_\n self.precisions_cholesky_ = _compute_precision_cholesky(self.\n covariances_, self.covariance_type)\n self._m_step_callback(Y)\n\n @staticmethod\n def gamma(r):\n return 1 / np.sqrt(r + 1)\n", "step-5": "\"\"\"Gaussian mixture model, with Stochastic EM algorithm.\"\"\"\n\nimport numpy as np\nfrom sklearn.mixture.gaussian_mixture import _estimate_gaussian_parameters, _compute_precision_cholesky\n\nfrom Core.gllim import MyGMM\n\n\nclass SEMGaussianMixture(MyGMM):\n \"\"\"Remarque : on utilise la variable Y pour les observations, au lieu de X dans la classe parente.\"\"\"\n\n def _compute_Z_conditionnal_density(self,Y):\n \"\"\"\n Calcule les proba conditionnelles de Z_i sachant Y_i\n :param Y: Observations (n_samples,n_features)\n :return: matrice stochastique (en ligne) (n_samples,n_components)\n \"\"\"\n proba_cond = np.exp(self._estimate_weighted_log_prob(Y)) # Pi_k * g_k(yi)\n s = proba_cond.sum(axis=1)[:,np.newaxis] # sum_k (Pi_k * g_k(yi))\n return proba_cond / s #On normalise\n\n def _draw_conditionnal_Z(self,Y):\n \"\"\"\n Tire un échantillon de loi Z sachant Y\n\n :param Y: Observations (n_samples, n_features)\n :return: Z (n_samples,n_components) Zik = 1 ssi Zi vaut ek\n \"\"\"\n M = self._compute_Z_conditionnal_density(Y)\n s = M.cumsum(axis=1)\n r = np.random.rand(M.shape[0])[:,np.newaxis]\n zi = (s < r).sum(axis=1)[:,np.newaxis]\n I = np.empty(M.shape)\n I[:] = np.arange(M.shape[1])\n return (I == zi).astype(float)\n\n def threshold(self,Z,n_features):\n pik = Z.sum(axis=0)\n return (pik >= (n_features + 1)).prod()\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n while not self.threshold(Z,Y.shape[1]): #Condition de seuil\n Z = self._draw_conditionnal_Z(Y)\n print(\"Ajustement au seuil\")\n\n n_samples, _ = Y.shape\n self.weights_, self.means_, self.covariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar,\n self.covariance_type))\n self.weights_ /= n_samples\n self.precisions_cholesky_ = _compute_precision_cholesky(\n self.covariances_, self.covariance_type)\n\n self._m_step_callback(Y)\n\nclass SAEMGaussianMixture(SEMGaussianMixture):\n\n def _print_verbose_msg_iter_end(self, n_iter, diff_ll):\n super()._print_verbose_msg_iter_end(n_iter,diff_ll)\n self.current_iter = n_iter + 1 #Prochaine itération\n\n def _m_step(self, Y, log_resp):\n \"\"\"M step.\n\n Parameters\n ----------\n Y : array-like, shape (n_samples, n_features)\n\n log_resp : array-like, shape (n_samples, n_components)\n Logarithm of the posterior probabilities (or responsibilities) of\n the point of each sample in Y.\n \"\"\"\n Z = self._draw_conditionnal_Z(Y)\n i = 0\n while i < 10 and not self.threshold(Z, Y.shape[1]): # Condition de seuil\n Z = self._draw_conditionnal_Z(Y)\n i += 1\n print(\"Ajustement au seuil\")\n\n n_samples, _ = Y.shape\n SEMweights_, SEMmeans_, SEMcovariances_ = (\n _estimate_gaussian_parameters(Y, Z, self.reg_covar,\n self.covariance_type))\n SEMweights_ /= n_samples\n\n EMweights_, EMmeans_, EMcovariances_ = (\n _estimate_gaussian_parameters(Y, np.exp(log_resp), self.reg_covar,\n self.covariance_type))\n EMweights_ /= n_samples\n\n r = self.current_iter\n gr = self.gamma(r)\n self.means_ = (1 - gr) * EMmeans_ + gr * SEMmeans_\n self.weights_ = (1 - gr) * EMweights_ + gr * SEMweights_\n self.covariances_ = (1 - gr) * EMcovariances_ + gr * SEMcovariances_\n\n self.precisions_cholesky_ = _compute_precision_cholesky(\n self.covariances_, self.covariance_type)\n\n self._m_step_callback(Y)\n\n @staticmethod\n def gamma(r):\n return 1 / np.sqrt( r + 1)\n\n", "step-ids": [ 8, 9, 10, 11, 12 ] }
[ 8, 9, 10, 11, 12 ]