code
stringlengths
13
6.09M
order_type
stringclasses
2 values
original_example
dict
step_ids
listlengths
1
5
from app import create_app, db import unittest import json class Test(unittest.TestCase): def setUp(self): """Before each test, set up a blank database""" self.app = create_app("configmodule.TestingConfig") self.app.testing = True self.client = self.app.test_client() with self.app.app_context(): db.drop_all() db.create_all() # Called after every test def tearDown(self): with self.app.app_context(): db.session.remove() db.drop_all() def test_user(self): # Create user rv = self.client.post( "/api/users/", data=json.dumps({"email": "[email protected]", "password": "abc123"}), ) rv_dict = json.loads(rv.data.decode()) assert rv.status_code == 200 assert rv_dict["id"] == 1 assert "password" not in rv_dict assert rv_dict["email"] == "[email protected]" # Try loggin with wrong PASSWORD rv = self.client.post("/api/users/login", data=json.dumps({"email": "[email protected]", "password": "abc1234"})) assert rv.status_code == 401 # Try loggin with wrong Email rv = self.client.post("/api/users/login", data=json.dumps({"email": "[email protected]", "password": "abc1234"})) assert rv.status_code == 401 # Try loggin with right PASSWORD rv = self.client.post("/api/users/login", data=json.dumps({"email": "[email protected]", "password": "abc123"})) rv_dict = json.loads(rv.data.decode()) assert rv.status_code == 200 headers = {"Authorization": "Bearer " + rv_dict["access_token"]} # Get the current user rv = self.client.get("/api/users/", headers=headers) rv_dict = json.loads(rv.data.decode()) assert rv.status_code == 200 assert rv_dict["email"] == "[email protected]" rv = self.client.put("/api/users/", data=json.dumps({"name": "carl carlsson"}), headers=headers) rv_dict = json.loads(rv.data.decode()) assert rv.status_code == 200 assert rv_dict["name"] == "Carl Carlsson" def test_empty(self): # Try loggin withou any users rv = self.client.post("/api/users/login", data=json.dumps({"email": "[email protected]", "password": "abc123"})) assert rv.status_code == 401 if __name__ == "__main__": unittest.main()
normal
{ "blob_id": "56b4262e88793be366d8ffe0fe4427fdb2a99bd7", "index": 7447, "step-1": "<mask token>\n\n\nclass Test(unittest.TestCase):\n\n def setUp(self):\n \"\"\"Before each test, set up a blank database\"\"\"\n self.app = create_app('configmodule.TestingConfig')\n self.app.testing = True\n self.client = self.app.test_client()\n with self.app.app_context():\n db.drop_all()\n db.create_all()\n <mask token>\n\n def test_user(self):\n rv = self.client.post('/api/users/', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['id'] == 1\n assert 'password' not in rv_dict\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n headers = {'Authorization': 'Bearer ' + rv_dict['access_token']}\n rv = self.client.get('/api/users/', headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.put('/api/users/', data=json.dumps({'name':\n 'carl carlsson'}), headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['name'] == 'Carl Carlsson'\n\n def test_empty(self):\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n assert rv.status_code == 401\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Test(unittest.TestCase):\n\n def setUp(self):\n \"\"\"Before each test, set up a blank database\"\"\"\n self.app = create_app('configmodule.TestingConfig')\n self.app.testing = True\n self.client = self.app.test_client()\n with self.app.app_context():\n db.drop_all()\n db.create_all()\n\n def tearDown(self):\n with self.app.app_context():\n db.session.remove()\n db.drop_all()\n\n def test_user(self):\n rv = self.client.post('/api/users/', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['id'] == 1\n assert 'password' not in rv_dict\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n headers = {'Authorization': 'Bearer ' + rv_dict['access_token']}\n rv = self.client.get('/api/users/', headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.put('/api/users/', data=json.dumps({'name':\n 'carl carlsson'}), headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['name'] == 'Carl Carlsson'\n\n def test_empty(self):\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n assert rv.status_code == 401\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Test(unittest.TestCase):\n\n def setUp(self):\n \"\"\"Before each test, set up a blank database\"\"\"\n self.app = create_app('configmodule.TestingConfig')\n self.app.testing = True\n self.client = self.app.test_client()\n with self.app.app_context():\n db.drop_all()\n db.create_all()\n\n def tearDown(self):\n with self.app.app_context():\n db.session.remove()\n db.drop_all()\n\n def test_user(self):\n rv = self.client.post('/api/users/', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['id'] == 1\n assert 'password' not in rv_dict\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n headers = {'Authorization': 'Bearer ' + rv_dict['access_token']}\n rv = self.client.get('/api/users/', headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.put('/api/users/', data=json.dumps({'name':\n 'carl carlsson'}), headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['name'] == 'Carl Carlsson'\n\n def test_empty(self):\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n assert rv.status_code == 401\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "from app import create_app, db\nimport unittest\nimport json\n\n\nclass Test(unittest.TestCase):\n\n def setUp(self):\n \"\"\"Before each test, set up a blank database\"\"\"\n self.app = create_app('configmodule.TestingConfig')\n self.app.testing = True\n self.client = self.app.test_client()\n with self.app.app_context():\n db.drop_all()\n db.create_all()\n\n def tearDown(self):\n with self.app.app_context():\n db.session.remove()\n db.drop_all()\n\n def test_user(self):\n rv = self.client.post('/api/users/', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['id'] == 1\n assert 'password' not in rv_dict\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc1234'}))\n assert rv.status_code == 401\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n headers = {'Authorization': 'Bearer ' + rv_dict['access_token']}\n rv = self.client.get('/api/users/', headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['email'] == '[email protected]'\n rv = self.client.put('/api/users/', data=json.dumps({'name':\n 'carl carlsson'}), headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict['name'] == 'Carl Carlsson'\n\n def test_empty(self):\n rv = self.client.post('/api/users/login', data=json.dumps({'email':\n '[email protected]', 'password': 'abc123'}))\n assert rv.status_code == 401\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "from app import create_app, db\nimport unittest\nimport json\n\n\nclass Test(unittest.TestCase):\n def setUp(self):\n \"\"\"Before each test, set up a blank database\"\"\"\n self.app = create_app(\"configmodule.TestingConfig\")\n self.app.testing = True\n\n self.client = self.app.test_client()\n\n with self.app.app_context():\n db.drop_all()\n db.create_all()\n\n # Called after every test\n def tearDown(self):\n with self.app.app_context():\n db.session.remove()\n db.drop_all()\n\n def test_user(self):\n # Create user\n rv = self.client.post(\n \"/api/users/\",\n data=json.dumps({\"email\": \"[email protected]\", \"password\": \"abc123\"}),\n )\n rv_dict = json.loads(rv.data.decode())\n\n assert rv.status_code == 200\n assert rv_dict[\"id\"] == 1\n assert \"password\" not in rv_dict\n assert rv_dict[\"email\"] == \"[email protected]\"\n\n # Try loggin with wrong PASSWORD\n rv = self.client.post(\"/api/users/login\", data=json.dumps({\"email\": \"[email protected]\", \"password\": \"abc1234\"}))\n assert rv.status_code == 401\n\n # Try loggin with wrong Email\n rv = self.client.post(\"/api/users/login\", data=json.dumps({\"email\": \"[email protected]\", \"password\": \"abc1234\"}))\n assert rv.status_code == 401\n\n # Try loggin with right PASSWORD\n rv = self.client.post(\"/api/users/login\", data=json.dumps({\"email\": \"[email protected]\", \"password\": \"abc123\"}))\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n headers = {\"Authorization\": \"Bearer \" + rv_dict[\"access_token\"]}\n\n # Get the current user\n rv = self.client.get(\"/api/users/\", headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict[\"email\"] == \"[email protected]\"\n\n rv = self.client.put(\"/api/users/\", data=json.dumps({\"name\": \"carl carlsson\"}), headers=headers)\n rv_dict = json.loads(rv.data.decode())\n assert rv.status_code == 200\n assert rv_dict[\"name\"] == \"Carl Carlsson\"\n\n def test_empty(self):\n # Try loggin withou any users\n rv = self.client.post(\"/api/users/login\", data=json.dumps({\"email\": \"[email protected]\", \"password\": \"abc123\"}))\n assert rv.status_code == 401\n\n\nif __name__ == \"__main__\":\n unittest.main()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# Generated by Django 2.2.4 on 2019-08-19 19:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('application', '0003_auto_20190818_1623'), ] operations = [ migrations.AlterField( model_name='user', name='visited', field=models.ManyToManyField(related_name='visitors', to='application.EscapeRoom'), ), ]
normal
{ "blob_id": "913e1f5a0af436ef081ab567c44b4149299d0ec6", "index": 3154, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('application', '0003_auto_20190818_1623')]\n operations = [migrations.AlterField(model_name='user', name='visited',\n field=models.ManyToManyField(related_name='visitors', to=\n 'application.EscapeRoom'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('application', '0003_auto_20190818_1623')]\n operations = [migrations.AlterField(model_name='user', name='visited',\n field=models.ManyToManyField(related_name='visitors', to=\n 'application.EscapeRoom'))]\n", "step-5": "# Generated by Django 2.2.4 on 2019-08-19 19:14\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('application', '0003_auto_20190818_1623'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='user',\n name='visited',\n field=models.ManyToManyField(related_name='visitors', to='application.EscapeRoom'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from typing import Tuple, Union from webdnn.graph.graph import Graph from webdnn.graph.operators.zero_padding_2d import ZeroPadding2D from webdnn.graph.operators.convolution2d import Convolution2D from webdnn.graph.operators.max_pooling_2d import MaxPooling2D from webdnn.graph.operators.average_pooling_2d import AveragePooling2D from webdnn.graph.optimize_rule import OptimizeRule from webdnn.graph.traverse import search_sub_structure from webdnn.graph.variable import Variable from webdnn.util import flags class ConcatZeroPadding(OptimizeRule): def optimize(self, graph: Graph) -> Tuple[Graph, bool]: """ Merges padding of ZeroPadding2D and Convolution2D | MaxPooling2D | AveragePooling2D layer Args: graph: Returns: """ # this optimization is always applied (since backends do not implement padding) flag_changed = False for tail_layer in [Convolution2D, MaxPooling2D, AveragePooling2D]: matches = search_sub_structure(graph, [ZeroPadding2D, Variable, tail_layer]) while len(matches) > 0: match = matches[0] a1: ZeroPadding2D = match[0] a2: Union[Convolution2D, MaxPooling2D, AveragePooling2D] = match[2] zero_pad = a1.parameters["padding"] conv_pad = a2.parameters["padding"] a2.parameters["padding"] = (zero_pad[0] + conv_pad[0], zero_pad[1] + conv_pad[1]) x1 = a1.inputs["x"] x2 = a2.inputs["x"] a1.remove_all() # replace_input checks if the shape of x1 and x2 are same, but this restriction does not hold. a2.remove_input(x2) a2.append_input("x", x1) flag_changed = True matches = search_sub_structure(graph, [ZeroPadding2D, Variable, tail_layer]) return graph, flag_changed
normal
{ "blob_id": "687f7f4908e8a5448335f636edf74a627f03c306", "index": 9110, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass ConcatZeroPadding(OptimizeRule):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ConcatZeroPadding(OptimizeRule):\n\n def optimize(self, graph: Graph) ->Tuple[Graph, bool]:\n \"\"\"\n Merges padding of ZeroPadding2D and Convolution2D | MaxPooling2D | AveragePooling2D layer\n Args:\n graph:\n\n Returns:\n\n \"\"\"\n flag_changed = False\n for tail_layer in [Convolution2D, MaxPooling2D, AveragePooling2D]:\n matches = search_sub_structure(graph, [ZeroPadding2D, Variable,\n tail_layer])\n while len(matches) > 0:\n match = matches[0]\n a1: ZeroPadding2D = match[0]\n a2: Union[Convolution2D, MaxPooling2D, AveragePooling2D\n ] = match[2]\n zero_pad = a1.parameters['padding']\n conv_pad = a2.parameters['padding']\n a2.parameters['padding'] = zero_pad[0] + conv_pad[0], zero_pad[\n 1] + conv_pad[1]\n x1 = a1.inputs['x']\n x2 = a2.inputs['x']\n a1.remove_all()\n a2.remove_input(x2)\n a2.append_input('x', x1)\n flag_changed = True\n matches = search_sub_structure(graph, [ZeroPadding2D,\n Variable, tail_layer])\n return graph, flag_changed\n", "step-4": "from typing import Tuple, Union\nfrom webdnn.graph.graph import Graph\nfrom webdnn.graph.operators.zero_padding_2d import ZeroPadding2D\nfrom webdnn.graph.operators.convolution2d import Convolution2D\nfrom webdnn.graph.operators.max_pooling_2d import MaxPooling2D\nfrom webdnn.graph.operators.average_pooling_2d import AveragePooling2D\nfrom webdnn.graph.optimize_rule import OptimizeRule\nfrom webdnn.graph.traverse import search_sub_structure\nfrom webdnn.graph.variable import Variable\nfrom webdnn.util import flags\n\n\nclass ConcatZeroPadding(OptimizeRule):\n\n def optimize(self, graph: Graph) ->Tuple[Graph, bool]:\n \"\"\"\n Merges padding of ZeroPadding2D and Convolution2D | MaxPooling2D | AveragePooling2D layer\n Args:\n graph:\n\n Returns:\n\n \"\"\"\n flag_changed = False\n for tail_layer in [Convolution2D, MaxPooling2D, AveragePooling2D]:\n matches = search_sub_structure(graph, [ZeroPadding2D, Variable,\n tail_layer])\n while len(matches) > 0:\n match = matches[0]\n a1: ZeroPadding2D = match[0]\n a2: Union[Convolution2D, MaxPooling2D, AveragePooling2D\n ] = match[2]\n zero_pad = a1.parameters['padding']\n conv_pad = a2.parameters['padding']\n a2.parameters['padding'] = zero_pad[0] + conv_pad[0], zero_pad[\n 1] + conv_pad[1]\n x1 = a1.inputs['x']\n x2 = a2.inputs['x']\n a1.remove_all()\n a2.remove_input(x2)\n a2.append_input('x', x1)\n flag_changed = True\n matches = search_sub_structure(graph, [ZeroPadding2D,\n Variable, tail_layer])\n return graph, flag_changed\n", "step-5": "from typing import Tuple, Union\n\nfrom webdnn.graph.graph import Graph\nfrom webdnn.graph.operators.zero_padding_2d import ZeroPadding2D\nfrom webdnn.graph.operators.convolution2d import Convolution2D\nfrom webdnn.graph.operators.max_pooling_2d import MaxPooling2D\nfrom webdnn.graph.operators.average_pooling_2d import AveragePooling2D\nfrom webdnn.graph.optimize_rule import OptimizeRule\nfrom webdnn.graph.traverse import search_sub_structure\nfrom webdnn.graph.variable import Variable\nfrom webdnn.util import flags\n\n\nclass ConcatZeroPadding(OptimizeRule):\n def optimize(self, graph: Graph) -> Tuple[Graph, bool]:\n \"\"\"\n Merges padding of ZeroPadding2D and Convolution2D | MaxPooling2D | AveragePooling2D layer\n Args:\n graph:\n\n Returns:\n\n \"\"\"\n # this optimization is always applied (since backends do not implement padding)\n flag_changed = False\n\n for tail_layer in [Convolution2D, MaxPooling2D, AveragePooling2D]:\n matches = search_sub_structure(graph, [ZeroPadding2D, Variable, tail_layer])\n while len(matches) > 0:\n match = matches[0]\n a1: ZeroPadding2D = match[0]\n a2: Union[Convolution2D, MaxPooling2D, AveragePooling2D] = match[2]\n\n zero_pad = a1.parameters[\"padding\"]\n conv_pad = a2.parameters[\"padding\"]\n a2.parameters[\"padding\"] = (zero_pad[0] + conv_pad[0], zero_pad[1] + conv_pad[1])\n\n x1 = a1.inputs[\"x\"]\n x2 = a2.inputs[\"x\"]\n\n a1.remove_all()\n # replace_input checks if the shape of x1 and x2 are same, but this restriction does not hold.\n a2.remove_input(x2)\n a2.append_input(\"x\", x1)\n\n flag_changed = True\n matches = search_sub_structure(graph, [ZeroPadding2D, Variable, tail_layer])\n\n return graph, flag_changed\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""Sherlock Tests This package contains various submodules used to run tests. """ import sys import os import subprocess as sp from time import sleep # uncomment this if using nose sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../sherlock'))) # import sherlock
normal
{ "blob_id": "8f7b1313ba31d761edcadac7b0d04b62f7af8dff", "index": 4759, "step-1": "<mask token>\n", "step-2": "<mask token>\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__),\n '../sherlock')))\n", "step-3": "<mask token>\nimport sys\nimport os\nimport subprocess as sp\nfrom time import sleep\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__),\n '../sherlock')))\n", "step-4": "\"\"\"Sherlock Tests\r\n\r\nThis package contains various submodules used to run tests.\r\n\"\"\"\r\nimport sys\r\nimport os\r\nimport subprocess as sp\r\nfrom time import sleep\r\n\r\n# uncomment this if using nose\r\nsys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '../sherlock')))\r\n\r\n# import sherlock", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# We don't need no stinking models but django likes this file to be there if you are an app
normal
{ "blob_id": "a1304f290e0346e7aa2e22d9c2d3e7f735b1e8e7", "index": 96, "step-1": "\n# We don't need no stinking models but django likes this file to be there if you are an app\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 1 ] }
[ 1 ]
import json from django import template from django.core.serializers.json import DjangoJSONEncoder from django.utils.safestring import mark_safe register = template.Library() @register.filter def jsonify(object): return mark_safe(json.dumps(object, cls=DjangoJSONEncoder)) @register.simple_tag def get_crop_url(crop, width=None, scale=1): if width: return crop.url_at_width(width * scale) else: return crop.url_at_width(crop.width * scale) @register.assignment_tag def get_available_crop_scales(crop, width): return crop.available_scales(width=width)
normal
{ "blob_id": "987579da6b7ae208a66e375e0c9eca32b97199c5", "index": 4704, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]\ndef jsonify(object):\n return mark_safe(json.dumps(object, cls=DjangoJSONEncoder))\n\n\[email protected]_tag\ndef get_crop_url(crop, width=None, scale=1):\n if width:\n return crop.url_at_width(width * scale)\n else:\n return crop.url_at_width(crop.width * scale)\n\n\[email protected]_tag\ndef get_available_crop_scales(crop, width):\n return crop.available_scales(width=width)\n", "step-3": "<mask token>\nregister = template.Library()\n\n\[email protected]\ndef jsonify(object):\n return mark_safe(json.dumps(object, cls=DjangoJSONEncoder))\n\n\[email protected]_tag\ndef get_crop_url(crop, width=None, scale=1):\n if width:\n return crop.url_at_width(width * scale)\n else:\n return crop.url_at_width(crop.width * scale)\n\n\[email protected]_tag\ndef get_available_crop_scales(crop, width):\n return crop.available_scales(width=width)\n", "step-4": "import json\nfrom django import template\nfrom django.core.serializers.json import DjangoJSONEncoder\nfrom django.utils.safestring import mark_safe\nregister = template.Library()\n\n\[email protected]\ndef jsonify(object):\n return mark_safe(json.dumps(object, cls=DjangoJSONEncoder))\n\n\[email protected]_tag\ndef get_crop_url(crop, width=None, scale=1):\n if width:\n return crop.url_at_width(width * scale)\n else:\n return crop.url_at_width(crop.width * scale)\n\n\[email protected]_tag\ndef get_available_crop_scales(crop, width):\n return crop.available_scales(width=width)\n", "step-5": null, "step-ids": [ 0, 3, 4, 5 ] }
[ 0, 3, 4, 5 ]
""" Constants to be used throughout this program stored here. """ ROOT_URL = "https://api.twitter.com" UPLOAD_URL = "https://upload.twitter.com" REQUEST_TOKEN_URL = f'{ROOT_URL}/oauth/request_token' AUTHENTICATE_URL = f'{ROOT_URL}/oauth/authenticate' ACCESS_TOKEN_URL = f'{ROOT_URL}/oauth/access_token' VERSION = '1.1' USER_SEARCH_URL = f'{ROOT_URL}/{VERSION}/users/search.json' FRIENDSHIP_CREATE_URL = f'{ROOT_URL}/{VERSION}/friendships/create.json' FRIENDSHIP_DESTROY_URL = f'{ROOT_URL}/{VERSION}/friendships/destroy.json' FRIENDS_URL = f'{ROOT_URL}/{VERSION}/friends/list.json' FOLLOWERS_URL = f'{ROOT_URL}/{VERSION}/followers/list.json' TWEET_SEARCH_URL = f'{ROOT_URL}/{VERSION}/search/tweets.json' TWEET_LIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/create.json' TWEET_UNLIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/destroy.json' RETWEET_URL = ROOT_URL + "/" + VERSION + "/retweet/create/{tweet_id}.json" REMOVE_RETWEET_URL = ROOT_URL + "/" + \ VERSION + "/unretweet/create/{tweet_id}.json" FAVOURITED_TWEETS_URL = ROOT_URL + "/" + VERSION + "/favorites/list.json" STATUS_UPDATE_URL = f'{ROOT_URL}/{VERSION}/statuses/update.json' MEDIA_UPLOAD_URL = f'{UPLOAD_URL}/{VERSION}/media/upload.json' TRENDS_URL = f'{ROOT_URL}/{VERSION}/trends/place.json'
normal
{ "blob_id": "c907f6b954aa3eae21a54eba9d54c116576bd40a", "index": 5848, "step-1": "<mask token>\n", "step-2": "<mask token>\nROOT_URL = 'https://api.twitter.com'\nUPLOAD_URL = 'https://upload.twitter.com'\nREQUEST_TOKEN_URL = f'{ROOT_URL}/oauth/request_token'\nAUTHENTICATE_URL = f'{ROOT_URL}/oauth/authenticate'\nACCESS_TOKEN_URL = f'{ROOT_URL}/oauth/access_token'\nVERSION = '1.1'\nUSER_SEARCH_URL = f'{ROOT_URL}/{VERSION}/users/search.json'\nFRIENDSHIP_CREATE_URL = f'{ROOT_URL}/{VERSION}/friendships/create.json'\nFRIENDSHIP_DESTROY_URL = f'{ROOT_URL}/{VERSION}/friendships/destroy.json'\nFRIENDS_URL = f'{ROOT_URL}/{VERSION}/friends/list.json'\nFOLLOWERS_URL = f'{ROOT_URL}/{VERSION}/followers/list.json'\nTWEET_SEARCH_URL = f'{ROOT_URL}/{VERSION}/search/tweets.json'\nTWEET_LIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/create.json'\nTWEET_UNLIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/destroy.json'\nRETWEET_URL = ROOT_URL + '/' + VERSION + '/retweet/create/{tweet_id}.json'\nREMOVE_RETWEET_URL = (ROOT_URL + '/' + VERSION +\n '/unretweet/create/{tweet_id}.json')\nFAVOURITED_TWEETS_URL = ROOT_URL + '/' + VERSION + '/favorites/list.json'\nSTATUS_UPDATE_URL = f'{ROOT_URL}/{VERSION}/statuses/update.json'\nMEDIA_UPLOAD_URL = f'{UPLOAD_URL}/{VERSION}/media/upload.json'\nTRENDS_URL = f'{ROOT_URL}/{VERSION}/trends/place.json'\n", "step-3": "\"\"\"\nConstants to be used throughout this program\nstored here.\n\"\"\"\nROOT_URL = \"https://api.twitter.com\"\nUPLOAD_URL = \"https://upload.twitter.com\"\n\nREQUEST_TOKEN_URL = f'{ROOT_URL}/oauth/request_token'\nAUTHENTICATE_URL = f'{ROOT_URL}/oauth/authenticate'\nACCESS_TOKEN_URL = f'{ROOT_URL}/oauth/access_token'\n\nVERSION = '1.1'\n\nUSER_SEARCH_URL = f'{ROOT_URL}/{VERSION}/users/search.json'\nFRIENDSHIP_CREATE_URL = f'{ROOT_URL}/{VERSION}/friendships/create.json'\nFRIENDSHIP_DESTROY_URL = f'{ROOT_URL}/{VERSION}/friendships/destroy.json'\nFRIENDS_URL = f'{ROOT_URL}/{VERSION}/friends/list.json'\nFOLLOWERS_URL = f'{ROOT_URL}/{VERSION}/followers/list.json'\n\nTWEET_SEARCH_URL = f'{ROOT_URL}/{VERSION}/search/tweets.json'\nTWEET_LIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/create.json'\nTWEET_UNLIKE_URL = f'{ROOT_URL}/{VERSION}/favorites/destroy.json'\nRETWEET_URL = ROOT_URL + \"/\" + VERSION + \"/retweet/create/{tweet_id}.json\"\nREMOVE_RETWEET_URL = ROOT_URL + \"/\" + \\\n VERSION + \"/unretweet/create/{tweet_id}.json\"\nFAVOURITED_TWEETS_URL = ROOT_URL + \"/\" + VERSION + \"/favorites/list.json\"\n\nSTATUS_UPDATE_URL = f'{ROOT_URL}/{VERSION}/statuses/update.json'\nMEDIA_UPLOAD_URL = f'{UPLOAD_URL}/{VERSION}/media/upload.json'\n\nTRENDS_URL = f'{ROOT_URL}/{VERSION}/trends/place.json'\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def gen_diffusion_flux_pyst_mpi_kernel_2d(real_t, mpi_construct, ghost_exchange_communicator): diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d(real_t= real_t, reset_ghost_zone=False) kernel_support = 1 gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support check_valid_ghost_size_and_kernel_support(ghost_size= ghost_exchange_communicator.ghost_size, kernel_support= gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support) y_next, x_next = mpi_construct.next_grid_along y_previous, x_previous = mpi_construct.previous_grid_along set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t) def diffusion_flux_pyst_mpi_kernel_2d(diffusion_flux, field, prefactor): diffusion_flux_pyst_mpi_kernel_2d.kernel_support = ( gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support) ghost_size = ghost_exchange_communicator.ghost_size ghost_exchange_communicator.exchange_scalar_field_init(field) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size :-ghost_size, ghost_size:-ghost_size], field=field[ghost_size:- ghost_size, ghost_size:-ghost_size], prefactor=prefactor) ghost_exchange_communicator.exchange_finalise() diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size - kernel_support:ghost_size + 2 * kernel_support, ghost_size:- ghost_size], field=field[ghost_size - kernel_support:ghost_size + 2 * kernel_support, ghost_size:-ghost_size], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[-( ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size], field=field[-( ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, ghost_size - kernel_support:ghost_size + 2 * kernel_support], field=field[:, ghost_size - kernel_support:ghost_size + 2 * kernel_support], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, -( ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size - kernel_support)], field=field[:, -(ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size - kernel_support)], prefactor=prefactor) boundary_width = 1 if x_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:, :ghost_size + boundary_width], fixed_val=0.0) if x_next == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:, -ghost_size - boundary_width:], fixed_val=0.0) if y_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:ghost_size + boundary_width, :], fixed_val=0.0) if y_next == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[-ghost_size - boundary_width:, :], fixed_val=0.0) return diffusion_flux_pyst_mpi_kernel_2d <|reserved_special_token_1|> <|reserved_special_token_0|> from sopht.numeric.eulerian_grid_ops.stencil_ops_2d import gen_diffusion_flux_pyst_kernel_2d, gen_set_fixed_val_pyst_kernel_2d from sopht_mpi.utils.mpi_utils import check_valid_ghost_size_and_kernel_support from mpi4py import MPI def gen_diffusion_flux_pyst_mpi_kernel_2d(real_t, mpi_construct, ghost_exchange_communicator): diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d(real_t= real_t, reset_ghost_zone=False) kernel_support = 1 gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support check_valid_ghost_size_and_kernel_support(ghost_size= ghost_exchange_communicator.ghost_size, kernel_support= gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support) y_next, x_next = mpi_construct.next_grid_along y_previous, x_previous = mpi_construct.previous_grid_along set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t) def diffusion_flux_pyst_mpi_kernel_2d(diffusion_flux, field, prefactor): diffusion_flux_pyst_mpi_kernel_2d.kernel_support = ( gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support) ghost_size = ghost_exchange_communicator.ghost_size ghost_exchange_communicator.exchange_scalar_field_init(field) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size :-ghost_size, ghost_size:-ghost_size], field=field[ghost_size:- ghost_size, ghost_size:-ghost_size], prefactor=prefactor) ghost_exchange_communicator.exchange_finalise() diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size - kernel_support:ghost_size + 2 * kernel_support, ghost_size:- ghost_size], field=field[ghost_size - kernel_support:ghost_size + 2 * kernel_support, ghost_size:-ghost_size], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[-( ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size], field=field[-( ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, ghost_size - kernel_support:ghost_size + 2 * kernel_support], field=field[:, ghost_size - kernel_support:ghost_size + 2 * kernel_support], prefactor=prefactor) diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, -( ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size - kernel_support)], field=field[:, -(ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size - kernel_support)], prefactor=prefactor) boundary_width = 1 if x_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:, :ghost_size + boundary_width], fixed_val=0.0) if x_next == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:, -ghost_size - boundary_width:], fixed_val=0.0) if y_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[:ghost_size + boundary_width, :], fixed_val=0.0) if y_next == MPI.PROC_NULL: set_fixed_val_kernel_2d(field=diffusion_flux[-ghost_size - boundary_width:, :], fixed_val=0.0) return diffusion_flux_pyst_mpi_kernel_2d <|reserved_special_token_1|> """MPI-supported kernels for computing diffusion flux in 2D.""" from sopht.numeric.eulerian_grid_ops.stencil_ops_2d import ( gen_diffusion_flux_pyst_kernel_2d, gen_set_fixed_val_pyst_kernel_2d, ) from sopht_mpi.utils.mpi_utils import check_valid_ghost_size_and_kernel_support from mpi4py import MPI def gen_diffusion_flux_pyst_mpi_kernel_2d( real_t, mpi_construct, ghost_exchange_communicator ): # Note currently I'm generating these for arbit size arrays, we ca optimise this # more by generating fixed size for the interior stencil and arbit size for # boundary crunching diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d( real_t=real_t, reset_ghost_zone=False ) kernel_support = 1 # define this here so that ghost size and kernel support is checked during # generation phase itself gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support check_valid_ghost_size_and_kernel_support( ghost_size=ghost_exchange_communicator.ghost_size, kernel_support=gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support, ) # for setting values at physical domain boundary y_next, x_next = mpi_construct.next_grid_along y_previous, x_previous = mpi_construct.previous_grid_along set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t) def diffusion_flux_pyst_mpi_kernel_2d( diffusion_flux, field, prefactor, ): # define kernel support for kernel diffusion_flux_pyst_mpi_kernel_2d.kernel_support = ( gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support ) # define variable for use later ghost_size = ghost_exchange_communicator.ghost_size # begin ghost comm. ghost_exchange_communicator.exchange_scalar_field_init(field) # crunch interior stencil diffusion_flux_pyst_kernel( diffusion_flux=diffusion_flux[ ghost_size:-ghost_size, ghost_size:-ghost_size ], field=field[ghost_size:-ghost_size, ghost_size:-ghost_size], prefactor=prefactor, ) # finalise ghost comm. ghost_exchange_communicator.exchange_finalise() # crunch boundary numbers # NOTE: we pass in arrays of width 3 * kernel support size because the # interior stencil computation leaves out a width of kernel_support. # Since the support needed by the kernel is kernel_support on each side, # we need to pass an array of width 3 * kernel_support, starting from # index +/-(ghost_size - kernel_support) on the lower and upper end. # Pystencils then automatically sets the kernel comp. bounds and # crunches numbers in the kernel_support thickness zone at the boundary. # Start of Y axis diffusion_flux_pyst_kernel( diffusion_flux=diffusion_flux[ ghost_size - kernel_support : ghost_size + 2 * kernel_support, ghost_size:-ghost_size, ], field=field[ ghost_size - kernel_support : ghost_size + 2 * kernel_support, ghost_size:-ghost_size, ], prefactor=prefactor, ) # End of Y axis diffusion_flux_pyst_kernel( diffusion_flux=diffusion_flux[ -(ghost_size + 2 * kernel_support) : field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size, ], field=field[ -(ghost_size + 2 * kernel_support) : field.shape[0] - (ghost_size - kernel_support), ghost_size:-ghost_size, ], prefactor=prefactor, ) # Start of X axis diffusion_flux_pyst_kernel( diffusion_flux=diffusion_flux[ :, ghost_size - kernel_support : ghost_size + 2 * kernel_support, ], field=field[ :, ghost_size - kernel_support : ghost_size + 2 * kernel_support, ], prefactor=prefactor, ) # End of X axis diffusion_flux_pyst_kernel( diffusion_flux=diffusion_flux[ :, -(ghost_size + 2 * kernel_support) : field.shape[1] - (ghost_size - kernel_support), ], field=field[ :, -(ghost_size + 2 * kernel_support) : field.shape[1] - (ghost_size - kernel_support), ], prefactor=prefactor, ) # Set physical domain boundary diffusion flus to zero based on neighboring block boundary_width = 1 if x_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d( field=diffusion_flux[:, : ghost_size + boundary_width], fixed_val=0.0, ) if x_next == MPI.PROC_NULL: set_fixed_val_kernel_2d( field=diffusion_flux[:, -ghost_size - boundary_width :], fixed_val=0.0, ) if y_previous == MPI.PROC_NULL: set_fixed_val_kernel_2d( field=diffusion_flux[: ghost_size + boundary_width, :], fixed_val=0.0, ) if y_next == MPI.PROC_NULL: set_fixed_val_kernel_2d( field=diffusion_flux[-ghost_size - boundary_width :, :], fixed_val=0.0, ) return diffusion_flux_pyst_mpi_kernel_2d
flexible
{ "blob_id": "ba8cb18544e4ded8b229bfb9cc4b28599119414f", "index": 854, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef gen_diffusion_flux_pyst_mpi_kernel_2d(real_t, mpi_construct,\n ghost_exchange_communicator):\n diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d(real_t=\n real_t, reset_ghost_zone=False)\n kernel_support = 1\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support\n check_valid_ghost_size_and_kernel_support(ghost_size=\n ghost_exchange_communicator.ghost_size, kernel_support=\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support)\n y_next, x_next = mpi_construct.next_grid_along\n y_previous, x_previous = mpi_construct.previous_grid_along\n set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t)\n\n def diffusion_flux_pyst_mpi_kernel_2d(diffusion_flux, field, prefactor):\n diffusion_flux_pyst_mpi_kernel_2d.kernel_support = (\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support)\n ghost_size = ghost_exchange_communicator.ghost_size\n ghost_exchange_communicator.exchange_scalar_field_init(field)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size\n :-ghost_size, ghost_size:-ghost_size], field=field[ghost_size:-\n ghost_size, ghost_size:-ghost_size], prefactor=prefactor)\n ghost_exchange_communicator.exchange_finalise()\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size -\n kernel_support:ghost_size + 2 * kernel_support, ghost_size:-\n ghost_size], field=field[ghost_size - kernel_support:ghost_size +\n 2 * kernel_support, ghost_size:-ghost_size], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[-(\n ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size -\n kernel_support), ghost_size:-ghost_size], field=field[-(\n ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size -\n kernel_support), ghost_size:-ghost_size], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, \n ghost_size - kernel_support:ghost_size + 2 * kernel_support],\n field=field[:, ghost_size - kernel_support:ghost_size + 2 *\n kernel_support], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, -(\n ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size -\n kernel_support)], field=field[:, -(ghost_size + 2 *\n kernel_support):field.shape[1] - (ghost_size - kernel_support)],\n prefactor=prefactor)\n boundary_width = 1\n if x_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:, :ghost_size +\n boundary_width], fixed_val=0.0)\n if x_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:, -ghost_size -\n boundary_width:], fixed_val=0.0)\n if y_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:ghost_size +\n boundary_width, :], fixed_val=0.0)\n if y_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[-ghost_size -\n boundary_width:, :], fixed_val=0.0)\n return diffusion_flux_pyst_mpi_kernel_2d\n", "step-3": "<mask token>\nfrom sopht.numeric.eulerian_grid_ops.stencil_ops_2d import gen_diffusion_flux_pyst_kernel_2d, gen_set_fixed_val_pyst_kernel_2d\nfrom sopht_mpi.utils.mpi_utils import check_valid_ghost_size_and_kernel_support\nfrom mpi4py import MPI\n\n\ndef gen_diffusion_flux_pyst_mpi_kernel_2d(real_t, mpi_construct,\n ghost_exchange_communicator):\n diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d(real_t=\n real_t, reset_ghost_zone=False)\n kernel_support = 1\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support\n check_valid_ghost_size_and_kernel_support(ghost_size=\n ghost_exchange_communicator.ghost_size, kernel_support=\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support)\n y_next, x_next = mpi_construct.next_grid_along\n y_previous, x_previous = mpi_construct.previous_grid_along\n set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t)\n\n def diffusion_flux_pyst_mpi_kernel_2d(diffusion_flux, field, prefactor):\n diffusion_flux_pyst_mpi_kernel_2d.kernel_support = (\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support)\n ghost_size = ghost_exchange_communicator.ghost_size\n ghost_exchange_communicator.exchange_scalar_field_init(field)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size\n :-ghost_size, ghost_size:-ghost_size], field=field[ghost_size:-\n ghost_size, ghost_size:-ghost_size], prefactor=prefactor)\n ghost_exchange_communicator.exchange_finalise()\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[ghost_size -\n kernel_support:ghost_size + 2 * kernel_support, ghost_size:-\n ghost_size], field=field[ghost_size - kernel_support:ghost_size +\n 2 * kernel_support, ghost_size:-ghost_size], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[-(\n ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size -\n kernel_support), ghost_size:-ghost_size], field=field[-(\n ghost_size + 2 * kernel_support):field.shape[0] - (ghost_size -\n kernel_support), ghost_size:-ghost_size], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, \n ghost_size - kernel_support:ghost_size + 2 * kernel_support],\n field=field[:, ghost_size - kernel_support:ghost_size + 2 *\n kernel_support], prefactor=prefactor)\n diffusion_flux_pyst_kernel(diffusion_flux=diffusion_flux[:, -(\n ghost_size + 2 * kernel_support):field.shape[1] - (ghost_size -\n kernel_support)], field=field[:, -(ghost_size + 2 *\n kernel_support):field.shape[1] - (ghost_size - kernel_support)],\n prefactor=prefactor)\n boundary_width = 1\n if x_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:, :ghost_size +\n boundary_width], fixed_val=0.0)\n if x_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:, -ghost_size -\n boundary_width:], fixed_val=0.0)\n if y_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[:ghost_size +\n boundary_width, :], fixed_val=0.0)\n if y_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(field=diffusion_flux[-ghost_size -\n boundary_width:, :], fixed_val=0.0)\n return diffusion_flux_pyst_mpi_kernel_2d\n", "step-4": "\"\"\"MPI-supported kernels for computing diffusion flux in 2D.\"\"\"\nfrom sopht.numeric.eulerian_grid_ops.stencil_ops_2d import (\n gen_diffusion_flux_pyst_kernel_2d,\n gen_set_fixed_val_pyst_kernel_2d,\n)\nfrom sopht_mpi.utils.mpi_utils import check_valid_ghost_size_and_kernel_support\nfrom mpi4py import MPI\n\n\ndef gen_diffusion_flux_pyst_mpi_kernel_2d(\n real_t, mpi_construct, ghost_exchange_communicator\n):\n # Note currently I'm generating these for arbit size arrays, we ca optimise this\n # more by generating fixed size for the interior stencil and arbit size for\n # boundary crunching\n diffusion_flux_pyst_kernel = gen_diffusion_flux_pyst_kernel_2d(\n real_t=real_t, reset_ghost_zone=False\n )\n kernel_support = 1\n # define this here so that ghost size and kernel support is checked during\n # generation phase itself\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support = kernel_support\n check_valid_ghost_size_and_kernel_support(\n ghost_size=ghost_exchange_communicator.ghost_size,\n kernel_support=gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support,\n )\n\n # for setting values at physical domain boundary\n y_next, x_next = mpi_construct.next_grid_along\n y_previous, x_previous = mpi_construct.previous_grid_along\n set_fixed_val_kernel_2d = gen_set_fixed_val_pyst_kernel_2d(real_t=real_t)\n\n def diffusion_flux_pyst_mpi_kernel_2d(\n diffusion_flux,\n field,\n prefactor,\n ):\n # define kernel support for kernel\n diffusion_flux_pyst_mpi_kernel_2d.kernel_support = (\n gen_diffusion_flux_pyst_mpi_kernel_2d.kernel_support\n )\n # define variable for use later\n ghost_size = ghost_exchange_communicator.ghost_size\n # begin ghost comm.\n ghost_exchange_communicator.exchange_scalar_field_init(field)\n\n # crunch interior stencil\n diffusion_flux_pyst_kernel(\n diffusion_flux=diffusion_flux[\n ghost_size:-ghost_size, ghost_size:-ghost_size\n ],\n field=field[ghost_size:-ghost_size, ghost_size:-ghost_size],\n prefactor=prefactor,\n )\n # finalise ghost comm.\n ghost_exchange_communicator.exchange_finalise()\n\n # crunch boundary numbers\n # NOTE: we pass in arrays of width 3 * kernel support size because the\n # interior stencil computation leaves out a width of kernel_support.\n # Since the support needed by the kernel is kernel_support on each side,\n # we need to pass an array of width 3 * kernel_support, starting from\n # index +/-(ghost_size - kernel_support) on the lower and upper end.\n # Pystencils then automatically sets the kernel comp. bounds and\n # crunches numbers in the kernel_support thickness zone at the boundary.\n # Start of Y axis\n diffusion_flux_pyst_kernel(\n diffusion_flux=diffusion_flux[\n ghost_size - kernel_support : ghost_size + 2 * kernel_support,\n ghost_size:-ghost_size,\n ],\n field=field[\n ghost_size - kernel_support : ghost_size + 2 * kernel_support,\n ghost_size:-ghost_size,\n ],\n prefactor=prefactor,\n )\n # End of Y axis\n diffusion_flux_pyst_kernel(\n diffusion_flux=diffusion_flux[\n -(ghost_size + 2 * kernel_support) : field.shape[0]\n - (ghost_size - kernel_support),\n ghost_size:-ghost_size,\n ],\n field=field[\n -(ghost_size + 2 * kernel_support) : field.shape[0]\n - (ghost_size - kernel_support),\n ghost_size:-ghost_size,\n ],\n prefactor=prefactor,\n )\n # Start of X axis\n diffusion_flux_pyst_kernel(\n diffusion_flux=diffusion_flux[\n :,\n ghost_size - kernel_support : ghost_size + 2 * kernel_support,\n ],\n field=field[\n :,\n ghost_size - kernel_support : ghost_size + 2 * kernel_support,\n ],\n prefactor=prefactor,\n )\n # End of X axis\n diffusion_flux_pyst_kernel(\n diffusion_flux=diffusion_flux[\n :,\n -(ghost_size + 2 * kernel_support) : field.shape[1]\n - (ghost_size - kernel_support),\n ],\n field=field[\n :,\n -(ghost_size + 2 * kernel_support) : field.shape[1]\n - (ghost_size - kernel_support),\n ],\n prefactor=prefactor,\n )\n\n # Set physical domain boundary diffusion flus to zero based on neighboring block\n boundary_width = 1\n if x_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(\n field=diffusion_flux[:, : ghost_size + boundary_width],\n fixed_val=0.0,\n )\n if x_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(\n field=diffusion_flux[:, -ghost_size - boundary_width :],\n fixed_val=0.0,\n )\n if y_previous == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(\n field=diffusion_flux[: ghost_size + boundary_width, :],\n fixed_val=0.0,\n )\n if y_next == MPI.PROC_NULL:\n set_fixed_val_kernel_2d(\n field=diffusion_flux[-ghost_size - boundary_width :, :],\n fixed_val=0.0,\n )\n\n return diffusion_flux_pyst_mpi_kernel_2d\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
TheBeatles = ['John', 'Paul', 'George', 'Ringo'] Wings = ['Paul'] for Beatle in TheBeatles: if Beatle in Wings: continue print Beatle
normal
{ "blob_id": "9a54ff8e7e8d6d46860cb6173f03c52655b30f43", "index": 6449, "step-1": "TheBeatles = ['John', 'Paul', 'George', 'Ringo']\nWings = ['Paul']\n\nfor Beatle in TheBeatles:\n\t\tif Beatle in Wings:\n\t\t\t\tcontinue\n\t\tprint Beatle\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Write a Python program to print alphabet pattern 'G'. result = '' for row in range(0,7): for col in range(0,7): if ((col ==0) and (row !=0 and row !=6) or ((row ==0 or row == 6) and (col>0 and col<6))or ((row ==1 or row == 5 or row == 4)and (col ==6))or ((row ==3)and ((col!=2)and col!=1))): result = result+'*' else: result = result+' ' result=result+'\n' print(result)
normal
{ "blob_id": "e598091fc6c05b1d7f9f35f2ae58494fed53f9af", "index": 5392, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor row in range(0, 7):\n for col in range(0, 7):\n if col == 0 and (row != 0 and row != 6) or (row == 0 or row == 6) and (\n col > 0 and col < 6) or (row == 1 or row == 5 or row == 4\n ) and col == 6 or row == 3 and (col != 2 and col != 1):\n result = result + '*'\n else:\n result = result + ' '\n result = result + '\\n'\nprint(result)\n", "step-3": "result = ''\nfor row in range(0, 7):\n for col in range(0, 7):\n if col == 0 and (row != 0 and row != 6) or (row == 0 or row == 6) and (\n col > 0 and col < 6) or (row == 1 or row == 5 or row == 4\n ) and col == 6 or row == 3 and (col != 2 and col != 1):\n result = result + '*'\n else:\n result = result + ' '\n result = result + '\\n'\nprint(result)\n", "step-4": "# Write a Python program to print alphabet pattern 'G'.\n\nresult = ''\nfor row in range(0,7):\n for col in range(0,7):\n if ((col ==0) and (row !=0 and row !=6) or ((row ==0 or row == 6) and (col>0 and col<6))or ((row ==1 or row == 5 or row == 4)and (col ==6))or ((row ==3)and ((col!=2)and col!=1))):\n result = result+'*'\n else:\n result = result+' '\n result=result+'\\n'\nprint(result)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class MysqlBaseModel(BaseModel): def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'): super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key) <|reserved_special_token_0|> def get_executor(self): return mysqlExecutor class MysqlBaseRepository(BaseRepository): def __init__(self, model_class=None): super(MysqlBaseRepository, self).__init__(model_class) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class MySQLDialect(DefaultDialect): def get_db_type(self): return 'mysql' def paginate_with(self, sql, page_number, page_size): if page_number == 1 and page_size == 1: if re.match(DefaultDialect.select_single_pattern, sql) is not None: return sql offset = page_size * (page_number - 1) return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset) <|reserved_special_token_0|> class MysqlBaseModel(BaseModel): def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'): super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor class MysqlBaseRepository(BaseRepository): def __init__(self, model_class=None): super(MysqlBaseRepository, self).__init__(model_class) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor def transaction(rollback_exceptions=[]): def wrap(func): def handle(result, **kwargs): func = kwargs['func'] args = kwargs['args'] kwargs = kwargs['kwargs'] return_value = func(*args, **kwargs) logger.info('Transaction method: ' + func.__name__) result.append(return_value) def to_do(*args, **kwargs): new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs} result = [] try: mysqlExecutor.begin_transaction() handle(result, **new_kwargs) mysqlExecutor.commit_transaction() except Exception as e: if len(rollback_exceptions ) == 0 or e.__class__ in rollback_exceptions: mysqlExecutor.rollback_transaction() logger.error('Method execute error. method: ' + str( func.__name__) + ', error:' + traceback.format_exc () + ', transaction roll back.') else: mysqlExecutor.commit_transaction() raise e finally: mysqlExecutor.close_transaction() return to_do return wrap <|reserved_special_token_1|> <|reserved_special_token_0|> class MySQLDialect(DefaultDialect): def get_db_type(self): return 'mysql' def paginate_with(self, sql, page_number, page_size): if page_number == 1 and page_size == 1: if re.match(DefaultDialect.select_single_pattern, sql) is not None: return sql offset = page_size * (page_number - 1) return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset) <|reserved_special_token_0|> if db_type == 'mysql': import mysql.connector as connector db_config['target'] = connector db_config['use_pure'] = True from mysql.connector.conversion import MySQLConverter class NumpyMySQLConverter(MySQLConverter): """ A mysql.connector Converter that handles Numpy types """ def _float32_to_mysql(self, value): return float(value) def _float64_to_mysql(self, value): return float(value) def _int32_to_mysql(self, value): return int(value) def _int64_to_mysql(self, value): return int(value) db_config['converter_class'] = NumpyMySQLConverter mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config) mysqlDialect = MySQLDialect() class MysqlBaseModel(BaseModel): def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'): super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor class MysqlBaseRepository(BaseRepository): def __init__(self, model_class=None): super(MysqlBaseRepository, self).__init__(model_class) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor def transaction(rollback_exceptions=[]): def wrap(func): def handle(result, **kwargs): func = kwargs['func'] args = kwargs['args'] kwargs = kwargs['kwargs'] return_value = func(*args, **kwargs) logger.info('Transaction method: ' + func.__name__) result.append(return_value) def to_do(*args, **kwargs): new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs} result = [] try: mysqlExecutor.begin_transaction() handle(result, **new_kwargs) mysqlExecutor.commit_transaction() except Exception as e: if len(rollback_exceptions ) == 0 or e.__class__ in rollback_exceptions: mysqlExecutor.rollback_transaction() logger.error('Method execute error. method: ' + str( func.__name__) + ', error:' + traceback.format_exc () + ', transaction roll back.') else: mysqlExecutor.commit_transaction() raise e finally: mysqlExecutor.close_transaction() return to_do return wrap <|reserved_special_token_1|> import re import traceback from pesto_common.config.configer import Configer from pesto_common.log.logger_factory import LoggerFactory from pesto_orm.core.base import db_config from pesto_orm.core.executor import ExecutorFactory from pesto_orm.core.model import BaseModel from pesto_orm.core.repository import BaseRepository from pesto_orm.dialect.base import DefaultDialect logger = LoggerFactory.get_logger('dialect.mysql.domain') class MySQLDialect(DefaultDialect): def get_db_type(self): return 'mysql' def paginate_with(self, sql, page_number, page_size): if page_number == 1 and page_size == 1: if re.match(DefaultDialect.select_single_pattern, sql) is not None: return sql offset = page_size * (page_number - 1) return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset) db_type = Configer.get('db.type') if db_type == 'mysql': import mysql.connector as connector db_config['target'] = connector db_config['use_pure'] = True from mysql.connector.conversion import MySQLConverter class NumpyMySQLConverter(MySQLConverter): """ A mysql.connector Converter that handles Numpy types """ def _float32_to_mysql(self, value): return float(value) def _float64_to_mysql(self, value): return float(value) def _int32_to_mysql(self, value): return int(value) def _int64_to_mysql(self, value): return int(value) db_config['converter_class'] = NumpyMySQLConverter mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config) mysqlDialect = MySQLDialect() class MysqlBaseModel(BaseModel): def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'): super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor class MysqlBaseRepository(BaseRepository): def __init__(self, model_class=None): super(MysqlBaseRepository, self).__init__(model_class) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor def transaction(rollback_exceptions=[]): def wrap(func): def handle(result, **kwargs): func = kwargs['func'] args = kwargs['args'] kwargs = kwargs['kwargs'] return_value = func(*args, **kwargs) logger.info('Transaction method: ' + func.__name__) result.append(return_value) def to_do(*args, **kwargs): new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs} result = [] try: mysqlExecutor.begin_transaction() handle(result, **new_kwargs) mysqlExecutor.commit_transaction() except Exception as e: if len(rollback_exceptions ) == 0 or e.__class__ in rollback_exceptions: mysqlExecutor.rollback_transaction() logger.error('Method execute error. method: ' + str( func.__name__) + ', error:' + traceback.format_exc () + ', transaction roll back.') else: mysqlExecutor.commit_transaction() raise e finally: mysqlExecutor.close_transaction() return to_do return wrap <|reserved_special_token_1|> # coding=utf-8 import re import traceback from pesto_common.config.configer import Configer from pesto_common.log.logger_factory import LoggerFactory from pesto_orm.core.base import db_config from pesto_orm.core.executor import ExecutorFactory from pesto_orm.core.model import BaseModel from pesto_orm.core.repository import BaseRepository from pesto_orm.dialect.base import DefaultDialect logger = LoggerFactory.get_logger('dialect.mysql.domain') class MySQLDialect(DefaultDialect): def get_db_type(self): return 'mysql' def paginate_with(self, sql, page_number, page_size): if page_number == 1 and page_size == 1: if re.match(DefaultDialect.select_single_pattern, sql) is not None: return sql offset = page_size * (page_number - 1) return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset) db_type = Configer.get('db.type') if db_type == 'mysql': import mysql.connector as connector db_config['target'] = connector db_config['use_pure'] = True from mysql.connector.conversion import MySQLConverter class NumpyMySQLConverter(MySQLConverter): ''' A mysql.connector Converter that handles Numpy types ''' def _float32_to_mysql(self, value): return float(value) def _float64_to_mysql(self, value): return float(value) def _int32_to_mysql(self, value): return int(value) def _int64_to_mysql(self, value): return int(value) db_config['converter_class'] = NumpyMySQLConverter mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config) mysqlDialect = MySQLDialect() class MysqlBaseModel(BaseModel): def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'): super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor class MysqlBaseRepository(BaseRepository): def __init__(self, model_class=None): super(MysqlBaseRepository, self).__init__(model_class) def get_dialect(self): return mysqlDialect def get_executor(self): return mysqlExecutor def transaction(rollback_exceptions=[]): def wrap(func): def handle(result, **kwargs): # 真实执行原方法. func = kwargs['func'] args = kwargs['args'] kwargs = kwargs['kwargs'] return_value = func(*args, **kwargs) logger.info('Transaction method: ' + func.__name__) result.append(return_value) def to_do(*args, **kwargs): new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs} result = [] try: mysqlExecutor.begin_transaction() handle(result, **new_kwargs) mysqlExecutor.commit_transaction() except Exception as e: if len(rollback_exceptions) == 0 or e.__class__ in rollback_exceptions: mysqlExecutor.rollback_transaction() logger.error('Method execute error. method: ' + str(func.__name__) + ', error:' + traceback.format_exc() + ', transaction roll back.') else: mysqlExecutor.commit_transaction() raise e finally: mysqlExecutor.close_transaction() return to_do return wrap
flexible
{ "blob_id": "a68de7555fdab06014fd562e7db29ca2da03f443", "index": 8240, "step-1": "<mask token>\n\n\nclass MysqlBaseModel(BaseModel):\n\n def __init__(self, db_name=None, table_name=None, table_alias=None,\n primary_key='id'):\n super(MysqlBaseModel, self).__init__(db_name, table_name,\n table_alias, primary_key)\n <mask token>\n\n def get_executor(self):\n return mysqlExecutor\n\n\nclass MysqlBaseRepository(BaseRepository):\n\n def __init__(self, model_class=None):\n super(MysqlBaseRepository, self).__init__(model_class)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MySQLDialect(DefaultDialect):\n\n def get_db_type(self):\n return 'mysql'\n\n def paginate_with(self, sql, page_number, page_size):\n if page_number == 1 and page_size == 1:\n if re.match(DefaultDialect.select_single_pattern, sql) is not None:\n return sql\n offset = page_size * (page_number - 1)\n return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset)\n\n\n<mask token>\n\n\nclass MysqlBaseModel(BaseModel):\n\n def __init__(self, db_name=None, table_name=None, table_alias=None,\n primary_key='id'):\n super(MysqlBaseModel, self).__init__(db_name, table_name,\n table_alias, primary_key)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\nclass MysqlBaseRepository(BaseRepository):\n\n def __init__(self, model_class=None):\n super(MysqlBaseRepository, self).__init__(model_class)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\ndef transaction(rollback_exceptions=[]):\n\n def wrap(func):\n\n def handle(result, **kwargs):\n func = kwargs['func']\n args = kwargs['args']\n kwargs = kwargs['kwargs']\n return_value = func(*args, **kwargs)\n logger.info('Transaction method: ' + func.__name__)\n result.append(return_value)\n\n def to_do(*args, **kwargs):\n new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs}\n result = []\n try:\n mysqlExecutor.begin_transaction()\n handle(result, **new_kwargs)\n mysqlExecutor.commit_transaction()\n except Exception as e:\n if len(rollback_exceptions\n ) == 0 or e.__class__ in rollback_exceptions:\n mysqlExecutor.rollback_transaction()\n logger.error('Method execute error. method: ' + str(\n func.__name__) + ', error:' + traceback.format_exc\n () + ', transaction roll back.')\n else:\n mysqlExecutor.commit_transaction()\n raise e\n finally:\n mysqlExecutor.close_transaction()\n return to_do\n return wrap\n", "step-3": "<mask token>\n\n\nclass MySQLDialect(DefaultDialect):\n\n def get_db_type(self):\n return 'mysql'\n\n def paginate_with(self, sql, page_number, page_size):\n if page_number == 1 and page_size == 1:\n if re.match(DefaultDialect.select_single_pattern, sql) is not None:\n return sql\n offset = page_size * (page_number - 1)\n return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset)\n\n\n<mask token>\nif db_type == 'mysql':\n import mysql.connector as connector\n db_config['target'] = connector\n db_config['use_pure'] = True\n from mysql.connector.conversion import MySQLConverter\n\n\n class NumpyMySQLConverter(MySQLConverter):\n \"\"\" A mysql.connector Converter that handles Numpy types \"\"\"\n\n def _float32_to_mysql(self, value):\n return float(value)\n\n def _float64_to_mysql(self, value):\n return float(value)\n\n def _int32_to_mysql(self, value):\n return int(value)\n\n def _int64_to_mysql(self, value):\n return int(value)\n db_config['converter_class'] = NumpyMySQLConverter\n mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config)\n mysqlDialect = MySQLDialect()\n\n\nclass MysqlBaseModel(BaseModel):\n\n def __init__(self, db_name=None, table_name=None, table_alias=None,\n primary_key='id'):\n super(MysqlBaseModel, self).__init__(db_name, table_name,\n table_alias, primary_key)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\nclass MysqlBaseRepository(BaseRepository):\n\n def __init__(self, model_class=None):\n super(MysqlBaseRepository, self).__init__(model_class)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\ndef transaction(rollback_exceptions=[]):\n\n def wrap(func):\n\n def handle(result, **kwargs):\n func = kwargs['func']\n args = kwargs['args']\n kwargs = kwargs['kwargs']\n return_value = func(*args, **kwargs)\n logger.info('Transaction method: ' + func.__name__)\n result.append(return_value)\n\n def to_do(*args, **kwargs):\n new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs}\n result = []\n try:\n mysqlExecutor.begin_transaction()\n handle(result, **new_kwargs)\n mysqlExecutor.commit_transaction()\n except Exception as e:\n if len(rollback_exceptions\n ) == 0 or e.__class__ in rollback_exceptions:\n mysqlExecutor.rollback_transaction()\n logger.error('Method execute error. method: ' + str(\n func.__name__) + ', error:' + traceback.format_exc\n () + ', transaction roll back.')\n else:\n mysqlExecutor.commit_transaction()\n raise e\n finally:\n mysqlExecutor.close_transaction()\n return to_do\n return wrap\n", "step-4": "import re\nimport traceback\nfrom pesto_common.config.configer import Configer\nfrom pesto_common.log.logger_factory import LoggerFactory\nfrom pesto_orm.core.base import db_config\nfrom pesto_orm.core.executor import ExecutorFactory\nfrom pesto_orm.core.model import BaseModel\nfrom pesto_orm.core.repository import BaseRepository\nfrom pesto_orm.dialect.base import DefaultDialect\nlogger = LoggerFactory.get_logger('dialect.mysql.domain')\n\n\nclass MySQLDialect(DefaultDialect):\n\n def get_db_type(self):\n return 'mysql'\n\n def paginate_with(self, sql, page_number, page_size):\n if page_number == 1 and page_size == 1:\n if re.match(DefaultDialect.select_single_pattern, sql) is not None:\n return sql\n offset = page_size * (page_number - 1)\n return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset)\n\n\ndb_type = Configer.get('db.type')\nif db_type == 'mysql':\n import mysql.connector as connector\n db_config['target'] = connector\n db_config['use_pure'] = True\n from mysql.connector.conversion import MySQLConverter\n\n\n class NumpyMySQLConverter(MySQLConverter):\n \"\"\" A mysql.connector Converter that handles Numpy types \"\"\"\n\n def _float32_to_mysql(self, value):\n return float(value)\n\n def _float64_to_mysql(self, value):\n return float(value)\n\n def _int32_to_mysql(self, value):\n return int(value)\n\n def _int64_to_mysql(self, value):\n return int(value)\n db_config['converter_class'] = NumpyMySQLConverter\n mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config)\n mysqlDialect = MySQLDialect()\n\n\nclass MysqlBaseModel(BaseModel):\n\n def __init__(self, db_name=None, table_name=None, table_alias=None,\n primary_key='id'):\n super(MysqlBaseModel, self).__init__(db_name, table_name,\n table_alias, primary_key)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\nclass MysqlBaseRepository(BaseRepository):\n\n def __init__(self, model_class=None):\n super(MysqlBaseRepository, self).__init__(model_class)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\ndef transaction(rollback_exceptions=[]):\n\n def wrap(func):\n\n def handle(result, **kwargs):\n func = kwargs['func']\n args = kwargs['args']\n kwargs = kwargs['kwargs']\n return_value = func(*args, **kwargs)\n logger.info('Transaction method: ' + func.__name__)\n result.append(return_value)\n\n def to_do(*args, **kwargs):\n new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs}\n result = []\n try:\n mysqlExecutor.begin_transaction()\n handle(result, **new_kwargs)\n mysqlExecutor.commit_transaction()\n except Exception as e:\n if len(rollback_exceptions\n ) == 0 or e.__class__ in rollback_exceptions:\n mysqlExecutor.rollback_transaction()\n logger.error('Method execute error. method: ' + str(\n func.__name__) + ', error:' + traceback.format_exc\n () + ', transaction roll back.')\n else:\n mysqlExecutor.commit_transaction()\n raise e\n finally:\n mysqlExecutor.close_transaction()\n return to_do\n return wrap\n", "step-5": "# coding=utf-8\nimport re\nimport traceback\n\nfrom pesto_common.config.configer import Configer\nfrom pesto_common.log.logger_factory import LoggerFactory\nfrom pesto_orm.core.base import db_config\nfrom pesto_orm.core.executor import ExecutorFactory\nfrom pesto_orm.core.model import BaseModel\nfrom pesto_orm.core.repository import BaseRepository\nfrom pesto_orm.dialect.base import DefaultDialect\n\nlogger = LoggerFactory.get_logger('dialect.mysql.domain')\n\n\nclass MySQLDialect(DefaultDialect):\n\n def get_db_type(self):\n return 'mysql'\n\n def paginate_with(self, sql, page_number, page_size):\n if page_number == 1 and page_size == 1:\n if re.match(DefaultDialect.select_single_pattern, sql) is not None:\n return sql\n\n offset = page_size * (page_number - 1)\n return '%s LIMIT %d OFFSET %d' % (sql, page_size, offset)\n\n\ndb_type = Configer.get('db.type')\nif db_type == 'mysql':\n import mysql.connector as connector\n\n db_config['target'] = connector\n db_config['use_pure'] = True\n\n from mysql.connector.conversion import MySQLConverter\n\n\n class NumpyMySQLConverter(MySQLConverter):\n ''' A mysql.connector Converter that handles Numpy types '''\n\n def _float32_to_mysql(self, value):\n return float(value)\n\n def _float64_to_mysql(self, value):\n return float(value)\n\n def _int32_to_mysql(self, value):\n return int(value)\n\n def _int64_to_mysql(self, value):\n return int(value)\n\n\n db_config['converter_class'] = NumpyMySQLConverter\n\n mysqlExecutor = ExecutorFactory.get_executor(db_config=db_config)\n\n mysqlDialect = MySQLDialect()\n\n\nclass MysqlBaseModel(BaseModel):\n\n def __init__(self, db_name=None, table_name=None, table_alias=None, primary_key='id'):\n super(MysqlBaseModel, self).__init__(db_name, table_name, table_alias, primary_key)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\nclass MysqlBaseRepository(BaseRepository):\n\n def __init__(self, model_class=None):\n super(MysqlBaseRepository, self).__init__(model_class)\n\n def get_dialect(self):\n return mysqlDialect\n\n def get_executor(self):\n return mysqlExecutor\n\n\ndef transaction(rollback_exceptions=[]):\n def wrap(func):\n def handle(result, **kwargs): # 真实执行原方法.\n func = kwargs['func']\n args = kwargs['args']\n kwargs = kwargs['kwargs']\n return_value = func(*args, **kwargs)\n logger.info('Transaction method: ' + func.__name__)\n result.append(return_value)\n\n def to_do(*args, **kwargs):\n new_kwargs = {'func': func, 'args': args, 'kwargs': kwargs}\n\n result = []\n try:\n mysqlExecutor.begin_transaction()\n handle(result, **new_kwargs)\n mysqlExecutor.commit_transaction()\n except Exception as e:\n\n if len(rollback_exceptions) == 0 or e.__class__ in rollback_exceptions:\n mysqlExecutor.rollback_transaction()\n logger.error('Method execute error. method: ' + str(func.__name__) + ', error:' + traceback.format_exc() + ', transaction roll back.')\n else:\n mysqlExecutor.commit_transaction()\n raise e\n finally:\n mysqlExecutor.close_transaction()\n\n return to_do\n\n return wrap\n", "step-ids": [ 7, 12, 13, 15, 16 ] }
[ 7, 12, 13, 15, 16 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if __name__ == '__main__': targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii') headers = {'Authorization': 'Token {}'.format(sys.argv[1])} for x in targets['targetname']: obs = requests.get( 'https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}' .format(x.split('.')[0]), headers=headers).json() for y in obs['results']: print(y['group_id']) <|reserved_special_token_1|> import sys import requests import numpy as np import astropy.table as at if __name__ == '__main__': targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii') headers = {'Authorization': 'Token {}'.format(sys.argv[1])} for x in targets['targetname']: obs = requests.get( 'https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}' .format(x.split('.')[0]), headers=headers).json() for y in obs['results']: print(y['group_id']) <|reserved_special_token_1|> #!/usr/bin/env python import sys import requests import numpy as np import astropy.table as at if __name__=='__main__': targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii') headers={'Authorization': 'Token {}'.format(sys.argv[1])} for x in targets['targetname']: obs = requests.get('https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}'.format(x.split('.')[0]),headers=headers).json() for y in obs['results']: print(y['group_id'])
flexible
{ "blob_id": "705bc651e7d12769bcf5994168fe6685a6bae05d", "index": 5983, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii')\n headers = {'Authorization': 'Token {}'.format(sys.argv[1])}\n for x in targets['targetname']:\n obs = requests.get(\n 'https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}'\n .format(x.split('.')[0]), headers=headers).json()\n for y in obs['results']:\n print(y['group_id'])\n", "step-3": "import sys\nimport requests\nimport numpy as np\nimport astropy.table as at\nif __name__ == '__main__':\n targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii')\n headers = {'Authorization': 'Token {}'.format(sys.argv[1])}\n for x in targets['targetname']:\n obs = requests.get(\n 'https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}'\n .format(x.split('.')[0]), headers=headers).json()\n for y in obs['results']:\n print(y['group_id'])\n", "step-4": "#!/usr/bin/env python\nimport sys\nimport requests\nimport numpy as np\nimport astropy.table as at\n\nif __name__=='__main__':\n targets = at.Table.read('targets_LCO2018A_002.txt', format='ascii')\n headers={'Authorization': 'Token {}'.format(sys.argv[1])}\n for x in targets['targetname']:\n obs = requests.get('https://observe.lco.global/api/userrequests/?proposal=LCO2018A-002&title={}'.format(x.split('.')[0]),headers=headers).json()\n for y in obs['results']:\n print(y['group_id'])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> with open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f: parsed = json.load(f) print(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2)) <|reserved_special_token_1|> <|reserved_special_token_0|> parsed = {} with open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f: parsed = json.load(f) print(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2)) <|reserved_special_token_1|> import json parsed = {} with open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f: parsed = json.load(f) print(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2)) <|reserved_special_token_1|> import json parsed = {} with open('/Users/danluu/dev/dump/terra/filtered_events.json','r') as f: # with open('/Users/danluu/dev/dump/terra/game-data/2017-05.json','r') as f: # with open('/Users/danluu/dev/dump/terra/ratings.json','r') as f: parsed = json.load(f) # print(json.dumps(parsed, indent=2)) print(json.dumps(parsed["4pLeague_S1_D1L1_G4"]["events"]["faction"], indent=2))
flexible
{ "blob_id": "886024a528112520948f1fb976aa7cb187a1da46", "index": 6767, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f:\n parsed = json.load(f)\nprint(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2))\n", "step-3": "<mask token>\nparsed = {}\nwith open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f:\n parsed = json.load(f)\nprint(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2))\n", "step-4": "import json\nparsed = {}\nwith open('/Users/danluu/dev/dump/terra/filtered_events.json', 'r') as f:\n parsed = json.load(f)\nprint(json.dumps(parsed['4pLeague_S1_D1L1_G4']['events']['faction'], indent=2))\n", "step-5": "import json\n\nparsed = {}\n\nwith open('/Users/danluu/dev/dump/terra/filtered_events.json','r') as f:\n# with open('/Users/danluu/dev/dump/terra/game-data/2017-05.json','r') as f:\n# with open('/Users/danluu/dev/dump/terra/ratings.json','r') as f:\n parsed = json.load(f)\n # print(json.dumps(parsed, indent=2))\n\nprint(json.dumps(parsed[\"4pLeague_S1_D1L1_G4\"][\"events\"][\"faction\"], indent=2))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def rot(*symbols): def _rot(n): encoded = ''.join(sy[n:] + sy[:n] for sy in symbols) lookup = str.maketrans(''.join(symbols), encoded) return lambda s: s.translate(lookup) return _rot <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def rot(*symbols): def _rot(n): encoded = ''.join(sy[n:] + sy[:n] for sy in symbols) lookup = str.maketrans(''.join(symbols), encoded) return lambda s: s.translate(lookup) return _rot def rot_alpha(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) def rot_encode(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) print(rot_encode(7)(text)) if __name__ == '__main__': pass <|reserved_special_token_1|> <|reserved_special_token_0|> img = Image.open('flag.png') text = pytesseract.image_to_string(img) def rot(*symbols): def _rot(n): encoded = ''.join(sy[n:] + sy[:n] for sy in symbols) lookup = str.maketrans(''.join(symbols), encoded) return lambda s: s.translate(lookup) return _rot def rot_alpha(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) def rot_encode(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) print(rot_encode(7)(text)) if __name__ == '__main__': pass <|reserved_special_token_1|> import pytesseract from PIL import Image img = Image.open('flag.png') text = pytesseract.image_to_string(img) def rot(*symbols): def _rot(n): encoded = ''.join(sy[n:] + sy[:n] for sy in symbols) lookup = str.maketrans(''.join(symbols), encoded) return lambda s: s.translate(lookup) return _rot def rot_alpha(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) def rot_encode(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) print(rot_encode(7)(text)) if __name__ == '__main__': pass <|reserved_special_token_1|> import pytesseract from PIL import Image img = Image.open("flag.png") text = pytesseract.image_to_string(img) def rot(*symbols): def _rot(n): encoded = ''.join(sy[n:] + sy[:n] for sy in symbols) lookup = str.maketrans(''.join(symbols), encoded) return lambda s: s.translate(lookup) return _rot def rot_alpha(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) def rot_encode(n): from string import ascii_lowercase as lc, ascii_uppercase as uc lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n]) return lambda s: s.translate(lookup) print(rot_encode(7)(text)) if __name__ == '__main__': pass
flexible
{ "blob_id": "b7a60322b4a0fcb6de16cd12be33db265a2b8746", "index": 2735, "step-1": "<mask token>\n\n\ndef rot(*symbols):\n\n def _rot(n):\n encoded = ''.join(sy[n:] + sy[:n] for sy in symbols)\n lookup = str.maketrans(''.join(symbols), encoded)\n return lambda s: s.translate(lookup)\n return _rot\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef rot(*symbols):\n\n def _rot(n):\n encoded = ''.join(sy[n:] + sy[:n] for sy in symbols)\n lookup = str.maketrans(''.join(symbols), encoded)\n return lambda s: s.translate(lookup)\n return _rot\n\n\ndef rot_alpha(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\ndef rot_encode(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\nprint(rot_encode(7)(text))\nif __name__ == '__main__':\n pass\n", "step-3": "<mask token>\nimg = Image.open('flag.png')\ntext = pytesseract.image_to_string(img)\n\n\ndef rot(*symbols):\n\n def _rot(n):\n encoded = ''.join(sy[n:] + sy[:n] for sy in symbols)\n lookup = str.maketrans(''.join(symbols), encoded)\n return lambda s: s.translate(lookup)\n return _rot\n\n\ndef rot_alpha(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\ndef rot_encode(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\nprint(rot_encode(7)(text))\nif __name__ == '__main__':\n pass\n", "step-4": "import pytesseract\nfrom PIL import Image\nimg = Image.open('flag.png')\ntext = pytesseract.image_to_string(img)\n\n\ndef rot(*symbols):\n\n def _rot(n):\n encoded = ''.join(sy[n:] + sy[:n] for sy in symbols)\n lookup = str.maketrans(''.join(symbols), encoded)\n return lambda s: s.translate(lookup)\n return _rot\n\n\ndef rot_alpha(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\ndef rot_encode(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\nprint(rot_encode(7)(text))\nif __name__ == '__main__':\n pass\n", "step-5": "import pytesseract\nfrom PIL import Image\n\nimg = Image.open(\"flag.png\")\ntext = pytesseract.image_to_string(img)\n\n\ndef rot(*symbols):\n def _rot(n):\n encoded = ''.join(sy[n:] + sy[:n] for sy in symbols)\n lookup = str.maketrans(''.join(symbols), encoded)\n return lambda s: s.translate(lookup)\n\n return _rot\n\n\ndef rot_alpha(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\ndef rot_encode(n):\n from string import ascii_lowercase as lc, ascii_uppercase as uc\n lookup = str.maketrans(lc + uc, lc[n:] + lc[:n] + uc[n:] + uc[:n])\n return lambda s: s.translate(lookup)\n\n\nprint(rot_encode(7)(text))\n\nif __name__ == '__main__':\n pass\n", "step-ids": [ 1, 4, 5, 6, 7 ] }
[ 1, 4, 5, 6, 7 ]
<|reserved_special_token_0|> class NN(nn.Module): def __init__(self, input_size, num_classes): super(NN, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x <|reserved_special_token_0|> def check_accuracy(loader, model): if loader.dataset.train: print('Checking accuracy on training data') else: print('Checking accuracy on test data') num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) x = x.reshape(x.shape[0], -1) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}' ) model.train() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class NN(nn.Module): def __init__(self, input_size, num_classes): super(NN, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x <|reserved_special_token_0|> for epoch in range(num_epochs): print('Epoch: ' + str(epoch + 1)) for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device=device) targets = targets.to(device=device) data = data.reshape(data.shape[0], -1) scores = model(data) loss = criterion(scores, targets) optimizer.zero_grad() loss.backward() optimizer.step() def check_accuracy(loader, model): if loader.dataset.train: print('Checking accuracy on training data') else: print('Checking accuracy on test data') num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) x = x.reshape(x.shape[0], -1) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}' ) model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model) <|reserved_special_token_1|> <|reserved_special_token_0|> class NN(nn.Module): def __init__(self, input_size, num_classes): super(NN, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 10 train_dataset = datasets.MNIST(root='dataset/', train=True, transform= transforms.ToTensor(), download=True) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST(root='dataset/', train=False, transform= transforms.ToTensor(), download=True) test_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) model = NN(input_size, num_classes).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): print('Epoch: ' + str(epoch + 1)) for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device=device) targets = targets.to(device=device) data = data.reshape(data.shape[0], -1) scores = model(data) loss = criterion(scores, targets) optimizer.zero_grad() loss.backward() optimizer.step() def check_accuracy(loader, model): if loader.dataset.train: print('Checking accuracy on training data') else: print('Checking accuracy on test data') num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) x = x.reshape(x.shape[0], -1) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}' ) model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model) <|reserved_special_token_1|> import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils import data from torch.utils.data import DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms class NN(nn.Module): def __init__(self, input_size, num_classes): super(NN, self).__init__() self.fc1 = nn.Linear(input_size, 50) self.fc2 = nn.Linear(50, num_classes) def forward(self, x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') input_size = 784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 10 train_dataset = datasets.MNIST(root='dataset/', train=True, transform= transforms.ToTensor(), download=True) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_dataset = datasets.MNIST(root='dataset/', train=False, transform= transforms.ToTensor(), download=True) test_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) model = NN(input_size, num_classes).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): print('Epoch: ' + str(epoch + 1)) for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device=device) targets = targets.to(device=device) data = data.reshape(data.shape[0], -1) scores = model(data) loss = criterion(scores, targets) optimizer.zero_grad() loss.backward() optimizer.step() def check_accuracy(loader, model): if loader.dataset.train: print('Checking accuracy on training data') else: print('Checking accuracy on test data') num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x, y in loader: x = x.to(device=device) y = y.to(device=device) x = x.reshape(x.shape[0], -1) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print( f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}' ) model.train() check_accuracy(train_loader, model) check_accuracy(test_loader, model) <|reserved_special_token_1|> # Imports import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils import data from torch.utils.data import DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms # Create Fully Connected Network class NN(nn.Module): def __init__(self, input_size,num_classes): super(NN,self).__init__() self.fc1 = nn.Linear(input_size,50) self.fc2 = nn.Linear(50,num_classes) def forward(self,x): x = F.relu(self.fc1(x)) x = self.fc2(x) return x # Set device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Hyperparameters input_size =784 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 10 # Load Data train_dataset = datasets.MNIST( root='dataset/', train=True, transform=transforms.ToTensor(), download=True, ) train_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, ) test_dataset = datasets.MNIST( root='dataset/', train=False, transform=transforms.ToTensor(), download=True, ) test_loader = DataLoader( dataset=train_dataset, batch_size=batch_size, shuffle=True, ) # Initialize network model = NN(input_size,num_classes).to(device) # Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(),lr=learning_rate) # Train network for epoch in range(num_epochs): print("Epoch: "+str(epoch+1)) for batch_idx, (data, targets) in enumerate(train_loader): data = data.to(device=device) targets = targets.to(device=device) # Get to correct shape data = data.reshape(data.shape[0],-1) scores = model(data) loss = criterion(scores,targets) # backward optimizer.zero_grad() loss.backward() # gradient descent or adam step optimizer.step() # Check accuracy on training and test to see how good our model def check_accuracy(loader, model): if loader.dataset.train: print("Checking accuracy on training data") else: print("Checking accuracy on test data") num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x,y in loader: x = x.to(device=device) y = y.to(device=device) x = x.reshape(x.shape[0],-1) scores = model(x) _, predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}') model.train() check_accuracy(train_loader,model) check_accuracy(test_loader,model)
flexible
{ "blob_id": "1edb92a4905048f3961e3067c67ef892d7b8a034", "index": 9154, "step-1": "<mask token>\n\n\nclass NN(nn.Module):\n\n def __init__(self, input_size, num_classes):\n super(NN, self).__init__()\n self.fc1 = nn.Linear(input_size, 50)\n self.fc2 = nn.Linear(50, num_classes)\n\n def forward(self, x):\n x = F.relu(self.fc1(x))\n x = self.fc2(x)\n return x\n\n\n<mask token>\n\n\ndef check_accuracy(loader, model):\n if loader.dataset.train:\n print('Checking accuracy on training data')\n else:\n print('Checking accuracy on test data')\n num_correct = 0\n num_samples = 0\n model.eval()\n with torch.no_grad():\n for x, y in loader:\n x = x.to(device=device)\n y = y.to(device=device)\n x = x.reshape(x.shape[0], -1)\n scores = model(x)\n _, predictions = scores.max(1)\n num_correct += (predictions == y).sum()\n num_samples += predictions.size(0)\n print(\n f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}'\n )\n model.train()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass NN(nn.Module):\n\n def __init__(self, input_size, num_classes):\n super(NN, self).__init__()\n self.fc1 = nn.Linear(input_size, 50)\n self.fc2 = nn.Linear(50, num_classes)\n\n def forward(self, x):\n x = F.relu(self.fc1(x))\n x = self.fc2(x)\n return x\n\n\n<mask token>\nfor epoch in range(num_epochs):\n print('Epoch: ' + str(epoch + 1))\n for batch_idx, (data, targets) in enumerate(train_loader):\n data = data.to(device=device)\n targets = targets.to(device=device)\n data = data.reshape(data.shape[0], -1)\n scores = model(data)\n loss = criterion(scores, targets)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n\n\ndef check_accuracy(loader, model):\n if loader.dataset.train:\n print('Checking accuracy on training data')\n else:\n print('Checking accuracy on test data')\n num_correct = 0\n num_samples = 0\n model.eval()\n with torch.no_grad():\n for x, y in loader:\n x = x.to(device=device)\n y = y.to(device=device)\n x = x.reshape(x.shape[0], -1)\n scores = model(x)\n _, predictions = scores.max(1)\n num_correct += (predictions == y).sum()\n num_samples += predictions.size(0)\n print(\n f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}'\n )\n model.train()\n\n\ncheck_accuracy(train_loader, model)\ncheck_accuracy(test_loader, model)\n", "step-3": "<mask token>\n\n\nclass NN(nn.Module):\n\n def __init__(self, input_size, num_classes):\n super(NN, self).__init__()\n self.fc1 = nn.Linear(input_size, 50)\n self.fc2 = nn.Linear(50, num_classes)\n\n def forward(self, x):\n x = F.relu(self.fc1(x))\n x = self.fc2(x)\n return x\n\n\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\ninput_size = 784\nnum_classes = 10\nlearning_rate = 0.001\nbatch_size = 64\nnum_epochs = 10\ntrain_dataset = datasets.MNIST(root='dataset/', train=True, transform=\n transforms.ToTensor(), download=True)\ntrain_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,\n shuffle=True)\ntest_dataset = datasets.MNIST(root='dataset/', train=False, transform=\n transforms.ToTensor(), download=True)\ntest_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,\n shuffle=True)\nmodel = NN(input_size, num_classes).to(device)\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=learning_rate)\nfor epoch in range(num_epochs):\n print('Epoch: ' + str(epoch + 1))\n for batch_idx, (data, targets) in enumerate(train_loader):\n data = data.to(device=device)\n targets = targets.to(device=device)\n data = data.reshape(data.shape[0], -1)\n scores = model(data)\n loss = criterion(scores, targets)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n\n\ndef check_accuracy(loader, model):\n if loader.dataset.train:\n print('Checking accuracy on training data')\n else:\n print('Checking accuracy on test data')\n num_correct = 0\n num_samples = 0\n model.eval()\n with torch.no_grad():\n for x, y in loader:\n x = x.to(device=device)\n y = y.to(device=device)\n x = x.reshape(x.shape[0], -1)\n scores = model(x)\n _, predictions = scores.max(1)\n num_correct += (predictions == y).sum()\n num_samples += predictions.size(0)\n print(\n f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}'\n )\n model.train()\n\n\ncheck_accuracy(train_loader, model)\ncheck_accuracy(test_loader, model)\n", "step-4": "import torch\nimport torch.nn as nn\nimport torch.optim as optim\nimport torch.nn.functional as F\nfrom torch.utils import data\nfrom torch.utils.data import DataLoader\nimport torchvision.datasets as datasets\nimport torchvision.transforms as transforms\n\n\nclass NN(nn.Module):\n\n def __init__(self, input_size, num_classes):\n super(NN, self).__init__()\n self.fc1 = nn.Linear(input_size, 50)\n self.fc2 = nn.Linear(50, num_classes)\n\n def forward(self, x):\n x = F.relu(self.fc1(x))\n x = self.fc2(x)\n return x\n\n\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\ninput_size = 784\nnum_classes = 10\nlearning_rate = 0.001\nbatch_size = 64\nnum_epochs = 10\ntrain_dataset = datasets.MNIST(root='dataset/', train=True, transform=\n transforms.ToTensor(), download=True)\ntrain_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,\n shuffle=True)\ntest_dataset = datasets.MNIST(root='dataset/', train=False, transform=\n transforms.ToTensor(), download=True)\ntest_loader = DataLoader(dataset=train_dataset, batch_size=batch_size,\n shuffle=True)\nmodel = NN(input_size, num_classes).to(device)\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(), lr=learning_rate)\nfor epoch in range(num_epochs):\n print('Epoch: ' + str(epoch + 1))\n for batch_idx, (data, targets) in enumerate(train_loader):\n data = data.to(device=device)\n targets = targets.to(device=device)\n data = data.reshape(data.shape[0], -1)\n scores = model(data)\n loss = criterion(scores, targets)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n\n\ndef check_accuracy(loader, model):\n if loader.dataset.train:\n print('Checking accuracy on training data')\n else:\n print('Checking accuracy on test data')\n num_correct = 0\n num_samples = 0\n model.eval()\n with torch.no_grad():\n for x, y in loader:\n x = x.to(device=device)\n y = y.to(device=device)\n x = x.reshape(x.shape[0], -1)\n scores = model(x)\n _, predictions = scores.max(1)\n num_correct += (predictions == y).sum()\n num_samples += predictions.size(0)\n print(\n f'Got {num_correct} / {num_samples} with accuracy {float(num_correct) / float(num_samples) * 100:.2f}'\n )\n model.train()\n\n\ncheck_accuracy(train_loader, model)\ncheck_accuracy(test_loader, model)\n", "step-5": "# Imports\nimport torch\nimport torch.nn as nn\nimport torch.optim as optim\nimport torch.nn.functional as F\nfrom torch.utils import data\nfrom torch.utils.data import DataLoader\nimport torchvision.datasets as datasets\nimport torchvision.transforms as transforms\n\n# Create Fully Connected Network\nclass NN(nn.Module):\n def __init__(self, input_size,num_classes):\n super(NN,self).__init__()\n self.fc1 = nn.Linear(input_size,50)\n self.fc2 = nn.Linear(50,num_classes)\n\n def forward(self,x):\n x = F.relu(self.fc1(x))\n x = self.fc2(x)\n return x\n\n# Set device\ndevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n\n\n# Hyperparameters\ninput_size =784\nnum_classes = 10\nlearning_rate = 0.001\nbatch_size = 64\nnum_epochs = 10\n\n# Load Data\ntrain_dataset = datasets.MNIST(\n root='dataset/',\n train=True,\n transform=transforms.ToTensor(),\n download=True,\n)\ntrain_loader = DataLoader(\n dataset=train_dataset,\n batch_size=batch_size,\n shuffle=True,\n)\ntest_dataset = datasets.MNIST(\n root='dataset/',\n train=False,\n transform=transforms.ToTensor(),\n download=True,\n)\ntest_loader = DataLoader(\n dataset=train_dataset,\n batch_size=batch_size,\n shuffle=True,\n)\n# Initialize network\nmodel = NN(input_size,num_classes).to(device)\n\n# Loss and optimizer\ncriterion = nn.CrossEntropyLoss()\noptimizer = optim.Adam(model.parameters(),lr=learning_rate)\n\n# Train network\nfor epoch in range(num_epochs):\n print(\"Epoch: \"+str(epoch+1))\n for batch_idx, (data, targets) in enumerate(train_loader):\n data = data.to(device=device)\n targets = targets.to(device=device)\n\n # Get to correct shape\n data = data.reshape(data.shape[0],-1)\n scores = model(data)\n loss = criterion(scores,targets)\n\n # backward\n optimizer.zero_grad()\n loss.backward()\n\n # gradient descent or adam step\n optimizer.step()\n\n# Check accuracy on training and test to see how good our model\n\ndef check_accuracy(loader, model):\n\n if loader.dataset.train:\n print(\"Checking accuracy on training data\")\n else:\n print(\"Checking accuracy on test data\")\n\n num_correct = 0\n num_samples = 0\n model.eval()\n with torch.no_grad():\n for x,y in loader:\n x = x.to(device=device)\n y = y.to(device=device)\n x = x.reshape(x.shape[0],-1)\n\n scores = model(x)\n\n _, predictions = scores.max(1)\n num_correct += (predictions == y).sum()\n num_samples += predictions.size(0)\n\n print(f'Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}')\n model.train()\n\n\ncheck_accuracy(train_loader,model)\ncheck_accuracy(test_loader,model)", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.fixture def cvrp_problem(): max_num_vehicles = 1 coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694, -47.7496622016347], [-15.651440380492554, -47.75887552060412], [- 15.651207309372888, -47.755018806591394], [-15.648706444367969, - 47.758785390289965], [-15.66047286919706, -47.75284167302011]] return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100, num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([ 0, 10, 10, 7, 3, 10]), depot_idx=0) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> @pytest.fixture def cvrp_problem(): max_num_vehicles = 1 coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694, -47.7496622016347], [-15.651440380492554, -47.75887552060412], [- 15.651207309372888, -47.755018806591394], [-15.648706444367969, - 47.758785390289965], [-15.66047286919706, -47.75284167302011]] return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100, num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([ 0, 10, 10, 7, 3, 10]), depot_idx=0) def test_vrp_partition_full_qubo_solver(cvrp_problem): backend_solver = QBSolv() params = partitionqubo.KmeansPartitionFullQuboParams(fixed_num_clusters=1) qubo_problem_fn = wrap_vrp_qubo_problem(params=params) solver = partitionqubo.solver_fn(params=params, backend_solver= backend_solver, qubo_problem_fn=qubo_problem_fn) result = solver(problem=cvrp_problem) assert result.problem_identifier == 'bla' assert (result.routes == np.array([[0, 5, 1, 3, 2, 4, 0]])).all() assert result.total_demands == 40 <|reserved_special_token_1|> import pytest import numpy as np from dwave_qbsolv import QBSolv from src.quantumrouting.solvers import partitionqubo from src.quantumrouting.types import CVRPProblem from src.quantumrouting.wrappers.qubo import wrap_vrp_qubo_problem @pytest.fixture def cvrp_problem(): max_num_vehicles = 1 coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694, -47.7496622016347], [-15.651440380492554, -47.75887552060412], [- 15.651207309372888, -47.755018806591394], [-15.648706444367969, - 47.758785390289965], [-15.66047286919706, -47.75284167302011]] return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100, num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([ 0, 10, 10, 7, 3, 10]), depot_idx=0) def test_vrp_partition_full_qubo_solver(cvrp_problem): backend_solver = QBSolv() params = partitionqubo.KmeansPartitionFullQuboParams(fixed_num_clusters=1) qubo_problem_fn = wrap_vrp_qubo_problem(params=params) solver = partitionqubo.solver_fn(params=params, backend_solver= backend_solver, qubo_problem_fn=qubo_problem_fn) result = solver(problem=cvrp_problem) assert result.problem_identifier == 'bla' assert (result.routes == np.array([[0, 5, 1, 3, 2, 4, 0]])).all() assert result.total_demands == 40
flexible
{ "blob_id": "f61e9e8069a0e90506c2f03a0cc4a25a16d71b85", "index": 3732, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\[email protected]\ndef cvrp_problem():\n max_num_vehicles = 1\n coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694,\n -47.7496622016347], [-15.651440380492554, -47.75887552060412], [-\n 15.651207309372888, -47.755018806591394], [-15.648706444367969, -\n 47.758785390289965], [-15.66047286919706, -47.75284167302011]]\n return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, \n 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100,\n num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([\n 0, 10, 10, 7, 3, 10]), depot_idx=0)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\[email protected]\ndef cvrp_problem():\n max_num_vehicles = 1\n coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694,\n -47.7496622016347], [-15.651440380492554, -47.75887552060412], [-\n 15.651207309372888, -47.755018806591394], [-15.648706444367969, -\n 47.758785390289965], [-15.66047286919706, -47.75284167302011]]\n return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, \n 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100,\n num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([\n 0, 10, 10, 7, 3, 10]), depot_idx=0)\n\n\ndef test_vrp_partition_full_qubo_solver(cvrp_problem):\n backend_solver = QBSolv()\n params = partitionqubo.KmeansPartitionFullQuboParams(fixed_num_clusters=1)\n qubo_problem_fn = wrap_vrp_qubo_problem(params=params)\n solver = partitionqubo.solver_fn(params=params, backend_solver=\n backend_solver, qubo_problem_fn=qubo_problem_fn)\n result = solver(problem=cvrp_problem)\n assert result.problem_identifier == 'bla'\n assert (result.routes == np.array([[0, 5, 1, 3, 2, 4, 0]])).all()\n assert result.total_demands == 40\n", "step-4": "import pytest\nimport numpy as np\nfrom dwave_qbsolv import QBSolv\nfrom src.quantumrouting.solvers import partitionqubo\nfrom src.quantumrouting.types import CVRPProblem\nfrom src.quantumrouting.wrappers.qubo import wrap_vrp_qubo_problem\n\n\[email protected]\ndef cvrp_problem():\n max_num_vehicles = 1\n coords = [[-15.6570138544452, -47.802664728268745], [-15.65879313293694,\n -47.7496622016347], [-15.651440380492554, -47.75887552060412], [-\n 15.651207309372888, -47.755018806591394], [-15.648706444367969, -\n 47.758785390289965], [-15.66047286919706, -47.75284167302011]]\n return CVRPProblem(problem_identifier='bla', location_idx=np.array([0, \n 1, 2, 3, 4, 5]), coords=np.array(coords), vehicle_capacity=100,\n num_vehicles=max_num_vehicles, max_deliveries=5, demands=np.array([\n 0, 10, 10, 7, 3, 10]), depot_idx=0)\n\n\ndef test_vrp_partition_full_qubo_solver(cvrp_problem):\n backend_solver = QBSolv()\n params = partitionqubo.KmeansPartitionFullQuboParams(fixed_num_clusters=1)\n qubo_problem_fn = wrap_vrp_qubo_problem(params=params)\n solver = partitionqubo.solver_fn(params=params, backend_solver=\n backend_solver, qubo_problem_fn=qubo_problem_fn)\n result = solver(problem=cvrp_problem)\n assert result.problem_identifier == 'bla'\n assert (result.routes == np.array([[0, 5, 1, 3, 2, 4, 0]])).all()\n assert result.total_demands == 40\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Location(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Banner(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) name = models.CharField(max_length=100) caption = models.TextField() description = models.TextField(blank=True, null=True) image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True) height = models.IntegerField() width = models.IntegerField() is_archived = models.BooleanField(default=False) def __str__(self): return self.name def delete(self, *args, **kwargs): self.image.delete(save=False) super(Banner, self).delete(*args, **kwargs) def save(self, **kwargs): if not self.id: max = Banner.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'BN' + '{0:03d}'.format(max) super().save(*kwargs) class Campaign(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations') campaign_code = models.CharField(max_length=30, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) date_created = models.DateField(null=True, blank=True) date_updated = models.DateField(null=True, blank=True) valid_date_start = models.DateField(null=True, blank=True) valid_date_end = models.DateField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Campaign.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CMP' + '{0:03d}'.format(max) super().save(*kwargs) class Installation(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True) campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns') redirect = models.URLField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Installation.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'INS' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class ContactSource(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) source = models.CharField(max_length=30, choices=source_choices) def __str__(self): return self.source def save(self, **kwargs): if not self.id: max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONSRC' + '{0:03d}'.format(max) super().save(*kwargs) class Contact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources') name = models.CharField(max_length=100) numbers = models.FileField(upload_to='pickles/contact/') is_deleted = models.BooleanField(default=False) deleted_datetime = models.DateTimeField(blank=True, null=True) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Contact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CON' + '{0:03d}'.format(max) super().save(*kwargs) class GenerateContact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact') first_code = models.CharField(max_length=4, validators=[RegexValidator( '^\\d{0,10}$')]) digits = models.CharField(max_length=30, validators=[RegexValidator( '^\\d{0,10}$')]) generate_numbers = models.CharField(max_length=30, validators=[ RegexValidator('^\\d{0,10}$')]) def save(self, **kwargs): if not self.id: max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'GENCON' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class SMSBlast(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) message_title = models.CharField(max_length=100) message_text = models.CharField(max_length=160) send_date = models.DateField(null=True, blank=True) send_time = models.TimeField(null=True, blank=True) is_now = models.BooleanField(default=False) def __str__(self): return self.message_title def save(self, **kwargs): if not self.id: max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMS' + '{0:03d}'.format(max) super().save(*kwargs) class ContactAndSMS(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=12) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast') def save(self, **kwargs): if not self.id: max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONANDSMS' + '{0:03d}'.format(max) super().save(*kwargs) class SMSBlastJob(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) job_id = models.CharField(max_length=100, blank=True, null=True) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSJOB' + '{0:03d}'.format(max) super().save(*kwargs) class SMSStatus(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=10) job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status') contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status') status = models.FileField(upload_to='pickles/status/') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSSTAT' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_1|> <|reserved_special_token_0|> class Location(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Location.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'LOC' + '{0:03d}'.format(max) super().save(*kwargs) class Banner(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) name = models.CharField(max_length=100) caption = models.TextField() description = models.TextField(blank=True, null=True) image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True) height = models.IntegerField() width = models.IntegerField() is_archived = models.BooleanField(default=False) def __str__(self): return self.name def delete(self, *args, **kwargs): self.image.delete(save=False) super(Banner, self).delete(*args, **kwargs) def save(self, **kwargs): if not self.id: max = Banner.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'BN' + '{0:03d}'.format(max) super().save(*kwargs) class Campaign(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations') campaign_code = models.CharField(max_length=30, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) date_created = models.DateField(null=True, blank=True) date_updated = models.DateField(null=True, blank=True) valid_date_start = models.DateField(null=True, blank=True) valid_date_end = models.DateField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Campaign.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CMP' + '{0:03d}'.format(max) super().save(*kwargs) class Installation(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True) campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns') redirect = models.URLField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Installation.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'INS' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class ContactSource(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) source = models.CharField(max_length=30, choices=source_choices) def __str__(self): return self.source def save(self, **kwargs): if not self.id: max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONSRC' + '{0:03d}'.format(max) super().save(*kwargs) class Contact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources') name = models.CharField(max_length=100) numbers = models.FileField(upload_to='pickles/contact/') is_deleted = models.BooleanField(default=False) deleted_datetime = models.DateTimeField(blank=True, null=True) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Contact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CON' + '{0:03d}'.format(max) super().save(*kwargs) class GenerateContact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact') first_code = models.CharField(max_length=4, validators=[RegexValidator( '^\\d{0,10}$')]) digits = models.CharField(max_length=30, validators=[RegexValidator( '^\\d{0,10}$')]) generate_numbers = models.CharField(max_length=30, validators=[ RegexValidator('^\\d{0,10}$')]) def save(self, **kwargs): if not self.id: max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'GENCON' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class SMSBlast(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) message_title = models.CharField(max_length=100) message_text = models.CharField(max_length=160) send_date = models.DateField(null=True, blank=True) send_time = models.TimeField(null=True, blank=True) is_now = models.BooleanField(default=False) def __str__(self): return self.message_title def save(self, **kwargs): if not self.id: max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMS' + '{0:03d}'.format(max) super().save(*kwargs) class ContactAndSMS(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=12) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast') def save(self, **kwargs): if not self.id: max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONANDSMS' + '{0:03d}'.format(max) super().save(*kwargs) class SMSBlastJob(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) job_id = models.CharField(max_length=100, blank=True, null=True) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSJOB' + '{0:03d}'.format(max) super().save(*kwargs) class SMSStatus(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=10) job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status') contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status') status = models.FileField(upload_to='pickles/status/') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSSTAT' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_1|> <|reserved_special_token_0|> class Application(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Page(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) application = models.ForeignKey(Application, on_delete=models.CASCADE, related_name='applications') name = models.CharField(max_length=100) is_archived = models.BooleanField(default=False) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Page.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'PG' + '{0:03d}'.format(max) super().save(*kwargs) class Location(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) loc_code = models.CharField(max_length=30, null=True, blank=True, unique=True) page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name= 'pages') is_slider = models.BooleanField(default=False) is_active = models.BooleanField(default=False) name = models.CharField(max_length=100) width = models.IntegerField() height = models.IntegerField() def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Location.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'LOC' + '{0:03d}'.format(max) super().save(*kwargs) class Banner(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) name = models.CharField(max_length=100) caption = models.TextField() description = models.TextField(blank=True, null=True) image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True) height = models.IntegerField() width = models.IntegerField() is_archived = models.BooleanField(default=False) def __str__(self): return self.name def delete(self, *args, **kwargs): self.image.delete(save=False) super(Banner, self).delete(*args, **kwargs) def save(self, **kwargs): if not self.id: max = Banner.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'BN' + '{0:03d}'.format(max) super().save(*kwargs) class Campaign(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations') campaign_code = models.CharField(max_length=30, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) date_created = models.DateField(null=True, blank=True) date_updated = models.DateField(null=True, blank=True) valid_date_start = models.DateField(null=True, blank=True) valid_date_end = models.DateField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Campaign.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CMP' + '{0:03d}'.format(max) super().save(*kwargs) class Installation(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True) campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns') redirect = models.URLField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Installation.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'INS' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class ContactSource(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) source = models.CharField(max_length=30, choices=source_choices) def __str__(self): return self.source def save(self, **kwargs): if not self.id: max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONSRC' + '{0:03d}'.format(max) super().save(*kwargs) class Contact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources') name = models.CharField(max_length=100) numbers = models.FileField(upload_to='pickles/contact/') is_deleted = models.BooleanField(default=False) deleted_datetime = models.DateTimeField(blank=True, null=True) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Contact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CON' + '{0:03d}'.format(max) super().save(*kwargs) class GenerateContact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact') first_code = models.CharField(max_length=4, validators=[RegexValidator( '^\\d{0,10}$')]) digits = models.CharField(max_length=30, validators=[RegexValidator( '^\\d{0,10}$')]) generate_numbers = models.CharField(max_length=30, validators=[ RegexValidator('^\\d{0,10}$')]) def save(self, **kwargs): if not self.id: max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'GENCON' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class SMSBlast(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) message_title = models.CharField(max_length=100) message_text = models.CharField(max_length=160) send_date = models.DateField(null=True, blank=True) send_time = models.TimeField(null=True, blank=True) is_now = models.BooleanField(default=False) def __str__(self): return self.message_title def save(self, **kwargs): if not self.id: max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMS' + '{0:03d}'.format(max) super().save(*kwargs) class ContactAndSMS(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=12) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast') def save(self, **kwargs): if not self.id: max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONANDSMS' + '{0:03d}'.format(max) super().save(*kwargs) class SMSBlastJob(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) job_id = models.CharField(max_length=100, blank=True, null=True) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSJOB' + '{0:03d}'.format(max) super().save(*kwargs) class SMSStatus(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=10) job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status') contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status') status = models.FileField(upload_to='pickles/status/') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSSTAT' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_1|> <|reserved_special_token_0|> class User(AbstractUser): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Application(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) app_code = models.CharField(max_length=30, blank=True, null=True) name = models.CharField(max_length=100, blank=True, null=True) is_archived = models.BooleanField(default=False) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Application.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'APP' + '{0:03d}'.format(max) super().save(*kwargs) class Page(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) application = models.ForeignKey(Application, on_delete=models.CASCADE, related_name='applications') name = models.CharField(max_length=100) is_archived = models.BooleanField(default=False) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Page.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'PG' + '{0:03d}'.format(max) super().save(*kwargs) class Location(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) loc_code = models.CharField(max_length=30, null=True, blank=True, unique=True) page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name= 'pages') is_slider = models.BooleanField(default=False) is_active = models.BooleanField(default=False) name = models.CharField(max_length=100) width = models.IntegerField() height = models.IntegerField() def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Location.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'LOC' + '{0:03d}'.format(max) super().save(*kwargs) class Banner(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) name = models.CharField(max_length=100) caption = models.TextField() description = models.TextField(blank=True, null=True) image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True) height = models.IntegerField() width = models.IntegerField() is_archived = models.BooleanField(default=False) def __str__(self): return self.name def delete(self, *args, **kwargs): self.image.delete(save=False) super(Banner, self).delete(*args, **kwargs) def save(self, **kwargs): if not self.id: max = Banner.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'BN' + '{0:03d}'.format(max) super().save(*kwargs) class Campaign(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations') campaign_code = models.CharField(max_length=30, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) date_created = models.DateField(null=True, blank=True) date_updated = models.DateField(null=True, blank=True) valid_date_start = models.DateField(null=True, blank=True) valid_date_end = models.DateField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Campaign.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CMP' + '{0:03d}'.format(max) super().save(*kwargs) class Installation(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True) campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns') redirect = models.URLField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Installation.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'INS' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class ContactSource(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) source = models.CharField(max_length=30, choices=source_choices) def __str__(self): return self.source def save(self, **kwargs): if not self.id: max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONSRC' + '{0:03d}'.format(max) super().save(*kwargs) class Contact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources') name = models.CharField(max_length=100) numbers = models.FileField(upload_to='pickles/contact/') is_deleted = models.BooleanField(default=False) deleted_datetime = models.DateTimeField(blank=True, null=True) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Contact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CON' + '{0:03d}'.format(max) super().save(*kwargs) class GenerateContact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact') first_code = models.CharField(max_length=4, validators=[RegexValidator( '^\\d{0,10}$')]) digits = models.CharField(max_length=30, validators=[RegexValidator( '^\\d{0,10}$')]) generate_numbers = models.CharField(max_length=30, validators=[ RegexValidator('^\\d{0,10}$')]) def save(self, **kwargs): if not self.id: max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'GENCON' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_0|> class SMSBlast(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) message_title = models.CharField(max_length=100) message_text = models.CharField(max_length=160) send_date = models.DateField(null=True, blank=True) send_time = models.TimeField(null=True, blank=True) is_now = models.BooleanField(default=False) def __str__(self): return self.message_title def save(self, **kwargs): if not self.id: max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMS' + '{0:03d}'.format(max) super().save(*kwargs) class ContactAndSMS(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=12) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast') def save(self, **kwargs): if not self.id: max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'CONANDSMS' + '{0:03d}'.format(max) super().save(*kwargs) class SMSBlastJob(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) job_id = models.CharField(max_length=100, blank=True, null=True) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSJOB' + '{0:03d}'.format(max) super().save(*kwargs) class SMSStatus(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=10) job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status') contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status') status = models.FileField(upload_to='pickles/status/') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = 'SMSSTAT' + '{0:03d}'.format(max) super().save(*kwargs) <|reserved_special_token_1|> from django.db import models from django.contrib.auth.models import AbstractUser from django.db.models import Max from django.core.validators import RegexValidator from django.utils import timezone class User(AbstractUser): is_developer = models.BooleanField('developer status', default=False) is_marketing = models.BooleanField('marketing status', default=False) email = models.EmailField(unique=True, null=True, blank=True) def __str__(self): return self.username class Application(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) app_code = models.CharField(max_length=30, blank=True, null=True) name = models.CharField(max_length=100, blank=True, null=True) is_archived = models.BooleanField(default=False) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Application.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "APP" + "{0:03d}".format(max) super().save(*kwargs) class Page(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) application = models.ForeignKey(Application, on_delete=models.CASCADE, related_name='applications') name = models.CharField(max_length=100) is_archived = models.BooleanField(default=False) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Page.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "PG" + "{0:03d}".format(max) super().save(*kwargs) class Location(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) loc_code = models.CharField(max_length=30, null=True, blank=True, unique=True) page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name='pages') is_slider = models.BooleanField(default=False) is_active = models.BooleanField(default=False) name = models.CharField(max_length=100) width = models.IntegerField() height = models.IntegerField() def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Location.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "LOC" + "{0:03d}".format(max) super().save(*kwargs) class Banner(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=5) name = models.CharField(max_length=100) caption = models.TextField() description = models.TextField(blank=True, null=True) image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True) height = models.IntegerField() width = models.IntegerField() is_archived = models.BooleanField(default=False) def __str__(self): return self.name def delete(self, *args, **kwargs): self.image.delete(save=False) super(Banner, self).delete(*args, **kwargs) def save(self, **kwargs): if not self.id: max = Banner.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "BN" + "{0:03d}".format(max) super().save(*kwargs) class Campaign(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations') campaign_code = models.CharField(max_length=30, null=True, blank=True) priority = models.IntegerField(null=True, blank=True) date_created = models.DateField(null=True, blank=True) date_updated = models.DateField(null=True, blank=True) valid_date_start = models.DateField(null=True, blank=True) valid_date_end = models.DateField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Campaign.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "CMP" + "{0:03d}".format(max) super().save(*kwargs) class Installation(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True) campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns') redirect = models.URLField(null=True, blank=True) def save(self, **kwargs): if not self.id: max = Installation.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "INS" + "{0:03d}".format(max) super().save(*kwargs) source_choices = ( ('random', 'Generate nomor secara acak'), ('csv', 'Upload file .csv'), ) class ContactSource(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) source = models.CharField(max_length=30, choices=source_choices) def __str__(self): return self.source def save(self, **kwargs): if not self.id: max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "CONSRC" + "{0:03d}".format(max) super().save(*kwargs) class Contact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources') name = models.CharField(max_length=100) numbers = models.FileField(upload_to='pickles/contact/') is_deleted = models.BooleanField(default=False) deleted_datetime = models.DateTimeField(blank=True, null=True) def __str__(self): return self.name def save(self, **kwargs): if not self.id: max = Contact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "CON" + "{0:03d}".format(max) super().save(*kwargs) class GenerateContact(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact') first_code = models.CharField(max_length=4, validators=[RegexValidator(r'^\d{0,10}$')]) digits = models.CharField(max_length=30, validators=[RegexValidator(r'^\d{0,10}$')]) generate_numbers = models.CharField(max_length=30, validators=[RegexValidator(r'^\d{0,10}$')]) def save(self, **kwargs): if not self.id: max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "GENCON" + "{0:03d}".format(max) super().save(*kwargs) status_choices = ( ('complete', 'Sudah Dikirim'), ('uncomplete', 'Belum Dikirim'), ) class SMSBlast(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=6) message_title = models.CharField(max_length=100) message_text = models.CharField(max_length=160) send_date = models.DateField(null=True, blank=True) send_time = models.TimeField(null=True, blank=True) is_now = models.BooleanField(default=False) def __str__(self): return self.message_title def save(self, **kwargs): if not self.id: max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "SMS" + "{0:03d}".format(max) super().save(*kwargs) class ContactAndSMS(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=12) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast') def save(self, **kwargs): if not self.id: max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "CONANDSMS" + "{0:03d}".format(max) super().save(*kwargs) class SMSBlastJob(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=9) job_id = models.CharField(max_length=100, blank=True, null=True) contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job') smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "SMSJOB" + "{0:03d}".format(max) super().save(*kwargs) class SMSStatus(models.Model): id = models.CharField(primary_key=True, editable=False, max_length=10) job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status') contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status') status = models.FileField(upload_to='pickles/status/') def __str__(self): return self.job_id def save(self, **kwargs): if not self.id: max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max'] if max is not None: max = max[-3:] max = int(max) max += 1 else: max = 1 self.id = "SMSSTAT" + "{0:03d}".format(max) super().save(*kwargs)
flexible
{ "blob_id": "94e9e7c4c09c8c4de4c8f2649707a949d5f5f856", "index": 7836, "step-1": "<mask token>\n\n\nclass Location(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Banner(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n name = models.CharField(max_length=100)\n caption = models.TextField()\n description = models.TextField(blank=True, null=True)\n image = models.ImageField(upload_to='images/', verbose_name='Banner',\n blank=True)\n height = models.IntegerField()\n width = models.IntegerField()\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def delete(self, *args, **kwargs):\n self.image.delete(save=False)\n super(Banner, self).delete(*args, **kwargs)\n\n def save(self, **kwargs):\n if not self.id:\n max = Banner.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'BN' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Campaign(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n location = models.ForeignKey(Location, on_delete=models.CASCADE,\n related_name='locations')\n campaign_code = models.CharField(max_length=30, null=True, blank=True)\n priority = models.IntegerField(null=True, blank=True)\n date_created = models.DateField(null=True, blank=True)\n date_updated = models.DateField(null=True, blank=True)\n valid_date_start = models.DateField(null=True, blank=True)\n valid_date_end = models.DateField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Campaign.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CMP' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Installation(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n banner = models.ForeignKey(Banner, on_delete=models.CASCADE,\n related_name='banners', blank=True, null=True)\n campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE,\n related_name='campaigns')\n redirect = models.URLField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Installation.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'INS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass ContactSource(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n source = models.CharField(max_length=30, choices=source_choices)\n\n def __str__(self):\n return self.source\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONSRC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Contact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n source = models.ForeignKey(ContactSource, on_delete=models.CASCADE,\n related_name='contactsources')\n name = models.CharField(max_length=100)\n numbers = models.FileField(upload_to='pickles/contact/')\n is_deleted = models.BooleanField(default=False)\n deleted_datetime = models.DateTimeField(blank=True, null=True)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Contact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass GenerateContact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact')\n first_code = models.CharField(max_length=4, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n digits = models.CharField(max_length=30, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n generate_numbers = models.CharField(max_length=30, validators=[\n RegexValidator('^\\\\d{0,10}$')])\n\n def save(self, **kwargs):\n if not self.id:\n max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'GENCON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass SMSBlast(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n message_title = models.CharField(max_length=100)\n message_text = models.CharField(max_length=160)\n send_date = models.DateField(null=True, blank=True)\n send_time = models.TimeField(null=True, blank=True)\n is_now = models.BooleanField(default=False)\n\n def __str__(self):\n return self.message_title\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass ContactAndSMS(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=12)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='smsncon_contact')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsncon_smsblast')\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONANDSMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSBlastJob(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n job_id = models.CharField(max_length=100, blank=True, null=True)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_job')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsblast_job')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSJOB' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSStatus(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=10)\n job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE,\n related_name='job_status')\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_status')\n status = models.FileField(upload_to='pickles/status/')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSSTAT' + '{0:03d}'.format(max)\n super().save(*kwargs)\n", "step-2": "<mask token>\n\n\nclass Location(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Location.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'LOC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Banner(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n name = models.CharField(max_length=100)\n caption = models.TextField()\n description = models.TextField(blank=True, null=True)\n image = models.ImageField(upload_to='images/', verbose_name='Banner',\n blank=True)\n height = models.IntegerField()\n width = models.IntegerField()\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def delete(self, *args, **kwargs):\n self.image.delete(save=False)\n super(Banner, self).delete(*args, **kwargs)\n\n def save(self, **kwargs):\n if not self.id:\n max = Banner.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'BN' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Campaign(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n location = models.ForeignKey(Location, on_delete=models.CASCADE,\n related_name='locations')\n campaign_code = models.CharField(max_length=30, null=True, blank=True)\n priority = models.IntegerField(null=True, blank=True)\n date_created = models.DateField(null=True, blank=True)\n date_updated = models.DateField(null=True, blank=True)\n valid_date_start = models.DateField(null=True, blank=True)\n valid_date_end = models.DateField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Campaign.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CMP' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Installation(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n banner = models.ForeignKey(Banner, on_delete=models.CASCADE,\n related_name='banners', blank=True, null=True)\n campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE,\n related_name='campaigns')\n redirect = models.URLField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Installation.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'INS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass ContactSource(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n source = models.CharField(max_length=30, choices=source_choices)\n\n def __str__(self):\n return self.source\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONSRC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Contact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n source = models.ForeignKey(ContactSource, on_delete=models.CASCADE,\n related_name='contactsources')\n name = models.CharField(max_length=100)\n numbers = models.FileField(upload_to='pickles/contact/')\n is_deleted = models.BooleanField(default=False)\n deleted_datetime = models.DateTimeField(blank=True, null=True)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Contact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass GenerateContact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact')\n first_code = models.CharField(max_length=4, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n digits = models.CharField(max_length=30, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n generate_numbers = models.CharField(max_length=30, validators=[\n RegexValidator('^\\\\d{0,10}$')])\n\n def save(self, **kwargs):\n if not self.id:\n max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'GENCON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass SMSBlast(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n message_title = models.CharField(max_length=100)\n message_text = models.CharField(max_length=160)\n send_date = models.DateField(null=True, blank=True)\n send_time = models.TimeField(null=True, blank=True)\n is_now = models.BooleanField(default=False)\n\n def __str__(self):\n return self.message_title\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass ContactAndSMS(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=12)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='smsncon_contact')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsncon_smsblast')\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONANDSMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSBlastJob(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n job_id = models.CharField(max_length=100, blank=True, null=True)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_job')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsblast_job')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSJOB' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSStatus(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=10)\n job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE,\n related_name='job_status')\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_status')\n status = models.FileField(upload_to='pickles/status/')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSSTAT' + '{0:03d}'.format(max)\n super().save(*kwargs)\n", "step-3": "<mask token>\n\n\nclass Application(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Page(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n application = models.ForeignKey(Application, on_delete=models.CASCADE,\n related_name='applications')\n name = models.CharField(max_length=100)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Page.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'PG' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Location(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n loc_code = models.CharField(max_length=30, null=True, blank=True,\n unique=True)\n page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name=\n 'pages')\n is_slider = models.BooleanField(default=False)\n is_active = models.BooleanField(default=False)\n name = models.CharField(max_length=100)\n width = models.IntegerField()\n height = models.IntegerField()\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Location.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'LOC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Banner(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n name = models.CharField(max_length=100)\n caption = models.TextField()\n description = models.TextField(blank=True, null=True)\n image = models.ImageField(upload_to='images/', verbose_name='Banner',\n blank=True)\n height = models.IntegerField()\n width = models.IntegerField()\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def delete(self, *args, **kwargs):\n self.image.delete(save=False)\n super(Banner, self).delete(*args, **kwargs)\n\n def save(self, **kwargs):\n if not self.id:\n max = Banner.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'BN' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Campaign(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n location = models.ForeignKey(Location, on_delete=models.CASCADE,\n related_name='locations')\n campaign_code = models.CharField(max_length=30, null=True, blank=True)\n priority = models.IntegerField(null=True, blank=True)\n date_created = models.DateField(null=True, blank=True)\n date_updated = models.DateField(null=True, blank=True)\n valid_date_start = models.DateField(null=True, blank=True)\n valid_date_end = models.DateField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Campaign.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CMP' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Installation(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n banner = models.ForeignKey(Banner, on_delete=models.CASCADE,\n related_name='banners', blank=True, null=True)\n campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE,\n related_name='campaigns')\n redirect = models.URLField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Installation.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'INS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass ContactSource(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n source = models.CharField(max_length=30, choices=source_choices)\n\n def __str__(self):\n return self.source\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONSRC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Contact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n source = models.ForeignKey(ContactSource, on_delete=models.CASCADE,\n related_name='contactsources')\n name = models.CharField(max_length=100)\n numbers = models.FileField(upload_to='pickles/contact/')\n is_deleted = models.BooleanField(default=False)\n deleted_datetime = models.DateTimeField(blank=True, null=True)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Contact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass GenerateContact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact')\n first_code = models.CharField(max_length=4, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n digits = models.CharField(max_length=30, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n generate_numbers = models.CharField(max_length=30, validators=[\n RegexValidator('^\\\\d{0,10}$')])\n\n def save(self, **kwargs):\n if not self.id:\n max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'GENCON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass SMSBlast(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n message_title = models.CharField(max_length=100)\n message_text = models.CharField(max_length=160)\n send_date = models.DateField(null=True, blank=True)\n send_time = models.TimeField(null=True, blank=True)\n is_now = models.BooleanField(default=False)\n\n def __str__(self):\n return self.message_title\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass ContactAndSMS(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=12)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='smsncon_contact')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsncon_smsblast')\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONANDSMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSBlastJob(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n job_id = models.CharField(max_length=100, blank=True, null=True)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_job')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsblast_job')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSJOB' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSStatus(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=10)\n job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE,\n related_name='job_status')\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_status')\n status = models.FileField(upload_to='pickles/status/')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSSTAT' + '{0:03d}'.format(max)\n super().save(*kwargs)\n", "step-4": "<mask token>\n\n\nclass User(AbstractUser):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Application(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n app_code = models.CharField(max_length=30, blank=True, null=True)\n name = models.CharField(max_length=100, blank=True, null=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Application.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'APP' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Page(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n application = models.ForeignKey(Application, on_delete=models.CASCADE,\n related_name='applications')\n name = models.CharField(max_length=100)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Page.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'PG' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Location(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n loc_code = models.CharField(max_length=30, null=True, blank=True,\n unique=True)\n page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name=\n 'pages')\n is_slider = models.BooleanField(default=False)\n is_active = models.BooleanField(default=False)\n name = models.CharField(max_length=100)\n width = models.IntegerField()\n height = models.IntegerField()\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Location.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'LOC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Banner(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n name = models.CharField(max_length=100)\n caption = models.TextField()\n description = models.TextField(blank=True, null=True)\n image = models.ImageField(upload_to='images/', verbose_name='Banner',\n blank=True)\n height = models.IntegerField()\n width = models.IntegerField()\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def delete(self, *args, **kwargs):\n self.image.delete(save=False)\n super(Banner, self).delete(*args, **kwargs)\n\n def save(self, **kwargs):\n if not self.id:\n max = Banner.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'BN' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Campaign(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n location = models.ForeignKey(Location, on_delete=models.CASCADE,\n related_name='locations')\n campaign_code = models.CharField(max_length=30, null=True, blank=True)\n priority = models.IntegerField(null=True, blank=True)\n date_created = models.DateField(null=True, blank=True)\n date_updated = models.DateField(null=True, blank=True)\n valid_date_start = models.DateField(null=True, blank=True)\n valid_date_end = models.DateField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Campaign.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CMP' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Installation(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n banner = models.ForeignKey(Banner, on_delete=models.CASCADE,\n related_name='banners', blank=True, null=True)\n campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE,\n related_name='campaigns')\n redirect = models.URLField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Installation.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'INS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass ContactSource(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n source = models.CharField(max_length=30, choices=source_choices)\n\n def __str__(self):\n return self.source\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONSRC' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass Contact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n source = models.ForeignKey(ContactSource, on_delete=models.CASCADE,\n related_name='contactsources')\n name = models.CharField(max_length=100)\n numbers = models.FileField(upload_to='pickles/contact/')\n is_deleted = models.BooleanField(default=False)\n deleted_datetime = models.DateTimeField(blank=True, null=True)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Contact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass GenerateContact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact')\n first_code = models.CharField(max_length=4, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n digits = models.CharField(max_length=30, validators=[RegexValidator(\n '^\\\\d{0,10}$')])\n generate_numbers = models.CharField(max_length=30, validators=[\n RegexValidator('^\\\\d{0,10}$')])\n\n def save(self, **kwargs):\n if not self.id:\n max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'GENCON' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\n<mask token>\n\n\nclass SMSBlast(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n message_title = models.CharField(max_length=100)\n message_text = models.CharField(max_length=160)\n send_date = models.DateField(null=True, blank=True)\n send_time = models.TimeField(null=True, blank=True)\n is_now = models.BooleanField(default=False)\n\n def __str__(self):\n return self.message_title\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass ContactAndSMS(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=12)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='smsncon_contact')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsncon_smsblast')\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'CONANDSMS' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSBlastJob(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n job_id = models.CharField(max_length=100, blank=True, null=True)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_job')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE,\n related_name='smsblast_job')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSJOB' + '{0:03d}'.format(max)\n super().save(*kwargs)\n\n\nclass SMSStatus(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=10)\n job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE,\n related_name='job_status')\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE,\n related_name='contact_status')\n status = models.FileField(upload_to='pickles/status/')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = 'SMSSTAT' + '{0:03d}'.format(max)\n super().save(*kwargs)\n", "step-5": "from django.db import models\nfrom django.contrib.auth.models import AbstractUser\nfrom django.db.models import Max\nfrom django.core.validators import RegexValidator\nfrom django.utils import timezone\n\nclass User(AbstractUser):\n is_developer = models.BooleanField('developer status', default=False)\n is_marketing = models.BooleanField('marketing status', default=False)\n email = models.EmailField(unique=True, null=True, blank=True)\n\n def __str__(self):\n return self.username\n\nclass Application(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n app_code = models.CharField(max_length=30, blank=True, null=True)\n name = models.CharField(max_length=100, blank=True, null=True)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Application.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"APP\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Page(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n application = models.ForeignKey(Application, on_delete=models.CASCADE, related_name='applications')\n name = models.CharField(max_length=100)\n is_archived = models.BooleanField(default=False)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Page.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"PG\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Location(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n loc_code = models.CharField(max_length=30, null=True, blank=True, unique=True)\n page = models.ForeignKey(Page, on_delete=models.CASCADE, related_name='pages')\n is_slider = models.BooleanField(default=False)\n is_active = models.BooleanField(default=False)\n name = models.CharField(max_length=100)\n width = models.IntegerField()\n height = models.IntegerField()\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Location.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"LOC\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Banner(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=5)\n name = models.CharField(max_length=100)\n caption = models.TextField()\n description = models.TextField(blank=True, null=True)\n image = models.ImageField(upload_to='images/', verbose_name='Banner', blank=True)\n height = models.IntegerField()\n width = models.IntegerField()\n is_archived = models.BooleanField(default=False)\n \n def __str__(self):\n return self.name\n\n def delete(self, *args, **kwargs):\n self.image.delete(save=False)\n\n super(Banner, self).delete(*args, **kwargs)\n\n def save(self, **kwargs):\n if not self.id:\n max = Banner.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"BN\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Campaign(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n location = models.ForeignKey(Location, on_delete=models.CASCADE, related_name='locations')\n campaign_code = models.CharField(max_length=30, null=True, blank=True)\n priority = models.IntegerField(null=True, blank=True)\n date_created = models.DateField(null=True, blank=True)\n date_updated = models.DateField(null=True, blank=True)\n valid_date_start = models.DateField(null=True, blank=True)\n valid_date_end = models.DateField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Campaign.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"CMP\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Installation(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n banner = models.ForeignKey(Banner, on_delete=models.CASCADE, related_name='banners', blank=True, null=True)\n campaign = models.ForeignKey(Campaign, on_delete=models.CASCADE, related_name='campaigns')\n redirect = models.URLField(null=True, blank=True)\n\n def save(self, **kwargs):\n if not self.id:\n max = Installation.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"INS\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nsource_choices = (\n ('random', 'Generate nomor secara acak'),\n ('csv', 'Upload file .csv'),\n)\n\nclass ContactSource(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n source = models.CharField(max_length=30, choices=source_choices)\n\n def __str__(self):\n return self.source\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactSource.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"CONSRC\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass Contact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n source = models.ForeignKey(ContactSource, on_delete=models.CASCADE, related_name='contactsources')\n name = models.CharField(max_length=100)\n numbers = models.FileField(upload_to='pickles/contact/')\n is_deleted = models.BooleanField(default=False)\n deleted_datetime = models.DateTimeField(blank=True, null=True)\n\n def __str__(self):\n return self.name\n\n def save(self, **kwargs):\n if not self.id:\n max = Contact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"CON\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass GenerateContact(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact')\n first_code = models.CharField(max_length=4, validators=[RegexValidator(r'^\\d{0,10}$')])\n digits = models.CharField(max_length=30, validators=[RegexValidator(r'^\\d{0,10}$')])\n generate_numbers = models.CharField(max_length=30, validators=[RegexValidator(r'^\\d{0,10}$')])\n\n def save(self, **kwargs):\n if not self.id:\n max = GenerateContact.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"GENCON\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nstatus_choices = (\n ('complete', 'Sudah Dikirim'),\n ('uncomplete', 'Belum Dikirim'),\n)\n\nclass SMSBlast(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=6)\n message_title = models.CharField(max_length=100)\n message_text = models.CharField(max_length=160)\n send_date = models.DateField(null=True, blank=True)\n send_time = models.TimeField(null=True, blank=True)\n is_now = models.BooleanField(default=False)\n\n def __str__(self):\n return self.message_title\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlast.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"SMS\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass ContactAndSMS(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=12)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='smsncon_contact')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsncon_smsblast')\n\n def save(self, **kwargs):\n if not self.id:\n max = ContactAndSMS.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"CONANDSMS\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass SMSBlastJob(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=9)\n job_id = models.CharField(max_length=100, blank=True, null=True)\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_job')\n smsblast = models.ForeignKey(SMSBlast, on_delete=models.CASCADE, related_name='smsblast_job')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSBlastJob.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"SMSJOB\" + \"{0:03d}\".format(max)\n super().save(*kwargs)\n\nclass SMSStatus(models.Model):\n id = models.CharField(primary_key=True, editable=False, max_length=10)\n job = models.ForeignKey(SMSBlastJob, on_delete=models.CASCADE, related_name='job_status')\n contact = models.ForeignKey(Contact, on_delete=models.CASCADE, related_name='contact_status')\n status = models.FileField(upload_to='pickles/status/')\n\n def __str__(self):\n return self.job_id\n\n def save(self, **kwargs):\n if not self.id:\n max = SMSStatus.objects.aggregate(id_max=Max('id'))['id_max']\n if max is not None:\n max = max[-3:]\n max = int(max)\n max += 1\n else:\n max = 1\n self.id = \"SMSSTAT\" + \"{0:03d}\".format(max)\n super().save(*kwargs)", "step-ids": [ 38, 40, 46, 50, 55 ] }
[ 38, 40, 46, 50, 55 ]
# -*- coding: utf-8 -*- """ helpers ~~~~~~~ Implements various helper functions. :copyright: (c) 2016 by Patrick Spencer. :license: Apache 2.0, see LICENSE for more details. """ from datetime import datetime, timedelta import calendar def month_bounds(year, month): """ Returns a tuple of datetime objects (month_start,month_end) given a year and month. Both params are strings because we want month to be a two digit month representation and python doesn't handle leading zeros in integers as we want. :param year: four digit year as a string e.g. "2016" :param month: 2 digit month as a string e.g. 2 for February, 11 for November """ year = int(year) month = int(month) month_start = datetime.strptime('%s,%s,1' % (year, month),'%Y,%m,%d') # days_in_month returns a tuple(weekday, days) where # weekday is the eekday the month starts on and days is the number of days in the month days_in_month = calendar.monthrange(year,month) month_end = month_start + timedelta(days=days_in_month[1]-1) return (month_start, month_end)
normal
{ "blob_id": "4c5416582afb3cfeb56259954cda2701ea26f8cd", "index": 7780, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef month_bounds(year, month):\n \"\"\"\n Returns a tuple of datetime objects (month_start,month_end) given a year and month.\n Both params are strings because we want month to be a two digit month representation\n and python doesn't handle leading zeros in integers as we want.\n\n :param year: four digit year as a string e.g. \"2016\"\n :param month: 2 digit month as a string e.g. 2 for February, 11 for November\n \"\"\"\n year = int(year)\n month = int(month)\n month_start = datetime.strptime('%s,%s,1' % (year, month), '%Y,%m,%d')\n days_in_month = calendar.monthrange(year, month)\n month_end = month_start + timedelta(days=days_in_month[1] - 1)\n return month_start, month_end\n", "step-3": "<mask token>\nfrom datetime import datetime, timedelta\nimport calendar\n\n\ndef month_bounds(year, month):\n \"\"\"\n Returns a tuple of datetime objects (month_start,month_end) given a year and month.\n Both params are strings because we want month to be a two digit month representation\n and python doesn't handle leading zeros in integers as we want.\n\n :param year: four digit year as a string e.g. \"2016\"\n :param month: 2 digit month as a string e.g. 2 for February, 11 for November\n \"\"\"\n year = int(year)\n month = int(month)\n month_start = datetime.strptime('%s,%s,1' % (year, month), '%Y,%m,%d')\n days_in_month = calendar.monthrange(year, month)\n month_end = month_start + timedelta(days=days_in_month[1] - 1)\n return month_start, month_end\n", "step-4": "# -*- coding: utf-8 -*-\n\"\"\"\n helpers\n ~~~~~~~\n Implements various helper functions.\n\n :copyright: (c) 2016 by Patrick Spencer.\n :license: Apache 2.0, see LICENSE for more details.\n\"\"\"\n\nfrom datetime import datetime, timedelta\nimport calendar\n\ndef month_bounds(year, month):\n \"\"\"\n Returns a tuple of datetime objects (month_start,month_end) given a year and month.\n Both params are strings because we want month to be a two digit month representation\n and python doesn't handle leading zeros in integers as we want.\n\n :param year: four digit year as a string e.g. \"2016\"\n :param month: 2 digit month as a string e.g. 2 for February, 11 for November\n \"\"\"\n year = int(year)\n month = int(month)\n month_start = datetime.strptime('%s,%s,1' % (year, month),'%Y,%m,%d')\n # days_in_month returns a tuple(weekday, days) where\n # weekday is the eekday the month starts on and days is the number of days in the month\n days_in_month = calendar.monthrange(year,month)\n month_end = month_start + timedelta(days=days_in_month[1]-1)\n return (month_start, month_end)\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class EventSerializer(ModelSerializer): class Meta: model = Event fields = '__all__' class HolidaySerializerRead(ModelSerializer): country = CountrySerializer() class Meta: model = Holiday fields = '__all__' class HolidaySerializerWrite(ModelSerializer): class Meta: model = Holiday fields = '__all__' <|reserved_special_token_1|> <|reserved_special_token_0|> class UserSerializer(ModelSerializer): class Meta: model = User fields = '__all__' class EventSerializer(ModelSerializer): class Meta: model = Event fields = '__all__' class HolidaySerializerRead(ModelSerializer): country = CountrySerializer() class Meta: model = Holiday fields = '__all__' class HolidaySerializerWrite(ModelSerializer): class Meta: model = Holiday fields = '__all__' <|reserved_special_token_1|> <|reserved_special_token_0|> class CountrySerializer(ModelSerializer): class Meta: model = Country fields = '__all__' class UserSerializer(ModelSerializer): class Meta: model = User fields = '__all__' class EventSerializer(ModelSerializer): class Meta: model = Event fields = '__all__' class HolidaySerializerRead(ModelSerializer): country = CountrySerializer() class Meta: model = Holiday fields = '__all__' class HolidaySerializerWrite(ModelSerializer): class Meta: model = Holiday fields = '__all__' <|reserved_special_token_1|> from django.contrib.auth.models import User from rest_framework.serializers import ModelSerializer from app_calendar.models import Holiday, Country, Event, User class CountrySerializer(ModelSerializer): class Meta: model = Country fields = '__all__' class UserSerializer(ModelSerializer): class Meta: model = User fields = '__all__' class EventSerializer(ModelSerializer): class Meta: model = Event fields = '__all__' class HolidaySerializerRead(ModelSerializer): country = CountrySerializer() class Meta: model = Holiday fields = '__all__' class HolidaySerializerWrite(ModelSerializer): class Meta: model = Holiday fields = '__all__'
flexible
{ "blob_id": "5b366b0f6813f686600df9da4a17f190f034a10c", "index": 2046, "step-1": "<mask token>\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-2": "<mask token>\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-3": "<mask token>\n\n\nclass CountrySerializer(ModelSerializer):\n\n\n class Meta:\n model = Country\n fields = '__all__'\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-4": "from django.contrib.auth.models import User\nfrom rest_framework.serializers import ModelSerializer\nfrom app_calendar.models import Holiday, Country, Event, User\n\n\nclass CountrySerializer(ModelSerializer):\n\n\n class Meta:\n model = Country\n fields = '__all__'\n\n\nclass UserSerializer(ModelSerializer):\n\n\n class Meta:\n model = User\n fields = '__all__'\n\n\nclass EventSerializer(ModelSerializer):\n\n\n class Meta:\n model = Event\n fields = '__all__'\n\n\nclass HolidaySerializerRead(ModelSerializer):\n country = CountrySerializer()\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n\n\nclass HolidaySerializerWrite(ModelSerializer):\n\n\n class Meta:\n model = Holiday\n fields = '__all__'\n", "step-5": null, "step-ids": [ 4, 5, 6, 7 ] }
[ 4, 5, 6, 7 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> print('2 + 3 * 4 =') print(2 + 3 * 4) print('2 + (3 * 4) = ') print(2 + 3 * 4) <|reserved_special_token_1|> print("2 + 3 * 4 =") print(2 + 3 * 4) print("2 + (3 * 4) = ") print(2 + (3 * 4))
flexible
{ "blob_id": "58d137d614a0d5c11bf4325c1ade13f4f4f89f52", "index": 3184, "step-1": "<mask token>\n", "step-2": "print('2 + 3 * 4 =')\nprint(2 + 3 * 4)\nprint('2 + (3 * 4) = ')\nprint(2 + 3 * 4)\n", "step-3": "print(\"2 + 3 * 4 =\")\nprint(2 + 3 * 4)\n\nprint(\"2 + (3 * 4) = \")\nprint(2 + (3 * 4))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def get_api_router(): api_router = APIRouter() api_router.include_router(submissions.router, prefix='/submissions', tags=['submissions']) return api_router <|reserved_special_token_1|> from fastapi import APIRouter from .endpoints import submissions def get_api_router(): api_router = APIRouter() api_router.include_router(submissions.router, prefix='/submissions', tags=['submissions']) return api_router <|reserved_special_token_1|> from fastapi import APIRouter from .endpoints import submissions def get_api_router(): api_router = APIRouter() api_router.include_router(submissions.router, prefix="/submissions", tags=["submissions"]) # api_router.include_router(users.router, prefix="/users", tags=["users"]) return api_router
flexible
{ "blob_id": "844c9af4f0d4ca33e7c69b72f9886f58ceebefdb", "index": 2719, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_api_router():\n api_router = APIRouter()\n api_router.include_router(submissions.router, prefix='/submissions',\n tags=['submissions'])\n return api_router\n", "step-3": "from fastapi import APIRouter\nfrom .endpoints import submissions\n\n\ndef get_api_router():\n api_router = APIRouter()\n api_router.include_router(submissions.router, prefix='/submissions',\n tags=['submissions'])\n return api_router\n", "step-4": "from fastapi import APIRouter\n\nfrom .endpoints import submissions\n\n\ndef get_api_router():\n api_router = APIRouter()\n api_router.include_router(submissions.router,\n prefix=\"/submissions\",\n tags=[\"submissions\"])\n # api_router.include_router(users.router, prefix=\"/users\", tags=[\"users\"])\n return api_router\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> __title__ = 'FUCKTHEINTRUDERS' __description__ = 'Checking for Intruders in my locality' __version__ = '0.0.1' __author__ = 'Shivam Jalotra' __email__ = '[email protected]' __license__ = 'MIT 1.0'
flexible
{ "blob_id": "ba94a69ac356969ab593afc922a2517f4713771f", "index": 5536, "step-1": "<mask token>\n", "step-2": "__title__ = 'FUCKTHEINTRUDERS'\n__description__ = 'Checking for Intruders in my locality'\n__version__ = '0.0.1'\n__author__ = 'Shivam Jalotra'\n__email__ = '[email protected]'\n__license__ = 'MIT 1.0'\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
## # hunt_and_kill.py # 05 Oct 2021 # Generates a maze using the hunt and kill algorithm # S from sys import argv from enum import Enum import random # Cardinal directions, can be OR'd and AND'd DIRS = { 'N': 1 << 0, 'E': 1 << 1, 'S': 1 << 2, 'W': 1 << 3 } O_DIRS = { 'N': 'S', 'E': 'W', 'S': 'N', 'W': 'E' } def init_maze(width: int, height: int) -> list[int]: """ Set up a 2D list with 0 as starting value. Basically an empty maze """ return [0] * width * height def walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]) -> None: """ Does a random walk, setting the cells as it goes, until it cant find a path. """ # Shortcut for accessing maze maze_idx = lambda p: p[1] * width + p[0] # Shortcut funcs for surrounding points north = lambda p: (p[0] , p[1] -1) east = lambda p: (p[0] +1, p[1] ) south = lambda p: (p[0] , p[1] +1) west = lambda p: (p[0] -1, p[1] ) def check_neighbours(pt, visited=False) -> list[tuple[int, int]]: """ Returns a list of possible neighbours. Can pass arg to only count visited neighbours """ # Points will be added to this list if they havent been traversed yet possible_points = dict() # -- NORTH p_pt = north(pt) # This mess of a condition will evaluate to true if the cell is visited and the user is asking for a visited cell. Viceversa. if pt[1] > 0 and (bool(maze[maze_idx(p_pt)]) == (False or visited)): possible_points[p_pt] = "N" # -- EAST p_pt = east(pt) if pt[0] < width - 1 and (bool(maze[maze_idx(p_pt)]) == (False or visited)): possible_points[p_pt] = "E" # -- SOUTH p_pt = south(pt) if pt[1] < height - 1 and (bool(maze[maze_idx(p_pt)]) == (False or visited)): possible_points[p_pt] = "S" # -- WEST p_pt = west(pt) if pt[0] > 0 and (bool(maze[maze_idx(p_pt)]) == (False or visited)): possible_points[p_pt] = "W" return possible_points # First, connect to a random neighbour that has been visited. starting_n = check_neighbours(start, True) if starting_n: neigh, dire = random.choice(tuple(starting_n.items())) maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]] maze[maze_idx(start)] |= DIRS[dire] step = start # Walk randomly until out of options while possible_n := check_neighbours(step): next_step, direction = random.choice(tuple(possible_n.items())) # Connect the two cells maze[maze_idx(step)] |= DIRS[direction] maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]] # Go to next step = next_step def gen_maze(width: int, height: int) -> list[int]: maze = init_maze(width, height) maze_idx = lambda p: p[1] * width + p[0] for y in range(height): for x in range(width): if not maze[maze_idx((x, y))]: walk_maze(maze, width, height, (x, y)) return maze def print_maze(maze: list[int], width: int, height: int) -> None: """ Print an ASCII maze!!!! Maybe works?? """ maze_idx = lambda p: p[1] * width + p[0] # top row print(' ' + '_' * (2 * width - 1)) for y in range(height): for x in range(width): # left wall if maze[maze_idx((x, y))] & DIRS["W"]: # leave wall open if you can also go down if maze[maze_idx((x, y))] & DIRS["S"]: print(' ', end='') else: print('_', end='') else: print('|', end='') if maze[maze_idx((x, y))] & DIRS["S"]: print(' ', end='') else: print('_', end='') # right wall print('|') def main(): width = height = 10 if len(argv) > 2: width = int(argv[1]) height = int(argv[2]) print(f"Generating maze size {width}x{height}") maze = gen_maze(width, height) print_maze(maze, width, height) return maze if __name__ == "__main__": main()
normal
{ "blob_id": "54002bc7e2a1991d2405acbe1d399e8803ac5582", "index": 7210, "step-1": "<mask token>\n\n\ndef walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]\n ) ->None:\n \"\"\"\n Does a random walk, setting the cells as it goes, until it cant find a\n path.\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n north = lambda p: (p[0], p[1] - 1)\n east = lambda p: (p[0] + 1, p[1])\n south = lambda p: (p[0], p[1] + 1)\n west = lambda p: (p[0] - 1, p[1])\n\n def check_neighbours(pt, visited=False) ->list[tuple[int, int]]:\n \"\"\"\n Returns a list of possible neighbours.\n Can pass arg to only count visited neighbours\n \"\"\"\n possible_points = dict()\n p_pt = north(pt)\n if pt[1] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'N'\n p_pt = east(pt)\n if pt[0] < width - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'E'\n p_pt = south(pt)\n if pt[1] < height - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'S'\n p_pt = west(pt)\n if pt[0] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'W'\n return possible_points\n starting_n = check_neighbours(start, True)\n if starting_n:\n neigh, dire = random.choice(tuple(starting_n.items()))\n maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]]\n maze[maze_idx(start)] |= DIRS[dire]\n step = start\n while (possible_n := check_neighbours(step)):\n next_step, direction = random.choice(tuple(possible_n.items()))\n maze[maze_idx(step)] |= DIRS[direction]\n maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]]\n step = next_step\n\n\ndef gen_maze(width: int, height: int) ->list[int]:\n maze = init_maze(width, height)\n maze_idx = lambda p: p[1] * width + p[0]\n for y in range(height):\n for x in range(width):\n if not maze[maze_idx((x, y))]:\n walk_maze(maze, width, height, (x, y))\n return maze\n\n\ndef print_maze(maze: list[int], width: int, height: int) ->None:\n \"\"\"\n Print an ASCII maze!!!! Maybe works??\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n print(' ' + '_' * (2 * width - 1))\n for y in range(height):\n for x in range(width):\n if maze[maze_idx((x, y))] & DIRS['W']:\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n else:\n print('|', end='')\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n print('|')\n\n\ndef main():\n width = height = 10\n if len(argv) > 2:\n width = int(argv[1])\n height = int(argv[2])\n print(f'Generating maze size {width}x{height}')\n maze = gen_maze(width, height)\n print_maze(maze, width, height)\n return maze\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef init_maze(width: int, height: int) ->list[int]:\n \"\"\"\n Set up a 2D list with 0 as starting value. Basically an empty maze\n \"\"\"\n return [0] * width * height\n\n\ndef walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]\n ) ->None:\n \"\"\"\n Does a random walk, setting the cells as it goes, until it cant find a\n path.\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n north = lambda p: (p[0], p[1] - 1)\n east = lambda p: (p[0] + 1, p[1])\n south = lambda p: (p[0], p[1] + 1)\n west = lambda p: (p[0] - 1, p[1])\n\n def check_neighbours(pt, visited=False) ->list[tuple[int, int]]:\n \"\"\"\n Returns a list of possible neighbours.\n Can pass arg to only count visited neighbours\n \"\"\"\n possible_points = dict()\n p_pt = north(pt)\n if pt[1] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'N'\n p_pt = east(pt)\n if pt[0] < width - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'E'\n p_pt = south(pt)\n if pt[1] < height - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'S'\n p_pt = west(pt)\n if pt[0] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'W'\n return possible_points\n starting_n = check_neighbours(start, True)\n if starting_n:\n neigh, dire = random.choice(tuple(starting_n.items()))\n maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]]\n maze[maze_idx(start)] |= DIRS[dire]\n step = start\n while (possible_n := check_neighbours(step)):\n next_step, direction = random.choice(tuple(possible_n.items()))\n maze[maze_idx(step)] |= DIRS[direction]\n maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]]\n step = next_step\n\n\ndef gen_maze(width: int, height: int) ->list[int]:\n maze = init_maze(width, height)\n maze_idx = lambda p: p[1] * width + p[0]\n for y in range(height):\n for x in range(width):\n if not maze[maze_idx((x, y))]:\n walk_maze(maze, width, height, (x, y))\n return maze\n\n\ndef print_maze(maze: list[int], width: int, height: int) ->None:\n \"\"\"\n Print an ASCII maze!!!! Maybe works??\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n print(' ' + '_' * (2 * width - 1))\n for y in range(height):\n for x in range(width):\n if maze[maze_idx((x, y))] & DIRS['W']:\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n else:\n print('|', end='')\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n print('|')\n\n\ndef main():\n width = height = 10\n if len(argv) > 2:\n width = int(argv[1])\n height = int(argv[2])\n print(f'Generating maze size {width}x{height}')\n maze = gen_maze(width, height)\n print_maze(maze, width, height)\n return maze\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nDIRS = {'N': 1 << 0, 'E': 1 << 1, 'S': 1 << 2, 'W': 1 << 3}\nO_DIRS = {'N': 'S', 'E': 'W', 'S': 'N', 'W': 'E'}\n\n\ndef init_maze(width: int, height: int) ->list[int]:\n \"\"\"\n Set up a 2D list with 0 as starting value. Basically an empty maze\n \"\"\"\n return [0] * width * height\n\n\ndef walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]\n ) ->None:\n \"\"\"\n Does a random walk, setting the cells as it goes, until it cant find a\n path.\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n north = lambda p: (p[0], p[1] - 1)\n east = lambda p: (p[0] + 1, p[1])\n south = lambda p: (p[0], p[1] + 1)\n west = lambda p: (p[0] - 1, p[1])\n\n def check_neighbours(pt, visited=False) ->list[tuple[int, int]]:\n \"\"\"\n Returns a list of possible neighbours.\n Can pass arg to only count visited neighbours\n \"\"\"\n possible_points = dict()\n p_pt = north(pt)\n if pt[1] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'N'\n p_pt = east(pt)\n if pt[0] < width - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'E'\n p_pt = south(pt)\n if pt[1] < height - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'S'\n p_pt = west(pt)\n if pt[0] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'W'\n return possible_points\n starting_n = check_neighbours(start, True)\n if starting_n:\n neigh, dire = random.choice(tuple(starting_n.items()))\n maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]]\n maze[maze_idx(start)] |= DIRS[dire]\n step = start\n while (possible_n := check_neighbours(step)):\n next_step, direction = random.choice(tuple(possible_n.items()))\n maze[maze_idx(step)] |= DIRS[direction]\n maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]]\n step = next_step\n\n\ndef gen_maze(width: int, height: int) ->list[int]:\n maze = init_maze(width, height)\n maze_idx = lambda p: p[1] * width + p[0]\n for y in range(height):\n for x in range(width):\n if not maze[maze_idx((x, y))]:\n walk_maze(maze, width, height, (x, y))\n return maze\n\n\ndef print_maze(maze: list[int], width: int, height: int) ->None:\n \"\"\"\n Print an ASCII maze!!!! Maybe works??\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n print(' ' + '_' * (2 * width - 1))\n for y in range(height):\n for x in range(width):\n if maze[maze_idx((x, y))] & DIRS['W']:\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n else:\n print('|', end='')\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n print('|')\n\n\ndef main():\n width = height = 10\n if len(argv) > 2:\n width = int(argv[1])\n height = int(argv[2])\n print(f'Generating maze size {width}x{height}')\n maze = gen_maze(width, height)\n print_maze(maze, width, height)\n return maze\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from sys import argv\nfrom enum import Enum\nimport random\nDIRS = {'N': 1 << 0, 'E': 1 << 1, 'S': 1 << 2, 'W': 1 << 3}\nO_DIRS = {'N': 'S', 'E': 'W', 'S': 'N', 'W': 'E'}\n\n\ndef init_maze(width: int, height: int) ->list[int]:\n \"\"\"\n Set up a 2D list with 0 as starting value. Basically an empty maze\n \"\"\"\n return [0] * width * height\n\n\ndef walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]\n ) ->None:\n \"\"\"\n Does a random walk, setting the cells as it goes, until it cant find a\n path.\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n north = lambda p: (p[0], p[1] - 1)\n east = lambda p: (p[0] + 1, p[1])\n south = lambda p: (p[0], p[1] + 1)\n west = lambda p: (p[0] - 1, p[1])\n\n def check_neighbours(pt, visited=False) ->list[tuple[int, int]]:\n \"\"\"\n Returns a list of possible neighbours.\n Can pass arg to only count visited neighbours\n \"\"\"\n possible_points = dict()\n p_pt = north(pt)\n if pt[1] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'N'\n p_pt = east(pt)\n if pt[0] < width - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'E'\n p_pt = south(pt)\n if pt[1] < height - 1 and bool(maze[maze_idx(p_pt)]) == (False or\n visited):\n possible_points[p_pt] = 'S'\n p_pt = west(pt)\n if pt[0] > 0 and bool(maze[maze_idx(p_pt)]) == (False or visited):\n possible_points[p_pt] = 'W'\n return possible_points\n starting_n = check_neighbours(start, True)\n if starting_n:\n neigh, dire = random.choice(tuple(starting_n.items()))\n maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]]\n maze[maze_idx(start)] |= DIRS[dire]\n step = start\n while (possible_n := check_neighbours(step)):\n next_step, direction = random.choice(tuple(possible_n.items()))\n maze[maze_idx(step)] |= DIRS[direction]\n maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]]\n step = next_step\n\n\ndef gen_maze(width: int, height: int) ->list[int]:\n maze = init_maze(width, height)\n maze_idx = lambda p: p[1] * width + p[0]\n for y in range(height):\n for x in range(width):\n if not maze[maze_idx((x, y))]:\n walk_maze(maze, width, height, (x, y))\n return maze\n\n\ndef print_maze(maze: list[int], width: int, height: int) ->None:\n \"\"\"\n Print an ASCII maze!!!! Maybe works??\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n print(' ' + '_' * (2 * width - 1))\n for y in range(height):\n for x in range(width):\n if maze[maze_idx((x, y))] & DIRS['W']:\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n else:\n print('|', end='')\n if maze[maze_idx((x, y))] & DIRS['S']:\n print(' ', end='')\n else:\n print('_', end='')\n print('|')\n\n\ndef main():\n width = height = 10\n if len(argv) > 2:\n width = int(argv[1])\n height = int(argv[2])\n print(f'Generating maze size {width}x{height}')\n maze = gen_maze(width, height)\n print_maze(maze, width, height)\n return maze\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "##\n# hunt_and_kill.py\n# 05 Oct 2021\n# Generates a maze using the hunt and kill algorithm\n# S\nfrom sys import argv\nfrom enum import Enum\nimport random\n\n# Cardinal directions, can be OR'd and AND'd\nDIRS = {\n 'N': 1 << 0,\n 'E': 1 << 1,\n 'S': 1 << 2,\n 'W': 1 << 3\n}\n\nO_DIRS = {\n 'N': 'S',\n 'E': 'W',\n 'S': 'N',\n 'W': 'E'\n}\n\ndef init_maze(width: int, height: int) -> list[int]:\n \"\"\"\n Set up a 2D list with 0 as starting value. Basically an empty maze\n \"\"\"\n return [0] * width * height\n\n\ndef walk_maze(maze: list[int], width: int, height: int, start: tuple[int, int]) -> None:\n \"\"\"\n Does a random walk, setting the cells as it goes, until it cant find a\n path.\n \"\"\"\n # Shortcut for accessing maze\n maze_idx = lambda p: p[1] * width + p[0]\n\n # Shortcut funcs for surrounding points\n north = lambda p: (p[0] , p[1] -1)\n east = lambda p: (p[0] +1, p[1] )\n south = lambda p: (p[0] , p[1] +1)\n west = lambda p: (p[0] -1, p[1] )\n\n def check_neighbours(pt, visited=False) -> list[tuple[int, int]]:\n \"\"\"\n Returns a list of possible neighbours.\n Can pass arg to only count visited neighbours\n \"\"\"\n # Points will be added to this list if they havent been traversed yet\n possible_points = dict()\n\n # -- NORTH\n p_pt = north(pt)\n # This mess of a condition will evaluate to true if the cell is visited and the user is asking for a visited cell. Viceversa.\n if pt[1] > 0 and (bool(maze[maze_idx(p_pt)]) == (False or visited)):\n possible_points[p_pt] = \"N\"\n\n # -- EAST\n p_pt = east(pt)\n if pt[0] < width - 1 and (bool(maze[maze_idx(p_pt)]) == (False or visited)):\n possible_points[p_pt] = \"E\"\n\n # -- SOUTH\n p_pt = south(pt)\n if pt[1] < height - 1 and (bool(maze[maze_idx(p_pt)]) == (False or visited)):\n possible_points[p_pt] = \"S\"\n\n # -- WEST\n p_pt = west(pt)\n if pt[0] > 0 and (bool(maze[maze_idx(p_pt)]) == (False or visited)):\n possible_points[p_pt] = \"W\"\n\n return possible_points\n\n # First, connect to a random neighbour that has been visited.\n starting_n = check_neighbours(start, True)\n if starting_n:\n neigh, dire = random.choice(tuple(starting_n.items()))\n\n maze[maze_idx(neigh)] |= DIRS[O_DIRS[dire]]\n maze[maze_idx(start)] |= DIRS[dire]\n\n step = start\n\n # Walk randomly until out of options\n while possible_n := check_neighbours(step):\n next_step, direction = random.choice(tuple(possible_n.items()))\n\n # Connect the two cells\n maze[maze_idx(step)] |= DIRS[direction]\n maze[maze_idx(next_step)] |= DIRS[O_DIRS[direction]]\n\n # Go to next\n step = next_step\n\n\n\ndef gen_maze(width: int, height: int) -> list[int]:\n maze = init_maze(width, height)\n\n maze_idx = lambda p: p[1] * width + p[0]\n for y in range(height):\n for x in range(width):\n if not maze[maze_idx((x, y))]:\n walk_maze(maze, width, height, (x, y))\n\n return maze\n\ndef print_maze(maze: list[int], width: int, height: int) -> None:\n \"\"\"\n Print an ASCII maze!!!! Maybe works??\n \"\"\"\n maze_idx = lambda p: p[1] * width + p[0]\n\n # top row\n print(' ' + '_' * (2 * width - 1))\n\n for y in range(height):\n for x in range(width):\n # left wall\n if maze[maze_idx((x, y))] & DIRS[\"W\"]:\n # leave wall open if you can also go down\n if maze[maze_idx((x, y))] & DIRS[\"S\"]:\n print(' ', end='')\n else:\n print('_', end='')\n\n else:\n print('|', end='')\n\n if maze[maze_idx((x, y))] & DIRS[\"S\"]:\n print(' ', end='')\n else:\n print('_', end='')\n # right wall\n print('|')\n\ndef main():\n width = height = 10\n if len(argv) > 2:\n width = int(argv[1])\n height = int(argv[2])\n\n print(f\"Generating maze size {width}x{height}\")\n maze = gen_maze(width, height)\n print_maze(maze, width, height)\n return maze\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
class Player: def __init__(self, hp=100, atk=100): self.hp = hp self.atk = atk <|reserved_special_token_0|> <|reserved_special_token_0|> class Enemy: def __init__(self, hp=100, atk=99): self.hp = hp self.atk = atk def damage(self, value): print('敌人:啊') self.hp -= value if self.hp <= 0: print('电脑:敌人死亡,播放动画') def attack(self, player): print('电脑:敌人攻击玩家') player.damage(self.atk) <|reserved_special_token_0|> <|reserved_special_token_1|> class Player: def __init__(self, hp=100, atk=100): self.hp = hp self.atk = atk def attack(self, enemy): print('电脑:玩家攻击敌人') enemy.damage(self.atk) <|reserved_special_token_0|> class Enemy: def __init__(self, hp=100, atk=99): self.hp = hp self.atk = atk def damage(self, value): print('敌人:啊') self.hp -= value if self.hp <= 0: print('电脑:敌人死亡,播放动画') def attack(self, player): print('电脑:敌人攻击玩家') player.damage(self.atk) <|reserved_special_token_0|> <|reserved_special_token_1|> class Player: def __init__(self, hp=100, atk=100): self.hp = hp self.atk = atk def attack(self, enemy): print('电脑:玩家攻击敌人') enemy.damage(self.atk) def damage(self, value): print('玩家:我去') self.hp -= value if self.hp <= 0: print('敌人:你真菜') class Enemy: def __init__(self, hp=100, atk=99): self.hp = hp self.atk = atk def damage(self, value): print('敌人:啊') self.hp -= value if self.hp <= 0: print('电脑:敌人死亡,播放动画') def attack(self, player): print('电脑:敌人攻击玩家') player.damage(self.atk) <|reserved_special_token_0|> <|reserved_special_token_1|> class Player: def __init__(self, hp=100, atk=100): self.hp = hp self.atk = atk def attack(self, enemy): print('电脑:玩家攻击敌人') enemy.damage(self.atk) def damage(self, value): print('玩家:我去') self.hp -= value if self.hp <= 0: print('敌人:你真菜') class Enemy: def __init__(self, hp=100, atk=99): self.hp = hp self.atk = atk def damage(self, value): print('敌人:啊') self.hp -= value if self.hp <= 0: print('电脑:敌人死亡,播放动画') def attack(self, player): print('电脑:敌人攻击玩家') player.damage(self.atk) <|reserved_special_token_0|> p01.attack(e01) e01.attack(p01) e01.attack(p01) <|reserved_special_token_1|> # 玩家(攻击力)攻击敌人(血量)敌人受伤(减血)可能死亡(播放动画) # 敌人攻击玩家 玩家受伤(减血 碎屏) 可能死亡(游戏结束) # class Player: # def __init__(self,name,hp,atk): # self.name = name # self.hp = hp # self.atk = atk # # @property # def hp(self): # return self.__hp # @hp.setter # def hp(self,value): # if 0<=value<=100: # self.__hp = value # else: # raise ValueError('血量不在区间内') # # @property # def atk(self): # return self.__atk # # @atk.setter # def atk(self, value): # if 0 <= value <= 50: # self.__atk = value # else: # raise ValueError('攻击力不在区间内') # # # class Enemy: # def __init__(self, e_name, e_hp, e_atk): # self.e_name = e_name # self.e_hp = e_hp # self.e_atk = e_atk # # @property # def e_hp(self): # return self.__e_hp # # @e_hp.setter # def e_hp(self, value): # if 0 <= value <= 100: # self.__e_hp = value # else: # raise ValueError('血量不在区间内') # # @property # def e_atk(self): # return self.__e_atk # # @e_atk.setter # def e_atk(self, value): # if 0 <= value <= 20: # self.__e_atk = value # else: # raise ValueError('攻击力不在区间内') # # # # p1 = Player('悟空',100,20) # e1 = Enemy('妖怪',40,10) # # #1.玩家(攻击力)攻击敌人(血量)敌人受伤(减血)可能死亡(播放动画) # print('1.玩家攻击敌人:') # def p_atk_e(): # count = 0 # while True: # e1.e_hp -= p1.atk # count += 1 # if e1.e_hp >0: # print('玩家攻击%d次,敌人血量减少到%d' % # (count,e1.e_hp)) # elif e1.e_hp == 0: # print('玩家攻击%d次,敌人死亡,播放动画' % count) # break # # p_atk_e() # # # 2.敌人攻击玩家 玩家受伤(减血 碎屏) 可能死亡(游戏结束) # print('2.敌人攻击玩家:') # def e_atk_p(): # count = 0 # while True: # p1.hp -= e1.e_atk # count += 1 # if p1.hp >0: # print('敌人攻击%d次,玩家血量减少到%d' % # (count,p1.hp)) # elif p1.hp == 0: # print('敌人攻击%d次,玩家死亡,游戏结束' % count) # break # e_atk_p() #玩家类 class Player: def __init__(self,hp = 100,atk = 100): self.hp = hp self.atk = atk def attack(self,enemy): print('电脑:玩家攻击敌人') enemy.damage(self.atk) def damage(self,value): print('玩家:我去') #敌人减血 self.hp -= value #可能死亡 if self.hp <= 0: print('敌人:你真菜') #敌人类 class Enemy: def __init__(self,hp = 100,atk = 99): self.hp = hp self.atk = atk def damage(self,value): print('敌人:啊') #玩家减血 self.hp -= value #可能死亡 if self.hp <= 0: print('电脑:敌人死亡,播放动画') def attack(self,player): print('电脑:敌人攻击玩家') player.damage(self.atk) p01 = Player() e01 = Enemy() p01.attack(e01) e01.attack(p01) e01.attack(p01)
flexible
{ "blob_id": "3065c87f79433e9fbbd2ff45c2915dfd5b1fa7cc", "index": 8427, "step-1": "class Player:\n\n def __init__(self, hp=100, atk=100):\n self.hp = hp\n self.atk = atk\n <mask token>\n <mask token>\n\n\nclass Enemy:\n\n def __init__(self, hp=100, atk=99):\n self.hp = hp\n self.atk = atk\n\n def damage(self, value):\n print('敌人:啊')\n self.hp -= value\n if self.hp <= 0:\n print('电脑:敌人死亡,播放动画')\n\n def attack(self, player):\n print('电脑:敌人攻击玩家')\n player.damage(self.atk)\n\n\n<mask token>\n", "step-2": "class Player:\n\n def __init__(self, hp=100, atk=100):\n self.hp = hp\n self.atk = atk\n\n def attack(self, enemy):\n print('电脑:玩家攻击敌人')\n enemy.damage(self.atk)\n <mask token>\n\n\nclass Enemy:\n\n def __init__(self, hp=100, atk=99):\n self.hp = hp\n self.atk = atk\n\n def damage(self, value):\n print('敌人:啊')\n self.hp -= value\n if self.hp <= 0:\n print('电脑:敌人死亡,播放动画')\n\n def attack(self, player):\n print('电脑:敌人攻击玩家')\n player.damage(self.atk)\n\n\n<mask token>\n", "step-3": "class Player:\n\n def __init__(self, hp=100, atk=100):\n self.hp = hp\n self.atk = atk\n\n def attack(self, enemy):\n print('电脑:玩家攻击敌人')\n enemy.damage(self.atk)\n\n def damage(self, value):\n print('玩家:我去')\n self.hp -= value\n if self.hp <= 0:\n print('敌人:你真菜')\n\n\nclass Enemy:\n\n def __init__(self, hp=100, atk=99):\n self.hp = hp\n self.atk = atk\n\n def damage(self, value):\n print('敌人:啊')\n self.hp -= value\n if self.hp <= 0:\n print('电脑:敌人死亡,播放动画')\n\n def attack(self, player):\n print('电脑:敌人攻击玩家')\n player.damage(self.atk)\n\n\n<mask token>\n", "step-4": "class Player:\n\n def __init__(self, hp=100, atk=100):\n self.hp = hp\n self.atk = atk\n\n def attack(self, enemy):\n print('电脑:玩家攻击敌人')\n enemy.damage(self.atk)\n\n def damage(self, value):\n print('玩家:我去')\n self.hp -= value\n if self.hp <= 0:\n print('敌人:你真菜')\n\n\nclass Enemy:\n\n def __init__(self, hp=100, atk=99):\n self.hp = hp\n self.atk = atk\n\n def damage(self, value):\n print('敌人:啊')\n self.hp -= value\n if self.hp <= 0:\n print('电脑:敌人死亡,播放动画')\n\n def attack(self, player):\n print('电脑:敌人攻击玩家')\n player.damage(self.atk)\n\n\n<mask token>\np01.attack(e01)\ne01.attack(p01)\ne01.attack(p01)\n", "step-5": "# 玩家(攻击力)攻击敌人(血量)敌人受伤(减血)可能死亡(播放动画)\n# 敌人攻击玩家 玩家受伤(减血 碎屏) 可能死亡(游戏结束)\n\n# class Player:\n# def __init__(self,name,hp,atk):\n# self.name = name\n# self.hp = hp\n# self.atk = atk\n#\n# @property\n# def hp(self):\n# return self.__hp\n# @hp.setter\n# def hp(self,value):\n# if 0<=value<=100:\n# self.__hp = value\n# else:\n# raise ValueError('血量不在区间内')\n#\n# @property\n# def atk(self):\n# return self.__atk\n#\n# @atk.setter\n# def atk(self, value):\n# if 0 <= value <= 50:\n# self.__atk = value\n# else:\n# raise ValueError('攻击力不在区间内')\n#\n#\n# class Enemy:\n# def __init__(self, e_name, e_hp, e_atk):\n# self.e_name = e_name\n# self.e_hp = e_hp\n# self.e_atk = e_atk\n#\n# @property\n# def e_hp(self):\n# return self.__e_hp\n#\n# @e_hp.setter\n# def e_hp(self, value):\n# if 0 <= value <= 100:\n# self.__e_hp = value\n# else:\n# raise ValueError('血量不在区间内')\n#\n# @property\n# def e_atk(self):\n# return self.__e_atk\n#\n# @e_atk.setter\n# def e_atk(self, value):\n# if 0 <= value <= 20:\n# self.__e_atk = value\n# else:\n# raise ValueError('攻击力不在区间内')\n#\n#\n#\n# p1 = Player('悟空',100,20)\n# e1 = Enemy('妖怪',40,10)\n#\n# #1.玩家(攻击力)攻击敌人(血量)敌人受伤(减血)可能死亡(播放动画)\n# print('1.玩家攻击敌人:')\n# def p_atk_e():\n# count = 0\n# while True:\n# e1.e_hp -= p1.atk\n# count += 1\n# if e1.e_hp >0:\n# print('玩家攻击%d次,敌人血量减少到%d' %\n# (count,e1.e_hp))\n# elif e1.e_hp == 0:\n# print('玩家攻击%d次,敌人死亡,播放动画' % count)\n# break\n#\n# p_atk_e()\n#\n# # 2.敌人攻击玩家 玩家受伤(减血 碎屏) 可能死亡(游戏结束)\n# print('2.敌人攻击玩家:')\n# def e_atk_p():\n# count = 0\n# while True:\n# p1.hp -= e1.e_atk\n# count += 1\n# if p1.hp >0:\n# print('敌人攻击%d次,玩家血量减少到%d' %\n# (count,p1.hp))\n# elif p1.hp == 0:\n# print('敌人攻击%d次,玩家死亡,游戏结束' % count)\n# break\n# e_atk_p()\n\n\n#玩家类\nclass Player:\n def __init__(self,hp = 100,atk = 100):\n self.hp = hp\n self.atk = atk\n def attack(self,enemy):\n print('电脑:玩家攻击敌人')\n enemy.damage(self.atk)\n def damage(self,value):\n print('玩家:我去')\n #敌人减血\n self.hp -= value\n #可能死亡\n if self.hp <= 0:\n print('敌人:你真菜')\n\n#敌人类\nclass Enemy:\n def __init__(self,hp = 100,atk = 99):\n self.hp = hp\n self.atk = atk\n def damage(self,value):\n print('敌人:啊')\n #玩家减血\n self.hp -= value\n #可能死亡\n if self.hp <= 0:\n print('电脑:敌人死亡,播放动画')\n def attack(self,player):\n print('电脑:敌人攻击玩家')\n player.damage(self.atk)\n\np01 = Player()\ne01 = Enemy()\np01.attack(e01)\ne01.attack(p01)\ne01.attack(p01)\n", "step-ids": [ 6, 7, 8, 9, 11 ] }
[ 6, 7, 8, 9, 11 ]
#coding=utf-8 ######################################### # dbscan: # 用法说明:读取文件 # 生成路径文件及簇文件,输出分类准确率 ######################################### from matplotlib.pyplot import * import matplotlib.pyplot as plt from collections import defaultdict import random from math import * import numpy import datetime from dateutil.parser import parse import datetime import time def dataset(filename): #读取原始文件 lines = open(filename,'r').readlines() l = len(lines) all_points = [] for i in range(l): if lines[i].strip(): line = lines[i].split() time = line[0] +' '+ line[1] lat = float(line[4]) lon = float(line[6]) all_points.append([lat,lon,time]) return all_points def datarevise(all_points): #数据平滑处理 point_new = [] all_points1 = np.array(all_points) l = len(all_points) for i in range(2,l-3): lat_lon = np.array(all_points1[i-2:i+3,:-1],dtype = float).mean(0) point_new.append([lat_lon[0],lat_lon[1],all_points1[i][-1]]) return point_new def dist(p1, p2): #计算亮点之间的距离 a = cos(p1[0])*cos(p2[0]) b = sin(p1[0])*sin(p2[0])*cos(p2[1]-p1[1]) if a+b >=1: return 0 return acos(float(a+b))*6371*pi/180 def find_core(all_points,E,minPts): #查找核心点 #输出:核心点,要绘制的点,非核心点 other_points =[] core_points=[] plotted_points=[] for point in all_points: point.append(0) # 初始点标号为0 total = 0 #计数:对每个点周围大于给定距离的点的个数 for otherPoint in all_points: distance = dist(otherPoint,point) if distance <= E: total += 1 if total > minPts: core_points.append(point) plotted_points.append(point) else: other_points.append(point) return core_points,plotted_points,other_points def find_border(core_points,plotted_points,other_points,E): #在非核心点查找边界点 #输出:边界点,要绘制的点 border_points=[] for core in core_points: for other in other_points: if dist(core,other) <= E:#边界点的与核心点的距离小于E border_points.append(other) plotted_points.append(other) return border_points,plotted_points def algorithm(all_points,core_points,border_points,plotted_points,E): # 返回簇,噪声点 #将所有的核心点分成不同的簇 cluster_label = 0 for point in core_points: if point[-1] == 0: cluster_label += 1 point[-1] = cluster_label for point2 in plotted_points: distance = dist(point2,point) if point2[-1] ==0 and distance <= E: point2[-1] =point[-1] #将点集标号类型写成字典格式 cluster_dict = {} for point in plotted_points: if cluster_dict.get(point[-1]) is None: cluster_dict[point[-1]] = [point[0:-1]] else: cluster_dict[point[-1]].append(point[0:-1]) #将簇中各个点按时间排序 cluster_dict_sort = {} for lable in cluster_dict: cluster_dict_sort.setdefault(lable,[]) cl = np.array(cluster_dict[lable]) cl_sort = cl[cl[:,-1].argsort()] cluster_dict_sort[lable] = cl_sort #噪声点,既不在边界点也不在核心点中 noise_points=[] for point in all_points: if point not in core_points and point not in border_points: noise_points.append(point[0:-1]) return cluster_dict_sort,noise_points def durtime(noise_points,difftime): # 输入:噪声点,时间间隔 # 功能:分成不同的路径 # 输出:路径点[[],[]] no = np.array(noise_points) no_sort = no[no[:,-1].argsort()] l = len(no_sort) k = [0] for i in range(l-1): diff_time = (no_sort[i+1][-1] - no_sort[i][-1]).seconds if diff_time > difftime: k.append(i+1) k.append(l) no_split = [] for i in range(len(k)-1): no_split.append(no_sort[k[i]:k[i+1]]) return no_split def matplotshow(cluster_dict,no_split,name): #画出各个簇 markers = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr'] i=0 for lable in cluster_dict: for j in cluster_dict[lable]: plot(j[0], j[1],markers[i]) i += 1 i = i%10 print i #画出路径 markers = ['r', 'b', 'g', 'k', 'c', 'y', 'm',] l =len(no_split) for i in range(l): path = np.array(no_split[i]) plt.plot(path[:,0],path[:,1],markers[i%7]) print i title(" clusters created with E ="+str(E)+" Min Points="+str(minPts)+" total points="+str(len(all_points))+" noise Points = "+ str(len(noise_points))) savefig(name) show() def datewrite(no_split,filename,mark): f = open(filename,'w+') for path in no_split: f.write( str(mark) +'\n') for no_path in path: f.write(str(list(no_path))+'\n') f.close() def datewrite1(no_split,filename,mark): f = open(filename,'w+') for path in no_split: for no_path in path: f.write( str(mark) +'\n') for j in no_path: f.write(str(list(j))+'\n') f.close() if __name__ == '__main__': filename = 'D:/sensor_data/sensor/gps/location_zh0710.txt' all_points_old = dataset(filename) all_points = datarevise(all_points_old) E,minPts = 0.1,10 core_points,plotted_points,other_points = find_core(all_points,E,minPts) border_points,plotted_points = find_border(core_points,plotted_points,other_points,E) cluster_dict,noise_points = algorithm(all_points,border_points,core_points,plotted_points,E) difftime = 1200 no_split = durtime(noise_points,difftime) matplotshow(cluster_dict,no_split,"location_zh0710.png") filename = 'D:/sensor_data/sensor/gps/location_zh0710_no_split.txt' datewrite(no_split,filename,'path') filename = 'D:/sensor_data/sensor/gps/location_zh0710_cluster.txt' datewrite(cluster_dict.values(),filename,'lable')
normal
{ "blob_id": "99c839eddcbe985c81e709878d03c59e3be3c909", "index": 293, "step-1": "#coding=utf-8\n######################################### \n# dbscan: \n# 用法说明:读取文件\n# 生成路径文件及簇文件,输出分类准确率 \n######################################### \n\n\nfrom matplotlib.pyplot import *\nimport matplotlib.pyplot as plt\nfrom collections import defaultdict \nimport random\nfrom math import *\nimport numpy\nimport datetime\nfrom dateutil.parser import parse\nimport datetime\nimport time\n\n\n\ndef dataset(filename):\n #读取原始文件\n lines = open(filename,'r').readlines()\n l = len(lines)\n all_points = [] \n for i in range(l):\n if lines[i].strip():\n line = lines[i].split()\n time = line[0] +' '+ line[1]\n lat = float(line[4])\n lon = float(line[6])\n all_points.append([lat,lon,time])\n return all_points\n\ndef datarevise(all_points):\n #数据平滑处理\n point_new = []\n all_points1 = np.array(all_points)\n l = len(all_points)\n for i in range(2,l-3):\n lat_lon = np.array(all_points1[i-2:i+3,:-1],dtype = float).mean(0)\n point_new.append([lat_lon[0],lat_lon[1],all_points1[i][-1]])\n return point_new\n\n \ndef dist(p1, p2):\n #计算亮点之间的距离\n a = cos(p1[0])*cos(p2[0])\n b = sin(p1[0])*sin(p2[0])*cos(p2[1]-p1[1])\n if a+b >=1:\n return 0\n return acos(float(a+b))*6371*pi/180\n\ndef find_core(all_points,E,minPts):\n #查找核心点\n #输出:核心点,要绘制的点,非核心点\n other_points =[] \n core_points=[] \n plotted_points=[]\n for point in all_points:\n point.append(0) # 初始点标号为0\n total = 0 #计数:对每个点周围大于给定距离的点的个数\n for otherPoint in all_points:\n distance = dist(otherPoint,point)\n if distance <= E:\n total += 1\n if total > minPts:\n core_points.append(point)\n plotted_points.append(point)\n else:\n other_points.append(point)\n return core_points,plotted_points,other_points\n\ndef find_border(core_points,plotted_points,other_points,E):\n #在非核心点查找边界点\n #输出:边界点,要绘制的点\n border_points=[]\n for core in core_points:\n for other in other_points:\n if dist(core,other) <= E:#边界点的与核心点的距离小于E\n border_points.append(other)\n plotted_points.append(other)\n return border_points,plotted_points\n\n\ndef algorithm(all_points,core_points,border_points,plotted_points,E):\n # 返回簇,噪声点\n \n #将所有的核心点分成不同的簇\n cluster_label = 0\n for point in core_points:\n if point[-1] == 0:\n cluster_label += 1\n point[-1] = cluster_label\n for point2 in plotted_points:\n distance = dist(point2,point)\n if point2[-1] ==0 and distance <= E:\n point2[-1] =point[-1]\n #将点集标号类型写成字典格式 \n cluster_dict = {}\n for point in plotted_points:\n if cluster_dict.get(point[-1]) is None:\n cluster_dict[point[-1]] = [point[0:-1]]\n else:\n cluster_dict[point[-1]].append(point[0:-1])\n\n #将簇中各个点按时间排序\n cluster_dict_sort = {}\n for lable in cluster_dict:\n cluster_dict_sort.setdefault(lable,[])\n cl = np.array(cluster_dict[lable])\n cl_sort = cl[cl[:,-1].argsort()]\n cluster_dict_sort[lable] = cl_sort\n \n #噪声点,既不在边界点也不在核心点中 \n noise_points=[]\n for point in all_points:\n if point not in core_points and point not in border_points:\n noise_points.append(point[0:-1])\n return cluster_dict_sort,noise_points\n\n\n\ndef durtime(noise_points,difftime):\n # 输入:噪声点,时间间隔\n # 功能:分成不同的路径\n # 输出:路径点[[],[]]\n no = np.array(noise_points)\n no_sort = no[no[:,-1].argsort()]\n l = len(no_sort)\n k = [0]\n for i in range(l-1):\n diff_time = (no_sort[i+1][-1] - no_sort[i][-1]).seconds\n if diff_time > difftime:\n k.append(i+1)\n k.append(l)\n no_split = []\n for i in range(len(k)-1):\n no_split.append(no_sort[k[i]:k[i+1]])\n return no_split\n\ndef matplotshow(cluster_dict,no_split,name):\n #画出各个簇\n markers = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']\n i=0\n for lable in cluster_dict:\n for j in cluster_dict[lable]:\n plot(j[0], j[1],markers[i])\n i += 1\n i = i%10\n print i \n #画出路径\n markers = ['r', 'b', 'g', 'k', 'c', 'y', 'm',]\n l =len(no_split)\n for i in range(l):\n path = np.array(no_split[i])\n plt.plot(path[:,0],path[:,1],markers[i%7])\n print i\n title(\" clusters created with E =\"+str(E)+\" Min Points=\"+str(minPts)+\" total points=\"+str(len(all_points))+\" noise Points = \"+ str(len(noise_points)))\n savefig(name)\n show()\n\n \ndef datewrite(no_split,filename,mark): \n f = open(filename,'w+')\n for path in no_split:\n f.write( str(mark) +'\\n')\n for no_path in path:\n f.write(str(list(no_path))+'\\n') \n f.close()\n\ndef datewrite1(no_split,filename,mark): \n f = open(filename,'w+')\n for path in no_split:\n for no_path in path:\n f.write( str(mark) +'\\n')\n for j in no_path:\n f.write(str(list(j))+'\\n') \n f.close()\n \nif __name__ == '__main__':\n filename = 'D:/sensor_data/sensor/gps/location_zh0710.txt'\n all_points_old = dataset(filename)\n all_points = datarevise(all_points_old)\n E,minPts = 0.1,10\n core_points,plotted_points,other_points = find_core(all_points,E,minPts)\n border_points,plotted_points = find_border(core_points,plotted_points,other_points,E)\n cluster_dict,noise_points = algorithm(all_points,border_points,core_points,plotted_points,E)\n difftime = 1200\n no_split = durtime(noise_points,difftime)\n matplotshow(cluster_dict,no_split,\"location_zh0710.png\")\n filename = 'D:/sensor_data/sensor/gps/location_zh0710_no_split.txt'\n datewrite(no_split,filename,'path')\n filename = 'D:/sensor_data/sensor/gps/location_zh0710_cluster.txt'\n datewrite(cluster_dict.values(),filename,'lable')\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" Simple python script to help learn basic socket API """ import sys, socket HOSTNAME = sys.argv[-2] PORT = sys.argv[-1] options = ( HOSTNAME, int(PORT) ) print options print 'creating socket...' sock = socket.socket() print 'socket created' print 'connecting...' sock.connect(options) print 'connected' print 'sending message...' sock.send('hello') print 'sent message' print 'closing...' sock.close() print 'closed'
normal
{ "blob_id": "e41b5ee0dff30cca51593e737420889bce8f419f", "index": 8563, "step-1": "\"\"\"\nSimple python script to help learn basic socket API\n\"\"\"\n\nimport sys, socket\n\nHOSTNAME = sys.argv[-2]\nPORT = sys.argv[-1]\n\noptions = ( HOSTNAME, int(PORT) )\nprint options\n\nprint 'creating socket...'\nsock = socket.socket()\nprint 'socket created'\n\nprint 'connecting...'\nsock.connect(options)\nprint 'connected'\n\nprint 'sending message...'\nsock.send('hello')\nprint 'sent message'\n\nprint 'closing...'\nsock.close()\nprint 'closed'", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView from .serializers import ConcertSerializer from .models import Concert from .permissions import IsOwnerOrReadOnly class ConcertList(ListCreateAPIView): queryset = Concert.objects.all() serializer_class = ConcertSerializer class ConcertDetail(RetrieveUpdateDestroyAPIView): permission_classes = (IsOwnerOrReadOnly,) queryset = Concert.objects.all() serializer_class = ConcertSerializer
normal
{ "blob_id": "74ad2ec2cd7cd683a773b0affde4ab0b150d74c5", "index": 4780, "step-1": "<mask token>\n\n\nclass ConcertDetail(RetrieveUpdateDestroyAPIView):\n permission_classes = IsOwnerOrReadOnly,\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n", "step-2": "<mask token>\n\n\nclass ConcertList(ListCreateAPIView):\n <mask token>\n <mask token>\n\n\nclass ConcertDetail(RetrieveUpdateDestroyAPIView):\n permission_classes = IsOwnerOrReadOnly,\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n", "step-3": "<mask token>\n\n\nclass ConcertList(ListCreateAPIView):\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n\n\nclass ConcertDetail(RetrieveUpdateDestroyAPIView):\n permission_classes = IsOwnerOrReadOnly,\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n", "step-4": "from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView\nfrom .serializers import ConcertSerializer\nfrom .models import Concert\nfrom .permissions import IsOwnerOrReadOnly\n\n\nclass ConcertList(ListCreateAPIView):\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n\n\nclass ConcertDetail(RetrieveUpdateDestroyAPIView):\n permission_classes = IsOwnerOrReadOnly,\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n", "step-5": "from rest_framework.generics import ListCreateAPIView, RetrieveUpdateDestroyAPIView\nfrom .serializers import ConcertSerializer\nfrom .models import Concert\nfrom .permissions import IsOwnerOrReadOnly\n\nclass ConcertList(ListCreateAPIView):\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n\n\nclass ConcertDetail(RetrieveUpdateDestroyAPIView):\n permission_classes = (IsOwnerOrReadOnly,)\n queryset = Concert.objects.all()\n serializer_class = ConcertSerializer\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
<|reserved_special_token_0|> class Plotter: def __init__(self): self.red_hex_code = '#ff0000' def AlkDMIonStatsSplitPlot(self, df): PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique() PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique() inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst] ax_title = ['Peg-BT PV1', 'Peg-BT PV2'] fig = plt.figure(figsize=(25, 9)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax = [ax1, ax2] for a in range(2): ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel('Area Per Ion via Detector Measurement') ax[a].set_xlabel('Alkane Standard\nSample Injection Count') ax[a].set_title(ax_title[a]) for dset in inst_sets[a]: df_sliced = df[df['DataSet'] == dset].copy() offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv) ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api' ], label=curve_label) ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def Manual_OFN20fg_IDL(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, 0.0044855, 0.0046082, 0.0033099]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('IDL pg') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.suptitle( 'IDL vs Detector Voltage Offset\nOFN 0.02 pg On Column\nQuant Mass = 271.99' , fontsize=20) plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight') def Manual_GO_Plot(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Change in Optimized Detector Voltage') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.savefig('GO_Delta_Plot', bbox_inches='tight') plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> class Plotter: def __init__(self): self.red_hex_code = '#ff0000' def AlkDMIonStatsSplitPlot(self, df): PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique() PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique() inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst] ax_title = ['Peg-BT PV1', 'Peg-BT PV2'] fig = plt.figure(figsize=(25, 9)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax = [ax1, ax2] for a in range(2): ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel('Area Per Ion via Detector Measurement') ax[a].set_xlabel('Alkane Standard\nSample Injection Count') ax[a].set_title(ax_title[a]) for dset in inst_sets[a]: df_sliced = df[df['DataSet'] == dset].copy() offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv) ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api' ], label=curve_label) ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() <|reserved_special_token_0|> def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl, plot_title, png_filename, legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'): fig = plt.figure(figsize=(15.5, 9)) ax = fig.add_subplot(1, 1, 1) for i in range(len(xdata_lst)): ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i], label=legendlbl_lst[i]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel(ylbl) plt.xlabel(xlbl) plt.title(plot_title) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') <|reserved_special_token_0|> def Manual_OFN20fg_IDL(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, 0.0044855, 0.0046082, 0.0033099]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('IDL pg') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.suptitle( 'IDL vs Detector Voltage Offset\nOFN 0.02 pg On Column\nQuant Mass = 271.99' , fontsize=20) plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight') def Manual_GO_Plot(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Change in Optimized Detector Voltage') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.savefig('GO_Delta_Plot', bbox_inches='tight') plt.show() <|reserved_special_token_1|> <|reserved_special_token_0|> class Plotter: def __init__(self): self.red_hex_code = '#ff0000' def AlkDMIonStatsSplitPlot(self, df): PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique() PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique() inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst] ax_title = ['Peg-BT PV1', 'Peg-BT PV2'] fig = plt.figure(figsize=(25, 9)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax = [ax1, ax2] for a in range(2): ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel('Area Per Ion via Detector Measurement') ax[a].set_xlabel('Alkane Standard\nSample Injection Count') ax[a].set_title(ax_title[a]) for dset in inst_sets[a]: df_sliced = df[df['DataSet'] == dset].copy() offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv) ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api' ], label=curve_label) ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def AlkDMIonStatsPlot(self, df): DataSets_lst = df['DataSet'].unique() fig = plt.figure(figsize=(15.5, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 1.0, 8))) for dset in DataSets_lst: df_sliced = df[df['DataSet'] == dset].copy() instrument = df_sliced['inst'].iloc[2] offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i= instrument, v=offset, d=dv) ax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel('Ave. Aera Per Ion') plt.xlabel('Sample Injections') plt.title( """Tracking Area Per Ion via Detector Measurement Over ~48 Hours of Continuous Sample Acquisition""" ) legend_h_offset, legend_v_offset = 1.25, 0.75 plt.legend(loc='center right', bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl, plot_title, png_filename, legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'): fig = plt.figure(figsize=(15.5, 9)) ax = fig.add_subplot(1, 1, 1) for i in range(len(xdata_lst)): ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i], label=legendlbl_lst[i]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel(ylbl) plt.xlabel(xlbl) plt.title(plot_title) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') def GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9, legend_v_offset=2.4, legend_location='center'): fig = plt.figure(figsize=(25, 9)) ax = [] for a in range(4): ax.append(fig.add_subplot(2, 2, 1 + a)) ax[a].set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) for s in range(len(xdata_lst)): ax[a].plot(xdata_lst[s], ydata_lst[a][s], label= legendlbl_lst[s]) ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel(ylbl_lst[a]) if (a == 2 or a == 3) and s == 1: plt.xlabel(xlbl) elif (a == 0 or a == 1) and s == 1: ax[a].set_xticklabels([]) ax[a].spines['bottom'].set_visible(False) ax[a].xaxis.set_ticks_position('none') plt.suptitle(fig_title, fontsize=20) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') def Manual_OFN20fg_IDL(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, 0.0044855, 0.0046082, 0.0033099]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('IDL pg') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.suptitle( 'IDL vs Detector Voltage Offset\nOFN 0.02 pg On Column\nQuant Mass = 271.99' , fontsize=20) plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight') def Manual_GO_Plot(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Change in Optimized Detector Voltage') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.savefig('GO_Delta_Plot', bbox_inches='tight') plt.show() <|reserved_special_token_1|> import pandas as pd import matplotlib.pyplot as plt import matplotlib import numpy as np class Plotter: def __init__(self): self.red_hex_code = '#ff0000' def AlkDMIonStatsSplitPlot(self, df): PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique() PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique() inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst] ax_title = ['Peg-BT PV1', 'Peg-BT PV2'] fig = plt.figure(figsize=(25, 9)) ax1 = fig.add_subplot(1, 2, 1) ax2 = fig.add_subplot(1, 2, 2) ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4))) ax = [ax1, ax2] for a in range(2): ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel('Area Per Ion via Detector Measurement') ax[a].set_xlabel('Alkane Standard\nSample Injection Count') ax[a].set_title(ax_title[a]) for dset in inst_sets[a]: df_sliced = df[df['DataSet'] == dset].copy() offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv) ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api' ], label=curve_label) ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def AlkDMIonStatsPlot(self, df): DataSets_lst = df['DataSet'].unique() fig = plt.figure(figsize=(15.5, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 1.0, 8))) for dset in DataSets_lst: df_sliced = df[df['DataSet'] == dset].copy() instrument = df_sliced['inst'].iloc[2] offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i= instrument, v=offset, d=dv) ax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel('Ave. Aera Per Ion') plt.xlabel('Sample Injections') plt.title( """Tracking Area Per Ion via Detector Measurement Over ~48 Hours of Continuous Sample Acquisition""" ) legend_h_offset, legend_v_offset = 1.25, 0.75 plt.legend(loc='center right', bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl, plot_title, png_filename, legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'): fig = plt.figure(figsize=(15.5, 9)) ax = fig.add_subplot(1, 1, 1) for i in range(len(xdata_lst)): ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i], label=legendlbl_lst[i]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel(ylbl) plt.xlabel(xlbl) plt.title(plot_title) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') def GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9, legend_v_offset=2.4, legend_location='center'): fig = plt.figure(figsize=(25, 9)) ax = [] for a in range(4): ax.append(fig.add_subplot(2, 2, 1 + a)) ax[a].set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) for s in range(len(xdata_lst)): ax[a].plot(xdata_lst[s], ydata_lst[a][s], label= legendlbl_lst[s]) ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel(ylbl_lst[a]) if (a == 2 or a == 3) and s == 1: plt.xlabel(xlbl) elif (a == 0 or a == 1) and s == 1: ax[a].set_xticklabels([]) ax[a].spines['bottom'].set_visible(False) ax[a].xaxis.set_ticks_position('none') plt.suptitle(fig_title, fontsize=20) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') def Manual_OFN20fg_IDL(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, 0.0044855, 0.0046082, 0.0033099]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('IDL pg') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.suptitle( 'IDL vs Detector Voltage Offset\nOFN 0.02 pg On Column\nQuant Mass = 271.99' , fontsize=20) plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight') def Manual_GO_Plot(self): fig = plt.figure(figsize=(25, 9)) ax = fig.add_subplot(1, 1, 1) ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2))) xdata = [0, 150, 250, 350] ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Change in Optimized Detector Voltage') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.savefig('GO_Delta_Plot', bbox_inches='tight') plt.show() <|reserved_special_token_1|> import pandas as pd #@UnusedImport import matplotlib.pyplot as plt import matplotlib #@UnusedImport import numpy as np #@UnusedImport class Plotter(): def __init__(self): self.red_hex_code = '#ff0000' def AlkDMIonStatsSplitPlot(self, df): PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique() PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique() inst_sets = [PV1_DataSets_lst,PV2_DataSets_lst] ax_title = ['Peg-BT PV1', 'Peg-BT PV2'] fig = plt.figure(figsize=(25,9)) ax1 = fig.add_subplot(1,2,1) ax2 = fig.add_subplot(1,2,2) ax1.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,0.9,4))) #@UndefinedVariable ax2.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,0.9,4))) #@UndefinedVariable ax = [ax1,ax2] for a in range(2): ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel('Area Per Ion via Detector Measurement') ax[a].set_xlabel('Alkane Standard\nSample Injection Count') ax[a].set_title(ax_title[a]) for dset in inst_sets[a]: df_sliced = df[df['DataSet'] == dset].copy() offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv) ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label) ax[a].legend(loc='center', bbox_to_anchor=(0.17,-0.1)) # plt.suptitle('Tracking Area Per Ion via Detector Measurement\nOver ~48 Hours of Continuous Sample Acquisition', fontsize=14) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def AlkDMIonStatsPlot(self, df): DataSets_lst = df['DataSet'].unique() fig = plt.figure(figsize=(15.5,9)) ax = fig.add_subplot(1,1,1) ax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,1.00,8))) #@UndefinedVariable for dset in DataSets_lst: df_sliced = df[df['DataSet'] == dset].copy() instrument = df_sliced['inst'].iloc[2] offset = df_sliced['offset_volts'].iloc[2] dv = df_sliced['Det_Volts'].iloc[2] curve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i=instrument, v=offset, d=dv) ax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel('Ave. Aera Per Ion') plt.xlabel('Sample Injections') plt.title('Tracking Area Per Ion via Detector Measurement\nOver ~48 Hours of Continuous Sample Acquisition') legend_h_offset, legend_v_offset = 1.25, 0.75 plt.legend(loc='center right', bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig('DM_API_Analysis', bbox_inches='tight') plt.show() def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl, plot_title, png_filename, legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'): # xdata & ydata: both are a list of lists each containing the corresponding axis data. These are the requirement of these two # data set to prevent an error: # Sublists with the same index are a matching x vs y set that will be plotted. They MUST be the same length to prevent an error. # There must be the same number of sub lists to prevent an error. # legendlbl_lst: a list of legend labels for each x vs y plot. Again there must be the same number of items in this list as x/y pairs. # The rest are self explainatory fig = plt.figure(figsize=(15.5,9)) ax = fig.add_subplot(1,1,1) for i in range(len(xdata_lst)): ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i], label=legendlbl_lst[i]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.ylabel(ylbl) plt.xlabel(xlbl) plt.title(plot_title) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') # (x_data, all_y_data, legendlbl_lst, xlbl, plot_titles, figure_title, all_png_filenames) def GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9, legend_v_offset=2.4, legend_location='center'): # xdata_lst: is a list of lists each containing the corresponding x-axis data. The x-axis data is the same for all ax_n objects # Generic example: [Series_1_x-axis_data_lst, Series_n_x-axis_data_lst...] # ydata_lst: is a list of lists of lists containing all the y-axis data. # Generic example: [ax_1[Series_1_y-axis_data_lst, Series_n_y-axis_data_lst...], ax_n[ax_1[Series_1_y-axis_data_lst, Series_n_y-axis_data_lst...]...] # data set to prevent an error: # Sublists with the same index are a matching x vs y set that will be plotted. They MUST be the same length to prevent an error. # There must be the same number of sub lists to prevent an error. # legendlbl_lst: a list of legend labels for each x vs y plot. Again there must be the same number of items in this list as x/y pairs. # The rest are self explainatory fig = plt.figure(figsize=(25,9)) ax = [] for a in range(4): ax.append(fig.add_subplot(2,2,1+a)) ax[a].set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable for s in range(len(xdata_lst)): ax[a].plot(xdata_lst[s], ydata_lst[a][s], label=legendlbl_lst[s]) ax[a].spines['right'].set_visible(False) ax[a].spines['top'].set_visible(False) ax[a].set_ylabel(ylbl_lst[a]) if (a == 2 or a == 3) and s == 1: plt.xlabel(xlbl) elif (a == 0 or a == 1) and s == 1: ax[a].set_xticklabels([]) ax[a].spines['bottom'].set_visible(False) ax[a].xaxis.set_ticks_position('none') plt.suptitle(fig_title, fontsize=20) plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset)) plt.savefig(png_filename, bbox_inches='tight') def Manual_OFN20fg_IDL(self): fig = plt.figure(figsize=(25,9)) ax = fig.add_subplot(1,1,1) ax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable xdata = [0,150,250,350] ydata = [[0.036614, 0.009674, 0.0056418, 0.004696],[0.0083151, 0.0044855, 0.0046082, 0.0033099]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('IDL pg') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() plt.suptitle('IDL vs Detector Voltage Offset\nOFN 0.02 pg On Column\nQuant Mass = 271.99', fontsize=20) plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight') def Manual_GO_Plot(self): fig = plt.figure(figsize=(25,9)) ax = fig.add_subplot(1,1,1) ax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable xdata = [0,150,250,350] ydata = [[-7.7, 26.5, 42.8, 66.1],[-8, 4.1, 13.5, 48.4]] legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2'] for s in range(len(ydata)): ax.plot(xdata, ydata[s], label=legendlbl_lst[s]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylabel('Change in Optimized Detector Voltage') ax.set_xlabel('Optimized Detector Voltage Offset (volts)') plt.legend() # plt.suptitle('Change in Optimized Detector Voltage\nFrom the Beginning to the End of a Data Set', fontsize=20) plt.savefig('GO_Delta_Plot', bbox_inches='tight') plt.show()
flexible
{ "blob_id": "81b920ab5417937dc0fc1c9675d393efc6a4d58d", "index": 5453, "step-1": "<mask token>\n\n\nclass Plotter:\n\n def __init__(self):\n self.red_hex_code = '#ff0000'\n\n def AlkDMIonStatsSplitPlot(self, df):\n PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique()\n PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique()\n inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst]\n ax_title = ['Peg-BT PV1', 'Peg-BT PV2']\n fig = plt.figure(figsize=(25, 9))\n ax1 = fig.add_subplot(1, 2, 1)\n ax2 = fig.add_subplot(1, 2, 2)\n ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax = [ax1, ax2]\n for a in range(2):\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel('Area Per Ion via Detector Measurement')\n ax[a].set_xlabel('Alkane Standard\\nSample Injection Count')\n ax[a].set_title(ax_title[a])\n for dset in inst_sets[a]:\n df_sliced = df[df['DataSet'] == dset].copy()\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv)\n ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'\n ], label=curve_label)\n ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n <mask token>\n <mask token>\n <mask token>\n\n def Manual_OFN20fg_IDL(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, \n 0.0044855, 0.0046082, 0.0033099]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('IDL pg')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.suptitle(\n 'IDL vs Detector Voltage Offset\\nOFN 0.02 pg On Column\\nQuant Mass = 271.99'\n , fontsize=20)\n plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight')\n\n def Manual_GO_Plot(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('Change in Optimized Detector Voltage')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.savefig('GO_Delta_Plot', bbox_inches='tight')\n plt.show()\n", "step-2": "<mask token>\n\n\nclass Plotter:\n\n def __init__(self):\n self.red_hex_code = '#ff0000'\n\n def AlkDMIonStatsSplitPlot(self, df):\n PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique()\n PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique()\n inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst]\n ax_title = ['Peg-BT PV1', 'Peg-BT PV2']\n fig = plt.figure(figsize=(25, 9))\n ax1 = fig.add_subplot(1, 2, 1)\n ax2 = fig.add_subplot(1, 2, 2)\n ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax = [ax1, ax2]\n for a in range(2):\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel('Area Per Ion via Detector Measurement')\n ax[a].set_xlabel('Alkane Standard\\nSample Injection Count')\n ax[a].set_title(ax_title[a])\n for dset in inst_sets[a]:\n df_sliced = df[df['DataSet'] == dset].copy()\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv)\n ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'\n ], label=curve_label)\n ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n <mask token>\n\n def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst,\n legendlbl_lst, xlbl, ylbl, plot_title, png_filename,\n legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'):\n fig = plt.figure(figsize=(15.5, 9))\n ax = fig.add_subplot(1, 1, 1)\n for i in range(len(xdata_lst)):\n ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i],\n label=legendlbl_lst[i])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n plt.ylabel(ylbl)\n plt.xlabel(xlbl)\n plt.title(plot_title)\n plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig(png_filename, bbox_inches='tight')\n <mask token>\n\n def Manual_OFN20fg_IDL(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, \n 0.0044855, 0.0046082, 0.0033099]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('IDL pg')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.suptitle(\n 'IDL vs Detector Voltage Offset\\nOFN 0.02 pg On Column\\nQuant Mass = 271.99'\n , fontsize=20)\n plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight')\n\n def Manual_GO_Plot(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('Change in Optimized Detector Voltage')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.savefig('GO_Delta_Plot', bbox_inches='tight')\n plt.show()\n", "step-3": "<mask token>\n\n\nclass Plotter:\n\n def __init__(self):\n self.red_hex_code = '#ff0000'\n\n def AlkDMIonStatsSplitPlot(self, df):\n PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique()\n PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique()\n inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst]\n ax_title = ['Peg-BT PV1', 'Peg-BT PV2']\n fig = plt.figure(figsize=(25, 9))\n ax1 = fig.add_subplot(1, 2, 1)\n ax2 = fig.add_subplot(1, 2, 2)\n ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax = [ax1, ax2]\n for a in range(2):\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel('Area Per Ion via Detector Measurement')\n ax[a].set_xlabel('Alkane Standard\\nSample Injection Count')\n ax[a].set_title(ax_title[a])\n for dset in inst_sets[a]:\n df_sliced = df[df['DataSet'] == dset].copy()\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv)\n ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'\n ], label=curve_label)\n ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n\n def AlkDMIonStatsPlot(self, df):\n DataSets_lst = df['DataSet'].unique()\n fig = plt.figure(figsize=(15.5, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 1.0, 8)))\n for dset in DataSets_lst:\n df_sliced = df[df['DataSet'] == dset].copy()\n instrument = df_sliced['inst'].iloc[2]\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i=\n instrument, v=offset, d=dv)\n ax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'],\n label=curve_label)\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n plt.ylabel('Ave. Aera Per Ion')\n plt.xlabel('Sample Injections')\n plt.title(\n \"\"\"Tracking Area Per Ion via Detector Measurement\nOver ~48 Hours of Continuous Sample Acquisition\"\"\"\n )\n legend_h_offset, legend_v_offset = 1.25, 0.75\n plt.legend(loc='center right', bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n\n def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst,\n legendlbl_lst, xlbl, ylbl, plot_title, png_filename,\n legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'):\n fig = plt.figure(figsize=(15.5, 9))\n ax = fig.add_subplot(1, 1, 1)\n for i in range(len(xdata_lst)):\n ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i],\n label=legendlbl_lst[i])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n plt.ylabel(ylbl)\n plt.xlabel(xlbl)\n plt.title(plot_title)\n plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig(png_filename, bbox_inches='tight')\n\n def GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst,\n xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9,\n legend_v_offset=2.4, legend_location='center'):\n fig = plt.figure(figsize=(25, 9))\n ax = []\n for a in range(4):\n ax.append(fig.add_subplot(2, 2, 1 + a))\n ax[a].set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25,\n 0.84, 2)))\n for s in range(len(xdata_lst)):\n ax[a].plot(xdata_lst[s], ydata_lst[a][s], label=\n legendlbl_lst[s])\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel(ylbl_lst[a])\n if (a == 2 or a == 3) and s == 1:\n plt.xlabel(xlbl)\n elif (a == 0 or a == 1) and s == 1:\n ax[a].set_xticklabels([])\n ax[a].spines['bottom'].set_visible(False)\n ax[a].xaxis.set_ticks_position('none')\n plt.suptitle(fig_title, fontsize=20)\n plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig(png_filename, bbox_inches='tight')\n\n def Manual_OFN20fg_IDL(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, \n 0.0044855, 0.0046082, 0.0033099]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('IDL pg')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.suptitle(\n 'IDL vs Detector Voltage Offset\\nOFN 0.02 pg On Column\\nQuant Mass = 271.99'\n , fontsize=20)\n plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight')\n\n def Manual_GO_Plot(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('Change in Optimized Detector Voltage')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.savefig('GO_Delta_Plot', bbox_inches='tight')\n plt.show()\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nimport matplotlib\nimport numpy as np\n\n\nclass Plotter:\n\n def __init__(self):\n self.red_hex_code = '#ff0000'\n\n def AlkDMIonStatsSplitPlot(self, df):\n PV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique()\n PV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique()\n inst_sets = [PV1_DataSets_lst, PV2_DataSets_lst]\n ax_title = ['Peg-BT PV1', 'Peg-BT PV2']\n fig = plt.figure(figsize=(25, 9))\n ax1 = fig.add_subplot(1, 2, 1)\n ax2 = fig.add_subplot(1, 2, 2)\n ax1.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax2.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 0.9, 4)))\n ax = [ax1, ax2]\n for a in range(2):\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel('Area Per Ion via Detector Measurement')\n ax[a].set_xlabel('Alkane Standard\\nSample Injection Count')\n ax[a].set_title(ax_title[a])\n for dset in inst_sets[a]:\n df_sliced = df[df['DataSet'] == dset].copy()\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv)\n ax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'\n ], label=curve_label)\n ax[a].legend(loc='center', bbox_to_anchor=(0.17, -0.1))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n\n def AlkDMIonStatsPlot(self, df):\n DataSets_lst = df['DataSet'].unique()\n fig = plt.figure(figsize=(15.5, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.1, 1.0, 8)))\n for dset in DataSets_lst:\n df_sliced = df[df['DataSet'] == dset].copy()\n instrument = df_sliced['inst'].iloc[2]\n offset = df_sliced['offset_volts'].iloc[2]\n dv = df_sliced['Det_Volts'].iloc[2]\n curve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i=\n instrument, v=offset, d=dv)\n ax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'],\n label=curve_label)\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n plt.ylabel('Ave. Aera Per Ion')\n plt.xlabel('Sample Injections')\n plt.title(\n \"\"\"Tracking Area Per Ion via Detector Measurement\nOver ~48 Hours of Continuous Sample Acquisition\"\"\"\n )\n legend_h_offset, legend_v_offset = 1.25, 0.75\n plt.legend(loc='center right', bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig('DM_API_Analysis', bbox_inches='tight')\n plt.show()\n\n def GenericIndividualPlotMaker(self, xdata_lst, ydata_lst,\n legendlbl_lst, xlbl, ylbl, plot_title, png_filename,\n legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'):\n fig = plt.figure(figsize=(15.5, 9))\n ax = fig.add_subplot(1, 1, 1)\n for i in range(len(xdata_lst)):\n ax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i],\n label=legendlbl_lst[i])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n plt.ylabel(ylbl)\n plt.xlabel(xlbl)\n plt.title(plot_title)\n plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig(png_filename, bbox_inches='tight')\n\n def GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst,\n xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9,\n legend_v_offset=2.4, legend_location='center'):\n fig = plt.figure(figsize=(25, 9))\n ax = []\n for a in range(4):\n ax.append(fig.add_subplot(2, 2, 1 + a))\n ax[a].set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25,\n 0.84, 2)))\n for s in range(len(xdata_lst)):\n ax[a].plot(xdata_lst[s], ydata_lst[a][s], label=\n legendlbl_lst[s])\n ax[a].spines['right'].set_visible(False)\n ax[a].spines['top'].set_visible(False)\n ax[a].set_ylabel(ylbl_lst[a])\n if (a == 2 or a == 3) and s == 1:\n plt.xlabel(xlbl)\n elif (a == 0 or a == 1) and s == 1:\n ax[a].set_xticklabels([])\n ax[a].spines['bottom'].set_visible(False)\n ax[a].xaxis.set_ticks_position('none')\n plt.suptitle(fig_title, fontsize=20)\n plt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset,\n legend_v_offset))\n plt.savefig(png_filename, bbox_inches='tight')\n\n def Manual_OFN20fg_IDL(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[0.036614, 0.009674, 0.0056418, 0.004696], [0.0083151, \n 0.0044855, 0.0046082, 0.0033099]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('IDL pg')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.suptitle(\n 'IDL vs Detector Voltage Offset\\nOFN 0.02 pg On Column\\nQuant Mass = 271.99'\n , fontsize=20)\n plt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight')\n\n def Manual_GO_Plot(self):\n fig = plt.figure(figsize=(25, 9))\n ax = fig.add_subplot(1, 1, 1)\n ax.set_prop_cycle('color', plt.cm.spectral(np.linspace(0.25, 0.84, 2)))\n xdata = [0, 150, 250, 350]\n ydata = [[-7.7, 26.5, 42.8, 66.1], [-8, 4.1, 13.5, 48.4]]\n legendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\n for s in range(len(ydata)):\n ax.plot(xdata, ydata[s], label=legendlbl_lst[s])\n ax.spines['right'].set_visible(False)\n ax.spines['top'].set_visible(False)\n ax.set_ylabel('Change in Optimized Detector Voltage')\n ax.set_xlabel('Optimized Detector Voltage Offset (volts)')\n plt.legend()\n plt.savefig('GO_Delta_Plot', bbox_inches='tight')\n plt.show()\n", "step-5": "import pandas as pd #@UnusedImport\r\nimport matplotlib.pyplot as plt\r\nimport matplotlib #@UnusedImport\r\nimport numpy as np #@UnusedImport\r\n\r\nclass Plotter():\r\n\tdef __init__(self):\r\n\t\tself.red_hex_code = '#ff0000'\r\n\r\n\tdef AlkDMIonStatsSplitPlot(self, df):\r\n\t\tPV1_DataSets_lst = df[df['inst'] == 'PV1']['DataSet'].unique()\r\n\t\tPV2_DataSets_lst = df[df['inst'] == 'PV2']['DataSet'].unique()\r\n\t\tinst_sets = [PV1_DataSets_lst,PV2_DataSets_lst]\r\n\t\tax_title = ['Peg-BT PV1', 'Peg-BT PV2']\r\n\t\t\r\n\t\t\r\n\t\tfig = plt.figure(figsize=(25,9))\r\n\t\tax1 = fig.add_subplot(1,2,1)\r\n\t\tax2 = fig.add_subplot(1,2,2)\t\t\r\n\t\tax1.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,0.9,4))) #@UndefinedVariable\r\n\t\tax2.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,0.9,4))) #@UndefinedVariable\r\n\t\tax = [ax1,ax2]\r\n\t\t\r\n\t\tfor a in range(2):\r\n\t\t\t\r\n\t\t\tax[a].spines['right'].set_visible(False)\r\n\t\t\tax[a].spines['top'].set_visible(False)\r\n\t\t\tax[a].set_ylabel('Area Per Ion via Detector Measurement')\r\n\t\t\tax[a].set_xlabel('Alkane Standard\\nSample Injection Count')\r\n\t\t\tax[a].set_title(ax_title[a])\r\n\t\t\t\r\n\t\t\tfor dset in inst_sets[a]:\r\n\t\t\t\tdf_sliced = df[df['DataSet'] == dset].copy()\r\n\t\t\t\toffset = df_sliced['offset_volts'].iloc[2]\r\n\t\t\t\tdv = df_sliced['Det_Volts'].iloc[2]\r\n\t\t\t\tcurve_label = 'Offset: +{v} v = {d} v'.format(v=offset, d=dv)\r\n\t\t\t\tax[a].plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label)\r\n\t\t\t\t\r\n\t\t\tax[a].legend(loc='center', bbox_to_anchor=(0.17,-0.1))\r\n\t\t\r\n# \t\tplt.suptitle('Tracking Area Per Ion via Detector Measurement\\nOver ~48 Hours of Continuous Sample Acquisition', fontsize=14)\r\n\t\tplt.savefig('DM_API_Analysis', bbox_inches='tight')\r\n\t\tplt.show()\r\n\r\n\r\n\t\r\n\tdef AlkDMIonStatsPlot(self, df):\r\n\t\tDataSets_lst = df['DataSet'].unique()\r\n\t\tfig = plt.figure(figsize=(15.5,9))\r\n\t\tax = fig.add_subplot(1,1,1)\r\n\t\tax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.1,1.00,8))) #@UndefinedVariable\r\n\t\t\r\n\t\tfor dset in DataSets_lst:\r\n\t\t\tdf_sliced = df[df['DataSet'] == dset].copy()\r\n\t\t\tinstrument = df_sliced['inst'].iloc[2]\r\n\t\t\toffset = df_sliced['offset_volts'].iloc[2]\r\n\t\t\tdv = df_sliced['Det_Volts'].iloc[2]\r\n\t\t\tcurve_label = 'Inst: {i} - Offset: +{v} v = {d} v'.format(i=instrument, v=offset, d=dv)\r\n\t\t\t\r\n\t\t\tax.plot(df_sliced['Cumulative_Inj'], df_sliced['ave_api'], label=curve_label)\r\n\t\t\r\n\t\tax.spines['right'].set_visible(False)\r\n\t\tax.spines['top'].set_visible(False)\r\n\t\t\r\n\t\tplt.ylabel('Ave. Aera Per Ion')\r\n\t\tplt.xlabel('Sample Injections')\r\n\t\tplt.title('Tracking Area Per Ion via Detector Measurement\\nOver ~48 Hours of Continuous Sample Acquisition')\r\n\r\n\t\tlegend_h_offset, legend_v_offset = 1.25, 0.75\r\n\t\tplt.legend(loc='center right', bbox_to_anchor=(legend_h_offset, legend_v_offset))\r\n\t\tplt.savefig('DM_API_Analysis', bbox_inches='tight')\r\n\t\tplt.show()\r\n\t\t\r\n\tdef GenericIndividualPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl, plot_title, png_filename, legend_h_offset=1.25, legend_v_offset=0.75, legend_location='center'):\r\n\t\t# xdata & ydata: both are a list of lists each containing the corresponding axis data. These are the requirement of these two\r\n\t\t\t# data set to prevent an error:\r\n\t\t\t\t# Sublists with the same index are a matching x vs y set that will be plotted. They MUST be the same length to prevent an error.\r\n\t\t\t\t# There must be the same number of sub lists to prevent an error.\r\n\t\t# legendlbl_lst: a list of legend labels for each x vs y plot. Again there must be the same number of items in this list as x/y pairs.\r\n\t\t# The rest are self explainatory\r\n\t\tfig = plt.figure(figsize=(15.5,9))\r\n\t\tax = fig.add_subplot(1,1,1)\r\n\t\t\r\n\t\tfor i in range(len(xdata_lst)):\r\n\t\t\tax.plot(xdata_lst[i], ydata_lst[i], color=self.color_codes[i], label=legendlbl_lst[i])\r\n\t\t\t\r\n\t\tax.spines['right'].set_visible(False)\r\n\t\tax.spines['top'].set_visible(False)\r\n\t\t\r\n\t\tplt.ylabel(ylbl)\r\n\t\tplt.xlabel(xlbl)\r\n\t\tplt.title(plot_title)\r\n\r\n\t\tplt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset))\r\n\t\tplt.savefig(png_filename, bbox_inches='tight')\r\n\t\t\r\n\t\t# (x_data, all_y_data, legendlbl_lst, xlbl, plot_titles, figure_title, all_png_filenames)\r\n\tdef GenericCombinedPlotMaker(self, xdata_lst, ydata_lst, legendlbl_lst, xlbl, ylbl_lst, fig_title, png_filename, legend_h_offset=0.9, legend_v_offset=2.4, legend_location='center'):\r\n\t\t# xdata_lst: is a list of lists each containing the corresponding x-axis data. The x-axis data is the same for all ax_n objects\r\n\t\t\t# Generic example: [Series_1_x-axis_data_lst, Series_n_x-axis_data_lst...]\r\n\t\t# ydata_lst: is a list of lists of lists containing all the y-axis data.\r\n\t\t\t# Generic example: [ax_1[Series_1_y-axis_data_lst, Series_n_y-axis_data_lst...], ax_n[ax_1[Series_1_y-axis_data_lst, Series_n_y-axis_data_lst...]...]\t\r\n\t\t\t# data set to prevent an error:\r\n\t\t\t\t# Sublists with the same index are a matching x vs y set that will be plotted. They MUST be the same length to prevent an error.\r\n\t\t\t\t# There must be the same number of sub lists to prevent an error.\r\n\t\t# legendlbl_lst: a list of legend labels for each x vs y plot. Again there must be the same number of items in this list as x/y pairs.\r\n\t\t# The rest are self explainatory\r\n\t\tfig = plt.figure(figsize=(25,9))\r\n\t\tax = []\r\n\t\t\r\n\t\tfor a in range(4):\r\n\t\t\tax.append(fig.add_subplot(2,2,1+a))\r\n\t\t\tax[a].set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable\r\n\t\t\t\r\n\t\t\tfor s in range(len(xdata_lst)):\r\n\t\t\t\tax[a].plot(xdata_lst[s], ydata_lst[a][s], label=legendlbl_lst[s])\r\n\t\t\t\tax[a].spines['right'].set_visible(False)\r\n\t\t\t\tax[a].spines['top'].set_visible(False)\r\n\t\t\t\tax[a].set_ylabel(ylbl_lst[a])\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\tif (a == 2 or a == 3) and s == 1:\r\n\t\t\t\t\tplt.xlabel(xlbl)\r\n\t\t\t\telif (a == 0 or a == 1) and s == 1:\r\n\t\t\t\t\tax[a].set_xticklabels([])\r\n\t\t\t\t\tax[a].spines['bottom'].set_visible(False)\r\n\t\t\t\t\tax[a].xaxis.set_ticks_position('none')\r\n\t\t\t\t\t\r\n\t\tplt.suptitle(fig_title, fontsize=20)\r\n\t\tplt.legend(loc=legend_location, bbox_to_anchor=(legend_h_offset, legend_v_offset))\r\n\t\tplt.savefig(png_filename, bbox_inches='tight')\r\n\t\t\r\n\tdef Manual_OFN20fg_IDL(self):\r\n\t\tfig = plt.figure(figsize=(25,9))\r\n\t\tax = fig.add_subplot(1,1,1)\r\n\t\tax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable\r\n\t\t\r\n\t\txdata = [0,150,250,350]\r\n\t\tydata = [[0.036614, 0.009674, 0.0056418, 0.004696],[0.0083151, 0.0044855, 0.0046082, 0.0033099]]\r\n\t\tlegendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\r\n\t\t\r\n\t\tfor s in range(len(ydata)):\r\n\t\t\tax.plot(xdata, ydata[s], label=legendlbl_lst[s])\r\n\t\t\t\r\n\t\tax.spines['right'].set_visible(False)\r\n\t\tax.spines['top'].set_visible(False)\r\n\t\tax.set_ylabel('IDL pg')\r\n\t\tax.set_xlabel('Optimized Detector Voltage Offset (volts)')\r\n\t\tplt.legend()\r\n\t\tplt.suptitle('IDL vs Detector Voltage Offset\\nOFN 0.02 pg On Column\\nQuant Mass = 271.99', fontsize=20)\r\n\t\tplt.savefig('OFN_20fg_IDL_Plot', bbox_inches='tight')\r\n\t\t\r\n\tdef Manual_GO_Plot(self):\r\n\t\tfig = plt.figure(figsize=(25,9))\r\n\t\tax = fig.add_subplot(1,1,1)\r\n\t\tax.set_prop_cycle('color',plt.cm.spectral(np.linspace(0.25,0.84,2))) #@UndefinedVariable\r\n\t\t\r\n\t\txdata = [0,150,250,350]\r\n\t\tydata = [[-7.7, 26.5, 42.8, 66.1],[-8, 4.1, 13.5, 48.4]]\r\n\t\tlegendlbl_lst = ['Peg BT - PV1', 'Peg BT - PV2']\r\n\t\t\r\n\t\tfor s in range(len(ydata)):\r\n\t\t\tax.plot(xdata, ydata[s], label=legendlbl_lst[s])\r\n\t\t\t\r\n\t\tax.spines['right'].set_visible(False)\r\n\t\tax.spines['top'].set_visible(False)\r\n\t\tax.set_ylabel('Change in Optimized Detector Voltage')\r\n\t\tax.set_xlabel('Optimized Detector Voltage Offset (volts)')\r\n\t\tplt.legend()\r\n# \t\tplt.suptitle('Change in Optimized Detector Voltage\\nFrom the Beginning to the End of a Data Set', fontsize=20)\r\n\t\tplt.savefig('GO_Delta_Plot', bbox_inches='tight')\r\n\t\tplt.show()", "step-ids": [ 5, 6, 8, 9, 10 ] }
[ 5, 6, 8, 9, 10 ]
from django.db import models from home.models import MainUser from product.models import Product # Create your models here. class Cart(models.Model): user = models.ForeignKey(MainUser,on_delete=models.CASCADE) item = models.ForeignKey(Product, on_delete=models.CASCADE) quantity = models.PositiveIntegerField(default=1) parchased=models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return f'{self.item}x{self.quantity}' def get_total(self): total=self.item.price *self.quantity f_total=format(total,'0.2f') return f_total class Order(models.Model): orderitems = models.ManyToManyField(Cart) user=models.ForeignKey(MainUser,on_delete=models.CASCADE) ordered=models.BooleanField(default=False) created = models.DateTimeField(auto_now_add=True) payment_id=models.CharField(max_length=300,blank=True,null=True) orderid=models.CharField(max_length=300,blank=True,null=True)
normal
{ "blob_id": "454d210c1b1a41e4a645ef7ccb24f80ee20a451c", "index": 2224, "step-1": "<mask token>\n\n\nclass Cart(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def get_total(self):\n total = self.item.price * self.quantity\n f_total = format(total, '0.2f')\n return f_total\n\n\nclass Order(models.Model):\n orderitems = models.ManyToManyField(Cart)\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n ordered = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n payment_id = models.CharField(max_length=300, blank=True, null=True)\n orderid = models.CharField(max_length=300, blank=True, null=True)\n", "step-2": "<mask token>\n\n\nclass Cart(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return f'{self.item}x{self.quantity}'\n\n def get_total(self):\n total = self.item.price * self.quantity\n f_total = format(total, '0.2f')\n return f_total\n\n\nclass Order(models.Model):\n orderitems = models.ManyToManyField(Cart)\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n ordered = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n payment_id = models.CharField(max_length=300, blank=True, null=True)\n orderid = models.CharField(max_length=300, blank=True, null=True)\n", "step-3": "<mask token>\n\n\nclass Cart(models.Model):\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n item = models.ForeignKey(Product, on_delete=models.CASCADE)\n quantity = models.PositiveIntegerField(default=1)\n parchased = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n\n def __str__(self):\n return f'{self.item}x{self.quantity}'\n\n def get_total(self):\n total = self.item.price * self.quantity\n f_total = format(total, '0.2f')\n return f_total\n\n\nclass Order(models.Model):\n orderitems = models.ManyToManyField(Cart)\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n ordered = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n payment_id = models.CharField(max_length=300, blank=True, null=True)\n orderid = models.CharField(max_length=300, blank=True, null=True)\n", "step-4": "from django.db import models\nfrom home.models import MainUser\nfrom product.models import Product\n\n\nclass Cart(models.Model):\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n item = models.ForeignKey(Product, on_delete=models.CASCADE)\n quantity = models.PositiveIntegerField(default=1)\n parchased = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n\n def __str__(self):\n return f'{self.item}x{self.quantity}'\n\n def get_total(self):\n total = self.item.price * self.quantity\n f_total = format(total, '0.2f')\n return f_total\n\n\nclass Order(models.Model):\n orderitems = models.ManyToManyField(Cart)\n user = models.ForeignKey(MainUser, on_delete=models.CASCADE)\n ordered = models.BooleanField(default=False)\n created = models.DateTimeField(auto_now_add=True)\n payment_id = models.CharField(max_length=300, blank=True, null=True)\n orderid = models.CharField(max_length=300, blank=True, null=True)\n", "step-5": "from django.db import models\nfrom home.models import MainUser\nfrom product.models import Product\n# Create your models here.\nclass Cart(models.Model):\n user = models.ForeignKey(MainUser,on_delete=models.CASCADE)\n item = models.ForeignKey(Product, on_delete=models.CASCADE)\n\n quantity = models.PositiveIntegerField(default=1)\n parchased=models.BooleanField(default=False)\n\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n \n\n def __str__(self):\n return f'{self.item}x{self.quantity}'\n\n\n def get_total(self):\n total=self.item.price *self.quantity \n f_total=format(total,'0.2f')\n return f_total\n \nclass Order(models.Model):\n orderitems = models.ManyToManyField(Cart)\n user=models.ForeignKey(MainUser,on_delete=models.CASCADE)\n ordered=models.BooleanField(default=False)\n\n created = models.DateTimeField(auto_now_add=True)\n payment_id=models.CharField(max_length=300,blank=True,null=True)\n orderid=models.CharField(max_length=300,blank=True,null=True)\n\n \n\n ", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
# # PySNMP MIB module ADTRAN-ATLAS-HSSI-V35-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ADTRAN-ATLAS-HSSI-V35-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 16:59:09 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # adATLASModuleInfoFPStatus, = mibBuilder.importSymbols("ADTRAN-ATLAS-MODULE-MIB", "adATLASModuleInfoFPStatus") adATLASUnitSlotAddress, adATLASUnitFPStatus, adATLASUnitPortAddress = mibBuilder.importSymbols("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitSlotAddress", "adATLASUnitFPStatus", "adATLASUnitPortAddress") ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion", "ConstraintsIntersection", "ValueSizeConstraint") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") MibScalar, MibTable, MibTableRow, MibTableColumn, Bits, Gauge32, Integer32, Counter64, IpAddress, ModuleIdentity, ObjectIdentity, iso, Unsigned32, Counter32, MibIdentifier, NotificationType, NotificationType, enterprises, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Bits", "Gauge32", "Integer32", "Counter64", "IpAddress", "ModuleIdentity", "ObjectIdentity", "iso", "Unsigned32", "Counter32", "MibIdentifier", "NotificationType", "NotificationType", "enterprises", "TimeTicks") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") adtran = MibIdentifier((1, 3, 6, 1, 4, 1, 664)) adMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2)) adATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154)) adGenATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1)) adATLASHSSIV35mg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1, 11)) adATLASHSSIV35IfceDeact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) + (0,15401100)).setObjects(("IF-MIB", "ifIndex"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitSlotAddress"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitPortAddress"), ("ADTRAN-ATLAS-MODULE-MIB", "adATLASModuleInfoFPStatus"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitFPStatus")) adATLASHSSIV35IfceReact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) + (0,15401101)).setObjects(("IF-MIB", "ifIndex"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitSlotAddress"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitPortAddress"), ("ADTRAN-ATLAS-MODULE-MIB", "adATLASModuleInfoFPStatus"), ("ADTRAN-ATLAS-UNIT-MIB", "adATLASUnitFPStatus")) mibBuilder.exportSymbols("ADTRAN-ATLAS-HSSI-V35-MIB", adtran=adtran, adMgmt=adMgmt, adATLASHSSIV35IfceReact=adATLASHSSIV35IfceReact, adGenATLASmg=adGenATLASmg, adATLASmg=adATLASmg, adATLASHSSIV35IfceDeact=adATLASHSSIV35IfceDeact, adATLASHSSIV35mg=adATLASHSSIV35mg)
normal
{ "blob_id": "309807e04bfbf6c32b7105fe87d6ad1247ae411a", "index": 3192, "step-1": "<mask token>\n", "step-2": "<mask token>\nmibBuilder.exportSymbols('ADTRAN-ATLAS-HSSI-V35-MIB', adtran=adtran, adMgmt\n =adMgmt, adATLASHSSIV35IfceReact=adATLASHSSIV35IfceReact, adGenATLASmg=\n adGenATLASmg, adATLASmg=adATLASmg, adATLASHSSIV35IfceDeact=\n adATLASHSSIV35IfceDeact, adATLASHSSIV35mg=adATLASHSSIV35mg)\n", "step-3": "adATLASModuleInfoFPStatus, = mibBuilder.importSymbols('ADTRAN-ATLAS-MODULE-MIB'\n , 'adATLASModuleInfoFPStatus')\nadATLASUnitSlotAddress, adATLASUnitFPStatus, adATLASUnitPortAddress = (\n mibBuilder.importSymbols('ADTRAN-ATLAS-UNIT-MIB',\n 'adATLASUnitSlotAddress', 'adATLASUnitFPStatus', 'adATLASUnitPortAddress'))\nObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols('ASN1',\n 'ObjectIdentifier', 'Integer', 'OctetString')\nNamedValues, = mibBuilder.importSymbols('ASN1-ENUMERATION', 'NamedValues')\n(SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion,\n ConstraintsIntersection, ValueSizeConstraint) = (mibBuilder.\n importSymbols('ASN1-REFINEMENT', 'SingleValueConstraint',\n 'ValueRangeConstraint', 'ConstraintsUnion', 'ConstraintsIntersection',\n 'ValueSizeConstraint'))\nifIndex, = mibBuilder.importSymbols('IF-MIB', 'ifIndex')\nModuleCompliance, NotificationGroup = mibBuilder.importSymbols('SNMPv2-CONF',\n 'ModuleCompliance', 'NotificationGroup')\n(MibScalar, MibTable, MibTableRow, MibTableColumn, Bits, Gauge32, Integer32,\n Counter64, IpAddress, ModuleIdentity, ObjectIdentity, iso, Unsigned32,\n Counter32, MibIdentifier, NotificationType, NotificationType,\n enterprises, TimeTicks) = (mibBuilder.importSymbols('SNMPv2-SMI',\n 'MibScalar', 'MibTable', 'MibTableRow', 'MibTableColumn', 'Bits',\n 'Gauge32', 'Integer32', 'Counter64', 'IpAddress', 'ModuleIdentity',\n 'ObjectIdentity', 'iso', 'Unsigned32', 'Counter32', 'MibIdentifier',\n 'NotificationType', 'NotificationType', 'enterprises', 'TimeTicks'))\nDisplayString, TextualConvention = mibBuilder.importSymbols('SNMPv2-TC',\n 'DisplayString', 'TextualConvention')\nadtran = MibIdentifier((1, 3, 6, 1, 4, 1, 664))\nadMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2))\nadATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154))\nadGenATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1))\nadATLASHSSIV35mg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1, 11))\nadATLASHSSIV35IfceDeact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) +\n (0, 15401100)).setObjects(('IF-MIB', 'ifIndex'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitSlotAddress'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitPortAddress'), (\n 'ADTRAN-ATLAS-MODULE-MIB', 'adATLASModuleInfoFPStatus'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitFPStatus'))\nadATLASHSSIV35IfceReact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) +\n (0, 15401101)).setObjects(('IF-MIB', 'ifIndex'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitSlotAddress'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitPortAddress'), (\n 'ADTRAN-ATLAS-MODULE-MIB', 'adATLASModuleInfoFPStatus'), (\n 'ADTRAN-ATLAS-UNIT-MIB', 'adATLASUnitFPStatus'))\nmibBuilder.exportSymbols('ADTRAN-ATLAS-HSSI-V35-MIB', adtran=adtran, adMgmt\n =adMgmt, adATLASHSSIV35IfceReact=adATLASHSSIV35IfceReact, adGenATLASmg=\n adGenATLASmg, adATLASmg=adATLASmg, adATLASHSSIV35IfceDeact=\n adATLASHSSIV35IfceDeact, adATLASHSSIV35mg=adATLASHSSIV35mg)\n", "step-4": "#\n# PySNMP MIB module ADTRAN-ATLAS-HSSI-V35-MIB (http://snmplabs.com/pysmi)\n# ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ADTRAN-ATLAS-HSSI-V35-MIB\n# Produced by pysmi-0.3.4 at Mon Apr 29 16:59:09 2019\n# On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4\n# Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) \n#\nadATLASModuleInfoFPStatus, = mibBuilder.importSymbols(\"ADTRAN-ATLAS-MODULE-MIB\", \"adATLASModuleInfoFPStatus\")\nadATLASUnitSlotAddress, adATLASUnitFPStatus, adATLASUnitPortAddress = mibBuilder.importSymbols(\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitSlotAddress\", \"adATLASUnitFPStatus\", \"adATLASUnitPortAddress\")\nObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols(\"ASN1\", \"ObjectIdentifier\", \"Integer\", \"OctetString\")\nNamedValues, = mibBuilder.importSymbols(\"ASN1-ENUMERATION\", \"NamedValues\")\nSingleValueConstraint, ValueRangeConstraint, ConstraintsUnion, ConstraintsIntersection, ValueSizeConstraint = mibBuilder.importSymbols(\"ASN1-REFINEMENT\", \"SingleValueConstraint\", \"ValueRangeConstraint\", \"ConstraintsUnion\", \"ConstraintsIntersection\", \"ValueSizeConstraint\")\nifIndex, = mibBuilder.importSymbols(\"IF-MIB\", \"ifIndex\")\nModuleCompliance, NotificationGroup = mibBuilder.importSymbols(\"SNMPv2-CONF\", \"ModuleCompliance\", \"NotificationGroup\")\nMibScalar, MibTable, MibTableRow, MibTableColumn, Bits, Gauge32, Integer32, Counter64, IpAddress, ModuleIdentity, ObjectIdentity, iso, Unsigned32, Counter32, MibIdentifier, NotificationType, NotificationType, enterprises, TimeTicks = mibBuilder.importSymbols(\"SNMPv2-SMI\", \"MibScalar\", \"MibTable\", \"MibTableRow\", \"MibTableColumn\", \"Bits\", \"Gauge32\", \"Integer32\", \"Counter64\", \"IpAddress\", \"ModuleIdentity\", \"ObjectIdentity\", \"iso\", \"Unsigned32\", \"Counter32\", \"MibIdentifier\", \"NotificationType\", \"NotificationType\", \"enterprises\", \"TimeTicks\")\nDisplayString, TextualConvention = mibBuilder.importSymbols(\"SNMPv2-TC\", \"DisplayString\", \"TextualConvention\")\nadtran = MibIdentifier((1, 3, 6, 1, 4, 1, 664))\nadMgmt = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2))\nadATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154))\nadGenATLASmg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1))\nadATLASHSSIV35mg = MibIdentifier((1, 3, 6, 1, 4, 1, 664, 2, 154, 1, 11))\nadATLASHSSIV35IfceDeact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) + (0,15401100)).setObjects((\"IF-MIB\", \"ifIndex\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitSlotAddress\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitPortAddress\"), (\"ADTRAN-ATLAS-MODULE-MIB\", \"adATLASModuleInfoFPStatus\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitFPStatus\"))\nadATLASHSSIV35IfceReact = NotificationType((1, 3, 6, 1, 4, 1, 664, 2, 154) + (0,15401101)).setObjects((\"IF-MIB\", \"ifIndex\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitSlotAddress\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitPortAddress\"), (\"ADTRAN-ATLAS-MODULE-MIB\", \"adATLASModuleInfoFPStatus\"), (\"ADTRAN-ATLAS-UNIT-MIB\", \"adATLASUnitFPStatus\"))\nmibBuilder.exportSymbols(\"ADTRAN-ATLAS-HSSI-V35-MIB\", adtran=adtran, adMgmt=adMgmt, adATLASHSSIV35IfceReact=adATLASHSSIV35IfceReact, adGenATLASmg=adGenATLASmg, adATLASmg=adATLASmg, adATLASHSSIV35IfceDeact=adATLASHSSIV35IfceDeact, adATLASHSSIV35mg=adATLASHSSIV35mg)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import sys from PySide6.QtCore import * from PySide6.QtWidgets import * from PySide6.QtGui import * from simple_drawing_window import * class simple_drawing_window1( simple_drawing_window): def __init__(self): super().__init__() def paintEvent(self, e): p = QPainter() p.begin(self) """ p.setPen(QColor(0,0,0)) p.setBrush(QColor(0,127,0)) p.drawPolygon( [QPoint(70,100), QPoint(100,110), QPoint(130, 100), QPoint(100,150),] ) """ p.setPen(QColor(255,127,0)) p.setBrush(QColor(255,127,0)) p.drawPolygon( [QPoint(50,100), QPoint(200,100),QPoint(200,400), QPoint(50,400),] ) p.drawPixmap(QRect(400,150,200,200), self.rabbit) p.end()
normal
{ "blob_id": "6fc43919f521234d0dc9e167bb72f014e9c0bf17", "index": 2102, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass simple_drawing_window1(simple_drawing_window):\n <mask token>\n\n def paintEvent(self, e):\n p = QPainter()\n p.begin(self)\n \"\"\"\n\t\tp.setPen(QColor(0,0,0))\n\t\tp.setBrush(QColor(0,127,0))\n\t\tp.drawPolygon(\n\t\t\t[QPoint(70,100), QPoint(100,110), \n\t\t\tQPoint(130, 100), QPoint(100,150),]\n\t\t)\n\t\t\"\"\"\n p.setPen(QColor(255, 127, 0))\n p.setBrush(QColor(255, 127, 0))\n p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400),\n QPoint(50, 400)])\n p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit)\n p.end()\n", "step-3": "<mask token>\n\n\nclass simple_drawing_window1(simple_drawing_window):\n\n def __init__(self):\n super().__init__()\n\n def paintEvent(self, e):\n p = QPainter()\n p.begin(self)\n \"\"\"\n\t\tp.setPen(QColor(0,0,0))\n\t\tp.setBrush(QColor(0,127,0))\n\t\tp.drawPolygon(\n\t\t\t[QPoint(70,100), QPoint(100,110), \n\t\t\tQPoint(130, 100), QPoint(100,150),]\n\t\t)\n\t\t\"\"\"\n p.setPen(QColor(255, 127, 0))\n p.setBrush(QColor(255, 127, 0))\n p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400),\n QPoint(50, 400)])\n p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit)\n p.end()\n", "step-4": "import sys\nfrom PySide6.QtCore import *\nfrom PySide6.QtWidgets import *\nfrom PySide6.QtGui import *\nfrom simple_drawing_window import *\n\n\nclass simple_drawing_window1(simple_drawing_window):\n\n def __init__(self):\n super().__init__()\n\n def paintEvent(self, e):\n p = QPainter()\n p.begin(self)\n \"\"\"\n\t\tp.setPen(QColor(0,0,0))\n\t\tp.setBrush(QColor(0,127,0))\n\t\tp.drawPolygon(\n\t\t\t[QPoint(70,100), QPoint(100,110), \n\t\t\tQPoint(130, 100), QPoint(100,150),]\n\t\t)\n\t\t\"\"\"\n p.setPen(QColor(255, 127, 0))\n p.setBrush(QColor(255, 127, 0))\n p.drawPolygon([QPoint(50, 100), QPoint(200, 100), QPoint(200, 400),\n QPoint(50, 400)])\n p.drawPixmap(QRect(400, 150, 200, 200), self.rabbit)\n p.end()\n", "step-5": "\nimport sys\nfrom PySide6.QtCore import *\nfrom PySide6.QtWidgets import *\nfrom PySide6.QtGui import *\nfrom simple_drawing_window import *\n\nclass simple_drawing_window1( simple_drawing_window):\n\tdef __init__(self):\n\t\tsuper().__init__()\n \n\tdef paintEvent(self, e):\n\t\tp = QPainter()\n\t\tp.begin(self)\n\t\t\"\"\"\n\t\tp.setPen(QColor(0,0,0))\n\t\tp.setBrush(QColor(0,127,0))\n\t\tp.drawPolygon(\n\t\t\t[QPoint(70,100), QPoint(100,110), \n\t\t\tQPoint(130, 100), QPoint(100,150),]\n\t\t)\n\t\t\"\"\"\n\n\t\tp.setPen(QColor(255,127,0))\n\t\tp.setBrush(QColor(255,127,0))\n \n\t\t\n \n\t\tp.drawPolygon(\n\t\t\t[QPoint(50,100), QPoint(200,100),QPoint(200,400), QPoint(50,400),]\n\t\t)\n\t\t\n\t\tp.drawPixmap(QRect(400,150,200,200), self.rabbit)\n \n\t\tp.end()\n\n", "step-ids": [ 0, 2, 3, 4, 5 ] }
[ 0, 2, 3, 4, 5 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def getHashcode(string): for i in range(10000000000): hash_md5 = hashlib.md5(str(i).encode('utf-8')) res = hash_md5.hexdigest() if res[0:len(string)] == string: print(i) exit() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def getHashcode(string): for i in range(10000000000): hash_md5 = hashlib.md5(str(i).encode('utf-8')) res = hash_md5.hexdigest() if res[0:len(string)] == string: print(i) exit() if __name__ == '__main__': getHashcode(sys.argv[1]) <|reserved_special_token_1|> import hashlib import sys def getHashcode(string): for i in range(10000000000): hash_md5 = hashlib.md5(str(i).encode('utf-8')) res = hash_md5.hexdigest() if res[0:len(string)] == string: print(i) exit() if __name__ == '__main__': getHashcode(sys.argv[1])
flexible
{ "blob_id": "4c8e3c21dd478606cf09f2e97dc9deed6597dae5", "index": 4375, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef getHashcode(string):\n for i in range(10000000000):\n hash_md5 = hashlib.md5(str(i).encode('utf-8'))\n res = hash_md5.hexdigest()\n if res[0:len(string)] == string:\n print(i)\n exit()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef getHashcode(string):\n for i in range(10000000000):\n hash_md5 = hashlib.md5(str(i).encode('utf-8'))\n res = hash_md5.hexdigest()\n if res[0:len(string)] == string:\n print(i)\n exit()\n\n\nif __name__ == '__main__':\n getHashcode(sys.argv[1])\n", "step-4": "import hashlib\nimport sys\n\n\ndef getHashcode(string):\n for i in range(10000000000):\n hash_md5 = hashlib.md5(str(i).encode('utf-8'))\n res = hash_md5.hexdigest()\n if res[0:len(string)] == string:\n print(i)\n exit()\n\n\nif __name__ == '__main__':\n getHashcode(sys.argv[1])\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if operacion == 'SUMA': resultado = numero1 + numero2 elif operacion == 'RESTA': resultado = numero1 - numero2 elif operacion == 'DIVISION': resultado = numero1 / numero2 elif operacion == 'MULTIPLICACION': resultado = numero1 * numero2 print('Resultado : {}'.format(resultado)) <|reserved_special_token_1|> numero1 = 0 numero2 = 0 operacion = input( '¿Qué operación quiere realizar (Suma / Resta / Division / Multiplicacion)?: ' ).upper() numero1 = int(input('Introduzca el valor 1: ')) numero2 = int(input('Introduzca el valor 2: ')) if operacion == 'SUMA': resultado = numero1 + numero2 elif operacion == 'RESTA': resultado = numero1 - numero2 elif operacion == 'DIVISION': resultado = numero1 / numero2 elif operacion == 'MULTIPLICACION': resultado = numero1 * numero2 print('Resultado : {}'.format(resultado)) <|reserved_special_token_1|> #Calculadora mediante el terminal numero1 = 0 numero2 = 0 #Preguntamos los valores operacion = input("¿Qué operación quiere realizar (Suma / Resta / Division / Multiplicacion)?: ").upper() numero1 = int(input("Introduzca el valor 1: ")) numero2 = int(input("Introduzca el valor 2: ")) #Realizamos las operaciones if operacion == "SUMA": resultado = numero1 + numero2 elif operacion == "RESTA": resultado = numero1 - numero2 elif operacion == "DIVISION": resultado = numero1 / numero2 elif operacion == "MULTIPLICACION": resultado = numero1 * numero2 #Mostramos en pantalla el resultado print("Resultado : {}".format(resultado))
flexible
{ "blob_id": "5d618acc0962447554807cbb9d3546cd4e0b3572", "index": 3005, "step-1": "<mask token>\n", "step-2": "<mask token>\nif operacion == 'SUMA':\n resultado = numero1 + numero2\nelif operacion == 'RESTA':\n resultado = numero1 - numero2\nelif operacion == 'DIVISION':\n resultado = numero1 / numero2\nelif operacion == 'MULTIPLICACION':\n resultado = numero1 * numero2\nprint('Resultado : {}'.format(resultado))\n", "step-3": "numero1 = 0\nnumero2 = 0\noperacion = input(\n '¿Qué operación quiere realizar (Suma / Resta / Division / Multiplicacion)?: '\n ).upper()\nnumero1 = int(input('Introduzca el valor 1: '))\nnumero2 = int(input('Introduzca el valor 2: '))\nif operacion == 'SUMA':\n resultado = numero1 + numero2\nelif operacion == 'RESTA':\n resultado = numero1 - numero2\nelif operacion == 'DIVISION':\n resultado = numero1 / numero2\nelif operacion == 'MULTIPLICACION':\n resultado = numero1 * numero2\nprint('Resultado : {}'.format(resultado))\n", "step-4": "#Calculadora mediante el terminal\n\nnumero1 = 0\nnumero2 = 0\n\n\n#Preguntamos los valores\n\noperacion = input(\"¿Qué operación quiere realizar (Suma / Resta / Division / Multiplicacion)?: \").upper()\n\nnumero1 = int(input(\"Introduzca el valor 1: \"))\nnumero2 = int(input(\"Introduzca el valor 2: \"))\n\n\n#Realizamos las operaciones\nif operacion == \"SUMA\":\n resultado = numero1 + numero2\nelif operacion == \"RESTA\":\n resultado = numero1 - numero2\nelif operacion == \"DIVISION\":\n resultado = numero1 / numero2\nelif operacion == \"MULTIPLICACION\":\n resultado = numero1 * numero2\n\n\n#Mostramos en pantalla el resultado\nprint(\"Resultado : {}\".format(resultado))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class ScrapySpiderPipeline(object): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ScrapySpiderPipeline(object): def __init__(self): engine = db_connect() create_table(engine) self.Session = sessionmaker(bind=engine) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ScrapySpiderPipeline(object): def __init__(self): engine = db_connect() create_table(engine) self.Session = sessionmaker(bind=engine) def process_item(self, item, spider): session = self.Session() ım_db = IMDB_DATABASE() ım_db.MOVIE_CODE = item['MOVIE_CODE'] ım_db.MOVIE_NAME = item['MOVIE_NAME'] ım_db.YEAR = item['YEAR'] ım_db.RANK = item['RANK'] ım_db.IMDB_RATING = item['IMDB_RATING'] try: session.add(ım_db) session.commit() except: session.rollback() raise finally: session.close() return item <|reserved_special_token_1|> from sqlalchemy.orm import sessionmaker from IMDB.spiders.models import IMDB_DATABASE, db_connect, create_table class ScrapySpiderPipeline(object): def __init__(self): engine = db_connect() create_table(engine) self.Session = sessionmaker(bind=engine) def process_item(self, item, spider): session = self.Session() ım_db = IMDB_DATABASE() ım_db.MOVIE_CODE = item['MOVIE_CODE'] ım_db.MOVIE_NAME = item['MOVIE_NAME'] ım_db.YEAR = item['YEAR'] ım_db.RANK = item['RANK'] ım_db.IMDB_RATING = item['IMDB_RATING'] try: session.add(ım_db) session.commit() except: session.rollback() raise finally: session.close() return item <|reserved_special_token_1|> from sqlalchemy.orm import sessionmaker from IMDB.spiders.models import IMDB_DATABASE, db_connect, create_table class ScrapySpiderPipeline(object): # Bu Fonksiyon Veritabanı bağlantısını ve oturum oluşturucuyu başlatır ve bir İlişkisel Veritabanı tablosu oluşturur. def __init__(self): engine = db_connect() create_table(engine) self.Session = sessionmaker(bind=engine) # Bu Fonksiyon Spiderdan Gelen Dataları Models.py Dosyasındaki Model Şablonuna Göre İşleme Sokarak Verileri Database İçine Kaydeder def process_item(self, item, spider): session = self.Session() ım_db = IMDB_DATABASE() ım_db.MOVIE_CODE = item["MOVIE_CODE"] ım_db.MOVIE_NAME = item["MOVIE_NAME"] ım_db.YEAR = item["YEAR"] ım_db.RANK = item["RANK"] ım_db.IMDB_RATING = item["IMDB_RATING"] # Buradaki Try Except istisna blokları datalar kaydedilirken varsa oluşan hataları ayıklayarak bizlere mesaj olarak döner try: session.add(ım_db) session.commit() except: session.rollback() raise finally: session.close() return item
flexible
{ "blob_id": "16074fc1824a99b6fd1c4bf113d5b752308e8803", "index": 5198, "step-1": "<mask token>\n\n\nclass ScrapySpiderPipeline(object):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass ScrapySpiderPipeline(object):\n\n def __init__(self):\n engine = db_connect()\n create_table(engine)\n self.Session = sessionmaker(bind=engine)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass ScrapySpiderPipeline(object):\n\n def __init__(self):\n engine = db_connect()\n create_table(engine)\n self.Session = sessionmaker(bind=engine)\n\n def process_item(self, item, spider):\n session = self.Session()\n ım_db = IMDB_DATABASE()\n ım_db.MOVIE_CODE = item['MOVIE_CODE']\n ım_db.MOVIE_NAME = item['MOVIE_NAME']\n ım_db.YEAR = item['YEAR']\n ım_db.RANK = item['RANK']\n ım_db.IMDB_RATING = item['IMDB_RATING']\n try:\n session.add(ım_db)\n session.commit()\n except:\n session.rollback()\n raise\n finally:\n session.close()\n return item\n", "step-4": "from sqlalchemy.orm import sessionmaker\nfrom IMDB.spiders.models import IMDB_DATABASE, db_connect, create_table\n\n\nclass ScrapySpiderPipeline(object):\n\n def __init__(self):\n engine = db_connect()\n create_table(engine)\n self.Session = sessionmaker(bind=engine)\n\n def process_item(self, item, spider):\n session = self.Session()\n ım_db = IMDB_DATABASE()\n ım_db.MOVIE_CODE = item['MOVIE_CODE']\n ım_db.MOVIE_NAME = item['MOVIE_NAME']\n ım_db.YEAR = item['YEAR']\n ım_db.RANK = item['RANK']\n ım_db.IMDB_RATING = item['IMDB_RATING']\n try:\n session.add(ım_db)\n session.commit()\n except:\n session.rollback()\n raise\n finally:\n session.close()\n return item\n", "step-5": "from sqlalchemy.orm import sessionmaker\nfrom IMDB.spiders.models import IMDB_DATABASE, db_connect, create_table\n\n\nclass ScrapySpiderPipeline(object):\n \n # Bu Fonksiyon Veritabanı bağlantısını ve oturum oluşturucuyu başlatır ve bir İlişkisel Veritabanı tablosu oluşturur.\n def __init__(self):\n \n engine = db_connect()\n create_table(engine)\n \n self.Session = sessionmaker(bind=engine)\n\n # Bu Fonksiyon Spiderdan Gelen Dataları Models.py Dosyasındaki Model Şablonuna Göre İşleme Sokarak Verileri Database İçine Kaydeder\n def process_item(self, item, spider):\n\n session = self.Session()\n \n ım_db = IMDB_DATABASE()\n \n ım_db.MOVIE_CODE = item[\"MOVIE_CODE\"]\n \n ım_db.MOVIE_NAME = item[\"MOVIE_NAME\"]\n\n ım_db.YEAR = item[\"YEAR\"]\n\n ım_db.RANK = item[\"RANK\"]\n\n ım_db.IMDB_RATING = item[\"IMDB_RATING\"]\n\n\n\n # Buradaki Try Except istisna blokları datalar kaydedilirken varsa oluşan hataları ayıklayarak bizlere mesaj olarak döner\n try:\n session.add(ım_db)\n session.commit()\n \n except:\n session.rollback()\n raise\n \n finally:\n session.close()\n\n return item\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
def strictly_greater_than(value): if value : # Change this line return "Greater than 100" elif value : # Change this line return "Greater than 10" else: return "10 or less" # Change the value 1 below to experiment with different values print(strictly_greater_than(1))
normal
{ "blob_id": "7620d76afc65ceb3b478f0b05339ace1f1531f7d", "index": 6708, "step-1": "<mask token>\n", "step-2": "def strictly_greater_than(value):\n if value:\n return 'Greater than 100'\n elif value:\n return 'Greater than 10'\n else:\n return '10 or less'\n\n\n<mask token>\n", "step-3": "def strictly_greater_than(value):\n if value:\n return 'Greater than 100'\n elif value:\n return 'Greater than 10'\n else:\n return '10 or less'\n\n\nprint(strictly_greater_than(1))\n", "step-4": "def strictly_greater_than(value):\n if value : # Change this line\n return \"Greater than 100\"\n elif value : # Change this line\n return \"Greater than 10\"\n else:\n return \"10 or less\"\n\n# Change the value 1 below to experiment with different values\nprint(strictly_greater_than(1))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/python2 import requests ,optparse def get_link(): parser=optparse.OptionParser() parser.add_option("-l","--link",dest="url",help="direct link of file to download .pdf") (url,argument)=parser.parse_args() return url def download(url): try: get_request=requests.get(url) name_url=url.split("/")[-1] print(name_url) with open(name_url,"wb") as file: file.write(get_request.content) except: print("[-]Print Valid Link") def start(): url_link=get_link() try: download(url_link.url) except: url_link=input("[+]Enter link:") download(url_link) start()
normal
{ "blob_id": "22ddae977afd2a1b0a729cf0d56783eaaca3b0a0", "index": 9813, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_link():\n parser = optparse.OptionParser()\n parser.add_option('-l', '--link', dest='url', help=\n 'direct link of file to download .pdf')\n url, argument = parser.parse_args()\n return url\n\n\ndef download(url):\n try:\n get_request = requests.get(url)\n name_url = url.split('/')[-1]\n print(name_url)\n with open(name_url, 'wb') as file:\n file.write(get_request.content)\n except:\n print('[-]Print Valid Link')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_link():\n parser = optparse.OptionParser()\n parser.add_option('-l', '--link', dest='url', help=\n 'direct link of file to download .pdf')\n url, argument = parser.parse_args()\n return url\n\n\ndef download(url):\n try:\n get_request = requests.get(url)\n name_url = url.split('/')[-1]\n print(name_url)\n with open(name_url, 'wb') as file:\n file.write(get_request.content)\n except:\n print('[-]Print Valid Link')\n\n\ndef start():\n url_link = get_link()\n try:\n download(url_link.url)\n except:\n url_link = input('[+]Enter link:')\n download(url_link)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef get_link():\n parser = optparse.OptionParser()\n parser.add_option('-l', '--link', dest='url', help=\n 'direct link of file to download .pdf')\n url, argument = parser.parse_args()\n return url\n\n\ndef download(url):\n try:\n get_request = requests.get(url)\n name_url = url.split('/')[-1]\n print(name_url)\n with open(name_url, 'wb') as file:\n file.write(get_request.content)\n except:\n print('[-]Print Valid Link')\n\n\ndef start():\n url_link = get_link()\n try:\n download(url_link.url)\n except:\n url_link = input('[+]Enter link:')\n download(url_link)\n\n\nstart()\n", "step-5": "#!/usr/bin/python2\n\nimport requests ,optparse\n\n\ndef get_link():\n parser=optparse.OptionParser()\n parser.add_option(\"-l\",\"--link\",dest=\"url\",help=\"direct link of file to download .pdf\")\n (url,argument)=parser.parse_args()\n return url\n\ndef download(url):\n try:\n get_request=requests.get(url)\n name_url=url.split(\"/\")[-1]\n print(name_url)\n with open(name_url,\"wb\") as file:\n file.write(get_request.content)\n except:\n print(\"[-]Print Valid Link\")\n \n \n\n\ndef start():\n url_link=get_link()\n try:\t\n download(url_link.url)\n except:\n url_link=input(\"[+]Enter link:\")\n download(url_link)\n\nstart()\n\n\n\n", "step-ids": [ 0, 2, 3, 4, 6 ] }
[ 0, 2, 3, 4, 6 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> for n in primos: quadrado = n ** 2 if quadrado in intervalo: is_magic.append(quadrado) print(len(is_magic)) <|reserved_special_token_1|> primos = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] intervalo = list(range(8, 27)) + list(range(49, 50)) is_magic = [] for n in primos: quadrado = n ** 2 if quadrado in intervalo: is_magic.append(quadrado) print(len(is_magic)) <|reserved_special_token_1|> primos = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] # números entre (8 - 26) e (44 - 44) intervalo = list(range(8, 27)) + list(range(49, 50)) is_magic = [] for n in primos: quadrado = n ** 2 if quadrado in intervalo: is_magic.append(quadrado) print(len(is_magic)) # 3
flexible
{ "blob_id": "b7f443521e165f327aae9ff5d7bbb7b8462abeb5", "index": 2890, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor n in primos:\n quadrado = n ** 2\n if quadrado in intervalo:\n is_magic.append(quadrado)\nprint(len(is_magic))\n", "step-3": "primos = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]\nintervalo = list(range(8, 27)) + list(range(49, 50))\nis_magic = []\nfor n in primos:\n quadrado = n ** 2\n if quadrado in intervalo:\n is_magic.append(quadrado)\nprint(len(is_magic))\n", "step-4": "primos = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]\n# números entre (8 - 26) e (44 - 44)\nintervalo = list(range(8, 27)) + list(range(49, 50))\nis_magic = []\nfor n in primos:\n quadrado = n ** 2\n if quadrado in intervalo:\n is_magic.append(quadrado)\n\nprint(len(is_magic)) # 3", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def gen_ft_parser(): ft_parser = argparse.ArgumentParser(description= 'Generate a Character-Feature Translation Table') ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type= str, help= 'A file contianing all the characters that will appear in the translation table.' ) ft_parser.add_argument('save_file', metavar='save_path', type=str, help ='The feature table filename.') return ft_parser def construct_alphabet(alpha_string): symbols = set(alpha_string) alphabet = ''.join(sorted(c for c in string.printable if c in symbols)) return numpy.array(list(alphabet)) def load_alphabet(alphabet_file): with open(alphabet_file) as alphabet: alphabet = alphabet.read(100000).replace('\n', ' ') return construct_alphabet(alphabet) def gen_row(c, key): row = [False] * (len(key) + 1) row[key[c.lower()]] = True row[-1] = c.isupper() return row <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def gen_ft_parser(): ft_parser = argparse.ArgumentParser(description= 'Generate a Character-Feature Translation Table') ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type= str, help= 'A file contianing all the characters that will appear in the translation table.' ) ft_parser.add_argument('save_file', metavar='save_path', type=str, help ='The feature table filename.') return ft_parser def construct_alphabet(alpha_string): symbols = set(alpha_string) alphabet = ''.join(sorted(c for c in string.printable if c in symbols)) return numpy.array(list(alphabet)) def load_alphabet(alphabet_file): with open(alphabet_file) as alphabet: alphabet = alphabet.read(100000).replace('\n', ' ') return construct_alphabet(alphabet) def gen_row(c, key): row = [False] * (len(key) + 1) row[key[c.lower()]] = True row[-1] = c.isupper() return row def build_table(alphabet): code = ''.join(sorted(set(''.join(alphabet).lower()))) key = {c: i for i, c in enumerate(code)} table = numpy.zeros((len(alphabet), len(key) + 1)) for i, c in enumerate(alphabet): table[i] = gen_row(c, key) return table def main(args): table = build_table(load_alphabet(args.alphabet_file)) numpy.save(args.save_file, table) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def gen_ft_parser(): ft_parser = argparse.ArgumentParser(description= 'Generate a Character-Feature Translation Table') ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type= str, help= 'A file contianing all the characters that will appear in the translation table.' ) ft_parser.add_argument('save_file', metavar='save_path', type=str, help ='The feature table filename.') return ft_parser def construct_alphabet(alpha_string): symbols = set(alpha_string) alphabet = ''.join(sorted(c for c in string.printable if c in symbols)) return numpy.array(list(alphabet)) def load_alphabet(alphabet_file): with open(alphabet_file) as alphabet: alphabet = alphabet.read(100000).replace('\n', ' ') return construct_alphabet(alphabet) def gen_row(c, key): row = [False] * (len(key) + 1) row[key[c.lower()]] = True row[-1] = c.isupper() return row def build_table(alphabet): code = ''.join(sorted(set(''.join(alphabet).lower()))) key = {c: i for i, c in enumerate(code)} table = numpy.zeros((len(alphabet), len(key) + 1)) for i, c in enumerate(alphabet): table[i] = gen_row(c, key) return table def main(args): table = build_table(load_alphabet(args.alphabet_file)) numpy.save(args.save_file, table) if __name__ == '__main__': main(gen_ft_parser().parse_args()) <|reserved_special_token_1|> import argparse import string import numpy def gen_ft_parser(): ft_parser = argparse.ArgumentParser(description= 'Generate a Character-Feature Translation Table') ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type= str, help= 'A file contianing all the characters that will appear in the translation table.' ) ft_parser.add_argument('save_file', metavar='save_path', type=str, help ='The feature table filename.') return ft_parser def construct_alphabet(alpha_string): symbols = set(alpha_string) alphabet = ''.join(sorted(c for c in string.printable if c in symbols)) return numpy.array(list(alphabet)) def load_alphabet(alphabet_file): with open(alphabet_file) as alphabet: alphabet = alphabet.read(100000).replace('\n', ' ') return construct_alphabet(alphabet) def gen_row(c, key): row = [False] * (len(key) + 1) row[key[c.lower()]] = True row[-1] = c.isupper() return row def build_table(alphabet): code = ''.join(sorted(set(''.join(alphabet).lower()))) key = {c: i for i, c in enumerate(code)} table = numpy.zeros((len(alphabet), len(key) + 1)) for i, c in enumerate(alphabet): table[i] = gen_row(c, key) return table def main(args): table = build_table(load_alphabet(args.alphabet_file)) numpy.save(args.save_file, table) if __name__ == '__main__': main(gen_ft_parser().parse_args()) <|reserved_special_token_1|> #!/usr/bin/python import argparse import string import numpy def gen_ft_parser(): ft_parser = argparse.ArgumentParser( description='Generate a Character-Feature Translation Table') ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type=str, help='A file contianing all the characters that will ' 'appear in the translation table.') ft_parser.add_argument('save_file', metavar='save_path', type=str, help='The feature table filename.') return ft_parser def construct_alphabet(alpha_string): symbols = set(alpha_string) alphabet = ''.join(sorted(c for c in string.printable if c in symbols)) return numpy.array(list(alphabet)) def load_alphabet(alphabet_file): with open(alphabet_file) as alphabet: alphabet = alphabet.read(100000).replace('\n', ' ') return construct_alphabet(alphabet) def gen_row(c, key): row = [False] * (len(key) + 1) row[key[c.lower()]] = True row[-1] = c.isupper() return row def build_table(alphabet): code = ''.join(sorted(set(''.join(alphabet).lower()))) key = {c:i for i, c in enumerate(code)} table = numpy.zeros((len(alphabet), len(key) + 1)) for i, c in enumerate(alphabet): table[i] = gen_row(c, key) return table def main(args): table = build_table(load_alphabet(args.alphabet_file)) numpy.save(args.save_file, table) if __name__ == "__main__": main(gen_ft_parser().parse_args())
flexible
{ "blob_id": "f4d4be174bed2704c0ad12eea2f0cd64eaaa0aaa", "index": 1973, "step-1": "<mask token>\n\n\ndef gen_ft_parser():\n ft_parser = argparse.ArgumentParser(description=\n 'Generate a Character-Feature Translation Table')\n ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type=\n str, help=\n 'A file contianing all the characters that will appear in the translation table.'\n )\n ft_parser.add_argument('save_file', metavar='save_path', type=str, help\n ='The feature table filename.')\n return ft_parser\n\n\ndef construct_alphabet(alpha_string):\n symbols = set(alpha_string)\n alphabet = ''.join(sorted(c for c in string.printable if c in symbols))\n return numpy.array(list(alphabet))\n\n\ndef load_alphabet(alphabet_file):\n with open(alphabet_file) as alphabet:\n alphabet = alphabet.read(100000).replace('\\n', ' ')\n return construct_alphabet(alphabet)\n\n\ndef gen_row(c, key):\n row = [False] * (len(key) + 1)\n row[key[c.lower()]] = True\n row[-1] = c.isupper()\n return row\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef gen_ft_parser():\n ft_parser = argparse.ArgumentParser(description=\n 'Generate a Character-Feature Translation Table')\n ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type=\n str, help=\n 'A file contianing all the characters that will appear in the translation table.'\n )\n ft_parser.add_argument('save_file', metavar='save_path', type=str, help\n ='The feature table filename.')\n return ft_parser\n\n\ndef construct_alphabet(alpha_string):\n symbols = set(alpha_string)\n alphabet = ''.join(sorted(c for c in string.printable if c in symbols))\n return numpy.array(list(alphabet))\n\n\ndef load_alphabet(alphabet_file):\n with open(alphabet_file) as alphabet:\n alphabet = alphabet.read(100000).replace('\\n', ' ')\n return construct_alphabet(alphabet)\n\n\ndef gen_row(c, key):\n row = [False] * (len(key) + 1)\n row[key[c.lower()]] = True\n row[-1] = c.isupper()\n return row\n\n\ndef build_table(alphabet):\n code = ''.join(sorted(set(''.join(alphabet).lower())))\n key = {c: i for i, c in enumerate(code)}\n table = numpy.zeros((len(alphabet), len(key) + 1))\n for i, c in enumerate(alphabet):\n table[i] = gen_row(c, key)\n return table\n\n\ndef main(args):\n table = build_table(load_alphabet(args.alphabet_file))\n numpy.save(args.save_file, table)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef gen_ft_parser():\n ft_parser = argparse.ArgumentParser(description=\n 'Generate a Character-Feature Translation Table')\n ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type=\n str, help=\n 'A file contianing all the characters that will appear in the translation table.'\n )\n ft_parser.add_argument('save_file', metavar='save_path', type=str, help\n ='The feature table filename.')\n return ft_parser\n\n\ndef construct_alphabet(alpha_string):\n symbols = set(alpha_string)\n alphabet = ''.join(sorted(c for c in string.printable if c in symbols))\n return numpy.array(list(alphabet))\n\n\ndef load_alphabet(alphabet_file):\n with open(alphabet_file) as alphabet:\n alphabet = alphabet.read(100000).replace('\\n', ' ')\n return construct_alphabet(alphabet)\n\n\ndef gen_row(c, key):\n row = [False] * (len(key) + 1)\n row[key[c.lower()]] = True\n row[-1] = c.isupper()\n return row\n\n\ndef build_table(alphabet):\n code = ''.join(sorted(set(''.join(alphabet).lower())))\n key = {c: i for i, c in enumerate(code)}\n table = numpy.zeros((len(alphabet), len(key) + 1))\n for i, c in enumerate(alphabet):\n table[i] = gen_row(c, key)\n return table\n\n\ndef main(args):\n table = build_table(load_alphabet(args.alphabet_file))\n numpy.save(args.save_file, table)\n\n\nif __name__ == '__main__':\n main(gen_ft_parser().parse_args())\n", "step-4": "import argparse\nimport string\nimport numpy\n\n\ndef gen_ft_parser():\n ft_parser = argparse.ArgumentParser(description=\n 'Generate a Character-Feature Translation Table')\n ft_parser.add_argument('alphabet_file', metavar='alphabet_file', type=\n str, help=\n 'A file contianing all the characters that will appear in the translation table.'\n )\n ft_parser.add_argument('save_file', metavar='save_path', type=str, help\n ='The feature table filename.')\n return ft_parser\n\n\ndef construct_alphabet(alpha_string):\n symbols = set(alpha_string)\n alphabet = ''.join(sorted(c for c in string.printable if c in symbols))\n return numpy.array(list(alphabet))\n\n\ndef load_alphabet(alphabet_file):\n with open(alphabet_file) as alphabet:\n alphabet = alphabet.read(100000).replace('\\n', ' ')\n return construct_alphabet(alphabet)\n\n\ndef gen_row(c, key):\n row = [False] * (len(key) + 1)\n row[key[c.lower()]] = True\n row[-1] = c.isupper()\n return row\n\n\ndef build_table(alphabet):\n code = ''.join(sorted(set(''.join(alphabet).lower())))\n key = {c: i for i, c in enumerate(code)}\n table = numpy.zeros((len(alphabet), len(key) + 1))\n for i, c in enumerate(alphabet):\n table[i] = gen_row(c, key)\n return table\n\n\ndef main(args):\n table = build_table(load_alphabet(args.alphabet_file))\n numpy.save(args.save_file, table)\n\n\nif __name__ == '__main__':\n main(gen_ft_parser().parse_args())\n", "step-5": "#!/usr/bin/python\n\nimport argparse\nimport string\nimport numpy\n\n\ndef gen_ft_parser():\n ft_parser = argparse.ArgumentParser(\n description='Generate a Character-Feature Translation Table')\n ft_parser.add_argument('alphabet_file', metavar='alphabet_file', \n type=str, help='A file contianing all the characters that will '\n 'appear in the translation table.')\n ft_parser.add_argument('save_file', metavar='save_path',\n type=str, help='The feature table filename.')\n return ft_parser\n\ndef construct_alphabet(alpha_string):\n symbols = set(alpha_string)\n alphabet = ''.join(sorted(c for c in string.printable if c in symbols))\n return numpy.array(list(alphabet))\n\ndef load_alphabet(alphabet_file):\n with open(alphabet_file) as alphabet:\n alphabet = alphabet.read(100000).replace('\\n', ' ')\n return construct_alphabet(alphabet)\n\ndef gen_row(c, key):\n row = [False] * (len(key) + 1)\n row[key[c.lower()]] = True\n row[-1] = c.isupper()\n return row\n\ndef build_table(alphabet):\n code = ''.join(sorted(set(''.join(alphabet).lower())))\n key = {c:i for i, c in enumerate(code)}\n table = numpy.zeros((len(alphabet), len(key) + 1))\n for i, c in enumerate(alphabet):\n table[i] = gen_row(c, key)\n return table\n\ndef main(args):\n table = build_table(load_alphabet(args.alphabet_file))\n numpy.save(args.save_file, table)\n\nif __name__ == \"__main__\":\n main(gen_ft_parser().parse_args())\n\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> install_requires.append('tensorflow-gpu==1.13.1' if has_cuda else 'tensorflow==1.13.1') <|reserved_special_token_0|> setup(name='easybert', version=version, url= 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email= '[email protected]', description= 'A Dead Simple BERT API (https://github.com/google-research/bert)', keywords=['BERT', 'Natural Language Processing', 'NLP', 'Language Model', 'Language Models', 'Machine Learning', 'ML', 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'], classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3'], license='MIT', packages= find_packages(), entry_points={'console_scripts': [ 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires= install_requires, include_package_data=True) <|reserved_special_token_1|> <|reserved_special_token_0|> install_requires = ['numpy', 'tensorflow-hub==0.4.0', 'bert-tensorflow==1.0.1', 'click'] has_cuda = any('CUDA' in name.split('_') for name in os.environ.keys()) install_requires.append('tensorflow-gpu==1.13.1' if has_cuda else 'tensorflow==1.13.1') version_file = Path(__file__).parent.joinpath('easybert', 'VERSION.txt') version = version_file.read_text(encoding='UTF-8').strip() setup(name='easybert', version=version, url= 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email= '[email protected]', description= 'A Dead Simple BERT API (https://github.com/google-research/bert)', keywords=['BERT', 'Natural Language Processing', 'NLP', 'Language Model', 'Language Models', 'Machine Learning', 'ML', 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'], classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3'], license='MIT', packages= find_packages(), entry_points={'console_scripts': [ 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires= install_requires, include_package_data=True) <|reserved_special_token_1|> from pathlib import Path import os from setuptools import setup, find_packages install_requires = ['numpy', 'tensorflow-hub==0.4.0', 'bert-tensorflow==1.0.1', 'click'] has_cuda = any('CUDA' in name.split('_') for name in os.environ.keys()) install_requires.append('tensorflow-gpu==1.13.1' if has_cuda else 'tensorflow==1.13.1') version_file = Path(__file__).parent.joinpath('easybert', 'VERSION.txt') version = version_file.read_text(encoding='UTF-8').strip() setup(name='easybert', version=version, url= 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email= '[email protected]', description= 'A Dead Simple BERT API (https://github.com/google-research/bert)', keywords=['BERT', 'Natural Language Processing', 'NLP', 'Language Model', 'Language Models', 'Machine Learning', 'ML', 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'], classifiers=['Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3'], license='MIT', packages= find_packages(), entry_points={'console_scripts': [ 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires= install_requires, include_package_data=True) <|reserved_special_token_1|> #!/usr/bin/env python from pathlib import Path import os from setuptools import setup, find_packages install_requires = [ "numpy", "tensorflow-hub==0.4.0", "bert-tensorflow==1.0.1", "click" ] # Hacky check for whether CUDA is installed has_cuda = any("CUDA" in name.split("_") for name in os.environ.keys()) install_requires.append("tensorflow-gpu==1.13.1" if has_cuda else "tensorflow==1.13.1") version_file = Path(__file__).parent.joinpath("easybert", "VERSION.txt") version = version_file.read_text(encoding="UTF-8").strip() setup( name="easybert", version=version, url="https://github.com/robrua/easy-bert", author="Rob Rua", author_email="[email protected]", description="A Dead Simple BERT API (https://github.com/google-research/bert)", keywords=["BERT", "Natural Language Processing", "NLP", "Language Model", "Language Models", "Machine Learning", "ML", "TensorFlow", "Embeddings", "Word Embeddings", "Sentence Embeddings"], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python :: 3" ], license="MIT", packages=find_packages(), entry_points={"console_scripts": ["bert=easybert.__main__:_main"]}, zip_safe=True, install_requires=install_requires, include_package_data=True )
flexible
{ "blob_id": "a1141e6aae6992a5037d53093378f0d346f2ca29", "index": 7666, "step-1": "<mask token>\n", "step-2": "<mask token>\ninstall_requires.append('tensorflow-gpu==1.13.1' if has_cuda else\n 'tensorflow==1.13.1')\n<mask token>\nsetup(name='easybert', version=version, url=\n 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email=\n '[email protected]', description=\n 'A Dead Simple BERT API (https://github.com/google-research/bert)',\n keywords=['BERT', 'Natural Language Processing', 'NLP',\n 'Language Model', 'Language Models', 'Machine Learning', 'ML',\n 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'],\n classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent',\n 'Programming Language :: Python :: 3'], license='MIT', packages=\n find_packages(), entry_points={'console_scripts': [\n 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires=\n install_requires, include_package_data=True)\n", "step-3": "<mask token>\ninstall_requires = ['numpy', 'tensorflow-hub==0.4.0',\n 'bert-tensorflow==1.0.1', 'click']\nhas_cuda = any('CUDA' in name.split('_') for name in os.environ.keys())\ninstall_requires.append('tensorflow-gpu==1.13.1' if has_cuda else\n 'tensorflow==1.13.1')\nversion_file = Path(__file__).parent.joinpath('easybert', 'VERSION.txt')\nversion = version_file.read_text(encoding='UTF-8').strip()\nsetup(name='easybert', version=version, url=\n 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email=\n '[email protected]', description=\n 'A Dead Simple BERT API (https://github.com/google-research/bert)',\n keywords=['BERT', 'Natural Language Processing', 'NLP',\n 'Language Model', 'Language Models', 'Machine Learning', 'ML',\n 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'],\n classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent',\n 'Programming Language :: Python :: 3'], license='MIT', packages=\n find_packages(), entry_points={'console_scripts': [\n 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires=\n install_requires, include_package_data=True)\n", "step-4": "from pathlib import Path\nimport os\nfrom setuptools import setup, find_packages\ninstall_requires = ['numpy', 'tensorflow-hub==0.4.0',\n 'bert-tensorflow==1.0.1', 'click']\nhas_cuda = any('CUDA' in name.split('_') for name in os.environ.keys())\ninstall_requires.append('tensorflow-gpu==1.13.1' if has_cuda else\n 'tensorflow==1.13.1')\nversion_file = Path(__file__).parent.joinpath('easybert', 'VERSION.txt')\nversion = version_file.read_text(encoding='UTF-8').strip()\nsetup(name='easybert', version=version, url=\n 'https://github.com/robrua/easy-bert', author='Rob Rua', author_email=\n '[email protected]', description=\n 'A Dead Simple BERT API (https://github.com/google-research/bert)',\n keywords=['BERT', 'Natural Language Processing', 'NLP',\n 'Language Model', 'Language Models', 'Machine Learning', 'ML',\n 'TensorFlow', 'Embeddings', 'Word Embeddings', 'Sentence Embeddings'],\n classifiers=['Development Status :: 4 - Beta',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent',\n 'Programming Language :: Python :: 3'], license='MIT', packages=\n find_packages(), entry_points={'console_scripts': [\n 'bert=easybert.__main__:_main']}, zip_safe=True, install_requires=\n install_requires, include_package_data=True)\n", "step-5": "#!/usr/bin/env python\nfrom pathlib import Path\nimport os\n\nfrom setuptools import setup, find_packages\n\n\ninstall_requires = [\n \"numpy\",\n \"tensorflow-hub==0.4.0\",\n \"bert-tensorflow==1.0.1\",\n \"click\"\n]\n\n# Hacky check for whether CUDA is installed\nhas_cuda = any(\"CUDA\" in name.split(\"_\") for name in os.environ.keys())\ninstall_requires.append(\"tensorflow-gpu==1.13.1\" if has_cuda else \"tensorflow==1.13.1\")\n\nversion_file = Path(__file__).parent.joinpath(\"easybert\", \"VERSION.txt\")\nversion = version_file.read_text(encoding=\"UTF-8\").strip()\n\nsetup(\n name=\"easybert\",\n version=version,\n url=\"https://github.com/robrua/easy-bert\",\n author=\"Rob Rua\",\n author_email=\"[email protected]\",\n description=\"A Dead Simple BERT API (https://github.com/google-research/bert)\",\n keywords=[\"BERT\", \"Natural Language Processing\", \"NLP\", \"Language Model\", \"Language Models\", \"Machine Learning\", \"ML\", \"TensorFlow\", \"Embeddings\", \"Word Embeddings\", \"Sentence Embeddings\"],\n classifiers=[\n \"Development Status :: 4 - Beta\",\n \"Intended Audience :: Developers\",\n \"License :: OSI Approved :: MIT License\",\n \"Operating System :: OS Independent\",\n \"Programming Language :: Python :: 3\"\n ],\n license=\"MIT\",\n packages=find_packages(),\n entry_points={\"console_scripts\": [\"bert=easybert.__main__:_main\"]},\n zip_safe=True,\n install_requires=install_requires,\n include_package_data=True\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(filelist) for infile in filelist: outfile = os.path.splitext(infile)[0] + '.jpg' if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print('cannot convert', infile) <|reserved_special_token_1|> <|reserved_special_token_0|> cwd = os.getcwd() filelist = get_imlist(os.getcwd()) print(filelist) for infile in filelist: outfile = os.path.splitext(infile)[0] + '.jpg' if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print('cannot convert', infile) <|reserved_special_token_1|> from PIL import Image from imtools import * import os cwd = os.getcwd() filelist = get_imlist(os.getcwd()) print(filelist) for infile in filelist: outfile = os.path.splitext(infile)[0] + '.jpg' if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print('cannot convert', infile) <|reserved_special_token_1|> #! /usr/bin/env python3 from PIL import Image from imtools import * import os cwd = os.getcwd() filelist = get_imlist(os.getcwd()) print(filelist) for infile in filelist: outfile = os.path.splitext(infile)[0] + ".jpg" if infile != outfile: try: Image.open(infile).save(outfile) except IOError: print("cannot convert", infile)
flexible
{ "blob_id": "31416f1ba9f3c44a7aa740365e05b5db49e70444", "index": 9106, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(filelist)\nfor infile in filelist:\n outfile = os.path.splitext(infile)[0] + '.jpg'\n if infile != outfile:\n try:\n Image.open(infile).save(outfile)\n except IOError:\n print('cannot convert', infile)\n", "step-3": "<mask token>\ncwd = os.getcwd()\nfilelist = get_imlist(os.getcwd())\nprint(filelist)\nfor infile in filelist:\n outfile = os.path.splitext(infile)[0] + '.jpg'\n if infile != outfile:\n try:\n Image.open(infile).save(outfile)\n except IOError:\n print('cannot convert', infile)\n", "step-4": "from PIL import Image\nfrom imtools import *\nimport os\ncwd = os.getcwd()\nfilelist = get_imlist(os.getcwd())\nprint(filelist)\nfor infile in filelist:\n outfile = os.path.splitext(infile)[0] + '.jpg'\n if infile != outfile:\n try:\n Image.open(infile).save(outfile)\n except IOError:\n print('cannot convert', infile)\n", "step-5": "#! /usr/bin/env python3\n\nfrom PIL import Image\nfrom imtools import *\nimport os\n\ncwd = os.getcwd()\n\nfilelist = get_imlist(os.getcwd())\n\nprint(filelist)\n\nfor infile in filelist:\n\toutfile = os.path.splitext(infile)[0] + \".jpg\"\n\tif infile != outfile:\n\t\ttry:\n\t\t\tImage.open(infile).save(outfile)\n\t\texcept IOError:\n\t\t\tprint(\"cannot convert\", infile)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Solution: def evalRPN(self, tokens: List[str]) -> int: def operation(op1,op2,op): if op == "+": return op1 + op2 if op == "-": return op1 - op2 if op == "*": return op1 * op2 if op == "/": return int(op1/op2) stack = [] for char in tokens: if char in ["+", "-", "*", "/"]: op2 = stack.pop() op1 = stack.pop() res = operation(op1,op2,char) stack.append(int(res)) else: stack.append(int(char)) return stack.pop()
normal
{ "blob_id": "6b597f1570c022d17e4476e2ab8817e724a166a7", "index": 1096, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def evalRPN(self, tokens: List[str]) ->int:\n\n def operation(op1, op2, op):\n if op == '+':\n return op1 + op2\n if op == '-':\n return op1 - op2\n if op == '*':\n return op1 * op2\n if op == '/':\n return int(op1 / op2)\n stack = []\n for char in tokens:\n if char in ['+', '-', '*', '/']:\n op2 = stack.pop()\n op1 = stack.pop()\n res = operation(op1, op2, char)\n stack.append(int(res))\n else:\n stack.append(int(char))\n return stack.pop()\n", "step-4": "class Solution:\r\n def evalRPN(self, tokens: List[str]) -> int:\r\n def operation(op1,op2,op):\r\n if op == \"+\":\r\n return op1 + op2\r\n if op == \"-\":\r\n return op1 - op2\r\n if op == \"*\":\r\n return op1 * op2\r\n if op == \"/\":\r\n return int(op1/op2)\r\n \r\n stack = []\r\n for char in tokens:\r\n if char in [\"+\", \"-\", \"*\", \"/\"]:\r\n op2 = stack.pop()\r\n op1 = stack.pop()\r\n res = operation(op1,op2,char)\r\n stack.append(int(res))\r\n else:\r\n stack.append(int(char))\r\n return stack.pop()", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> print(random.randint(1, 100)) <|reserved_special_token_1|> <|reserved_special_token_0|> import random print(random.randint(1, 100)) <|reserved_special_token_1|> """ CP1404 - Practical Code that produces a random number between 1 and 100 inclusive Rhys Simpson """ # 1. # smallest number 5; largest number 20 # 2. # smallest number 3; largest number 9 # no it can only produce 3, 5, 7, 9 # 3. # smallest number 2.5000000000000000; largest number 5.5000000000000000 import random print(random.randint(1, 100))
flexible
{ "blob_id": "46696ee9576d74c087ae435bfd304c8346530ab2", "index": 9804, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(random.randint(1, 100))\n", "step-3": "<mask token>\nimport random\nprint(random.randint(1, 100))\n", "step-4": "\"\"\"\nCP1404 - Practical\nCode that produces a random number between 1 and 100 inclusive\n\nRhys Simpson\n\"\"\"\n# 1.\n# smallest number 5; largest number 20\n\n# 2.\n# smallest number 3; largest number 9\n# no it can only produce 3, 5, 7, 9\n\n# 3.\n# smallest number 2.5000000000000000; largest number 5.5000000000000000\n\nimport random\nprint(random.randint(1, 100))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') <|reserved_special_token_0|> def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks') return os.path.abspath(os.path.join(__file__, rel_path)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or 'default' config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded." .format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for group, check_files in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + '.py') @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if not severity or severity == sev: check_files += Config.get_check_files(group=g, names= files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks') return os.path.abspath(os.path.join(__file__, rel_path)) def get_config_directory(): """ Get the directory with config files :return: str """ local_share = os.path.join(os.path.expanduser('~'), '.local', CONFIG_DIRECTORY) if os.path.isdir(local_share) and os.path.exists(local_share): return local_share usr_local_share = os.path.join('/usr/local', CONFIG_DIRECTORY) if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share): return usr_local_share raise ColinConfigException('Config directory cannot be found.') <|reserved_special_token_1|> import json import os from six import iteritems from ..exceptions import ColinConfigException from ..constant import CONFIG_DIRECTORY, JSON from ..loader import load_check_implementation from ..target import is_compatible class Config(object): def __init__(self, name=None): """ Load config for colin. :param name: str (name of the config file (without .json), default is "default" """ self.name = name or "default" config_path = os.path.join(get_config_directory(), self.name + JSON) try: with open(config_path, mode='r') as config_file: self.config_dict = json.load(config_file) except Exception as ex: raise ColinConfigException("Config file '{}' cannot be loaded.".format(config_path)) def get_checks(self, target_type, group=None, severity=None, tags=None): """ Get all checks for given type/group/severity/tags. :param target_type: TargetType enum :param group: str (if not group, get checks from all groups/directories) :param severity: str (optional x required) :param tags: list of str :return: list of check instances """ check_files = self._get_check_files(group=group, severity=severity) groups = {} for (group, check_files) in iteritems(check_files): checks = [] for severity, check_file in check_files: check_classes = load_check_implementation(path=check_file, severity=severity) for check_class in check_classes: if is_compatible(target_type, check_class, severity, tags): checks.append(check_class) groups[group] = checks return groups @staticmethod def get_check_file(group, name): """ Get the check file from given group with given name. :param group: str :param name: str :return: str (path) """ return os.path.join(get_checks_path(), group, name + ".py") @staticmethod def get_check_files(group, names, severity): """ Get the check files from given group with given names. :param severity: str :param group: str :param names: list of str :return: list of str (paths) """ check_files = [] for f in names: check_file = Config.get_check_file(group=group, name=f) check_files.append((severity, check_file)) return check_files def _get_check_groups(self, group=None): """ Get check group to validate :param group: str (if None, all from the config will be used) :return: list of str (group names) """ groups = [g for g in self.config_dict] if group: if group in groups: check_groups = [group] else: check_groups = [] else: check_groups = groups return check_groups def _get_check_files(self, group=None, severity=None): """ Get file names with checks filtered by group and severity. :param group: str (if None, all groups will be used) :param severity: str (if None, all severities will be used) :return: list of str (absolute paths) """ groups = {} for g in self._get_check_groups(group): check_files = [] for sev, files in iteritems(self.config_dict[g]): if (not severity) or severity == sev: check_files += Config.get_check_files(group=g, names=files, severity=sev) groups[g] = check_files return groups def get_checks_path(): """ Get path to checks. :return: str (absolute path of directory with checks) """ rel_path = os.path.join(os.pardir, os.pardir, os.pardir, "checks") return os.path.abspath(os.path.join(__file__, rel_path)) def get_config_directory(): """ Get the directory with config files :return: str """ local_share = os.path.join(os.path.expanduser("~"), ".local", CONFIG_DIRECTORY) if os.path.isdir(local_share) and os.path.exists(local_share): return local_share usr_local_share = os.path.join("/usr/local", CONFIG_DIRECTORY) if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share): return usr_local_share raise ColinConfigException("Config directory cannot be found.")
flexible
{ "blob_id": "7bb9455e6f0c15ab0be6963cff06ff41df73e6e0", "index": 2583, "step-1": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n <mask token>\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks')\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or 'default'\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\"\n .format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group, severity=severity)\n groups = {}\n for group, check_files in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n check_classes = load_check_implementation(path=check_file,\n severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + '.py')\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group, name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if not severity or severity == sev:\n check_files += Config.get_check_files(group=g, names=\n files, severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, 'checks')\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\ndef get_config_directory():\n \"\"\"\n Get the directory with config files\n\n :return: str\n \"\"\"\n local_share = os.path.join(os.path.expanduser('~'), '.local',\n CONFIG_DIRECTORY)\n if os.path.isdir(local_share) and os.path.exists(local_share):\n return local_share\n usr_local_share = os.path.join('/usr/local', CONFIG_DIRECTORY)\n if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share):\n return usr_local_share\n raise ColinConfigException('Config directory cannot be found.')\n", "step-5": "import json\nimport os\n\nfrom six import iteritems\n\nfrom ..exceptions import ColinConfigException\nfrom ..constant import CONFIG_DIRECTORY, JSON\nfrom ..loader import load_check_implementation\nfrom ..target import is_compatible\n\n\nclass Config(object):\n\n def __init__(self, name=None):\n \"\"\"\n Load config for colin.\n\n :param name: str (name of the config file (without .json), default is \"default\"\n \"\"\"\n self.name = name or \"default\"\n config_path = os.path.join(get_config_directory(), self.name + JSON)\n try:\n with open(config_path, mode='r') as config_file:\n self.config_dict = json.load(config_file)\n except Exception as ex:\n raise ColinConfigException(\"Config file '{}' cannot be loaded.\".format(config_path))\n\n def get_checks(self, target_type, group=None, severity=None, tags=None):\n \"\"\"\n Get all checks for given type/group/severity/tags.\n\n :param target_type: TargetType enum\n :param group: str (if not group, get checks from all groups/directories)\n :param severity: str (optional x required)\n :param tags: list of str\n :return: list of check instances\n \"\"\"\n check_files = self._get_check_files(group=group,\n severity=severity)\n groups = {}\n for (group, check_files) in iteritems(check_files):\n checks = []\n for severity, check_file in check_files:\n\n check_classes = load_check_implementation(path=check_file, severity=severity)\n for check_class in check_classes:\n if is_compatible(target_type, check_class, severity, tags):\n checks.append(check_class)\n\n groups[group] = checks\n return groups\n\n @staticmethod\n def get_check_file(group, name):\n \"\"\"\n Get the check file from given group with given name.\n\n :param group: str\n :param name: str\n :return: str (path)\n \"\"\"\n return os.path.join(get_checks_path(), group, name + \".py\")\n\n @staticmethod\n def get_check_files(group, names, severity):\n \"\"\"\n Get the check files from given group with given names.\n\n :param severity: str\n :param group: str\n :param names: list of str\n :return: list of str (paths)\n \"\"\"\n check_files = []\n for f in names:\n check_file = Config.get_check_file(group=group,\n name=f)\n check_files.append((severity, check_file))\n return check_files\n\n def _get_check_groups(self, group=None):\n \"\"\"\n Get check group to validate\n\n :param group: str (if None, all from the config will be used)\n :return: list of str (group names)\n \"\"\"\n groups = [g for g in self.config_dict]\n if group:\n if group in groups:\n check_groups = [group]\n else:\n check_groups = []\n else:\n check_groups = groups\n return check_groups\n\n def _get_check_files(self, group=None, severity=None):\n \"\"\"\n Get file names with checks filtered by group and severity.\n\n :param group: str (if None, all groups will be used)\n :param severity: str (if None, all severities will be used)\n :return: list of str (absolute paths)\n \"\"\"\n groups = {}\n for g in self._get_check_groups(group):\n check_files = []\n for sev, files in iteritems(self.config_dict[g]):\n if (not severity) or severity == sev:\n check_files += Config.get_check_files(group=g,\n names=files,\n severity=sev)\n groups[g] = check_files\n return groups\n\n\ndef get_checks_path():\n \"\"\"\n Get path to checks.\n\n :return: str (absolute path of directory with checks)\n \"\"\"\n rel_path = os.path.join(os.pardir, os.pardir, os.pardir, \"checks\")\n return os.path.abspath(os.path.join(__file__, rel_path))\n\n\ndef get_config_directory():\n \"\"\"\n Get the directory with config files\n\n :return: str\n \"\"\"\n local_share = os.path.join(os.path.expanduser(\"~\"),\n \".local\",\n CONFIG_DIRECTORY)\n if os.path.isdir(local_share) and os.path.exists(local_share):\n return local_share\n\n usr_local_share = os.path.join(\"/usr/local\", CONFIG_DIRECTORY)\n if os.path.isdir(usr_local_share) and os.path.exists(usr_local_share):\n return usr_local_share\n\n raise ColinConfigException(\"Config directory cannot be found.\")\n", "step-ids": [ 6, 7, 8, 9, 11 ] }
[ 6, 7, 8, 9, 11 ]
import os import pandas as pd import numpy as np from dataloader import * from keras.optimizers import Adam, SGD from mylib.models.misc import set_gpu_usage set_gpu_usage() from mylib.models import densesharp, metrics, losses from keras.callbacks import ModelCheckpoint, CSVLogger, TensorBoard, EarlyStopping, ReduceLROnPlateau, \ LearningRateScheduler os.environ['CUDA_VISIBLE_DEVICES'] = '/gpu:0' def main(batch_size, crop_size, learning_rate, segmentation_task_ratio, weight_decay, save_folder, epochs, alpha): print(learning_rate) print(alpha) print(weight_decay) train_dataset = ClfSegDataset(subset=[0, 1]) train_loader = get_mixup_loader(train_dataset, batch_size=batch_size, alpha=alpha) val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2]) val_loader = get_loader(val_dataset, batch_size=batch_size) model = densesharp.get_compiled(output_size=1, optimizer=Adam(lr=learning_rate), loss={"clf": 'binary_crossentropy', "seg": losses.DiceLoss()}, metrics={'clf': ['accuracy', metrics.precision, metrics.recall, metrics.fmeasure, metrics.auc], 'seg': [metrics.precision, metrics.recall, metrics.fmeasure]}, loss_weights={"clf": 1., "seg": segmentation_task_ratio}, weight_decay=weight_decay, weights='tmp/test/weights42_222639.h5') checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' % save_folder, verbose=1, period=1, save_weights_only=True) csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder) tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder) best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder, verbose=1, save_weights_only=True, monitor='val_clf_acc', save_best_only=True, period=1, mode='max') early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode='max', patience=20, verbose=1) lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334, patience=10, verbose=1, mode='min', epsilon=1.e-5, cooldown=2, min_lr=0) model.fit_generator(generator=train_loader, steps_per_epoch=50, max_queue_size=10, workers=1, validation_data=val_loader, epochs=epochs, validation_steps=50, callbacks=[checkpointer, csv_logger, best_keeper, early_stopping, lr_reducer, tensorboard]) if __name__ == '__main__': main(batch_size=32, crop_size=[32, 32, 32], learning_rate=1.e-5, segmentation_task_ratio=0.2, weight_decay=0.0, save_folder='test', epochs=10, alpha=1.0)
normal
{ "blob_id": "94b3fa700d7da0ca913adeb0ad5324d1fec0be50", "index": 7104, "step-1": "<mask token>\n\n\ndef main(batch_size, crop_size, learning_rate, segmentation_task_ratio,\n weight_decay, save_folder, epochs, alpha):\n print(learning_rate)\n print(alpha)\n print(weight_decay)\n train_dataset = ClfSegDataset(subset=[0, 1])\n train_loader = get_mixup_loader(train_dataset, batch_size=batch_size,\n alpha=alpha)\n val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2])\n val_loader = get_loader(val_dataset, batch_size=batch_size)\n model = densesharp.get_compiled(output_size=1, optimizer=Adam(lr=\n learning_rate), loss={'clf': 'binary_crossentropy', 'seg': losses.\n DiceLoss()}, metrics={'clf': ['accuracy', metrics.precision,\n metrics.recall, metrics.fmeasure, metrics.auc], 'seg': [metrics.\n precision, metrics.recall, metrics.fmeasure]}, loss_weights={'clf':\n 1.0, 'seg': segmentation_task_ratio}, weight_decay=weight_decay,\n weights='tmp/test/weights42_222639.h5')\n checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' %\n save_folder, verbose=1, period=1, save_weights_only=True)\n csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder)\n tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder)\n best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder,\n verbose=1, save_weights_only=True, monitor='val_clf_acc',\n save_best_only=True, period=1, mode='max')\n early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode\n ='max', patience=20, verbose=1)\n lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334,\n patience=10, verbose=1, mode='min', epsilon=1e-05, cooldown=2, min_lr=0\n )\n model.fit_generator(generator=train_loader, steps_per_epoch=50,\n max_queue_size=10, workers=1, validation_data=val_loader, epochs=\n epochs, validation_steps=50, callbacks=[checkpointer, csv_logger,\n best_keeper, early_stopping, lr_reducer, tensorboard])\n\n\n<mask token>\n", "step-2": "<mask token>\nset_gpu_usage()\n<mask token>\n\n\ndef main(batch_size, crop_size, learning_rate, segmentation_task_ratio,\n weight_decay, save_folder, epochs, alpha):\n print(learning_rate)\n print(alpha)\n print(weight_decay)\n train_dataset = ClfSegDataset(subset=[0, 1])\n train_loader = get_mixup_loader(train_dataset, batch_size=batch_size,\n alpha=alpha)\n val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2])\n val_loader = get_loader(val_dataset, batch_size=batch_size)\n model = densesharp.get_compiled(output_size=1, optimizer=Adam(lr=\n learning_rate), loss={'clf': 'binary_crossentropy', 'seg': losses.\n DiceLoss()}, metrics={'clf': ['accuracy', metrics.precision,\n metrics.recall, metrics.fmeasure, metrics.auc], 'seg': [metrics.\n precision, metrics.recall, metrics.fmeasure]}, loss_weights={'clf':\n 1.0, 'seg': segmentation_task_ratio}, weight_decay=weight_decay,\n weights='tmp/test/weights42_222639.h5')\n checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' %\n save_folder, verbose=1, period=1, save_weights_only=True)\n csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder)\n tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder)\n best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder,\n verbose=1, save_weights_only=True, monitor='val_clf_acc',\n save_best_only=True, period=1, mode='max')\n early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode\n ='max', patience=20, verbose=1)\n lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334,\n patience=10, verbose=1, mode='min', epsilon=1e-05, cooldown=2, min_lr=0\n )\n model.fit_generator(generator=train_loader, steps_per_epoch=50,\n max_queue_size=10, workers=1, validation_data=val_loader, epochs=\n epochs, validation_steps=50, callbacks=[checkpointer, csv_logger,\n best_keeper, early_stopping, lr_reducer, tensorboard])\n\n\nif __name__ == '__main__':\n main(batch_size=32, crop_size=[32, 32, 32], learning_rate=1e-05,\n segmentation_task_ratio=0.2, weight_decay=0.0, save_folder='test',\n epochs=10, alpha=1.0)\n", "step-3": "<mask token>\nset_gpu_usage()\n<mask token>\nos.environ['CUDA_VISIBLE_DEVICES'] = '/gpu:0'\n\n\ndef main(batch_size, crop_size, learning_rate, segmentation_task_ratio,\n weight_decay, save_folder, epochs, alpha):\n print(learning_rate)\n print(alpha)\n print(weight_decay)\n train_dataset = ClfSegDataset(subset=[0, 1])\n train_loader = get_mixup_loader(train_dataset, batch_size=batch_size,\n alpha=alpha)\n val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2])\n val_loader = get_loader(val_dataset, batch_size=batch_size)\n model = densesharp.get_compiled(output_size=1, optimizer=Adam(lr=\n learning_rate), loss={'clf': 'binary_crossentropy', 'seg': losses.\n DiceLoss()}, metrics={'clf': ['accuracy', metrics.precision,\n metrics.recall, metrics.fmeasure, metrics.auc], 'seg': [metrics.\n precision, metrics.recall, metrics.fmeasure]}, loss_weights={'clf':\n 1.0, 'seg': segmentation_task_ratio}, weight_decay=weight_decay,\n weights='tmp/test/weights42_222639.h5')\n checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' %\n save_folder, verbose=1, period=1, save_weights_only=True)\n csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder)\n tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder)\n best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder,\n verbose=1, save_weights_only=True, monitor='val_clf_acc',\n save_best_only=True, period=1, mode='max')\n early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode\n ='max', patience=20, verbose=1)\n lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334,\n patience=10, verbose=1, mode='min', epsilon=1e-05, cooldown=2, min_lr=0\n )\n model.fit_generator(generator=train_loader, steps_per_epoch=50,\n max_queue_size=10, workers=1, validation_data=val_loader, epochs=\n epochs, validation_steps=50, callbacks=[checkpointer, csv_logger,\n best_keeper, early_stopping, lr_reducer, tensorboard])\n\n\nif __name__ == '__main__':\n main(batch_size=32, crop_size=[32, 32, 32], learning_rate=1e-05,\n segmentation_task_ratio=0.2, weight_decay=0.0, save_folder='test',\n epochs=10, alpha=1.0)\n", "step-4": "import os\nimport pandas as pd\nimport numpy as np\nfrom dataloader import *\nfrom keras.optimizers import Adam, SGD\nfrom mylib.models.misc import set_gpu_usage\nset_gpu_usage()\nfrom mylib.models import densesharp, metrics, losses\nfrom keras.callbacks import ModelCheckpoint, CSVLogger, TensorBoard, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler\nos.environ['CUDA_VISIBLE_DEVICES'] = '/gpu:0'\n\n\ndef main(batch_size, crop_size, learning_rate, segmentation_task_ratio,\n weight_decay, save_folder, epochs, alpha):\n print(learning_rate)\n print(alpha)\n print(weight_decay)\n train_dataset = ClfSegDataset(subset=[0, 1])\n train_loader = get_mixup_loader(train_dataset, batch_size=batch_size,\n alpha=alpha)\n val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2])\n val_loader = get_loader(val_dataset, batch_size=batch_size)\n model = densesharp.get_compiled(output_size=1, optimizer=Adam(lr=\n learning_rate), loss={'clf': 'binary_crossentropy', 'seg': losses.\n DiceLoss()}, metrics={'clf': ['accuracy', metrics.precision,\n metrics.recall, metrics.fmeasure, metrics.auc], 'seg': [metrics.\n precision, metrics.recall, metrics.fmeasure]}, loss_weights={'clf':\n 1.0, 'seg': segmentation_task_ratio}, weight_decay=weight_decay,\n weights='tmp/test/weights42_222639.h5')\n checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' %\n save_folder, verbose=1, period=1, save_weights_only=True)\n csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder)\n tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder)\n best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder,\n verbose=1, save_weights_only=True, monitor='val_clf_acc',\n save_best_only=True, period=1, mode='max')\n early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode\n ='max', patience=20, verbose=1)\n lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334,\n patience=10, verbose=1, mode='min', epsilon=1e-05, cooldown=2, min_lr=0\n )\n model.fit_generator(generator=train_loader, steps_per_epoch=50,\n max_queue_size=10, workers=1, validation_data=val_loader, epochs=\n epochs, validation_steps=50, callbacks=[checkpointer, csv_logger,\n best_keeper, early_stopping, lr_reducer, tensorboard])\n\n\nif __name__ == '__main__':\n main(batch_size=32, crop_size=[32, 32, 32], learning_rate=1e-05,\n segmentation_task_ratio=0.2, weight_decay=0.0, save_folder='test',\n epochs=10, alpha=1.0)\n", "step-5": "import os\nimport pandas as pd\nimport numpy as np\n\nfrom dataloader import *\nfrom keras.optimizers import Adam, SGD\nfrom mylib.models.misc import set_gpu_usage\n\nset_gpu_usage()\n\nfrom mylib.models import densesharp, metrics, losses\nfrom keras.callbacks import ModelCheckpoint, CSVLogger, TensorBoard, EarlyStopping, ReduceLROnPlateau, \\\n LearningRateScheduler\n\nos.environ['CUDA_VISIBLE_DEVICES'] = '/gpu:0'\n\n\ndef main(batch_size, crop_size, learning_rate, segmentation_task_ratio, weight_decay, save_folder, epochs,\n alpha):\n\n print(learning_rate)\n print(alpha)\n print(weight_decay)\n\n train_dataset = ClfSegDataset(subset=[0, 1])\n train_loader = get_mixup_loader(train_dataset, batch_size=batch_size, alpha=alpha)\n\n val_dataset = ClfvalSegDataset(crop_size=crop_size, move=None, subset=[2])\n val_loader = get_loader(val_dataset, batch_size=batch_size)\n\n model = densesharp.get_compiled(output_size=1,\n optimizer=Adam(lr=learning_rate),\n loss={\"clf\": 'binary_crossentropy',\n \"seg\": losses.DiceLoss()},\n metrics={'clf': ['accuracy', metrics.precision, metrics.recall, metrics.fmeasure,\n metrics.auc],\n 'seg': [metrics.precision, metrics.recall, metrics.fmeasure]},\n loss_weights={\"clf\": 1., \"seg\": segmentation_task_ratio},\n weight_decay=weight_decay, weights='tmp/test/weights42_222639.h5')\n\n checkpointer = ModelCheckpoint(filepath='tmp/%s/weights.{epoch:02d}.h5' % save_folder, verbose=1,\n period=1, save_weights_only=True)\n csv_logger = CSVLogger('tmp/%s/training.csv' % save_folder)\n tensorboard = TensorBoard(log_dir='tmp/%s/logs/' % save_folder)\n\n best_keeper = ModelCheckpoint(filepath='tmp/%s/best.h5' % save_folder, verbose=1, save_weights_only=True,\n monitor='val_clf_acc', save_best_only=True, period=1, mode='max')\n\n early_stopping = EarlyStopping(monitor='val_clf_acc', min_delta=0, mode='max',\n patience=20, verbose=1)\n\n lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.334, patience=10,\n verbose=1, mode='min', epsilon=1.e-5, cooldown=2, min_lr=0)\n\n model.fit_generator(generator=train_loader, steps_per_epoch=50, max_queue_size=10, workers=1,\n validation_data=val_loader, epochs=epochs, validation_steps=50,\n callbacks=[checkpointer, csv_logger, best_keeper, early_stopping, lr_reducer, tensorboard])\n\n\nif __name__ == '__main__':\n main(batch_size=32,\n crop_size=[32, 32, 32],\n learning_rate=1.e-5,\n segmentation_task_ratio=0.2,\n weight_decay=0.0,\n save_folder='test',\n epochs=10,\n alpha=1.0)", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import unittest """ Find the largest 0 to 9 pandigital that can be formed by concatenating products Take the number 6 and multiply it by each of 1273 and 9854: 6 × 1273 = 7638 6 × 9854 = 59124 By concatenating these products we get the 1 to 9 pandigital 763859124. We will call 763859124 the "concatenated product of 6 and (1273,9854)". Notice too, that the concatenation of the input numbers, 612739854, is also 1 to 9 pandigital. The same can be done for 0 to 9 pandigital numbers. What is the largest 0 to 9 pandigital 10-digit concatenated product of an integer with two or more other integers, such that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit number? """ class Test(unittest.TestCase): def test(self): pass
normal
{ "blob_id": "cb08b95e3b9c80fb74d4415b3798ddbb36cd76e7", "index": 419, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Test(unittest.TestCase):\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Test(unittest.TestCase):\n\n def test(self):\n pass\n", "step-4": "import unittest\n<mask token>\n\n\nclass Test(unittest.TestCase):\n\n def test(self):\n pass\n", "step-5": "import unittest\n\n\"\"\"\nFind the largest 0 to 9 pandigital that can be formed by concatenating products\n\nTake the number 6 and multiply it by each of 1273 and 9854:\n6 × 1273 = 7638\n6 × 9854 = 59124\nBy concatenating these products we get the 1 to 9 pandigital 763859124. We will call 763859124 the \"concatenated product of 6 and (1273,9854)\". Notice too, that the concatenation of the input numbers, 612739854, is also 1 to 9 pandigital.\nThe same can be done for 0 to 9 pandigital numbers.\nWhat is the largest 0 to 9 pandigital 10-digit concatenated product of an integer with two or more other integers, such that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit number?\n\"\"\"\n\n\nclass Test(unittest.TestCase):\n def test(self):\n pass\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class TestNurse(unittest.TestCase): <|reserved_special_token_0|> def setUp(self): self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25) self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5) <|reserved_special_token_0|> def test_display(self): self.assertEqual(self.n1.display(), """Nurse {} is {} years old. The best number to reach out is {}. The nurse's salary is {}. The nurse has treated {} patients. """ .format('Tess', 18, '5436890982', 3200, 25)) def test_change_in_phone_num(self): self.n1.change_in_phone_num('1234567890') self.n2.change_in_phone_num('0987654321') self.assertEqual(self.n1.phone_num, '1234567890') self.assertEqual(self.n2.phone_num, '0987654321') self.n1.change_in_phone_num('3254678313') self.n2.change_in_phone_num('0928495820') self.assertEqual(self.n1.phone_num, '3254678313') self.assertEqual(self.n2.phone_num, '0928495820') def test_change_in_salary(self): self.n1.change_in_salary(9000) self.n2.change_in_salary(10000) self.assertEqual(self.n1.salary, 9000) self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.') self.assertEqual(self.n2.salary, 10000) self.n1.change_in_salary(20) self.assertEqual(self.n1.salary, 20) def test_bonus(self): self.n1.bonus() self.n2.bonus() self.assertEqual(self.n1.salary, 3450) self.assertEqual(self.n2.salary, 9050) def tearDown(self): self.n1 = None self.n2 = None <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestNurse(unittest.TestCase): <|reserved_special_token_0|> def setUp(self): self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25) self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5) <|reserved_special_token_0|> def test_display(self): self.assertEqual(self.n1.display(), """Nurse {} is {} years old. The best number to reach out is {}. The nurse's salary is {}. The nurse has treated {} patients. """ .format('Tess', 18, '5436890982', 3200, 25)) def test_change_in_phone_num(self): self.n1.change_in_phone_num('1234567890') self.n2.change_in_phone_num('0987654321') self.assertEqual(self.n1.phone_num, '1234567890') self.assertEqual(self.n2.phone_num, '0987654321') self.n1.change_in_phone_num('3254678313') self.n2.change_in_phone_num('0928495820') self.assertEqual(self.n1.phone_num, '3254678313') self.assertEqual(self.n2.phone_num, '0928495820') def test_change_in_salary(self): self.n1.change_in_salary(9000) self.n2.change_in_salary(10000) self.assertEqual(self.n1.salary, 9000) self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.') self.assertEqual(self.n2.salary, 10000) self.n1.change_in_salary(20) self.assertEqual(self.n1.salary, 20) def test_bonus(self): self.n1.bonus() self.n2.bonus() self.assertEqual(self.n1.salary, 3450) self.assertEqual(self.n2.salary, 9050) def tearDown(self): self.n1 = None self.n2 = None @classmethod def tearDownClass(cls): print('Finish test nurse') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestNurse(unittest.TestCase): <|reserved_special_token_0|> def setUp(self): self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25) self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5) def test_init(self): self.assertEqual(self.n1.name, 'Tess') self.assertEqual(self.n1.age, 18) self.assertEqual(self.n1.phone_num, '5436890982') self.assertEqual(self.n1.salary, 3200) self.assertEqual(self.n1.number_treated, 25) def test_display(self): self.assertEqual(self.n1.display(), """Nurse {} is {} years old. The best number to reach out is {}. The nurse's salary is {}. The nurse has treated {} patients. """ .format('Tess', 18, '5436890982', 3200, 25)) def test_change_in_phone_num(self): self.n1.change_in_phone_num('1234567890') self.n2.change_in_phone_num('0987654321') self.assertEqual(self.n1.phone_num, '1234567890') self.assertEqual(self.n2.phone_num, '0987654321') self.n1.change_in_phone_num('3254678313') self.n2.change_in_phone_num('0928495820') self.assertEqual(self.n1.phone_num, '3254678313') self.assertEqual(self.n2.phone_num, '0928495820') def test_change_in_salary(self): self.n1.change_in_salary(9000) self.n2.change_in_salary(10000) self.assertEqual(self.n1.salary, 9000) self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.') self.assertEqual(self.n2.salary, 10000) self.n1.change_in_salary(20) self.assertEqual(self.n1.salary, 20) def test_bonus(self): self.n1.bonus() self.n2.bonus() self.assertEqual(self.n1.salary, 3450) self.assertEqual(self.n2.salary, 9050) def tearDown(self): self.n1 = None self.n2 = None @classmethod def tearDownClass(cls): print('Finish test nurse') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestNurse(unittest.TestCase): @classmethod def setUpClass(cls): print('Start testing nurse') def setUp(self): self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25) self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5) def test_init(self): self.assertEqual(self.n1.name, 'Tess') self.assertEqual(self.n1.age, 18) self.assertEqual(self.n1.phone_num, '5436890982') self.assertEqual(self.n1.salary, 3200) self.assertEqual(self.n1.number_treated, 25) def test_display(self): self.assertEqual(self.n1.display(), """Nurse {} is {} years old. The best number to reach out is {}. The nurse's salary is {}. The nurse has treated {} patients. """ .format('Tess', 18, '5436890982', 3200, 25)) def test_change_in_phone_num(self): self.n1.change_in_phone_num('1234567890') self.n2.change_in_phone_num('0987654321') self.assertEqual(self.n1.phone_num, '1234567890') self.assertEqual(self.n2.phone_num, '0987654321') self.n1.change_in_phone_num('3254678313') self.n2.change_in_phone_num('0928495820') self.assertEqual(self.n1.phone_num, '3254678313') self.assertEqual(self.n2.phone_num, '0928495820') def test_change_in_salary(self): self.n1.change_in_salary(9000) self.n2.change_in_salary(10000) self.assertEqual(self.n1.salary, 9000) self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.') self.assertEqual(self.n2.salary, 10000) self.n1.change_in_salary(20) self.assertEqual(self.n1.salary, 20) def test_bonus(self): self.n1.bonus() self.n2.bonus() self.assertEqual(self.n1.salary, 3450) self.assertEqual(self.n2.salary, 9050) def tearDown(self): self.n1 = None self.n2 = None @classmethod def tearDownClass(cls): print('Finish test nurse') unittest.main(argv=[''], verbosity=2, exit=False) <|reserved_special_token_1|> import unittest import hospital.employee.nurse as n class TestNurse(unittest.TestCase): @classmethod def setUpClass(cls): print('Start testing nurse') def setUp(self): self.n1 = n.Nurse('Tess',18,"5436890982",3200,25) self.n2 = n.Nurse('Melissa',40,"8920953924",9000,5) def test_init(self): self.assertEqual(self.n1.name,"Tess") self.assertEqual(self.n1.age,18) self.assertEqual(self.n1.phone_num,"5436890982") self.assertEqual(self.n1.salary,3200) self.assertEqual(self.n1.number_treated,25) def test_display(self): self.assertEqual(self.n1.display(),"Nurse {} is {} years old. \nThe best number to reach out is {}. \nThe nurse's salary is {}. \nThe nurse has treated {} patients.\n".format('Tess',18,"5436890982",3200,25)) def test_change_in_phone_num(self): self.n1.change_in_phone_num("1234567890") self.n2.change_in_phone_num("0987654321") self.assertEqual(self.n1.phone_num,"1234567890") self.assertEqual(self.n2.phone_num,"0987654321") self.n1.change_in_phone_num("3254678313") self.n2.change_in_phone_num("0928495820") self.assertEqual(self.n1.phone_num,"3254678313") self.assertEqual(self.n2.phone_num,"0928495820") def test_change_in_salary(self): self.n1.change_in_salary(9000) self.n2.change_in_salary(10000) self.assertEqual(self.n1.salary,9000) self.assertEqual(self.n1.change_in_salary(-50),"Invalid salary.") self.assertEqual(self.n2.salary,10000) self.n1.change_in_salary(20) self.assertEqual(self.n1.salary,20) def test_bonus(self): self.n1.bonus() self.n2.bonus() self.assertEqual(self.n1.salary,3450) self.assertEqual(self.n2.salary,9050) def tearDown(self): self.n1 = None self.n2 = None @classmethod def tearDownClass(cls): print("Finish test nurse") unittest.main(argv=[''], verbosity=2, exit=False)
flexible
{ "blob_id": "f24075ea70851ce95bb6b3cd87b6417f8141d546", "index": 9112, "step-1": "<mask token>\n\n\nclass TestNurse(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25)\n self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5)\n <mask token>\n\n def test_display(self):\n self.assertEqual(self.n1.display(),\n \"\"\"Nurse {} is {} years old. \nThe best number to reach out is {}. \nThe nurse's salary is {}. \nThe nurse has treated {} patients.\n\"\"\"\n .format('Tess', 18, '5436890982', 3200, 25))\n\n def test_change_in_phone_num(self):\n self.n1.change_in_phone_num('1234567890')\n self.n2.change_in_phone_num('0987654321')\n self.assertEqual(self.n1.phone_num, '1234567890')\n self.assertEqual(self.n2.phone_num, '0987654321')\n self.n1.change_in_phone_num('3254678313')\n self.n2.change_in_phone_num('0928495820')\n self.assertEqual(self.n1.phone_num, '3254678313')\n self.assertEqual(self.n2.phone_num, '0928495820')\n\n def test_change_in_salary(self):\n self.n1.change_in_salary(9000)\n self.n2.change_in_salary(10000)\n self.assertEqual(self.n1.salary, 9000)\n self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.')\n self.assertEqual(self.n2.salary, 10000)\n self.n1.change_in_salary(20)\n self.assertEqual(self.n1.salary, 20)\n\n def test_bonus(self):\n self.n1.bonus()\n self.n2.bonus()\n self.assertEqual(self.n1.salary, 3450)\n self.assertEqual(self.n2.salary, 9050)\n\n def tearDown(self):\n self.n1 = None\n self.n2 = None\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestNurse(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25)\n self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5)\n <mask token>\n\n def test_display(self):\n self.assertEqual(self.n1.display(),\n \"\"\"Nurse {} is {} years old. \nThe best number to reach out is {}. \nThe nurse's salary is {}. \nThe nurse has treated {} patients.\n\"\"\"\n .format('Tess', 18, '5436890982', 3200, 25))\n\n def test_change_in_phone_num(self):\n self.n1.change_in_phone_num('1234567890')\n self.n2.change_in_phone_num('0987654321')\n self.assertEqual(self.n1.phone_num, '1234567890')\n self.assertEqual(self.n2.phone_num, '0987654321')\n self.n1.change_in_phone_num('3254678313')\n self.n2.change_in_phone_num('0928495820')\n self.assertEqual(self.n1.phone_num, '3254678313')\n self.assertEqual(self.n2.phone_num, '0928495820')\n\n def test_change_in_salary(self):\n self.n1.change_in_salary(9000)\n self.n2.change_in_salary(10000)\n self.assertEqual(self.n1.salary, 9000)\n self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.')\n self.assertEqual(self.n2.salary, 10000)\n self.n1.change_in_salary(20)\n self.assertEqual(self.n1.salary, 20)\n\n def test_bonus(self):\n self.n1.bonus()\n self.n2.bonus()\n self.assertEqual(self.n1.salary, 3450)\n self.assertEqual(self.n2.salary, 9050)\n\n def tearDown(self):\n self.n1 = None\n self.n2 = None\n\n @classmethod\n def tearDownClass(cls):\n print('Finish test nurse')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestNurse(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25)\n self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5)\n\n def test_init(self):\n self.assertEqual(self.n1.name, 'Tess')\n self.assertEqual(self.n1.age, 18)\n self.assertEqual(self.n1.phone_num, '5436890982')\n self.assertEqual(self.n1.salary, 3200)\n self.assertEqual(self.n1.number_treated, 25)\n\n def test_display(self):\n self.assertEqual(self.n1.display(),\n \"\"\"Nurse {} is {} years old. \nThe best number to reach out is {}. \nThe nurse's salary is {}. \nThe nurse has treated {} patients.\n\"\"\"\n .format('Tess', 18, '5436890982', 3200, 25))\n\n def test_change_in_phone_num(self):\n self.n1.change_in_phone_num('1234567890')\n self.n2.change_in_phone_num('0987654321')\n self.assertEqual(self.n1.phone_num, '1234567890')\n self.assertEqual(self.n2.phone_num, '0987654321')\n self.n1.change_in_phone_num('3254678313')\n self.n2.change_in_phone_num('0928495820')\n self.assertEqual(self.n1.phone_num, '3254678313')\n self.assertEqual(self.n2.phone_num, '0928495820')\n\n def test_change_in_salary(self):\n self.n1.change_in_salary(9000)\n self.n2.change_in_salary(10000)\n self.assertEqual(self.n1.salary, 9000)\n self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.')\n self.assertEqual(self.n2.salary, 10000)\n self.n1.change_in_salary(20)\n self.assertEqual(self.n1.salary, 20)\n\n def test_bonus(self):\n self.n1.bonus()\n self.n2.bonus()\n self.assertEqual(self.n1.salary, 3450)\n self.assertEqual(self.n2.salary, 9050)\n\n def tearDown(self):\n self.n1 = None\n self.n2 = None\n\n @classmethod\n def tearDownClass(cls):\n print('Finish test nurse')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass TestNurse(unittest.TestCase):\n\n @classmethod\n def setUpClass(cls):\n print('Start testing nurse')\n\n def setUp(self):\n self.n1 = n.Nurse('Tess', 18, '5436890982', 3200, 25)\n self.n2 = n.Nurse('Melissa', 40, '8920953924', 9000, 5)\n\n def test_init(self):\n self.assertEqual(self.n1.name, 'Tess')\n self.assertEqual(self.n1.age, 18)\n self.assertEqual(self.n1.phone_num, '5436890982')\n self.assertEqual(self.n1.salary, 3200)\n self.assertEqual(self.n1.number_treated, 25)\n\n def test_display(self):\n self.assertEqual(self.n1.display(),\n \"\"\"Nurse {} is {} years old. \nThe best number to reach out is {}. \nThe nurse's salary is {}. \nThe nurse has treated {} patients.\n\"\"\"\n .format('Tess', 18, '5436890982', 3200, 25))\n\n def test_change_in_phone_num(self):\n self.n1.change_in_phone_num('1234567890')\n self.n2.change_in_phone_num('0987654321')\n self.assertEqual(self.n1.phone_num, '1234567890')\n self.assertEqual(self.n2.phone_num, '0987654321')\n self.n1.change_in_phone_num('3254678313')\n self.n2.change_in_phone_num('0928495820')\n self.assertEqual(self.n1.phone_num, '3254678313')\n self.assertEqual(self.n2.phone_num, '0928495820')\n\n def test_change_in_salary(self):\n self.n1.change_in_salary(9000)\n self.n2.change_in_salary(10000)\n self.assertEqual(self.n1.salary, 9000)\n self.assertEqual(self.n1.change_in_salary(-50), 'Invalid salary.')\n self.assertEqual(self.n2.salary, 10000)\n self.n1.change_in_salary(20)\n self.assertEqual(self.n1.salary, 20)\n\n def test_bonus(self):\n self.n1.bonus()\n self.n2.bonus()\n self.assertEqual(self.n1.salary, 3450)\n self.assertEqual(self.n2.salary, 9050)\n\n def tearDown(self):\n self.n1 = None\n self.n2 = None\n\n @classmethod\n def tearDownClass(cls):\n print('Finish test nurse')\n\n\nunittest.main(argv=[''], verbosity=2, exit=False)\n", "step-5": "import unittest\nimport hospital.employee.nurse as n\n\nclass TestNurse(unittest.TestCase):\n @classmethod\n def setUpClass(cls):\n print('Start testing nurse')\n \n def setUp(self):\n self.n1 = n.Nurse('Tess',18,\"5436890982\",3200,25)\n self.n2 = n.Nurse('Melissa',40,\"8920953924\",9000,5)\n\n def test_init(self):\n self.assertEqual(self.n1.name,\"Tess\")\n self.assertEqual(self.n1.age,18)\n self.assertEqual(self.n1.phone_num,\"5436890982\")\n self.assertEqual(self.n1.salary,3200)\n self.assertEqual(self.n1.number_treated,25)\n\n def test_display(self):\n self.assertEqual(self.n1.display(),\"Nurse {} is {} years old. \\nThe best number to reach out is {}. \\nThe nurse's salary is {}. \\nThe nurse has treated {} patients.\\n\".format('Tess',18,\"5436890982\",3200,25))\n\n def test_change_in_phone_num(self):\n self.n1.change_in_phone_num(\"1234567890\")\n self.n2.change_in_phone_num(\"0987654321\")\n self.assertEqual(self.n1.phone_num,\"1234567890\")\n self.assertEqual(self.n2.phone_num,\"0987654321\")\n self.n1.change_in_phone_num(\"3254678313\")\n self.n2.change_in_phone_num(\"0928495820\")\n self.assertEqual(self.n1.phone_num,\"3254678313\")\n self.assertEqual(self.n2.phone_num,\"0928495820\")\n\n def test_change_in_salary(self):\n self.n1.change_in_salary(9000)\n self.n2.change_in_salary(10000)\n self.assertEqual(self.n1.salary,9000)\n self.assertEqual(self.n1.change_in_salary(-50),\"Invalid salary.\")\n self.assertEqual(self.n2.salary,10000)\n self.n1.change_in_salary(20)\n self.assertEqual(self.n1.salary,20)\n\n def test_bonus(self):\n self.n1.bonus()\n self.n2.bonus()\n self.assertEqual(self.n1.salary,3450)\n self.assertEqual(self.n2.salary,9050)\n \n\n def tearDown(self):\n self.n1 = None\n self.n2 = None\n \n @classmethod\n def tearDownClass(cls):\n print(\"Finish test nurse\")\n\nunittest.main(argv=[''], verbosity=2, exit=False)\n", "step-ids": [ 7, 8, 9, 11, 13 ] }
[ 7, 8, 9, 11, 13 ]
import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from uraeus.nmbd.python import simulation from uraeus.nmbd.python.engine.numerics.math_funcs import A, B database_directory = os.path.abspath('../../') sys.path.append(database_directory) from uraeus_fsae.simenv.assemblies import asurt_FS17_v1 as num_assm from controllers import speed_controller, stanley_controller num_model = num_assm.num_model dt = num_assm.dt TR = 254 def generate_circular_path(radius, offset): theta = np.deg2rad(np.linspace(0, 360, 360)) x_data = radius * np.sin(theta) + offset[0] y_data = radius * np.cos(theta) + offset[1] radii = radius * np.ones((360,)) return x_data, y_data, radii x_data, y_data, radii = generate_circular_path(10.5, (0, -10.5)) path_data = np.zeros((360, 3)) path_data[:, 0] = -1e3 * x_data path_data[:, 1] = 1e3 * y_data path_data[:, 2] = 1e3 * radii plt.figure(figsize=(10, 5)) plt.plot(path_data[:, 0], path_data[:, 1]) plt.grid() plt.show() logitudinal_controller = speed_controller(35, dt) lateral_controller = stanley_controller(path_data, 25) def terrain_state(x, y): local_normal = np.array([[0],[0],[1]], dtype=np.float64) hieght = 0 return [local_normal, hieght] def torque_function(t): P_ch = num_model.Subsystems.CH.P_rbs_chassis Rd = num_model.Subsystems.CH.Rd_rbs_chassis factor = logitudinal_controller.get_torque_factor(P_ch, Rd) return factor def RR_Torque(t): factor = torque_function(t) torque = -factor*(70*9.81)*1e6*TR return torque def RL_Torque(t): factor = torque_function(t) torque = -factor*(70*9.81)*1e6*TR return torque def steering_function(t): R_ch = num_model.Subsystems.CH.R_rbs_chassis P_ch = num_model.Subsystems.CH.P_rbs_chassis Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64) r_ax1 = R_ch + A(P_ch)@rbar_ax1 vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1)@Pd_ch))[0,0] delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel) travel = delta * 18 #print('Travel = %s'%travel) return travel def zero_func(t): return np.zeros((3,1), dtype=np.float64) num_assm.terrain_data.get_state = terrain_state num_assm.ST1_config.UF_mcs_rack_act = steering_function num_assm.AX1_config.UF_far_drive = RR_Torque num_assm.AX1_config.UF_fal_drive = RL_Torque #num_assm.DR2_config.UF_far_drive = RR_Torque #num_assm.DR2_config.UF_fal_drive = RL_Torque num_assm.CH_config.UF_fas_aero_drag_F = zero_func num_assm.CH_config.UF_fas_aero_drag_T = zero_func # ============================================================================= # Setting and Starting Simulation # ============================================================================= sim = simulation('sim', num_model, 'dds') sim.set_time_array(15, dt) # Getting Equilibrium results as initial conditions to this simulation # ==================================================================== sim.set_initial_states('results/equilibrium_v4.npz') sim.solve() sim.save_as_csv('results', 'constant_radius_v8', 'pos') sim.save_as_npz('results', 'constant_radius_v8') #============================================================================= # Plotting Simulation Results # ============================================================================= import matplotlib.pyplot as plt sim.soln.pos_dataframe.plot(x='CH.rbs_chassis.x', y='CH.rbs_chassis.y', grid=True) sim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.x', grid=True) sim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True) sim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True) sim.soln.acc_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True) sim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e0', grid=True) sim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e1', grid=True) sim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e2', grid=True) sim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e3', grid=True) plt.show()
normal
{ "blob_id": "e0541c377eb6631e4ef5eb79b1204612ce8af48c", "index": 6107, "step-1": "<mask token>\n\n\ndef generate_circular_path(radius, offset):\n theta = np.deg2rad(np.linspace(0, 360, 360))\n x_data = radius * np.sin(theta) + offset[0]\n y_data = radius * np.cos(theta) + offset[1]\n radii = radius * np.ones((360,))\n return x_data, y_data, radii\n\n\n<mask token>\n\n\ndef terrain_state(x, y):\n local_normal = np.array([[0], [0], [1]], dtype=np.float64)\n hieght = 0\n return [local_normal, hieght]\n\n\n<mask token>\n\n\ndef steering_function(t):\n R_ch = num_model.Subsystems.CH.R_rbs_chassis\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis\n Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis\n rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64)\n r_ax1 = R_ch + A(P_ch) @ rbar_ax1\n vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1) @ Pd_ch))[0, 0]\n delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel)\n travel = delta * 18\n return travel\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.append(database_directory)\n<mask token>\n\n\ndef generate_circular_path(radius, offset):\n theta = np.deg2rad(np.linspace(0, 360, 360))\n x_data = radius * np.sin(theta) + offset[0]\n y_data = radius * np.cos(theta) + offset[1]\n radii = radius * np.ones((360,))\n return x_data, y_data, radii\n\n\n<mask token>\nplt.figure(figsize=(10, 5))\nplt.plot(path_data[:, 0], path_data[:, 1])\nplt.grid()\nplt.show()\n<mask token>\n\n\ndef terrain_state(x, y):\n local_normal = np.array([[0], [0], [1]], dtype=np.float64)\n hieght = 0\n return [local_normal, hieght]\n\n\ndef torque_function(t):\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd = num_model.Subsystems.CH.Rd_rbs_chassis\n factor = logitudinal_controller.get_torque_factor(P_ch, Rd)\n return factor\n\n\ndef RR_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef RL_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef steering_function(t):\n R_ch = num_model.Subsystems.CH.R_rbs_chassis\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis\n Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis\n rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64)\n r_ax1 = R_ch + A(P_ch) @ rbar_ax1\n vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1) @ Pd_ch))[0, 0]\n delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel)\n travel = delta * 18\n return travel\n\n\ndef zero_func(t):\n return np.zeros((3, 1), dtype=np.float64)\n\n\n<mask token>\nsim.set_time_array(15, dt)\nsim.set_initial_states('results/equilibrium_v4.npz')\nsim.solve()\nsim.save_as_csv('results', 'constant_radius_v8', 'pos')\nsim.save_as_npz('results', 'constant_radius_v8')\n<mask token>\nsim.soln.pos_dataframe.plot(x='CH.rbs_chassis.x', y='CH.rbs_chassis.y',\n grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.x', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.acc_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e0', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e1', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e2', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e3', grid=True)\nplt.show()\n", "step-3": "<mask token>\ndatabase_directory = os.path.abspath('../../')\nsys.path.append(database_directory)\n<mask token>\nnum_model = num_assm.num_model\ndt = num_assm.dt\nTR = 254\n\n\ndef generate_circular_path(radius, offset):\n theta = np.deg2rad(np.linspace(0, 360, 360))\n x_data = radius * np.sin(theta) + offset[0]\n y_data = radius * np.cos(theta) + offset[1]\n radii = radius * np.ones((360,))\n return x_data, y_data, radii\n\n\nx_data, y_data, radii = generate_circular_path(10.5, (0, -10.5))\npath_data = np.zeros((360, 3))\npath_data[:, 0] = -1000.0 * x_data\npath_data[:, 1] = 1000.0 * y_data\npath_data[:, 2] = 1000.0 * radii\nplt.figure(figsize=(10, 5))\nplt.plot(path_data[:, 0], path_data[:, 1])\nplt.grid()\nplt.show()\nlogitudinal_controller = speed_controller(35, dt)\nlateral_controller = stanley_controller(path_data, 25)\n\n\ndef terrain_state(x, y):\n local_normal = np.array([[0], [0], [1]], dtype=np.float64)\n hieght = 0\n return [local_normal, hieght]\n\n\ndef torque_function(t):\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd = num_model.Subsystems.CH.Rd_rbs_chassis\n factor = logitudinal_controller.get_torque_factor(P_ch, Rd)\n return factor\n\n\ndef RR_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef RL_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef steering_function(t):\n R_ch = num_model.Subsystems.CH.R_rbs_chassis\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis\n Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis\n rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64)\n r_ax1 = R_ch + A(P_ch) @ rbar_ax1\n vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1) @ Pd_ch))[0, 0]\n delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel)\n travel = delta * 18\n return travel\n\n\ndef zero_func(t):\n return np.zeros((3, 1), dtype=np.float64)\n\n\nnum_assm.terrain_data.get_state = terrain_state\nnum_assm.ST1_config.UF_mcs_rack_act = steering_function\nnum_assm.AX1_config.UF_far_drive = RR_Torque\nnum_assm.AX1_config.UF_fal_drive = RL_Torque\nnum_assm.CH_config.UF_fas_aero_drag_F = zero_func\nnum_assm.CH_config.UF_fas_aero_drag_T = zero_func\nsim = simulation('sim', num_model, 'dds')\nsim.set_time_array(15, dt)\nsim.set_initial_states('results/equilibrium_v4.npz')\nsim.solve()\nsim.save_as_csv('results', 'constant_radius_v8', 'pos')\nsim.save_as_npz('results', 'constant_radius_v8')\n<mask token>\nsim.soln.pos_dataframe.plot(x='CH.rbs_chassis.x', y='CH.rbs_chassis.y',\n grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.x', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.acc_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e0', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e1', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e2', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e3', grid=True)\nplt.show()\n", "step-4": "import sys\nimport os\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nfrom uraeus.nmbd.python import simulation\nfrom uraeus.nmbd.python.engine.numerics.math_funcs import A, B\ndatabase_directory = os.path.abspath('../../')\nsys.path.append(database_directory)\nfrom uraeus_fsae.simenv.assemblies import asurt_FS17_v1 as num_assm\nfrom controllers import speed_controller, stanley_controller\nnum_model = num_assm.num_model\ndt = num_assm.dt\nTR = 254\n\n\ndef generate_circular_path(radius, offset):\n theta = np.deg2rad(np.linspace(0, 360, 360))\n x_data = radius * np.sin(theta) + offset[0]\n y_data = radius * np.cos(theta) + offset[1]\n radii = radius * np.ones((360,))\n return x_data, y_data, radii\n\n\nx_data, y_data, radii = generate_circular_path(10.5, (0, -10.5))\npath_data = np.zeros((360, 3))\npath_data[:, 0] = -1000.0 * x_data\npath_data[:, 1] = 1000.0 * y_data\npath_data[:, 2] = 1000.0 * radii\nplt.figure(figsize=(10, 5))\nplt.plot(path_data[:, 0], path_data[:, 1])\nplt.grid()\nplt.show()\nlogitudinal_controller = speed_controller(35, dt)\nlateral_controller = stanley_controller(path_data, 25)\n\n\ndef terrain_state(x, y):\n local_normal = np.array([[0], [0], [1]], dtype=np.float64)\n hieght = 0\n return [local_normal, hieght]\n\n\ndef torque_function(t):\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd = num_model.Subsystems.CH.Rd_rbs_chassis\n factor = logitudinal_controller.get_torque_factor(P_ch, Rd)\n return factor\n\n\ndef RR_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef RL_Torque(t):\n factor = torque_function(t)\n torque = -factor * (70 * 9.81) * 1000000.0 * TR\n return torque\n\n\ndef steering_function(t):\n R_ch = num_model.Subsystems.CH.R_rbs_chassis\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis\n Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis\n rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64)\n r_ax1 = R_ch + A(P_ch) @ rbar_ax1\n vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1) @ Pd_ch))[0, 0]\n delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel)\n travel = delta * 18\n return travel\n\n\ndef zero_func(t):\n return np.zeros((3, 1), dtype=np.float64)\n\n\nnum_assm.terrain_data.get_state = terrain_state\nnum_assm.ST1_config.UF_mcs_rack_act = steering_function\nnum_assm.AX1_config.UF_far_drive = RR_Torque\nnum_assm.AX1_config.UF_fal_drive = RL_Torque\nnum_assm.CH_config.UF_fas_aero_drag_F = zero_func\nnum_assm.CH_config.UF_fas_aero_drag_T = zero_func\nsim = simulation('sim', num_model, 'dds')\nsim.set_time_array(15, dt)\nsim.set_initial_states('results/equilibrium_v4.npz')\nsim.solve()\nsim.save_as_csv('results', 'constant_radius_v8', 'pos')\nsim.save_as_npz('results', 'constant_radius_v8')\nimport matplotlib.pyplot as plt\nsim.soln.pos_dataframe.plot(x='CH.rbs_chassis.x', y='CH.rbs_chassis.y',\n grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.x', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.acc_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e0', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e1', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e2', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e3', grid=True)\nplt.show()\n", "step-5": "import sys\nimport os\n\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n\nfrom uraeus.nmbd.python import simulation\nfrom uraeus.nmbd.python.engine.numerics.math_funcs import A, B\n\ndatabase_directory = os.path.abspath('../../')\nsys.path.append(database_directory)\n\nfrom uraeus_fsae.simenv.assemblies import asurt_FS17_v1 as num_assm\nfrom controllers import speed_controller, stanley_controller\n\nnum_model = num_assm.num_model\n\ndt = num_assm.dt\nTR = 254\n\ndef generate_circular_path(radius, offset):\n theta = np.deg2rad(np.linspace(0, 360, 360))\n x_data = radius * np.sin(theta) + offset[0]\n y_data = radius * np.cos(theta) + offset[1]\n radii = radius * np.ones((360,))\n return x_data, y_data, radii\n\n\nx_data, y_data, radii = generate_circular_path(10.5, (0, -10.5))\n\npath_data = np.zeros((360, 3))\npath_data[:, 0] = -1e3 * x_data\npath_data[:, 1] = 1e3 * y_data\npath_data[:, 2] = 1e3 * radii\n\nplt.figure(figsize=(10, 5))\nplt.plot(path_data[:, 0], path_data[:, 1])\nplt.grid()\nplt.show()\n\nlogitudinal_controller = speed_controller(35, dt)\nlateral_controller = stanley_controller(path_data, 25)\n\n\ndef terrain_state(x, y):\n local_normal = np.array([[0],[0],[1]], dtype=np.float64)\n hieght = 0\n return [local_normal, hieght]\n\n\ndef torque_function(t):\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd = num_model.Subsystems.CH.Rd_rbs_chassis\n factor = logitudinal_controller.get_torque_factor(P_ch, Rd)\n return factor\n\ndef RR_Torque(t):\n factor = torque_function(t)\n torque = -factor*(70*9.81)*1e6*TR\n return torque\n\ndef RL_Torque(t):\n factor = torque_function(t)\n torque = -factor*(70*9.81)*1e6*TR\n return torque\n\ndef steering_function(t):\n R_ch = num_model.Subsystems.CH.R_rbs_chassis\n P_ch = num_model.Subsystems.CH.P_rbs_chassis\n Rd_ch = num_model.Subsystems.CH.Rd_rbs_chassis\n Pd_ch = num_model.Subsystems.CH.Pd_rbs_chassis\n\n rbar_ax1 = np.array([[-800], [0], [0]], dtype=np.float64)\n r_ax1 = R_ch + A(P_ch)@rbar_ax1\n vel = (A(P_ch).T @ (Rd_ch + B(P_ch, rbar_ax1)@Pd_ch))[0,0]\n\n delta = lateral_controller.get_steer_factor(r_ax1, P_ch, Pd_ch, vel)\n\n travel = delta * 18\n #print('Travel = %s'%travel)\n return travel\n\n\ndef zero_func(t):\n return np.zeros((3,1), dtype=np.float64)\n\n\nnum_assm.terrain_data.get_state = terrain_state\n\nnum_assm.ST1_config.UF_mcs_rack_act = steering_function\n\nnum_assm.AX1_config.UF_far_drive = RR_Torque\nnum_assm.AX1_config.UF_fal_drive = RL_Torque\n\n#num_assm.DR2_config.UF_far_drive = RR_Torque\n#num_assm.DR2_config.UF_fal_drive = RL_Torque\n\nnum_assm.CH_config.UF_fas_aero_drag_F = zero_func\nnum_assm.CH_config.UF_fas_aero_drag_T = zero_func\n# =============================================================================\n# Setting and Starting Simulation\n# =============================================================================\n\nsim = simulation('sim', num_model, 'dds')\nsim.set_time_array(15, dt)\n\n# Getting Equilibrium results as initial conditions to this simulation\n# ====================================================================\nsim.set_initial_states('results/equilibrium_v4.npz')\n\nsim.solve()\n\nsim.save_as_csv('results', 'constant_radius_v8', 'pos')\nsim.save_as_npz('results', 'constant_radius_v8')\n\n#=============================================================================\n# Plotting Simulation Results\n# =============================================================================\n\nimport matplotlib.pyplot as plt\n\nsim.soln.pos_dataframe.plot(x='CH.rbs_chassis.x', y='CH.rbs_chassis.y', grid=True)\n\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.x', grid=True)\n\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.vel_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\nsim.soln.acc_dataframe.plot(x='time', y='CH.rbs_chassis.z', grid=True)\n\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e0', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e1', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e2', grid=True)\nsim.soln.pos_dataframe.plot(x='time', y='CH.rbs_chassis.e3', grid=True)\n\nplt.show()\n", "step-ids": [ 3, 8, 9, 10, 11 ] }
[ 3, 8, 9, 10, 11 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> for i in d: packs[i % k] += 1 <|reserved_special_token_0|> if k % 2 == 0: counter += packs[k // 2] // 2 for i in range(1, ceil(k / 2)): counter += min(packs[i], packs[k - i]) print(counter * 2) <|reserved_special_token_1|> <|reserved_special_token_0|> n, k = map(int, input().split()) d = list(map(int, input().split())) packs = [0] * k for i in d: packs[i % k] += 1 counter = packs[0] // 2 if k % 2 == 0: counter += packs[k // 2] // 2 for i in range(1, ceil(k / 2)): counter += min(packs[i], packs[k - i]) print(counter * 2) <|reserved_special_token_1|> from math import ceil n, k = map(int, input().split()) d = list(map(int, input().split())) packs = [0] * k for i in d: packs[i % k] += 1 counter = packs[0] // 2 if k % 2 == 0: counter += packs[k // 2] // 2 for i in range(1, ceil(k / 2)): counter += min(packs[i], packs[k - i]) print(counter * 2) <|reserved_special_token_1|> from math import ceil n, k = map(int, input().split()) d = list(map(int, input().split())) packs = [0]*k for i in d: packs[i%k] += 1 counter = packs[0]//2 if (k % 2) == 0: counter += packs[k//2]//2 for i in range(1, ceil(k/2)): counter += min(packs[i], packs[k-i]) print(counter*2)
flexible
{ "blob_id": "2226382c494af33957a44d9f1682f7deacf574a2", "index": 2075, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in d:\n packs[i % k] += 1\n<mask token>\nif k % 2 == 0:\n counter += packs[k // 2] // 2\nfor i in range(1, ceil(k / 2)):\n counter += min(packs[i], packs[k - i])\nprint(counter * 2)\n", "step-3": "<mask token>\nn, k = map(int, input().split())\nd = list(map(int, input().split()))\npacks = [0] * k\nfor i in d:\n packs[i % k] += 1\ncounter = packs[0] // 2\nif k % 2 == 0:\n counter += packs[k // 2] // 2\nfor i in range(1, ceil(k / 2)):\n counter += min(packs[i], packs[k - i])\nprint(counter * 2)\n", "step-4": "from math import ceil\nn, k = map(int, input().split())\nd = list(map(int, input().split()))\npacks = [0] * k\nfor i in d:\n packs[i % k] += 1\ncounter = packs[0] // 2\nif k % 2 == 0:\n counter += packs[k // 2] // 2\nfor i in range(1, ceil(k / 2)):\n counter += min(packs[i], packs[k - i])\nprint(counter * 2)\n", "step-5": "from math import ceil\n\nn, k = map(int, input().split())\nd = list(map(int, input().split()))\n\npacks = [0]*k\nfor i in d:\n packs[i%k] += 1\n\ncounter = packs[0]//2\nif (k % 2) == 0:\n counter += packs[k//2]//2\nfor i in range(1, ceil(k/2)):\n counter += min(packs[i], packs[k-i])\n\nprint(counter*2)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> pygame.display.set_caption('Space Force Prime') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> img_dir = path.join(path.dirname(__file__), 'img') WIDTH = 720 HEIGHT = 720 FPS = 30 RED = 255, 0, 0 GREEN = 0, 255, 0 BLUE = 0, 0, 255 BLACK = 0, 0, 0 YELLOW = 255, 255, 0 BROWN = 165, 42, 42 WHITE = 255, 255, 255 screen = pygame.display.set_mode((WIDTH, HEIGHT)) background = pygame.Surface(screen.get_size()) pygame.display.set_caption('Space Force Prime') clock = pygame.time.Clock() <|reserved_special_token_1|> import pygame from os import path img_dir = path.join(path.dirname(__file__), 'img') WIDTH = 720 HEIGHT = 720 FPS = 30 RED = 255, 0, 0 GREEN = 0, 255, 0 BLUE = 0, 0, 255 BLACK = 0, 0, 0 YELLOW = 255, 255, 0 BROWN = 165, 42, 42 WHITE = 255, 255, 255 screen = pygame.display.set_mode((WIDTH, HEIGHT)) background = pygame.Surface(screen.get_size()) pygame.display.set_caption('Space Force Prime') clock = pygame.time.Clock() <|reserved_special_token_1|> import pygame # import random # import text_scroll from os import path img_dir = path.join(path.dirname(__file__), 'img') # define screen and refresh rate WIDTH = 720 HEIGHT = 720 FPS = 30 # define colors RED = (255, 0, 0) GREEN = (0, 255, 0) BLUE = (0, 0, 255) BLACK = (0, 0, 0) YELLOW = (255, 255, 0) BROWN = (165, 42, 42) WHITE = (255, 255, 255) # define runtime settings screen = pygame.display.set_mode((WIDTH, HEIGHT)) background = pygame.Surface(screen.get_size()) pygame.display.set_caption('Space Force Prime') clock = pygame.time.Clock()
flexible
{ "blob_id": "88dfb422b1c9f9a9a8f497e1dbba5598c2710e9b", "index": 5718, "step-1": "<mask token>\n", "step-2": "<mask token>\npygame.display.set_caption('Space Force Prime')\n<mask token>\n", "step-3": "<mask token>\nimg_dir = path.join(path.dirname(__file__), 'img')\nWIDTH = 720\nHEIGHT = 720\nFPS = 30\nRED = 255, 0, 0\nGREEN = 0, 255, 0\nBLUE = 0, 0, 255\nBLACK = 0, 0, 0\nYELLOW = 255, 255, 0\nBROWN = 165, 42, 42\nWHITE = 255, 255, 255\nscreen = pygame.display.set_mode((WIDTH, HEIGHT))\nbackground = pygame.Surface(screen.get_size())\npygame.display.set_caption('Space Force Prime')\nclock = pygame.time.Clock()\n", "step-4": "import pygame\nfrom os import path\nimg_dir = path.join(path.dirname(__file__), 'img')\nWIDTH = 720\nHEIGHT = 720\nFPS = 30\nRED = 255, 0, 0\nGREEN = 0, 255, 0\nBLUE = 0, 0, 255\nBLACK = 0, 0, 0\nYELLOW = 255, 255, 0\nBROWN = 165, 42, 42\nWHITE = 255, 255, 255\nscreen = pygame.display.set_mode((WIDTH, HEIGHT))\nbackground = pygame.Surface(screen.get_size())\npygame.display.set_caption('Space Force Prime')\nclock = pygame.time.Clock()\n", "step-5": "import pygame\n# import random\n# import text_scroll\n\nfrom os import path\nimg_dir = path.join(path.dirname(__file__), 'img')\n\n# define screen and refresh rate\nWIDTH = 720\nHEIGHT = 720\nFPS = 30\n\n# define colors\nRED = (255, 0, 0)\nGREEN = (0, 255, 0)\nBLUE = (0, 0, 255)\nBLACK = (0, 0, 0)\nYELLOW = (255, 255, 0)\nBROWN = (165, 42, 42)\nWHITE = (255, 255, 255)\n\n# define runtime settings\nscreen = pygame.display.set_mode((WIDTH, HEIGHT))\nbackground = pygame.Surface(screen.get_size())\npygame.display.set_caption('Space Force Prime')\nclock = pygame.time.Clock()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> STATUS_CHOICES = (-1, 'Eliminado'), (0, 'Inactivo'), (1, 'Activo') USERTYPES_CHOICES = () ACTIVATION_CHOICES = (1, 'Activacion'), (2, 'Solicitud Password'), (3, 'Invitacion') ACTIVATIONSTATUS_CHOICES = (-1, 'Expirado'), (0, 'Enviado'), (1, 'Activado') <|reserved_special_token_1|> STATUS_CHOICES = ( (-1, 'Eliminado'), (0, 'Inactivo'), (1, 'Activo'), ) USERTYPES_CHOICES = () #-- Activation Request Values ACTIVATION_CHOICES = ( (1, 'Activacion'), (2, 'Solicitud Password'), (3, 'Invitacion'), ) #-- Activation Status Values ACTIVATIONSTATUS_CHOICES = ( (-1, 'Expirado'), (0, 'Enviado'), (1, 'Activado'), )
flexible
{ "blob_id": "200552b638d6b1a6879b455837677b82689e0069", "index": 5479, "step-1": "<mask token>\n", "step-2": "STATUS_CHOICES = (-1, 'Eliminado'), (0, 'Inactivo'), (1, 'Activo')\nUSERTYPES_CHOICES = ()\nACTIVATION_CHOICES = (1, 'Activacion'), (2, 'Solicitud Password'), (3,\n 'Invitacion')\nACTIVATIONSTATUS_CHOICES = (-1, 'Expirado'), (0, 'Enviado'), (1, 'Activado')\n", "step-3": "\n\nSTATUS_CHOICES = (\n (-1, 'Eliminado'),\n (0, 'Inactivo'),\n (1, 'Activo'),\n)\n\nUSERTYPES_CHOICES = ()\n\n#-- Activation Request Values\nACTIVATION_CHOICES = (\n (1, 'Activacion'),\n (2, 'Solicitud Password'),\n (3, 'Invitacion'),\n)\n\n#-- Activation Status Values\nACTIVATIONSTATUS_CHOICES = (\n (-1, 'Expirado'),\n (0, 'Enviado'),\n (1, 'Activado'),\n)", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# use local image import io import os from google.cloud import vision from google.oauth2 import service_account creds = service_account.Credentials.from_service_account_file('./key.json') client = vision.ImageAnnotatorClient( credentials=creds, ) # The name of the image file to annotate file_name = os.path.join( os.path.dirname(__file__), "./dog.jpg") # Loads the image into memory with io.open(file_name, 'rb') as image_file: content = image_file.read() request = { "image": { "content": content }, "features": [ { "max_results": 2, "type": "LABEL_DETECTION" }, { "type": "SAFE_SEARCH_DETECTION" } ] } response = client.annotate_image(request) print(response) print(response.safe_search_annotation.adult) for label in response.label_annotations: print(label.description)
normal
{ "blob_id": "800573786913ff2fc37845193b5584a0a815533f", "index": 8340, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith io.open(file_name, 'rb') as image_file:\n content = image_file.read()\n<mask token>\nprint(response)\nprint(response.safe_search_annotation.adult)\nfor label in response.label_annotations:\n print(label.description)\n", "step-3": "<mask token>\ncreds = service_account.Credentials.from_service_account_file('./key.json')\nclient = vision.ImageAnnotatorClient(credentials=creds)\nfile_name = os.path.join(os.path.dirname(__file__), './dog.jpg')\nwith io.open(file_name, 'rb') as image_file:\n content = image_file.read()\nrequest = {'image': {'content': content}, 'features': [{'max_results': 2,\n 'type': 'LABEL_DETECTION'}, {'type': 'SAFE_SEARCH_DETECTION'}]}\nresponse = client.annotate_image(request)\nprint(response)\nprint(response.safe_search_annotation.adult)\nfor label in response.label_annotations:\n print(label.description)\n", "step-4": "import io\nimport os\nfrom google.cloud import vision\nfrom google.oauth2 import service_account\ncreds = service_account.Credentials.from_service_account_file('./key.json')\nclient = vision.ImageAnnotatorClient(credentials=creds)\nfile_name = os.path.join(os.path.dirname(__file__), './dog.jpg')\nwith io.open(file_name, 'rb') as image_file:\n content = image_file.read()\nrequest = {'image': {'content': content}, 'features': [{'max_results': 2,\n 'type': 'LABEL_DETECTION'}, {'type': 'SAFE_SEARCH_DETECTION'}]}\nresponse = client.annotate_image(request)\nprint(response)\nprint(response.safe_search_annotation.adult)\nfor label in response.label_annotations:\n print(label.description)\n", "step-5": "# use local image\n\nimport io\nimport os\n\nfrom google.cloud import vision\nfrom google.oauth2 import service_account\n\ncreds = service_account.Credentials.from_service_account_file('./key.json')\n\nclient = vision.ImageAnnotatorClient(\n credentials=creds,\n)\n\n# The name of the image file to annotate\nfile_name = os.path.join(\n os.path.dirname(__file__),\n \"./dog.jpg\")\n\n# Loads the image into memory\nwith io.open(file_name, 'rb') as image_file:\n content = image_file.read()\n\nrequest = {\n \"image\": {\n \"content\": content\n }, \n \"features\": [\n {\n \"max_results\": 2,\n \"type\": \"LABEL_DETECTION\"\n },\n {\n \"type\": \"SAFE_SEARCH_DETECTION\"\n }\n ]\n}\n\nresponse = client.annotate_image(request)\n\nprint(response)\n\nprint(response.safe_search_annotation.adult)\n\nfor label in response.label_annotations:\n print(label.description)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> json_data.close() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> json_data = open('eventnotipy/config.json') data = json.load(json_data) json_data.close() username = data['dbuser'] password = data['password'] host = data['dbhost'] db_name = data['database'] email_host = data['email_host'] email_localhost = data['email_localhost'] sms_host = data['sms_host'] sms_localhost = data['sms_localhost'] app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://%s:%s@%s/%s' % ( username, password, host, db_name) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ECHO'] = False app.secret_key = data['session_key'] <|reserved_special_token_1|> from eventnotipy import app import json json_data = open('eventnotipy/config.json') data = json.load(json_data) json_data.close() username = data['dbuser'] password = data['password'] host = data['dbhost'] db_name = data['database'] email_host = data['email_host'] email_localhost = data['email_localhost'] sms_host = data['sms_host'] sms_localhost = data['sms_localhost'] app.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://%s:%s@%s/%s' % ( username, password, host, db_name) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ECHO'] = False app.secret_key = data['session_key']
flexible
{ "blob_id": "1f0680c45afb36439c56a1d202537261df5f9afc", "index": 5895, "step-1": "<mask token>\n", "step-2": "<mask token>\njson_data.close()\n<mask token>\n", "step-3": "<mask token>\njson_data = open('eventnotipy/config.json')\ndata = json.load(json_data)\njson_data.close()\nusername = data['dbuser']\npassword = data['password']\nhost = data['dbhost']\ndb_name = data['database']\nemail_host = data['email_host']\nemail_localhost = data['email_localhost']\nsms_host = data['sms_host']\nsms_localhost = data['sms_localhost']\napp.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://%s:%s@%s/%s' % (\n username, password, host, db_name)\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\napp.config['SQLALCHEMY_ECHO'] = False\napp.secret_key = data['session_key']\n", "step-4": "from eventnotipy import app\nimport json\njson_data = open('eventnotipy/config.json')\ndata = json.load(json_data)\njson_data.close()\nusername = data['dbuser']\npassword = data['password']\nhost = data['dbhost']\ndb_name = data['database']\nemail_host = data['email_host']\nemail_localhost = data['email_localhost']\nsms_host = data['sms_host']\nsms_localhost = data['sms_localhost']\napp.config['SQLALCHEMY_DATABASE_URI'] = 'mysql+pymysql://%s:%s@%s/%s' % (\n username, password, host, db_name)\napp.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False\napp.config['SQLALCHEMY_ECHO'] = False\napp.secret_key = data['session_key']\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> gmap.heatmap(latitude, longitude) gmap.scatter(latitude, longitude, c='r', marker=True) <|reserved_special_token_0|> gmap.draw('c:\\users\\jackc\\desktop\\country_heatmap.html') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> latitude = (np.random.random_sample(size=700) - 0.5) * 180 longitude = (np.random.random_sample(size=700) - 0.5) * 360 gmap = gmplot.GoogleMapPlotter(0, 0, 2) gmap.heatmap(latitude, longitude) gmap.scatter(latitude, longitude, c='r', marker=True) gmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00' gmap.draw('c:\\users\\jackc\\desktop\\country_heatmap.html') <|reserved_special_token_0|> <|reserved_special_token_1|> import gmplot import numpy as np latitude = (np.random.random_sample(size=700) - 0.5) * 180 longitude = (np.random.random_sample(size=700) - 0.5) * 360 gmap = gmplot.GoogleMapPlotter(0, 0, 2) gmap.heatmap(latitude, longitude) gmap.scatter(latitude, longitude, c='r', marker=True) gmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00' gmap.draw('c:\\users\\jackc\\desktop\\country_heatmap.html') <|reserved_special_token_0|> <|reserved_special_token_1|> # import gmplot package import gmplot import numpy as np # generate 700 random lats and lons latitude = (np.random.random_sample(size = 700) - 0.5) * 180 longitude = (np.random.random_sample(size = 700) - 0.5) * 360 # declare the center of the map, and how much we want the map zoomed in gmap = gmplot.GoogleMapPlotter(0, 0, 2) # plot heatmap gmap.heatmap(latitude, longitude) gmap.scatter(latitude, longitude, c='r', marker=True) #Your Google_API_Key gmap.apikey = "AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00" # save it to html gmap.draw("c:\\users\\jackc\desktop\\country_heatmap.html") ''' import csv import pandas as pd from operator import itemgetter import matplotlib.pyplot as plt import numpy as np import mplcursors import gmplot def outputScatter(): data = pd.read_csv('C:\\Users\\jackc\\Desktop\\ctran\dataMerge.csv') df = data.groupby('location_id') gmap = gmplot.GoogleMapPlotter(0,0,2) counter = 0 result = [] result_lon = [] result_lat = [] result_calculation = [] result_lon_static = [] result_lat_static = [] result_toSCV = [] above50ft = 0 above70ft = 0 above90ft = 0 above150ft = 0 index = 0 colors = ['r','y','g','b'] for x,y in df: for z in range(y.location_distance.values.size): result_lon_static.append(y.y_coordinate.values[z]) result_lat_static.append(y.x_coordinate.values[z]) if(y.location_distance.values[z] > 30): counter = counter + 1 if(y.location_distance.values[z] > 50): above50ft = above50ft + 1 if(y.location_distance.values[z] > 70): above70ft = above70ft + 1 if(y.location_distance.values[z] > 90): above90ft = above90ft + 1 if(y.location_distance.values[z] > 150): above150ft = above150ft + 1 cal=counter/(y.location_distance.values.size) result.append([y.stop_code.values[0], cal, y.stop_lat.values[0], y.stop_lon.values[0]]) result_lat.append(y.stop_lat.values[0]) result_lon.append(y.stop_lon.values[0]) result_calculation.append(cal) result_toSCV.append([y.stop_code.values[0], cal, y.location_distance.values.size, counter, above50ft, above70ft, above90ft, above150ft]) index = index+1 above50ft = 0 above70ft = 0 above90ft = 0 above150ft = 0 counter = 0 result = sorted(result,key=itemgetter(1), reverse=True) result_toSCV = sorted(result_toSCV, key=itemgetter(1), reverse=True) plt.scatter(result_lat_static,result_lon_static, c='black') code_id = [] for x in result: #code_id.append(x[0]) #result_calculation.append(x[1]) #result_lat.append(x[2]) #result_lon.append(x[3]) if x[1] > 0.9: red = plt.scatter(x[3],x[2], c=colors[0], label='>90%') #red = plt.scatter(x[3],x[2], c=colors[0], label=x[0]) elif x[1] > 0.8: yellow = plt.scatter(x[3],x[2], c=colors[1], label='>80%') #yellow = plt.scatter(x[3],x[2], c=colors[1], label=x[0]) elif x[1] > 0.7: green = plt.scatter(x[3],x[2], c=colors[2], label='>70%') #green = plt.scatter(x[3],x[2], c=colors[2], label=x[0]) else: blue = plt.scatter(x[3],x[2], c=colors[3], label='>60%') #blue = plt.scatter(x[3],x[2], c=colors[3], label=x[0]) with open('C:\\Users\\Jackc\\Desktop\\Ctran\\outputPercentError.csv', mode='w', newline='') as file: writer = csv.writer(file) writer.writerow(['location_id', 'percent_Error', 'total_count', 'above30ft', 'above50ft', 'above70ft', 'above90ft', 'above150ft']) for x in result_toSCV: writer.writerow(x) '''
flexible
{ "blob_id": "1cc77ed1c5da025d1b539df202bbd3310a174eac", "index": 3902, "step-1": "<mask token>\n", "step-2": "<mask token>\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\n<mask token>\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-3": "<mask token>\nlatitude = (np.random.random_sample(size=700) - 0.5) * 180\nlongitude = (np.random.random_sample(size=700) - 0.5) * 360\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\ngmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00'\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-4": "import gmplot\nimport numpy as np\nlatitude = (np.random.random_sample(size=700) - 0.5) * 180\nlongitude = (np.random.random_sample(size=700) - 0.5) * 360\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\ngmap.apikey = 'AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00'\ngmap.draw('c:\\\\users\\\\jackc\\\\desktop\\\\country_heatmap.html')\n<mask token>\n", "step-5": "# import gmplot package\nimport gmplot\nimport numpy as np\n# generate 700 random lats and lons\nlatitude = (np.random.random_sample(size = 700) - 0.5) * 180\nlongitude = (np.random.random_sample(size = 700) - 0.5) * 360\n# declare the center of the map, and how much we want the map zoomed in\ngmap = gmplot.GoogleMapPlotter(0, 0, 2)\n# plot heatmap\ngmap.heatmap(latitude, longitude)\ngmap.scatter(latitude, longitude, c='r', marker=True)\n#Your Google_API_Key\ngmap.apikey = \"AIzaSyAid6Kk6DZVnu0VNsrDJsmhKwH1pqyiu00\"\n# save it to html\ngmap.draw(\"c:\\\\users\\\\jackc\\desktop\\\\country_heatmap.html\")\n\n'''\nimport csv\nimport pandas as pd\nfrom operator import itemgetter\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport mplcursors\nimport gmplot\n\ndef outputScatter():\n data = pd.read_csv('C:\\\\Users\\\\jackc\\\\Desktop\\\\ctran\\dataMerge.csv')\n df = data.groupby('location_id')\n\tgmap = gmplot.GoogleMapPlotter(0,0,2)\n counter = 0\n result = []\n result_lon = []\n result_lat = []\n result_calculation = []\n result_lon_static = []\n result_lat_static = []\n result_toSCV = []\n above50ft = 0\n above70ft = 0\n above90ft = 0\n above150ft = 0\n index = 0\n colors = ['r','y','g','b']\n\n for x,y in df:\n for z in range(y.location_distance.values.size):\n result_lon_static.append(y.y_coordinate.values[z])\n result_lat_static.append(y.x_coordinate.values[z])\n if(y.location_distance.values[z] > 30):\n counter = counter + 1\n if(y.location_distance.values[z] > 50):\n above50ft = above50ft + 1\n if(y.location_distance.values[z] > 70):\n above70ft = above70ft + 1\n if(y.location_distance.values[z] > 90):\n above90ft = above90ft + 1\n if(y.location_distance.values[z] > 150):\n above150ft = above150ft + 1\n\n cal=counter/(y.location_distance.values.size)\n result.append([y.stop_code.values[0], cal, y.stop_lat.values[0], y.stop_lon.values[0]])\n result_lat.append(y.stop_lat.values[0])\n result_lon.append(y.stop_lon.values[0])\n result_calculation.append(cal)\n result_toSCV.append([y.stop_code.values[0], cal, y.location_distance.values.size, counter, above50ft, above70ft, above90ft, above150ft])\n index = index+1\n above50ft = 0\n above70ft = 0\n above90ft = 0\n above150ft = 0\n counter = 0\n result = sorted(result,key=itemgetter(1), reverse=True)\n result_toSCV = sorted(result_toSCV, key=itemgetter(1), reverse=True)\n plt.scatter(result_lat_static,result_lon_static, c='black')\n\n code_id = []\n for x in result:\n #code_id.append(x[0])\n #result_calculation.append(x[1])\n #result_lat.append(x[2])\n #result_lon.append(x[3])\n if x[1] > 0.9:\n red = plt.scatter(x[3],x[2], c=colors[0], label='>90%')\n #red = plt.scatter(x[3],x[2], c=colors[0], label=x[0])\n\n elif x[1] > 0.8:\n yellow = plt.scatter(x[3],x[2], c=colors[1], label='>80%')\n #yellow = plt.scatter(x[3],x[2], c=colors[1], label=x[0])\n elif x[1] > 0.7:\n green = plt.scatter(x[3],x[2], c=colors[2], label='>70%')\n #green = plt.scatter(x[3],x[2], c=colors[2], label=x[0])\n else:\n blue = plt.scatter(x[3],x[2], c=colors[3], label='>60%')\n #blue = plt.scatter(x[3],x[2], c=colors[3], label=x[0])\n\n\n with open('C:\\\\Users\\\\Jackc\\\\Desktop\\\\Ctran\\\\outputPercentError.csv', mode='w', newline='') as file:\n writer = csv.writer(file)\n writer.writerow(['location_id', 'percent_Error', 'total_count', 'above30ft', 'above50ft', 'above70ft', 'above90ft', 'above150ft'])\n for x in result_toSCV:\n writer.writerow(x)\n\n'''\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric): <|reserved_special_token_0|> def __init__(self): super(IndexedDBTimelineMetric, self).__init__() self._stats = TraceEventStats() self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::GetOperation', metric_name='idb-gets', metric_description= 'The duration of all "get" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::PutOperation', metric_name='idb-puts', metric_description= 'The duration of all "put" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::Open', metric_name='idb-opens', metric_description= 'The duration of all "open" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBTransaction::Commit', metric_name='idb-transaction-commits', metric_description= 'The duration of all "commit" ops of ' + 'transactions in IndexedDB.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase', metric_name='idb-database-deletes', metric_description= 'The duration of all "delete" ops of ' + 'IndexedDB databases.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBDatabase::OpenCursorOperation', metric_name= 'idb-cursor-opens', metric_description= 'The duration of all "open" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBCursor::CursorIterationOperation', metric_name= 'idb-cursor-iterations', metric_description= 'The duration of all "iteration" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) def AddResults(self, model, renderer_process, interactions, results): self._stats.AddResults(model, renderer_process, interactions, results) <|reserved_special_token_1|> <|reserved_special_token_0|> class IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric): """Metrics for IndexedDB operations. """ def __init__(self): super(IndexedDBTimelineMetric, self).__init__() self._stats = TraceEventStats() self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::GetOperation', metric_name='idb-gets', metric_description= 'The duration of all "get" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::PutOperation', metric_name='idb-puts', metric_description= 'The duration of all "put" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::Open', metric_name='idb-opens', metric_description= 'The duration of all "open" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBTransaction::Commit', metric_name='idb-transaction-commits', metric_description= 'The duration of all "commit" ops of ' + 'transactions in IndexedDB.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase', metric_name='idb-database-deletes', metric_description= 'The duration of all "delete" ops of ' + 'IndexedDB databases.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBDatabase::OpenCursorOperation', metric_name= 'idb-cursor-opens', metric_description= 'The duration of all "open" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBCursor::CursorIterationOperation', metric_name= 'idb-cursor-iterations', metric_description= 'The duration of all "iteration" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) def AddResults(self, model, renderer_process, interactions, results): self._stats.AddResults(model, renderer_process, interactions, results) <|reserved_special_token_1|> from telemetry.web_perf.metrics import timeline_based_metric from telemetry.web_perf.metrics.trace_event_stats import TraceEventStats from telemetry.web_perf.metrics.trace_event_stats import TraceEventStatsInput class IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric): """Metrics for IndexedDB operations. """ def __init__(self): super(IndexedDBTimelineMetric, self).__init__() self._stats = TraceEventStats() self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::GetOperation', metric_name='idb-gets', metric_description= 'The duration of all "get" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBDatabase::PutOperation', metric_name='idb-puts', metric_description= 'The duration of all "put" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::Open', metric_name='idb-opens', metric_description= 'The duration of all "open" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBTransaction::Commit', metric_name='idb-transaction-commits', metric_description= 'The duration of all "commit" ops of ' + 'transactions in IndexedDB.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase', metric_name='idb-database-deletes', metric_description= 'The duration of all "delete" ops of ' + 'IndexedDB databases.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBDatabase::OpenCursorOperation', metric_name= 'idb-cursor-opens', metric_description= 'The duration of all "open" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput(event_category= 'IndexedDB', event_name= 'IndexedDBCursor::CursorIterationOperation', metric_name= 'idb-cursor-iterations', metric_description= 'The duration of all "iteration" ops of ' + 'IndexedDB cursors.', units='ms', process_name='Browser')) def AddResults(self, model, renderer_process, interactions, results): self._stats.AddResults(model, renderer_process, interactions, results) <|reserved_special_token_1|> # Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from telemetry.web_perf.metrics import timeline_based_metric from telemetry.web_perf.metrics.trace_event_stats import TraceEventStats from telemetry.web_perf.metrics.trace_event_stats import TraceEventStatsInput class IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric): """Metrics for IndexedDB operations. """ def __init__(self): super(IndexedDBTimelineMetric, self).__init__() self._stats = TraceEventStats() self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBDatabase::GetOperation', metric_name='idb-gets', metric_description='The duration of all "get" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBDatabase::PutOperation', metric_name='idb-puts', metric_description='The duration of all "put" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBFactoryImpl::Open', metric_name='idb-opens', metric_description='The duration of all "open" ops in IndexedDB', units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBTransaction::Commit', metric_name='idb-transaction-commits', metric_description=('The duration of all "commit" ops of ' + 'transactions in IndexedDB.'), units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase', metric_name='idb-database-deletes', metric_description=('The duration of all "delete" ops of ' + 'IndexedDB databases.'), units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBDatabase::OpenCursorOperation', metric_name='idb-cursor-opens', metric_description=('The duration of all "open" ops of ' + 'IndexedDB cursors.'), units='ms', process_name='Browser')) self._stats.AddInput(TraceEventStatsInput( event_category='IndexedDB', event_name='IndexedDBCursor::CursorIterationOperation', metric_name='idb-cursor-iterations', metric_description=('The duration of all "iteration" ops of ' + 'IndexedDB cursors.'), units='ms', process_name='Browser')) def AddResults(self, model, renderer_process, interactions, results): self._stats.AddResults(model, renderer_process, interactions, results)
flexible
{ "blob_id": "47f88bc3836490e08f464f71351096b54118420e", "index": 5297, "step-1": "<mask token>\n\n\nclass IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric):\n <mask token>\n\n def __init__(self):\n super(IndexedDBTimelineMetric, self).__init__()\n self._stats = TraceEventStats()\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::GetOperation',\n metric_name='idb-gets', metric_description=\n 'The duration of all \"get\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::PutOperation',\n metric_name='idb-puts', metric_description=\n 'The duration of all \"put\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::Open',\n metric_name='idb-opens', metric_description=\n 'The duration of all \"open\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBTransaction::Commit',\n metric_name='idb-transaction-commits', metric_description=\n 'The duration of all \"commit\" ops of ' +\n 'transactions in IndexedDB.', units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase',\n metric_name='idb-database-deletes', metric_description=\n 'The duration of all \"delete\" ops of ' + 'IndexedDB databases.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBDatabase::OpenCursorOperation', metric_name=\n 'idb-cursor-opens', metric_description=\n 'The duration of all \"open\" ops of ' + 'IndexedDB cursors.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBCursor::CursorIterationOperation', metric_name=\n 'idb-cursor-iterations', metric_description=\n 'The duration of all \"iteration\" ops of ' +\n 'IndexedDB cursors.', units='ms', process_name='Browser'))\n\n def AddResults(self, model, renderer_process, interactions, results):\n self._stats.AddResults(model, renderer_process, interactions, results)\n", "step-3": "<mask token>\n\n\nclass IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric):\n \"\"\"Metrics for IndexedDB operations.\n \"\"\"\n\n def __init__(self):\n super(IndexedDBTimelineMetric, self).__init__()\n self._stats = TraceEventStats()\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::GetOperation',\n metric_name='idb-gets', metric_description=\n 'The duration of all \"get\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::PutOperation',\n metric_name='idb-puts', metric_description=\n 'The duration of all \"put\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::Open',\n metric_name='idb-opens', metric_description=\n 'The duration of all \"open\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBTransaction::Commit',\n metric_name='idb-transaction-commits', metric_description=\n 'The duration of all \"commit\" ops of ' +\n 'transactions in IndexedDB.', units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase',\n metric_name='idb-database-deletes', metric_description=\n 'The duration of all \"delete\" ops of ' + 'IndexedDB databases.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBDatabase::OpenCursorOperation', metric_name=\n 'idb-cursor-opens', metric_description=\n 'The duration of all \"open\" ops of ' + 'IndexedDB cursors.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBCursor::CursorIterationOperation', metric_name=\n 'idb-cursor-iterations', metric_description=\n 'The duration of all \"iteration\" ops of ' +\n 'IndexedDB cursors.', units='ms', process_name='Browser'))\n\n def AddResults(self, model, renderer_process, interactions, results):\n self._stats.AddResults(model, renderer_process, interactions, results)\n", "step-4": "from telemetry.web_perf.metrics import timeline_based_metric\nfrom telemetry.web_perf.metrics.trace_event_stats import TraceEventStats\nfrom telemetry.web_perf.metrics.trace_event_stats import TraceEventStatsInput\n\n\nclass IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric):\n \"\"\"Metrics for IndexedDB operations.\n \"\"\"\n\n def __init__(self):\n super(IndexedDBTimelineMetric, self).__init__()\n self._stats = TraceEventStats()\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::GetOperation',\n metric_name='idb-gets', metric_description=\n 'The duration of all \"get\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBDatabase::PutOperation',\n metric_name='idb-puts', metric_description=\n 'The duration of all \"put\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::Open',\n metric_name='idb-opens', metric_description=\n 'The duration of all \"open\" ops in IndexedDB', units='ms',\n process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBTransaction::Commit',\n metric_name='idb-transaction-commits', metric_description=\n 'The duration of all \"commit\" ops of ' +\n 'transactions in IndexedDB.', units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name='IndexedDBFactoryImpl::DeleteDatabase',\n metric_name='idb-database-deletes', metric_description=\n 'The duration of all \"delete\" ops of ' + 'IndexedDB databases.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBDatabase::OpenCursorOperation', metric_name=\n 'idb-cursor-opens', metric_description=\n 'The duration of all \"open\" ops of ' + 'IndexedDB cursors.',\n units='ms', process_name='Browser'))\n self._stats.AddInput(TraceEventStatsInput(event_category=\n 'IndexedDB', event_name=\n 'IndexedDBCursor::CursorIterationOperation', metric_name=\n 'idb-cursor-iterations', metric_description=\n 'The duration of all \"iteration\" ops of ' +\n 'IndexedDB cursors.', units='ms', process_name='Browser'))\n\n def AddResults(self, model, renderer_process, interactions, results):\n self._stats.AddResults(model, renderer_process, interactions, results)\n", "step-5": "# Copyright 2015 The Chromium Authors. All rights reserved.\n# Use of this source code is governed by a BSD-style license that can be\n# found in the LICENSE file.\n\n\nfrom telemetry.web_perf.metrics import timeline_based_metric\nfrom telemetry.web_perf.metrics.trace_event_stats import TraceEventStats\nfrom telemetry.web_perf.metrics.trace_event_stats import TraceEventStatsInput\n\n\nclass IndexedDBTimelineMetric(timeline_based_metric.TimelineBasedMetric):\n \"\"\"Metrics for IndexedDB operations.\n \"\"\"\n\n def __init__(self):\n super(IndexedDBTimelineMetric, self).__init__()\n self._stats = TraceEventStats()\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBDatabase::GetOperation',\n metric_name='idb-gets',\n metric_description='The duration of all \"get\" ops in IndexedDB',\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBDatabase::PutOperation',\n metric_name='idb-puts',\n metric_description='The duration of all \"put\" ops in IndexedDB',\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBFactoryImpl::Open',\n metric_name='idb-opens',\n metric_description='The duration of all \"open\" ops in IndexedDB',\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBTransaction::Commit',\n metric_name='idb-transaction-commits',\n metric_description=('The duration of all \"commit\" ops of ' +\n 'transactions in IndexedDB.'),\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBFactoryImpl::DeleteDatabase',\n metric_name='idb-database-deletes',\n metric_description=('The duration of all \"delete\" ops of ' +\n 'IndexedDB databases.'),\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBDatabase::OpenCursorOperation',\n metric_name='idb-cursor-opens',\n metric_description=('The duration of all \"open\" ops of ' +\n 'IndexedDB cursors.'),\n units='ms',\n process_name='Browser'))\n\n self._stats.AddInput(TraceEventStatsInput(\n event_category='IndexedDB',\n event_name='IndexedDBCursor::CursorIterationOperation',\n metric_name='idb-cursor-iterations',\n metric_description=('The duration of all \"iteration\" ops of ' +\n 'IndexedDB cursors.'),\n units='ms',\n process_name='Browser'))\n\n def AddResults(self, model, renderer_process, interactions, results):\n self._stats.AddResults(model, renderer_process, interactions, results)\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
from pyparsing import ParseException from pytest import raises from easymql.expressions import Expression as exp class TestComparisonExpression: def test_cmp(self): assert exp.parse('CMP(1, 2)') == {'$cmp': [1, 2]} with raises(ParseException): exp.parse('CMP(1)') with raises(ParseException): exp.parse('CMP(1, 2, 3)') assert exp.parse('CMP(1, 3 + 2)') == {'$cmp': [1, {'$add': [3, 2]}]}
normal
{ "blob_id": "91959f6621f05b1b814a025f0b95c55cf683ded3", "index": 5856, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass TestComparisonExpression:\n <mask token>\n", "step-3": "<mask token>\n\n\nclass TestComparisonExpression:\n\n def test_cmp(self):\n assert exp.parse('CMP(1, 2)') == {'$cmp': [1, 2]}\n with raises(ParseException):\n exp.parse('CMP(1)')\n with raises(ParseException):\n exp.parse('CMP(1, 2, 3)')\n assert exp.parse('CMP(1, 3 + 2)') == {'$cmp': [1, {'$add': [3, 2]}]}\n", "step-4": "from pyparsing import ParseException\nfrom pytest import raises\nfrom easymql.expressions import Expression as exp\n\n\nclass TestComparisonExpression:\n\n def test_cmp(self):\n assert exp.parse('CMP(1, 2)') == {'$cmp': [1, 2]}\n with raises(ParseException):\n exp.parse('CMP(1)')\n with raises(ParseException):\n exp.parse('CMP(1, 2, 3)')\n assert exp.parse('CMP(1, 3 + 2)') == {'$cmp': [1, {'$add': [3, 2]}]}\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# VGGNet import numpy as np np.random.seed(317) from glob import glob from itertools import cycle from keras.applications.vgg19 import VGG19 from keras.optimizers import Adam from keras.models import Model from keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense from keras.utils import plot_model from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback from keras.losses import kullback_leibler_divergence from math import ceil from os import path, mkdir, listdir from skimage.transform import resize from scipy.misc import imread, imsave from time import time import argparse import logging import keras.backend as K import pandas as pd import tifffile as tif import sys sys.path.append('.') from planet.utils.data_utils import tagset_to_ints, random_transforms from planet.utils.keras_utils import HistoryPlot from planet.utils.runtime import funcname class VGGNet(object): def __init__(self, checkpoint_name='VGGNet'): self.config = { 'image_shape': [256, 256, 3], 'input_shape': [224, 224, 3], 'output_shape': [17, ], 'batch_size': 60, 'trn_steps': 680, 'trn_nb_epochs': 200, 'trn_transform': True, 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir': 'data/train-jpg', 'tst_imgs_csv': 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg' } self.checkpoint_name = checkpoint_name self.imgs = [] self.lbls = [] self.net = None self.rng = np.random @property def cpdir(self): cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']])) if not path.exists(cpdir): mkdir(cpdir) return cpdir def create_net(self): x = inputs = Input(shape=self.config['input_shape']) vgg = VGG19(include_top=False, input_tensor=x) outputs = Flatten()(vgg.output) outputs = Dropout(0.1)(outputs) outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs) def true_pos(yt, yp): return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1)) def pred_pos(yt, yp): return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1)) def F2(yt, yp): yt, yp = K.round(yt), K.round(yp) tp = K.sum(yt * yp) fp = K.sum(K.clip(yp - yt, 0, 1)) fn = K.sum(K.clip(yt - yp, 0, 1)) p = tp / (tp + fp) r = tp / (tp + fn) b = 2.0 return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon())) self.net = Model(inputs, outputs) self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy', metrics=['binary_accuracy', F2, true_pos, pred_pos]) self.net.summary() plot_model(self.net, to_file='%s/net.png' % self.cpdir) return def train(self): batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[ 'trn_imgs_dir'], self.config['trn_transform']) cb = [ HistoryPlot('%s/history.png' % self.cpdir), CSVLogger('%s/history.csv' % self.cpdir), ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1, save_best_only=True, mode='min', save_weights_only=True), ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2', verbose=1, save_best_only=True, mode='max', save_weights_only=True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max') ] self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb, epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True) return def get_mean_img(self, imgs_paths, mean_img_path): '''Compute the mean image from the given paths and save it to the given path.''' logger = logging.getLogger(funcname()) if not path.exists(mean_img_path): mean_img = np.zeros(self.config['image_shape'], dtype=np.float32) for idx, img_path in enumerate(imgs_paths): mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths) if idx % 1000 == 0: logger.info('%d/%d' % (idx, len(imgs_paths))) imsave(mean_img_path, mean_img) return imread(mean_img_path) def train_batch_gen(self, imgs_csv, imgs_dir, transform): logger = logging.getLogger(funcname()) # Read the CSV and extract image names and tags. df = pd.read_csv(imgs_csv) imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values] tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values] # Compute the mean image for pre-processing. mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir) mean_img = mean_img.astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean while True: imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape']) tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape']) random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths))) for batch_idx in range(self.config['batch_size']): data_idx = next(random_idxs) img = imread(imgs_paths[data_idx], mode='RGB') img = img_preprocess(img) img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant') if transform: img = random_transforms(img, nb_min=0, nb_max=6) imgs_batch[batch_idx] = img tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx]) yield imgs_batch, tags_batch def predict(self, img_batch): # Get the mean image imgs_paths = listdir(self.config['trn_imgs_dir']) mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255. mean_img_mean = np.mean(mean_img) img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean for idx in range(len(img_batch)): img_batch[idx] = img_preprocess(img_batch[idx]) tags_pred = self.net.predict(img_batch) tags_pred = tags_pred.round().astype(np.uint8) return tags_pred if __name__ == "__main__": from planet.model_runner import model_runner model = VGGNet() model_runner(model)
normal
{ "blob_id": "c6a4d566460a06504abf7e2c54be4f2ea36e01fb", "index": 7735, "step-1": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n <mask token>\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\n<mask token>\n", "step-3": "<mask token>\nnp.random.seed(317)\n<mask token>\nsys.path.append('.')\n<mask token>\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-4": "import numpy as np\nnp.random.seed(317)\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n self.config = {'image_shape': [256, 256, 3], 'input_shape': [224, \n 224, 3], 'output_shape': [17], 'batch_size': 60, 'trn_steps': \n 680, 'trn_nb_epochs': 200, 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv', 'trn_imgs_dir':\n 'data/train-jpg', 'tst_imgs_csv':\n 'data/sample_submission_v2.csv', 'tst_imgs_dir': 'data/test-jpg'}\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str\n (x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(\n outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b ** 2) * (p * r / (b ** 2 * p + r + K.epsilon()))\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.\n config['trn_imgs_dir'], self.config['trn_transform'])\n cb = [HistoryPlot('%s/history.png' % self.cpdir), CSVLogger(\n '%s/history.csv' % self.cpdir), ModelCheckpoint(\n '%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=\n True), ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2,\n epsilon=0.005, verbose=1, mode='min'), EarlyStopping(monitor=\n 'F2', min_delta=0.01, patience=10, verbose=1, mode='max')]\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config[\n 'trn_steps'], verbose=1, callbacks=cb, epochs=self.config[\n 'trn_nb_epochs'], workers=2, pickle_safe=True)\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n \"\"\"Compute the mean image from the given paths and save it to the given path.\"\"\"\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32\n ) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n logger = logging.getLogger(funcname())\n df = pd.read_csv(imgs_csv)\n imgs_paths = [('%s/%s.jpg' % (imgs_dir, n)) for n in df[\n 'image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' %\n self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n while True:\n imgs_batch = np.zeros([self.config['batch_size']] + self.config\n ['input_shape'])\n tags_batch = np.zeros([self.config['batch_size']] + self.config\n ['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)),\n len(imgs_paths)))\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'],\n preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.\n float32) / 255.0\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32\n ) / 255.0 - mean_img_mean\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\n\nif __name__ == '__main__':\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-5": "# VGGNet\nimport numpy as np\nnp.random.seed(317)\n\nfrom glob import glob\nfrom itertools import cycle\nfrom keras.applications.vgg19 import VGG19\nfrom keras.optimizers import Adam\nfrom keras.models import Model\nfrom keras.layers import Input, BatchNormalization, Flatten, Dropout, Dense\nfrom keras.utils import plot_model\nfrom keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, CSVLogger, EarlyStopping, Callback\nfrom keras.losses import kullback_leibler_divergence\nfrom math import ceil\nfrom os import path, mkdir, listdir\nfrom skimage.transform import resize\nfrom scipy.misc import imread, imsave\nfrom time import time\nimport argparse\nimport logging\nimport keras.backend as K\nimport pandas as pd\nimport tifffile as tif\n\nimport sys\nsys.path.append('.')\nfrom planet.utils.data_utils import tagset_to_ints, random_transforms\nfrom planet.utils.keras_utils import HistoryPlot\nfrom planet.utils.runtime import funcname\n\n\nclass VGGNet(object):\n\n def __init__(self, checkpoint_name='VGGNet'):\n\n self.config = {\n 'image_shape': [256, 256, 3],\n 'input_shape': [224, 224, 3],\n 'output_shape': [17, ],\n 'batch_size': 60,\n 'trn_steps': 680,\n 'trn_nb_epochs': 200,\n 'trn_transform': True,\n 'trn_imgs_csv': 'data/train_v2.csv',\n 'trn_imgs_dir': 'data/train-jpg',\n 'tst_imgs_csv': 'data/sample_submission_v2.csv',\n 'tst_imgs_dir': 'data/test-jpg'\n }\n\n self.checkpoint_name = checkpoint_name\n self.imgs = []\n self.lbls = []\n self.net = None\n self.rng = np.random\n\n @property\n def cpdir(self):\n cpdir = 'checkpoints/%s_%s/' % (self.checkpoint_name, '_'.join([str(x) for x in self.config['input_shape']]))\n if not path.exists(cpdir):\n mkdir(cpdir)\n return cpdir\n\n def create_net(self):\n\n x = inputs = Input(shape=self.config['input_shape'])\n vgg = VGG19(include_top=False, input_tensor=x)\n\n outputs = Flatten()(vgg.output)\n outputs = Dropout(0.1)(outputs)\n outputs = Dense(self.config['output_shape'][0], activation='sigmoid')(outputs)\n\n def true_pos(yt, yp):\n return K.sum(K.round(yt)) / K.sum(K.clip(yt, 1, 1))\n\n def pred_pos(yt, yp):\n return K.sum(K.round(yp)) / K.sum(K.clip(yt, 1, 1))\n\n def F2(yt, yp):\n yt, yp = K.round(yt), K.round(yp)\n tp = K.sum(yt * yp)\n fp = K.sum(K.clip(yp - yt, 0, 1))\n fn = K.sum(K.clip(yt - yp, 0, 1))\n p = tp / (tp + fp)\n r = tp / (tp + fn)\n b = 2.0\n return (1 + b**2) * ((p * r) / (b**2 * p + r + K.epsilon()))\n\n self.net = Model(inputs, outputs)\n self.net.compile(optimizer=Adam(0.001), loss='binary_crossentropy',\n metrics=['binary_accuracy', F2, true_pos, pred_pos])\n self.net.summary()\n plot_model(self.net, to_file='%s/net.png' % self.cpdir)\n return\n\n def train(self):\n\n batch_gen = self.train_batch_gen(self.config['trn_imgs_csv'], self.config[\n 'trn_imgs_dir'], self.config['trn_transform'])\n\n cb = [\n HistoryPlot('%s/history.png' % self.cpdir),\n CSVLogger('%s/history.csv' % self.cpdir),\n ModelCheckpoint('%s/loss.weights' % self.cpdir, monitor='loss', verbose=1,\n save_best_only=True, mode='min', save_weights_only=True),\n ModelCheckpoint('%s/F2.weights' % self.cpdir, monitor='F2',\n verbose=1, save_best_only=True, mode='max', save_weights_only=True),\n ReduceLROnPlateau(monitor='F2', factor=0.8, patience=2, epsilon=0.005, verbose=1, mode='min'),\n EarlyStopping(monitor='F2', min_delta=0.01, patience=10, verbose=1, mode='max')\n ]\n\n self.net.fit_generator(batch_gen, steps_per_epoch=self.config['trn_steps'], verbose=1, callbacks=cb,\n epochs=self.config['trn_nb_epochs'], workers=2, pickle_safe=True)\n\n return\n\n def get_mean_img(self, imgs_paths, mean_img_path):\n '''Compute the mean image from the given paths and save it to the given path.'''\n logger = logging.getLogger(funcname())\n if not path.exists(mean_img_path):\n mean_img = np.zeros(self.config['image_shape'], dtype=np.float32)\n for idx, img_path in enumerate(imgs_paths):\n mean_img += imread(img_path, mode='RGB').astype(np.float32) / len(imgs_paths)\n if idx % 1000 == 0:\n logger.info('%d/%d' % (idx, len(imgs_paths)))\n imsave(mean_img_path, mean_img)\n return imread(mean_img_path)\n\n def train_batch_gen(self, imgs_csv, imgs_dir, transform):\n\n logger = logging.getLogger(funcname())\n\n # Read the CSV and extract image names and tags.\n df = pd.read_csv(imgs_csv)\n imgs_paths = ['%s/%s.jpg' % (imgs_dir, n) for n in df['image_name'].values]\n tag_sets = [set(t.strip().split(' ')) for t in df['tags'].values]\n\n # Compute the mean image for pre-processing.\n mean_img = self.get_mean_img(imgs_paths, '%s/mean_img_trn.jpg' % self.cpdir)\n mean_img = mean_img.astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n while True:\n\n imgs_batch = np.zeros([self.config['batch_size'], ] + self.config['input_shape'])\n tags_batch = np.zeros([self.config['batch_size'], ] + self.config['output_shape'])\n random_idxs = cycle(np.random.choice(np.arange(len(imgs_paths)), len(imgs_paths)))\n\n for batch_idx in range(self.config['batch_size']):\n data_idx = next(random_idxs)\n img = imread(imgs_paths[data_idx], mode='RGB')\n img = img_preprocess(img)\n img = resize(img, self.config['input_shape'], preserve_range=True, mode='constant')\n if transform:\n img = random_transforms(img, nb_min=0, nb_max=6)\n imgs_batch[batch_idx] = img\n tags_batch[batch_idx] = tagset_to_ints(tag_sets[data_idx])\n\n yield imgs_batch, tags_batch\n\n def predict(self, img_batch):\n\n # Get the mean image\n imgs_paths = listdir(self.config['trn_imgs_dir'])\n mean_img_path = '%s/mean_img_trn.jpg' % self.cpdir\n mean_img = self.get_mean_img(imgs_paths, mean_img_path).astype(np.float32) / 255.\n mean_img_mean = np.mean(mean_img)\n img_preprocess = lambda img: img.astype(np.float32) / 255. - mean_img_mean\n\n for idx in range(len(img_batch)):\n img_batch[idx] = img_preprocess(img_batch[idx])\n\n tags_pred = self.net.predict(img_batch)\n tags_pred = tags_pred.round().astype(np.uint8)\n return tags_pred\n\nif __name__ == \"__main__\":\n from planet.model_runner import model_runner\n model = VGGNet()\n model_runner(model)\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
<|reserved_special_token_0|> class PageOne(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) frame_left = Frame(self) self.frame_left = frame_left frame_left.pack(fill=BOTH, side=LEFT) self.label = tk.Label(frame_left, text='', font=('Helvetica', 10), fg='red') self.label.pack() self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue') self.Nombre_1 = Entry(frame_left) self.Nombre_1.pack(side='top', anchor='w') self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red') self.Nombre_2 = Entry(frame_left) self.Nombre_2.pack(side='top', anchor='w') tk.Button(frame_left, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack(side='bottom') self.frame1 = Frame(self) self.frame1.pack(fill='x') self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.master = master self.commencer_un_jeu() <|reserved_special_token_0|> <|reserved_special_token_0|> def update_clock(self): self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) if self.fin: self.master.after(1000, self.update_clock) def commencer_un_jeu(self): self.fin = True try: self.rejouer.destroy() self.label.config(text='') self.Nombre_2.delete(0, END) self.Nombre_1.delete(0, END) except: pass self.bt_valider = tk.Button(self.frame_left, text='valider', command=lambda : self.fin_du_jeu()) self.bt_valider.pack(side='top', anchor='w') self.debut = time.time() self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.update_clock() self.rectangle.destroy() self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.nombre_j1 = random.randint(1, 10) self.nombre_j2 = random.randint(1, 10) for _ in range(self.nombre_j2): self.create_circle(20, self.rectangle, 'red') for _ in range(self.nombre_j1): self.create_circle(20, self.rectangle, 'blue') def fin_du_jeu(self): self.fin = False if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2 .get()) == self.nombre_j2: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Victoire') else: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Defaite') class SampleApp(tk.Tk): def __init__(self): tk.Tk.__init__(self) self._frame = None self.switch_frame(StartPage) def timer(self, frame_game): self.after(1000, frame_game.update_clock) def switch_frame(self, frame_class, num=False): new_frame = frame_class(self) if self._frame is not None: self._frame.destroy() self._frame = new_frame self._frame.pack() class PageTwo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='red') tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack( side='top', fill='x', pady=5) tk.Button(self, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class PageOne(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) frame_left = Frame(self) self.frame_left = frame_left frame_left.pack(fill=BOTH, side=LEFT) self.label = tk.Label(frame_left, text='', font=('Helvetica', 10), fg='red') self.label.pack() self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue') self.Nombre_1 = Entry(frame_left) self.Nombre_1.pack(side='top', anchor='w') self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red') self.Nombre_2 = Entry(frame_left) self.Nombre_2.pack(side='top', anchor='w') tk.Button(frame_left, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack(side='bottom') self.frame1 = Frame(self) self.frame1.pack(fill='x') self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.master = master self.commencer_un_jeu() <|reserved_special_token_0|> def create_ret(self, canvas): return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb') def update_clock(self): self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) if self.fin: self.master.after(1000, self.update_clock) def commencer_un_jeu(self): self.fin = True try: self.rejouer.destroy() self.label.config(text='') self.Nombre_2.delete(0, END) self.Nombre_1.delete(0, END) except: pass self.bt_valider = tk.Button(self.frame_left, text='valider', command=lambda : self.fin_du_jeu()) self.bt_valider.pack(side='top', anchor='w') self.debut = time.time() self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.update_clock() self.rectangle.destroy() self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.nombre_j1 = random.randint(1, 10) self.nombre_j2 = random.randint(1, 10) for _ in range(self.nombre_j2): self.create_circle(20, self.rectangle, 'red') for _ in range(self.nombre_j1): self.create_circle(20, self.rectangle, 'blue') def fin_du_jeu(self): self.fin = False if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2 .get()) == self.nombre_j2: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Victoire') else: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Defaite') class SampleApp(tk.Tk): def __init__(self): tk.Tk.__init__(self) self._frame = None self.switch_frame(StartPage) def timer(self, frame_game): self.after(1000, frame_game.update_clock) def switch_frame(self, frame_class, num=False): new_frame = frame_class(self) if self._frame is not None: self._frame.destroy() self._frame = new_frame self._frame.pack() class PageTwo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='red') tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack( side='top', fill='x', pady=5) tk.Button(self, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class StartPage(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='#d0a3d8', height=200, width=200) tk.Label(self, text='Mini Jeu: \n P-0', font=('Helvetica', 18, 'bold') ).pack(side='top', fill='x', pady=5) bt = Button(self, text='Jouer', command=lambda : master. switch_frame(PageOne, num=True)) bt.pack(fill=BOTH, expand=True) class PageOne(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) frame_left = Frame(self) self.frame_left = frame_left frame_left.pack(fill=BOTH, side=LEFT) self.label = tk.Label(frame_left, text='', font=('Helvetica', 10), fg='red') self.label.pack() self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue') self.Nombre_1 = Entry(frame_left) self.Nombre_1.pack(side='top', anchor='w') self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red') self.Nombre_2 = Entry(frame_left) self.Nombre_2.pack(side='top', anchor='w') tk.Button(frame_left, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack(side='bottom') self.frame1 = Frame(self) self.frame1.pack(fill='x') self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.master = master self.commencer_un_jeu() def create_circle(self, r, canvasName, color): x = random.randint(20, 300) y = random.randint(20, 250) x0 = x - r y0 = y - r x1 = x + r y1 = y + r return canvasName.create_oval(x0, y0, x1, y1, fill=color) def create_ret(self, canvas): return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb') def update_clock(self): self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) if self.fin: self.master.after(1000, self.update_clock) def commencer_un_jeu(self): self.fin = True try: self.rejouer.destroy() self.label.config(text='') self.Nombre_2.delete(0, END) self.Nombre_1.delete(0, END) except: pass self.bt_valider = tk.Button(self.frame_left, text='valider', command=lambda : self.fin_du_jeu()) self.bt_valider.pack(side='top', anchor='w') self.debut = time.time() self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.update_clock() self.rectangle.destroy() self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.nombre_j1 = random.randint(1, 10) self.nombre_j2 = random.randint(1, 10) for _ in range(self.nombre_j2): self.create_circle(20, self.rectangle, 'red') for _ in range(self.nombre_j1): self.create_circle(20, self.rectangle, 'blue') def fin_du_jeu(self): self.fin = False if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2 .get()) == self.nombre_j2: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Victoire') else: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Defaite') class SampleApp(tk.Tk): def __init__(self): tk.Tk.__init__(self) self._frame = None self.switch_frame(StartPage) def timer(self, frame_game): self.after(1000, frame_game.update_clock) def switch_frame(self, frame_class, num=False): new_frame = frame_class(self) if self._frame is not None: self._frame.destroy() self._frame = new_frame self._frame.pack() class PageTwo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='red') tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack( side='top', fill='x', pady=5) tk.Button(self, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack() <|reserved_special_token_0|> <|reserved_special_token_1|> import tkinter as tk from tkinter import Tk, BOTH, RIGHT, LEFT, END from tkinter.ttk import Frame, Label, Style, Entry from tkinter.ttk import Frame, Button, Style import random import time class StartPage(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='#d0a3d8', height=200, width=200) tk.Label(self, text='Mini Jeu: \n P-0', font=('Helvetica', 18, 'bold') ).pack(side='top', fill='x', pady=5) bt = Button(self, text='Jouer', command=lambda : master. switch_frame(PageOne, num=True)) bt.pack(fill=BOTH, expand=True) class PageOne(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) frame_left = Frame(self) self.frame_left = frame_left frame_left.pack(fill=BOTH, side=LEFT) self.label = tk.Label(frame_left, text='', font=('Helvetica', 10), fg='red') self.label.pack() self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue') self.Nombre_1 = Entry(frame_left) self.Nombre_1.pack(side='top', anchor='w') self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3) self.bagniere_bleu.pack(side='top', anchor='c') self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red') self.Nombre_2 = Entry(frame_left) self.Nombre_2.pack(side='top', anchor='w') tk.Button(frame_left, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack(side='bottom') self.frame1 = Frame(self) self.frame1.pack(fill='x') self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.master = master self.commencer_un_jeu() def create_circle(self, r, canvasName, color): x = random.randint(20, 300) y = random.randint(20, 250) x0 = x - r y0 = y - r x1 = x + r y1 = y + r return canvasName.create_oval(x0, y0, x1, y1, fill=color) def create_ret(self, canvas): return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb') def update_clock(self): self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) if self.fin: self.master.after(1000, self.update_clock) def commencer_un_jeu(self): self.fin = True try: self.rejouer.destroy() self.label.config(text='') self.Nombre_2.delete(0, END) self.Nombre_1.delete(0, END) except: pass self.bt_valider = tk.Button(self.frame_left, text='valider', command=lambda : self.fin_du_jeu()) self.bt_valider.pack(side='top', anchor='w') self.debut = time.time() self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self. temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.update_clock() self.rectangle.destroy() self.rectangle = tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.nombre_j1 = random.randint(1, 10) self.nombre_j2 = random.randint(1, 10) for _ in range(self.nombre_j2): self.create_circle(20, self.rectangle, 'red') for _ in range(self.nombre_j1): self.create_circle(20, self.rectangle, 'blue') def fin_du_jeu(self): self.fin = False if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2 .get()) == self.nombre_j2: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Victoire') else: self.bt_valider.destroy() self.rejouer = Button(self.frame_left, text='Rejouer', command= lambda : self.commencer_un_jeu()) self.rejouer.pack(side='top', fill='x') self.temps_de_rect = time.time() - self.debut self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self .temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200, 150, fill='darkblue', font= 'Times 20 italic bold', text='Defaite') class SampleApp(tk.Tk): def __init__(self): tk.Tk.__init__(self) self._frame = None self.switch_frame(StartPage) def timer(self, frame_game): self.after(1000, frame_game.update_clock) def switch_frame(self, frame_class, num=False): new_frame = frame_class(self) if self._frame is not None: self._frame.destroy() self._frame = new_frame self._frame.pack() class PageTwo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self, bg='red') tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack( side='top', fill='x', pady=5) tk.Button(self, text='Go back to start page', command=lambda : master.switch_frame(StartPage)).pack() if __name__ == '__main__': app = SampleApp() app.geometry('800x800') app.mainloop() <|reserved_special_token_1|> import tkinter as tk from tkinter import Tk, BOTH,RIGHT,LEFT,END from tkinter.ttk import Frame, Label, Style,Entry from tkinter.ttk import Frame, Button, Style import random import time class StartPage(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self,bg="#d0a3d8",height=200,width=200) tk.Label(self, text="Mini Jeu: \n P-0", font=('Helvetica', 18, "bold")).pack(side="top", fill="x", pady=5) bt=Button(self, text="Jouer", command=lambda: master.switch_frame(PageOne,num=True)) bt.pack(fill=BOTH,expand=True) # tk.Button(self, text="Go to page two", # command=lambda: master.switch_frame(PageTwo)).pack() class PageOne(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) # tk.Frame.configure(self,bg='blue') # tk.Label(self, text="Page de jeu", font=('Helvetica', 18, "bold")).pack(side="top", fill=BOTH, pady=5) frame_left=Frame(self) self.frame_left=frame_left frame_left.pack(fill=BOTH,side=LEFT) # add entry to this frame self.label=tk.Label(frame_left , text="", font=('Helvetica', 10), fg='red') self.label.pack() self.bagniere_bleu=tk.Canvas(frame_left,width=50,height=3) self.bagniere_bleu.pack(side='top',anchor='c') self.bagniere_bleu.create_rectangle(0,3,50,0,fill='blue') self.Nombre_1=Entry(frame_left) self.Nombre_1.pack(side='top',anchor='w') # bagnier pour differencier les couleurs self.bagniere_bleu=tk.Canvas(frame_left,width=50,height=3) self.bagniere_bleu.pack(side='top',anchor='c') self.bagniere_bleu.create_rectangle(0,3,50,0,fill='red') self.Nombre_2=Entry(frame_left) self.Nombre_2.pack(side='top',anchor='w') tk.Button(frame_left, text="Go back to start page", command=lambda: master.switch_frame(StartPage)).pack(side='bottom') self.frame1 = Frame(self) self.frame1.pack(fill='x') self.rectangle=tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) # self.update_clock() self.master=master self.commencer_un_jeu() def create_circle(self,r, canvasName,color): #center coordinates, radius x=random.randint(20,300) y=random.randint(20,250) x0 = x - r y0 = y - r x1 = x + r y1 = y + r return canvasName.create_oval(x0, y0, x1, y1,fill=color) def create_ret(self,canvas): return canvas.create_rectangle(0,500,500,0,fill="#fdffdb") def update_clock(self): self.temps_de_rect=(time.time()-self.debut) self.temps_de_rect=time.strftime("%H:%M:%S", time.gmtime(self.temps_de_rect)) self.label.configure(text=self.temps_de_rect) if self.fin: self.master.after(1000,self.update_clock) def commencer_un_jeu(self): self.fin=True try : self.rejouer.destroy() self.label.config(text='') self.Nombre_2.delete(0,END) self.Nombre_1.delete(0,END) except: pass self.bt_valider=tk.Button(self.frame_left,text='valider', command=lambda: self.fin_du_jeu()) self. bt_valider.pack(side='top',anchor='w') self.debut=time.time() self.temps_de_rect=(time.time()-self.debut) self.temps_de_rect=time.strftime("%H:%M:%S", time.gmtime(self.temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.update_clock() self.rectangle.destroy() self.rectangle=tk.Canvas(self.frame1) self.rectangle.pack() self.create_ret(self.rectangle) self.nombre_j1=random.randint(1,10) self.nombre_j2=random.randint(1,10) for _ in range(self.nombre_j2): self.create_circle(20,self.rectangle,'red') for _ in range(self.nombre_j1): self.create_circle(20,self.rectangle,'blue') def fin_du_jeu(self): self.fin=False if(int(self.Nombre_1.get())==self.nombre_j1 ) and (int(self.Nombre_2.get())==self.nombre_j2): #jeu gagné self.bt_valider.destroy() self.rejouer=Button(self.frame_left, text="Rejouer", command=lambda: self.commencer_un_jeu()) self.rejouer.pack(side='top',fill='x') self.temps_de_rect=(time.time()-self.debut) self.temps_de_rect=time.strftime("%H:%M:%S", time.gmtime(self.temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200,150,fill="darkblue",font="Times 20 italic bold", text="Victoire") else: self.bt_valider.destroy() self.rejouer=Button(self.frame_left, text="Rejouer", command=lambda: self.commencer_un_jeu()) self.rejouer.pack(side='top',fill='x') self.temps_de_rect=(time.time()-self.debut) self.temps_de_rect=time.strftime("%H:%M:%S", time.gmtime(self.temps_de_rect)) self.label.configure(text=self.temps_de_rect) self.rectangle.create_text(200,150,fill="darkblue",font="Times 20 italic bold", text="Defaite") class SampleApp(tk.Tk): def __init__(self): tk.Tk.__init__(self) self._frame = None self.switch_frame(StartPage) def timer(self,frame_game): self.after(1000,frame_game.update_clock) def switch_frame(self, frame_class,num=False): new_frame = frame_class(self) if self._frame is not None: self._frame.destroy() self._frame = new_frame self._frame.pack() # try: # if num: # print(frame_class) # self.timer(frame_class) # except: # print("le frame n'est pas le bon") class PageTwo(tk.Frame): def __init__(self, master): tk.Frame.__init__(self, master) tk.Frame.configure(self,bg='red') tk.Label(self, text="Page two", font=('Helvetica', 18, "bold")).pack(side="top", fill="x", pady=5) tk.Button(self, text="Go back to start page", command=lambda: master.switch_frame(StartPage)).pack() if __name__ == "__main__": app = SampleApp() app.geometry('800x800') app.mainloop()
flexible
{ "blob_id": "4e6401672d4762b444bb679e4cc39ada04193a26", "index": 1882, "step-1": "<mask token>\n\n\nclass PageOne(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n frame_left = Frame(self)\n self.frame_left = frame_left\n frame_left.pack(fill=BOTH, side=LEFT)\n self.label = tk.Label(frame_left, text='', font=('Helvetica', 10),\n fg='red')\n self.label.pack()\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue')\n self.Nombre_1 = Entry(frame_left)\n self.Nombre_1.pack(side='top', anchor='w')\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red')\n self.Nombre_2 = Entry(frame_left)\n self.Nombre_2.pack(side='top', anchor='w')\n tk.Button(frame_left, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack(side='bottom')\n self.frame1 = Frame(self)\n self.frame1.pack(fill='x')\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.master = master\n self.commencer_un_jeu()\n <mask token>\n <mask token>\n\n def update_clock(self):\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n if self.fin:\n self.master.after(1000, self.update_clock)\n\n def commencer_un_jeu(self):\n self.fin = True\n try:\n self.rejouer.destroy()\n self.label.config(text='')\n self.Nombre_2.delete(0, END)\n self.Nombre_1.delete(0, END)\n except:\n pass\n self.bt_valider = tk.Button(self.frame_left, text='valider',\n command=lambda : self.fin_du_jeu())\n self.bt_valider.pack(side='top', anchor='w')\n self.debut = time.time()\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.update_clock()\n self.rectangle.destroy()\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.nombre_j1 = random.randint(1, 10)\n self.nombre_j2 = random.randint(1, 10)\n for _ in range(self.nombre_j2):\n self.create_circle(20, self.rectangle, 'red')\n for _ in range(self.nombre_j1):\n self.create_circle(20, self.rectangle, 'blue')\n\n def fin_du_jeu(self):\n self.fin = False\n if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2\n .get()) == self.nombre_j2:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Victoire')\n else:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Defaite')\n\n\nclass SampleApp(tk.Tk):\n\n def __init__(self):\n tk.Tk.__init__(self)\n self._frame = None\n self.switch_frame(StartPage)\n\n def timer(self, frame_game):\n self.after(1000, frame_game.update_clock)\n\n def switch_frame(self, frame_class, num=False):\n new_frame = frame_class(self)\n if self._frame is not None:\n self._frame.destroy()\n self._frame = new_frame\n self._frame.pack()\n\n\nclass PageTwo(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='red')\n tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack(\n side='top', fill='x', pady=5)\n tk.Button(self, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass PageOne(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n frame_left = Frame(self)\n self.frame_left = frame_left\n frame_left.pack(fill=BOTH, side=LEFT)\n self.label = tk.Label(frame_left, text='', font=('Helvetica', 10),\n fg='red')\n self.label.pack()\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue')\n self.Nombre_1 = Entry(frame_left)\n self.Nombre_1.pack(side='top', anchor='w')\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red')\n self.Nombre_2 = Entry(frame_left)\n self.Nombre_2.pack(side='top', anchor='w')\n tk.Button(frame_left, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack(side='bottom')\n self.frame1 = Frame(self)\n self.frame1.pack(fill='x')\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.master = master\n self.commencer_un_jeu()\n <mask token>\n\n def create_ret(self, canvas):\n return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb')\n\n def update_clock(self):\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n if self.fin:\n self.master.after(1000, self.update_clock)\n\n def commencer_un_jeu(self):\n self.fin = True\n try:\n self.rejouer.destroy()\n self.label.config(text='')\n self.Nombre_2.delete(0, END)\n self.Nombre_1.delete(0, END)\n except:\n pass\n self.bt_valider = tk.Button(self.frame_left, text='valider',\n command=lambda : self.fin_du_jeu())\n self.bt_valider.pack(side='top', anchor='w')\n self.debut = time.time()\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.update_clock()\n self.rectangle.destroy()\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.nombre_j1 = random.randint(1, 10)\n self.nombre_j2 = random.randint(1, 10)\n for _ in range(self.nombre_j2):\n self.create_circle(20, self.rectangle, 'red')\n for _ in range(self.nombre_j1):\n self.create_circle(20, self.rectangle, 'blue')\n\n def fin_du_jeu(self):\n self.fin = False\n if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2\n .get()) == self.nombre_j2:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Victoire')\n else:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Defaite')\n\n\nclass SampleApp(tk.Tk):\n\n def __init__(self):\n tk.Tk.__init__(self)\n self._frame = None\n self.switch_frame(StartPage)\n\n def timer(self, frame_game):\n self.after(1000, frame_game.update_clock)\n\n def switch_frame(self, frame_class, num=False):\n new_frame = frame_class(self)\n if self._frame is not None:\n self._frame.destroy()\n self._frame = new_frame\n self._frame.pack()\n\n\nclass PageTwo(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='red')\n tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack(\n side='top', fill='x', pady=5)\n tk.Button(self, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass StartPage(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='#d0a3d8', height=200, width=200)\n tk.Label(self, text='Mini Jeu: \\n P-0', font=('Helvetica', 18, 'bold')\n ).pack(side='top', fill='x', pady=5)\n bt = Button(self, text='Jouer', command=lambda : master.\n switch_frame(PageOne, num=True))\n bt.pack(fill=BOTH, expand=True)\n\n\nclass PageOne(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n frame_left = Frame(self)\n self.frame_left = frame_left\n frame_left.pack(fill=BOTH, side=LEFT)\n self.label = tk.Label(frame_left, text='', font=('Helvetica', 10),\n fg='red')\n self.label.pack()\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue')\n self.Nombre_1 = Entry(frame_left)\n self.Nombre_1.pack(side='top', anchor='w')\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red')\n self.Nombre_2 = Entry(frame_left)\n self.Nombre_2.pack(side='top', anchor='w')\n tk.Button(frame_left, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack(side='bottom')\n self.frame1 = Frame(self)\n self.frame1.pack(fill='x')\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.master = master\n self.commencer_un_jeu()\n\n def create_circle(self, r, canvasName, color):\n x = random.randint(20, 300)\n y = random.randint(20, 250)\n x0 = x - r\n y0 = y - r\n x1 = x + r\n y1 = y + r\n return canvasName.create_oval(x0, y0, x1, y1, fill=color)\n\n def create_ret(self, canvas):\n return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb')\n\n def update_clock(self):\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n if self.fin:\n self.master.after(1000, self.update_clock)\n\n def commencer_un_jeu(self):\n self.fin = True\n try:\n self.rejouer.destroy()\n self.label.config(text='')\n self.Nombre_2.delete(0, END)\n self.Nombre_1.delete(0, END)\n except:\n pass\n self.bt_valider = tk.Button(self.frame_left, text='valider',\n command=lambda : self.fin_du_jeu())\n self.bt_valider.pack(side='top', anchor='w')\n self.debut = time.time()\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.update_clock()\n self.rectangle.destroy()\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.nombre_j1 = random.randint(1, 10)\n self.nombre_j2 = random.randint(1, 10)\n for _ in range(self.nombre_j2):\n self.create_circle(20, self.rectangle, 'red')\n for _ in range(self.nombre_j1):\n self.create_circle(20, self.rectangle, 'blue')\n\n def fin_du_jeu(self):\n self.fin = False\n if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2\n .get()) == self.nombre_j2:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Victoire')\n else:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Defaite')\n\n\nclass SampleApp(tk.Tk):\n\n def __init__(self):\n tk.Tk.__init__(self)\n self._frame = None\n self.switch_frame(StartPage)\n\n def timer(self, frame_game):\n self.after(1000, frame_game.update_clock)\n\n def switch_frame(self, frame_class, num=False):\n new_frame = frame_class(self)\n if self._frame is not None:\n self._frame.destroy()\n self._frame = new_frame\n self._frame.pack()\n\n\nclass PageTwo(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='red')\n tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack(\n side='top', fill='x', pady=5)\n tk.Button(self, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack()\n\n\n<mask token>\n", "step-4": "import tkinter as tk\nfrom tkinter import Tk, BOTH, RIGHT, LEFT, END\nfrom tkinter.ttk import Frame, Label, Style, Entry\nfrom tkinter.ttk import Frame, Button, Style\nimport random\nimport time\n\n\nclass StartPage(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='#d0a3d8', height=200, width=200)\n tk.Label(self, text='Mini Jeu: \\n P-0', font=('Helvetica', 18, 'bold')\n ).pack(side='top', fill='x', pady=5)\n bt = Button(self, text='Jouer', command=lambda : master.\n switch_frame(PageOne, num=True))\n bt.pack(fill=BOTH, expand=True)\n\n\nclass PageOne(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n frame_left = Frame(self)\n self.frame_left = frame_left\n frame_left.pack(fill=BOTH, side=LEFT)\n self.label = tk.Label(frame_left, text='', font=('Helvetica', 10),\n fg='red')\n self.label.pack()\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='blue')\n self.Nombre_1 = Entry(frame_left)\n self.Nombre_1.pack(side='top', anchor='w')\n self.bagniere_bleu = tk.Canvas(frame_left, width=50, height=3)\n self.bagniere_bleu.pack(side='top', anchor='c')\n self.bagniere_bleu.create_rectangle(0, 3, 50, 0, fill='red')\n self.Nombre_2 = Entry(frame_left)\n self.Nombre_2.pack(side='top', anchor='w')\n tk.Button(frame_left, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack(side='bottom')\n self.frame1 = Frame(self)\n self.frame1.pack(fill='x')\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.master = master\n self.commencer_un_jeu()\n\n def create_circle(self, r, canvasName, color):\n x = random.randint(20, 300)\n y = random.randint(20, 250)\n x0 = x - r\n y0 = y - r\n x1 = x + r\n y1 = y + r\n return canvasName.create_oval(x0, y0, x1, y1, fill=color)\n\n def create_ret(self, canvas):\n return canvas.create_rectangle(0, 500, 500, 0, fill='#fdffdb')\n\n def update_clock(self):\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n if self.fin:\n self.master.after(1000, self.update_clock)\n\n def commencer_un_jeu(self):\n self.fin = True\n try:\n self.rejouer.destroy()\n self.label.config(text='')\n self.Nombre_2.delete(0, END)\n self.Nombre_1.delete(0, END)\n except:\n pass\n self.bt_valider = tk.Button(self.frame_left, text='valider',\n command=lambda : self.fin_du_jeu())\n self.bt_valider.pack(side='top', anchor='w')\n self.debut = time.time()\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self.\n temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.update_clock()\n self.rectangle.destroy()\n self.rectangle = tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n self.nombre_j1 = random.randint(1, 10)\n self.nombre_j2 = random.randint(1, 10)\n for _ in range(self.nombre_j2):\n self.create_circle(20, self.rectangle, 'red')\n for _ in range(self.nombre_j1):\n self.create_circle(20, self.rectangle, 'blue')\n\n def fin_du_jeu(self):\n self.fin = False\n if int(self.Nombre_1.get()) == self.nombre_j1 and int(self.Nombre_2\n .get()) == self.nombre_j2:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Victoire')\n else:\n self.bt_valider.destroy()\n self.rejouer = Button(self.frame_left, text='Rejouer', command=\n lambda : self.commencer_un_jeu())\n self.rejouer.pack(side='top', fill='x')\n self.temps_de_rect = time.time() - self.debut\n self.temps_de_rect = time.strftime('%H:%M:%S', time.gmtime(self\n .temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200, 150, fill='darkblue', font=\n 'Times 20 italic bold', text='Defaite')\n\n\nclass SampleApp(tk.Tk):\n\n def __init__(self):\n tk.Tk.__init__(self)\n self._frame = None\n self.switch_frame(StartPage)\n\n def timer(self, frame_game):\n self.after(1000, frame_game.update_clock)\n\n def switch_frame(self, frame_class, num=False):\n new_frame = frame_class(self)\n if self._frame is not None:\n self._frame.destroy()\n self._frame = new_frame\n self._frame.pack()\n\n\nclass PageTwo(tk.Frame):\n\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self, bg='red')\n tk.Label(self, text='Page two', font=('Helvetica', 18, 'bold')).pack(\n side='top', fill='x', pady=5)\n tk.Button(self, text='Go back to start page', command=lambda :\n master.switch_frame(StartPage)).pack()\n\n\nif __name__ == '__main__':\n app = SampleApp()\n app.geometry('800x800')\n app.mainloop()\n", "step-5": "\nimport tkinter as tk\nfrom tkinter import Tk, BOTH,RIGHT,LEFT,END\nfrom tkinter.ttk import Frame, Label, Style,Entry\nfrom tkinter.ttk import Frame, Button, Style\nimport random\nimport time\n\nclass StartPage(tk.Frame):\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n \n tk.Frame.configure(self,bg=\"#d0a3d8\",height=200,width=200)\n\n tk.Label(self, text=\"Mini Jeu: \\n P-0\", font=('Helvetica', 18, \"bold\")).pack(side=\"top\", fill=\"x\", pady=5)\n bt=Button(self, text=\"Jouer\",\n command=lambda: master.switch_frame(PageOne,num=True))\n bt.pack(fill=BOTH,expand=True)\n\n \n # tk.Button(self, text=\"Go to page two\",\n # command=lambda: master.switch_frame(PageTwo)).pack()\n\nclass PageOne(tk.Frame):\n def __init__(self, master):\n \n\n tk.Frame.__init__(self, master)\n # tk.Frame.configure(self,bg='blue')\n # tk.Label(self, text=\"Page de jeu\", font=('Helvetica', 18, \"bold\")).pack(side=\"top\", fill=BOTH, pady=5)\n \n frame_left=Frame(self)\n self.frame_left=frame_left\n frame_left.pack(fill=BOTH,side=LEFT)\n\n\n # add entry to this frame \n self.label=tk.Label(frame_left , text=\"\", font=('Helvetica', 10), fg='red')\n self.label.pack()\n\n self.bagniere_bleu=tk.Canvas(frame_left,width=50,height=3)\n self.bagniere_bleu.pack(side='top',anchor='c')\n self.bagniere_bleu.create_rectangle(0,3,50,0,fill='blue')\n\n \n\n self.Nombre_1=Entry(frame_left)\n self.Nombre_1.pack(side='top',anchor='w')\n\n# bagnier pour differencier les couleurs\n self.bagniere_bleu=tk.Canvas(frame_left,width=50,height=3)\n self.bagniere_bleu.pack(side='top',anchor='c')\n self.bagniere_bleu.create_rectangle(0,3,50,0,fill='red')\n\n\n self.Nombre_2=Entry(frame_left)\n self.Nombre_2.pack(side='top',anchor='w')\n\n tk.Button(frame_left, text=\"Go back to start page\",\n command=lambda: master.switch_frame(StartPage)).pack(side='bottom')\n\n \n self.frame1 = Frame(self)\n self.frame1.pack(fill='x')\n self.rectangle=tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n \n # self.update_clock()\n self.master=master\n self.commencer_un_jeu()\n\n \n def create_circle(self,r, canvasName,color): #center coordinates, radius\n x=random.randint(20,300)\n y=random.randint(20,250)\n x0 = x - r\n y0 = y - r\n x1 = x + r\n y1 = y + r\n return canvasName.create_oval(x0, y0, x1, y1,fill=color)\n def create_ret(self,canvas):\n return canvas.create_rectangle(0,500,500,0,fill=\"#fdffdb\")\n\n\n\n def update_clock(self):\n self.temps_de_rect=(time.time()-self.debut)\n self.temps_de_rect=time.strftime(\"%H:%M:%S\", time.gmtime(self.temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n if self.fin:\n self.master.after(1000,self.update_clock)\n\n def commencer_un_jeu(self):\n self.fin=True\n try :\n self.rejouer.destroy()\n self.label.config(text='')\n self.Nombre_2.delete(0,END)\n self.Nombre_1.delete(0,END)\n\n except:\n pass\n\n\n self.bt_valider=tk.Button(self.frame_left,text='valider', command=lambda: self.fin_du_jeu())\n self. bt_valider.pack(side='top',anchor='w')\n\n self.debut=time.time()\n self.temps_de_rect=(time.time()-self.debut)\n self.temps_de_rect=time.strftime(\"%H:%M:%S\", time.gmtime(self.temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.update_clock()\n \n\n self.rectangle.destroy()\n self.rectangle=tk.Canvas(self.frame1)\n self.rectangle.pack()\n self.create_ret(self.rectangle)\n\n self.nombre_j1=random.randint(1,10)\n self.nombre_j2=random.randint(1,10)\n for _ in range(self.nombre_j2):\n self.create_circle(20,self.rectangle,'red')\n for _ in range(self.nombre_j1):\n self.create_circle(20,self.rectangle,'blue')\n def fin_du_jeu(self):\n self.fin=False\n if(int(self.Nombre_1.get())==self.nombre_j1 ) and (int(self.Nombre_2.get())==self.nombre_j2):\n #jeu gagné\n \n self.bt_valider.destroy()\n self.rejouer=Button(self.frame_left, text=\"Rejouer\",\n command=lambda: self.commencer_un_jeu())\n \n self.rejouer.pack(side='top',fill='x')\n\n self.temps_de_rect=(time.time()-self.debut)\n self.temps_de_rect=time.strftime(\"%H:%M:%S\", time.gmtime(self.temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200,150,fill=\"darkblue\",font=\"Times 20 italic bold\",\n text=\"Victoire\")\n else:\n\n \n self.bt_valider.destroy()\n self.rejouer=Button(self.frame_left, text=\"Rejouer\",\n command=lambda: self.commencer_un_jeu())\n\n self.rejouer.pack(side='top',fill='x')\n\n self.temps_de_rect=(time.time()-self.debut)\n self.temps_de_rect=time.strftime(\"%H:%M:%S\", time.gmtime(self.temps_de_rect))\n self.label.configure(text=self.temps_de_rect)\n self.rectangle.create_text(200,150,fill=\"darkblue\",font=\"Times 20 italic bold\",\n text=\"Defaite\")\n\n\n \n\n \n\n\n\n\n \nclass SampleApp(tk.Tk):\n def __init__(self):\n\n tk.Tk.__init__(self)\n \n self._frame = None\n self.switch_frame(StartPage)\n \n\n def timer(self,frame_game):\n self.after(1000,frame_game.update_clock)\n\n\n def switch_frame(self, frame_class,num=False):\n new_frame = frame_class(self)\n if self._frame is not None:\n self._frame.destroy()\n self._frame = new_frame\n self._frame.pack()\n # try:\n \n # if num:\n # print(frame_class)\n # self.timer(frame_class) \n # except:\n # print(\"le frame n'est pas le bon\")\n\n\n\n\n\n\n\nclass PageTwo(tk.Frame):\n def __init__(self, master):\n tk.Frame.__init__(self, master)\n tk.Frame.configure(self,bg='red')\n tk.Label(self, text=\"Page two\", font=('Helvetica', 18, \"bold\")).pack(side=\"top\", fill=\"x\", pady=5)\n tk.Button(self, text=\"Go back to start page\",\n command=lambda: master.switch_frame(StartPage)).pack()\n\nif __name__ == \"__main__\":\n app = SampleApp()\n app.geometry('800x800')\n app.mainloop()", "step-ids": [ 11, 12, 15, 17, 18 ] }
[ 11, 12, 15, 17, 18 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> if __name__ == '__main__': n.notify('READY=1') time.sleep(2) <|reserved_special_token_1|> <|reserved_special_token_0|> n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify('READY=1') time.sleep(2) <|reserved_special_token_1|> import signal import time import sdnotify n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify('READY=1') time.sleep(2) <|reserved_special_token_1|> import signal import time import sdnotify n = sdnotify.SystemdNotifier() if __name__ == '__main__': n.notify("READY=1") time.sleep(2)
flexible
{ "blob_id": "78dc2193c05ddb4cd4c80b1c0322890eca7fcf19", "index": 789, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n n.notify('READY=1')\n time.sleep(2)\n", "step-3": "<mask token>\nn = sdnotify.SystemdNotifier()\nif __name__ == '__main__':\n n.notify('READY=1')\n time.sleep(2)\n", "step-4": "import signal\nimport time\nimport sdnotify\nn = sdnotify.SystemdNotifier()\nif __name__ == '__main__':\n n.notify('READY=1')\n time.sleep(2)\n", "step-5": "import signal\nimport time\n\nimport sdnotify\n\nn = sdnotify.SystemdNotifier()\n\nif __name__ == '__main__':\n\n n.notify(\"READY=1\")\n time.sleep(2)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# 在写Python爬虫的时候,最麻烦的不是那些海量的静态网站,而是那些通过JavaScript获取数据的站点。Python本身对js的支持就不好,所以就有良心的开发者来做贡献了,这就是Selenium,他本身可以模拟真实的浏览器,浏览器所具有的功能他一个都不拉下,加载js更是小菜了 # https://zhuanlan.zhihu.com/p/27115580 # C:\Users\hedy\AppData\Local\Programs\Python\Python36\Scripts\;C:\Users\hedy\AppData\Local\Programs\Python\Python36\ # pip 换源 # http://blog.csdn.net/lambert310/article/details/52412059 # 安装全家桶(ipython,jupyter notebook) # https://jingyan.baidu.com/article/cbcede070c8eac02f40b4d8e.html # http://blog.csdn.net/sanshixia/article/details/53996126
normal
{ "blob_id": "e2948c0ad78ce210b08d65b3e0f75d757e286ad9", "index": 3883, "step-1": "# 在写Python爬虫的时候,最麻烦的不是那些海量的静态网站,而是那些通过JavaScript获取数据的站点。Python本身对js的支持就不好,所以就有良心的开发者来做贡献了,这就是Selenium,他本身可以模拟真实的浏览器,浏览器所具有的功能他一个都不拉下,加载js更是小菜了\n# https://zhuanlan.zhihu.com/p/27115580\n# C:\\Users\\hedy\\AppData\\Local\\Programs\\Python\\Python36\\Scripts\\;C:\\Users\\hedy\\AppData\\Local\\Programs\\Python\\Python36\\\n\n# pip 换源\n# http://blog.csdn.net/lambert310/article/details/52412059\n\n# 安装全家桶(ipython,jupyter notebook)\n# https://jingyan.baidu.com/article/cbcede070c8eac02f40b4d8e.html\n# http://blog.csdn.net/sanshixia/article/details/53996126\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 1 ] }
[ 1 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> setup(name='RedHatSecurityAdvisory', version='0.1', description= 'Script that automatically checks the RedHat security advisories to see if a CVE applies' , author='Pieter-Jan Moreels', url= 'https://github.com/PidgeyL/RedHat-Advisory-Checker', entry_points={ 'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']}, packages=[ 'RHSA'], license='Modified BSD license') <|reserved_special_token_1|> from setuptools import setup setup(name='RedHatSecurityAdvisory', version='0.1', description= 'Script that automatically checks the RedHat security advisories to see if a CVE applies' , author='Pieter-Jan Moreels', url= 'https://github.com/PidgeyL/RedHat-Advisory-Checker', entry_points={ 'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']}, packages=[ 'RHSA'], license='Modified BSD license') <|reserved_special_token_1|> from setuptools import setup setup(name='RedHatSecurityAdvisory', version='0.1', description='Script that automatically checks the RedHat security advisories to see if a CVE applies', author='Pieter-Jan Moreels', url='https://github.com/PidgeyL/RedHat-Advisory-Checker', entry_points={'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']}, packages=['RHSA'], license="Modified BSD license", )
flexible
{ "blob_id": "3f8c13be547099aa6612365452926db95828b9a0", "index": 554, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='RedHatSecurityAdvisory', version='0.1', description=\n 'Script that automatically checks the RedHat security advisories to see if a CVE applies'\n , author='Pieter-Jan Moreels', url=\n 'https://github.com/PidgeyL/RedHat-Advisory-Checker', entry_points={\n 'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']}, packages=[\n 'RHSA'], license='Modified BSD license')\n", "step-3": "from setuptools import setup\nsetup(name='RedHatSecurityAdvisory', version='0.1', description=\n 'Script that automatically checks the RedHat security advisories to see if a CVE applies'\n , author='Pieter-Jan Moreels', url=\n 'https://github.com/PidgeyL/RedHat-Advisory-Checker', entry_points={\n 'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']}, packages=[\n 'RHSA'], license='Modified BSD license')\n", "step-4": "from setuptools import setup\n\nsetup(name='RedHatSecurityAdvisory',\n version='0.1',\n description='Script that automatically checks the RedHat security advisories to see if a CVE applies',\n author='Pieter-Jan Moreels',\n url='https://github.com/PidgeyL/RedHat-Advisory-Checker',\n entry_points={'console_scripts': ['rhsa = RHSA:redhatAdvisory.main']},\n packages=['RHSA'],\n license=\"Modified BSD license\",\n )\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#Uses python3 import sys def lcs2(a, b): dp_result = [[0 for j in range(b+1)] for i in range(a+1)] for x in range(1, a+1): for y in range(1, b+1): if a[x-1] == b[y-1] and b[y-1] == c[z-1]: dp_result[x][y] = dp_result[x-1][y-1] + 1 else: dp_result[x][y] = max(dp_result[x-1][y], dp_result[x][y-1], dp_result[x][y]) return dp_result if __name__ == '__main__': input = sys.stdin.read() data = list(map(int, input.split())) n = data[0] data = data[1:] a = data[:n] data = data[n:] m = data[0] data = data[1:] b = data[:m] print(lcs2(a, b))
normal
{ "blob_id": "d20b336c6588c3cfc4393256b660d6e4ff56b84e", "index": 1543, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef lcs2(a, b):\n dp_result = [[(0) for j in range(b + 1)] for i in range(a + 1)]\n for x in range(1, a + 1):\n for y in range(1, b + 1):\n if a[x - 1] == b[y - 1] and b[y - 1] == c[z - 1]:\n dp_result[x][y] = dp_result[x - 1][y - 1] + 1\n else:\n dp_result[x][y] = max(dp_result[x - 1][y], dp_result[x][y -\n 1], dp_result[x][y])\n return dp_result\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef lcs2(a, b):\n dp_result = [[(0) for j in range(b + 1)] for i in range(a + 1)]\n for x in range(1, a + 1):\n for y in range(1, b + 1):\n if a[x - 1] == b[y - 1] and b[y - 1] == c[z - 1]:\n dp_result[x][y] = dp_result[x - 1][y - 1] + 1\n else:\n dp_result[x][y] = max(dp_result[x - 1][y], dp_result[x][y -\n 1], dp_result[x][y])\n return dp_result\n\n\nif __name__ == '__main__':\n input = sys.stdin.read()\n data = list(map(int, input.split()))\n n = data[0]\n data = data[1:]\n a = data[:n]\n data = data[n:]\n m = data[0]\n data = data[1:]\n b = data[:m]\n print(lcs2(a, b))\n", "step-4": "import sys\n\n\ndef lcs2(a, b):\n dp_result = [[(0) for j in range(b + 1)] for i in range(a + 1)]\n for x in range(1, a + 1):\n for y in range(1, b + 1):\n if a[x - 1] == b[y - 1] and b[y - 1] == c[z - 1]:\n dp_result[x][y] = dp_result[x - 1][y - 1] + 1\n else:\n dp_result[x][y] = max(dp_result[x - 1][y], dp_result[x][y -\n 1], dp_result[x][y])\n return dp_result\n\n\nif __name__ == '__main__':\n input = sys.stdin.read()\n data = list(map(int, input.split()))\n n = data[0]\n data = data[1:]\n a = data[:n]\n data = data[n:]\n m = data[0]\n data = data[1:]\n b = data[:m]\n print(lcs2(a, b))\n", "step-5": "#Uses python3\n\nimport sys\n\ndef lcs2(a, b): \n dp_result = [[0 for j in range(b+1)] for i in range(a+1)]\n for x in range(1, a+1):\n for y in range(1, b+1):\n if a[x-1] == b[y-1] and b[y-1] == c[z-1]: \n dp_result[x][y] = dp_result[x-1][y-1] + 1\n else:\n dp_result[x][y] = max(dp_result[x-1][y], dp_result[x][y-1], dp_result[x][y])\n\n return dp_result\n\n\nif __name__ == '__main__':\n input = sys.stdin.read()\n data = list(map(int, input.split()))\n\n n = data[0]\n data = data[1:]\n a = data[:n]\n\n data = data[n:]\n m = data[0]\n data = data[1:]\n b = data[:m]\n\n print(lcs2(a, b))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" Array.diff Our goal in this kata is to implement a difference function, which subtracts one list from another and returns the result. It should remove all values from list a, which are present in list b keeping their order. """ from unittest import TestCase def list_diff(a, b): return [x for x in a if x not in b] class TestListDiff(TestCase): def test_one(self): assert list_diff([1, 2], [1]) == [2] def test_two(self): assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3] def test_three(self): assert list_diff([1, 2, 2, 2, 3], [1, 3]) == [2, 2, 2] def list_diff_left_right(a, b): left = [x for x in a if x not in b] right = [x for x in b if x not in a] return left, right class TestDiffLR(TestCase): def test_one(self): assert list_diff_left_right([1, 2], [1]) == ([2], []) def test_two(self): assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], []) def test_three(self): assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2], [3, 3])
normal
{ "blob_id": "76526bdff7418997ac90f761936abccbb3468499", "index": 6513, "step-1": "<mask token>\n\n\nclass TestListDiff(TestCase):\n <mask token>\n\n def test_two(self):\n assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3]\n <mask token>\n\n\n<mask token>\n\n\nclass TestDiffLR(TestCase):\n\n def test_one(self):\n assert list_diff_left_right([1, 2], [1]) == ([2], [])\n\n def test_two(self):\n assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], [])\n\n def test_three(self):\n assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2],\n [3, 3])\n", "step-2": "<mask token>\n\n\nclass TestListDiff(TestCase):\n\n def test_one(self):\n assert list_diff([1, 2], [1]) == [2]\n\n def test_two(self):\n assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3]\n\n def test_three(self):\n assert list_diff([1, 2, 2, 2, 3], [1, 3]) == [2, 2, 2]\n\n\n<mask token>\n\n\nclass TestDiffLR(TestCase):\n\n def test_one(self):\n assert list_diff_left_right([1, 2], [1]) == ([2], [])\n\n def test_two(self):\n assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], [])\n\n def test_three(self):\n assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2],\n [3, 3])\n", "step-3": "<mask token>\n\n\nclass TestListDiff(TestCase):\n\n def test_one(self):\n assert list_diff([1, 2], [1]) == [2]\n\n def test_two(self):\n assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3]\n\n def test_three(self):\n assert list_diff([1, 2, 2, 2, 3], [1, 3]) == [2, 2, 2]\n\n\ndef list_diff_left_right(a, b):\n left = [x for x in a if x not in b]\n right = [x for x in b if x not in a]\n return left, right\n\n\nclass TestDiffLR(TestCase):\n\n def test_one(self):\n assert list_diff_left_right([1, 2], [1]) == ([2], [])\n\n def test_two(self):\n assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], [])\n\n def test_three(self):\n assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2],\n [3, 3])\n", "step-4": "<mask token>\n\n\ndef list_diff(a, b):\n return [x for x in a if x not in b]\n\n\nclass TestListDiff(TestCase):\n\n def test_one(self):\n assert list_diff([1, 2], [1]) == [2]\n\n def test_two(self):\n assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3]\n\n def test_three(self):\n assert list_diff([1, 2, 2, 2, 3], [1, 3]) == [2, 2, 2]\n\n\ndef list_diff_left_right(a, b):\n left = [x for x in a if x not in b]\n right = [x for x in b if x not in a]\n return left, right\n\n\nclass TestDiffLR(TestCase):\n\n def test_one(self):\n assert list_diff_left_right([1, 2], [1]) == ([2], [])\n\n def test_two(self):\n assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], [])\n\n def test_three(self):\n assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2],\n [3, 3])\n", "step-5": "\"\"\"\nArray.diff\nOur goal in this kata is to implement a difference function,\n which subtracts one list from another and returns the result.\nIt should remove all values from list a, which are present in list b keeping their order.\n\"\"\"\nfrom unittest import TestCase\n\n\ndef list_diff(a, b):\n return [x for x in a if x not in b]\n\n\nclass TestListDiff(TestCase):\n def test_one(self):\n assert list_diff([1, 2], [1]) == [2]\n\n def test_two(self):\n assert list_diff([1, 2, 2, 2, 3], [2]) == [1, 3]\n\n def test_three(self):\n assert list_diff([1, 2, 2, 2, 3], [1, 3]) == [2, 2, 2]\n\n\ndef list_diff_left_right(a, b):\n left = [x for x in a if x not in b]\n right = [x for x in b if x not in a]\n return left, right\n\n\nclass TestDiffLR(TestCase):\n def test_one(self):\n assert list_diff_left_right([1, 2], [1]) == ([2], [])\n\n def test_two(self):\n assert list_diff_left_right([1, 2, 2, 2, 3], [2]) == ([1, 3], [])\n\n def test_three(self):\n assert list_diff_left_right([1, 2, 2, 2], [1, 3, 3]) == ([2, 2, 2], [3, 3])\n", "step-ids": [ 6, 8, 9, 10, 12 ] }
[ 6, 8, 9, 10, 12 ]
# Multiple Linear Regression # To set the working directory save this .py file where we have the Data.csv file # and then press the Run button. This will automatically set the working directory. # Importing the data from preprocessing data import numpy as np import matplotlib.pyplot as plt import pandas as pd dataset = pd.read_csv('50_Startups.csv') # iloc integer location based [rows, columns] : means all rows :-1 all columns except last one X = dataset.iloc[:, :-1].values # In python indexes are started from 0 and R starts from 1 y = dataset.iloc[:, 4].values # Categorical Data # Encoding Independent Data from sklearn.preprocessing import LabelEncoder, OneHotEncoder labelencoder_X = LabelEncoder() X[:,3] = labelencoder_X.fit_transform(X[:,3]) onehotencoder = OneHotEncoder(categorical_features= [3]) X = onehotencoder.fit_transform(X).toarray() # Avoiding Dummy Variable Trap X = X[:, 1:] #In the above thing it The above column will start from 1 to end. #Splitting the dataset into Training set and Test set from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state =0) # Feature Scaling # For multi-comment line use """ This will not be executed """ """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)""" # Fitting Multiple Linear Regression to the Training set from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(X_train, y_train) # Predicting the Test set results y_pred = regressor.predict(X_test) # Building the model using Backword Elimination import statsmodels.formula.api as sm X = np.append(arr = np.ones((50,1)).astype(int), values = X, axis = 1) X_opt = X[:, [0,1,2,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() # Omit the variables which have prob more than .95 X_opt = X[:, [0,1,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() # Omit the variables until you have P < SL X_opt = X[:, [0,3,4,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:, [0,3,5]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() X_opt = X[:, [0,3]] regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() regressor_OLS.summary() # End of Backward ELimination Algorithm # I would like to visualize the performance of R&D vs Profit scale
normal
{ "blob_id": "4d722975b4ffc1bbfe7591e6ceccc758f67a5599", "index": 6920, "step-1": "<mask token>\n", "step-2": "<mask token>\nregressor.fit(X_train, y_train)\n<mask token>\nregressor_OLS.summary()\n<mask token>\nregressor_OLS.summary()\n<mask token>\nregressor_OLS.summary()\n<mask token>\nregressor_OLS.summary()\n<mask token>\nregressor_OLS.summary()\n", "step-3": "<mask token>\ndataset = pd.read_csv('50_Startups.csv')\nX = dataset.iloc[:, :-1].values\ny = dataset.iloc[:, 4].values\n<mask token>\nlabelencoder_X = LabelEncoder()\nX[:, 3] = labelencoder_X.fit_transform(X[:, 3])\nonehotencoder = OneHotEncoder(categorical_features=[3])\nX = onehotencoder.fit_transform(X).toarray()\nX = X[:, 1:]\n<mask token>\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,\n random_state=0)\n<mask token>\nregressor = LinearRegression()\nregressor.fit(X_train, y_train)\ny_pred = regressor.predict(X_test)\n<mask token>\nX = np.append(arr=np.ones((50, 1)).astype(int), values=X, axis=1)\nX_opt = X[:, [0, 1, 2, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 1, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\n", "step-4": "import numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd\ndataset = pd.read_csv('50_Startups.csv')\nX = dataset.iloc[:, :-1].values\ny = dataset.iloc[:, 4].values\nfrom sklearn.preprocessing import LabelEncoder, OneHotEncoder\nlabelencoder_X = LabelEncoder()\nX[:, 3] = labelencoder_X.fit_transform(X[:, 3])\nonehotencoder = OneHotEncoder(categorical_features=[3])\nX = onehotencoder.fit_transform(X).toarray()\nX = X[:, 1:]\nfrom sklearn.cross_validation import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,\n random_state=0)\n<mask token>\nfrom sklearn.linear_model import LinearRegression\nregressor = LinearRegression()\nregressor.fit(X_train, y_train)\ny_pred = regressor.predict(X_test)\nimport statsmodels.formula.api as sm\nX = np.append(arr=np.ones((50, 1)).astype(int), values=X, axis=1)\nX_opt = X[:, [0, 1, 2, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 1, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3, 4, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3, 5]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\nX_opt = X[:, [0, 3]]\nregressor_OLS = sm.OLS(endog=y, exog=X_opt).fit()\nregressor_OLS.summary()\n", "step-5": "# Multiple Linear Regression\n# To set the working directory save this .py file where we have the Data.csv file \n# and then press the Run button. This will automatically set the working directory.\n# Importing the data from preprocessing data\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd \n\ndataset = pd.read_csv('50_Startups.csv')\n\n# iloc integer location based [rows, columns] : means all rows :-1 all columns except last one\nX = dataset.iloc[:, :-1].values\n\n# In python indexes are started from 0 and R starts from 1\ny = dataset.iloc[:, 4].values\n\n# Categorical Data\n# Encoding Independent Data\nfrom sklearn.preprocessing import LabelEncoder, OneHotEncoder\nlabelencoder_X = LabelEncoder()\nX[:,3] = labelencoder_X.fit_transform(X[:,3])\nonehotencoder = OneHotEncoder(categorical_features= [3])\nX = onehotencoder.fit_transform(X).toarray()\n\n# Avoiding Dummy Variable Trap\nX = X[:, 1:] \n#In the above thing it The above column will start from 1 to end.\n\n#Splitting the dataset into Training set and Test set\nfrom sklearn.cross_validation import train_test_split\nX_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state =0)\n\n# Feature Scaling\n# For multi-comment line use \"\"\" This will not be executed \"\"\" \n\"\"\"from sklearn.preprocessing import StandardScaler\nsc_X = StandardScaler()\nX_train = sc_X.fit_transform(X_train)\nX_test = sc_X.transform(X_test)\"\"\"\n\n# Fitting Multiple Linear Regression to the Training set\nfrom sklearn.linear_model import LinearRegression\nregressor = LinearRegression()\nregressor.fit(X_train, y_train)\n\n# Predicting the Test set results\ny_pred = regressor.predict(X_test)\n\n# Building the model using Backword Elimination\nimport statsmodels.formula.api as sm\nX = np.append(arr = np.ones((50,1)).astype(int), values = X, axis = 1)\nX_opt = X[:, [0,1,2,3,4,5]]\nregressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()\nregressor_OLS.summary()\n\n# Omit the variables which have prob more than .95\nX_opt = X[:, [0,1,3,4,5]]\nregressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()\nregressor_OLS.summary()\n\n# Omit the variables until you have P < SL\nX_opt = X[:, [0,3,4,5]]\nregressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()\nregressor_OLS.summary()\n\nX_opt = X[:, [0,3,5]]\nregressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()\nregressor_OLS.summary()\n\nX_opt = X[:, [0,3]]\nregressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()\nregressor_OLS.summary()\n\n# End of Backward ELimination Algorithm\n\n# I would like to visualize the performance of R&D vs Profit scale\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> def mini200(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 200)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 200: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def exist_or_not(ann): with open(ann, 'r') as f: all = f.readlines() for video in all: path = video.split(',')[0] if not os.path.isfile(path): print(path) print('all done!') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def mini100(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 100)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 100: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def mini200(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 200)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 200: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def exist_or_not(ann): with open(ann, 'r') as f: all = f.readlines() for video in all: path = video.split(',')[0] if not os.path.isfile(path): print(path) print('all done!') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def mini100(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 100)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 100: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def mini200(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 200)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 200: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def exist_or_not(ann): with open(ann, 'r') as f: all = f.readlines() for video in all: path = video.split(',')[0] if not os.path.isfile(path): print(path) print('all done!') if __name__ == '__main__': import fire fire.Fire() <|reserved_special_token_1|> import os def mini100(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 100)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 100: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def mini200(videopath, minipath, mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() count = [(0) for _ in range(0, 200)] with open(minipath, 'w') as f: for video in all_videos: path, label = video.split(',') label = int(label) if label < 200: count[label] += 1 f.write(video) for cls, i in enumerate(count): print('{} class have : {}'.format(cls, i)) print('total {}'.format(sum(count))) def exist_or_not(ann): with open(ann, 'r') as f: all = f.readlines() for video in all: path = video.split(',')[0] if not os.path.isfile(path): print(path) print('all done!') if __name__ == '__main__': import fire fire.Fire() <|reserved_special_token_1|> import os def mini100(videopath, minipath,mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() #if mod=='train': # count = [400 for _ in range(0,100)] #else: # count = [25 for _ in range(0,100)] count = [0 for _ in range(0,100)] with open(minipath,'w') as f: for video in all_videos: #print(video) path, label = video.split(',') label = int(label) if label<100: #if count[label]>0: # count[label] -= 1 count[label] +=1 f.write(video) for cls,i in enumerate(count): #if i!=0: print("{} class have : {}".format(cls,i)) print("total {}".format(sum(count))) # assert i==0 def mini200(videopath, minipath,mod='train'): with open(videopath, 'r') as video_f: all_videos = video_f.readlines() #if mod=='train': # count = [400 for _ in range(0,100)] #else: # count = [25 for _ in range(0,100)] count = [0 for _ in range(0,200)] with open(minipath,'w') as f: for video in all_videos: #print(video) path, label = video.split(',') label = int(label) if label<200: #if count[label]>0: # count[label] -= 1 count[label] +=1 f.write(video) for cls,i in enumerate(count): #if i!=0: print("{} class have : {}".format(cls,i)) print("total {}".format(sum(count))) # assert i==0 def exist_or_not(ann,): with open(ann, 'r') as f: all = f.readlines() for video in all: path =video.split(',')[0] if not os.path.isfile(path): print(path) print("all done!") if __name__ == "__main__": import fire fire.Fire()
flexible
{ "blob_id": "f6d4208afee7aacd96ea5ae6c9e38d2876466703", "index": 7417, "step-1": "<mask token>\n\n\ndef mini200(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 200)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 200:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef exist_or_not(ann):\n with open(ann, 'r') as f:\n all = f.readlines()\n for video in all:\n path = video.split(',')[0]\n if not os.path.isfile(path):\n print(path)\n print('all done!')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef mini100(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 100)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 100:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef mini200(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 200)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 200:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef exist_or_not(ann):\n with open(ann, 'r') as f:\n all = f.readlines()\n for video in all:\n path = video.split(',')[0]\n if not os.path.isfile(path):\n print(path)\n print('all done!')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef mini100(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 100)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 100:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef mini200(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 200)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 200:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef exist_or_not(ann):\n with open(ann, 'r') as f:\n all = f.readlines()\n for video in all:\n path = video.split(',')[0]\n if not os.path.isfile(path):\n print(path)\n print('all done!')\n\n\nif __name__ == '__main__':\n import fire\n fire.Fire()\n", "step-4": "import os\n\n\ndef mini100(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 100)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 100:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef mini200(videopath, minipath, mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n count = [(0) for _ in range(0, 200)]\n with open(minipath, 'w') as f:\n for video in all_videos:\n path, label = video.split(',')\n label = int(label)\n if label < 200:\n count[label] += 1\n f.write(video)\n for cls, i in enumerate(count):\n print('{} class have : {}'.format(cls, i))\n print('total {}'.format(sum(count)))\n\n\ndef exist_or_not(ann):\n with open(ann, 'r') as f:\n all = f.readlines()\n for video in all:\n path = video.split(',')[0]\n if not os.path.isfile(path):\n print(path)\n print('all done!')\n\n\nif __name__ == '__main__':\n import fire\n fire.Fire()\n", "step-5": "import os\n\ndef mini100(videopath, minipath,mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n #if mod=='train':\n # count = [400 for _ in range(0,100)]\n #else:\n # count = [25 for _ in range(0,100)]\n count = [0 for _ in range(0,100)]\n with open(minipath,'w') as f:\n for video in all_videos:\n #print(video)\n path, label = video.split(',')\n label = int(label)\n if label<100:\n #if count[label]>0:\n # count[label] -= 1\n count[label] +=1\n \n f.write(video)\n \n for cls,i in enumerate(count):\n #if i!=0:\n print(\"{} class have : {}\".format(cls,i))\n print(\"total {}\".format(sum(count)))\n # assert i==0\n\ndef mini200(videopath, minipath,mod='train'):\n with open(videopath, 'r') as video_f:\n all_videos = video_f.readlines()\n #if mod=='train':\n # count = [400 for _ in range(0,100)]\n #else:\n # count = [25 for _ in range(0,100)]\n count = [0 for _ in range(0,200)]\n with open(minipath,'w') as f:\n for video in all_videos:\n #print(video)\n path, label = video.split(',')\n label = int(label)\n if label<200:\n #if count[label]>0:\n # count[label] -= 1\n count[label] +=1\n \n f.write(video)\n \n for cls,i in enumerate(count):\n #if i!=0:\n print(\"{} class have : {}\".format(cls,i))\n print(\"total {}\".format(sum(count)))\n # assert i==0\n\ndef exist_or_not(ann,):\n with open(ann, 'r') as f:\n all = f.readlines()\n for video in all:\n path =video.split(',')[0]\n if not os.path.isfile(path):\n print(path)\n print(\"all done!\")\n \nif __name__ == \"__main__\":\n import fire\n fire.Fire()\n\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
"""Module for the bot""" from copy import deepcopy from time import sleep import mcpi.minecraft as minecraft from mcpi.vec3 import Vec3 import mcpi.block as block from search import SearchProblem, astar, bfs from singleton import singleton _AIR = block.AIR.id _WATER = block.WATER.id _LAVA = block.LAVA.id _BEDROCK = block.BEDROCK.id _DROP = 2 # It can drop at most this many _DROP_PLUS_1 = _DROP + 1 _DELAY = 1 class _Vec3(Vec3): """A Vec3 that is hashable. Everything in this program should use this class.""" def __hash__(self): """Return the hash.""" return hash((self.x, self.y, self.z)) def clone(self): """Return a clone.""" return _Vec3(self.x, self.y, self.z) class _GenericBot: """A generic bot.""" def __init__(self, pos, inventory=None): """Initialize with an empty inventory. inventory is a dictionary. If None, an empty one will be used.""" if inventory is None: self._inventory = {} else: self._inventory = deepcopy(inventory) self._pos = deepcopy(pos) def take_action(self, action): """Take the action (acquired from _get_legal_actions).""" getattr(self, action['func'])( *action.get('args', ()), **action.get('kwargs', {}) ) def take_actions(self, actions, seconds=None): """Take these actions. If seconds is not None, sleep 'seconds' seconds. """ if not actions: return self.take_action(actions[0]) for action in actions[1:]: if seconds is not None: sleep(seconds) self.take_action(action) def get_pos(self): """Return the position.""" return deepcopy(self._pos) def get_legal_actions(self, block_=None): """Return a list of legal actions. If block_ is None, return all legal actions. Otherwise, return all legal actions that don't involve placing the block.""" return self._get_move_actions(block_) + self._get_mine_actions() + \ self._get_placement_actions(block_) def contains(self, block_): """Return whether or not the bot contains the block id.""" return block_ in self._inventory def _get_block(self, pos): """Get the block at the position.""" raise NotImplementedError def _place(self, loc, exclude=None, block_=None): """Place a block from the inventory only. If exclude is not None, place a block that is not 'exclude'. If block is not None, place that block only. """ if not self._inventory: raise Exception('Inventory empty') if block_ is None: for key in self._inventory: if key != exclude: block_ = key break else: raise Exception(( 'You requested not to place %s, but it is the only ' 'block in the inventory.' % exclude )) if block_ not in self._inventory: raise Exception('Block %s is not in the inventory' % block_) if self._inventory[block_] == 1: del self._inventory[block_] else: self._inventory[block_] -= 1 self._set_block(loc, block_) def _move_down(self): """Move and mine the block below.""" new_pos = self._pos + _Vec3(0, -1, 0) block_ = self._get_block(new_pos) if block_ != _WATER: self._add_to_inv(block_) self._move(new_pos) def _add_to_inv(self, block_): """Add the block to the inventory.""" if block_ in self._inventory: self._inventory[block_] += 1 else: self._inventory[block_] = 1 def _move_up(self, exclude=None): """Move and place a block below. If exclude is not None, place a block that is not 'exclude'. """ self._move(self._pos + _Vec3(0, 1, 0)) self._place(self._pos + _Vec3(0, -1, 0), exclude) def _mine(self, loc): """Mine the block.""" block_ = self._get_block(loc) self._add_to_inv(block_) self._set_block(loc, _AIR) def _get_move_actions(self, exclude=None): """Return a list of legal movement actions. exclude is the block to exclude. """ rtn = [] # Check for moving up can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR, _WATER} if can_move_up: if self._surrounded(): rtn.append({ 'func': '_move', 'args': (self._pos + _Vec3(0, 1, 0),) }) else: rtn.append({ 'func': '_move_up', 'args': (exclude,) }) # Check for moving down hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0)) if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}: rtn.append({'func': '_move_down'}) # Check for side moves for dir_ in _adj_dirs(): rtn.extend(self._side_moves(dir_, can_move_up)) return rtn def _side_moves(self, dir_, can_move_up): """Return the list of side moves. dir_ is an adjacent direction. can_move_up is a boolean for whether or not the bot can move up. """ rtn = [] base_pos = self._pos + dir_ base_block = self._get_block(base_pos) empty_blocks = {_AIR, _WATER} # Check if it can move up if can_move_up and base_block not in {_AIR, _LAVA, _WATER}: for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]: if self._get_block(base_pos + vert_dir) not in empty_blocks: break else: rtn.append({ 'func': '_move', 'args': (base_pos + _Vec3(0, 1, 0),) }) # Check if it can move in that direction for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]: if self._get_block(base_pos + vert_dir) not in empty_blocks: break # Fall else: pos = base_pos + _Vec3(0, -1, 0) for _ in xrange(_DROP_PLUS_1): block_ = self._get_block(pos) if block_ != _AIR: if block_ != _LAVA: rtn.append({ 'func': '_move', 'args': (pos + _Vec3(0, 1, 0),) }) break pos.y -= 1 def _surrounded(self): """Return whether or not the bot is surrounded by water.""" for dir_ in _adj_dirs(): if self._get_block(self._pos + dir_) != _WATER: return False return True def _get_mine_actions(self): """Return a list of legal mining actions (that only involve mining and not moving).""" rtn = [] dont_mine = {_AIR, _WATER, _LAVA} # Mine above. pos_above = self._pos + _Vec3(0, 2, 0) if self._get_block(pos_above) not in dont_mine: rtn.append({ 'func': '_mine', 'args': (pos_above,) }) for dir_ in _adj_dirs(): pos = self._pos + dir_ for _ in xrange(2): if self._get_block(pos) not in dont_mine: rtn.append({ 'func': '_mine', 'args': (pos,) }) pos = pos + _Vec3(0, 1, 0) return rtn def _get_placement_actions(self, exclude=None): """Return a list of legal actions that only involve placing a block from the inventory. exclude is a block id. It is the block that should not be placed. If None, any block can be placed.""" if not self._has_blocks_to_place(exclude=exclude): return [] dirs = [_Vec3(0, 2, 0)] for dir_ in _adj_dirs(): dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)]) if self._get_block(self._pos + dir_) in [_AIR, _WATER]: dirs.append(dir_ + _Vec3(0, -1, 0)) rtn = [] for dir_ in dirs: pos = self._pos + dir_ if self._can_place(pos): rtn.append({ 'func': '_place', 'args': (pos,), 'kwargs': {'exclude': exclude} }) return rtn def _can_place(self, loc): """Return whether or not the bot can place a block at that location independent of what it has in its inventory.""" non_blocks = [_AIR, _WATER, _LAVA] player = [self._pos, self._pos + _Vec3(0, 1, 0)] for dir_ in _adj_dirs + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)]: new_loc = loc + dir_ if new_loc not in player and self._get_block(new_loc) \ not in non_blocks: return True return False def _has_blocks_to_place(self, exclude=None): """Return whether or not the bot can place a block from the inventory. If exclude is None, any block can be placed.""" for block_ in self._inventory: if block_ != exclude: return True return False def _set_block(self, pos, block_): """Set a block. block_ is the block id.""" raise NotImplementedError def _move(self, pos): """Move there only.""" self._pos = deepcopy(pos) class _ImaginaryBot(_GenericBot): """A bot used for finding paths that doesn't actually change blocks in the world.""" def __init__(self, pos, inventory=None): """Create a new bot.""" _GenericBot.__init__(self, pos, inventory) self._changes = {} # Changes to the world def _set_block(self, pos, block_): """Set a block. block_ is the block id.""" self._changes[deepcopy(pos)] = block def _get_block(self, pos): """Get the block at the position.""" if pos in self._changes: return self._changes[pos] else: return _get_mc().getBlock(pos) def get_block(self, pos): """The public version.""" return self._get_block(pos) def __hash__(self): """Return the hash.""" return hash(frozenset([self._pos] + \ _key_vals(self._inventory) + \ _key_vals(self._changes) )) class Bot(_GenericBot): """The real bot. All vector arguments are Vec3s.""" _BOT_BLOCK = block.IRON_BLOCK.id def __init__(self): """Create a bot next to the player.""" pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0) pos = _Vec3(pos.x, pos.y, pos.z) _GenericBot.__init__(self, pos) self._pos = pos self._move(self._pos) @staticmethod def destroy_all(): """Destroy all bots within a small distance (in case I forget to destroy one).""" player_loc = _player_loc() minec = _get_mc() rad = 10 for x in xrange(player_loc.x - rad, player_loc.x + rad): for y in xrange(player_loc.y - rad, player_loc.y + rad): for z in xrange(player_loc.z - rad, player_loc.z + rad): if minec.getBlock(x, y, z) == Bot._BOT_BLOCK: minec.setBlock(x, y, z, _AIR) def destroy(self): """Set itself to air.""" self._set_block(self._pos, _AIR) self._set_block(self._pos + _Vec3(0, 1, 0), _AIR) def fetch(self, block_name): """Mine and return a block to the player.""" imag_bot = _ImaginaryBot(self._pos, self._inventory) block_id = getattr(block, block_name).id block_loc = self._get_block_loc(block_id) mine_prob = _MineProblem(imag_bot, block_loc, block_id) mine_actions = astar(mine_prob, _mine_heuristic) self.take_actions(mine_actions, _DELAY) imag_bot = _ImaginaryBot(self._pos, self._inventory) player_loc = _player_loc() return_prob = _ReturnProblem(imag_bot, block_id, player_loc) return_actions = astar(return_prob, _return_heuristic) imag_bot.take_actions(return_actions) return_actions.append({ 'func': '_place', 'args': (imag_bot.get_pos() + player_loc) / 2, 'kwargs': {'block': block_id} }) self.take_actions(return_actions, _DELAY) def _get_block_loc(self, block_id): """Return the location of the block.""" find_prob = FindProblem(self._pos, block_id) dirs = bfs(find_prob) return self._pos + sum(dirs) def _set_block(self, pos, block_): """Place an actual block in the world. block is a block id.""" _get_mc().setBlock(pos, block_) def _get_block(self, pos): """Get the block at the position.""" return _get_mc().getBlock(pos) def _move(self, pos): """Move there, and set the appropriate blocks.""" self._set_block(self._pos, _AIR) self._set_block(self._pos + _Vec3(0, 1, 0), _AIR) self._set_block(pos, self._BOT_BLOCK) self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK) self._pos = pos class FindProblem(SearchProblem): """Problem for finding the location of a block in the world. A state in this problem is a location. """ def __init__(self, start_loc, block_id): """Initialize.""" self._start_loc = deepcopy(start_loc) self._block_id = block_id def getStartState(self): """Return the starting location.""" return self._start_loc def isGoalState(self, state): return _get_mc().getBlock(state) == self._block_id def getSuccessors(self, state): """Return the successors.""" rtn = [] for dir_ in _all_dirs(): successor = state + dir_ if successor.y <= _get_mc().getHeight(successor.x, successor.z) \ and _get_mc().getBlock(successor) != _BEDROCK: rtn.append((successor, dir_, 1)) return rtn class _MineProblem(SearchProblem): """The problem of finding the block and mining it (not returning it).""" def __init__(self, imag_bot, block_loc, block_id): """Initialize the problem with an _ImaginaryBot. block_loc is a Vec3. """ self._bot = imag_bot self._block_loc = deepcopy(block_loc) self._block_id = block_id def get_block_loc(self): """Return the block location.""" return deepcopy(self._block_loc) def get_block_id(self): """Return the block it's trying to mine.""" return self._block_id def getStartState(self): """Return the bot passed in.""" return self._bot def isGoalState(self, state): """Return whether or not the bot has the block.""" return state.contains(self._block_id) def getSuccessors(self, state): """Return the successors.""" rtn = [] for action in state.get_legal_actions(): successor = deepcopy(state) successor.take_action(action) rtn.append((successor, action, 1)) return rtn class _ReturnProblem(SearchProblem): """The problem of returning to the player. This does not place the block next to the player.""" def __init__(self, imag_bot, block_, player_loc): """Initialized the problem with an _ImaginaryBot. block is a block id.""" self._bot = imag_bot self._block = block_ self._player_loc = player_loc def get_player_loc(self): """Return the player location.""" return deepcopy(self._player_loc) def getStartState(self): """Return the bot passed in.""" return self._bot def isGoalState(self, state): """Return whether or not the bot is next to the player.""" diff = state.get_pos() - self._player_loc return diff.y == 0 and (diff.x == 0 or diff.z == 0) and \ abs(diff.x) + abs(diff.z) == 2 and \ state.get_block(self._player_loc + diff/2 + _Vec3(0, -1, 0)) not in \ (_AIR, _LAVA, _WATER) def getSuccessors(self, state): """Return the successors.""" rtn = [] for action in state.get_legal_actions(self._block): successor = deepcopy(state) successor.take_action(action) rtn.append((successor, action, 1)) return rtn def _mine_heuristic(bot, problem): """Return the mining heuristic. bot is an _ImaginaryBot. """ if bot.contains(problem.get_block_id()): return 0 bot_pos = bot.get_pos() dest_pos = problem.get_block_loc() # If man == dy: return man + 1 # If man > dy: return man # If man < dy: return dy? man_dist = _manhattan((bot_pos.x, bot_pos.z), (dest_pos.x, dest_pos.z)) y_diff = bot_pos.y - dest_pos.y if y_diff < 0: y_diff += 1 if y_diff == 0: return man_dist # Transform so that it's only dropping drop = _DROP if y_diff > 0 else 1 y_diff = abs(y_diff) drops = _drops(y_diff, drop) if man_dist > drops: return man_dist if man_dist == drops: return man_dist + 1 if drop == 1: return drops if y_diff % drop == 1: return drops return drops + 1 def _drops(dist, drop): """Return the number of times it takes to drop a distance dist. drop is the length of one drop. Both are assumed positive.""" rtn = dist / drop if dist % drop != 0: rtn += 1 return rtn def _return_heuristic(bot, problem): """Return the return heuristic. bot is an _ImaginaryBot. """ bot_pos = bot.get_pos() player_pos = problem.get_player_loc() bot_plane_pos = (bot.x, bot.z) y_diff = bot_pos.y - player_pos.y drop = _DROP if y_diff > 0 else 1 y_diff = abs(y_diff) drops = _drops(y_diff, drop) min_man = float('inf') for dir_ in _adj_dirs(): loc = player_pos + 2 * dir_ man_dist = _manhattan(bot_plane_pos, (loc.x, loc.z)) if man_dist < min_man: min_man = man_dist if man_dist < drops: return drops return min_man def _to_my_vec3(vec): """Return the _Vec3 alternative of the Vec3.""" return _Vec3(vec.x, vec.y, vec.z) def _player_loc(): """Return the player's location.""" return _to_my_vec3(_get_mc().player.getTilePos()) def _adj_dirs(): """Return the adjacent directions.""" return [_Vec3(1, 0, 0), _Vec3(-1, 0, 0), _Vec3(0, 0, 1), _Vec3(0, 0, -1)] def _all_dirs(): """Return all adjacent directions.""" return _adj_dirs() + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)] def _manhattan(pos1, pos2): """Return the manhattan distance. pos1 and pos2 should be iterable.""" return sum(abs(val1 - val2) for val1, val2 in zip(pos1, pos2)) @singleton def _get_mc(): """Return the Minecraft instance.""" return minecraft.Minecraft.create() def _key_vals(dict_): """Return a list of key-val tuples.""" return [(key, val) for key, val in dict_.iteritems()]
normal
{ "blob_id": "54f0ed5f705d5ada28721301f297b2b0058773ad", "index": 2, "step-1": "<mask token>\n\n\nclass _GenericBot:\n <mask token>\n\n def __init__(self, pos, inventory=None):\n \"\"\"Initialize with an empty inventory.\n\n inventory is a dictionary. If None, an empty one will be used.\"\"\"\n if inventory is None:\n self._inventory = {}\n else:\n self._inventory = deepcopy(inventory)\n self._pos = deepcopy(pos)\n\n def take_action(self, action):\n \"\"\"Take the action (acquired from _get_legal_actions).\"\"\"\n getattr(self, action['func'])(*action.get('args', ()), **action.get\n ('kwargs', {}))\n\n def take_actions(self, actions, seconds=None):\n \"\"\"Take these actions. If seconds is not None, sleep 'seconds' \n seconds.\n \"\"\"\n if not actions:\n return\n self.take_action(actions[0])\n for action in actions[1:]:\n if seconds is not None:\n sleep(seconds)\n self.take_action(action)\n\n def get_pos(self):\n \"\"\"Return the position.\"\"\"\n return deepcopy(self._pos)\n\n def get_legal_actions(self, block_=None):\n \"\"\"Return a list of legal actions.\n\n If block_ is None, return all legal actions. Otherwise, return all\n legal actions that don't involve placing the block.\"\"\"\n return self._get_move_actions(block_) + self._get_mine_actions(\n ) + self._get_placement_actions(block_)\n <mask token>\n <mask token>\n\n def _place(self, loc, exclude=None, block_=None):\n \"\"\"Place a block from the inventory only.\n\n If exclude is not None, place a block that is not 'exclude'.\n If block is not None, place that block only.\n \"\"\"\n if not self._inventory:\n raise Exception('Inventory empty')\n if block_ is None:\n for key in self._inventory:\n if key != exclude:\n block_ = key\n break\n else:\n raise Exception(\n 'You requested not to place %s, but it is the only block in the inventory.'\n % exclude)\n if block_ not in self._inventory:\n raise Exception('Block %s is not in the inventory' % block_)\n if self._inventory[block_] == 1:\n del self._inventory[block_]\n else:\n self._inventory[block_] -= 1\n self._set_block(loc, block_)\n <mask token>\n <mask token>\n <mask token>\n\n def _mine(self, loc):\n \"\"\"Mine the block.\"\"\"\n block_ = self._get_block(loc)\n self._add_to_inv(block_)\n self._set_block(loc, _AIR)\n\n def _get_move_actions(self, exclude=None):\n \"\"\"Return a list of legal movement actions.\n\n exclude is the block to exclude.\n \"\"\"\n rtn = []\n can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR,\n _WATER}\n if can_move_up:\n if self._surrounded():\n rtn.append({'func': '_move', 'args': (self._pos + _Vec3(0, \n 1, 0),)})\n else:\n rtn.append({'func': '_move_up', 'args': (exclude,)})\n hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0))\n if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}:\n rtn.append({'func': '_move_down'})\n for dir_ in _adj_dirs():\n rtn.extend(self._side_moves(dir_, can_move_up))\n return rtn\n\n def _side_moves(self, dir_, can_move_up):\n \"\"\"Return the list of side moves.\n\n dir_ is an adjacent direction.\n can_move_up is a boolean for whether or not the bot can move up.\n \"\"\"\n rtn = []\n base_pos = self._pos + dir_\n base_block = self._get_block(base_pos)\n empty_blocks = {_AIR, _WATER}\n if can_move_up and base_block not in {_AIR, _LAVA, _WATER}:\n for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n rtn.append({'func': '_move', 'args': (base_pos + _Vec3(0, 1,\n 0),)})\n for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n pos = base_pos + _Vec3(0, -1, 0)\n for _ in xrange(_DROP_PLUS_1):\n block_ = self._get_block(pos)\n if block_ != _AIR:\n if block_ != _LAVA:\n rtn.append({'func': '_move', 'args': (pos + _Vec3(0,\n 1, 0),)})\n break\n pos.y -= 1\n <mask token>\n\n def _get_mine_actions(self):\n \"\"\"Return a list of legal mining actions (that only involve mining\n and not moving).\"\"\"\n rtn = []\n dont_mine = {_AIR, _WATER, _LAVA}\n pos_above = self._pos + _Vec3(0, 2, 0)\n if self._get_block(pos_above) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos_above,)})\n for dir_ in _adj_dirs():\n pos = self._pos + dir_\n for _ in xrange(2):\n if self._get_block(pos) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos,)})\n pos = pos + _Vec3(0, 1, 0)\n return rtn\n\n def _get_placement_actions(self, exclude=None):\n \"\"\"Return a list of legal actions that only involve placing a block\n from the inventory.\n\n exclude is a block id. It is the block that should not be placed. If None,\n any block can be placed.\"\"\"\n if not self._has_blocks_to_place(exclude=exclude):\n return []\n dirs = [_Vec3(0, 2, 0)]\n for dir_ in _adj_dirs():\n dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)])\n if self._get_block(self._pos + dir_) in [_AIR, _WATER]:\n dirs.append(dir_ + _Vec3(0, -1, 0))\n rtn = []\n for dir_ in dirs:\n pos = self._pos + dir_\n if self._can_place(pos):\n rtn.append({'func': '_place', 'args': (pos,), 'kwargs': {\n 'exclude': exclude}})\n return rtn\n <mask token>\n\n def _has_blocks_to_place(self, exclude=None):\n \"\"\"Return whether or not the bot can place a block from the\n inventory. If exclude is None, any block can be placed.\"\"\"\n for block_ in self._inventory:\n if block_ != exclude:\n return True\n return False\n <mask token>\n <mask token>\n\n\nclass _ImaginaryBot(_GenericBot):\n \"\"\"A bot used for finding paths that doesn't actually change blocks\n in the world.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Create a new bot.\"\"\"\n _GenericBot.__init__(self, pos, inventory)\n self._changes = {}\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n self._changes[deepcopy(pos)] = block\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n if pos in self._changes:\n return self._changes[pos]\n else:\n return _get_mc().getBlock(pos)\n\n def get_block(self, pos):\n \"\"\"The public version.\"\"\"\n return self._get_block(pos)\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash(frozenset([self._pos] + _key_vals(self._inventory) +\n _key_vals(self._changes)))\n\n\nclass Bot(_GenericBot):\n \"\"\"The real bot.\n\n All vector arguments are Vec3s.\"\"\"\n _BOT_BLOCK = block.IRON_BLOCK.id\n\n def __init__(self):\n \"\"\"Create a bot next to the player.\"\"\"\n pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0)\n pos = _Vec3(pos.x, pos.y, pos.z)\n _GenericBot.__init__(self, pos)\n self._pos = pos\n self._move(self._pos)\n\n @staticmethod\n def destroy_all():\n \"\"\"Destroy all bots within a small distance (in case I forget to\n destroy one).\"\"\"\n player_loc = _player_loc()\n minec = _get_mc()\n rad = 10\n for x in xrange(player_loc.x - rad, player_loc.x + rad):\n for y in xrange(player_loc.y - rad, player_loc.y + rad):\n for z in xrange(player_loc.z - rad, player_loc.z + rad):\n if minec.getBlock(x, y, z) == Bot._BOT_BLOCK:\n minec.setBlock(x, y, z, _AIR)\n\n def destroy(self):\n \"\"\"Set itself to air.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n\n def fetch(self, block_name):\n \"\"\"Mine and return a block to the player.\"\"\"\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n block_id = getattr(block, block_name).id\n block_loc = self._get_block_loc(block_id)\n mine_prob = _MineProblem(imag_bot, block_loc, block_id)\n mine_actions = astar(mine_prob, _mine_heuristic)\n self.take_actions(mine_actions, _DELAY)\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n player_loc = _player_loc()\n return_prob = _ReturnProblem(imag_bot, block_id, player_loc)\n return_actions = astar(return_prob, _return_heuristic)\n imag_bot.take_actions(return_actions)\n return_actions.append({'func': '_place', 'args': (imag_bot.get_pos(\n ) + player_loc) / 2, 'kwargs': {'block': block_id}})\n self.take_actions(return_actions, _DELAY)\n\n def _get_block_loc(self, block_id):\n \"\"\"Return the location of the block.\"\"\"\n find_prob = FindProblem(self._pos, block_id)\n dirs = bfs(find_prob)\n return self._pos + sum(dirs)\n\n def _set_block(self, pos, block_):\n \"\"\"Place an actual block in the world.\n\n block is a block id.\"\"\"\n _get_mc().setBlock(pos, block_)\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n return _get_mc().getBlock(pos)\n\n def _move(self, pos):\n \"\"\"Move there, and set the appropriate blocks.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n self._set_block(pos, self._BOT_BLOCK)\n self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK)\n self._pos = pos\n\n\nclass FindProblem(SearchProblem):\n \"\"\"Problem for finding the location of a block in the world.\n\n A state in this problem is a location.\n \"\"\"\n\n def __init__(self, start_loc, block_id):\n \"\"\"Initialize.\"\"\"\n self._start_loc = deepcopy(start_loc)\n self._block_id = block_id\n\n def getStartState(self):\n \"\"\"Return the starting location.\"\"\"\n return self._start_loc\n\n def isGoalState(self, state):\n return _get_mc().getBlock(state) == self._block_id\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for dir_ in _all_dirs():\n successor = state + dir_\n if successor.y <= _get_mc().getHeight(successor.x, successor.z\n ) and _get_mc().getBlock(successor) != _BEDROCK:\n rtn.append((successor, dir_, 1))\n return rtn\n\n\nclass _MineProblem(SearchProblem):\n \"\"\"The problem of finding the block and mining it (not returning\n it).\"\"\"\n\n def __init__(self, imag_bot, block_loc, block_id):\n \"\"\"Initialize the problem with an _ImaginaryBot.\n\n block_loc is a Vec3.\n \"\"\"\n self._bot = imag_bot\n self._block_loc = deepcopy(block_loc)\n self._block_id = block_id\n\n def get_block_loc(self):\n \"\"\"Return the block location.\"\"\"\n return deepcopy(self._block_loc)\n\n def get_block_id(self):\n \"\"\"Return the block it's trying to mine.\"\"\"\n return self._block_id\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot has the block.\"\"\"\n return state.contains(self._block_id)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions():\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\nclass _ReturnProblem(SearchProblem):\n \"\"\"The problem of returning to the player. This does not place the block\n next to the player.\"\"\"\n\n def __init__(self, imag_bot, block_, player_loc):\n \"\"\"Initialized the problem with an _ImaginaryBot.\n\n block is a block id.\"\"\"\n self._bot = imag_bot\n self._block = block_\n self._player_loc = player_loc\n\n def get_player_loc(self):\n \"\"\"Return the player location.\"\"\"\n return deepcopy(self._player_loc)\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot is next to the player.\"\"\"\n diff = state.get_pos() - self._player_loc\n return diff.y == 0 and (diff.x == 0 or diff.z == 0) and abs(diff.x\n ) + abs(diff.z) == 2 and state.get_block(self._player_loc + \n diff / 2 + _Vec3(0, -1, 0)) not in (_AIR, _LAVA, _WATER)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions(self._block):\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass _GenericBot:\n <mask token>\n\n def __init__(self, pos, inventory=None):\n \"\"\"Initialize with an empty inventory.\n\n inventory is a dictionary. If None, an empty one will be used.\"\"\"\n if inventory is None:\n self._inventory = {}\n else:\n self._inventory = deepcopy(inventory)\n self._pos = deepcopy(pos)\n\n def take_action(self, action):\n \"\"\"Take the action (acquired from _get_legal_actions).\"\"\"\n getattr(self, action['func'])(*action.get('args', ()), **action.get\n ('kwargs', {}))\n\n def take_actions(self, actions, seconds=None):\n \"\"\"Take these actions. If seconds is not None, sleep 'seconds' \n seconds.\n \"\"\"\n if not actions:\n return\n self.take_action(actions[0])\n for action in actions[1:]:\n if seconds is not None:\n sleep(seconds)\n self.take_action(action)\n\n def get_pos(self):\n \"\"\"Return the position.\"\"\"\n return deepcopy(self._pos)\n\n def get_legal_actions(self, block_=None):\n \"\"\"Return a list of legal actions.\n\n If block_ is None, return all legal actions. Otherwise, return all\n legal actions that don't involve placing the block.\"\"\"\n return self._get_move_actions(block_) + self._get_mine_actions(\n ) + self._get_placement_actions(block_)\n <mask token>\n <mask token>\n\n def _place(self, loc, exclude=None, block_=None):\n \"\"\"Place a block from the inventory only.\n\n If exclude is not None, place a block that is not 'exclude'.\n If block is not None, place that block only.\n \"\"\"\n if not self._inventory:\n raise Exception('Inventory empty')\n if block_ is None:\n for key in self._inventory:\n if key != exclude:\n block_ = key\n break\n else:\n raise Exception(\n 'You requested not to place %s, but it is the only block in the inventory.'\n % exclude)\n if block_ not in self._inventory:\n raise Exception('Block %s is not in the inventory' % block_)\n if self._inventory[block_] == 1:\n del self._inventory[block_]\n else:\n self._inventory[block_] -= 1\n self._set_block(loc, block_)\n\n def _move_down(self):\n \"\"\"Move and mine the block below.\"\"\"\n new_pos = self._pos + _Vec3(0, -1, 0)\n block_ = self._get_block(new_pos)\n if block_ != _WATER:\n self._add_to_inv(block_)\n self._move(new_pos)\n <mask token>\n <mask token>\n\n def _mine(self, loc):\n \"\"\"Mine the block.\"\"\"\n block_ = self._get_block(loc)\n self._add_to_inv(block_)\n self._set_block(loc, _AIR)\n\n def _get_move_actions(self, exclude=None):\n \"\"\"Return a list of legal movement actions.\n\n exclude is the block to exclude.\n \"\"\"\n rtn = []\n can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR,\n _WATER}\n if can_move_up:\n if self._surrounded():\n rtn.append({'func': '_move', 'args': (self._pos + _Vec3(0, \n 1, 0),)})\n else:\n rtn.append({'func': '_move_up', 'args': (exclude,)})\n hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0))\n if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}:\n rtn.append({'func': '_move_down'})\n for dir_ in _adj_dirs():\n rtn.extend(self._side_moves(dir_, can_move_up))\n return rtn\n\n def _side_moves(self, dir_, can_move_up):\n \"\"\"Return the list of side moves.\n\n dir_ is an adjacent direction.\n can_move_up is a boolean for whether or not the bot can move up.\n \"\"\"\n rtn = []\n base_pos = self._pos + dir_\n base_block = self._get_block(base_pos)\n empty_blocks = {_AIR, _WATER}\n if can_move_up and base_block not in {_AIR, _LAVA, _WATER}:\n for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n rtn.append({'func': '_move', 'args': (base_pos + _Vec3(0, 1,\n 0),)})\n for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n pos = base_pos + _Vec3(0, -1, 0)\n for _ in xrange(_DROP_PLUS_1):\n block_ = self._get_block(pos)\n if block_ != _AIR:\n if block_ != _LAVA:\n rtn.append({'func': '_move', 'args': (pos + _Vec3(0,\n 1, 0),)})\n break\n pos.y -= 1\n <mask token>\n\n def _get_mine_actions(self):\n \"\"\"Return a list of legal mining actions (that only involve mining\n and not moving).\"\"\"\n rtn = []\n dont_mine = {_AIR, _WATER, _LAVA}\n pos_above = self._pos + _Vec3(0, 2, 0)\n if self._get_block(pos_above) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos_above,)})\n for dir_ in _adj_dirs():\n pos = self._pos + dir_\n for _ in xrange(2):\n if self._get_block(pos) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos,)})\n pos = pos + _Vec3(0, 1, 0)\n return rtn\n\n def _get_placement_actions(self, exclude=None):\n \"\"\"Return a list of legal actions that only involve placing a block\n from the inventory.\n\n exclude is a block id. It is the block that should not be placed. If None,\n any block can be placed.\"\"\"\n if not self._has_blocks_to_place(exclude=exclude):\n return []\n dirs = [_Vec3(0, 2, 0)]\n for dir_ in _adj_dirs():\n dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)])\n if self._get_block(self._pos + dir_) in [_AIR, _WATER]:\n dirs.append(dir_ + _Vec3(0, -1, 0))\n rtn = []\n for dir_ in dirs:\n pos = self._pos + dir_\n if self._can_place(pos):\n rtn.append({'func': '_place', 'args': (pos,), 'kwargs': {\n 'exclude': exclude}})\n return rtn\n <mask token>\n\n def _has_blocks_to_place(self, exclude=None):\n \"\"\"Return whether or not the bot can place a block from the\n inventory. If exclude is None, any block can be placed.\"\"\"\n for block_ in self._inventory:\n if block_ != exclude:\n return True\n return False\n <mask token>\n <mask token>\n\n\nclass _ImaginaryBot(_GenericBot):\n \"\"\"A bot used for finding paths that doesn't actually change blocks\n in the world.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Create a new bot.\"\"\"\n _GenericBot.__init__(self, pos, inventory)\n self._changes = {}\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n self._changes[deepcopy(pos)] = block\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n if pos in self._changes:\n return self._changes[pos]\n else:\n return _get_mc().getBlock(pos)\n\n def get_block(self, pos):\n \"\"\"The public version.\"\"\"\n return self._get_block(pos)\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash(frozenset([self._pos] + _key_vals(self._inventory) +\n _key_vals(self._changes)))\n\n\nclass Bot(_GenericBot):\n \"\"\"The real bot.\n\n All vector arguments are Vec3s.\"\"\"\n _BOT_BLOCK = block.IRON_BLOCK.id\n\n def __init__(self):\n \"\"\"Create a bot next to the player.\"\"\"\n pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0)\n pos = _Vec3(pos.x, pos.y, pos.z)\n _GenericBot.__init__(self, pos)\n self._pos = pos\n self._move(self._pos)\n\n @staticmethod\n def destroy_all():\n \"\"\"Destroy all bots within a small distance (in case I forget to\n destroy one).\"\"\"\n player_loc = _player_loc()\n minec = _get_mc()\n rad = 10\n for x in xrange(player_loc.x - rad, player_loc.x + rad):\n for y in xrange(player_loc.y - rad, player_loc.y + rad):\n for z in xrange(player_loc.z - rad, player_loc.z + rad):\n if minec.getBlock(x, y, z) == Bot._BOT_BLOCK:\n minec.setBlock(x, y, z, _AIR)\n\n def destroy(self):\n \"\"\"Set itself to air.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n\n def fetch(self, block_name):\n \"\"\"Mine and return a block to the player.\"\"\"\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n block_id = getattr(block, block_name).id\n block_loc = self._get_block_loc(block_id)\n mine_prob = _MineProblem(imag_bot, block_loc, block_id)\n mine_actions = astar(mine_prob, _mine_heuristic)\n self.take_actions(mine_actions, _DELAY)\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n player_loc = _player_loc()\n return_prob = _ReturnProblem(imag_bot, block_id, player_loc)\n return_actions = astar(return_prob, _return_heuristic)\n imag_bot.take_actions(return_actions)\n return_actions.append({'func': '_place', 'args': (imag_bot.get_pos(\n ) + player_loc) / 2, 'kwargs': {'block': block_id}})\n self.take_actions(return_actions, _DELAY)\n\n def _get_block_loc(self, block_id):\n \"\"\"Return the location of the block.\"\"\"\n find_prob = FindProblem(self._pos, block_id)\n dirs = bfs(find_prob)\n return self._pos + sum(dirs)\n\n def _set_block(self, pos, block_):\n \"\"\"Place an actual block in the world.\n\n block is a block id.\"\"\"\n _get_mc().setBlock(pos, block_)\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n return _get_mc().getBlock(pos)\n\n def _move(self, pos):\n \"\"\"Move there, and set the appropriate blocks.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n self._set_block(pos, self._BOT_BLOCK)\n self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK)\n self._pos = pos\n\n\nclass FindProblem(SearchProblem):\n \"\"\"Problem for finding the location of a block in the world.\n\n A state in this problem is a location.\n \"\"\"\n\n def __init__(self, start_loc, block_id):\n \"\"\"Initialize.\"\"\"\n self._start_loc = deepcopy(start_loc)\n self._block_id = block_id\n\n def getStartState(self):\n \"\"\"Return the starting location.\"\"\"\n return self._start_loc\n\n def isGoalState(self, state):\n return _get_mc().getBlock(state) == self._block_id\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for dir_ in _all_dirs():\n successor = state + dir_\n if successor.y <= _get_mc().getHeight(successor.x, successor.z\n ) and _get_mc().getBlock(successor) != _BEDROCK:\n rtn.append((successor, dir_, 1))\n return rtn\n\n\nclass _MineProblem(SearchProblem):\n \"\"\"The problem of finding the block and mining it (not returning\n it).\"\"\"\n\n def __init__(self, imag_bot, block_loc, block_id):\n \"\"\"Initialize the problem with an _ImaginaryBot.\n\n block_loc is a Vec3.\n \"\"\"\n self._bot = imag_bot\n self._block_loc = deepcopy(block_loc)\n self._block_id = block_id\n\n def get_block_loc(self):\n \"\"\"Return the block location.\"\"\"\n return deepcopy(self._block_loc)\n\n def get_block_id(self):\n \"\"\"Return the block it's trying to mine.\"\"\"\n return self._block_id\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot has the block.\"\"\"\n return state.contains(self._block_id)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions():\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\nclass _ReturnProblem(SearchProblem):\n \"\"\"The problem of returning to the player. This does not place the block\n next to the player.\"\"\"\n\n def __init__(self, imag_bot, block_, player_loc):\n \"\"\"Initialized the problem with an _ImaginaryBot.\n\n block is a block id.\"\"\"\n self._bot = imag_bot\n self._block = block_\n self._player_loc = player_loc\n\n def get_player_loc(self):\n \"\"\"Return the player location.\"\"\"\n return deepcopy(self._player_loc)\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot is next to the player.\"\"\"\n diff = state.get_pos() - self._player_loc\n return diff.y == 0 and (diff.x == 0 or diff.z == 0) and abs(diff.x\n ) + abs(diff.z) == 2 and state.get_block(self._player_loc + \n diff / 2 + _Vec3(0, -1, 0)) not in (_AIR, _LAVA, _WATER)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions(self._block):\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass _GenericBot:\n <mask token>\n\n def __init__(self, pos, inventory=None):\n \"\"\"Initialize with an empty inventory.\n\n inventory is a dictionary. If None, an empty one will be used.\"\"\"\n if inventory is None:\n self._inventory = {}\n else:\n self._inventory = deepcopy(inventory)\n self._pos = deepcopy(pos)\n\n def take_action(self, action):\n \"\"\"Take the action (acquired from _get_legal_actions).\"\"\"\n getattr(self, action['func'])(*action.get('args', ()), **action.get\n ('kwargs', {}))\n\n def take_actions(self, actions, seconds=None):\n \"\"\"Take these actions. If seconds is not None, sleep 'seconds' \n seconds.\n \"\"\"\n if not actions:\n return\n self.take_action(actions[0])\n for action in actions[1:]:\n if seconds is not None:\n sleep(seconds)\n self.take_action(action)\n\n def get_pos(self):\n \"\"\"Return the position.\"\"\"\n return deepcopy(self._pos)\n\n def get_legal_actions(self, block_=None):\n \"\"\"Return a list of legal actions.\n\n If block_ is None, return all legal actions. Otherwise, return all\n legal actions that don't involve placing the block.\"\"\"\n return self._get_move_actions(block_) + self._get_mine_actions(\n ) + self._get_placement_actions(block_)\n\n def contains(self, block_):\n \"\"\"Return whether or not the bot contains the block id.\"\"\"\n return block_ in self._inventory\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n raise NotImplementedError\n\n def _place(self, loc, exclude=None, block_=None):\n \"\"\"Place a block from the inventory only.\n\n If exclude is not None, place a block that is not 'exclude'.\n If block is not None, place that block only.\n \"\"\"\n if not self._inventory:\n raise Exception('Inventory empty')\n if block_ is None:\n for key in self._inventory:\n if key != exclude:\n block_ = key\n break\n else:\n raise Exception(\n 'You requested not to place %s, but it is the only block in the inventory.'\n % exclude)\n if block_ not in self._inventory:\n raise Exception('Block %s is not in the inventory' % block_)\n if self._inventory[block_] == 1:\n del self._inventory[block_]\n else:\n self._inventory[block_] -= 1\n self._set_block(loc, block_)\n\n def _move_down(self):\n \"\"\"Move and mine the block below.\"\"\"\n new_pos = self._pos + _Vec3(0, -1, 0)\n block_ = self._get_block(new_pos)\n if block_ != _WATER:\n self._add_to_inv(block_)\n self._move(new_pos)\n <mask token>\n\n def _move_up(self, exclude=None):\n \"\"\"Move and place a block below.\n\n If exclude is not None, place a block that is not 'exclude'.\n \"\"\"\n self._move(self._pos + _Vec3(0, 1, 0))\n self._place(self._pos + _Vec3(0, -1, 0), exclude)\n\n def _mine(self, loc):\n \"\"\"Mine the block.\"\"\"\n block_ = self._get_block(loc)\n self._add_to_inv(block_)\n self._set_block(loc, _AIR)\n\n def _get_move_actions(self, exclude=None):\n \"\"\"Return a list of legal movement actions.\n\n exclude is the block to exclude.\n \"\"\"\n rtn = []\n can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR,\n _WATER}\n if can_move_up:\n if self._surrounded():\n rtn.append({'func': '_move', 'args': (self._pos + _Vec3(0, \n 1, 0),)})\n else:\n rtn.append({'func': '_move_up', 'args': (exclude,)})\n hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0))\n if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}:\n rtn.append({'func': '_move_down'})\n for dir_ in _adj_dirs():\n rtn.extend(self._side_moves(dir_, can_move_up))\n return rtn\n\n def _side_moves(self, dir_, can_move_up):\n \"\"\"Return the list of side moves.\n\n dir_ is an adjacent direction.\n can_move_up is a boolean for whether or not the bot can move up.\n \"\"\"\n rtn = []\n base_pos = self._pos + dir_\n base_block = self._get_block(base_pos)\n empty_blocks = {_AIR, _WATER}\n if can_move_up and base_block not in {_AIR, _LAVA, _WATER}:\n for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n rtn.append({'func': '_move', 'args': (base_pos + _Vec3(0, 1,\n 0),)})\n for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n pos = base_pos + _Vec3(0, -1, 0)\n for _ in xrange(_DROP_PLUS_1):\n block_ = self._get_block(pos)\n if block_ != _AIR:\n if block_ != _LAVA:\n rtn.append({'func': '_move', 'args': (pos + _Vec3(0,\n 1, 0),)})\n break\n pos.y -= 1\n\n def _surrounded(self):\n \"\"\"Return whether or not the bot is surrounded by water.\"\"\"\n for dir_ in _adj_dirs():\n if self._get_block(self._pos + dir_) != _WATER:\n return False\n return True\n\n def _get_mine_actions(self):\n \"\"\"Return a list of legal mining actions (that only involve mining\n and not moving).\"\"\"\n rtn = []\n dont_mine = {_AIR, _WATER, _LAVA}\n pos_above = self._pos + _Vec3(0, 2, 0)\n if self._get_block(pos_above) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos_above,)})\n for dir_ in _adj_dirs():\n pos = self._pos + dir_\n for _ in xrange(2):\n if self._get_block(pos) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos,)})\n pos = pos + _Vec3(0, 1, 0)\n return rtn\n\n def _get_placement_actions(self, exclude=None):\n \"\"\"Return a list of legal actions that only involve placing a block\n from the inventory.\n\n exclude is a block id. It is the block that should not be placed. If None,\n any block can be placed.\"\"\"\n if not self._has_blocks_to_place(exclude=exclude):\n return []\n dirs = [_Vec3(0, 2, 0)]\n for dir_ in _adj_dirs():\n dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)])\n if self._get_block(self._pos + dir_) in [_AIR, _WATER]:\n dirs.append(dir_ + _Vec3(0, -1, 0))\n rtn = []\n for dir_ in dirs:\n pos = self._pos + dir_\n if self._can_place(pos):\n rtn.append({'func': '_place', 'args': (pos,), 'kwargs': {\n 'exclude': exclude}})\n return rtn\n\n def _can_place(self, loc):\n \"\"\"Return whether or not the bot can place a block at that location\n independent of what it has in its inventory.\"\"\"\n non_blocks = [_AIR, _WATER, _LAVA]\n player = [self._pos, self._pos + _Vec3(0, 1, 0)]\n for dir_ in (_adj_dirs + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)]):\n new_loc = loc + dir_\n if new_loc not in player and self._get_block(new_loc\n ) not in non_blocks:\n return True\n return False\n\n def _has_blocks_to_place(self, exclude=None):\n \"\"\"Return whether or not the bot can place a block from the\n inventory. If exclude is None, any block can be placed.\"\"\"\n for block_ in self._inventory:\n if block_ != exclude:\n return True\n return False\n <mask token>\n <mask token>\n\n\nclass _ImaginaryBot(_GenericBot):\n \"\"\"A bot used for finding paths that doesn't actually change blocks\n in the world.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Create a new bot.\"\"\"\n _GenericBot.__init__(self, pos, inventory)\n self._changes = {}\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n self._changes[deepcopy(pos)] = block\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n if pos in self._changes:\n return self._changes[pos]\n else:\n return _get_mc().getBlock(pos)\n\n def get_block(self, pos):\n \"\"\"The public version.\"\"\"\n return self._get_block(pos)\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash(frozenset([self._pos] + _key_vals(self._inventory) +\n _key_vals(self._changes)))\n\n\nclass Bot(_GenericBot):\n \"\"\"The real bot.\n\n All vector arguments are Vec3s.\"\"\"\n _BOT_BLOCK = block.IRON_BLOCK.id\n\n def __init__(self):\n \"\"\"Create a bot next to the player.\"\"\"\n pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0)\n pos = _Vec3(pos.x, pos.y, pos.z)\n _GenericBot.__init__(self, pos)\n self._pos = pos\n self._move(self._pos)\n\n @staticmethod\n def destroy_all():\n \"\"\"Destroy all bots within a small distance (in case I forget to\n destroy one).\"\"\"\n player_loc = _player_loc()\n minec = _get_mc()\n rad = 10\n for x in xrange(player_loc.x - rad, player_loc.x + rad):\n for y in xrange(player_loc.y - rad, player_loc.y + rad):\n for z in xrange(player_loc.z - rad, player_loc.z + rad):\n if minec.getBlock(x, y, z) == Bot._BOT_BLOCK:\n minec.setBlock(x, y, z, _AIR)\n\n def destroy(self):\n \"\"\"Set itself to air.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n\n def fetch(self, block_name):\n \"\"\"Mine and return a block to the player.\"\"\"\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n block_id = getattr(block, block_name).id\n block_loc = self._get_block_loc(block_id)\n mine_prob = _MineProblem(imag_bot, block_loc, block_id)\n mine_actions = astar(mine_prob, _mine_heuristic)\n self.take_actions(mine_actions, _DELAY)\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n player_loc = _player_loc()\n return_prob = _ReturnProblem(imag_bot, block_id, player_loc)\n return_actions = astar(return_prob, _return_heuristic)\n imag_bot.take_actions(return_actions)\n return_actions.append({'func': '_place', 'args': (imag_bot.get_pos(\n ) + player_loc) / 2, 'kwargs': {'block': block_id}})\n self.take_actions(return_actions, _DELAY)\n\n def _get_block_loc(self, block_id):\n \"\"\"Return the location of the block.\"\"\"\n find_prob = FindProblem(self._pos, block_id)\n dirs = bfs(find_prob)\n return self._pos + sum(dirs)\n\n def _set_block(self, pos, block_):\n \"\"\"Place an actual block in the world.\n\n block is a block id.\"\"\"\n _get_mc().setBlock(pos, block_)\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n return _get_mc().getBlock(pos)\n\n def _move(self, pos):\n \"\"\"Move there, and set the appropriate blocks.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n self._set_block(pos, self._BOT_BLOCK)\n self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK)\n self._pos = pos\n\n\nclass FindProblem(SearchProblem):\n \"\"\"Problem for finding the location of a block in the world.\n\n A state in this problem is a location.\n \"\"\"\n\n def __init__(self, start_loc, block_id):\n \"\"\"Initialize.\"\"\"\n self._start_loc = deepcopy(start_loc)\n self._block_id = block_id\n\n def getStartState(self):\n \"\"\"Return the starting location.\"\"\"\n return self._start_loc\n\n def isGoalState(self, state):\n return _get_mc().getBlock(state) == self._block_id\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for dir_ in _all_dirs():\n successor = state + dir_\n if successor.y <= _get_mc().getHeight(successor.x, successor.z\n ) and _get_mc().getBlock(successor) != _BEDROCK:\n rtn.append((successor, dir_, 1))\n return rtn\n\n\nclass _MineProblem(SearchProblem):\n \"\"\"The problem of finding the block and mining it (not returning\n it).\"\"\"\n\n def __init__(self, imag_bot, block_loc, block_id):\n \"\"\"Initialize the problem with an _ImaginaryBot.\n\n block_loc is a Vec3.\n \"\"\"\n self._bot = imag_bot\n self._block_loc = deepcopy(block_loc)\n self._block_id = block_id\n\n def get_block_loc(self):\n \"\"\"Return the block location.\"\"\"\n return deepcopy(self._block_loc)\n\n def get_block_id(self):\n \"\"\"Return the block it's trying to mine.\"\"\"\n return self._block_id\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot has the block.\"\"\"\n return state.contains(self._block_id)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions():\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\nclass _ReturnProblem(SearchProblem):\n \"\"\"The problem of returning to the player. This does not place the block\n next to the player.\"\"\"\n\n def __init__(self, imag_bot, block_, player_loc):\n \"\"\"Initialized the problem with an _ImaginaryBot.\n\n block is a block id.\"\"\"\n self._bot = imag_bot\n self._block = block_\n self._player_loc = player_loc\n\n def get_player_loc(self):\n \"\"\"Return the player location.\"\"\"\n return deepcopy(self._player_loc)\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot is next to the player.\"\"\"\n diff = state.get_pos() - self._player_loc\n return diff.y == 0 and (diff.x == 0 or diff.z == 0) and abs(diff.x\n ) + abs(diff.z) == 2 and state.get_block(self._player_loc + \n diff / 2 + _Vec3(0, -1, 0)) not in (_AIR, _LAVA, _WATER)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions(self._block):\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass _GenericBot:\n <mask token>\n\n def __init__(self, pos, inventory=None):\n \"\"\"Initialize with an empty inventory.\n\n inventory is a dictionary. If None, an empty one will be used.\"\"\"\n if inventory is None:\n self._inventory = {}\n else:\n self._inventory = deepcopy(inventory)\n self._pos = deepcopy(pos)\n\n def take_action(self, action):\n \"\"\"Take the action (acquired from _get_legal_actions).\"\"\"\n getattr(self, action['func'])(*action.get('args', ()), **action.get\n ('kwargs', {}))\n\n def take_actions(self, actions, seconds=None):\n \"\"\"Take these actions. If seconds is not None, sleep 'seconds' \n seconds.\n \"\"\"\n if not actions:\n return\n self.take_action(actions[0])\n for action in actions[1:]:\n if seconds is not None:\n sleep(seconds)\n self.take_action(action)\n\n def get_pos(self):\n \"\"\"Return the position.\"\"\"\n return deepcopy(self._pos)\n\n def get_legal_actions(self, block_=None):\n \"\"\"Return a list of legal actions.\n\n If block_ is None, return all legal actions. Otherwise, return all\n legal actions that don't involve placing the block.\"\"\"\n return self._get_move_actions(block_) + self._get_mine_actions(\n ) + self._get_placement_actions(block_)\n\n def contains(self, block_):\n \"\"\"Return whether or not the bot contains the block id.\"\"\"\n return block_ in self._inventory\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n raise NotImplementedError\n\n def _place(self, loc, exclude=None, block_=None):\n \"\"\"Place a block from the inventory only.\n\n If exclude is not None, place a block that is not 'exclude'.\n If block is not None, place that block only.\n \"\"\"\n if not self._inventory:\n raise Exception('Inventory empty')\n if block_ is None:\n for key in self._inventory:\n if key != exclude:\n block_ = key\n break\n else:\n raise Exception(\n 'You requested not to place %s, but it is the only block in the inventory.'\n % exclude)\n if block_ not in self._inventory:\n raise Exception('Block %s is not in the inventory' % block_)\n if self._inventory[block_] == 1:\n del self._inventory[block_]\n else:\n self._inventory[block_] -= 1\n self._set_block(loc, block_)\n\n def _move_down(self):\n \"\"\"Move and mine the block below.\"\"\"\n new_pos = self._pos + _Vec3(0, -1, 0)\n block_ = self._get_block(new_pos)\n if block_ != _WATER:\n self._add_to_inv(block_)\n self._move(new_pos)\n <mask token>\n\n def _move_up(self, exclude=None):\n \"\"\"Move and place a block below.\n\n If exclude is not None, place a block that is not 'exclude'.\n \"\"\"\n self._move(self._pos + _Vec3(0, 1, 0))\n self._place(self._pos + _Vec3(0, -1, 0), exclude)\n\n def _mine(self, loc):\n \"\"\"Mine the block.\"\"\"\n block_ = self._get_block(loc)\n self._add_to_inv(block_)\n self._set_block(loc, _AIR)\n\n def _get_move_actions(self, exclude=None):\n \"\"\"Return a list of legal movement actions.\n\n exclude is the block to exclude.\n \"\"\"\n rtn = []\n can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR,\n _WATER}\n if can_move_up:\n if self._surrounded():\n rtn.append({'func': '_move', 'args': (self._pos + _Vec3(0, \n 1, 0),)})\n else:\n rtn.append({'func': '_move_up', 'args': (exclude,)})\n hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0))\n if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}:\n rtn.append({'func': '_move_down'})\n for dir_ in _adj_dirs():\n rtn.extend(self._side_moves(dir_, can_move_up))\n return rtn\n\n def _side_moves(self, dir_, can_move_up):\n \"\"\"Return the list of side moves.\n\n dir_ is an adjacent direction.\n can_move_up is a boolean for whether or not the bot can move up.\n \"\"\"\n rtn = []\n base_pos = self._pos + dir_\n base_block = self._get_block(base_pos)\n empty_blocks = {_AIR, _WATER}\n if can_move_up and base_block not in {_AIR, _LAVA, _WATER}:\n for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n rtn.append({'func': '_move', 'args': (base_pos + _Vec3(0, 1,\n 0),)})\n for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n pos = base_pos + _Vec3(0, -1, 0)\n for _ in xrange(_DROP_PLUS_1):\n block_ = self._get_block(pos)\n if block_ != _AIR:\n if block_ != _LAVA:\n rtn.append({'func': '_move', 'args': (pos + _Vec3(0,\n 1, 0),)})\n break\n pos.y -= 1\n\n def _surrounded(self):\n \"\"\"Return whether or not the bot is surrounded by water.\"\"\"\n for dir_ in _adj_dirs():\n if self._get_block(self._pos + dir_) != _WATER:\n return False\n return True\n\n def _get_mine_actions(self):\n \"\"\"Return a list of legal mining actions (that only involve mining\n and not moving).\"\"\"\n rtn = []\n dont_mine = {_AIR, _WATER, _LAVA}\n pos_above = self._pos + _Vec3(0, 2, 0)\n if self._get_block(pos_above) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos_above,)})\n for dir_ in _adj_dirs():\n pos = self._pos + dir_\n for _ in xrange(2):\n if self._get_block(pos) not in dont_mine:\n rtn.append({'func': '_mine', 'args': (pos,)})\n pos = pos + _Vec3(0, 1, 0)\n return rtn\n\n def _get_placement_actions(self, exclude=None):\n \"\"\"Return a list of legal actions that only involve placing a block\n from the inventory.\n\n exclude is a block id. It is the block that should not be placed. If None,\n any block can be placed.\"\"\"\n if not self._has_blocks_to_place(exclude=exclude):\n return []\n dirs = [_Vec3(0, 2, 0)]\n for dir_ in _adj_dirs():\n dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)])\n if self._get_block(self._pos + dir_) in [_AIR, _WATER]:\n dirs.append(dir_ + _Vec3(0, -1, 0))\n rtn = []\n for dir_ in dirs:\n pos = self._pos + dir_\n if self._can_place(pos):\n rtn.append({'func': '_place', 'args': (pos,), 'kwargs': {\n 'exclude': exclude}})\n return rtn\n\n def _can_place(self, loc):\n \"\"\"Return whether or not the bot can place a block at that location\n independent of what it has in its inventory.\"\"\"\n non_blocks = [_AIR, _WATER, _LAVA]\n player = [self._pos, self._pos + _Vec3(0, 1, 0)]\n for dir_ in (_adj_dirs + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)]):\n new_loc = loc + dir_\n if new_loc not in player and self._get_block(new_loc\n ) not in non_blocks:\n return True\n return False\n\n def _has_blocks_to_place(self, exclude=None):\n \"\"\"Return whether or not the bot can place a block from the\n inventory. If exclude is None, any block can be placed.\"\"\"\n for block_ in self._inventory:\n if block_ != exclude:\n return True\n return False\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n raise NotImplementedError\n\n def _move(self, pos):\n \"\"\"Move there only.\"\"\"\n self._pos = deepcopy(pos)\n\n\nclass _ImaginaryBot(_GenericBot):\n \"\"\"A bot used for finding paths that doesn't actually change blocks\n in the world.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Create a new bot.\"\"\"\n _GenericBot.__init__(self, pos, inventory)\n self._changes = {}\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n self._changes[deepcopy(pos)] = block\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n if pos in self._changes:\n return self._changes[pos]\n else:\n return _get_mc().getBlock(pos)\n\n def get_block(self, pos):\n \"\"\"The public version.\"\"\"\n return self._get_block(pos)\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash(frozenset([self._pos] + _key_vals(self._inventory) +\n _key_vals(self._changes)))\n\n\nclass Bot(_GenericBot):\n \"\"\"The real bot.\n\n All vector arguments are Vec3s.\"\"\"\n _BOT_BLOCK = block.IRON_BLOCK.id\n\n def __init__(self):\n \"\"\"Create a bot next to the player.\"\"\"\n pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0)\n pos = _Vec3(pos.x, pos.y, pos.z)\n _GenericBot.__init__(self, pos)\n self._pos = pos\n self._move(self._pos)\n\n @staticmethod\n def destroy_all():\n \"\"\"Destroy all bots within a small distance (in case I forget to\n destroy one).\"\"\"\n player_loc = _player_loc()\n minec = _get_mc()\n rad = 10\n for x in xrange(player_loc.x - rad, player_loc.x + rad):\n for y in xrange(player_loc.y - rad, player_loc.y + rad):\n for z in xrange(player_loc.z - rad, player_loc.z + rad):\n if minec.getBlock(x, y, z) == Bot._BOT_BLOCK:\n minec.setBlock(x, y, z, _AIR)\n\n def destroy(self):\n \"\"\"Set itself to air.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n\n def fetch(self, block_name):\n \"\"\"Mine and return a block to the player.\"\"\"\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n block_id = getattr(block, block_name).id\n block_loc = self._get_block_loc(block_id)\n mine_prob = _MineProblem(imag_bot, block_loc, block_id)\n mine_actions = astar(mine_prob, _mine_heuristic)\n self.take_actions(mine_actions, _DELAY)\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n player_loc = _player_loc()\n return_prob = _ReturnProblem(imag_bot, block_id, player_loc)\n return_actions = astar(return_prob, _return_heuristic)\n imag_bot.take_actions(return_actions)\n return_actions.append({'func': '_place', 'args': (imag_bot.get_pos(\n ) + player_loc) / 2, 'kwargs': {'block': block_id}})\n self.take_actions(return_actions, _DELAY)\n\n def _get_block_loc(self, block_id):\n \"\"\"Return the location of the block.\"\"\"\n find_prob = FindProblem(self._pos, block_id)\n dirs = bfs(find_prob)\n return self._pos + sum(dirs)\n\n def _set_block(self, pos, block_):\n \"\"\"Place an actual block in the world.\n\n block is a block id.\"\"\"\n _get_mc().setBlock(pos, block_)\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n return _get_mc().getBlock(pos)\n\n def _move(self, pos):\n \"\"\"Move there, and set the appropriate blocks.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n self._set_block(pos, self._BOT_BLOCK)\n self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK)\n self._pos = pos\n\n\nclass FindProblem(SearchProblem):\n \"\"\"Problem for finding the location of a block in the world.\n\n A state in this problem is a location.\n \"\"\"\n\n def __init__(self, start_loc, block_id):\n \"\"\"Initialize.\"\"\"\n self._start_loc = deepcopy(start_loc)\n self._block_id = block_id\n\n def getStartState(self):\n \"\"\"Return the starting location.\"\"\"\n return self._start_loc\n\n def isGoalState(self, state):\n return _get_mc().getBlock(state) == self._block_id\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for dir_ in _all_dirs():\n successor = state + dir_\n if successor.y <= _get_mc().getHeight(successor.x, successor.z\n ) and _get_mc().getBlock(successor) != _BEDROCK:\n rtn.append((successor, dir_, 1))\n return rtn\n\n\nclass _MineProblem(SearchProblem):\n \"\"\"The problem of finding the block and mining it (not returning\n it).\"\"\"\n\n def __init__(self, imag_bot, block_loc, block_id):\n \"\"\"Initialize the problem with an _ImaginaryBot.\n\n block_loc is a Vec3.\n \"\"\"\n self._bot = imag_bot\n self._block_loc = deepcopy(block_loc)\n self._block_id = block_id\n\n def get_block_loc(self):\n \"\"\"Return the block location.\"\"\"\n return deepcopy(self._block_loc)\n\n def get_block_id(self):\n \"\"\"Return the block it's trying to mine.\"\"\"\n return self._block_id\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot has the block.\"\"\"\n return state.contains(self._block_id)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions():\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\nclass _ReturnProblem(SearchProblem):\n \"\"\"The problem of returning to the player. This does not place the block\n next to the player.\"\"\"\n\n def __init__(self, imag_bot, block_, player_loc):\n \"\"\"Initialized the problem with an _ImaginaryBot.\n\n block is a block id.\"\"\"\n self._bot = imag_bot\n self._block = block_\n self._player_loc = player_loc\n\n def get_player_loc(self):\n \"\"\"Return the player location.\"\"\"\n return deepcopy(self._player_loc)\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot is next to the player.\"\"\"\n diff = state.get_pos() - self._player_loc\n return diff.y == 0 and (diff.x == 0 or diff.z == 0) and abs(diff.x\n ) + abs(diff.z) == 2 and state.get_block(self._player_loc + \n diff / 2 + _Vec3(0, -1, 0)) not in (_AIR, _LAVA, _WATER)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions(self._block):\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\n<mask token>\n", "step-5": "\"\"\"Module for the bot\"\"\"\n\nfrom copy import deepcopy\nfrom time import sleep\n\nimport mcpi.minecraft as minecraft\nfrom mcpi.vec3 import Vec3\nimport mcpi.block as block\n\nfrom search import SearchProblem, astar, bfs\nfrom singleton import singleton\n\n_AIR = block.AIR.id\n_WATER = block.WATER.id\n_LAVA = block.LAVA.id\n_BEDROCK = block.BEDROCK.id\n\n_DROP = 2 # It can drop at most this many\n_DROP_PLUS_1 = _DROP + 1\n_DELAY = 1\n\n\nclass _Vec3(Vec3):\n \"\"\"A Vec3 that is hashable. Everything in this program should use this\n class.\"\"\"\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash((self.x, self.y, self.z))\n\n def clone(self):\n \"\"\"Return a clone.\"\"\"\n return _Vec3(self.x, self.y, self.z)\n\n\nclass _GenericBot:\n \"\"\"A generic bot.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Initialize with an empty inventory.\n\n inventory is a dictionary. If None, an empty one will be used.\"\"\"\n if inventory is None:\n self._inventory = {}\n else:\n self._inventory = deepcopy(inventory)\n self._pos = deepcopy(pos)\n\n def take_action(self, action):\n \"\"\"Take the action (acquired from _get_legal_actions).\"\"\"\n getattr(self, action['func'])(\n *action.get('args', ()), \n **action.get('kwargs', {})\n )\n\n def take_actions(self, actions, seconds=None):\n \"\"\"Take these actions. If seconds is not None, sleep 'seconds' \n seconds.\n \"\"\"\n if not actions:\n return\n\n self.take_action(actions[0])\n for action in actions[1:]:\n if seconds is not None:\n sleep(seconds)\n self.take_action(action)\n\n def get_pos(self):\n \"\"\"Return the position.\"\"\"\n return deepcopy(self._pos)\n\n def get_legal_actions(self, block_=None):\n \"\"\"Return a list of legal actions.\n\n If block_ is None, return all legal actions. Otherwise, return all\n legal actions that don't involve placing the block.\"\"\"\n return self._get_move_actions(block_) + self._get_mine_actions() + \\\n self._get_placement_actions(block_)\n\n def contains(self, block_):\n \"\"\"Return whether or not the bot contains the block id.\"\"\"\n return block_ in self._inventory\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n raise NotImplementedError\n\n def _place(self, loc, exclude=None, block_=None):\n \"\"\"Place a block from the inventory only.\n\n If exclude is not None, place a block that is not 'exclude'.\n If block is not None, place that block only.\n \"\"\"\n if not self._inventory:\n raise Exception('Inventory empty')\n\n if block_ is None:\n for key in self._inventory:\n if key != exclude:\n block_ = key\n break\n else:\n raise Exception((\n 'You requested not to place %s, but it is the only '\n 'block in the inventory.' % exclude\n ))\n\n if block_ not in self._inventory:\n raise Exception('Block %s is not in the inventory' % block_)\n\n if self._inventory[block_] == 1:\n del self._inventory[block_]\n else:\n self._inventory[block_] -= 1\n\n self._set_block(loc, block_)\n \n\n def _move_down(self):\n \"\"\"Move and mine the block below.\"\"\"\n new_pos = self._pos + _Vec3(0, -1, 0)\n block_ = self._get_block(new_pos)\n if block_ != _WATER:\n self._add_to_inv(block_)\n self._move(new_pos)\n \n def _add_to_inv(self, block_):\n \"\"\"Add the block to the inventory.\"\"\"\n if block_ in self._inventory:\n self._inventory[block_] += 1\n else:\n self._inventory[block_] = 1\n\n def _move_up(self, exclude=None):\n \"\"\"Move and place a block below.\n\n If exclude is not None, place a block that is not 'exclude'.\n \"\"\"\n self._move(self._pos + _Vec3(0, 1, 0))\n self._place(self._pos + _Vec3(0, -1, 0), exclude)\n\n def _mine(self, loc):\n \"\"\"Mine the block.\"\"\"\n block_ = self._get_block(loc)\n self._add_to_inv(block_)\n self._set_block(loc, _AIR)\n\n def _get_move_actions(self, exclude=None):\n \"\"\"Return a list of legal movement actions.\n\n exclude is the block to exclude.\n \"\"\"\n rtn = []\n\n # Check for moving up\n can_move_up = self._get_block(self._pos + _Vec3(0, 2, 0)) in {_AIR, _WATER}\n if can_move_up:\n if self._surrounded():\n rtn.append({\n 'func': '_move',\n 'args': (self._pos + _Vec3(0, 1, 0),)\n })\n else:\n rtn.append({\n 'func': '_move_up',\n 'args': (exclude,)\n })\n\n # Check for moving down\n hidden_block = self._get_block(self._pos + _Vec3(0, -2, 0))\n if hidden_block == _WATER or hidden_block not in {_AIR, _LAVA}:\n rtn.append({'func': '_move_down'})\n\n # Check for side moves \n for dir_ in _adj_dirs():\n rtn.extend(self._side_moves(dir_, can_move_up))\n\n return rtn\n\n def _side_moves(self, dir_, can_move_up):\n \"\"\"Return the list of side moves.\n\n dir_ is an adjacent direction.\n can_move_up is a boolean for whether or not the bot can move up.\n \"\"\"\n rtn = []\n base_pos = self._pos + dir_\n base_block = self._get_block(base_pos)\n empty_blocks = {_AIR, _WATER}\n\n # Check if it can move up\n if can_move_up and base_block not in {_AIR, _LAVA, _WATER}:\n for vert_dir in [_Vec3(0, 1, 0), _Vec3(0, 2, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n else:\n rtn.append({\n 'func': '_move',\n 'args': (base_pos + _Vec3(0, 1, 0),)\n })\n\n # Check if it can move in that direction\n for vert_dir in [_Vec3(), _Vec3(0, 1, 0)]:\n if self._get_block(base_pos + vert_dir) not in empty_blocks:\n break\n\n # Fall\n else:\n pos = base_pos + _Vec3(0, -1, 0)\n for _ in xrange(_DROP_PLUS_1):\n block_ = self._get_block(pos)\n if block_ != _AIR:\n if block_ != _LAVA:\n rtn.append({\n 'func': '_move',\n 'args': (pos + _Vec3(0, 1, 0),)\n })\n break\n pos.y -= 1 \n \n def _surrounded(self):\n \"\"\"Return whether or not the bot is surrounded by water.\"\"\"\n for dir_ in _adj_dirs():\n if self._get_block(self._pos + dir_) != _WATER:\n return False\n return True\n\n def _get_mine_actions(self):\n \"\"\"Return a list of legal mining actions (that only involve mining\n and not moving).\"\"\"\n rtn = []\n dont_mine = {_AIR, _WATER, _LAVA}\n # Mine above.\n pos_above = self._pos + _Vec3(0, 2, 0)\n if self._get_block(pos_above) not in dont_mine:\n rtn.append({\n 'func': '_mine',\n 'args': (pos_above,)\n })\n\n for dir_ in _adj_dirs():\n pos = self._pos + dir_\n for _ in xrange(2):\n if self._get_block(pos) not in dont_mine:\n rtn.append({\n 'func': '_mine',\n 'args': (pos,)\n })\n pos = pos + _Vec3(0, 1, 0)\n\n return rtn\n\n def _get_placement_actions(self, exclude=None):\n \"\"\"Return a list of legal actions that only involve placing a block\n from the inventory.\n\n exclude is a block id. It is the block that should not be placed. If None,\n any block can be placed.\"\"\"\n if not self._has_blocks_to_place(exclude=exclude):\n return []\n\n dirs = [_Vec3(0, 2, 0)]\n for dir_ in _adj_dirs():\n dirs.extend([dir_, dir_ + _Vec3(0, 1, 0)])\n if self._get_block(self._pos + dir_) in [_AIR, _WATER]:\n dirs.append(dir_ + _Vec3(0, -1, 0))\n\n rtn = []\n for dir_ in dirs:\n pos = self._pos + dir_\n if self._can_place(pos):\n rtn.append({\n 'func': '_place',\n 'args': (pos,),\n 'kwargs': {'exclude': exclude}\n })\n\n return rtn\n\n def _can_place(self, loc):\n \"\"\"Return whether or not the bot can place a block at that location\n independent of what it has in its inventory.\"\"\"\n non_blocks = [_AIR, _WATER, _LAVA]\n player = [self._pos, self._pos + _Vec3(0, 1, 0)]\n for dir_ in _adj_dirs + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)]:\n new_loc = loc + dir_\n if new_loc not in player and self._get_block(new_loc) \\\n not in non_blocks:\n return True\n return False\n\n def _has_blocks_to_place(self, exclude=None):\n \"\"\"Return whether or not the bot can place a block from the\n inventory. If exclude is None, any block can be placed.\"\"\"\n for block_ in self._inventory:\n if block_ != exclude:\n return True\n return False\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n raise NotImplementedError\n\n def _move(self, pos):\n \"\"\"Move there only.\"\"\"\n self._pos = deepcopy(pos)\n\n\nclass _ImaginaryBot(_GenericBot):\n \"\"\"A bot used for finding paths that doesn't actually change blocks\n in the world.\"\"\"\n\n def __init__(self, pos, inventory=None):\n \"\"\"Create a new bot.\"\"\"\n _GenericBot.__init__(self, pos, inventory)\n self._changes = {} # Changes to the world\n\n def _set_block(self, pos, block_):\n \"\"\"Set a block. block_ is the block id.\"\"\"\n self._changes[deepcopy(pos)] = block\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n if pos in self._changes:\n return self._changes[pos]\n else:\n return _get_mc().getBlock(pos)\n\n def get_block(self, pos):\n \"\"\"The public version.\"\"\"\n return self._get_block(pos)\n\n def __hash__(self):\n \"\"\"Return the hash.\"\"\"\n return hash(frozenset([self._pos] + \\\n _key_vals(self._inventory) + \\\n _key_vals(self._changes)\n ))\n\n\nclass Bot(_GenericBot):\n \"\"\"The real bot.\n\n All vector arguments are Vec3s.\"\"\"\n\n _BOT_BLOCK = block.IRON_BLOCK.id\n\n def __init__(self):\n \"\"\"Create a bot next to the player.\"\"\"\n pos = _get_mc().player.getTilePos() + Vec3(2, 0, 0)\n pos = _Vec3(pos.x, pos.y, pos.z)\n _GenericBot.__init__(self, pos)\n self._pos = pos\n self._move(self._pos)\n\n @staticmethod\n def destroy_all():\n \"\"\"Destroy all bots within a small distance (in case I forget to\n destroy one).\"\"\"\n player_loc = _player_loc()\n minec = _get_mc()\n rad = 10\n for x in xrange(player_loc.x - rad, player_loc.x + rad):\n for y in xrange(player_loc.y - rad, player_loc.y + rad):\n for z in xrange(player_loc.z - rad, player_loc.z + rad):\n if minec.getBlock(x, y, z) == Bot._BOT_BLOCK:\n minec.setBlock(x, y, z, _AIR)\n\n def destroy(self):\n \"\"\"Set itself to air.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n\n def fetch(self, block_name):\n \"\"\"Mine and return a block to the player.\"\"\"\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n block_id = getattr(block, block_name).id\n block_loc = self._get_block_loc(block_id)\n mine_prob = _MineProblem(imag_bot, block_loc, block_id)\n mine_actions = astar(mine_prob, _mine_heuristic)\n self.take_actions(mine_actions, _DELAY)\n imag_bot = _ImaginaryBot(self._pos, self._inventory)\n player_loc = _player_loc()\n return_prob = _ReturnProblem(imag_bot, block_id, player_loc)\n return_actions = astar(return_prob, _return_heuristic)\n imag_bot.take_actions(return_actions)\n return_actions.append({\n 'func': '_place',\n 'args': (imag_bot.get_pos() + player_loc) / 2,\n 'kwargs': {'block': block_id}\n })\n self.take_actions(return_actions, _DELAY)\n\n def _get_block_loc(self, block_id):\n \"\"\"Return the location of the block.\"\"\"\n find_prob = FindProblem(self._pos, block_id)\n dirs = bfs(find_prob)\n return self._pos + sum(dirs)\n\n def _set_block(self, pos, block_):\n \"\"\"Place an actual block in the world.\n\n block is a block id.\"\"\"\n _get_mc().setBlock(pos, block_)\n\n def _get_block(self, pos):\n \"\"\"Get the block at the position.\"\"\"\n return _get_mc().getBlock(pos)\n\n def _move(self, pos):\n \"\"\"Move there, and set the appropriate blocks.\"\"\"\n self._set_block(self._pos, _AIR)\n self._set_block(self._pos + _Vec3(0, 1, 0), _AIR)\n self._set_block(pos, self._BOT_BLOCK)\n self._set_block(pos + _Vec3(0, 1, 0), self._BOT_BLOCK)\n self._pos = pos\n\n\nclass FindProblem(SearchProblem):\n \"\"\"Problem for finding the location of a block in the world.\n\n A state in this problem is a location.\n \"\"\"\n\n def __init__(self, start_loc, block_id):\n \"\"\"Initialize.\"\"\"\n self._start_loc = deepcopy(start_loc)\n self._block_id = block_id\n\n def getStartState(self):\n \"\"\"Return the starting location.\"\"\"\n return self._start_loc\n\n def isGoalState(self, state):\n return _get_mc().getBlock(state) == self._block_id\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for dir_ in _all_dirs():\n successor = state + dir_\n if successor.y <= _get_mc().getHeight(successor.x, successor.z) \\\n and _get_mc().getBlock(successor) != _BEDROCK:\n rtn.append((successor, dir_, 1))\n return rtn\n\n\nclass _MineProblem(SearchProblem):\n \"\"\"The problem of finding the block and mining it (not returning\n it).\"\"\"\n\n def __init__(self, imag_bot, block_loc, block_id):\n \"\"\"Initialize the problem with an _ImaginaryBot.\n\n block_loc is a Vec3.\n \"\"\"\n self._bot = imag_bot\n self._block_loc = deepcopy(block_loc)\n self._block_id = block_id\n\n def get_block_loc(self):\n \"\"\"Return the block location.\"\"\"\n return deepcopy(self._block_loc)\n\n def get_block_id(self):\n \"\"\"Return the block it's trying to mine.\"\"\"\n return self._block_id\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot has the block.\"\"\"\n return state.contains(self._block_id)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions():\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\nclass _ReturnProblem(SearchProblem):\n \"\"\"The problem of returning to the player. This does not place the block\n next to the player.\"\"\"\n\n def __init__(self, imag_bot, block_, player_loc):\n \"\"\"Initialized the problem with an _ImaginaryBot.\n\n block is a block id.\"\"\"\n self._bot = imag_bot\n self._block = block_\n self._player_loc = player_loc\n\n def get_player_loc(self):\n \"\"\"Return the player location.\"\"\"\n return deepcopy(self._player_loc)\n\n def getStartState(self):\n \"\"\"Return the bot passed in.\"\"\"\n return self._bot\n\n def isGoalState(self, state):\n \"\"\"Return whether or not the bot is next to the player.\"\"\"\n diff = state.get_pos() - self._player_loc\n return diff.y == 0 and (diff.x == 0 or diff.z == 0) and \\\n abs(diff.x) + abs(diff.z) == 2 and \\\n state.get_block(self._player_loc + diff/2 + _Vec3(0, -1, 0)) not in \\\n (_AIR, _LAVA, _WATER)\n\n def getSuccessors(self, state):\n \"\"\"Return the successors.\"\"\"\n rtn = []\n for action in state.get_legal_actions(self._block):\n successor = deepcopy(state)\n successor.take_action(action)\n rtn.append((successor, action, 1))\n return rtn\n\n\ndef _mine_heuristic(bot, problem):\n \"\"\"Return the mining heuristic.\n\n bot is an _ImaginaryBot.\n \"\"\"\n if bot.contains(problem.get_block_id()):\n return 0\n\n bot_pos = bot.get_pos()\n dest_pos = problem.get_block_loc()\n\n # If man == dy: return man + 1\n # If man > dy: return man\n # If man < dy: return dy?\n man_dist = _manhattan((bot_pos.x, bot_pos.z), (dest_pos.x, dest_pos.z))\n y_diff = bot_pos.y - dest_pos.y\n if y_diff < 0:\n y_diff += 1\n\n if y_diff == 0:\n return man_dist\n\n # Transform so that it's only dropping\n drop = _DROP if y_diff > 0 else 1\n y_diff = abs(y_diff)\n\n drops = _drops(y_diff, drop)\n\n if man_dist > drops:\n return man_dist\n if man_dist == drops:\n return man_dist + 1\n if drop == 1:\n return drops\n if y_diff % drop == 1:\n return drops\n return drops + 1\n \n\ndef _drops(dist, drop):\n \"\"\"Return the number of times it takes to drop a distance dist. drop is the\n length of one drop. Both are assumed positive.\"\"\"\n rtn = dist / drop\n if dist % drop != 0:\n rtn += 1\n return rtn\n \n\ndef _return_heuristic(bot, problem):\n \"\"\"Return the return heuristic.\n\n bot is an _ImaginaryBot.\n \"\"\"\n bot_pos = bot.get_pos()\n player_pos = problem.get_player_loc()\n bot_plane_pos = (bot.x, bot.z)\n\n y_diff = bot_pos.y - player_pos.y\n\n drop = _DROP if y_diff > 0 else 1\n y_diff = abs(y_diff)\n drops = _drops(y_diff, drop)\n min_man = float('inf')\n for dir_ in _adj_dirs():\n loc = player_pos + 2 * dir_\n man_dist = _manhattan(bot_plane_pos, (loc.x, loc.z))\n if man_dist < min_man:\n min_man = man_dist\n if man_dist < drops:\n return drops\n return min_man\n\n\ndef _to_my_vec3(vec):\n \"\"\"Return the _Vec3 alternative of the Vec3.\"\"\"\n return _Vec3(vec.x, vec.y, vec.z)\n\n\ndef _player_loc():\n \"\"\"Return the player's location.\"\"\"\n return _to_my_vec3(_get_mc().player.getTilePos())\n\n\ndef _adj_dirs():\n \"\"\"Return the adjacent directions.\"\"\"\n return [_Vec3(1, 0, 0), _Vec3(-1, 0, 0), _Vec3(0, 0, 1), _Vec3(0, 0, -1)]\n\n\ndef _all_dirs():\n \"\"\"Return all adjacent directions.\"\"\"\n return _adj_dirs() + [_Vec3(0, 1, 0), _Vec3(0, -1, 0)]\n\n\ndef _manhattan(pos1, pos2):\n \"\"\"Return the manhattan distance. pos1 and pos2 should be iterable.\"\"\"\n return sum(abs(val1 - val2) for val1, val2 in zip(pos1, pos2))\n\n\n@singleton\ndef _get_mc():\n \"\"\"Return the Minecraft instance.\"\"\"\n return minecraft.Minecraft.create()\n\n\ndef _key_vals(dict_):\n \"\"\"Return a list of key-val tuples.\"\"\"\n return [(key, val) for key, val in dict_.iteritems()]\n\n", "step-ids": [ 52, 53, 58, 60, 79 ] }
[ 52, 53, 58, 60, 79 ]
import urllib.request import json def kind(): data={} with open("dataset.json", "r") as read_file: data = json.load(read_file) return data["kind"] def items(): data={} with open("dataset.json", "r") as read_file: data = json.load(read_file) return data["items"] #Can add a bunch of other things after refering to data
normal
{ "blob_id": "630480e9458491a26ea9060bd36541a0d5805a11", "index": 647, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef kind():\n data = {}\n with open('dataset.json', 'r') as read_file:\n data = json.load(read_file)\n return data['kind']\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef kind():\n data = {}\n with open('dataset.json', 'r') as read_file:\n data = json.load(read_file)\n return data['kind']\n\n\ndef items():\n data = {}\n with open('dataset.json', 'r') as read_file:\n data = json.load(read_file)\n return data['items']\n", "step-4": "import urllib.request\nimport json\n\n\ndef kind():\n data = {}\n with open('dataset.json', 'r') as read_file:\n data = json.load(read_file)\n return data['kind']\n\n\ndef items():\n data = {}\n with open('dataset.json', 'r') as read_file:\n data = json.load(read_file)\n return data['items']\n", "step-5": "import urllib.request\nimport json\n\ndef kind():\n data={}\n with open(\"dataset.json\", \"r\") as read_file:\n data = json.load(read_file)\n return data[\"kind\"]\n\ndef items():\n data={}\n with open(\"dataset.json\", \"r\") as read_file:\n data = json.load(read_file)\n return data[\"items\"]\n\n#Can add a bunch of other things after refering to data\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
class Thing3: <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_1|> class Thing3: def __init__(self): self.letters = 'xyz' <|reserved_special_token_0|> <|reserved_special_token_1|> class Thing3: def __init__(self): self.letters = 'xyz' <|reserved_special_token_0|> print(th.letters) <|reserved_special_token_1|> class Thing3: def __init__(self): self.letters = 'xyz' th = Thing3() print(th.letters) <|reserved_special_token_1|> class Thing3: def __init__(self): self.letters = 'xyz' # print(Thing3.letters) th = Thing3() print(th.letters)
flexible
{ "blob_id": "22bf65a20f7398b82f528112d2ba50f1dccd465c", "index": 6487, "step-1": "class Thing3:\n <mask token>\n\n\n<mask token>\n", "step-2": "class Thing3:\n\n def __init__(self):\n self.letters = 'xyz'\n\n\n<mask token>\n", "step-3": "class Thing3:\n\n def __init__(self):\n self.letters = 'xyz'\n\n\n<mask token>\nprint(th.letters)\n", "step-4": "class Thing3:\n\n def __init__(self):\n self.letters = 'xyz'\n\n\nth = Thing3()\nprint(th.letters)\n", "step-5": "\nclass Thing3:\n def __init__(self):\n self.letters = 'xyz'\n\n# print(Thing3.letters)\nth = Thing3()\nprint(th.letters)", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
#!/usr/bin/env python # coding: utf-8 # In[1]: #multi layer perceptron with back propogation import numpy as np import theano import matplotlib.pyplot as plt # In[2]: inputs=[[0,0], [1,0], [0,1], [1,1]] outputs=[1,0,0,1] # In[3]: x=theano.tensor.matrix(name='x') # In[4]: #Hidden layer as inputs from every neuron are 2 and we have 3 neuron w1val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w1=theano.shared(w1val,name='w1') w2val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w2=theano.shared(w2val,name='w2') w3val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse w3=theano.shared(w3val,name='w3') # In[5]: #Bias value is 1 b1 = theano.shared(1.1,name='b1') b2 = theano.shared(1.2,name='b2') b3 = theano.shared(1.3,name='b3') # In[6]: #computation foe every neuron #hidden layer a1sum=theano.tensor.dot(x,w1)+b1 a2sum=theano.tensor.dot(x,w2)+b2 a1=1/(1+theano.tensor.exp(-1*a1sum)) a2=1/(1+theano.tensor.exp(-1*a2sum)) #output layer neuron #stack is combining two hiding layer values & feeding to the output layer x2 = theano.tensor.stack([a1,a2],axis=1) # In[7]: '''if we write [[a11,a12,a21,a22],[a33,a34,a43,a44]]-> inputs what stack will do is [a11,a33],[a12,a34],[a21,a43],[a22,a44]''' a3sum=theano.tensor.dot(x2,w3)+b3 a3=1/(1+theano.tensor.exp(-1*a3sum)) #final output ahat=a3 #actual output a=theano.tensor.vector(name='a') # In[8]: #cost function cost=-(a*theano.tensor.log(ahat)+(1-a)*theano.tensor.log(1-ahat)).sum()#it is defined for 1/1+eraise to -z #GDA role #for calculating gradient dcostdw1 = theano.tensor.grad(cost,w1) dcostdw2 = theano.tensor.grad(cost,w2) dcostdw3 = theano.tensor.grad(cost,w3) dcostdb1=theano.tensor.grad(cost,b1) dcostdb2=theano.tensor.grad(cost,b2) dcostdb3=theano.tensor.grad(cost,b3) #apply GDA to update the weights wn1=w1-0.02*dcostdw1 wn2=w2-0.02*dcostdw2 wn3=w3-0.02*dcostdw3 wb1=b1-0.02*dcostdb1 wb2=b2-0.02*dcostdb2 wb3=b3-0.02*dcostdb3 #theano function for training the algorithm train=theano.function([x,a],[ahat,cost],updates=[(w1,wn1),(w2,wn2),(w3,wn3),(b1,wb1),(b2,wb2),(b3,wb3)]) cost1=[] val1=[] #training a model for i in range(25000): pval,costval=train(inputs,outputs) print(costval) val1.append(pval) cost1.append(costval) # In[9]: print('the final outputs are:') for i in range(len(inputs)): print("the output of x1=%d | x2=%d is %.2f"%(inputs[i][0],inputs[i][1],pval[i])) plt.plot(cost1,color='red') plt.show() # In[ ]: # In[ ]:
normal
{ "blob_id": "adec7efceb038c0ecb23c256c23c2ea212752d64", "index": 4010, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-3": "<mask token>\ninputs = [[0, 0], [1, 0], [0, 1], [1, 1]]\noutputs = [1, 0, 0, 1]\nx = theano.tensor.matrix(name='x')\nw1val = np.asarray([np.random.randn(), np.random.randn()])\nw1 = theano.shared(w1val, name='w1')\nw2val = np.asarray([np.random.randn(), np.random.randn()])\nw2 = theano.shared(w2val, name='w2')\nw3val = np.asarray([np.random.randn(), np.random.randn()])\nw3 = theano.shared(w3val, name='w3')\nb1 = theano.shared(1.1, name='b1')\nb2 = theano.shared(1.2, name='b2')\nb3 = theano.shared(1.3, name='b3')\na1sum = theano.tensor.dot(x, w1) + b1\na2sum = theano.tensor.dot(x, w2) + b2\na1 = 1 / (1 + theano.tensor.exp(-1 * a1sum))\na2 = 1 / (1 + theano.tensor.exp(-1 * a2sum))\nx2 = theano.tensor.stack([a1, a2], axis=1)\n<mask token>\na3sum = theano.tensor.dot(x2, w3) + b3\na3 = 1 / (1 + theano.tensor.exp(-1 * a3sum))\nahat = a3\na = theano.tensor.vector(name='a')\ncost = -(a * theano.tensor.log(ahat) + (1 - a) * theano.tensor.log(1 - ahat)\n ).sum()\ndcostdw1 = theano.tensor.grad(cost, w1)\ndcostdw2 = theano.tensor.grad(cost, w2)\ndcostdw3 = theano.tensor.grad(cost, w3)\ndcostdb1 = theano.tensor.grad(cost, b1)\ndcostdb2 = theano.tensor.grad(cost, b2)\ndcostdb3 = theano.tensor.grad(cost, b3)\nwn1 = w1 - 0.02 * dcostdw1\nwn2 = w2 - 0.02 * dcostdw2\nwn3 = w3 - 0.02 * dcostdw3\nwb1 = b1 - 0.02 * dcostdb1\nwb2 = b2 - 0.02 * dcostdb2\nwb3 = b3 - 0.02 * dcostdb3\ntrain = theano.function([x, a], [ahat, cost], updates=[(w1, wn1), (w2, wn2),\n (w3, wn3), (b1, wb1), (b2, wb2), (b3, wb3)])\ncost1 = []\nval1 = []\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-4": "import numpy as np\nimport theano\nimport matplotlib.pyplot as plt\ninputs = [[0, 0], [1, 0], [0, 1], [1, 1]]\noutputs = [1, 0, 0, 1]\nx = theano.tensor.matrix(name='x')\nw1val = np.asarray([np.random.randn(), np.random.randn()])\nw1 = theano.shared(w1val, name='w1')\nw2val = np.asarray([np.random.randn(), np.random.randn()])\nw2 = theano.shared(w2val, name='w2')\nw3val = np.asarray([np.random.randn(), np.random.randn()])\nw3 = theano.shared(w3val, name='w3')\nb1 = theano.shared(1.1, name='b1')\nb2 = theano.shared(1.2, name='b2')\nb3 = theano.shared(1.3, name='b3')\na1sum = theano.tensor.dot(x, w1) + b1\na2sum = theano.tensor.dot(x, w2) + b2\na1 = 1 / (1 + theano.tensor.exp(-1 * a1sum))\na2 = 1 / (1 + theano.tensor.exp(-1 * a2sum))\nx2 = theano.tensor.stack([a1, a2], axis=1)\n<mask token>\na3sum = theano.tensor.dot(x2, w3) + b3\na3 = 1 / (1 + theano.tensor.exp(-1 * a3sum))\nahat = a3\na = theano.tensor.vector(name='a')\ncost = -(a * theano.tensor.log(ahat) + (1 - a) * theano.tensor.log(1 - ahat)\n ).sum()\ndcostdw1 = theano.tensor.grad(cost, w1)\ndcostdw2 = theano.tensor.grad(cost, w2)\ndcostdw3 = theano.tensor.grad(cost, w3)\ndcostdb1 = theano.tensor.grad(cost, b1)\ndcostdb2 = theano.tensor.grad(cost, b2)\ndcostdb3 = theano.tensor.grad(cost, b3)\nwn1 = w1 - 0.02 * dcostdw1\nwn2 = w2 - 0.02 * dcostdw2\nwn3 = w3 - 0.02 * dcostdw3\nwb1 = b1 - 0.02 * dcostdb1\nwb2 = b2 - 0.02 * dcostdb2\nwb3 = b3 - 0.02 * dcostdb3\ntrain = theano.function([x, a], [ahat, cost], updates=[(w1, wn1), (w2, wn2),\n (w3, wn3), (b1, wb1), (b2, wb2), (b3, wb3)])\ncost1 = []\nval1 = []\nfor i in range(25000):\n pval, costval = train(inputs, outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print('the output of x1=%d | x2=%d is %.2f' % (inputs[i][0], inputs[i][\n 1], pval[i]))\nplt.plot(cost1, color='red')\nplt.show()\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\n# In[1]:\n\n\n#multi layer perceptron with back propogation\nimport numpy as np\nimport theano\nimport matplotlib.pyplot as plt\n\n\n# In[2]:\n\n\ninputs=[[0,0],\n [1,0],\n [0,1],\n [1,1]]\noutputs=[1,0,0,1]\n\n\n# In[3]:\n\n\nx=theano.tensor.matrix(name='x')\n\n\n# In[4]:\n\n\n#Hidden layer as inputs from every neuron are 2 and we have 3 neuron\nw1val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw1=theano.shared(w1val,name='w1')\nw2val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw2=theano.shared(w2val,name='w2')\nw3val=np.asarray([np.random.randn(),np.random.randn()])#weight of synapse\nw3=theano.shared(w3val,name='w3')\n\n\n# In[5]:\n\n\n#Bias value is 1\nb1 = theano.shared(1.1,name='b1')\nb2 = theano.shared(1.2,name='b2')\nb3 = theano.shared(1.3,name='b3')\n\n\n# In[6]:\n\n\n#computation foe every neuron\n#hidden layer\na1sum=theano.tensor.dot(x,w1)+b1\na2sum=theano.tensor.dot(x,w2)+b2\n\na1=1/(1+theano.tensor.exp(-1*a1sum))\na2=1/(1+theano.tensor.exp(-1*a2sum))\n\n#output layer neuron\n#stack is combining two hiding layer values & feeding to the output layer\nx2 = theano.tensor.stack([a1,a2],axis=1)\n\n\n# In[7]:\n\n\n'''if we write\n[[a11,a12,a21,a22],[a33,a34,a43,a44]]-> inputs\nwhat stack will do is\n[a11,a33],[a12,a34],[a21,a43],[a22,a44]'''\n\na3sum=theano.tensor.dot(x2,w3)+b3\na3=1/(1+theano.tensor.exp(-1*a3sum))\n\n#final output\nahat=a3\n\n#actual output\na=theano.tensor.vector(name='a')\n\n\n# In[8]:\n\n\n#cost function\ncost=-(a*theano.tensor.log(ahat)+(1-a)*theano.tensor.log(1-ahat)).sum()#it is defined for 1/1+eraise to -z\n#GDA role\n#for calculating gradient\n\ndcostdw1 = theano.tensor.grad(cost,w1)\ndcostdw2 = theano.tensor.grad(cost,w2)\ndcostdw3 = theano.tensor.grad(cost,w3)\n\ndcostdb1=theano.tensor.grad(cost,b1)\ndcostdb2=theano.tensor.grad(cost,b2)\ndcostdb3=theano.tensor.grad(cost,b3)\n\n#apply GDA to update the weights\nwn1=w1-0.02*dcostdw1\nwn2=w2-0.02*dcostdw2\nwn3=w3-0.02*dcostdw3\n\nwb1=b1-0.02*dcostdb1\nwb2=b2-0.02*dcostdb2\nwb3=b3-0.02*dcostdb3\n#theano function for training the algorithm\ntrain=theano.function([x,a],[ahat,cost],updates=[(w1,wn1),(w2,wn2),(w3,wn3),(b1,wb1),(b2,wb2),(b3,wb3)])\n\ncost1=[]\nval1=[]\n\n#training a model\nfor i in range(25000):\n pval,costval=train(inputs,outputs)\n print(costval)\n val1.append(pval)\n cost1.append(costval)\n\n\n# In[9]:\n\n\nprint('the final outputs are:')\nfor i in range(len(inputs)):\n print(\"the output of x1=%d | x2=%d is %.2f\"%(inputs[i][0],inputs[i][1],pval[i]))\nplt.plot(cost1,color='red')\nplt.show()\n\n\n# In[ ]:\n\n\n\n\n\n# In[ ]:\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201) <|reserved_special_token_1|> <|reserved_special_token_0|> class UsersView(Resource): <|reserved_special_token_0|> def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) <|reserved_special_token_0|> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201) <|reserved_special_token_1|> <|reserved_special_token_0|> class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) <|reserved_special_token_0|> class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201) <|reserved_special_token_1|> <|reserved_special_token_0|> class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({'Message': 'Username already exists'}), 202) elif resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.save(resp) return make_response(jsonify({'Message': 'User Registered. Please login'}), 201) def get(self): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: users = self.db.get_users() return make_response(jsonify({'Users': users, 'Message': 'All Users'}), 200) class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({'Message': 'Token needed. Please login'}) else: res = self.db.get_single_user(id) return make_response(jsonify({'Response': res}), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) else: self.db.delete_user(id) return {'Message': 'User Deleted'} def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({'Message': 'Token needed. Please login'}) elif not user: return jsonify({'Message': 'User ID does not exist'}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({'Message': resp}), 201) else: self.db.update_user(id, resp) return make_response(jsonify({'Message': 'User Details Updated'}), 201) <|reserved_special_token_1|> from flask_restful import Resource from flask import jsonify, make_response, request from ..models.Users import UsersModel from ..models.Incidents import IncidentsModel from app.api.validations.validations import Validations class UsersView(Resource): def __init__(self): self.db = UsersModel() def post(self): data = request.get_json() resp = Validations().validate_user_inputs(data) username = data['username'] user = self.db.register_users(username) if len(user) != 0: return make_response(jsonify({ 'Message': 'Username already exists' }), 202) elif resp == str(resp): return make_response(jsonify({ "Message": resp }), 201) else: self.db.save(resp) return make_response(jsonify({ "Message": "User Registered. Please login" }), 201) def get(self): access_token = Validations().get_access_token() if not access_token: return jsonify({"Message": "Token needed. Please login"}) else: users = self.db.get_users() return make_response(jsonify({ "Users": users, "Message": "All Users" }), 200) class LoginView(Resource): def __init__(self): self.db = UsersModel() self.user_db = IncidentsModel() def post(self): data = request.get_json() username = data['username'] password = data['password'] auth = self.db.authenticate(username, password) return auth class UserView(Resource): def __init__(self): self.db = UsersModel() def get(self, id): access_token = Validations().get_access_token() if not access_token: return jsonify({"Message": "Token needed. Please login"}) else: res = self.db.get_single_user(id) return make_response(jsonify({ 'Response': res }), 201) def delete(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({"Message": "Token needed. Please login"}) elif not user: return jsonify({"Message": "User ID does not exist"}) else: self.db.delete_user(id) return { "Message": "User Deleted" } def put(self, id): access_token = Validations().get_access_token() user = self.db.check_user_id(id) if not access_token: return jsonify({"Message": "Token needed. Please login"}) elif not user: return jsonify({"Message": "User ID does not exist"}) if access_token: data = request.get_json() resp = Validations().validate_user_inputs(data) if resp == str(resp): return make_response(jsonify({ "Message": resp }), 201) else: self.db.update_user(id, resp) return make_response(jsonify({ 'Message': 'User Details Updated' }), 201)
flexible
{ "blob_id": "0188355f84054143bd4ff9da63f1128e9eb5b23b", "index": 2244, "step-1": "<mask token>\n\n\nclass LoginView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n self.user_db = IncidentsModel()\n\n def post(self):\n data = request.get_json()\n username = data['username']\n password = data['password']\n auth = self.db.authenticate(username, password)\n return auth\n\n\nclass UserView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def get(self, id):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n else:\n res = self.db.get_single_user(id)\n return make_response(jsonify({'Response': res}), 201)\n\n def delete(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n else:\n self.db.delete_user(id)\n return {'Message': 'User Deleted'}\n\n def put(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n if access_token:\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n if resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.update_user(id, resp)\n return make_response(jsonify({'Message':\n 'User Details Updated'}), 201)\n", "step-2": "<mask token>\n\n\nclass UsersView(Resource):\n <mask token>\n\n def post(self):\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n username = data['username']\n user = self.db.register_users(username)\n if len(user) != 0:\n return make_response(jsonify({'Message':\n 'Username already exists'}), 202)\n elif resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.save(resp)\n return make_response(jsonify({'Message':\n 'User Registered. Please login'}), 201)\n <mask token>\n\n\nclass LoginView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n self.user_db = IncidentsModel()\n\n def post(self):\n data = request.get_json()\n username = data['username']\n password = data['password']\n auth = self.db.authenticate(username, password)\n return auth\n\n\nclass UserView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def get(self, id):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n else:\n res = self.db.get_single_user(id)\n return make_response(jsonify({'Response': res}), 201)\n\n def delete(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n else:\n self.db.delete_user(id)\n return {'Message': 'User Deleted'}\n\n def put(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n if access_token:\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n if resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.update_user(id, resp)\n return make_response(jsonify({'Message':\n 'User Details Updated'}), 201)\n", "step-3": "<mask token>\n\n\nclass UsersView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def post(self):\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n username = data['username']\n user = self.db.register_users(username)\n if len(user) != 0:\n return make_response(jsonify({'Message':\n 'Username already exists'}), 202)\n elif resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.save(resp)\n return make_response(jsonify({'Message':\n 'User Registered. Please login'}), 201)\n <mask token>\n\n\nclass LoginView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n self.user_db = IncidentsModel()\n\n def post(self):\n data = request.get_json()\n username = data['username']\n password = data['password']\n auth = self.db.authenticate(username, password)\n return auth\n\n\nclass UserView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def get(self, id):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n else:\n res = self.db.get_single_user(id)\n return make_response(jsonify({'Response': res}), 201)\n\n def delete(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n else:\n self.db.delete_user(id)\n return {'Message': 'User Deleted'}\n\n def put(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n if access_token:\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n if resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.update_user(id, resp)\n return make_response(jsonify({'Message':\n 'User Details Updated'}), 201)\n", "step-4": "<mask token>\n\n\nclass UsersView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def post(self):\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n username = data['username']\n user = self.db.register_users(username)\n if len(user) != 0:\n return make_response(jsonify({'Message':\n 'Username already exists'}), 202)\n elif resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.save(resp)\n return make_response(jsonify({'Message':\n 'User Registered. Please login'}), 201)\n\n def get(self):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n else:\n users = self.db.get_users()\n return make_response(jsonify({'Users': users, 'Message':\n 'All Users'}), 200)\n\n\nclass LoginView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n self.user_db = IncidentsModel()\n\n def post(self):\n data = request.get_json()\n username = data['username']\n password = data['password']\n auth = self.db.authenticate(username, password)\n return auth\n\n\nclass UserView(Resource):\n\n def __init__(self):\n self.db = UsersModel()\n\n def get(self, id):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n else:\n res = self.db.get_single_user(id)\n return make_response(jsonify({'Response': res}), 201)\n\n def delete(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n else:\n self.db.delete_user(id)\n return {'Message': 'User Deleted'}\n\n def put(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({'Message': 'Token needed. Please login'})\n elif not user:\n return jsonify({'Message': 'User ID does not exist'})\n if access_token:\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n if resp == str(resp):\n return make_response(jsonify({'Message': resp}), 201)\n else:\n self.db.update_user(id, resp)\n return make_response(jsonify({'Message':\n 'User Details Updated'}), 201)\n", "step-5": "from flask_restful import Resource\nfrom flask import jsonify, make_response, request\n\nfrom ..models.Users import UsersModel\n\nfrom ..models.Incidents import IncidentsModel\n\nfrom app.api.validations.validations import Validations\n\n\nclass UsersView(Resource):\n def __init__(self):\n self.db = UsersModel()\n\n def post(self):\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n username = data['username']\n user = self.db.register_users(username)\n if len(user) != 0:\n return make_response(jsonify({\n 'Message': 'Username already exists'\n }), 202)\n elif resp == str(resp):\n return make_response(jsonify({\n \"Message\": resp\n }), 201)\n else:\n self.db.save(resp)\n return make_response(jsonify({\n \"Message\": \"User Registered. Please login\"\n }), 201)\n\n def get(self):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({\"Message\": \"Token needed. Please login\"})\n else:\n users = self.db.get_users()\n return make_response(jsonify({\n \"Users\": users,\n \"Message\": \"All Users\"\n }), 200)\n\n\nclass LoginView(Resource):\n def __init__(self):\n self.db = UsersModel()\n self.user_db = IncidentsModel()\n\n def post(self):\n data = request.get_json()\n username = data['username']\n password = data['password']\n auth = self.db.authenticate(username, password)\n return auth\n\n\nclass UserView(Resource):\n def __init__(self):\n self.db = UsersModel()\n\n def get(self, id):\n access_token = Validations().get_access_token()\n if not access_token:\n return jsonify({\"Message\": \"Token needed. Please login\"})\n else:\n res = self.db.get_single_user(id)\n return make_response(jsonify({\n 'Response': res\n }), 201)\n\n def delete(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({\"Message\": \"Token needed. Please login\"})\n elif not user:\n return jsonify({\"Message\": \"User ID does not exist\"})\n else:\n self.db.delete_user(id)\n return {\n \"Message\": \"User Deleted\"\n }\n\n def put(self, id):\n access_token = Validations().get_access_token()\n user = self.db.check_user_id(id)\n if not access_token:\n return jsonify({\"Message\": \"Token needed. Please login\"})\n elif not user:\n return jsonify({\"Message\": \"User ID does not exist\"})\n if access_token:\n data = request.get_json()\n resp = Validations().validate_user_inputs(data)\n if resp == str(resp):\n return make_response(jsonify({\n \"Message\": resp\n }), 201)\n else:\n self.db.update_user(id, resp)\n return make_response(jsonify({\n 'Message': 'User Details Updated'\n }), 201)\n", "step-ids": [ 8, 10, 11, 12, 14 ] }
[ 8, 10, 11, 12, 14 ]
# Generated by Django 2.1 on 2018-12-05 00:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('PleniApp', '0006_auto_20181203_1144'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField()), ('date', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Reply', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('body', models.TextField()), ('date', models.DateTimeField(auto_now_add=True)), ('comment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='PleniApp.Comment')), ], ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('username', models.CharField(max_length=50)), ('password', models.CharField(max_length=50)), ('user_type', models.CharField(default='regular', max_length=20)), ], ), migrations.AddField( model_name='comment', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='PleniApp.User'), ), ]
normal
{ "blob_id": "ccb6973910dba5897f6a12be23c74a35e848313b", "index": 4005, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('PleniApp', '0006_auto_20181203_1144')]\n operations = [migrations.CreateModel(name='Comment', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('body', models.TextField()), ('date',\n models.DateTimeField(auto_now_add=True))]), migrations.CreateModel(\n name='Reply', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('body',\n models.TextField()), ('date', models.DateTimeField(auto_now_add=\n True)), ('comment', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='PleniApp.Comment'))]), migrations.CreateModel\n (name='User', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('username',\n models.CharField(max_length=50)), ('password', models.CharField(\n max_length=50)), ('user_type', models.CharField(default='regular',\n max_length=20))]), migrations.AddField(model_name='comment', name=\n 'user', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='PleniApp.User'))]\n", "step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('PleniApp', '0006_auto_20181203_1144')]\n operations = [migrations.CreateModel(name='Comment', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('body', models.TextField()), ('date',\n models.DateTimeField(auto_now_add=True))]), migrations.CreateModel(\n name='Reply', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('body',\n models.TextField()), ('date', models.DateTimeField(auto_now_add=\n True)), ('comment', models.ForeignKey(on_delete=django.db.models.\n deletion.CASCADE, to='PleniApp.Comment'))]), migrations.CreateModel\n (name='User', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('username',\n models.CharField(max_length=50)), ('password', models.CharField(\n max_length=50)), ('user_type', models.CharField(default='regular',\n max_length=20))]), migrations.AddField(model_name='comment', name=\n 'user', field=models.ForeignKey(on_delete=django.db.models.deletion\n .CASCADE, to='PleniApp.User'))]\n", "step-5": "# Generated by Django 2.1 on 2018-12-05 00:02\n\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('PleniApp', '0006_auto_20181203_1144'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='Comment',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('body', models.TextField()),\n ('date', models.DateTimeField(auto_now_add=True)),\n ],\n ),\n migrations.CreateModel(\n name='Reply',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('body', models.TextField()),\n ('date', models.DateTimeField(auto_now_add=True)),\n ('comment', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='PleniApp.Comment')),\n ],\n ),\n migrations.CreateModel(\n name='User',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('username', models.CharField(max_length=50)),\n ('password', models.CharField(max_length=50)),\n ('user_type', models.CharField(default='regular', max_length=20)),\n ],\n ),\n migrations.AddField(\n model_name='comment',\n name='user',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='PleniApp.User'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys import HTSeq import re import string import glob import os import time import difflib import argparse def parse_input(): parser = argparse.ArgumentParser(description=""" USAGE: python make_figs.py -f data_file """) # If the -b option is used, tRNAs with no tails are not counted. # This speeds up the removal of duplicates for large datasets #parser.add_option("-b", "--blanks", action="store_false", dest="includeBlankTails", default=True) parser.add_argument("-f", "--data_file", action="store", dest="data_file", help="Filename of data.") args = parser.parse_args() return args def write_most_common_tails(inserts, base_filename, control=False): for exp in inserts: with open("%s_%s" % (base_filename, os.path.basename(exp).rstrip('.inserts').rstrip( '.fastq')), 'w') as f: if(not control): lines = inserts[exp].write_table_of_most_common_tails(control) if(control): lines = inserts[exp].write_table_of_most_common_tails( control, get_pvalues=True) f.write(lines) def parse_data_file(filename): data = {} print "Opening %s with file size %i..." % ( filename, os.path.getsize(filename)) with open(filename, 'r') as f: dataset = "" for li in f: #print li s = li.strip('\n').split('\t') m = re.match(r'number tails in ([^:]+):.*', li) if(m is not None): dataset = m.group(1) dataset = os.path.basename(dataset) cur_dataset = dataset data[dataset] = {'n_tails': s[1:]} continue m = re.match(r'([AGCTN]):.*', s[0]) if(m is not None): data[dataset][m.group(1)] = s[1:] continue m = re.match(r'tail length:.*', li) if(m is not None): data[dataset]['tail_len'] = s[1:] continue m = re.match(r'.*Number of unique.*', li) if(m is not None): data[dataset]['n_unique'] = s[1:] continue return data def check_data_agreement(data): for exp in data: max_range = min(len(data[exp]['n_tails']), len(data[exp]['tail_len']), len(data[exp]['n_unique'])) n_tails = 0 for index in range(1, max_range-1): try: n_tails += float(data[exp]['n_tails'][index]) except: print "Error at %s, %i" % (exp, index) print "%s: total tails=%f" % (exp, n_tails) def write_for_R(data, src_path): src_path = os.path.dirname(os.path.realpath(__file__)) files_for_R = list() check_data_agreement(data) for exp in data: with open("%s/figs/%s.forR" % ( src_path, exp.rstrip('.fastq.inserts') ), 'w') as f: li = "tail_len\tn_tails\tn_unique\tA\tC\tT\tG\n" max_range = min(len(data[exp]['n_tails']), len(data[exp]['tail_len']), len(data[exp]['n_unique'])) for index in range(0, max_range): li += "%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % ( data[exp]['tail_len'][index], data[exp]['n_tails'][index], data[exp]['n_unique'][index], data[exp]['A'][index], data[exp]['C'][index], data[exp]['T'][index], data[exp]['G'][index]) f.write(li) files_for_R.append("%s/figs/%s.forR" % ( src_path, exp.rstrip('.fastq.inserts'))) return files_for_R def r_script_for_barplot(files_for_R, src_path): for filename in files_for_R: li = """ f = read.table("%s", head=T)""" % filename li += """ bases = as.data.frame(cbind(f$A, f$C, f$T, f$G)) m = as.matrix(bases) outfname = "%s/figs/barplot_%s.eps" """ % (src_path, os.path.basename(filename)) li += r''' library(RColorBrewer) my_cols <- brewer.pal(4, "RdBu") setEPS(width=5,height=3); postscript(outfname) barplot(t(m), xlab = 'Tail length', ylab = 'Percent base composition', legend=c('A','C','T','G'), col=my_cols) dev.off() ''' li += """ outfname = "%s/figs/plot_%s.eps" """ % (src_path, os.path.basename(filename)) li += r''' library(RColorBrewer) my_cols <- brewer.pal(4, "RdBu") setEPS(width=5,height=10); postscript(outfname) par(mfrow=c(3,1)) plot(f$n_tails, x=f$tail_len, type='l', xlab='Tail length', ylab='Number of tails') plot(f$n_unique, x=f$tail_len, type='l', xlab='Tail length', ylab='Number of unique tails') barplot(t(m), xlab = 'Tail length', ylab = 'Percent base composition', legend=c('A','C','T','G'), col=my_cols) dev.off() ''' with open('tmp.r', 'w') as f: f.write(li) cmdl = """R CMD BATCH tmp.r""" os.system(cmdl) def make_figs(data_filename, src_path): print "In make_figs. Processing file %s" % data_filename data = parse_data_file(data_filename) if(not os.path.exists(src_path + "/figs")): print "making %s/figs" % src_path os.system("mkdir %s/figs" % src_path) files_for_R = write_for_R(data, src_path) r_script_for_barplot(files_for_R, src_path) if __name__ == '__main__': src_path = os.path.dirname(os.path.realpath(__file__)) args = parse_input() data = parse_data_file(args.data_file) if(not os.path.exists(src_path + '/figs')): os.system('mkdir ' + src_path + '/figs') files_for_R = write_for_R(data) r_script_for_barplot(files_for_R)
normal
{ "blob_id": "05f5931a53c9916f151f42910575f9c5533bfceb", "index": 9921, "step-1": "import sys\nimport HTSeq\nimport re\nimport string\nimport glob\nimport os\nimport time\nimport difflib\nimport argparse\n\n\ndef parse_input():\n parser = argparse.ArgumentParser(description=\"\"\"\n USAGE: python make_figs.py -f data_file\n \"\"\")\n\n # If the -b option is used, tRNAs with no tails are not counted.\n # This speeds up the removal of duplicates for large datasets\n #parser.add_option(\"-b\", \"--blanks\", action=\"store_false\", dest=\"includeBlankTails\", default=True)\n\n parser.add_argument(\"-f\", \"--data_file\", action=\"store\",\n dest=\"data_file\",\n help=\"Filename of data.\")\n args = parser.parse_args()\n return args\n\n\ndef write_most_common_tails(inserts, base_filename, control=False):\n for exp in inserts:\n with open(\"%s_%s\" % (base_filename,\n os.path.basename(exp).rstrip('.inserts').rstrip(\n '.fastq')),\n 'w') as f:\n if(not control):\n lines = inserts[exp].write_table_of_most_common_tails(control)\n if(control):\n lines = inserts[exp].write_table_of_most_common_tails(\n control, get_pvalues=True)\n f.write(lines)\n\n\ndef parse_data_file(filename):\n data = {}\n print \"Opening %s with file size %i...\" % (\n filename, os.path.getsize(filename))\n with open(filename, 'r') as f:\n dataset = \"\"\n for li in f:\n #print li\n s = li.strip('\\n').split('\\t')\n m = re.match(r'number tails in ([^:]+):.*', li)\n if(m is not None):\n dataset = m.group(1)\n dataset = os.path.basename(dataset)\n cur_dataset = dataset\n data[dataset] = {'n_tails': s[1:]}\n continue\n m = re.match(r'([AGCTN]):.*', s[0])\n if(m is not None):\n data[dataset][m.group(1)] = s[1:]\n continue\n m = re.match(r'tail length:.*', li)\n if(m is not None):\n data[dataset]['tail_len'] = s[1:]\n continue\n m = re.match(r'.*Number of unique.*', li)\n if(m is not None):\n data[dataset]['n_unique'] = s[1:]\n continue\n return data\n \n\ndef check_data_agreement(data):\n for exp in data:\n max_range = min(len(data[exp]['n_tails']),\n len(data[exp]['tail_len']),\n len(data[exp]['n_unique']))\n n_tails = 0\n for index in range(1, max_range-1):\n try:\n n_tails += float(data[exp]['n_tails'][index])\n except:\n print \"Error at %s, %i\" % (exp, index)\n print \"%s: total tails=%f\" % (exp, n_tails)\n \n\ndef write_for_R(data, src_path):\n src_path = os.path.dirname(os.path.realpath(__file__))\n files_for_R = list()\n check_data_agreement(data)\n for exp in data:\n with open(\"%s/figs/%s.forR\" % (\n src_path, exp.rstrip('.fastq.inserts')\n ), 'w') as f:\n li = \"tail_len\\tn_tails\\tn_unique\\tA\\tC\\tT\\tG\\n\"\n max_range = min(len(data[exp]['n_tails']),\n len(data[exp]['tail_len']),\n len(data[exp]['n_unique']))\n for index in range(0, max_range):\n li += \"%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\n\" % (\n data[exp]['tail_len'][index],\n data[exp]['n_tails'][index],\n data[exp]['n_unique'][index],\n data[exp]['A'][index],\n data[exp]['C'][index],\n data[exp]['T'][index],\n data[exp]['G'][index])\n f.write(li)\n files_for_R.append(\"%s/figs/%s.forR\" % (\n src_path, exp.rstrip('.fastq.inserts')))\n return files_for_R\n\n\ndef r_script_for_barplot(files_for_R, src_path):\n for filename in files_for_R:\n li = \"\"\"\n f = read.table(\"%s\", head=T)\"\"\" % filename\n li += \"\"\"\n bases = as.data.frame(cbind(f$A, f$C, f$T, f$G))\n m = as.matrix(bases)\n outfname = \"%s/figs/barplot_%s.eps\"\n \"\"\" % (src_path, os.path.basename(filename))\n li += r'''\n library(RColorBrewer)\n my_cols <- brewer.pal(4, \"RdBu\")\n setEPS(width=5,height=3); postscript(outfname)\n barplot(t(m), xlab = 'Tail length',\n ylab = 'Percent base composition',\n legend=c('A','C','T','G'), col=my_cols)\n dev.off()\n '''\n li += \"\"\"\n outfname = \"%s/figs/plot_%s.eps\"\n\"\"\" % (src_path, os.path.basename(filename))\n li += r'''\n library(RColorBrewer)\n my_cols <- brewer.pal(4, \"RdBu\")\n setEPS(width=5,height=10); postscript(outfname)\n par(mfrow=c(3,1))\n plot(f$n_tails, x=f$tail_len, type='l', xlab='Tail length',\n ylab='Number of tails')\n plot(f$n_unique, x=f$tail_len, type='l', xlab='Tail length',\n ylab='Number of unique tails')\n barplot(t(m), xlab = 'Tail length',\n ylab = 'Percent base composition',\n legend=c('A','C','T','G'), col=my_cols)\n dev.off()\n '''\n with open('tmp.r', 'w') as f:\n f.write(li)\n cmdl = \"\"\"R CMD BATCH tmp.r\"\"\"\n os.system(cmdl)\n\n\ndef make_figs(data_filename, src_path):\n print \"In make_figs. Processing file %s\" % data_filename\n data = parse_data_file(data_filename)\n if(not os.path.exists(src_path + \"/figs\")):\n print \"making %s/figs\" % src_path\n os.system(\"mkdir %s/figs\" % src_path)\n files_for_R = write_for_R(data, src_path)\n r_script_for_barplot(files_for_R, src_path)\n\n \nif __name__ == '__main__':\n src_path = os.path.dirname(os.path.realpath(__file__))\n args = parse_input()\n data = parse_data_file(args.data_file)\n if(not os.path.exists(src_path + '/figs')):\n os.system('mkdir ' + src_path + '/figs')\n files_for_R = write_for_R(data)\n r_script_for_barplot(files_for_R)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" """ import os import json import csv cutoff = float(input("Tolerance (decimal)? ")) docpath = "C:/Users/RackS/Documents/" out = open("isosegmenter_scoring_error"+str(cutoff*100)+".csv", 'w', encoding='UTF-8') summary = open("isosegmenter_score_summary_error"+str(cutoff*100)+".txt", 'w', encoding='UTF-8') out.write("SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\n") tp_eq = 0 fp_eq = 0 fn_eq = 0 for file in os.listdir(docpath+"isoSegmenter100"): if file.endswith(".csv") and "E" in file: predict_data = csv.DictReader(open(docpath+"isoSegmenter100/"+file, 'r', encoding='UTF-8')) seqid = file.replace(".csv", "") with open(docpath+"ground_truth100/"+seqid+".json", 'r', encoding='UTF-8') as json_file: truth_data = json.load(json_file) true_boundaries = [] tp_seq = 0 fp_seq = 0 fn_seq = 0 for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data['domain_length'])): true_boundaries.append(i) for pred_domain in predict_data: matched = False for i in range(0, len(true_boundaries) - 1): startdiff = int(pred_domain['Start']) - true_boundaries[i] enddiff = int(pred_domain['End']) - true_boundaries[i+1] tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i]) if abs(startdiff) <= tolerance: if abs(enddiff) <= tolerance: tp_seq += 1 matched = True print(seqid) print("START MATCH: " + str(true_boundaries[i]) + ", " + pred_domain['Start']) print("END MATCH: " + str(true_boundaries[i+1]) + ", " + pred_domain['End']) print("DIFFERENCES: " + str(startdiff) + ", " + str(enddiff) + ", TOLERANCE = " + str(tolerance)) print() break if not matched: fp_seq += 1 fn_seq = int(truth_data['domains']) - tp_seq tp_eq += tp_seq fp_eq += fp_seq fn_eq += fn_seq sensitivity = round(tp_seq/(tp_seq + fn_seq), 5) ppv = round(tp_seq/(tp_seq+fp_seq), 5) jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5) out.write(seqid+",E,"+str(truth_data['domains'])+","+str(tp_seq)+","+str(fp_seq)+","+str(fn_seq)+","+str(sensitivity)+","+str(ppv)+","+str(jaccard)+"\n") summary.write("EQUAL-LENGTH STATISTICS\n") summary.write("TP equal domain: " + str(tp_eq) + "\n") summary.write("FP equal domain: " + str(fp_eq) + "\n") summary.write("FN equal domain: " + str(fn_eq) + "\n") summary.write("Sensitivity: " + str(round(tp_eq/(tp_eq + fn_eq),5)) + "\n") summary.write("Precision(PPV): " + str(round(tp_eq/(tp_eq + fp_eq),5)) + "\n") summary.write("Jaccard Index: " + str(round(tp_eq/(tp_eq + fp_eq + fn_eq),5)) + "\n\n") tp_var = 0 fp_var = 0 fn_var = 0 for file in os.listdir(docpath+"isoSegmenter100"): if file.endswith(".csv") and "V" in file: predict_data = csv.DictReader(open(docpath+"isoSegmenter100/"+file, 'r', encoding='UTF-8')) seqid = file.replace(".csv", "") with open(docpath+"ground_truth100/"+seqid+".json", 'r', encoding='UTF-8') as json_file: truth_data = json.load(json_file) true_boundaries = [1] tp_seq = 0 fp_seq = 0 fn_seq = 0 for i in range(1, int(truth_data['domains']) + 1): b_next = true_boundaries[i-1] + int(truth_data['length_'+str(i)]) true_boundaries.append(b_next) for pred_domain in predict_data: matched = False for i in range(0, len(true_boundaries) - 1): startdiff = int(pred_domain['Start']) - true_boundaries[i] enddiff = int(pred_domain['End']) - true_boundaries[i+1] tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i]) if abs(startdiff) <= tolerance: if abs(enddiff) <= tolerance: tp_seq += 1 matched = True print(seqid) print("START MATCH: " + str(true_boundaries[i]) + ", " + pred_domain['Start']) print("END MATCH: " + str(true_boundaries[i+1]) + ", " + pred_domain['End']) print("DIFFERENCES: " + str(startdiff) + ", " + str(enddiff) + ", TOLERANCE = " + str(tolerance)) print() break if not matched: fp_seq += 1 fn_seq = int(truth_data['domains']) - tp_seq tp_var += tp_seq fp_var += fp_seq fn_var += fn_seq sensitivity = round(tp_seq/(tp_seq + fn_seq), 5) ppv = round(tp_seq/(tp_seq+fp_seq), 5) jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5) out.write(seqid+",V,"+str(truth_data['domains'])+","+str(tp_seq)+","+str(fp_seq)+","+str(fn_seq)+","+str(sensitivity)+","+str(ppv)+","+str(jaccard)+"\n") summary.write("VARIABLE-LENGTH STATISTICS\n") summary.write("TP equal domain: " + str(tp_var) + "\n") summary.write("FP equal domain: " + str(fp_var) + "\n") summary.write("FN equal domain: " + str(fn_var) + "\n") summary.write("Sensitivity: " + str(round(tp_var/(tp_var + fn_var),5)) + "\n") summary.write("Precision(PPV): " + str(round(tp_var/(tp_var + fp_var),5)) + "\n") summary.write("Jaccard Index: " + str(round(tp_var/(tp_var + fp_var + fn_var),5)) + "\n\n") summary.write("OVERALL STATISTICS\n") summary.write("TP: " + str(tp_var + tp_eq) + "\n") summary.write("FP: " + str(fp_var + fp_eq) + "\n") summary.write("FN: " + str(fn_var + fn_eq) + "\n") summary.write("Sensitivity: " + str(round((tp_var + tp_eq)/(tp_var + fn_var + tp_eq + fn_eq),5)) + "\n") summary.write("Precision(PPV): " + str(round((tp_var + tp_eq)/(tp_var + fp_var + tp_eq + fp_eq),5)) + "\n") summary.write("Jaccard Index: " + str(round((tp_var + tp_eq)/(tp_var + fp_var + fn_var + tp_eq + fp_eq + fn_eq),5)) + "\n")
normal
{ "blob_id": "af2aa236f6bfc582093faf868a374be1ebdfabf2", "index": 1235, "step-1": "<mask token>\n", "step-2": "<mask token>\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\n<mask token>\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\n<mask token>\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-3": "<mask token>\ncutoff = float(input('Tolerance (decimal)? '))\ndocpath = 'C:/Users/RackS/Documents/'\nout = open('isosegmenter_scoring_error' + str(cutoff * 100) + '.csv', 'w',\n encoding='UTF-8')\nsummary = open('isosegmenter_score_summary_error' + str(cutoff * 100) +\n '.txt', 'w', encoding='UTF-8')\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-4": "<mask token>\nimport os\nimport json\nimport csv\ncutoff = float(input('Tolerance (decimal)? '))\ndocpath = 'C:/Users/RackS/Documents/'\nout = open('isosegmenter_scoring_error' + str(cutoff * 100) + '.csv', 'w',\n encoding='UTF-8')\nsummary = open('isosegmenter_score_summary_error' + str(cutoff * 100) +\n '.txt', 'w', encoding='UTF-8')\nout.write('SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n')\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'E' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data\n ['domain_length'])):\n true_boundaries.append(i)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',E,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('EQUAL-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_eq) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_eq) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_eq / (tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_eq / (tp_eq + fp_eq), 5)) +\n '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_eq / (tp_eq + fp_eq + fn_eq),\n 5)) + '\\n\\n')\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath + 'isoSegmenter100'):\n if file.endswith('.csv') and 'V' in file:\n predict_data = csv.DictReader(open(docpath + 'isoSegmenter100/' +\n file, 'r', encoding='UTF-8'))\n seqid = file.replace('.csv', '')\n with open(docpath + 'ground_truth100/' + seqid + '.json', 'r',\n encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i - 1] + int(truth_data['length_' +\n str(i)])\n true_boundaries.append(b_next)\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i + 1]\n tolerance = cutoff * (true_boundaries[i + 1] -\n true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print('START MATCH: ' + str(true_boundaries[i]) +\n ', ' + pred_domain['Start'])\n print('END MATCH: ' + str(true_boundaries[i + 1]) +\n ', ' + pred_domain['End'])\n print('DIFFERENCES: ' + str(startdiff) + ', ' + str\n (enddiff) + ', TOLERANCE = ' + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq / (tp_seq + fn_seq), 5)\n ppv = round(tp_seq / (tp_seq + fp_seq), 5)\n jaccard = round(tp_seq / (tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid + ',V,' + str(truth_data['domains']) + ',' + str(\n tp_seq) + ',' + str(fp_seq) + ',' + str(fn_seq) + ',' + str(\n sensitivity) + ',' + str(ppv) + ',' + str(jaccard) + '\\n')\nsummary.write('VARIABLE-LENGTH STATISTICS\\n')\nsummary.write('TP equal domain: ' + str(tp_var) + '\\n')\nsummary.write('FP equal domain: ' + str(fp_var) + '\\n')\nsummary.write('FN equal domain: ' + str(fn_var) + '\\n')\nsummary.write('Sensitivity: ' + str(round(tp_var / (tp_var + fn_var), 5)) +\n '\\n')\nsummary.write('Precision(PPV): ' + str(round(tp_var / (tp_var + fp_var), 5)\n ) + '\\n')\nsummary.write('Jaccard Index: ' + str(round(tp_var / (tp_var + fp_var +\n fn_var), 5)) + '\\n\\n')\nsummary.write('OVERALL STATISTICS\\n')\nsummary.write('TP: ' + str(tp_var + tp_eq) + '\\n')\nsummary.write('FP: ' + str(fp_var + fp_eq) + '\\n')\nsummary.write('FN: ' + str(fn_var + fn_eq) + '\\n')\nsummary.write('Sensitivity: ' + str(round((tp_var + tp_eq) / (tp_var +\n fn_var + tp_eq + fn_eq), 5)) + '\\n')\nsummary.write('Precision(PPV): ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + tp_eq + fp_eq), 5)) + '\\n')\nsummary.write('Jaccard Index: ' + str(round((tp_var + tp_eq) / (tp_var +\n fp_var + fn_var + tp_eq + fp_eq + fn_eq), 5)) + '\\n')\n", "step-5": "\"\"\"\n\"\"\"\nimport os\nimport json\nimport csv\n\ncutoff = float(input(\"Tolerance (decimal)? \"))\ndocpath = \"C:/Users/RackS/Documents/\"\nout = open(\"isosegmenter_scoring_error\"+str(cutoff*100)+\".csv\", 'w', encoding='UTF-8')\nsummary = open(\"isosegmenter_score_summary_error\"+str(cutoff*100)+\".txt\", 'w', encoding='UTF-8')\nout.write(\"SEQUENCE_ID,TYPE,DOMAINS,TP,FP,FN,Sens,PPV,Jaccard\\n\")\n\ntp_eq = 0\nfp_eq = 0\nfn_eq = 0\n\nfor file in os.listdir(docpath+\"isoSegmenter100\"):\n if file.endswith(\".csv\") and \"E\" in file:\n predict_data = csv.DictReader(open(docpath+\"isoSegmenter100/\"+file, 'r', encoding='UTF-8'))\n seqid = file.replace(\".csv\", \"\")\n with open(docpath+\"ground_truth100/\"+seqid+\".json\", 'r', encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n\n true_boundaries = []\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(0, int(truth_data['tot_length']) + 1, int(truth_data['domain_length'])):\n true_boundaries.append(i)\n\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i+1]\n tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print(\"START MATCH: \" + str(true_boundaries[i]) + \", \" + pred_domain['Start'])\n print(\"END MATCH: \" + str(true_boundaries[i+1]) + \", \" + pred_domain['End'])\n print(\"DIFFERENCES: \" + str(startdiff) + \", \" + str(enddiff) + \", TOLERANCE = \" + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_eq += tp_seq\n fp_eq += fp_seq\n fn_eq += fn_seq\n sensitivity = round(tp_seq/(tp_seq + fn_seq), 5)\n ppv = round(tp_seq/(tp_seq+fp_seq), 5)\n jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid+\",E,\"+str(truth_data['domains'])+\",\"+str(tp_seq)+\",\"+str(fp_seq)+\",\"+str(fn_seq)+\",\"+str(sensitivity)+\",\"+str(ppv)+\",\"+str(jaccard)+\"\\n\")\n\nsummary.write(\"EQUAL-LENGTH STATISTICS\\n\")\nsummary.write(\"TP equal domain: \" + str(tp_eq) + \"\\n\")\nsummary.write(\"FP equal domain: \" + str(fp_eq) + \"\\n\")\nsummary.write(\"FN equal domain: \" + str(fn_eq) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round(tp_eq/(tp_eq + fn_eq),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round(tp_eq/(tp_eq + fp_eq),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round(tp_eq/(tp_eq + fp_eq + fn_eq),5)) + \"\\n\\n\")\n\ntp_var = 0\nfp_var = 0\nfn_var = 0\nfor file in os.listdir(docpath+\"isoSegmenter100\"):\n if file.endswith(\".csv\") and \"V\" in file:\n predict_data = csv.DictReader(open(docpath+\"isoSegmenter100/\"+file, 'r', encoding='UTF-8'))\n seqid = file.replace(\".csv\", \"\")\n with open(docpath+\"ground_truth100/\"+seqid+\".json\", 'r', encoding='UTF-8') as json_file:\n truth_data = json.load(json_file)\n\n true_boundaries = [1]\n tp_seq = 0\n fp_seq = 0\n fn_seq = 0\n for i in range(1, int(truth_data['domains']) + 1):\n b_next = true_boundaries[i-1] + int(truth_data['length_'+str(i)])\n true_boundaries.append(b_next)\n\n for pred_domain in predict_data:\n matched = False\n for i in range(0, len(true_boundaries) - 1):\n startdiff = int(pred_domain['Start']) - true_boundaries[i]\n enddiff = int(pred_domain['End']) - true_boundaries[i+1]\n tolerance = cutoff*(true_boundaries[i+1] - true_boundaries[i])\n if abs(startdiff) <= tolerance:\n if abs(enddiff) <= tolerance:\n tp_seq += 1\n matched = True\n print(seqid)\n print(\"START MATCH: \" + str(true_boundaries[i]) + \", \" + pred_domain['Start'])\n print(\"END MATCH: \" + str(true_boundaries[i+1]) + \", \" + pred_domain['End'])\n print(\"DIFFERENCES: \" + str(startdiff) + \", \" + str(enddiff) + \", TOLERANCE = \" + str(tolerance))\n print()\n break\n if not matched:\n fp_seq += 1\n\n fn_seq = int(truth_data['domains']) - tp_seq\n tp_var += tp_seq\n fp_var += fp_seq\n fn_var += fn_seq\n sensitivity = round(tp_seq/(tp_seq + fn_seq), 5)\n ppv = round(tp_seq/(tp_seq+fp_seq), 5)\n jaccard = round(tp_seq/(tp_seq + fp_seq + fn_seq), 5)\n out.write(seqid+\",V,\"+str(truth_data['domains'])+\",\"+str(tp_seq)+\",\"+str(fp_seq)+\",\"+str(fn_seq)+\",\"+str(sensitivity)+\",\"+str(ppv)+\",\"+str(jaccard)+\"\\n\")\n\nsummary.write(\"VARIABLE-LENGTH STATISTICS\\n\")\nsummary.write(\"TP equal domain: \" + str(tp_var) + \"\\n\")\nsummary.write(\"FP equal domain: \" + str(fp_var) + \"\\n\")\nsummary.write(\"FN equal domain: \" + str(fn_var) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round(tp_var/(tp_var + fn_var),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round(tp_var/(tp_var + fp_var),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round(tp_var/(tp_var + fp_var + fn_var),5)) + \"\\n\\n\")\n \n\nsummary.write(\"OVERALL STATISTICS\\n\")\nsummary.write(\"TP: \" + str(tp_var + tp_eq) + \"\\n\")\nsummary.write(\"FP: \" + str(fp_var + fp_eq) + \"\\n\")\nsummary.write(\"FN: \" + str(fn_var + fn_eq) + \"\\n\")\nsummary.write(\"Sensitivity: \" + str(round((tp_var + tp_eq)/(tp_var + fn_var + tp_eq + fn_eq),5)) + \"\\n\")\nsummary.write(\"Precision(PPV): \" + str(round((tp_var + tp_eq)/(tp_var + fp_var + tp_eq + fp_eq),5)) + \"\\n\")\nsummary.write(\"Jaccard Index: \" + str(round((tp_var + tp_eq)/(tp_var + fp_var + fn_var + tp_eq + fp_eq + fn_eq),5)) + \"\\n\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from robocorp_ls_core.python_ls import PythonLanguageServer from robocorp_ls_core.basic import overrides from robocorp_ls_core.robotframework_log import get_logger from typing import Optional, List, Dict from robocorp_ls_core.protocols import IConfig, IMonitor, ITestInfoTypedDict, IWorkspace from functools import partial from robocorp_ls_core.jsonrpc.endpoint import require_monitor from robocorp_ls_core.lsp import ( SymbolInformationTypedDict, FoldingRangeTypedDict, HoverTypedDict, TextDocumentTypedDict, CodeLensTypedDict, DocumentSymbolTypedDict, PositionTypedDict, ) from robotframework_ls.impl.protocols import IKeywordFound from robocorp_ls_core.watchdog_wrapper import IFSObserver import itertools log = get_logger(__name__) class RobotFrameworkServerApi(PythonLanguageServer): """ This is a custom server. It uses the same message-format used in the language server but with custom messages (i.e.: this is not the language server, but an API to use the bits we need from robotframework in a separate process). """ def __init__( self, read_from, write_to, libspec_manager=None, observer: Optional[IFSObserver] = None, ): from robotframework_ls.impl.libspec_manager import LibspecManager if libspec_manager is None: try: libspec_manager = LibspecManager(observer=observer) except: log.exception("Unable to properly initialize the LibspecManager.") raise self.libspec_manager = libspec_manager PythonLanguageServer.__init__(self, read_from, write_to) self._version = None self._next_time = partial(next, itertools.count(0)) @overrides(PythonLanguageServer._create_config) def _create_config(self) -> IConfig: from robotframework_ls.robot_config import RobotConfig return RobotConfig() def m_version(self): if self._version is not None: return self._version try: import robot # noqa except: log.exception("Unable to import 'robot'.") version = "NO_ROBOT" else: try: from robot import get_version version = get_version(naked=True) except: log.exception("Unable to get version.") version = "N/A" # Too old? self._version = version return self._version def _check_min_version(self, min_version): from robocorp_ls_core.basic import check_min_version version = self.m_version() return check_min_version(version, min_version) @overrides(PythonLanguageServer.m_workspace__did_change_configuration) def m_workspace__did_change_configuration(self, **kwargs): PythonLanguageServer.m_workspace__did_change_configuration(self, **kwargs) self.libspec_manager.config = self.config @overrides(PythonLanguageServer.lint) def lint(self, *args, **kwargs): pass # No-op for this server. @overrides(PythonLanguageServer.cancel_lint) def cancel_lint(self, *args, **kwargs): pass # No-op for this server. @overrides(PythonLanguageServer._obtain_fs_observer) def _obtain_fs_observer(self) -> IFSObserver: return self.libspec_manager.fs_observer @overrides(PythonLanguageServer._create_workspace) def _create_workspace( self, root_uri: str, fs_observer: IFSObserver, workspace_folders ) -> IWorkspace: from robotframework_ls.impl.robot_workspace import RobotWorkspace return RobotWorkspace( root_uri, fs_observer, workspace_folders, libspec_manager=self.libspec_manager, ) def m_lint(self, doc_uri): if not self._check_min_version((3, 2)): from robocorp_ls_core.lsp import Error msg = ( "robotframework version (%s) too old for linting.\n" "Please install a newer version and restart the language server." % (self.m_version(),) ) log.info(msg) return [Error(msg, (0, 0), (1, 0)).to_lsp_diagnostic()] func = partial(self._threaded_lint, doc_uri) func = require_monitor(func) return func def _threaded_lint(self, doc_uri, monitor: IMonitor): from robocorp_ls_core.jsonrpc.exceptions import JsonRpcRequestCancelled from robotframework_ls.impl.robot_lsp_constants import ( OPTION_ROBOT_LINT_ROBOCOP_ENABLED, ) from robocorp_ls_core import uris from robocorp_ls_core.lsp import Error try: from robotframework_ls.impl.ast_utils import collect_errors from robotframework_ls.impl import code_analysis import os.path log.debug("Lint: starting (in thread).") completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return [] config = completion_context.config robocop_enabled = config is None or config.get_setting( OPTION_ROBOT_LINT_ROBOCOP_ENABLED, bool, False ) ast = completion_context.get_ast() source = completion_context.doc.source monitor.check_cancelled() errors = collect_errors(ast) log.debug("Collected AST errors (in thread): %s", len(errors)) monitor.check_cancelled() analysis_errors = code_analysis.collect_analysis_errors(completion_context) monitor.check_cancelled() log.debug("Collected analysis errors (in thread): %s", len(analysis_errors)) errors.extend(analysis_errors) lsp_diagnostics = [error.to_lsp_diagnostic() for error in errors] try: if robocop_enabled: from robocorp_ls_core.robocop_wrapper import ( collect_robocop_diagnostics, ) workspace = completion_context.workspace if workspace is not None: project_root = workspace.root_path else: project_root = os.path.abspath(".") monitor.check_cancelled() lsp_diagnostics.extend( collect_robocop_diagnostics( project_root, ast, uris.to_fs_path(doc_uri), source ) ) except Exception as e: log.exception( "Error collecting Robocop errors (possibly an unsupported Robocop version is installed)." ) lsp_diagnostics.append( Error( f"Error collecting Robocop errors: {e}", (0, 0), (1, 0) ).to_lsp_diagnostic() ) return lsp_diagnostics except JsonRpcRequestCancelled: raise JsonRpcRequestCancelled("Lint cancelled (inside lint)") except Exception as e: log.exception("Error collecting errors.") ret = [ Error( f"Error collecting Robocop errors: {e}", (0, 0), (1, 0) ).to_lsp_diagnostic() ] return ret def m_complete_all(self, doc_uri, line, col): func = partial(self._threaded_complete_all, doc_uri, line, col) func = require_monitor(func) return func def _threaded_complete_all(self, doc_uri, line, col, monitor: IMonitor): completion_context = self._create_completion_context( doc_uri, line, col, monitor ) if completion_context is None: return [] return self._complete_from_completion_context(completion_context) def _complete_from_completion_context(self, completion_context): from robotframework_ls.impl import section_name_completions from robotframework_ls.impl import keyword_completions from robotframework_ls.impl import variable_completions from robotframework_ls.impl import dictionary_completions from robotframework_ls.impl import filesystem_section_completions from robotframework_ls.impl import keyword_parameter_completions from robotframework_ls.impl import auto_import_completions from robotframework_ls.impl.collect_keywords import ( collect_keyword_name_to_keyword_found, ) from robotframework_ls.impl import ast_utils ret = section_name_completions.complete(completion_context) if not ret: ret.extend(filesystem_section_completions.complete(completion_context)) if not ret: token_info = completion_context.get_current_token() if token_info is not None: token = ast_utils.get_keyword_name_token( token_info.node, token_info.token ) if token is not None: keyword_name_to_keyword_found: Dict[ str, List[IKeywordFound] ] = collect_keyword_name_to_keyword_found(completion_context) ret.extend(keyword_completions.complete(completion_context)) ret.extend( auto_import_completions.complete( completion_context, keyword_name_to_keyword_found ) ) return ret if not ret: ret.extend(variable_completions.complete(completion_context)) if not ret: ret.extend(dictionary_completions.complete(completion_context)) if not ret: ret.extend(keyword_parameter_completions.complete(completion_context)) return ret def m_section_name_complete(self, doc_uri, line, col): from robotframework_ls.impl import section_name_completions completion_context = self._create_completion_context(doc_uri, line, col, None) if completion_context is None: return [] return section_name_completions.complete(completion_context) def m_keyword_complete(self, doc_uri, line, col): from robotframework_ls.impl import keyword_completions completion_context = self._create_completion_context(doc_uri, line, col, None) if completion_context is None: return [] return keyword_completions.complete(completion_context) def m_find_definition(self, doc_uri, line, col): func = partial(self._threaded_find_definition, doc_uri, line, col) func = require_monitor(func) return func def _threaded_find_definition(self, doc_uri, line, col, monitor) -> Optional[list]: from robotframework_ls.impl.find_definition import find_definition import os.path from robocorp_ls_core.lsp import Location, Range from robocorp_ls_core import uris completion_context = self._create_completion_context( doc_uri, line, col, monitor ) if completion_context is None: return None definitions = find_definition(completion_context) ret = [] for definition in definitions: if not definition.source: log.info("Found definition with empty source (%s).", definition) continue if not os.path.exists(definition.source): log.info( "Found definition: %s (but source does not exist).", definition ) continue lineno = definition.lineno if lineno is None or lineno < 0: lineno = 0 end_lineno = definition.end_lineno if end_lineno is None or end_lineno < 0: end_lineno = 0 col_offset = definition.col_offset end_col_offset = definition.end_col_offset ret.append( Location( uris.from_fs_path(definition.source), Range((lineno, col_offset), (end_lineno, end_col_offset)), ).to_dict() ) return ret def m_code_format(self, text_document, options): func = partial(self._threaded_code_format, text_document, options) func = require_monitor(func) return func def _threaded_code_format(self, text_document, options, monitor: IMonitor): from robotframework_ls.impl.formatting import create_text_edit_from_diff from robocorp_ls_core.lsp import TextDocumentItem import os.path from robotframework_ls.impl.robot_lsp_constants import ( OPTION_ROBOT_CODE_FORMATTER, ) from robotframework_ls.impl.robot_lsp_constants import ( OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY, ) from robotframework_ls.impl.robot_lsp_constants import ( OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY, ) text_document_item = TextDocumentItem(**text_document) text = text_document_item.text if not text: completion_context = self._create_completion_context( text_document_item.uri, 0, 0, monitor ) if completion_context is None: return [] text = completion_context.doc.source if not text: return [] if options is None: options = {} tab_size = options.get("tabSize", 4) # Default for now is the builtin. This will probably be changed in the future. formatter = self._config.get_setting( OPTION_ROBOT_CODE_FORMATTER, str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY ) if formatter not in ( OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY, ): log.critical( f"Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}." ) return [] if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY: from robotframework_ls.impl.formatting import robot_source_format new_contents = robot_source_format(text, space_count=tab_size) else: if not self._check_min_version((4, 0)): log.critical( f"To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}" ) return [] from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format ast = completion_context.get_ast() path = completion_context.doc.path dirname = "." try: os.stat(path) except: # It doesn't exist ws = self._workspace if ws is not None: dirname = ws.root_path else: dirname = os.path.dirname(path) new_contents = robot_tidy_source_format(ast, dirname) if new_contents is None or new_contents == text: return [] return [x.to_dict() for x in create_text_edit_from_diff(text, new_contents)] def _create_completion_context( self, doc_uri, line, col, monitor: Optional[IMonitor] ): from robotframework_ls.impl.completion_context import CompletionContext if not self._check_min_version((3, 2)): log.info("robotframework version too old.") return None workspace = self.workspace if not workspace: log.info("Workspace still not initialized.") return None document = workspace.get_document(doc_uri, accept_from_file=True) if document is None: log.info("Unable to get document for uri: %s.", doc_uri) return None return CompletionContext( document, line, col, workspace=workspace, config=self.config, monitor=monitor, ) def m_signature_help(self, doc_uri: str, line: int, col: int): func = partial(self._threaded_signature_help, doc_uri, line, col) func = require_monitor(func) return func def _threaded_signature_help( self, doc_uri: str, line: int, col: int, monitor: IMonitor ) -> Optional[dict]: from robotframework_ls.impl.signature_help import signature_help completion_context = self._create_completion_context( doc_uri, line, col, monitor ) if completion_context is None: return None return signature_help(completion_context) def m_folding_range(self, doc_uri: str): func = partial(self._threaded_folding_range, doc_uri) func = require_monitor(func) return func def _threaded_folding_range( self, doc_uri: str, monitor: IMonitor ) -> List[FoldingRangeTypedDict]: from robotframework_ls.impl.folding_range import folding_range completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return [] return folding_range(completion_context) def m_code_lens(self, doc_uri: str): func = partial(self._threaded_code_lens, doc_uri) func = require_monitor(func) return func def _threaded_code_lens( self, doc_uri: str, monitor: IMonitor ) -> List[CodeLensTypedDict]: from robotframework_ls.impl.code_lens import code_lens completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return [] return code_lens(completion_context) def m_resolve_code_lens(self, **code_lens: CodeLensTypedDict): func = partial(self._threaded_resolve_code_lens, code_lens) func = require_monitor(func) return func def _threaded_resolve_code_lens( self, code_lens: CodeLensTypedDict, monitor: IMonitor ) -> CodeLensTypedDict: from robotframework_ls.impl.code_lens import code_lens_resolve data = code_lens.get("data") if not isinstance(data, dict): return code_lens doc_uri = data.get("uri") completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return code_lens return code_lens_resolve(completion_context, code_lens) def m_document_symbol(self, doc_uri: str): func = partial(self._threaded_document_symbol, doc_uri) func = require_monitor(func) return func def _threaded_document_symbol( self, doc_uri: str, monitor: IMonitor ) -> List[DocumentSymbolTypedDict]: from robotframework_ls.impl.document_symbol import document_symbol completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return [] return document_symbol(completion_context) def m_list_tests(self, doc_uri: str): func = partial(self._threaded_list_tests, doc_uri) func = require_monitor(func) return func def _threaded_list_tests( self, doc_uri: str, monitor: IMonitor ) -> List[ITestInfoTypedDict]: from robotframework_ls.impl.code_lens import list_tests completion_context = self._create_completion_context(doc_uri, 0, 0, monitor) if completion_context is None: return [] return list_tests(completion_context) def m_hover(self, doc_uri: str, line: int, col: int): func = partial(self._threaded_hover, doc_uri, line, col) func = require_monitor(func) return func def _threaded_hover( self, doc_uri: str, line, col, monitor: IMonitor ) -> Optional[HoverTypedDict]: from robotframework_ls.impl.hover import hover completion_context = self._create_completion_context( doc_uri, line, col, monitor ) if completion_context is None: return None return hover(completion_context) def m_workspace_symbols(self, query: Optional[str] = None): func = partial(self._threaded_workspace_symbols, query) func = require_monitor(func) return func def _threaded_workspace_symbols( self, query: Optional[str], monitor: IMonitor ) -> Optional[List[SymbolInformationTypedDict]]: from robotframework_ls.impl.workspace_symbols import workspace_symbols from robotframework_ls.impl.completion_context import BaseContext from robotframework_ls.impl.protocols import IRobotWorkspace from typing import cast workspace = self._workspace if not workspace: return [] robot_workspace = cast(IRobotWorkspace, workspace) return workspace_symbols( query, BaseContext(workspace=robot_workspace, config=self.config, monitor=monitor), ) def m_text_document__semantic_tokens__range(self, textDocument=None, range=None): raise RuntimeError("Not currently implemented!") def m_text_document__semantic_tokens__full(self, textDocument=None): func = partial(self.threaded_semantic_tokens_full, textDocument=textDocument) func = require_monitor(func) return func def threaded_semantic_tokens_full( self, textDocument: TextDocumentTypedDict, monitor: Optional[IMonitor] = None ): from robotframework_ls.impl.semantic_tokens import semantic_tokens_full doc_uri = textDocument["uri"] context = self._create_completion_context(doc_uri, -1, -1, monitor) if context is None: return {"resultId": None, "data": []} return {"resultId": None, "data": semantic_tokens_full(context)} def m_monaco_completions_from_code_full( self, prefix: str = "", full_code: str = "", position=PositionTypedDict, uri: str = "", indent: str = "", ): func = partial( self.threaded_monaco_completions_from_code_full, prefix=prefix, full_code=full_code, position=position, uri=uri, indent=indent, ) func = require_monitor(func) return func def threaded_monaco_completions_from_code_full( self, prefix: str, full_code: str, position: PositionTypedDict, uri: str, indent: str, monitor: Optional[IMonitor] = None, ): from robotframework_ls.impl.robot_workspace import RobotDocument from robotframework_ls.impl.completion_context import CompletionContext from robocorp_ls_core.workspace import Document from robotframework_ls.impl import section_completions from robotframework_ls.impl import snippets_completions from robotframework_ls.server_api.monaco_conversions import ( convert_to_monaco_completion, ) from robotframework_ls.impl.completion_context import CompletionType d = Document(uri, prefix) last_line, _last_col = d.get_last_line_col() line = last_line + position["line"] col = position["character"] col += len(indent) document = RobotDocument(uri, full_code) completion_context = CompletionContext( document, line, col, config=self.config, monitor=monitor, workspace=self.workspace, ) completion_context.type = CompletionType.shell completions = self._complete_from_completion_context(completion_context) completions.extend(section_completions.complete(completion_context)) completions.extend(snippets_completions.complete(completion_context)) return { "suggestions": [ convert_to_monaco_completion( c, line_delta=last_line, col_delta=len(indent), uri=uri ) for c in completions ] } def m_semantic_tokens_from_code_full( self, prefix: str = "", full_code: str = "", indent: str = "" ): func = partial( self.threaded_semantic_tokens_from_code_full, prefix=prefix, full_code=full_code, indent=indent, ) func = require_monitor(func) return func def threaded_semantic_tokens_from_code_full( self, prefix: str, full_code: str, indent: str, monitor: Optional[IMonitor] = None, ): from robotframework_ls.impl.semantic_tokens import semantic_tokens_full_from_ast try: from robotframework_ls.impl.robot_workspace import RobotDocument doc = RobotDocument("") doc.source = full_code ast = doc.get_ast() data = semantic_tokens_full_from_ast(ast, monitor) if not prefix: return {"resultId": None, "data": data} # We have to exclude the prefix from the coloring... # debug info... # import io # from robotframework_ls.impl.semantic_tokens import decode_semantic_tokens # stream = io.StringIO() # decode_semantic_tokens(data, doc, stream) # found = stream.getvalue() prefix_doc = RobotDocument("") prefix_doc.source = prefix last_line, last_col = prefix_doc.get_last_line_col() # Now we have the data from the full code, but we need to remove whatever # we have in the prefix from the result... ints_iter = iter(data) line = 0 col = 0 new_data = [] indent_len = len(indent) while True: try: line_delta = next(ints_iter) except StopIteration: break col_delta = next(ints_iter) token_len = next(ints_iter) token_type = next(ints_iter) token_modifier = next(ints_iter) line += line_delta if line_delta == 0: col += col_delta else: col = col_delta if line >= last_line: new_data.append(line - last_line) new_data.append(col_delta - indent_len) new_data.append(token_len) new_data.append(token_type) new_data.append(token_modifier) # Ok, now, we have to add the indent_len to all the # next lines while True: try: line_delta = next(ints_iter) except StopIteration: break col_delta = next(ints_iter) token_len = next(ints_iter) token_type = next(ints_iter) token_modifier = next(ints_iter) new_data.append(line_delta) if line_delta > 0: new_data.append(col_delta - indent_len) else: new_data.append(col_delta) new_data.append(token_len) new_data.append(token_type) new_data.append(token_modifier) break # Approach changed so that we always have a new line # i.e.: # \n<indent><code> # # so, the condition below no longer applies. # elif line == last_line and col >= last_col: # new_data.append(0) # new_data.append(col - last_col) # new_data.append(token_len) # new_data.append(token_type) # new_data.append(token_modifier) # new_data.extend(ints_iter) # break # debug info... # temp_stream = io.StringIO() # temp_doc = RobotDocument("") # temp_doc.source = full_code[len(prefix) :] # decode_semantic_tokens(new_data, temp_doc, temp_stream) # temp_found = temp_stream.getvalue() return {"resultId": None, "data": new_data} except: log.exception("Error computing semantic tokens from code.") return {"resultId": None, "data": []} def m_shutdown(self, **_kwargs): PythonLanguageServer.m_shutdown(self, **_kwargs) self.libspec_manager.dispose() def m_exit(self, **_kwargs): PythonLanguageServer.m_exit(self, **_kwargs) self.libspec_manager.dispose()
normal
{ "blob_id": "18b43ea8696e2e54f4c1cbbece4cde1fd3130145", "index": 194, "step-1": "<mask token>\n\n\nclass RobotFrameworkServerApi(PythonLanguageServer):\n <mask token>\n\n def __init__(self, read_from, write_to, libspec_manager=None, observer:\n Optional[IFSObserver]=None):\n from robotframework_ls.impl.libspec_manager import LibspecManager\n if libspec_manager is None:\n try:\n libspec_manager = LibspecManager(observer=observer)\n except:\n log.exception(\n 'Unable to properly initialize the LibspecManager.')\n raise\n self.libspec_manager = libspec_manager\n PythonLanguageServer.__init__(self, read_from, write_to)\n self._version = None\n self._next_time = partial(next, itertools.count(0))\n <mask token>\n <mask token>\n\n def _check_min_version(self, min_version):\n from robocorp_ls_core.basic import check_min_version\n version = self.m_version()\n return check_min_version(version, min_version)\n\n @overrides(PythonLanguageServer.m_workspace__did_change_configuration)\n def m_workspace__did_change_configuration(self, **kwargs):\n PythonLanguageServer.m_workspace__did_change_configuration(self, **\n kwargs)\n self.libspec_manager.config = self.config\n\n @overrides(PythonLanguageServer.lint)\n def lint(self, *args, **kwargs):\n pass\n <mask token>\n <mask token>\n\n @overrides(PythonLanguageServer._create_workspace)\n def _create_workspace(self, root_uri: str, fs_observer: IFSObserver,\n workspace_folders) ->IWorkspace:\n from robotframework_ls.impl.robot_workspace import RobotWorkspace\n return RobotWorkspace(root_uri, fs_observer, workspace_folders,\n libspec_manager=self.libspec_manager)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def _complete_from_completion_context(self, completion_context):\n from robotframework_ls.impl import section_name_completions\n from robotframework_ls.impl import keyword_completions\n from robotframework_ls.impl import variable_completions\n from robotframework_ls.impl import dictionary_completions\n from robotframework_ls.impl import filesystem_section_completions\n from robotframework_ls.impl import keyword_parameter_completions\n from robotframework_ls.impl import auto_import_completions\n from robotframework_ls.impl.collect_keywords import collect_keyword_name_to_keyword_found\n from robotframework_ls.impl import ast_utils\n ret = section_name_completions.complete(completion_context)\n if not ret:\n ret.extend(filesystem_section_completions.complete(\n completion_context))\n if not ret:\n token_info = completion_context.get_current_token()\n if token_info is not None:\n token = ast_utils.get_keyword_name_token(token_info.node,\n token_info.token)\n if token is not None:\n keyword_name_to_keyword_found: Dict[str, List[\n IKeywordFound]\n ] = collect_keyword_name_to_keyword_found(\n completion_context)\n ret.extend(keyword_completions.complete(completion_context)\n )\n ret.extend(auto_import_completions.complete(\n completion_context, keyword_name_to_keyword_found))\n return ret\n if not ret:\n ret.extend(variable_completions.complete(completion_context))\n if not ret:\n ret.extend(dictionary_completions.complete(completion_context))\n if not ret:\n ret.extend(keyword_parameter_completions.complete(\n completion_context))\n return ret\n <mask token>\n <mask token>\n\n def m_find_definition(self, doc_uri, line, col):\n func = partial(self._threaded_find_definition, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_find_definition(self, doc_uri, line, col, monitor\n ) ->Optional[list]:\n from robotframework_ls.impl.find_definition import find_definition\n import os.path\n from robocorp_ls_core.lsp import Location, Range\n from robocorp_ls_core import uris\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n definitions = find_definition(completion_context)\n ret = []\n for definition in definitions:\n if not definition.source:\n log.info('Found definition with empty source (%s).', definition\n )\n continue\n if not os.path.exists(definition.source):\n log.info('Found definition: %s (but source does not exist).',\n definition)\n continue\n lineno = definition.lineno\n if lineno is None or lineno < 0:\n lineno = 0\n end_lineno = definition.end_lineno\n if end_lineno is None or end_lineno < 0:\n end_lineno = 0\n col_offset = definition.col_offset\n end_col_offset = definition.end_col_offset\n ret.append(Location(uris.from_fs_path(definition.source), Range\n ((lineno, col_offset), (end_lineno, end_col_offset))).to_dict()\n )\n return ret\n <mask token>\n\n def _threaded_code_format(self, text_document, options, monitor: IMonitor):\n from robotframework_ls.impl.formatting import create_text_edit_from_diff\n from robocorp_ls_core.lsp import TextDocumentItem\n import os.path\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY\n text_document_item = TextDocumentItem(**text_document)\n text = text_document_item.text\n if not text:\n completion_context = self._create_completion_context(\n text_document_item.uri, 0, 0, monitor)\n if completion_context is None:\n return []\n text = completion_context.doc.source\n if not text:\n return []\n if options is None:\n options = {}\n tab_size = options.get('tabSize', 4)\n formatter = self._config.get_setting(OPTION_ROBOT_CODE_FORMATTER,\n str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY)\n if formatter not in (OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY):\n log.critical(\n f'Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}.'\n )\n return []\n if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY:\n from robotframework_ls.impl.formatting import robot_source_format\n new_contents = robot_source_format(text, space_count=tab_size)\n else:\n if not self._check_min_version((4, 0)):\n log.critical(\n f'To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}'\n )\n return []\n from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format\n ast = completion_context.get_ast()\n path = completion_context.doc.path\n dirname = '.'\n try:\n os.stat(path)\n except:\n ws = self._workspace\n if ws is not None:\n dirname = ws.root_path\n else:\n dirname = os.path.dirname(path)\n new_contents = robot_tidy_source_format(ast, dirname)\n if new_contents is None or new_contents == text:\n return []\n return [x.to_dict() for x in create_text_edit_from_diff(text,\n new_contents)]\n <mask token>\n <mask token>\n <mask token>\n\n def m_folding_range(self, doc_uri: str):\n func = partial(self._threaded_folding_range, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_folding_range(self, doc_uri: str, monitor: IMonitor) ->List[\n FoldingRangeTypedDict]:\n from robotframework_ls.impl.folding_range import folding_range\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return folding_range(completion_context)\n <mask token>\n\n def _threaded_code_lens(self, doc_uri: str, monitor: IMonitor) ->List[\n CodeLensTypedDict]:\n from robotframework_ls.impl.code_lens import code_lens\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return code_lens(completion_context)\n <mask token>\n <mask token>\n <mask token>\n\n def _threaded_document_symbol(self, doc_uri: str, monitor: IMonitor\n ) ->List[DocumentSymbolTypedDict]:\n from robotframework_ls.impl.document_symbol import document_symbol\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return document_symbol(completion_context)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def m_workspace_symbols(self, query: Optional[str]=None):\n func = partial(self._threaded_workspace_symbols, query)\n func = require_monitor(func)\n return func\n\n def _threaded_workspace_symbols(self, query: Optional[str], monitor:\n IMonitor) ->Optional[List[SymbolInformationTypedDict]]:\n from robotframework_ls.impl.workspace_symbols import workspace_symbols\n from robotframework_ls.impl.completion_context import BaseContext\n from robotframework_ls.impl.protocols import IRobotWorkspace\n from typing import cast\n workspace = self._workspace\n if not workspace:\n return []\n robot_workspace = cast(IRobotWorkspace, workspace)\n return workspace_symbols(query, BaseContext(workspace=\n robot_workspace, config=self.config, monitor=monitor))\n <mask token>\n <mask token>\n\n def threaded_semantic_tokens_full(self, textDocument:\n TextDocumentTypedDict, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full\n doc_uri = textDocument['uri']\n context = self._create_completion_context(doc_uri, -1, -1, monitor)\n if context is None:\n return {'resultId': None, 'data': []}\n return {'resultId': None, 'data': semantic_tokens_full(context)}\n\n def m_monaco_completions_from_code_full(self, prefix: str='', full_code:\n str='', position=PositionTypedDict, uri: str='', indent: str=''):\n func = partial(self.threaded_monaco_completions_from_code_full,\n prefix=prefix, full_code=full_code, position=position, uri=uri,\n indent=indent)\n func = require_monitor(func)\n return func\n\n def threaded_monaco_completions_from_code_full(self, prefix: str,\n full_code: str, position: PositionTypedDict, uri: str, indent: str,\n monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.robot_workspace import RobotDocument\n from robotframework_ls.impl.completion_context import CompletionContext\n from robocorp_ls_core.workspace import Document\n from robotframework_ls.impl import section_completions\n from robotframework_ls.impl import snippets_completions\n from robotframework_ls.server_api.monaco_conversions import convert_to_monaco_completion\n from robotframework_ls.impl.completion_context import CompletionType\n d = Document(uri, prefix)\n last_line, _last_col = d.get_last_line_col()\n line = last_line + position['line']\n col = position['character']\n col += len(indent)\n document = RobotDocument(uri, full_code)\n completion_context = CompletionContext(document, line, col, config=\n self.config, monitor=monitor, workspace=self.workspace)\n completion_context.type = CompletionType.shell\n completions = self._complete_from_completion_context(completion_context\n )\n completions.extend(section_completions.complete(completion_context))\n completions.extend(snippets_completions.complete(completion_context))\n return {'suggestions': [convert_to_monaco_completion(c, line_delta=\n last_line, col_delta=len(indent), uri=uri) for c in completions]}\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass RobotFrameworkServerApi(PythonLanguageServer):\n <mask token>\n\n def __init__(self, read_from, write_to, libspec_manager=None, observer:\n Optional[IFSObserver]=None):\n from robotframework_ls.impl.libspec_manager import LibspecManager\n if libspec_manager is None:\n try:\n libspec_manager = LibspecManager(observer=observer)\n except:\n log.exception(\n 'Unable to properly initialize the LibspecManager.')\n raise\n self.libspec_manager = libspec_manager\n PythonLanguageServer.__init__(self, read_from, write_to)\n self._version = None\n self._next_time = partial(next, itertools.count(0))\n <mask token>\n <mask token>\n\n def _check_min_version(self, min_version):\n from robocorp_ls_core.basic import check_min_version\n version = self.m_version()\n return check_min_version(version, min_version)\n\n @overrides(PythonLanguageServer.m_workspace__did_change_configuration)\n def m_workspace__did_change_configuration(self, **kwargs):\n PythonLanguageServer.m_workspace__did_change_configuration(self, **\n kwargs)\n self.libspec_manager.config = self.config\n\n @overrides(PythonLanguageServer.lint)\n def lint(self, *args, **kwargs):\n pass\n\n @overrides(PythonLanguageServer.cancel_lint)\n def cancel_lint(self, *args, **kwargs):\n pass\n <mask token>\n\n @overrides(PythonLanguageServer._create_workspace)\n def _create_workspace(self, root_uri: str, fs_observer: IFSObserver,\n workspace_folders) ->IWorkspace:\n from robotframework_ls.impl.robot_workspace import RobotWorkspace\n return RobotWorkspace(root_uri, fs_observer, workspace_folders,\n libspec_manager=self.libspec_manager)\n\n def m_lint(self, doc_uri):\n if not self._check_min_version((3, 2)):\n from robocorp_ls_core.lsp import Error\n msg = (\n \"\"\"robotframework version (%s) too old for linting.\nPlease install a newer version and restart the language server.\"\"\"\n % (self.m_version(),))\n log.info(msg)\n return [Error(msg, (0, 0), (1, 0)).to_lsp_diagnostic()]\n func = partial(self._threaded_lint, doc_uri)\n func = require_monitor(func)\n return func\n <mask token>\n\n def m_complete_all(self, doc_uri, line, col):\n func = partial(self._threaded_complete_all, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_complete_all(self, doc_uri, line, col, monitor: IMonitor):\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return []\n return self._complete_from_completion_context(completion_context)\n\n def _complete_from_completion_context(self, completion_context):\n from robotframework_ls.impl import section_name_completions\n from robotframework_ls.impl import keyword_completions\n from robotframework_ls.impl import variable_completions\n from robotframework_ls.impl import dictionary_completions\n from robotframework_ls.impl import filesystem_section_completions\n from robotframework_ls.impl import keyword_parameter_completions\n from robotframework_ls.impl import auto_import_completions\n from robotframework_ls.impl.collect_keywords import collect_keyword_name_to_keyword_found\n from robotframework_ls.impl import ast_utils\n ret = section_name_completions.complete(completion_context)\n if not ret:\n ret.extend(filesystem_section_completions.complete(\n completion_context))\n if not ret:\n token_info = completion_context.get_current_token()\n if token_info is not None:\n token = ast_utils.get_keyword_name_token(token_info.node,\n token_info.token)\n if token is not None:\n keyword_name_to_keyword_found: Dict[str, List[\n IKeywordFound]\n ] = collect_keyword_name_to_keyword_found(\n completion_context)\n ret.extend(keyword_completions.complete(completion_context)\n )\n ret.extend(auto_import_completions.complete(\n completion_context, keyword_name_to_keyword_found))\n return ret\n if not ret:\n ret.extend(variable_completions.complete(completion_context))\n if not ret:\n ret.extend(dictionary_completions.complete(completion_context))\n if not ret:\n ret.extend(keyword_parameter_completions.complete(\n completion_context))\n return ret\n\n def m_section_name_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import section_name_completions\n completion_context = self._create_completion_context(doc_uri, line,\n col, None)\n if completion_context is None:\n return []\n return section_name_completions.complete(completion_context)\n <mask token>\n\n def m_find_definition(self, doc_uri, line, col):\n func = partial(self._threaded_find_definition, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_find_definition(self, doc_uri, line, col, monitor\n ) ->Optional[list]:\n from robotframework_ls.impl.find_definition import find_definition\n import os.path\n from robocorp_ls_core.lsp import Location, Range\n from robocorp_ls_core import uris\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n definitions = find_definition(completion_context)\n ret = []\n for definition in definitions:\n if not definition.source:\n log.info('Found definition with empty source (%s).', definition\n )\n continue\n if not os.path.exists(definition.source):\n log.info('Found definition: %s (but source does not exist).',\n definition)\n continue\n lineno = definition.lineno\n if lineno is None or lineno < 0:\n lineno = 0\n end_lineno = definition.end_lineno\n if end_lineno is None or end_lineno < 0:\n end_lineno = 0\n col_offset = definition.col_offset\n end_col_offset = definition.end_col_offset\n ret.append(Location(uris.from_fs_path(definition.source), Range\n ((lineno, col_offset), (end_lineno, end_col_offset))).to_dict()\n )\n return ret\n <mask token>\n\n def _threaded_code_format(self, text_document, options, monitor: IMonitor):\n from robotframework_ls.impl.formatting import create_text_edit_from_diff\n from robocorp_ls_core.lsp import TextDocumentItem\n import os.path\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY\n text_document_item = TextDocumentItem(**text_document)\n text = text_document_item.text\n if not text:\n completion_context = self._create_completion_context(\n text_document_item.uri, 0, 0, monitor)\n if completion_context is None:\n return []\n text = completion_context.doc.source\n if not text:\n return []\n if options is None:\n options = {}\n tab_size = options.get('tabSize', 4)\n formatter = self._config.get_setting(OPTION_ROBOT_CODE_FORMATTER,\n str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY)\n if formatter not in (OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY):\n log.critical(\n f'Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}.'\n )\n return []\n if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY:\n from robotframework_ls.impl.formatting import robot_source_format\n new_contents = robot_source_format(text, space_count=tab_size)\n else:\n if not self._check_min_version((4, 0)):\n log.critical(\n f'To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}'\n )\n return []\n from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format\n ast = completion_context.get_ast()\n path = completion_context.doc.path\n dirname = '.'\n try:\n os.stat(path)\n except:\n ws = self._workspace\n if ws is not None:\n dirname = ws.root_path\n else:\n dirname = os.path.dirname(path)\n new_contents = robot_tidy_source_format(ast, dirname)\n if new_contents is None or new_contents == text:\n return []\n return [x.to_dict() for x in create_text_edit_from_diff(text,\n new_contents)]\n <mask token>\n <mask token>\n\n def _threaded_signature_help(self, doc_uri: str, line: int, col: int,\n monitor: IMonitor) ->Optional[dict]:\n from robotframework_ls.impl.signature_help import signature_help\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return signature_help(completion_context)\n\n def m_folding_range(self, doc_uri: str):\n func = partial(self._threaded_folding_range, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_folding_range(self, doc_uri: str, monitor: IMonitor) ->List[\n FoldingRangeTypedDict]:\n from robotframework_ls.impl.folding_range import folding_range\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return folding_range(completion_context)\n\n def m_code_lens(self, doc_uri: str):\n func = partial(self._threaded_code_lens, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_code_lens(self, doc_uri: str, monitor: IMonitor) ->List[\n CodeLensTypedDict]:\n from robotframework_ls.impl.code_lens import code_lens\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return code_lens(completion_context)\n\n def m_resolve_code_lens(self, **code_lens: CodeLensTypedDict):\n func = partial(self._threaded_resolve_code_lens, code_lens)\n func = require_monitor(func)\n return func\n <mask token>\n\n def m_document_symbol(self, doc_uri: str):\n func = partial(self._threaded_document_symbol, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_document_symbol(self, doc_uri: str, monitor: IMonitor\n ) ->List[DocumentSymbolTypedDict]:\n from robotframework_ls.impl.document_symbol import document_symbol\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return document_symbol(completion_context)\n <mask token>\n\n def _threaded_list_tests(self, doc_uri: str, monitor: IMonitor) ->List[\n ITestInfoTypedDict]:\n from robotframework_ls.impl.code_lens import list_tests\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return list_tests(completion_context)\n <mask token>\n\n def _threaded_hover(self, doc_uri: str, line, col, monitor: IMonitor\n ) ->Optional[HoverTypedDict]:\n from robotframework_ls.impl.hover import hover\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return hover(completion_context)\n\n def m_workspace_symbols(self, query: Optional[str]=None):\n func = partial(self._threaded_workspace_symbols, query)\n func = require_monitor(func)\n return func\n\n def _threaded_workspace_symbols(self, query: Optional[str], monitor:\n IMonitor) ->Optional[List[SymbolInformationTypedDict]]:\n from robotframework_ls.impl.workspace_symbols import workspace_symbols\n from robotframework_ls.impl.completion_context import BaseContext\n from robotframework_ls.impl.protocols import IRobotWorkspace\n from typing import cast\n workspace = self._workspace\n if not workspace:\n return []\n robot_workspace = cast(IRobotWorkspace, workspace)\n return workspace_symbols(query, BaseContext(workspace=\n robot_workspace, config=self.config, monitor=monitor))\n <mask token>\n\n def m_text_document__semantic_tokens__full(self, textDocument=None):\n func = partial(self.threaded_semantic_tokens_full, textDocument=\n textDocument)\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_full(self, textDocument:\n TextDocumentTypedDict, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full\n doc_uri = textDocument['uri']\n context = self._create_completion_context(doc_uri, -1, -1, monitor)\n if context is None:\n return {'resultId': None, 'data': []}\n return {'resultId': None, 'data': semantic_tokens_full(context)}\n\n def m_monaco_completions_from_code_full(self, prefix: str='', full_code:\n str='', position=PositionTypedDict, uri: str='', indent: str=''):\n func = partial(self.threaded_monaco_completions_from_code_full,\n prefix=prefix, full_code=full_code, position=position, uri=uri,\n indent=indent)\n func = require_monitor(func)\n return func\n\n def threaded_monaco_completions_from_code_full(self, prefix: str,\n full_code: str, position: PositionTypedDict, uri: str, indent: str,\n monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.robot_workspace import RobotDocument\n from robotframework_ls.impl.completion_context import CompletionContext\n from robocorp_ls_core.workspace import Document\n from robotframework_ls.impl import section_completions\n from robotframework_ls.impl import snippets_completions\n from robotframework_ls.server_api.monaco_conversions import convert_to_monaco_completion\n from robotframework_ls.impl.completion_context import CompletionType\n d = Document(uri, prefix)\n last_line, _last_col = d.get_last_line_col()\n line = last_line + position['line']\n col = position['character']\n col += len(indent)\n document = RobotDocument(uri, full_code)\n completion_context = CompletionContext(document, line, col, config=\n self.config, monitor=monitor, workspace=self.workspace)\n completion_context.type = CompletionType.shell\n completions = self._complete_from_completion_context(completion_context\n )\n completions.extend(section_completions.complete(completion_context))\n completions.extend(snippets_completions.complete(completion_context))\n return {'suggestions': [convert_to_monaco_completion(c, line_delta=\n last_line, col_delta=len(indent), uri=uri) for c in completions]}\n <mask token>\n\n def threaded_semantic_tokens_from_code_full(self, prefix: str,\n full_code: str, indent: str, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full_from_ast\n try:\n from robotframework_ls.impl.robot_workspace import RobotDocument\n doc = RobotDocument('')\n doc.source = full_code\n ast = doc.get_ast()\n data = semantic_tokens_full_from_ast(ast, monitor)\n if not prefix:\n return {'resultId': None, 'data': data}\n prefix_doc = RobotDocument('')\n prefix_doc.source = prefix\n last_line, last_col = prefix_doc.get_last_line_col()\n ints_iter = iter(data)\n line = 0\n col = 0\n new_data = []\n indent_len = len(indent)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n line += line_delta\n if line_delta == 0:\n col += col_delta\n else:\n col = col_delta\n if line >= last_line:\n new_data.append(line - last_line)\n new_data.append(col_delta - indent_len)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n new_data.append(line_delta)\n if line_delta > 0:\n new_data.append(col_delta - indent_len)\n else:\n new_data.append(col_delta)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n break\n return {'resultId': None, 'data': new_data}\n except:\n log.exception('Error computing semantic tokens from code.')\n return {'resultId': None, 'data': []}\n <mask token>\n\n def m_exit(self, **_kwargs):\n PythonLanguageServer.m_exit(self, **_kwargs)\n self.libspec_manager.dispose()\n", "step-3": "<mask token>\n\n\nclass RobotFrameworkServerApi(PythonLanguageServer):\n <mask token>\n\n def __init__(self, read_from, write_to, libspec_manager=None, observer:\n Optional[IFSObserver]=None):\n from robotframework_ls.impl.libspec_manager import LibspecManager\n if libspec_manager is None:\n try:\n libspec_manager = LibspecManager(observer=observer)\n except:\n log.exception(\n 'Unable to properly initialize the LibspecManager.')\n raise\n self.libspec_manager = libspec_manager\n PythonLanguageServer.__init__(self, read_from, write_to)\n self._version = None\n self._next_time = partial(next, itertools.count(0))\n <mask token>\n <mask token>\n\n def _check_min_version(self, min_version):\n from robocorp_ls_core.basic import check_min_version\n version = self.m_version()\n return check_min_version(version, min_version)\n\n @overrides(PythonLanguageServer.m_workspace__did_change_configuration)\n def m_workspace__did_change_configuration(self, **kwargs):\n PythonLanguageServer.m_workspace__did_change_configuration(self, **\n kwargs)\n self.libspec_manager.config = self.config\n\n @overrides(PythonLanguageServer.lint)\n def lint(self, *args, **kwargs):\n pass\n\n @overrides(PythonLanguageServer.cancel_lint)\n def cancel_lint(self, *args, **kwargs):\n pass\n <mask token>\n\n @overrides(PythonLanguageServer._create_workspace)\n def _create_workspace(self, root_uri: str, fs_observer: IFSObserver,\n workspace_folders) ->IWorkspace:\n from robotframework_ls.impl.robot_workspace import RobotWorkspace\n return RobotWorkspace(root_uri, fs_observer, workspace_folders,\n libspec_manager=self.libspec_manager)\n\n def m_lint(self, doc_uri):\n if not self._check_min_version((3, 2)):\n from robocorp_ls_core.lsp import Error\n msg = (\n \"\"\"robotframework version (%s) too old for linting.\nPlease install a newer version and restart the language server.\"\"\"\n % (self.m_version(),))\n log.info(msg)\n return [Error(msg, (0, 0), (1, 0)).to_lsp_diagnostic()]\n func = partial(self._threaded_lint, doc_uri)\n func = require_monitor(func)\n return func\n <mask token>\n\n def m_complete_all(self, doc_uri, line, col):\n func = partial(self._threaded_complete_all, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_complete_all(self, doc_uri, line, col, monitor: IMonitor):\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return []\n return self._complete_from_completion_context(completion_context)\n\n def _complete_from_completion_context(self, completion_context):\n from robotframework_ls.impl import section_name_completions\n from robotframework_ls.impl import keyword_completions\n from robotframework_ls.impl import variable_completions\n from robotframework_ls.impl import dictionary_completions\n from robotframework_ls.impl import filesystem_section_completions\n from robotframework_ls.impl import keyword_parameter_completions\n from robotframework_ls.impl import auto_import_completions\n from robotframework_ls.impl.collect_keywords import collect_keyword_name_to_keyword_found\n from robotframework_ls.impl import ast_utils\n ret = section_name_completions.complete(completion_context)\n if not ret:\n ret.extend(filesystem_section_completions.complete(\n completion_context))\n if not ret:\n token_info = completion_context.get_current_token()\n if token_info is not None:\n token = ast_utils.get_keyword_name_token(token_info.node,\n token_info.token)\n if token is not None:\n keyword_name_to_keyword_found: Dict[str, List[\n IKeywordFound]\n ] = collect_keyword_name_to_keyword_found(\n completion_context)\n ret.extend(keyword_completions.complete(completion_context)\n )\n ret.extend(auto_import_completions.complete(\n completion_context, keyword_name_to_keyword_found))\n return ret\n if not ret:\n ret.extend(variable_completions.complete(completion_context))\n if not ret:\n ret.extend(dictionary_completions.complete(completion_context))\n if not ret:\n ret.extend(keyword_parameter_completions.complete(\n completion_context))\n return ret\n\n def m_section_name_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import section_name_completions\n completion_context = self._create_completion_context(doc_uri, line,\n col, None)\n if completion_context is None:\n return []\n return section_name_completions.complete(completion_context)\n <mask token>\n\n def m_find_definition(self, doc_uri, line, col):\n func = partial(self._threaded_find_definition, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_find_definition(self, doc_uri, line, col, monitor\n ) ->Optional[list]:\n from robotframework_ls.impl.find_definition import find_definition\n import os.path\n from robocorp_ls_core.lsp import Location, Range\n from robocorp_ls_core import uris\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n definitions = find_definition(completion_context)\n ret = []\n for definition in definitions:\n if not definition.source:\n log.info('Found definition with empty source (%s).', definition\n )\n continue\n if not os.path.exists(definition.source):\n log.info('Found definition: %s (but source does not exist).',\n definition)\n continue\n lineno = definition.lineno\n if lineno is None or lineno < 0:\n lineno = 0\n end_lineno = definition.end_lineno\n if end_lineno is None or end_lineno < 0:\n end_lineno = 0\n col_offset = definition.col_offset\n end_col_offset = definition.end_col_offset\n ret.append(Location(uris.from_fs_path(definition.source), Range\n ((lineno, col_offset), (end_lineno, end_col_offset))).to_dict()\n )\n return ret\n <mask token>\n\n def _threaded_code_format(self, text_document, options, monitor: IMonitor):\n from robotframework_ls.impl.formatting import create_text_edit_from_diff\n from robocorp_ls_core.lsp import TextDocumentItem\n import os.path\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY\n text_document_item = TextDocumentItem(**text_document)\n text = text_document_item.text\n if not text:\n completion_context = self._create_completion_context(\n text_document_item.uri, 0, 0, monitor)\n if completion_context is None:\n return []\n text = completion_context.doc.source\n if not text:\n return []\n if options is None:\n options = {}\n tab_size = options.get('tabSize', 4)\n formatter = self._config.get_setting(OPTION_ROBOT_CODE_FORMATTER,\n str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY)\n if formatter not in (OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY):\n log.critical(\n f'Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}.'\n )\n return []\n if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY:\n from robotframework_ls.impl.formatting import robot_source_format\n new_contents = robot_source_format(text, space_count=tab_size)\n else:\n if not self._check_min_version((4, 0)):\n log.critical(\n f'To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}'\n )\n return []\n from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format\n ast = completion_context.get_ast()\n path = completion_context.doc.path\n dirname = '.'\n try:\n os.stat(path)\n except:\n ws = self._workspace\n if ws is not None:\n dirname = ws.root_path\n else:\n dirname = os.path.dirname(path)\n new_contents = robot_tidy_source_format(ast, dirname)\n if new_contents is None or new_contents == text:\n return []\n return [x.to_dict() for x in create_text_edit_from_diff(text,\n new_contents)]\n <mask token>\n <mask token>\n\n def _threaded_signature_help(self, doc_uri: str, line: int, col: int,\n monitor: IMonitor) ->Optional[dict]:\n from robotframework_ls.impl.signature_help import signature_help\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return signature_help(completion_context)\n\n def m_folding_range(self, doc_uri: str):\n func = partial(self._threaded_folding_range, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_folding_range(self, doc_uri: str, monitor: IMonitor) ->List[\n FoldingRangeTypedDict]:\n from robotframework_ls.impl.folding_range import folding_range\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return folding_range(completion_context)\n\n def m_code_lens(self, doc_uri: str):\n func = partial(self._threaded_code_lens, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_code_lens(self, doc_uri: str, monitor: IMonitor) ->List[\n CodeLensTypedDict]:\n from robotframework_ls.impl.code_lens import code_lens\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return code_lens(completion_context)\n\n def m_resolve_code_lens(self, **code_lens: CodeLensTypedDict):\n func = partial(self._threaded_resolve_code_lens, code_lens)\n func = require_monitor(func)\n return func\n\n def _threaded_resolve_code_lens(self, code_lens: CodeLensTypedDict,\n monitor: IMonitor) ->CodeLensTypedDict:\n from robotframework_ls.impl.code_lens import code_lens_resolve\n data = code_lens.get('data')\n if not isinstance(data, dict):\n return code_lens\n doc_uri = data.get('uri')\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return code_lens\n return code_lens_resolve(completion_context, code_lens)\n\n def m_document_symbol(self, doc_uri: str):\n func = partial(self._threaded_document_symbol, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_document_symbol(self, doc_uri: str, monitor: IMonitor\n ) ->List[DocumentSymbolTypedDict]:\n from robotframework_ls.impl.document_symbol import document_symbol\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return document_symbol(completion_context)\n <mask token>\n\n def _threaded_list_tests(self, doc_uri: str, monitor: IMonitor) ->List[\n ITestInfoTypedDict]:\n from robotframework_ls.impl.code_lens import list_tests\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return list_tests(completion_context)\n <mask token>\n\n def _threaded_hover(self, doc_uri: str, line, col, monitor: IMonitor\n ) ->Optional[HoverTypedDict]:\n from robotframework_ls.impl.hover import hover\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return hover(completion_context)\n\n def m_workspace_symbols(self, query: Optional[str]=None):\n func = partial(self._threaded_workspace_symbols, query)\n func = require_monitor(func)\n return func\n\n def _threaded_workspace_symbols(self, query: Optional[str], monitor:\n IMonitor) ->Optional[List[SymbolInformationTypedDict]]:\n from robotframework_ls.impl.workspace_symbols import workspace_symbols\n from robotframework_ls.impl.completion_context import BaseContext\n from robotframework_ls.impl.protocols import IRobotWorkspace\n from typing import cast\n workspace = self._workspace\n if not workspace:\n return []\n robot_workspace = cast(IRobotWorkspace, workspace)\n return workspace_symbols(query, BaseContext(workspace=\n robot_workspace, config=self.config, monitor=monitor))\n <mask token>\n\n def m_text_document__semantic_tokens__full(self, textDocument=None):\n func = partial(self.threaded_semantic_tokens_full, textDocument=\n textDocument)\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_full(self, textDocument:\n TextDocumentTypedDict, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full\n doc_uri = textDocument['uri']\n context = self._create_completion_context(doc_uri, -1, -1, monitor)\n if context is None:\n return {'resultId': None, 'data': []}\n return {'resultId': None, 'data': semantic_tokens_full(context)}\n\n def m_monaco_completions_from_code_full(self, prefix: str='', full_code:\n str='', position=PositionTypedDict, uri: str='', indent: str=''):\n func = partial(self.threaded_monaco_completions_from_code_full,\n prefix=prefix, full_code=full_code, position=position, uri=uri,\n indent=indent)\n func = require_monitor(func)\n return func\n\n def threaded_monaco_completions_from_code_full(self, prefix: str,\n full_code: str, position: PositionTypedDict, uri: str, indent: str,\n monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.robot_workspace import RobotDocument\n from robotframework_ls.impl.completion_context import CompletionContext\n from robocorp_ls_core.workspace import Document\n from robotframework_ls.impl import section_completions\n from robotframework_ls.impl import snippets_completions\n from robotframework_ls.server_api.monaco_conversions import convert_to_monaco_completion\n from robotframework_ls.impl.completion_context import CompletionType\n d = Document(uri, prefix)\n last_line, _last_col = d.get_last_line_col()\n line = last_line + position['line']\n col = position['character']\n col += len(indent)\n document = RobotDocument(uri, full_code)\n completion_context = CompletionContext(document, line, col, config=\n self.config, monitor=monitor, workspace=self.workspace)\n completion_context.type = CompletionType.shell\n completions = self._complete_from_completion_context(completion_context\n )\n completions.extend(section_completions.complete(completion_context))\n completions.extend(snippets_completions.complete(completion_context))\n return {'suggestions': [convert_to_monaco_completion(c, line_delta=\n last_line, col_delta=len(indent), uri=uri) for c in completions]}\n <mask token>\n\n def threaded_semantic_tokens_from_code_full(self, prefix: str,\n full_code: str, indent: str, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full_from_ast\n try:\n from robotframework_ls.impl.robot_workspace import RobotDocument\n doc = RobotDocument('')\n doc.source = full_code\n ast = doc.get_ast()\n data = semantic_tokens_full_from_ast(ast, monitor)\n if not prefix:\n return {'resultId': None, 'data': data}\n prefix_doc = RobotDocument('')\n prefix_doc.source = prefix\n last_line, last_col = prefix_doc.get_last_line_col()\n ints_iter = iter(data)\n line = 0\n col = 0\n new_data = []\n indent_len = len(indent)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n line += line_delta\n if line_delta == 0:\n col += col_delta\n else:\n col = col_delta\n if line >= last_line:\n new_data.append(line - last_line)\n new_data.append(col_delta - indent_len)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n new_data.append(line_delta)\n if line_delta > 0:\n new_data.append(col_delta - indent_len)\n else:\n new_data.append(col_delta)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n break\n return {'resultId': None, 'data': new_data}\n except:\n log.exception('Error computing semantic tokens from code.')\n return {'resultId': None, 'data': []}\n\n def m_shutdown(self, **_kwargs):\n PythonLanguageServer.m_shutdown(self, **_kwargs)\n self.libspec_manager.dispose()\n\n def m_exit(self, **_kwargs):\n PythonLanguageServer.m_exit(self, **_kwargs)\n self.libspec_manager.dispose()\n", "step-4": "<mask token>\n\n\nclass RobotFrameworkServerApi(PythonLanguageServer):\n <mask token>\n\n def __init__(self, read_from, write_to, libspec_manager=None, observer:\n Optional[IFSObserver]=None):\n from robotframework_ls.impl.libspec_manager import LibspecManager\n if libspec_manager is None:\n try:\n libspec_manager = LibspecManager(observer=observer)\n except:\n log.exception(\n 'Unable to properly initialize the LibspecManager.')\n raise\n self.libspec_manager = libspec_manager\n PythonLanguageServer.__init__(self, read_from, write_to)\n self._version = None\n self._next_time = partial(next, itertools.count(0))\n\n @overrides(PythonLanguageServer._create_config)\n def _create_config(self) ->IConfig:\n from robotframework_ls.robot_config import RobotConfig\n return RobotConfig()\n\n def m_version(self):\n if self._version is not None:\n return self._version\n try:\n import robot\n except:\n log.exception(\"Unable to import 'robot'.\")\n version = 'NO_ROBOT'\n else:\n try:\n from robot import get_version\n version = get_version(naked=True)\n except:\n log.exception('Unable to get version.')\n version = 'N/A'\n self._version = version\n return self._version\n\n def _check_min_version(self, min_version):\n from robocorp_ls_core.basic import check_min_version\n version = self.m_version()\n return check_min_version(version, min_version)\n\n @overrides(PythonLanguageServer.m_workspace__did_change_configuration)\n def m_workspace__did_change_configuration(self, **kwargs):\n PythonLanguageServer.m_workspace__did_change_configuration(self, **\n kwargs)\n self.libspec_manager.config = self.config\n\n @overrides(PythonLanguageServer.lint)\n def lint(self, *args, **kwargs):\n pass\n\n @overrides(PythonLanguageServer.cancel_lint)\n def cancel_lint(self, *args, **kwargs):\n pass\n <mask token>\n\n @overrides(PythonLanguageServer._create_workspace)\n def _create_workspace(self, root_uri: str, fs_observer: IFSObserver,\n workspace_folders) ->IWorkspace:\n from robotframework_ls.impl.robot_workspace import RobotWorkspace\n return RobotWorkspace(root_uri, fs_observer, workspace_folders,\n libspec_manager=self.libspec_manager)\n\n def m_lint(self, doc_uri):\n if not self._check_min_version((3, 2)):\n from robocorp_ls_core.lsp import Error\n msg = (\n \"\"\"robotframework version (%s) too old for linting.\nPlease install a newer version and restart the language server.\"\"\"\n % (self.m_version(),))\n log.info(msg)\n return [Error(msg, (0, 0), (1, 0)).to_lsp_diagnostic()]\n func = partial(self._threaded_lint, doc_uri)\n func = require_monitor(func)\n return func\n <mask token>\n\n def m_complete_all(self, doc_uri, line, col):\n func = partial(self._threaded_complete_all, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_complete_all(self, doc_uri, line, col, monitor: IMonitor):\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return []\n return self._complete_from_completion_context(completion_context)\n\n def _complete_from_completion_context(self, completion_context):\n from robotframework_ls.impl import section_name_completions\n from robotframework_ls.impl import keyword_completions\n from robotframework_ls.impl import variable_completions\n from robotframework_ls.impl import dictionary_completions\n from robotframework_ls.impl import filesystem_section_completions\n from robotframework_ls.impl import keyword_parameter_completions\n from robotframework_ls.impl import auto_import_completions\n from robotframework_ls.impl.collect_keywords import collect_keyword_name_to_keyword_found\n from robotframework_ls.impl import ast_utils\n ret = section_name_completions.complete(completion_context)\n if not ret:\n ret.extend(filesystem_section_completions.complete(\n completion_context))\n if not ret:\n token_info = completion_context.get_current_token()\n if token_info is not None:\n token = ast_utils.get_keyword_name_token(token_info.node,\n token_info.token)\n if token is not None:\n keyword_name_to_keyword_found: Dict[str, List[\n IKeywordFound]\n ] = collect_keyword_name_to_keyword_found(\n completion_context)\n ret.extend(keyword_completions.complete(completion_context)\n )\n ret.extend(auto_import_completions.complete(\n completion_context, keyword_name_to_keyword_found))\n return ret\n if not ret:\n ret.extend(variable_completions.complete(completion_context))\n if not ret:\n ret.extend(dictionary_completions.complete(completion_context))\n if not ret:\n ret.extend(keyword_parameter_completions.complete(\n completion_context))\n return ret\n\n def m_section_name_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import section_name_completions\n completion_context = self._create_completion_context(doc_uri, line,\n col, None)\n if completion_context is None:\n return []\n return section_name_completions.complete(completion_context)\n\n def m_keyword_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import keyword_completions\n completion_context = self._create_completion_context(doc_uri, line,\n col, None)\n if completion_context is None:\n return []\n return keyword_completions.complete(completion_context)\n\n def m_find_definition(self, doc_uri, line, col):\n func = partial(self._threaded_find_definition, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_find_definition(self, doc_uri, line, col, monitor\n ) ->Optional[list]:\n from robotframework_ls.impl.find_definition import find_definition\n import os.path\n from robocorp_ls_core.lsp import Location, Range\n from robocorp_ls_core import uris\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n definitions = find_definition(completion_context)\n ret = []\n for definition in definitions:\n if not definition.source:\n log.info('Found definition with empty source (%s).', definition\n )\n continue\n if not os.path.exists(definition.source):\n log.info('Found definition: %s (but source does not exist).',\n definition)\n continue\n lineno = definition.lineno\n if lineno is None or lineno < 0:\n lineno = 0\n end_lineno = definition.end_lineno\n if end_lineno is None or end_lineno < 0:\n end_lineno = 0\n col_offset = definition.col_offset\n end_col_offset = definition.end_col_offset\n ret.append(Location(uris.from_fs_path(definition.source), Range\n ((lineno, col_offset), (end_lineno, end_col_offset))).to_dict()\n )\n return ret\n\n def m_code_format(self, text_document, options):\n func = partial(self._threaded_code_format, text_document, options)\n func = require_monitor(func)\n return func\n\n def _threaded_code_format(self, text_document, options, monitor: IMonitor):\n from robotframework_ls.impl.formatting import create_text_edit_from_diff\n from robocorp_ls_core.lsp import TextDocumentItem\n import os.path\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY\n from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY\n text_document_item = TextDocumentItem(**text_document)\n text = text_document_item.text\n if not text:\n completion_context = self._create_completion_context(\n text_document_item.uri, 0, 0, monitor)\n if completion_context is None:\n return []\n text = completion_context.doc.source\n if not text:\n return []\n if options is None:\n options = {}\n tab_size = options.get('tabSize', 4)\n formatter = self._config.get_setting(OPTION_ROBOT_CODE_FORMATTER,\n str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY)\n if formatter not in (OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY):\n log.critical(\n f'Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}.'\n )\n return []\n if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY:\n from robotframework_ls.impl.formatting import robot_source_format\n new_contents = robot_source_format(text, space_count=tab_size)\n else:\n if not self._check_min_version((4, 0)):\n log.critical(\n f'To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}'\n )\n return []\n from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format\n ast = completion_context.get_ast()\n path = completion_context.doc.path\n dirname = '.'\n try:\n os.stat(path)\n except:\n ws = self._workspace\n if ws is not None:\n dirname = ws.root_path\n else:\n dirname = os.path.dirname(path)\n new_contents = robot_tidy_source_format(ast, dirname)\n if new_contents is None or new_contents == text:\n return []\n return [x.to_dict() for x in create_text_edit_from_diff(text,\n new_contents)]\n <mask token>\n\n def m_signature_help(self, doc_uri: str, line: int, col: int):\n func = partial(self._threaded_signature_help, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_signature_help(self, doc_uri: str, line: int, col: int,\n monitor: IMonitor) ->Optional[dict]:\n from robotframework_ls.impl.signature_help import signature_help\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return signature_help(completion_context)\n\n def m_folding_range(self, doc_uri: str):\n func = partial(self._threaded_folding_range, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_folding_range(self, doc_uri: str, monitor: IMonitor) ->List[\n FoldingRangeTypedDict]:\n from robotframework_ls.impl.folding_range import folding_range\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return folding_range(completion_context)\n\n def m_code_lens(self, doc_uri: str):\n func = partial(self._threaded_code_lens, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_code_lens(self, doc_uri: str, monitor: IMonitor) ->List[\n CodeLensTypedDict]:\n from robotframework_ls.impl.code_lens import code_lens\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return code_lens(completion_context)\n\n def m_resolve_code_lens(self, **code_lens: CodeLensTypedDict):\n func = partial(self._threaded_resolve_code_lens, code_lens)\n func = require_monitor(func)\n return func\n\n def _threaded_resolve_code_lens(self, code_lens: CodeLensTypedDict,\n monitor: IMonitor) ->CodeLensTypedDict:\n from robotframework_ls.impl.code_lens import code_lens_resolve\n data = code_lens.get('data')\n if not isinstance(data, dict):\n return code_lens\n doc_uri = data.get('uri')\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return code_lens\n return code_lens_resolve(completion_context, code_lens)\n\n def m_document_symbol(self, doc_uri: str):\n func = partial(self._threaded_document_symbol, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_document_symbol(self, doc_uri: str, monitor: IMonitor\n ) ->List[DocumentSymbolTypedDict]:\n from robotframework_ls.impl.document_symbol import document_symbol\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return document_symbol(completion_context)\n\n def m_list_tests(self, doc_uri: str):\n func = partial(self._threaded_list_tests, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_list_tests(self, doc_uri: str, monitor: IMonitor) ->List[\n ITestInfoTypedDict]:\n from robotframework_ls.impl.code_lens import list_tests\n completion_context = self._create_completion_context(doc_uri, 0, 0,\n monitor)\n if completion_context is None:\n return []\n return list_tests(completion_context)\n\n def m_hover(self, doc_uri: str, line: int, col: int):\n func = partial(self._threaded_hover, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_hover(self, doc_uri: str, line, col, monitor: IMonitor\n ) ->Optional[HoverTypedDict]:\n from robotframework_ls.impl.hover import hover\n completion_context = self._create_completion_context(doc_uri, line,\n col, monitor)\n if completion_context is None:\n return None\n return hover(completion_context)\n\n def m_workspace_symbols(self, query: Optional[str]=None):\n func = partial(self._threaded_workspace_symbols, query)\n func = require_monitor(func)\n return func\n\n def _threaded_workspace_symbols(self, query: Optional[str], monitor:\n IMonitor) ->Optional[List[SymbolInformationTypedDict]]:\n from robotframework_ls.impl.workspace_symbols import workspace_symbols\n from robotframework_ls.impl.completion_context import BaseContext\n from robotframework_ls.impl.protocols import IRobotWorkspace\n from typing import cast\n workspace = self._workspace\n if not workspace:\n return []\n robot_workspace = cast(IRobotWorkspace, workspace)\n return workspace_symbols(query, BaseContext(workspace=\n robot_workspace, config=self.config, monitor=monitor))\n\n def m_text_document__semantic_tokens__range(self, textDocument=None,\n range=None):\n raise RuntimeError('Not currently implemented!')\n\n def m_text_document__semantic_tokens__full(self, textDocument=None):\n func = partial(self.threaded_semantic_tokens_full, textDocument=\n textDocument)\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_full(self, textDocument:\n TextDocumentTypedDict, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full\n doc_uri = textDocument['uri']\n context = self._create_completion_context(doc_uri, -1, -1, monitor)\n if context is None:\n return {'resultId': None, 'data': []}\n return {'resultId': None, 'data': semantic_tokens_full(context)}\n\n def m_monaco_completions_from_code_full(self, prefix: str='', full_code:\n str='', position=PositionTypedDict, uri: str='', indent: str=''):\n func = partial(self.threaded_monaco_completions_from_code_full,\n prefix=prefix, full_code=full_code, position=position, uri=uri,\n indent=indent)\n func = require_monitor(func)\n return func\n\n def threaded_monaco_completions_from_code_full(self, prefix: str,\n full_code: str, position: PositionTypedDict, uri: str, indent: str,\n monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.robot_workspace import RobotDocument\n from robotframework_ls.impl.completion_context import CompletionContext\n from robocorp_ls_core.workspace import Document\n from robotframework_ls.impl import section_completions\n from robotframework_ls.impl import snippets_completions\n from robotframework_ls.server_api.monaco_conversions import convert_to_monaco_completion\n from robotframework_ls.impl.completion_context import CompletionType\n d = Document(uri, prefix)\n last_line, _last_col = d.get_last_line_col()\n line = last_line + position['line']\n col = position['character']\n col += len(indent)\n document = RobotDocument(uri, full_code)\n completion_context = CompletionContext(document, line, col, config=\n self.config, monitor=monitor, workspace=self.workspace)\n completion_context.type = CompletionType.shell\n completions = self._complete_from_completion_context(completion_context\n )\n completions.extend(section_completions.complete(completion_context))\n completions.extend(snippets_completions.complete(completion_context))\n return {'suggestions': [convert_to_monaco_completion(c, line_delta=\n last_line, col_delta=len(indent), uri=uri) for c in completions]}\n\n def m_semantic_tokens_from_code_full(self, prefix: str='', full_code:\n str='', indent: str=''):\n func = partial(self.threaded_semantic_tokens_from_code_full, prefix\n =prefix, full_code=full_code, indent=indent)\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_from_code_full(self, prefix: str,\n full_code: str, indent: str, monitor: Optional[IMonitor]=None):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full_from_ast\n try:\n from robotframework_ls.impl.robot_workspace import RobotDocument\n doc = RobotDocument('')\n doc.source = full_code\n ast = doc.get_ast()\n data = semantic_tokens_full_from_ast(ast, monitor)\n if not prefix:\n return {'resultId': None, 'data': data}\n prefix_doc = RobotDocument('')\n prefix_doc.source = prefix\n last_line, last_col = prefix_doc.get_last_line_col()\n ints_iter = iter(data)\n line = 0\n col = 0\n new_data = []\n indent_len = len(indent)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n line += line_delta\n if line_delta == 0:\n col += col_delta\n else:\n col = col_delta\n if line >= last_line:\n new_data.append(line - last_line)\n new_data.append(col_delta - indent_len)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n new_data.append(line_delta)\n if line_delta > 0:\n new_data.append(col_delta - indent_len)\n else:\n new_data.append(col_delta)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n break\n return {'resultId': None, 'data': new_data}\n except:\n log.exception('Error computing semantic tokens from code.')\n return {'resultId': None, 'data': []}\n\n def m_shutdown(self, **_kwargs):\n PythonLanguageServer.m_shutdown(self, **_kwargs)\n self.libspec_manager.dispose()\n\n def m_exit(self, **_kwargs):\n PythonLanguageServer.m_exit(self, **_kwargs)\n self.libspec_manager.dispose()\n", "step-5": "from robocorp_ls_core.python_ls import PythonLanguageServer\nfrom robocorp_ls_core.basic import overrides\nfrom robocorp_ls_core.robotframework_log import get_logger\nfrom typing import Optional, List, Dict\nfrom robocorp_ls_core.protocols import IConfig, IMonitor, ITestInfoTypedDict, IWorkspace\nfrom functools import partial\nfrom robocorp_ls_core.jsonrpc.endpoint import require_monitor\nfrom robocorp_ls_core.lsp import (\n SymbolInformationTypedDict,\n FoldingRangeTypedDict,\n HoverTypedDict,\n TextDocumentTypedDict,\n CodeLensTypedDict,\n DocumentSymbolTypedDict,\n PositionTypedDict,\n)\nfrom robotframework_ls.impl.protocols import IKeywordFound\nfrom robocorp_ls_core.watchdog_wrapper import IFSObserver\nimport itertools\n\n\nlog = get_logger(__name__)\n\n\nclass RobotFrameworkServerApi(PythonLanguageServer):\n \"\"\"\n This is a custom server. It uses the same message-format used in the language\n server but with custom messages (i.e.: this is not the language server, but\n an API to use the bits we need from robotframework in a separate process).\n \"\"\"\n\n def __init__(\n self,\n read_from,\n write_to,\n libspec_manager=None,\n observer: Optional[IFSObserver] = None,\n ):\n from robotframework_ls.impl.libspec_manager import LibspecManager\n\n if libspec_manager is None:\n try:\n libspec_manager = LibspecManager(observer=observer)\n except:\n log.exception(\"Unable to properly initialize the LibspecManager.\")\n raise\n\n self.libspec_manager = libspec_manager\n PythonLanguageServer.__init__(self, read_from, write_to)\n self._version = None\n self._next_time = partial(next, itertools.count(0))\n\n @overrides(PythonLanguageServer._create_config)\n def _create_config(self) -> IConfig:\n from robotframework_ls.robot_config import RobotConfig\n\n return RobotConfig()\n\n def m_version(self):\n if self._version is not None:\n return self._version\n try:\n import robot # noqa\n except:\n log.exception(\"Unable to import 'robot'.\")\n version = \"NO_ROBOT\"\n else:\n try:\n from robot import get_version\n\n version = get_version(naked=True)\n except:\n log.exception(\"Unable to get version.\")\n version = \"N/A\" # Too old?\n self._version = version\n return self._version\n\n def _check_min_version(self, min_version):\n from robocorp_ls_core.basic import check_min_version\n\n version = self.m_version()\n return check_min_version(version, min_version)\n\n @overrides(PythonLanguageServer.m_workspace__did_change_configuration)\n def m_workspace__did_change_configuration(self, **kwargs):\n PythonLanguageServer.m_workspace__did_change_configuration(self, **kwargs)\n self.libspec_manager.config = self.config\n\n @overrides(PythonLanguageServer.lint)\n def lint(self, *args, **kwargs):\n pass # No-op for this server.\n\n @overrides(PythonLanguageServer.cancel_lint)\n def cancel_lint(self, *args, **kwargs):\n pass # No-op for this server.\n\n @overrides(PythonLanguageServer._obtain_fs_observer)\n def _obtain_fs_observer(self) -> IFSObserver:\n return self.libspec_manager.fs_observer\n\n @overrides(PythonLanguageServer._create_workspace)\n def _create_workspace(\n self, root_uri: str, fs_observer: IFSObserver, workspace_folders\n ) -> IWorkspace:\n from robotframework_ls.impl.robot_workspace import RobotWorkspace\n\n return RobotWorkspace(\n root_uri,\n fs_observer,\n workspace_folders,\n libspec_manager=self.libspec_manager,\n )\n\n def m_lint(self, doc_uri):\n if not self._check_min_version((3, 2)):\n from robocorp_ls_core.lsp import Error\n\n msg = (\n \"robotframework version (%s) too old for linting.\\n\"\n \"Please install a newer version and restart the language server.\"\n % (self.m_version(),)\n )\n log.info(msg)\n return [Error(msg, (0, 0), (1, 0)).to_lsp_diagnostic()]\n\n func = partial(self._threaded_lint, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_lint(self, doc_uri, monitor: IMonitor):\n from robocorp_ls_core.jsonrpc.exceptions import JsonRpcRequestCancelled\n from robotframework_ls.impl.robot_lsp_constants import (\n OPTION_ROBOT_LINT_ROBOCOP_ENABLED,\n )\n from robocorp_ls_core import uris\n from robocorp_ls_core.lsp import Error\n\n try:\n from robotframework_ls.impl.ast_utils import collect_errors\n from robotframework_ls.impl import code_analysis\n import os.path\n\n log.debug(\"Lint: starting (in thread).\")\n\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return []\n\n config = completion_context.config\n robocop_enabled = config is None or config.get_setting(\n OPTION_ROBOT_LINT_ROBOCOP_ENABLED, bool, False\n )\n\n ast = completion_context.get_ast()\n source = completion_context.doc.source\n monitor.check_cancelled()\n errors = collect_errors(ast)\n log.debug(\"Collected AST errors (in thread): %s\", len(errors))\n monitor.check_cancelled()\n analysis_errors = code_analysis.collect_analysis_errors(completion_context)\n monitor.check_cancelled()\n log.debug(\"Collected analysis errors (in thread): %s\", len(analysis_errors))\n errors.extend(analysis_errors)\n\n lsp_diagnostics = [error.to_lsp_diagnostic() for error in errors]\n\n try:\n if robocop_enabled:\n from robocorp_ls_core.robocop_wrapper import (\n collect_robocop_diagnostics,\n )\n\n workspace = completion_context.workspace\n if workspace is not None:\n project_root = workspace.root_path\n else:\n project_root = os.path.abspath(\".\")\n\n monitor.check_cancelled()\n lsp_diagnostics.extend(\n collect_robocop_diagnostics(\n project_root, ast, uris.to_fs_path(doc_uri), source\n )\n )\n except Exception as e:\n log.exception(\n \"Error collecting Robocop errors (possibly an unsupported Robocop version is installed).\"\n )\n lsp_diagnostics.append(\n Error(\n f\"Error collecting Robocop errors: {e}\", (0, 0), (1, 0)\n ).to_lsp_diagnostic()\n )\n\n return lsp_diagnostics\n except JsonRpcRequestCancelled:\n raise JsonRpcRequestCancelled(\"Lint cancelled (inside lint)\")\n except Exception as e:\n log.exception(\"Error collecting errors.\")\n ret = [\n Error(\n f\"Error collecting Robocop errors: {e}\", (0, 0), (1, 0)\n ).to_lsp_diagnostic()\n ]\n return ret\n\n def m_complete_all(self, doc_uri, line, col):\n func = partial(self._threaded_complete_all, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_complete_all(self, doc_uri, line, col, monitor: IMonitor):\n completion_context = self._create_completion_context(\n doc_uri, line, col, monitor\n )\n if completion_context is None:\n return []\n\n return self._complete_from_completion_context(completion_context)\n\n def _complete_from_completion_context(self, completion_context):\n from robotframework_ls.impl import section_name_completions\n from robotframework_ls.impl import keyword_completions\n from robotframework_ls.impl import variable_completions\n from robotframework_ls.impl import dictionary_completions\n from robotframework_ls.impl import filesystem_section_completions\n from robotframework_ls.impl import keyword_parameter_completions\n from robotframework_ls.impl import auto_import_completions\n from robotframework_ls.impl.collect_keywords import (\n collect_keyword_name_to_keyword_found,\n )\n from robotframework_ls.impl import ast_utils\n\n ret = section_name_completions.complete(completion_context)\n if not ret:\n ret.extend(filesystem_section_completions.complete(completion_context))\n\n if not ret:\n token_info = completion_context.get_current_token()\n if token_info is not None:\n token = ast_utils.get_keyword_name_token(\n token_info.node, token_info.token\n )\n if token is not None:\n keyword_name_to_keyword_found: Dict[\n str, List[IKeywordFound]\n ] = collect_keyword_name_to_keyword_found(completion_context)\n ret.extend(keyword_completions.complete(completion_context))\n ret.extend(\n auto_import_completions.complete(\n completion_context, keyword_name_to_keyword_found\n )\n )\n return ret\n\n if not ret:\n ret.extend(variable_completions.complete(completion_context))\n\n if not ret:\n ret.extend(dictionary_completions.complete(completion_context))\n\n if not ret:\n ret.extend(keyword_parameter_completions.complete(completion_context))\n\n return ret\n\n def m_section_name_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import section_name_completions\n\n completion_context = self._create_completion_context(doc_uri, line, col, None)\n if completion_context is None:\n return []\n\n return section_name_completions.complete(completion_context)\n\n def m_keyword_complete(self, doc_uri, line, col):\n from robotframework_ls.impl import keyword_completions\n\n completion_context = self._create_completion_context(doc_uri, line, col, None)\n if completion_context is None:\n return []\n return keyword_completions.complete(completion_context)\n\n def m_find_definition(self, doc_uri, line, col):\n func = partial(self._threaded_find_definition, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_find_definition(self, doc_uri, line, col, monitor) -> Optional[list]:\n from robotframework_ls.impl.find_definition import find_definition\n import os.path\n from robocorp_ls_core.lsp import Location, Range\n from robocorp_ls_core import uris\n\n completion_context = self._create_completion_context(\n doc_uri, line, col, monitor\n )\n if completion_context is None:\n return None\n definitions = find_definition(completion_context)\n ret = []\n for definition in definitions:\n if not definition.source:\n log.info(\"Found definition with empty source (%s).\", definition)\n continue\n\n if not os.path.exists(definition.source):\n log.info(\n \"Found definition: %s (but source does not exist).\", definition\n )\n continue\n\n lineno = definition.lineno\n if lineno is None or lineno < 0:\n lineno = 0\n\n end_lineno = definition.end_lineno\n if end_lineno is None or end_lineno < 0:\n end_lineno = 0\n\n col_offset = definition.col_offset\n end_col_offset = definition.end_col_offset\n\n ret.append(\n Location(\n uris.from_fs_path(definition.source),\n Range((lineno, col_offset), (end_lineno, end_col_offset)),\n ).to_dict()\n )\n return ret\n\n def m_code_format(self, text_document, options):\n func = partial(self._threaded_code_format, text_document, options)\n func = require_monitor(func)\n return func\n\n def _threaded_code_format(self, text_document, options, monitor: IMonitor):\n from robotframework_ls.impl.formatting import create_text_edit_from_diff\n from robocorp_ls_core.lsp import TextDocumentItem\n import os.path\n from robotframework_ls.impl.robot_lsp_constants import (\n OPTION_ROBOT_CODE_FORMATTER,\n )\n from robotframework_ls.impl.robot_lsp_constants import (\n OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n )\n from robotframework_ls.impl.robot_lsp_constants import (\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY,\n )\n\n text_document_item = TextDocumentItem(**text_document)\n text = text_document_item.text\n if not text:\n completion_context = self._create_completion_context(\n text_document_item.uri, 0, 0, monitor\n )\n if completion_context is None:\n return []\n text = completion_context.doc.source\n\n if not text:\n return []\n\n if options is None:\n options = {}\n tab_size = options.get(\"tabSize\", 4)\n\n # Default for now is the builtin. This will probably be changed in the future.\n formatter = self._config.get_setting(\n OPTION_ROBOT_CODE_FORMATTER, str, OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY\n )\n if formatter not in (\n OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY,\n OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY,\n ):\n log.critical(\n f\"Code formatter invalid: {formatter}. Please select one of: {OPTION_ROBOT_CODE_FORMATTER_ROBOTIDY}, {OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY}.\"\n )\n return []\n\n if formatter == OPTION_ROBOT_CODE_FORMATTER_BUILTIN_TIDY:\n from robotframework_ls.impl.formatting import robot_source_format\n\n new_contents = robot_source_format(text, space_count=tab_size)\n\n else:\n if not self._check_min_version((4, 0)):\n log.critical(\n f\"To use the robotidy formatter, at least Robot Framework 4 is needed. Found: {self.m_version()}\"\n )\n return []\n\n from robocorp_ls_core.robotidy_wrapper import robot_tidy_source_format\n\n ast = completion_context.get_ast()\n path = completion_context.doc.path\n dirname = \".\"\n try:\n os.stat(path)\n except:\n # It doesn't exist\n ws = self._workspace\n if ws is not None:\n dirname = ws.root_path\n else:\n dirname = os.path.dirname(path)\n\n new_contents = robot_tidy_source_format(ast, dirname)\n\n if new_contents is None or new_contents == text:\n return []\n return [x.to_dict() for x in create_text_edit_from_diff(text, new_contents)]\n\n def _create_completion_context(\n self, doc_uri, line, col, monitor: Optional[IMonitor]\n ):\n from robotframework_ls.impl.completion_context import CompletionContext\n\n if not self._check_min_version((3, 2)):\n log.info(\"robotframework version too old.\")\n return None\n workspace = self.workspace\n if not workspace:\n log.info(\"Workspace still not initialized.\")\n return None\n\n document = workspace.get_document(doc_uri, accept_from_file=True)\n if document is None:\n log.info(\"Unable to get document for uri: %s.\", doc_uri)\n return None\n return CompletionContext(\n document,\n line,\n col,\n workspace=workspace,\n config=self.config,\n monitor=monitor,\n )\n\n def m_signature_help(self, doc_uri: str, line: int, col: int):\n func = partial(self._threaded_signature_help, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_signature_help(\n self, doc_uri: str, line: int, col: int, monitor: IMonitor\n ) -> Optional[dict]:\n from robotframework_ls.impl.signature_help import signature_help\n\n completion_context = self._create_completion_context(\n doc_uri, line, col, monitor\n )\n if completion_context is None:\n return None\n\n return signature_help(completion_context)\n\n def m_folding_range(self, doc_uri: str):\n func = partial(self._threaded_folding_range, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_folding_range(\n self, doc_uri: str, monitor: IMonitor\n ) -> List[FoldingRangeTypedDict]:\n from robotframework_ls.impl.folding_range import folding_range\n\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return []\n\n return folding_range(completion_context)\n\n def m_code_lens(self, doc_uri: str):\n func = partial(self._threaded_code_lens, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_code_lens(\n self, doc_uri: str, monitor: IMonitor\n ) -> List[CodeLensTypedDict]:\n from robotframework_ls.impl.code_lens import code_lens\n\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return []\n\n return code_lens(completion_context)\n\n def m_resolve_code_lens(self, **code_lens: CodeLensTypedDict):\n func = partial(self._threaded_resolve_code_lens, code_lens)\n func = require_monitor(func)\n return func\n\n def _threaded_resolve_code_lens(\n self, code_lens: CodeLensTypedDict, monitor: IMonitor\n ) -> CodeLensTypedDict:\n from robotframework_ls.impl.code_lens import code_lens_resolve\n\n data = code_lens.get(\"data\")\n if not isinstance(data, dict):\n return code_lens\n\n doc_uri = data.get(\"uri\")\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return code_lens\n\n return code_lens_resolve(completion_context, code_lens)\n\n def m_document_symbol(self, doc_uri: str):\n func = partial(self._threaded_document_symbol, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_document_symbol(\n self, doc_uri: str, monitor: IMonitor\n ) -> List[DocumentSymbolTypedDict]:\n from robotframework_ls.impl.document_symbol import document_symbol\n\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return []\n\n return document_symbol(completion_context)\n\n def m_list_tests(self, doc_uri: str):\n func = partial(self._threaded_list_tests, doc_uri)\n func = require_monitor(func)\n return func\n\n def _threaded_list_tests(\n self, doc_uri: str, monitor: IMonitor\n ) -> List[ITestInfoTypedDict]:\n from robotframework_ls.impl.code_lens import list_tests\n\n completion_context = self._create_completion_context(doc_uri, 0, 0, monitor)\n if completion_context is None:\n return []\n\n return list_tests(completion_context)\n\n def m_hover(self, doc_uri: str, line: int, col: int):\n func = partial(self._threaded_hover, doc_uri, line, col)\n func = require_monitor(func)\n return func\n\n def _threaded_hover(\n self, doc_uri: str, line, col, monitor: IMonitor\n ) -> Optional[HoverTypedDict]:\n from robotframework_ls.impl.hover import hover\n\n completion_context = self._create_completion_context(\n doc_uri, line, col, monitor\n )\n if completion_context is None:\n return None\n\n return hover(completion_context)\n\n def m_workspace_symbols(self, query: Optional[str] = None):\n func = partial(self._threaded_workspace_symbols, query)\n func = require_monitor(func)\n return func\n\n def _threaded_workspace_symbols(\n self, query: Optional[str], monitor: IMonitor\n ) -> Optional[List[SymbolInformationTypedDict]]:\n from robotframework_ls.impl.workspace_symbols import workspace_symbols\n from robotframework_ls.impl.completion_context import BaseContext\n from robotframework_ls.impl.protocols import IRobotWorkspace\n from typing import cast\n\n workspace = self._workspace\n if not workspace:\n return []\n\n robot_workspace = cast(IRobotWorkspace, workspace)\n\n return workspace_symbols(\n query,\n BaseContext(workspace=robot_workspace, config=self.config, monitor=monitor),\n )\n\n def m_text_document__semantic_tokens__range(self, textDocument=None, range=None):\n raise RuntimeError(\"Not currently implemented!\")\n\n def m_text_document__semantic_tokens__full(self, textDocument=None):\n func = partial(self.threaded_semantic_tokens_full, textDocument=textDocument)\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_full(\n self, textDocument: TextDocumentTypedDict, monitor: Optional[IMonitor] = None\n ):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full\n\n doc_uri = textDocument[\"uri\"]\n context = self._create_completion_context(doc_uri, -1, -1, monitor)\n if context is None:\n return {\"resultId\": None, \"data\": []}\n return {\"resultId\": None, \"data\": semantic_tokens_full(context)}\n\n def m_monaco_completions_from_code_full(\n self,\n prefix: str = \"\",\n full_code: str = \"\",\n position=PositionTypedDict,\n uri: str = \"\",\n indent: str = \"\",\n ):\n func = partial(\n self.threaded_monaco_completions_from_code_full,\n prefix=prefix,\n full_code=full_code,\n position=position,\n uri=uri,\n indent=indent,\n )\n func = require_monitor(func)\n return func\n\n def threaded_monaco_completions_from_code_full(\n self,\n prefix: str,\n full_code: str,\n position: PositionTypedDict,\n uri: str,\n indent: str,\n monitor: Optional[IMonitor] = None,\n ):\n from robotframework_ls.impl.robot_workspace import RobotDocument\n from robotframework_ls.impl.completion_context import CompletionContext\n from robocorp_ls_core.workspace import Document\n from robotframework_ls.impl import section_completions\n from robotframework_ls.impl import snippets_completions\n from robotframework_ls.server_api.monaco_conversions import (\n convert_to_monaco_completion,\n )\n from robotframework_ls.impl.completion_context import CompletionType\n\n d = Document(uri, prefix)\n last_line, _last_col = d.get_last_line_col()\n line = last_line + position[\"line\"]\n\n col = position[\"character\"]\n col += len(indent)\n\n document = RobotDocument(uri, full_code)\n completion_context = CompletionContext(\n document,\n line,\n col,\n config=self.config,\n monitor=monitor,\n workspace=self.workspace,\n )\n completion_context.type = CompletionType.shell\n completions = self._complete_from_completion_context(completion_context)\n completions.extend(section_completions.complete(completion_context))\n completions.extend(snippets_completions.complete(completion_context))\n\n return {\n \"suggestions\": [\n convert_to_monaco_completion(\n c, line_delta=last_line, col_delta=len(indent), uri=uri\n )\n for c in completions\n ]\n }\n\n def m_semantic_tokens_from_code_full(\n self, prefix: str = \"\", full_code: str = \"\", indent: str = \"\"\n ):\n func = partial(\n self.threaded_semantic_tokens_from_code_full,\n prefix=prefix,\n full_code=full_code,\n indent=indent,\n )\n func = require_monitor(func)\n return func\n\n def threaded_semantic_tokens_from_code_full(\n self,\n prefix: str,\n full_code: str,\n indent: str,\n monitor: Optional[IMonitor] = None,\n ):\n from robotframework_ls.impl.semantic_tokens import semantic_tokens_full_from_ast\n\n try:\n from robotframework_ls.impl.robot_workspace import RobotDocument\n\n doc = RobotDocument(\"\")\n doc.source = full_code\n ast = doc.get_ast()\n data = semantic_tokens_full_from_ast(ast, monitor)\n if not prefix:\n return {\"resultId\": None, \"data\": data}\n\n # We have to exclude the prefix from the coloring...\n\n # debug info...\n # import io\n # from robotframework_ls.impl.semantic_tokens import decode_semantic_tokens\n # stream = io.StringIO()\n # decode_semantic_tokens(data, doc, stream)\n # found = stream.getvalue()\n\n prefix_doc = RobotDocument(\"\")\n prefix_doc.source = prefix\n last_line, last_col = prefix_doc.get_last_line_col()\n\n # Now we have the data from the full code, but we need to remove whatever\n # we have in the prefix from the result...\n ints_iter = iter(data)\n line = 0\n col = 0\n new_data = []\n indent_len = len(indent)\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n line += line_delta\n if line_delta == 0:\n col += col_delta\n else:\n col = col_delta\n\n if line >= last_line:\n new_data.append(line - last_line)\n new_data.append(col_delta - indent_len)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n\n # Ok, now, we have to add the indent_len to all the\n # next lines\n while True:\n try:\n line_delta = next(ints_iter)\n except StopIteration:\n break\n col_delta = next(ints_iter)\n token_len = next(ints_iter)\n token_type = next(ints_iter)\n token_modifier = next(ints_iter)\n\n new_data.append(line_delta)\n if line_delta > 0:\n new_data.append(col_delta - indent_len)\n else:\n new_data.append(col_delta)\n new_data.append(token_len)\n new_data.append(token_type)\n new_data.append(token_modifier)\n\n break\n\n # Approach changed so that we always have a new line\n # i.e.:\n # \\n<indent><code>\n #\n # so, the condition below no longer applies.\n # elif line == last_line and col >= last_col:\n # new_data.append(0)\n # new_data.append(col - last_col)\n # new_data.append(token_len)\n # new_data.append(token_type)\n # new_data.append(token_modifier)\n # new_data.extend(ints_iter)\n # break\n\n # debug info...\n # temp_stream = io.StringIO()\n # temp_doc = RobotDocument(\"\")\n # temp_doc.source = full_code[len(prefix) :]\n # decode_semantic_tokens(new_data, temp_doc, temp_stream)\n # temp_found = temp_stream.getvalue()\n\n return {\"resultId\": None, \"data\": new_data}\n except:\n log.exception(\"Error computing semantic tokens from code.\")\n return {\"resultId\": None, \"data\": []}\n\n def m_shutdown(self, **_kwargs):\n PythonLanguageServer.m_shutdown(self, **_kwargs)\n self.libspec_manager.dispose()\n\n def m_exit(self, **_kwargs):\n PythonLanguageServer.m_exit(self, **_kwargs)\n self.libspec_manager.dispose()\n", "step-ids": [ 19, 33, 35, 44, 51 ] }
[ 19, 33, 35, 44, 51 ]
<|reserved_special_token_0|> class DataTypesTestCase(unittest.TestCase): <|reserved_special_token_0|> <|reserved_special_token_0|> def test_is_rain_a_float(self): rain = dfClean.iloc[4908, 2] self.assertTrue(isinstance(rain, float)) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class DateTimeFormatTestCase(unittest.TestCase): def test_does_month_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][2] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_day_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][5] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_year_have_four_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][6:8] != '20': booln = False i += 1 self.assertTrue(booln) def test_does_hour_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if len(dfClean.iloc[i, 7]) != 16: booln = False i += 1 self.assertTrue(booln) class AppendColumnsTestCase(unittest.TestCase): def test_is_month_column_appending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]): booln = False i += 1 self.assertTrue(booln) def test_is_day_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]): booln = False i += 1 self.assertTrue(booln) def test_is_year_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]): booln = False i += 1 self.assertTrue(booln) def test_is_hour_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]): booln = False i += 1 self.assertTrue(booln) class HolidayTestCase(unittest.TestCase): def test_are_all_hours_correct_holiday(self): i = 0 booln = True hol = 'None' while i < len(dfClean): if dfClean.iloc[i, 12] == 0: hol = dfClean.iloc[i, 0] elif dfClean.iloc[i, 0] != hol: booln = False i += 1 self.assertTrue(booln) class UniqueDataPointsTestCase(unittest.TestCase): def test_are_all_datetimes_unique(self): i = 1 booln = True while i < len(dfClean): if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]: booln = False i += 1 self.assertTrue(booln) class TemperatureConversionTestCase(unittest.TestCase): def test_is_temp_converting_from_kelvin_to_F(self): i = 1 booln = True while i < len(dfClean): if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50): booln = False i += 1 self.assertTrue(booln) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class DataTypesTestCase(unittest.TestCase): <|reserved_special_token_0|> <|reserved_special_token_0|> def test_is_rain_a_float(self): rain = dfClean.iloc[4908, 2] self.assertTrue(isinstance(rain, float)) <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> def test_is_hour_an_int(self): hour = dfClean.iloc[4908, 12] self.assertEqual(str(type(hour)), "<class 'numpy.int64'>") class DateTimeFormatTestCase(unittest.TestCase): def test_does_month_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][2] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_day_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][5] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_year_have_four_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][6:8] != '20': booln = False i += 1 self.assertTrue(booln) def test_does_hour_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if len(dfClean.iloc[i, 7]) != 16: booln = False i += 1 self.assertTrue(booln) class AppendColumnsTestCase(unittest.TestCase): def test_is_month_column_appending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]): booln = False i += 1 self.assertTrue(booln) def test_is_day_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]): booln = False i += 1 self.assertTrue(booln) def test_is_year_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]): booln = False i += 1 self.assertTrue(booln) def test_is_hour_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]): booln = False i += 1 self.assertTrue(booln) class HolidayTestCase(unittest.TestCase): def test_are_all_hours_correct_holiday(self): i = 0 booln = True hol = 'None' while i < len(dfClean): if dfClean.iloc[i, 12] == 0: hol = dfClean.iloc[i, 0] elif dfClean.iloc[i, 0] != hol: booln = False i += 1 self.assertTrue(booln) class UniqueDataPointsTestCase(unittest.TestCase): def test_are_all_datetimes_unique(self): i = 1 booln = True while i < len(dfClean): if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]: booln = False i += 1 self.assertTrue(booln) class TemperatureConversionTestCase(unittest.TestCase): def test_is_temp_converting_from_kelvin_to_F(self): i = 1 booln = True while i < len(dfClean): if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50): booln = False i += 1 self.assertTrue(booln) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class DataTypesTestCase(unittest.TestCase): <|reserved_special_token_0|> def test_is_temperature_a_float(self): temp = dfClean.iloc[4908, 1] self.assertTrue(isinstance(temp, float)) def test_is_rain_a_float(self): rain = dfClean.iloc[4908, 2] self.assertTrue(isinstance(rain, float)) def test_is_snow_a_float(self): snow = dfClean.iloc[4908, 3] self.assertTrue(isinstance(snow, float)) def test_is_clouds_an_int(self): clouds = dfClean.iloc[4908, 4] self.assertEqual(str(type(clouds)), "<class 'numpy.int64'>") def test_is_weather_main_a_string(self): weather = dfClean.iloc[4908, 5] self.assertTrue(isinstance(weather, str)) def test_is_weather_descrip_a_string(self): weather = dfClean.iloc[4908, 6] self.assertTrue(isinstance(weather, str)) def test_is_date_time_a_string(self): dateTime = dfClean.iloc[4908, 7] self.assertTrue(isinstance(dateTime, str)) def test_is_traffic_an_int(self): traffic = dfClean.iloc[4908, 8] self.assertEqual(str(type(traffic)), "<class 'numpy.int64'>") def test_is_month_an_int(self): month = dfClean.iloc[4908, 9] self.assertEqual(str(type(month)), "<class 'numpy.int64'>") def test_is_day_an_int(self): day = dfClean.iloc[4908, 10] self.assertEqual(str(type(day)), "<class 'numpy.int64'>") def test_is_year_an_int(self): year = dfClean.iloc[4908, 11] self.assertEqual(str(type(year)), "<class 'numpy.int64'>") def test_is_hour_an_int(self): hour = dfClean.iloc[4908, 12] self.assertEqual(str(type(hour)), "<class 'numpy.int64'>") class DateTimeFormatTestCase(unittest.TestCase): def test_does_month_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][2] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_day_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][5] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_year_have_four_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][6:8] != '20': booln = False i += 1 self.assertTrue(booln) def test_does_hour_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if len(dfClean.iloc[i, 7]) != 16: booln = False i += 1 self.assertTrue(booln) class AppendColumnsTestCase(unittest.TestCase): def test_is_month_column_appending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]): booln = False i += 1 self.assertTrue(booln) def test_is_day_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]): booln = False i += 1 self.assertTrue(booln) def test_is_year_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]): booln = False i += 1 self.assertTrue(booln) def test_is_hour_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]): booln = False i += 1 self.assertTrue(booln) class HolidayTestCase(unittest.TestCase): def test_are_all_hours_correct_holiday(self): i = 0 booln = True hol = 'None' while i < len(dfClean): if dfClean.iloc[i, 12] == 0: hol = dfClean.iloc[i, 0] elif dfClean.iloc[i, 0] != hol: booln = False i += 1 self.assertTrue(booln) class UniqueDataPointsTestCase(unittest.TestCase): def test_are_all_datetimes_unique(self): i = 1 booln = True while i < len(dfClean): if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]: booln = False i += 1 self.assertTrue(booln) class TemperatureConversionTestCase(unittest.TestCase): def test_is_temp_converting_from_kelvin_to_F(self): i = 1 booln = True while i < len(dfClean): if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50): booln = False i += 1 self.assertTrue(booln) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class DataTypesTestCase(unittest.TestCase): def test_is_holiday_a_string(self): holiday = dfClean.iloc[4908, 0] self.assertTrue(isinstance(holiday, str)) def test_is_temperature_a_float(self): temp = dfClean.iloc[4908, 1] self.assertTrue(isinstance(temp, float)) def test_is_rain_a_float(self): rain = dfClean.iloc[4908, 2] self.assertTrue(isinstance(rain, float)) def test_is_snow_a_float(self): snow = dfClean.iloc[4908, 3] self.assertTrue(isinstance(snow, float)) def test_is_clouds_an_int(self): clouds = dfClean.iloc[4908, 4] self.assertEqual(str(type(clouds)), "<class 'numpy.int64'>") def test_is_weather_main_a_string(self): weather = dfClean.iloc[4908, 5] self.assertTrue(isinstance(weather, str)) def test_is_weather_descrip_a_string(self): weather = dfClean.iloc[4908, 6] self.assertTrue(isinstance(weather, str)) def test_is_date_time_a_string(self): dateTime = dfClean.iloc[4908, 7] self.assertTrue(isinstance(dateTime, str)) def test_is_traffic_an_int(self): traffic = dfClean.iloc[4908, 8] self.assertEqual(str(type(traffic)), "<class 'numpy.int64'>") def test_is_month_an_int(self): month = dfClean.iloc[4908, 9] self.assertEqual(str(type(month)), "<class 'numpy.int64'>") def test_is_day_an_int(self): day = dfClean.iloc[4908, 10] self.assertEqual(str(type(day)), "<class 'numpy.int64'>") def test_is_year_an_int(self): year = dfClean.iloc[4908, 11] self.assertEqual(str(type(year)), "<class 'numpy.int64'>") def test_is_hour_an_int(self): hour = dfClean.iloc[4908, 12] self.assertEqual(str(type(hour)), "<class 'numpy.int64'>") class DateTimeFormatTestCase(unittest.TestCase): def test_does_month_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][2] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_day_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][5] != '/': booln = False i += 1 self.assertTrue(booln) def test_does_year_have_four_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i, 7][6:8] != '20': booln = False i += 1 self.assertTrue(booln) def test_does_hour_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if len(dfClean.iloc[i, 7]) != 16: booln = False i += 1 self.assertTrue(booln) class AppendColumnsTestCase(unittest.TestCase): def test_is_month_column_appending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]): booln = False i += 1 self.assertTrue(booln) def test_is_day_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]): booln = False i += 1 self.assertTrue(booln) def test_is_year_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]): booln = False i += 1 self.assertTrue(booln) def test_is_hour_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]): booln = False i += 1 self.assertTrue(booln) class HolidayTestCase(unittest.TestCase): def test_are_all_hours_correct_holiday(self): i = 0 booln = True hol = 'None' while i < len(dfClean): if dfClean.iloc[i, 12] == 0: hol = dfClean.iloc[i, 0] elif dfClean.iloc[i, 0] != hol: booln = False i += 1 self.assertTrue(booln) class UniqueDataPointsTestCase(unittest.TestCase): def test_are_all_datetimes_unique(self): i = 1 booln = True while i < len(dfClean): if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]: booln = False i += 1 self.assertTrue(booln) class TemperatureConversionTestCase(unittest.TestCase): def test_is_temp_converting_from_kelvin_to_F(self): i = 1 booln = True while i < len(dfClean): if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50): booln = False i += 1 self.assertTrue(booln) if __name__ == '__main__': unittest.main() <|reserved_special_token_1|> # CS 5010 Project # Team Metro # Test the data cleaning import unittest from cleaning_data import dfClean # import the dataframe we created after cleaning the data class DataTypesTestCase(unittest.TestCase): # we will test that each column has the correct data type # note that there is a strange occurence seen below when converting to a pandas dataframe def test_is_holiday_a_string(self): holiday = dfClean.iloc[4908,0] self.assertTrue(isinstance(holiday, str)) def test_is_temperature_a_float(self): temp = dfClean.iloc[4908,1] self.assertTrue(isinstance(temp, float)) def test_is_rain_a_float(self): rain = dfClean.iloc[4908,2] self.assertTrue(isinstance(rain, float)) def test_is_snow_a_float(self): snow = dfClean.iloc[4908,3] self.assertTrue(isinstance(snow, float)) def test_is_clouds_an_int(self): clouds = dfClean.iloc[4908,4] self.assertEqual(str(type(clouds)), "<class 'numpy.int64'>") # pandas converts all of the ints in the list to numpy.int64 # could not figure out how to avoid this def test_is_weather_main_a_string(self): weather = dfClean.iloc[4908,5] self.assertTrue(isinstance(weather, str)) def test_is_weather_descrip_a_string(self): weather = dfClean.iloc[4908,6] self.assertTrue(isinstance(weather, str)) def test_is_date_time_a_string(self): dateTime = dfClean.iloc[4908,7] self.assertTrue(isinstance(dateTime, str)) def test_is_traffic_an_int(self): traffic = dfClean.iloc[4908,8] self.assertEqual(str(type(traffic)), "<class 'numpy.int64'>") def test_is_month_an_int(self): month = dfClean.iloc[4908,9] self.assertEqual(str(type(month)), "<class 'numpy.int64'>") def test_is_day_an_int(self): day = dfClean.iloc[4908,10] self.assertEqual(str(type(day)), "<class 'numpy.int64'>") def test_is_year_an_int(self): year = dfClean.iloc[4908,11] self.assertEqual(str(type(year)), "<class 'numpy.int64'>") def test_is_hour_an_int(self): hour = dfClean.iloc[4908,12] self.assertEqual(str(type(hour)), "<class 'numpy.int64'>") class DateTimeFormatTestCase(unittest.TestCase): def test_does_month_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i,7][2] != "/": booln = False i += 1 self.assertTrue(booln) # make sure that every data point has a two digit month # in cleaning, 0 should have been added to make it two digits def test_does_day_have_two_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i,7][5] != "/": booln = False i += 1 self.assertTrue(booln) # all months in the date/time string should have two digits after cleaning def test_does_year_have_four_digits(self): i = 0 booln = True while i < len(dfClean): if dfClean.iloc[i,7][6:8] != "20": booln = False i += 1 self.assertTrue(booln) # all years should be in the form 20xx in the date/time string def test_does_hour_have_two_digits(self): i = 0 booln = True # since we already tested all of the other cleaning items on the date/time string while i < len(dfClean): # we can check the hour by checking the length of the whole string if len(dfClean.iloc[i,7]) != 16: # all in column should have the form "mm/dd/yyyy hh:00" booln = False i += 1 self.assertTrue(booln) # in cleaning, 0 should have been added to make a one digit hour (0-9) two digits (00-09) # without the other tests this would be a way to check all in one test but would not # tell us what part of the cleaning on the date/time string did not work correctly class AppendColumnsTestCase(unittest.TestCase): # we will check that each of the four new columns (month, day, year, and hour) # appended correctly to the dataset def test_is_month_column_appending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i,9]) != int(dfClean.iloc[i,7][:2]): booln = False i += 1 self.assertTrue(booln) # we check that the month in the month column matches that in the original date/time column def test_is_day_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i,10]) != int(dfClean.iloc[i,7][3:5]): booln = False i += 1 self.assertTrue(booln) # we check that the day in the day column matches that in the original date/time column def test_is_year_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i,11]) != int(dfClean.iloc[i,7][6:10]): booln = False i += 1 self.assertTrue(booln) # we check that the year in the year column matches that in the original date/time column def test_is_hour_column_apending_correctly(self): i = 0 booln = True while i < len(dfClean): if int(dfClean.iloc[i,12]) != int(dfClean.iloc[i,7][11:13]): booln = False i += 1 self.assertTrue(booln) # we check that the hour in the hour column matches that in the original date/time column class HolidayTestCase(unittest.TestCase): # we test that every hour of the same day has a consistent holiday def test_are_all_hours_correct_holiday(self): i = 0 booln = True hol = "None" while i < len(dfClean): if dfClean.iloc[i,12] == 0: hol = dfClean.iloc[i,0] else: if dfClean.iloc[i,0] != hol: booln = False i += 1 self.assertTrue(booln) class UniqueDataPointsTestCase(unittest.TestCase): # this test ensures that no two data points have the exact same date and hour def test_are_all_datetimes_unique(self): i = 1 booln = True while i < len(dfClean): if dfClean.iloc[i,7] == dfClean.iloc[i-1,7]: booln = False i += 1 self.assertTrue(booln) class TemperatureConversionTestCase(unittest.TestCase): # we test that the temperature was converted to Fahrenheit # note that since we overrode the original temperature, we simply check for # outlier that would make sense as Kelvin values but not Fahrenheit values # This how we discovered there were some missing temperatures input as 0 Kelvin # because they converted to -450 Fahrenheit def test_is_temp_converting_from_kelvin_to_F(self): i = 1 booln = True while i < len(dfClean): if (dfClean.iloc[i,1] > 120) | (dfClean.iloc[i,1] < -50): booln = False i += 1 self.assertTrue(booln) if __name__ == '__main__': unittest.main()
flexible
{ "blob_id": "9d0727970c760a9a8123c5c07359ba5c538cea3c", "index": 5926, "step-1": "<mask token>\n\n\nclass DataTypesTestCase(unittest.TestCase):\n <mask token>\n <mask token>\n\n def test_is_rain_a_float(self):\n rain = dfClean.iloc[4908, 2]\n self.assertTrue(isinstance(rain, float))\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass DateTimeFormatTestCase(unittest.TestCase):\n\n def test_does_month_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][2] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_day_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][5] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_year_have_four_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][6:8] != '20':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_hour_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if len(dfClean.iloc[i, 7]) != 16:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass AppendColumnsTestCase(unittest.TestCase):\n\n def test_is_month_column_appending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_day_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_year_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_hour_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass HolidayTestCase(unittest.TestCase):\n\n def test_are_all_hours_correct_holiday(self):\n i = 0\n booln = True\n hol = 'None'\n while i < len(dfClean):\n if dfClean.iloc[i, 12] == 0:\n hol = dfClean.iloc[i, 0]\n elif dfClean.iloc[i, 0] != hol:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass UniqueDataPointsTestCase(unittest.TestCase):\n\n def test_are_all_datetimes_unique(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass TemperatureConversionTestCase(unittest.TestCase):\n\n def test_is_temp_converting_from_kelvin_to_F(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass DataTypesTestCase(unittest.TestCase):\n <mask token>\n <mask token>\n\n def test_is_rain_a_float(self):\n rain = dfClean.iloc[4908, 2]\n self.assertTrue(isinstance(rain, float))\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def test_is_hour_an_int(self):\n hour = dfClean.iloc[4908, 12]\n self.assertEqual(str(type(hour)), \"<class 'numpy.int64'>\")\n\n\nclass DateTimeFormatTestCase(unittest.TestCase):\n\n def test_does_month_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][2] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_day_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][5] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_year_have_four_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][6:8] != '20':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_hour_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if len(dfClean.iloc[i, 7]) != 16:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass AppendColumnsTestCase(unittest.TestCase):\n\n def test_is_month_column_appending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_day_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_year_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_hour_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass HolidayTestCase(unittest.TestCase):\n\n def test_are_all_hours_correct_holiday(self):\n i = 0\n booln = True\n hol = 'None'\n while i < len(dfClean):\n if dfClean.iloc[i, 12] == 0:\n hol = dfClean.iloc[i, 0]\n elif dfClean.iloc[i, 0] != hol:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass UniqueDataPointsTestCase(unittest.TestCase):\n\n def test_are_all_datetimes_unique(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass TemperatureConversionTestCase(unittest.TestCase):\n\n def test_is_temp_converting_from_kelvin_to_F(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass DataTypesTestCase(unittest.TestCase):\n <mask token>\n\n def test_is_temperature_a_float(self):\n temp = dfClean.iloc[4908, 1]\n self.assertTrue(isinstance(temp, float))\n\n def test_is_rain_a_float(self):\n rain = dfClean.iloc[4908, 2]\n self.assertTrue(isinstance(rain, float))\n\n def test_is_snow_a_float(self):\n snow = dfClean.iloc[4908, 3]\n self.assertTrue(isinstance(snow, float))\n\n def test_is_clouds_an_int(self):\n clouds = dfClean.iloc[4908, 4]\n self.assertEqual(str(type(clouds)), \"<class 'numpy.int64'>\")\n\n def test_is_weather_main_a_string(self):\n weather = dfClean.iloc[4908, 5]\n self.assertTrue(isinstance(weather, str))\n\n def test_is_weather_descrip_a_string(self):\n weather = dfClean.iloc[4908, 6]\n self.assertTrue(isinstance(weather, str))\n\n def test_is_date_time_a_string(self):\n dateTime = dfClean.iloc[4908, 7]\n self.assertTrue(isinstance(dateTime, str))\n\n def test_is_traffic_an_int(self):\n traffic = dfClean.iloc[4908, 8]\n self.assertEqual(str(type(traffic)), \"<class 'numpy.int64'>\")\n\n def test_is_month_an_int(self):\n month = dfClean.iloc[4908, 9]\n self.assertEqual(str(type(month)), \"<class 'numpy.int64'>\")\n\n def test_is_day_an_int(self):\n day = dfClean.iloc[4908, 10]\n self.assertEqual(str(type(day)), \"<class 'numpy.int64'>\")\n\n def test_is_year_an_int(self):\n year = dfClean.iloc[4908, 11]\n self.assertEqual(str(type(year)), \"<class 'numpy.int64'>\")\n\n def test_is_hour_an_int(self):\n hour = dfClean.iloc[4908, 12]\n self.assertEqual(str(type(hour)), \"<class 'numpy.int64'>\")\n\n\nclass DateTimeFormatTestCase(unittest.TestCase):\n\n def test_does_month_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][2] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_day_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][5] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_year_have_four_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][6:8] != '20':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_hour_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if len(dfClean.iloc[i, 7]) != 16:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass AppendColumnsTestCase(unittest.TestCase):\n\n def test_is_month_column_appending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_day_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_year_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_hour_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass HolidayTestCase(unittest.TestCase):\n\n def test_are_all_hours_correct_holiday(self):\n i = 0\n booln = True\n hol = 'None'\n while i < len(dfClean):\n if dfClean.iloc[i, 12] == 0:\n hol = dfClean.iloc[i, 0]\n elif dfClean.iloc[i, 0] != hol:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass UniqueDataPointsTestCase(unittest.TestCase):\n\n def test_are_all_datetimes_unique(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass TemperatureConversionTestCase(unittest.TestCase):\n\n def test_is_temp_converting_from_kelvin_to_F(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass DataTypesTestCase(unittest.TestCase):\n\n def test_is_holiday_a_string(self):\n holiday = dfClean.iloc[4908, 0]\n self.assertTrue(isinstance(holiday, str))\n\n def test_is_temperature_a_float(self):\n temp = dfClean.iloc[4908, 1]\n self.assertTrue(isinstance(temp, float))\n\n def test_is_rain_a_float(self):\n rain = dfClean.iloc[4908, 2]\n self.assertTrue(isinstance(rain, float))\n\n def test_is_snow_a_float(self):\n snow = dfClean.iloc[4908, 3]\n self.assertTrue(isinstance(snow, float))\n\n def test_is_clouds_an_int(self):\n clouds = dfClean.iloc[4908, 4]\n self.assertEqual(str(type(clouds)), \"<class 'numpy.int64'>\")\n\n def test_is_weather_main_a_string(self):\n weather = dfClean.iloc[4908, 5]\n self.assertTrue(isinstance(weather, str))\n\n def test_is_weather_descrip_a_string(self):\n weather = dfClean.iloc[4908, 6]\n self.assertTrue(isinstance(weather, str))\n\n def test_is_date_time_a_string(self):\n dateTime = dfClean.iloc[4908, 7]\n self.assertTrue(isinstance(dateTime, str))\n\n def test_is_traffic_an_int(self):\n traffic = dfClean.iloc[4908, 8]\n self.assertEqual(str(type(traffic)), \"<class 'numpy.int64'>\")\n\n def test_is_month_an_int(self):\n month = dfClean.iloc[4908, 9]\n self.assertEqual(str(type(month)), \"<class 'numpy.int64'>\")\n\n def test_is_day_an_int(self):\n day = dfClean.iloc[4908, 10]\n self.assertEqual(str(type(day)), \"<class 'numpy.int64'>\")\n\n def test_is_year_an_int(self):\n year = dfClean.iloc[4908, 11]\n self.assertEqual(str(type(year)), \"<class 'numpy.int64'>\")\n\n def test_is_hour_an_int(self):\n hour = dfClean.iloc[4908, 12]\n self.assertEqual(str(type(hour)), \"<class 'numpy.int64'>\")\n\n\nclass DateTimeFormatTestCase(unittest.TestCase):\n\n def test_does_month_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][2] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_day_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][5] != '/':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_year_have_four_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7][6:8] != '20':\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_does_hour_have_two_digits(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if len(dfClean.iloc[i, 7]) != 16:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass AppendColumnsTestCase(unittest.TestCase):\n\n def test_is_month_column_appending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 9]) != int(dfClean.iloc[i, 7][:2]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_day_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 10]) != int(dfClean.iloc[i, 7][3:5]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_year_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 11]) != int(dfClean.iloc[i, 7][6:10]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n def test_is_hour_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i, 12]) != int(dfClean.iloc[i, 7][11:13]):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass HolidayTestCase(unittest.TestCase):\n\n def test_are_all_hours_correct_holiday(self):\n i = 0\n booln = True\n hol = 'None'\n while i < len(dfClean):\n if dfClean.iloc[i, 12] == 0:\n hol = dfClean.iloc[i, 0]\n elif dfClean.iloc[i, 0] != hol:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass UniqueDataPointsTestCase(unittest.TestCase):\n\n def test_are_all_datetimes_unique(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i, 7] == dfClean.iloc[i - 1, 7]:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass TemperatureConversionTestCase(unittest.TestCase):\n\n def test_is_temp_converting_from_kelvin_to_F(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if (dfClean.iloc[i, 1] > 120) | (dfClean.iloc[i, 1] < -50):\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "# CS 5010 Project \n\n# Team Metro\n\n# Test the data cleaning\n\nimport unittest\nfrom cleaning_data import dfClean # import the dataframe we created after cleaning the data\n\n\nclass DataTypesTestCase(unittest.TestCase):\n\n # we will test that each column has the correct data type\n # note that there is a strange occurence seen below when converting to a pandas dataframe\n\n def test_is_holiday_a_string(self):\n holiday = dfClean.iloc[4908,0]\n self.assertTrue(isinstance(holiday, str))\n \n def test_is_temperature_a_float(self):\n temp = dfClean.iloc[4908,1]\n self.assertTrue(isinstance(temp, float))\n \n def test_is_rain_a_float(self):\n rain = dfClean.iloc[4908,2]\n self.assertTrue(isinstance(rain, float))\n\n def test_is_snow_a_float(self):\n snow = dfClean.iloc[4908,3]\n self.assertTrue(isinstance(snow, float))\n\n def test_is_clouds_an_int(self):\n clouds = dfClean.iloc[4908,4]\n self.assertEqual(str(type(clouds)), \"<class 'numpy.int64'>\")\n # pandas converts all of the ints in the list to numpy.int64 \n # could not figure out how to avoid this\n\n def test_is_weather_main_a_string(self):\n weather = dfClean.iloc[4908,5]\n self.assertTrue(isinstance(weather, str))\n \n def test_is_weather_descrip_a_string(self):\n weather = dfClean.iloc[4908,6]\n self.assertTrue(isinstance(weather, str))\n\n def test_is_date_time_a_string(self):\n dateTime = dfClean.iloc[4908,7]\n self.assertTrue(isinstance(dateTime, str))\n\n def test_is_traffic_an_int(self):\n traffic = dfClean.iloc[4908,8]\n self.assertEqual(str(type(traffic)), \"<class 'numpy.int64'>\")\n\n def test_is_month_an_int(self):\n month = dfClean.iloc[4908,9]\n self.assertEqual(str(type(month)), \"<class 'numpy.int64'>\")\n\n def test_is_day_an_int(self):\n day = dfClean.iloc[4908,10]\n self.assertEqual(str(type(day)), \"<class 'numpy.int64'>\")\n\n def test_is_year_an_int(self):\n year = dfClean.iloc[4908,11]\n self.assertEqual(str(type(year)), \"<class 'numpy.int64'>\")\n \n def test_is_hour_an_int(self):\n hour = dfClean.iloc[4908,12]\n self.assertEqual(str(type(hour)), \"<class 'numpy.int64'>\")\n\n \n\n\nclass DateTimeFormatTestCase(unittest.TestCase):\n def test_does_month_have_two_digits(self):\n i = 0 \n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i,7][2] != \"/\":\n booln = False\n i += 1\n self.assertTrue(booln)\n # make sure that every data point has a two digit month\n # in cleaning, 0 should have been added to make it two digits\n \n def test_does_day_have_two_digits(self):\n i = 0 \n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i,7][5] != \"/\":\n booln = False\n i += 1\n self.assertTrue(booln)\n # all months in the date/time string should have two digits after cleaning\n\n def test_does_year_have_four_digits(self):\n i = 0 \n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i,7][6:8] != \"20\":\n booln = False\n i += 1\n self.assertTrue(booln)\n # all years should be in the form 20xx in the date/time string\n \n def test_does_hour_have_two_digits(self):\n i = 0\n booln = True # since we already tested all of the other cleaning items on the date/time string\n while i < len(dfClean): # we can check the hour by checking the length of the whole string\n if len(dfClean.iloc[i,7]) != 16: # all in column should have the form \"mm/dd/yyyy hh:00\"\n booln = False\n i += 1\n self.assertTrue(booln) \n # in cleaning, 0 should have been added to make a one digit hour (0-9) two digits (00-09)\n # without the other tests this would be a way to check all in one test but would not\n # tell us what part of the cleaning on the date/time string did not work correctly\n\n\nclass AppendColumnsTestCase(unittest.TestCase):\n # we will check that each of the four new columns (month, day, year, and hour)\n # appended correctly to the dataset\n def test_is_month_column_appending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i,9]) != int(dfClean.iloc[i,7][:2]):\n booln = False\n i += 1\n self.assertTrue(booln)\n # we check that the month in the month column matches that in the original date/time column\n \n def test_is_day_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i,10]) != int(dfClean.iloc[i,7][3:5]):\n booln = False\n i += 1\n self.assertTrue(booln)\n # we check that the day in the day column matches that in the original date/time column\n\n def test_is_year_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i,11]) != int(dfClean.iloc[i,7][6:10]):\n booln = False\n i += 1\n self.assertTrue(booln)\n # we check that the year in the year column matches that in the original date/time column\n\n\n def test_is_hour_column_apending_correctly(self):\n i = 0\n booln = True\n while i < len(dfClean):\n if int(dfClean.iloc[i,12]) != int(dfClean.iloc[i,7][11:13]):\n booln = False\n i += 1\n self.assertTrue(booln)\n # we check that the hour in the hour column matches that in the original date/time column\n \n\nclass HolidayTestCase(unittest.TestCase):\n # we test that every hour of the same day has a consistent holiday\n def test_are_all_hours_correct_holiday(self):\n i = 0\n booln = True\n hol = \"None\"\n while i < len(dfClean):\n if dfClean.iloc[i,12] == 0:\n hol = dfClean.iloc[i,0]\n else:\n if dfClean.iloc[i,0] != hol:\n booln = False\n i += 1\n self.assertTrue(booln)\n\n\nclass UniqueDataPointsTestCase(unittest.TestCase):\n # this test ensures that no two data points have the exact same date and hour\n def test_are_all_datetimes_unique(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if dfClean.iloc[i,7] == dfClean.iloc[i-1,7]:\n booln = False\n i += 1\n self.assertTrue(booln)\n \n\nclass TemperatureConversionTestCase(unittest.TestCase):\n # we test that the temperature was converted to Fahrenheit\n # note that since we overrode the original temperature, we simply check for \n # outlier that would make sense as Kelvin values but not Fahrenheit values\n # This how we discovered there were some missing temperatures input as 0 Kelvin\n # because they converted to -450 Fahrenheit\n def test_is_temp_converting_from_kelvin_to_F(self):\n i = 1\n booln = True\n while i < len(dfClean):\n if (dfClean.iloc[i,1] > 120) | (dfClean.iloc[i,1] < -50):\n booln = False\n i += 1\n self.assertTrue(booln)\n\nif __name__ == '__main__': \n unittest.main() ", "step-ids": [ 18, 19, 29, 31, 33 ] }
[ 18, 19, 29, 31, 33 ]
# 가위, 바위, 보 게임 # 컴퓨터 가위, 바위, 보 리스트에서 랜덤하게 뽑기 위해 random 함수 호출 import random # 컴퓨터 가위, 바위, 보 리스트 list_b = ["가위", "바위", "보"] # 이긴횟수, 진 횟수 카운팅 하기 위한 변수 person_win_count = 0 person_lose_count = 0 while person_win_count < 4 or person_lose_count < 4: # 가위, 바위, 보 입력 받기 player = input("가위, 바위, 보 중 어떤 것을 낼래요? ") if player != "가위" and player != "바위" and player != "보": player = input("다시 입력해 주세요.(예: 가위, 바위, 보)") # 컴퓨터 가위, 바위, 보 임의 추출 computer = random.choice(list_b) print("컴퓨터:", computer) # 사람과 컴퓨터간 가위, 바위, 보 비교 및 카운팅 if player == computer: print("비겼습니다.") elif player == "가위": if computer == "바위": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") if computer == "보": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") elif player == "바위": if computer == "가위": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") if computer == "보": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") elif player == "보": if computer == "바위": person_win_count = person_win_count + 1 print("당신이 이겼습니다.") if computer == "가위": person_lose_count = person_lose_count + 1 print("컴퓨터가 이겼습니다.") # 3번 이겼는지, 3번 졌는지 조건비교, 최종결과, 게임종료 if person_win_count == 3: print("당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.") break elif person_lose_count == 3: print("당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.") break
normal
{ "blob_id": "93d4c6b6aef827d6746afc684c32a9cf1d0229e4", "index": 717, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile person_win_count < 4 or person_lose_count < 4:\n player = input('가위, 바위, 보 중 어떤 것을 낼래요? ')\n if player != '가위' and player != '바위' and player != '보':\n player = input('다시 입력해 주세요.(예: 가위, 바위, 보)')\n computer = random.choice(list_b)\n print('컴퓨터:', computer)\n if player == computer:\n print('비겼습니다.')\n elif player == '가위':\n if computer == '바위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if computer == '보':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n elif player == '바위':\n if computer == '가위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '보':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n elif player == '보':\n if computer == '바위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '가위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if person_win_count == 3:\n print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.')\n break\n elif person_lose_count == 3:\n print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.')\n break\n", "step-3": "<mask token>\nlist_b = ['가위', '바위', '보']\nperson_win_count = 0\nperson_lose_count = 0\nwhile person_win_count < 4 or person_lose_count < 4:\n player = input('가위, 바위, 보 중 어떤 것을 낼래요? ')\n if player != '가위' and player != '바위' and player != '보':\n player = input('다시 입력해 주세요.(예: 가위, 바위, 보)')\n computer = random.choice(list_b)\n print('컴퓨터:', computer)\n if player == computer:\n print('비겼습니다.')\n elif player == '가위':\n if computer == '바위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if computer == '보':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n elif player == '바위':\n if computer == '가위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '보':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n elif player == '보':\n if computer == '바위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '가위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if person_win_count == 3:\n print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.')\n break\n elif person_lose_count == 3:\n print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.')\n break\n", "step-4": "import random\nlist_b = ['가위', '바위', '보']\nperson_win_count = 0\nperson_lose_count = 0\nwhile person_win_count < 4 or person_lose_count < 4:\n player = input('가위, 바위, 보 중 어떤 것을 낼래요? ')\n if player != '가위' and player != '바위' and player != '보':\n player = input('다시 입력해 주세요.(예: 가위, 바위, 보)')\n computer = random.choice(list_b)\n print('컴퓨터:', computer)\n if player == computer:\n print('비겼습니다.')\n elif player == '가위':\n if computer == '바위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if computer == '보':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n elif player == '바위':\n if computer == '가위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '보':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n elif player == '보':\n if computer == '바위':\n person_win_count = person_win_count + 1\n print('당신이 이겼습니다.')\n if computer == '가위':\n person_lose_count = person_lose_count + 1\n print('컴퓨터가 이겼습니다.')\n if person_win_count == 3:\n print('당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.')\n break\n elif person_lose_count == 3:\n print('당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.')\n break\n", "step-5": "# 가위, 바위, 보 게임\n\n\n# 컴퓨터 가위, 바위, 보 리스트에서 랜덤하게 뽑기 위해 random 함수 호출\nimport random\n\n# 컴퓨터 가위, 바위, 보 리스트\nlist_b = [\"가위\", \"바위\", \"보\"]\n\n# 이긴횟수, 진 횟수 카운팅 하기 위한 변수\nperson_win_count = 0\nperson_lose_count = 0\n\nwhile person_win_count < 4 or person_lose_count < 4:\n # 가위, 바위, 보 입력 받기\n player = input(\"가위, 바위, 보 중 어떤 것을 낼래요? \")\n if player != \"가위\" and player != \"바위\" and player != \"보\":\n player = input(\"다시 입력해 주세요.(예: 가위, 바위, 보)\")\n\n # 컴퓨터 가위, 바위, 보 임의 추출\n computer = random.choice(list_b)\n print(\"컴퓨터:\", computer)\n\n # 사람과 컴퓨터간 가위, 바위, 보 비교 및 카운팅\n if player == computer:\n print(\"비겼습니다.\")\n elif player == \"가위\":\n if computer == \"바위\":\n person_lose_count = person_lose_count + 1\n print(\"컴퓨터가 이겼습니다.\")\n if computer == \"보\":\n person_win_count = person_win_count + 1\n print(\"당신이 이겼습니다.\")\n\n elif player == \"바위\":\n if computer == \"가위\":\n person_win_count = person_win_count + 1\n print(\"당신이 이겼습니다.\")\n if computer == \"보\":\n person_lose_count = person_lose_count + 1\n print(\"컴퓨터가 이겼습니다.\")\n\n elif player == \"보\":\n if computer == \"바위\":\n person_win_count = person_win_count + 1\n print(\"당신이 이겼습니다.\")\n if computer == \"가위\":\n person_lose_count = person_lose_count + 1\n print(\"컴퓨터가 이겼습니다.\")\n\n # 3번 이겼는지, 3번 졌는지 조건비교, 최종결과, 게임종료\n if person_win_count == 3:\n print(\"당신이 3번을 이겼습니다.^^; 가위바위보 게임을 종료합니다.\")\n break\n elif person_lose_count == 3:\n print(\"당신이 3번을 졌습니다.-_-; 가위바위보 게임을 종료합니다.\")\n break\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" This is the interface that allows for creating nested lists. You should not implement it, or speculate about its implementation class NestedInteger(object): def isInteger(self): # @return {boolean} True if this NestedInteger holds a single integer, # rather than a nested list. def getInteger(self): # @return {int} the single integer that this NestedInteger holds, # if it holds a single integer # Return None if this NestedInteger holds a nested list def getList(self): # @return {NestedInteger[]} the nested list that this NestedInteger holds, # if it holds a nested list # Return None if this NestedInteger holds a single integer """ # Version 1: DFS Recursive class Solution(object): # @param {NestedInteger[]} nestedList a list of NestedInteger Object # @return {int} an integer def depthSum(self, nestedList): return self.dfs(nestedList, 1) def dfs(self, nestedList, depth): sum = 0 for item in nestedList: if item.isInteger(): sum += item.getInteger() * depth else: sum += self.dfs(item.getList(), depth + 1) return sum # Version 2: BFS, Non-Recursive class Solution(object): # @param {NestedInteger[]} nestedList a list of NestedInteger Object # @return {int} an integer def depthSum(self, nestedList): if len(nestedList) == 0: return 0 from queue import Queue q = Queue() sum = 0 depth = 1 for item in nestedList: q.put(item) while not q.empty(): for _ in range(q.qsize()): item = q.get() if item.isInteger(): sum += item.getInteger() * depth else: for next in item.getList(): q.put(next) depth += 1 return sum
normal
{ "blob_id": "bb81027ed5311e625591d98193997e5c7b533b70", "index": 4945, "step-1": "<mask token>\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n if len(nestedList) == 0:\n return 0\n from queue import Queue\n q = Queue()\n sum = 0\n depth = 1\n for item in nestedList:\n q.put(item)\n while not q.empty():\n for _ in range(q.qsize()):\n item = q.get()\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n for next in item.getList():\n q.put(next)\n depth += 1\n return sum\n", "step-2": "<mask token>\n\n\nclass Solution(object):\n <mask token>\n <mask token>\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n if len(nestedList) == 0:\n return 0\n from queue import Queue\n q = Queue()\n sum = 0\n depth = 1\n for item in nestedList:\n q.put(item)\n while not q.empty():\n for _ in range(q.qsize()):\n item = q.get()\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n for next in item.getList():\n q.put(next)\n depth += 1\n return sum\n", "step-3": "<mask token>\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n return self.dfs(nestedList, 1)\n <mask token>\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n if len(nestedList) == 0:\n return 0\n from queue import Queue\n q = Queue()\n sum = 0\n depth = 1\n for item in nestedList:\n q.put(item)\n while not q.empty():\n for _ in range(q.qsize()):\n item = q.get()\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n for next in item.getList():\n q.put(next)\n depth += 1\n return sum\n", "step-4": "<mask token>\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n return self.dfs(nestedList, 1)\n\n def dfs(self, nestedList, depth):\n sum = 0\n for item in nestedList:\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n sum += self.dfs(item.getList(), depth + 1)\n return sum\n\n\nclass Solution(object):\n\n def depthSum(self, nestedList):\n if len(nestedList) == 0:\n return 0\n from queue import Queue\n q = Queue()\n sum = 0\n depth = 1\n for item in nestedList:\n q.put(item)\n while not q.empty():\n for _ in range(q.qsize()):\n item = q.get()\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n for next in item.getList():\n q.put(next)\n depth += 1\n return sum\n", "step-5": "\"\"\"\nThis is the interface that allows for creating nested lists.\nYou should not implement it, or speculate about its implementation\n\nclass NestedInteger(object):\n def isInteger(self):\n # @return {boolean} True if this NestedInteger holds a single integer,\n # rather than a nested list.\n\n def getInteger(self):\n # @return {int} the single integer that this NestedInteger holds,\n # if it holds a single integer\n # Return None if this NestedInteger holds a nested list\n\n def getList(self):\n # @return {NestedInteger[]} the nested list that this NestedInteger holds,\n # if it holds a nested list\n # Return None if this NestedInteger holds a single integer\n\"\"\"\n\n\n# Version 1: DFS Recursive\nclass Solution(object):\n # @param {NestedInteger[]} nestedList a list of NestedInteger Object\n # @return {int} an integer\n def depthSum(self, nestedList):\n return self.dfs(nestedList, 1)\n\n def dfs(self, nestedList, depth):\n sum = 0\n for item in nestedList:\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n sum += self.dfs(item.getList(), depth + 1)\n\n return sum\n\n\n\n\n# Version 2: BFS, Non-Recursive\nclass Solution(object):\n # @param {NestedInteger[]} nestedList a list of NestedInteger Object\n # @return {int} an integer\n def depthSum(self, nestedList):\n if len(nestedList) == 0:\n return 0\n\n from queue import Queue\n q = Queue()\n sum = 0\n depth = 1\n\n for item in nestedList:\n q.put(item)\n\n while not q.empty():\n for _ in range(q.qsize()):\n item = q.get()\n if item.isInteger():\n sum += item.getInteger() * depth\n else:\n for next in item.getList():\n q.put(next)\n depth += 1\n\n return sum", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import pytest from homeworks.homework6.oop_2 import ( DeadLineError, Homework, HomeworkResult, Student, Teacher, ) def test_creating_objects(): teacher = Teacher("Daniil", "Shadrin") student = Student("Roman", "Petrov") homework = teacher.create_homework("Learn OOP", 1) homework_result = student.do_homework(homework, "I have done this hw") assert isinstance(teacher, Teacher) assert isinstance(student, Student) assert isinstance(homework, Homework) assert isinstance(homework_result, HomeworkResult) def test_do_homework_exception(): teacher = Teacher("Daniil", "Shadrin") student = Student("Lev", "Sokolov") homework = teacher.create_homework("Learn OOP", 0) with pytest.raises(DeadLineError, match=r"You are late"): student.do_homework(homework, "I have done this hw") def test_creating_and_resetting_homework_results_by_teacher(): teacher = Teacher("Daniil", "Shadrin") student = Student("Roman", "Petrov") homework_1 = teacher.create_homework("Learn OOP", 1) homework_1_result = student.do_homework(homework_1, "I have done this hw") assert teacher.check_homework(homework_1_result) is True assert homework_1_result in teacher.homework_done[homework_1] homework_2 = teacher.create_homework("homework 2", 1) homework_2_result = student.do_homework(homework_2, "zero") assert teacher.check_homework(homework_2_result) is False assert teacher.homework_done.get(homework_2) is None homework_3 = teacher.create_homework("homework 3", 1) homework_3_result = student.do_homework(homework_3, "I have done this hw") assert teacher.check_homework(homework_3_result) is True assert homework_3_result in teacher.homework_done.get(homework_3) assert len(teacher.homework_done) == 2 Teacher.reset_results(homework_3) assert len(teacher.homework_done) == 1 Teacher.reset_results() assert len(teacher.homework_done) == 0
normal
{ "blob_id": "8f971ee3b98691a887ee0632afd613bbf4f19aa0", "index": 3505, "step-1": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\n<mask token>\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-3": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Lev', 'Sokolov')\n homework = teacher.create_homework('Learn OOP', 0)\n with pytest.raises(DeadLineError, match='You are late'):\n student.do_homework(homework, 'I have done this hw')\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-4": "import pytest\nfrom homeworks.homework6.oop_2 import DeadLineError, Homework, HomeworkResult, Student, Teacher\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Lev', 'Sokolov')\n homework = teacher.create_homework('Learn OOP', 0)\n with pytest.raises(DeadLineError, match='You are late'):\n student.do_homework(homework, 'I have done this hw')\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-5": "import pytest\n\nfrom homeworks.homework6.oop_2 import (\n DeadLineError,\n Homework,\n HomeworkResult,\n Student,\n Teacher,\n)\n\n\ndef test_creating_objects():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Roman\", \"Petrov\")\n homework = teacher.create_homework(\"Learn OOP\", 1)\n homework_result = student.do_homework(homework, \"I have done this hw\")\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Lev\", \"Sokolov\")\n homework = teacher.create_homework(\"Learn OOP\", 0)\n with pytest.raises(DeadLineError, match=r\"You are late\"):\n student.do_homework(homework, \"I have done this hw\")\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Roman\", \"Petrov\")\n homework_1 = teacher.create_homework(\"Learn OOP\", 1)\n homework_1_result = student.do_homework(homework_1, \"I have done this hw\")\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n\n homework_2 = teacher.create_homework(\"homework 2\", 1)\n homework_2_result = student.do_homework(homework_2, \"zero\")\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n\n homework_3 = teacher.create_homework(\"homework 3\", 1)\n homework_3_result = student.do_homework(homework_3, \"I have done this hw\")\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
<|reserved_special_token_0|> def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*([[0, 1]] * len(seznam_trgovin)))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) <|reserved_special_token_0|> def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici ), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek - 1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*([[0, 1]] * len(seznam_trgovin)))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) def doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija): skupine = [] poti = [] for trgovina in kombinacija: skupine.append(podatki.lokacije(slovar_koordinat, trgovina)) for i in skupine[0]: dolzina = razdalja(dom, i) if len(kombinacija) > 1: for j in skupine[1]: dolzina += razdalja(i, j) if len(kombinacija) > 2: for k in skupine[2]: dolzina += razdalja(j, k) if len(kombinacija) > 3: for m in skupine[3]: dolzina += razdalja(k, m) if len(kombinacija) > 4: for n in skupine[4]: dolzina += razdalja(m, n) dolzina += razdalja(n, dom) poti.append([[dom, i, j, k, m, n], dolzina] ) dolzina = 0 else: dolzina += razdalja(m, dom) poti.append([[dom, i, j, k, m], dolzina]) dolzina = 0 else: dolzina += razdalja(k, dom) poti.append([[dom, i, j, k], dolzina]) dolzina = 0 else: dolzina += razdalja(j, dom) poti.append([[dom, i, j], dolzina]) dolzina = 0 else: dolzina *= 2 poti.append([[dom, i], dolzina]) dolzina = 0 dolzine = [el[1] for el in poti] if dolzine == []: print('Nakupa ni mogoče opraviti.') return None mini = numpy.argmin(dolzine) return poti[mini] return dolzina, sez_vozlisc def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici ), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek - 1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*([[0, 1]] * len(seznam_trgovin)))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) def doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija): skupine = [] poti = [] for trgovina in kombinacija: skupine.append(podatki.lokacije(slovar_koordinat, trgovina)) for i in skupine[0]: dolzina = razdalja(dom, i) if len(kombinacija) > 1: for j in skupine[1]: dolzina += razdalja(i, j) if len(kombinacija) > 2: for k in skupine[2]: dolzina += razdalja(j, k) if len(kombinacija) > 3: for m in skupine[3]: dolzina += razdalja(k, m) if len(kombinacija) > 4: for n in skupine[4]: dolzina += razdalja(m, n) dolzina += razdalja(n, dom) poti.append([[dom, i, j, k, m, n], dolzina] ) dolzina = 0 else: dolzina += razdalja(m, dom) poti.append([[dom, i, j, k, m], dolzina]) dolzina = 0 else: dolzina += razdalja(k, dom) poti.append([[dom, i, j, k], dolzina]) dolzina = 0 else: dolzina += razdalja(j, dom) poti.append([[dom, i, j], dolzina]) dolzina = 0 else: dolzina *= 2 poti.append([[dom, i], dolzina]) dolzina = 0 dolzine = [el[1] for el in poti] if dolzine == []: print('Nakupa ni mogoče opraviti.') return None mini = numpy.argmin(dolzine) return poti[mini] return dolzina, sez_vozlisc def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici ), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek - 1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev baza.commit() <|reserved_special_token_0|> <|reserved_special_token_1|> import itertools import numpy import math import psycopg2 import podatki baza = podatki.baza dom = podatki.preberi_lokacijo() seznam_trgovin = ['spar', 'mercator', 'tus', 'hofer', 'lidl'] id_in_opis = podatki.id_izdelka_v_opis() seznam_izdelkov = [el[0] for el in id_in_opis] mnozica_izdelkov = set(seznam_izdelkov) trgovine_z_izdelki = podatki.trgovine_z_izdelki_f() seznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica] <|reserved_special_token_0|> def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*([[0, 1]] * len(seznam_trgovin)))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2 ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija ) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) def doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija): skupine = [] poti = [] for trgovina in kombinacija: skupine.append(podatki.lokacije(slovar_koordinat, trgovina)) for i in skupine[0]: dolzina = razdalja(dom, i) if len(kombinacija) > 1: for j in skupine[1]: dolzina += razdalja(i, j) if len(kombinacija) > 2: for k in skupine[2]: dolzina += razdalja(j, k) if len(kombinacija) > 3: for m in skupine[3]: dolzina += razdalja(k, m) if len(kombinacija) > 4: for n in skupine[4]: dolzina += razdalja(m, n) dolzina += razdalja(n, dom) poti.append([[dom, i, j, k, m, n], dolzina] ) dolzina = 0 else: dolzina += razdalja(m, dom) poti.append([[dom, i, j, k, m], dolzina]) dolzina = 0 else: dolzina += razdalja(k, dom) poti.append([[dom, i, j, k], dolzina]) dolzina = 0 else: dolzina += razdalja(j, dom) poti.append([[dom, i, j], dolzina]) dolzina = 0 else: dolzina *= 2 poti.append([[dom, i], dolzina]) dolzina = 0 dolzine = [el[1] for el in poti] if dolzine == []: print('Nakupa ni mogoče opraviti.') return None mini = numpy.argmin(dolzine) return poti[mini] return dolzina, sez_vozlisc def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici ), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek - 1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev baza.commit() slovar_koordinat = podatki.slovar_koordinat kombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki) pot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki) razpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici, podatki.trgovine_z_izdelki) <|reserved_special_token_1|> import itertools import numpy import math import psycopg2 import podatki baza = podatki.baza dom = podatki.preberi_lokacijo() seznam_trgovin =["spar", "mercator", "tus", "hofer", "lidl"] id_in_opis = podatki.id_izdelka_v_opis() seznam_izdelkov = [el[0] for el in id_in_opis] #['cokolada', 'sladoled', ...] mnozica_izdelkov = set(seznam_izdelkov) trgovine_z_izdelki = podatki.trgovine_z_izdelki_f() #slovar: {'trgovina':['id1', 'id2'],...} seznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica] ''' def zemljevid_trgovin(trgovine): sez = [] for trgovina in trgovine: sez.append([trgovina, []) def kombinacije_trgovin(seznam_izdelkov): sez_kombinacij = [] for trgovina in trgovine: kombinacija = [] izdelki = sez_izdelkov for izdelek in izdelki: if izdelek in trgovina: izdelki = izdelki.remove(izdelek) ''' def kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki): generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*[[0,1]]*len(seznam_trgovin))) kombinacije = [] for mnozica_trgovin in generator_kombinacij: izdelki_kombinacije = set() for trgovina in mnozica_trgovin: for izdelek in trgovine_z_izdelki[trgovina]: izdelki_kombinacije.add(izdelek) #množica vseh izdelkov, ki jih lahko dobiš v danih trgovinah if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije): kombinacije.append(mnozica_trgovin) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) for kombinacija in kombinacije: for kombinacija2 in kombinacije: if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2: kombinacije.remove(kombinacija2) elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2: kombinacije.remove(kombinacija) return kombinacije return None def razdalja(vozlisce1, vozlisce2): return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2) #dom = [x,y] def doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija): skupine = [] #skupine vozlišč iste trgovine poti = [] for trgovina in kombinacija: skupine.append(podatki.lokacije(slovar_koordinat, trgovina)) for i in skupine[0]: #skupine[0] je seznam lokacij ene vrste trgovin dolzina = razdalja(dom, i) if len(kombinacija) > 1: for j in skupine[1]: dolzina += razdalja(i, j) if len(kombinacija) > 2: for k in skupine[2]: dolzina += razdalja(j, k) if len(kombinacija) > 3: for m in skupine[3]: dolzina += razdalja(k, m) if len(kombinacija) > 4: for n in skupine[4]: dolzina += razdalja(m, n) dolzina += razdalja(n, dom) poti.append([[dom, i, j, k, m, n], dolzina]) dolzina = 0 else: dolzina += razdalja(m, dom) poti.append([[dom, i, j, k, m], dolzina]) dolzina = 0 else: dolzina += razdalja(k, dom) poti.append([[dom, i, j, k], dolzina]) dolzina = 0 else: dolzina += razdalja(j, dom) poti.append([[dom, i, j], dolzina]) dolzina = 0 else: dolzina *= 2 poti.append([[dom, i], dolzina]) dolzina = 0 dolzine = [el[1] for el in poti] if dolzine == []: print("Nakupa ni mogoče opraviti.") return None mini = numpy.argmin(dolzine) return poti[mini] #[[pot], dolzina] return (dolzina, sez_vozlisc) def doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki): vozlisca = [] dolzine = [] trgovine = [] for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki): par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija) dolzine.append(par[1]) vozlisca.append(par[0]) trgovine.append(kombinacija) if dolzine == []: return None i = numpy.argmin(dolzine) v = vozlisca[i] v.append(dom) obiskane_trgovine = trgovine[i] return v, obiskane_trgovine def razporeditev(obiskane_trgovine, izdelki, slovar): izdelki2 = izdelki.copy() razporeditev = [] for trgovina in obiskane_trgovine: sez = [] for izdelek in izdelki: if {izdelek}.issubset(slovar[trgovina]): izd = podatki.id_izdelka_v_opis()[izdelek-1] sez.append(izd) izdelki2.remove(izdelek) razporeditev.append([trgovina, sez]) return razporeditev baza.commit() slovar_koordinat = podatki.slovar_koordinat kombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki) #print(kombinacije_trgovin)' pot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki) razpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici, podatki.trgovine_z_izdelki)
flexible
{ "blob_id": "5a0702dd869862ebc27c83d10e0b1f0575de68a7", "index": 2944, "step-1": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\n<mask token>\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\nbaza.commit()\n<mask token>\n", "step-4": "import itertools\nimport numpy\nimport math\nimport psycopg2\nimport podatki\nbaza = podatki.baza\ndom = podatki.preberi_lokacijo()\nseznam_trgovin = ['spar', 'mercator', 'tus', 'hofer', 'lidl']\nid_in_opis = podatki.id_izdelka_v_opis()\nseznam_izdelkov = [el[0] for el in id_in_opis]\nmnozica_izdelkov = set(seznam_izdelkov)\ntrgovine_z_izdelki = podatki.trgovine_z_izdelki_f()\nseznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica]\n<mask token>\n\n\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin,\n trgovine_z_izdelki):\n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for\n el in itertools.product(*([[0, 1]] * len(seznam_trgovin))))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek)\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija\n ) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n return kombinacije\n return None\n\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] -\n vozlisce1[0]) ** 2)\n\n\ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = []\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]:\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina]\n )\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print('Nakupa ni mogoče opraviti.')\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini]\n return dolzina, sez_vozlisc\n\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici\n ), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov,\n kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek - 1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n\n\nbaza.commit()\nslovar_koordinat = podatki.slovar_koordinat\nkombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici),\n seznam_trgovin, trgovine_z_izdelki)\npot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin,\n seznam_izdelkov_v_kosarici, trgovine_z_izdelki)\nrazpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici,\n podatki.trgovine_z_izdelki)\n", "step-5": "import itertools\nimport numpy\nimport math\nimport psycopg2\nimport podatki\n\nbaza = podatki.baza\ndom = podatki.preberi_lokacijo()\nseznam_trgovin =[\"spar\", \"mercator\", \"tus\", \"hofer\", \"lidl\"]\nid_in_opis = podatki.id_izdelka_v_opis()\nseznam_izdelkov = [el[0] for el in id_in_opis] #['cokolada', 'sladoled', ...]\nmnozica_izdelkov = set(seznam_izdelkov)\ntrgovine_z_izdelki = podatki.trgovine_z_izdelki_f() #slovar: {'trgovina':['id1', 'id2'],...}\nseznam_izdelkov_v_kosarici = [el[3] for el in podatki.kosarica]\n'''\ndef zemljevid_trgovin(trgovine):\n sez = []\n for trgovina in trgovine:\n sez.append([trgovina, [])\n\ndef kombinacije_trgovin(seznam_izdelkov):\n sez_kombinacij = []\n for trgovina in trgovine:\n kombinacija = []\n izdelki = sez_izdelkov\n for izdelek in izdelki:\n if izdelek in trgovina:\n izdelki = izdelki.remove(izdelek)\n'''\ndef kombinacije_trgovin_f(mnozica_izdelkov_v_kosarici, seznam_trgovin, trgovine_z_izdelki):\n \n generator_kombinacij = (set(itertools.compress(seznam_trgovin, el)) for el in itertools.product(*[[0,1]]*len(seznam_trgovin)))\n kombinacije = []\n for mnozica_trgovin in generator_kombinacij:\n izdelki_kombinacije = set()\n for trgovina in mnozica_trgovin:\n for izdelek in trgovine_z_izdelki[trgovina]:\n izdelki_kombinacije.add(izdelek) #množica vseh izdelkov, ki jih lahko dobiš v danih trgovinah\n if mnozica_izdelkov_v_kosarici.issubset(izdelki_kombinacije):\n kombinacije.append(mnozica_trgovin) \n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija)\n for kombinacija in kombinacije:\n for kombinacija2 in kombinacije:\n if kombinacija.issubset(kombinacija2) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija2)\n elif kombinacija2.issubset(kombinacija) and kombinacija != kombinacija2:\n kombinacije.remove(kombinacija) \n return kombinacije\n \n \n return None\n\ndef razdalja(vozlisce1, vozlisce2):\n return math.sqrt((vozlisce2[1] - vozlisce1[1]) ** 2 + (vozlisce2[0] - vozlisce1[0]) ** 2)\n\n#dom = [x,y] \ndef doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija):\n skupine = [] #skupine vozlišč iste trgovine\n poti = []\n for trgovina in kombinacija:\n skupine.append(podatki.lokacije(slovar_koordinat, trgovina))\n for i in skupine[0]: #skupine[0] je seznam lokacij ene vrste trgovin\n dolzina = razdalja(dom, i)\n if len(kombinacija) > 1:\n for j in skupine[1]:\n dolzina += razdalja(i, j)\n if len(kombinacija) > 2:\n for k in skupine[2]:\n dolzina += razdalja(j, k)\n if len(kombinacija) > 3:\n for m in skupine[3]:\n dolzina += razdalja(k, m)\n if len(kombinacija) > 4:\n for n in skupine[4]:\n dolzina += razdalja(m, n)\n dolzina += razdalja(n, dom)\n poti.append([[dom, i, j, k, m, n], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(m, dom)\n poti.append([[dom, i, j, k, m], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(k, dom)\n poti.append([[dom, i, j, k], dolzina])\n dolzina = 0\n else:\n dolzina += razdalja(j, dom)\n poti.append([[dom, i, j], dolzina])\n dolzina = 0\n else:\n dolzina *= 2\n poti.append([[dom, i], dolzina])\n dolzina = 0\n dolzine = [el[1] for el in poti]\n if dolzine == []:\n print(\"Nakupa ni mogoče opraviti.\")\n return None\n mini = numpy.argmin(dolzine)\n return poti[mini] #[[pot], dolzina]\n \n\n \n return (dolzina, sez_vozlisc)\n\ndef doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki):\n vozlisca = []\n dolzine = []\n trgovine = []\n for kombinacija in kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki):\n par = doloci_trgovine(dom, slovar_koordinat, seznam_izdelkov, kombinacija)\n dolzine.append(par[1])\n vozlisca.append(par[0])\n trgovine.append(kombinacija)\n if dolzine == []:\n return None\n i = numpy.argmin(dolzine)\n v = vozlisca[i]\n v.append(dom)\n obiskane_trgovine = trgovine[i]\n return v, obiskane_trgovine\n\ndef razporeditev(obiskane_trgovine, izdelki, slovar):\n izdelki2 = izdelki.copy()\n razporeditev = []\n for trgovina in obiskane_trgovine:\n sez = []\n for izdelek in izdelki:\n if {izdelek}.issubset(slovar[trgovina]):\n izd = podatki.id_izdelka_v_opis()[izdelek-1]\n sez.append(izd)\n izdelki2.remove(izdelek)\n razporeditev.append([trgovina, sez])\n return razporeditev\n \nbaza.commit()\n\nslovar_koordinat = podatki.slovar_koordinat\n\nkombinacije_trgovin = kombinacije_trgovin_f(set(seznam_izdelkov_v_kosarici), seznam_trgovin, trgovine_z_izdelki)\n#print(kombinacije_trgovin)'\npot, obiskane_trgovine = doloci_pot(dom, seznam_izdelkov, seznam_trgovin, seznam_izdelkov_v_kosarici, trgovine_z_izdelki)\nrazpredelnica = razporeditev(obiskane_trgovine, seznam_izdelkov_v_kosarici, podatki.trgovine_z_izdelki)\n", "step-ids": [ 4, 5, 6, 8, 9 ] }
[ 4, 5, 6, 8, 9 ]
#!/bin/python3 # Implement a stack with push, pop, inc(e, k) operations # inc (e,k) - Add k to each of bottom e elements import sys class Stack(object): def __init__(self): self.arr = [] def push(self, val): self.arr.append(val) def pop(self): if len(self.arr): return self.arr.pop() def inc(self, e, k): count = min(len(self.arr), e) for i in range(count): self.arr[i] += k def peek(self): if len(self.arr): return self.arr[-1] else: return 'EMPTY' def superStack(operations): s = Stack() for o in operations: op = o.split(' ') if op[0] == 'push': s.push(int(op[1])) print(s.peek()) elif op[0] == 'pop': s.pop() print(s.peek()) elif op[0] == 'inc': s.inc(int(op[1]), int(op[2])) print(s.peek()) if __name__ == "__main__": operations_cnt = 0 operations_cnt = int(input()) operations_i = 0 operations = [] while operations_i < operations_cnt: try: operations_item = str(input()) except: operations_item = None operations.append(operations_item) operations_i += 1 res = superStack(operations);
normal
{ "blob_id": "5ed439a2a7cfb9c941c40ea0c5eba2851a0f2855", "index": 24, "step-1": "<mask token>\n\n\nclass Stack(object):\n\n def __init__(self):\n self.arr = []\n\n def push(self, val):\n self.arr.append(val)\n\n def pop(self):\n if len(self.arr):\n return self.arr.pop()\n\n def inc(self, e, k):\n count = min(len(self.arr), e)\n for i in range(count):\n self.arr[i] += k\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Stack(object):\n\n def __init__(self):\n self.arr = []\n\n def push(self, val):\n self.arr.append(val)\n\n def pop(self):\n if len(self.arr):\n return self.arr.pop()\n\n def inc(self, e, k):\n count = min(len(self.arr), e)\n for i in range(count):\n self.arr[i] += k\n\n def peek(self):\n if len(self.arr):\n return self.arr[-1]\n else:\n return 'EMPTY'\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Stack(object):\n\n def __init__(self):\n self.arr = []\n\n def push(self, val):\n self.arr.append(val)\n\n def pop(self):\n if len(self.arr):\n return self.arr.pop()\n\n def inc(self, e, k):\n count = min(len(self.arr), e)\n for i in range(count):\n self.arr[i] += k\n\n def peek(self):\n if len(self.arr):\n return self.arr[-1]\n else:\n return 'EMPTY'\n\n\ndef superStack(operations):\n s = Stack()\n for o in operations:\n op = o.split(' ')\n if op[0] == 'push':\n s.push(int(op[1]))\n print(s.peek())\n elif op[0] == 'pop':\n s.pop()\n print(s.peek())\n elif op[0] == 'inc':\n s.inc(int(op[1]), int(op[2]))\n print(s.peek())\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass Stack(object):\n\n def __init__(self):\n self.arr = []\n\n def push(self, val):\n self.arr.append(val)\n\n def pop(self):\n if len(self.arr):\n return self.arr.pop()\n\n def inc(self, e, k):\n count = min(len(self.arr), e)\n for i in range(count):\n self.arr[i] += k\n\n def peek(self):\n if len(self.arr):\n return self.arr[-1]\n else:\n return 'EMPTY'\n\n\ndef superStack(operations):\n s = Stack()\n for o in operations:\n op = o.split(' ')\n if op[0] == 'push':\n s.push(int(op[1]))\n print(s.peek())\n elif op[0] == 'pop':\n s.pop()\n print(s.peek())\n elif op[0] == 'inc':\n s.inc(int(op[1]), int(op[2]))\n print(s.peek())\n\n\nif __name__ == '__main__':\n operations_cnt = 0\n operations_cnt = int(input())\n operations_i = 0\n operations = []\n while operations_i < operations_cnt:\n try:\n operations_item = str(input())\n except:\n operations_item = None\n operations.append(operations_item)\n operations_i += 1\n res = superStack(operations)\n", "step-5": "#!/bin/python3\n\n# Implement a stack with push, pop, inc(e, k) operations\n# inc (e,k) - Add k to each of bottom e elements\nimport sys\n\nclass Stack(object):\n def __init__(self):\n self.arr = []\n\n def push(self, val):\n self.arr.append(val)\n\n def pop(self):\n if len(self.arr):\n return self.arr.pop()\n\n def inc(self, e, k):\n count = min(len(self.arr), e)\n for i in range(count):\n self.arr[i] += k\n\n def peek(self):\n if len(self.arr):\n return self.arr[-1]\n else:\n return 'EMPTY'\n\ndef superStack(operations):\n s = Stack()\n for o in operations:\n op = o.split(' ')\n if op[0] == 'push':\n s.push(int(op[1]))\n print(s.peek())\n elif op[0] == 'pop':\n s.pop()\n print(s.peek())\n elif op[0] == 'inc':\n s.inc(int(op[1]), int(op[2]))\n print(s.peek())\n \n\nif __name__ == \"__main__\":\n operations_cnt = 0\n operations_cnt = int(input())\n operations_i = 0\n operations = []\n while operations_i < operations_cnt:\n try:\n operations_item = str(input())\n except:\n operations_item = None\n operations.append(operations_item)\n operations_i += 1\n\n\n res = superStack(operations);\n \n\n", "step-ids": [ 5, 6, 7, 8, 10 ] }
[ 5, 6, 7, 8, 10 ]
c = "こ に ち わ " print (len(c))
normal
{ "blob_id": "26f466a6a2fd09bb108ca89e4537192c070ff83b", "index": 1335, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(len(c))\n", "step-3": "c = 'こ に ち わ '\nprint(len(c))\n", "step-4": "c = \"こ に ち わ \"\nprint (len(c))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def rinex_merge(output_fname, rinex_fnames, _err=sys.stderr): """ Using teqc, merge *rinex_fnames* and store to the file *output_fname*. Returns *output_fname*. Redirect error output to *_err*. """ args = ['-pch'] + rinex_fnames sh.teqc(*args, _out=output_fname, _err=_err) return output_fname <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def rinex_info(rinex_fname, nav_fname, work_path=None): """ Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for useful information and return in a key/value mapping. Store intermediate files in *work_path* (a temporary, automatically cleaned up area if not specified). """ if not os.path.isfile(rinex_fname): raise ValueError('RINEX observation file {} does not exist'.format( rinex_fname)) if not os.path.isfile(nav_fname): raise ValueError('RINEX navigation file {} does not exist'.format( nav_fname)) info = {} def process_output(line): if line.startswith('Receiver type'): info['receiver'] = line.split(':')[1].split('(')[0].strip() elif line.lstrip().startswith('antenna WGS 84 (xyz)'): assert line.rstrip().endswith('(m)') info['xyz'] = map(float, line.split(':')[1].split('(')[0].split()) elif line.lstrip().startswith('antenna WGS 84 (geo)'): if line.split(':')[1].lstrip()[0] in ['N', 'S']: pass else: lat, _, lon, _ = line.split(':')[1].split(None, 3) info['lat'] = float(lat) lon = float(lon) while lon > 180: lon -= 360 info['lon'] = lon elif line.lstrip().startswith('WGS 84 height'): assert line.rstrip().endswith('m') info['height'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('|qc - header| position'): assert line.rstrip()[-1] == 'm' info['xyz error'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Observation interval'): info['interval'] = float(line.split(':')[1].split()[0]) elif line.startswith('Moving average MP12'): info['MP12'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Moving average MP21'): info['MP21'] = float(line.split(':')[1].rstrip()[:-1]) with SmartTempDir(work_path) as work_path: intermediate_rinex_fname = replace_path(work_path, rinex_fname) os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname) intermediate_nav_fname = replace_path(work_path, nav_fname) os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname) sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav', intermediate_nav_fname, intermediate_rinex_fname, _cwd= work_path, _out=process_output, _err=sys.stderr) os.remove(intermediate_rinex_fname) os.remove(intermediate_nav_fname) return info def rinex_merge(output_fname, rinex_fnames, _err=sys.stderr): """ Using teqc, merge *rinex_fnames* and store to the file *output_fname*. Returns *output_fname*. Redirect error output to *_err*. """ args = ['-pch'] + rinex_fnames sh.teqc(*args, _out=output_fname, _err=_err) return output_fname if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.getLogger('sh').setLevel(logging.WARNING) rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o' nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n' info = rinex_info(rinex_fname, nav_fname) for key in sorted(info): print('{:10s}: {}'.format(key, info[key])) <|reserved_special_token_1|> <|reserved_special_token_0|> logger = logging.getLogger('pyrsss.gps.teqc') def rinex_info(rinex_fname, nav_fname, work_path=None): """ Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for useful information and return in a key/value mapping. Store intermediate files in *work_path* (a temporary, automatically cleaned up area if not specified). """ if not os.path.isfile(rinex_fname): raise ValueError('RINEX observation file {} does not exist'.format( rinex_fname)) if not os.path.isfile(nav_fname): raise ValueError('RINEX navigation file {} does not exist'.format( nav_fname)) info = {} def process_output(line): if line.startswith('Receiver type'): info['receiver'] = line.split(':')[1].split('(')[0].strip() elif line.lstrip().startswith('antenna WGS 84 (xyz)'): assert line.rstrip().endswith('(m)') info['xyz'] = map(float, line.split(':')[1].split('(')[0].split()) elif line.lstrip().startswith('antenna WGS 84 (geo)'): if line.split(':')[1].lstrip()[0] in ['N', 'S']: pass else: lat, _, lon, _ = line.split(':')[1].split(None, 3) info['lat'] = float(lat) lon = float(lon) while lon > 180: lon -= 360 info['lon'] = lon elif line.lstrip().startswith('WGS 84 height'): assert line.rstrip().endswith('m') info['height'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('|qc - header| position'): assert line.rstrip()[-1] == 'm' info['xyz error'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Observation interval'): info['interval'] = float(line.split(':')[1].split()[0]) elif line.startswith('Moving average MP12'): info['MP12'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Moving average MP21'): info['MP21'] = float(line.split(':')[1].rstrip()[:-1]) with SmartTempDir(work_path) as work_path: intermediate_rinex_fname = replace_path(work_path, rinex_fname) os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname) intermediate_nav_fname = replace_path(work_path, nav_fname) os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname) sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav', intermediate_nav_fname, intermediate_rinex_fname, _cwd= work_path, _out=process_output, _err=sys.stderr) os.remove(intermediate_rinex_fname) os.remove(intermediate_nav_fname) return info def rinex_merge(output_fname, rinex_fnames, _err=sys.stderr): """ Using teqc, merge *rinex_fnames* and store to the file *output_fname*. Returns *output_fname*. Redirect error output to *_err*. """ args = ['-pch'] + rinex_fnames sh.teqc(*args, _out=output_fname, _err=_err) return output_fname if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.getLogger('sh').setLevel(logging.WARNING) rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o' nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n' info = rinex_info(rinex_fname, nav_fname) for key in sorted(info): print('{:10s}: {}'.format(key, info[key])) <|reserved_special_token_1|> import sys import os import logging import sh from ..util.path import SmartTempDir, replace_path logger = logging.getLogger('pyrsss.gps.teqc') def rinex_info(rinex_fname, nav_fname, work_path=None): """ Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for useful information and return in a key/value mapping. Store intermediate files in *work_path* (a temporary, automatically cleaned up area if not specified). """ if not os.path.isfile(rinex_fname): raise ValueError('RINEX observation file {} does not exist'.format( rinex_fname)) if not os.path.isfile(nav_fname): raise ValueError('RINEX navigation file {} does not exist'.format( nav_fname)) info = {} def process_output(line): if line.startswith('Receiver type'): info['receiver'] = line.split(':')[1].split('(')[0].strip() elif line.lstrip().startswith('antenna WGS 84 (xyz)'): assert line.rstrip().endswith('(m)') info['xyz'] = map(float, line.split(':')[1].split('(')[0].split()) elif line.lstrip().startswith('antenna WGS 84 (geo)'): if line.split(':')[1].lstrip()[0] in ['N', 'S']: pass else: lat, _, lon, _ = line.split(':')[1].split(None, 3) info['lat'] = float(lat) lon = float(lon) while lon > 180: lon -= 360 info['lon'] = lon elif line.lstrip().startswith('WGS 84 height'): assert line.rstrip().endswith('m') info['height'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('|qc - header| position'): assert line.rstrip()[-1] == 'm' info['xyz error'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Observation interval'): info['interval'] = float(line.split(':')[1].split()[0]) elif line.startswith('Moving average MP12'): info['MP12'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Moving average MP21'): info['MP21'] = float(line.split(':')[1].rstrip()[:-1]) with SmartTempDir(work_path) as work_path: intermediate_rinex_fname = replace_path(work_path, rinex_fname) os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname) intermediate_nav_fname = replace_path(work_path, nav_fname) os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname) sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav', intermediate_nav_fname, intermediate_rinex_fname, _cwd= work_path, _out=process_output, _err=sys.stderr) os.remove(intermediate_rinex_fname) os.remove(intermediate_nav_fname) return info def rinex_merge(output_fname, rinex_fnames, _err=sys.stderr): """ Using teqc, merge *rinex_fnames* and store to the file *output_fname*. Returns *output_fname*. Redirect error output to *_err*. """ args = ['-pch'] + rinex_fnames sh.teqc(*args, _out=output_fname, _err=_err) return output_fname if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.getLogger('sh').setLevel(logging.WARNING) rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o' nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n' info = rinex_info(rinex_fname, nav_fname) for key in sorted(info): print('{:10s}: {}'.format(key, info[key])) <|reserved_special_token_1|> import sys import os import logging import sh from ..util.path import SmartTempDir, replace_path logger = logging.getLogger('pyrsss.gps.teqc') def rinex_info(rinex_fname, nav_fname, work_path=None): """ Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for useful information and return in a key/value mapping. Store intermediate files in *work_path* (a temporary, automatically cleaned up area if not specified). """ if not os.path.isfile(rinex_fname): raise ValueError('RINEX observation file {} does not exist'.format(rinex_fname)) if not os.path.isfile(nav_fname): raise ValueError('RINEX navigation file {} does not exist'.format(nav_fname)) # information mapping info = {} def process_output(line): if line.startswith('Receiver type'): info['receiver'] = line.split(':')[1].split('(')[0].strip() elif line.lstrip().startswith('antenna WGS 84 (xyz)'): # make sure units are [m] assert line.rstrip().endswith('(m)') info['xyz'] = map(float, line.split(':')[1].split('(')[0].split()) elif line.lstrip().startswith('antenna WGS 84 (geo)'): if line.split(':')[1].lstrip()[0] in ['N', 'S']: # skip arcmin, arcsec line pass else: lat, _, lon, _ = line.split(':')[1].split(None, 3) info['lat'] = float(lat) lon = float(lon) while lon > 180: lon -= 360 info['lon'] = lon elif line.lstrip().startswith('WGS 84 height'): assert line.rstrip().endswith('m') info['height'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('|qc - header| position'): # make sure units are [m] assert line.rstrip()[-1] == 'm' info['xyz error'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Observation interval'): info['interval'] = float(line.split(':')[1].split()[0]) elif line.startswith('Moving average MP12'): info['MP12'] = float(line.split(':')[1].rstrip()[:-1]) elif line.startswith('Moving average MP21'): info['MP21'] = float(line.split(':')[1].rstrip()[:-1]) # query the RINEX file via teqc quality check --- process in given # work area to avoid intermediate file pollution with SmartTempDir(work_path) as work_path: intermediate_rinex_fname = replace_path(work_path, rinex_fname) os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname) intermediate_nav_fname = replace_path(work_path, nav_fname) os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname) sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav', intermediate_nav_fname, intermediate_rinex_fname, _cwd=work_path, _out=process_output, _err=sys.stderr) os.remove(intermediate_rinex_fname) os.remove(intermediate_nav_fname) return info def rinex_merge(output_fname, rinex_fnames, _err=sys.stderr): """ Using teqc, merge *rinex_fnames* and store to the file *output_fname*. Returns *output_fname*. Redirect error output to *_err*. """ args = ['-pch'] + rinex_fnames sh.teqc(*args, _out=output_fname, _err=_err) return output_fname if __name__ == '__main__': logging.basicConfig(level=logging.INFO) logging.getLogger('sh').setLevel(logging.WARNING) rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o' nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n' info = rinex_info(rinex_fname, nav_fname) for key in sorted(info): print('{:10s}: {}'.format(key, info[key]))
flexible
{ "blob_id": "ec19567b49f686f613308d79e439f6ff9053fa40", "index": 5064, "step-1": "<mask token>\n\n\ndef rinex_merge(output_fname, rinex_fnames, _err=sys.stderr):\n \"\"\"\n Using teqc, merge *rinex_fnames* and store to the file\n *output_fname*. Returns *output_fname*. Redirect error output to\n *_err*.\n \"\"\"\n args = ['-pch'] + rinex_fnames\n sh.teqc(*args, _out=output_fname, _err=_err)\n return output_fname\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef rinex_info(rinex_fname, nav_fname, work_path=None):\n \"\"\"\n Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for\n useful information and return in a key/value mapping. Store\n intermediate files in *work_path* (a temporary, automatically\n cleaned up area if not specified).\n \"\"\"\n if not os.path.isfile(rinex_fname):\n raise ValueError('RINEX observation file {} does not exist'.format(\n rinex_fname))\n if not os.path.isfile(nav_fname):\n raise ValueError('RINEX navigation file {} does not exist'.format(\n nav_fname))\n info = {}\n\n def process_output(line):\n if line.startswith('Receiver type'):\n info['receiver'] = line.split(':')[1].split('(')[0].strip()\n elif line.lstrip().startswith('antenna WGS 84 (xyz)'):\n assert line.rstrip().endswith('(m)')\n info['xyz'] = map(float, line.split(':')[1].split('(')[0].split())\n elif line.lstrip().startswith('antenna WGS 84 (geo)'):\n if line.split(':')[1].lstrip()[0] in ['N', 'S']:\n pass\n else:\n lat, _, lon, _ = line.split(':')[1].split(None, 3)\n info['lat'] = float(lat)\n lon = float(lon)\n while lon > 180:\n lon -= 360\n info['lon'] = lon\n elif line.lstrip().startswith('WGS 84 height'):\n assert line.rstrip().endswith('m')\n info['height'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('|qc - header| position'):\n assert line.rstrip()[-1] == 'm'\n info['xyz error'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Observation interval'):\n info['interval'] = float(line.split(':')[1].split()[0])\n elif line.startswith('Moving average MP12'):\n info['MP12'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Moving average MP21'):\n info['MP21'] = float(line.split(':')[1].rstrip()[:-1])\n with SmartTempDir(work_path) as work_path:\n intermediate_rinex_fname = replace_path(work_path, rinex_fname)\n os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname)\n intermediate_nav_fname = replace_path(work_path, nav_fname)\n os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname)\n sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav',\n intermediate_nav_fname, intermediate_rinex_fname, _cwd=\n work_path, _out=process_output, _err=sys.stderr)\n os.remove(intermediate_rinex_fname)\n os.remove(intermediate_nav_fname)\n return info\n\n\ndef rinex_merge(output_fname, rinex_fnames, _err=sys.stderr):\n \"\"\"\n Using teqc, merge *rinex_fnames* and store to the file\n *output_fname*. Returns *output_fname*. Redirect error output to\n *_err*.\n \"\"\"\n args = ['-pch'] + rinex_fnames\n sh.teqc(*args, _out=output_fname, _err=_err)\n return output_fname\n\n\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('sh').setLevel(logging.WARNING)\n rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o'\n nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n'\n info = rinex_info(rinex_fname, nav_fname)\n for key in sorted(info):\n print('{:10s}: {}'.format(key, info[key]))\n", "step-3": "<mask token>\nlogger = logging.getLogger('pyrsss.gps.teqc')\n\n\ndef rinex_info(rinex_fname, nav_fname, work_path=None):\n \"\"\"\n Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for\n useful information and return in a key/value mapping. Store\n intermediate files in *work_path* (a temporary, automatically\n cleaned up area if not specified).\n \"\"\"\n if not os.path.isfile(rinex_fname):\n raise ValueError('RINEX observation file {} does not exist'.format(\n rinex_fname))\n if not os.path.isfile(nav_fname):\n raise ValueError('RINEX navigation file {} does not exist'.format(\n nav_fname))\n info = {}\n\n def process_output(line):\n if line.startswith('Receiver type'):\n info['receiver'] = line.split(':')[1].split('(')[0].strip()\n elif line.lstrip().startswith('antenna WGS 84 (xyz)'):\n assert line.rstrip().endswith('(m)')\n info['xyz'] = map(float, line.split(':')[1].split('(')[0].split())\n elif line.lstrip().startswith('antenna WGS 84 (geo)'):\n if line.split(':')[1].lstrip()[0] in ['N', 'S']:\n pass\n else:\n lat, _, lon, _ = line.split(':')[1].split(None, 3)\n info['lat'] = float(lat)\n lon = float(lon)\n while lon > 180:\n lon -= 360\n info['lon'] = lon\n elif line.lstrip().startswith('WGS 84 height'):\n assert line.rstrip().endswith('m')\n info['height'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('|qc - header| position'):\n assert line.rstrip()[-1] == 'm'\n info['xyz error'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Observation interval'):\n info['interval'] = float(line.split(':')[1].split()[0])\n elif line.startswith('Moving average MP12'):\n info['MP12'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Moving average MP21'):\n info['MP21'] = float(line.split(':')[1].rstrip()[:-1])\n with SmartTempDir(work_path) as work_path:\n intermediate_rinex_fname = replace_path(work_path, rinex_fname)\n os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname)\n intermediate_nav_fname = replace_path(work_path, nav_fname)\n os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname)\n sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav',\n intermediate_nav_fname, intermediate_rinex_fname, _cwd=\n work_path, _out=process_output, _err=sys.stderr)\n os.remove(intermediate_rinex_fname)\n os.remove(intermediate_nav_fname)\n return info\n\n\ndef rinex_merge(output_fname, rinex_fnames, _err=sys.stderr):\n \"\"\"\n Using teqc, merge *rinex_fnames* and store to the file\n *output_fname*. Returns *output_fname*. Redirect error output to\n *_err*.\n \"\"\"\n args = ['-pch'] + rinex_fnames\n sh.teqc(*args, _out=output_fname, _err=_err)\n return output_fname\n\n\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('sh').setLevel(logging.WARNING)\n rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o'\n nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n'\n info = rinex_info(rinex_fname, nav_fname)\n for key in sorted(info):\n print('{:10s}: {}'.format(key, info[key]))\n", "step-4": "import sys\nimport os\nimport logging\nimport sh\nfrom ..util.path import SmartTempDir, replace_path\nlogger = logging.getLogger('pyrsss.gps.teqc')\n\n\ndef rinex_info(rinex_fname, nav_fname, work_path=None):\n \"\"\"\n Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for\n useful information and return in a key/value mapping. Store\n intermediate files in *work_path* (a temporary, automatically\n cleaned up area if not specified).\n \"\"\"\n if not os.path.isfile(rinex_fname):\n raise ValueError('RINEX observation file {} does not exist'.format(\n rinex_fname))\n if not os.path.isfile(nav_fname):\n raise ValueError('RINEX navigation file {} does not exist'.format(\n nav_fname))\n info = {}\n\n def process_output(line):\n if line.startswith('Receiver type'):\n info['receiver'] = line.split(':')[1].split('(')[0].strip()\n elif line.lstrip().startswith('antenna WGS 84 (xyz)'):\n assert line.rstrip().endswith('(m)')\n info['xyz'] = map(float, line.split(':')[1].split('(')[0].split())\n elif line.lstrip().startswith('antenna WGS 84 (geo)'):\n if line.split(':')[1].lstrip()[0] in ['N', 'S']:\n pass\n else:\n lat, _, lon, _ = line.split(':')[1].split(None, 3)\n info['lat'] = float(lat)\n lon = float(lon)\n while lon > 180:\n lon -= 360\n info['lon'] = lon\n elif line.lstrip().startswith('WGS 84 height'):\n assert line.rstrip().endswith('m')\n info['height'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('|qc - header| position'):\n assert line.rstrip()[-1] == 'm'\n info['xyz error'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Observation interval'):\n info['interval'] = float(line.split(':')[1].split()[0])\n elif line.startswith('Moving average MP12'):\n info['MP12'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Moving average MP21'):\n info['MP21'] = float(line.split(':')[1].rstrip()[:-1])\n with SmartTempDir(work_path) as work_path:\n intermediate_rinex_fname = replace_path(work_path, rinex_fname)\n os.symlink(os.path.abspath(rinex_fname), intermediate_rinex_fname)\n intermediate_nav_fname = replace_path(work_path, nav_fname)\n os.symlink(os.path.abspath(nav_fname), intermediate_nav_fname)\n sh.teqc('+qc', '+quiet', '-R', '-S', '-E', '-C', '-J', '-nav',\n intermediate_nav_fname, intermediate_rinex_fname, _cwd=\n work_path, _out=process_output, _err=sys.stderr)\n os.remove(intermediate_rinex_fname)\n os.remove(intermediate_nav_fname)\n return info\n\n\ndef rinex_merge(output_fname, rinex_fnames, _err=sys.stderr):\n \"\"\"\n Using teqc, merge *rinex_fnames* and store to the file\n *output_fname*. Returns *output_fname*. Redirect error output to\n *_err*.\n \"\"\"\n args = ['-pch'] + rinex_fnames\n sh.teqc(*args, _out=output_fname, _err=_err)\n return output_fname\n\n\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('sh').setLevel(logging.WARNING)\n rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o'\n nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n'\n info = rinex_info(rinex_fname, nav_fname)\n for key in sorted(info):\n print('{:10s}: {}'.format(key, info[key]))\n", "step-5": "import sys\nimport os\nimport logging\n\nimport sh\n\nfrom ..util.path import SmartTempDir, replace_path\n\nlogger = logging.getLogger('pyrsss.gps.teqc')\n\n\ndef rinex_info(rinex_fname,\n nav_fname,\n work_path=None):\n \"\"\"\n Query RINEX file *rinex_fname* and RINEX nav file *nav_fname* for\n useful information and return in a key/value mapping. Store\n intermediate files in *work_path* (a temporary, automatically\n cleaned up area if not specified).\n \"\"\"\n if not os.path.isfile(rinex_fname):\n raise ValueError('RINEX observation file {} does not exist'.format(rinex_fname))\n if not os.path.isfile(nav_fname):\n raise ValueError('RINEX navigation file {} does not exist'.format(nav_fname))\n # information mapping\n info = {}\n def process_output(line):\n if line.startswith('Receiver type'):\n info['receiver'] = line.split(':')[1].split('(')[0].strip()\n elif line.lstrip().startswith('antenna WGS 84 (xyz)'):\n # make sure units are [m]\n assert line.rstrip().endswith('(m)')\n info['xyz'] = map(float, line.split(':')[1].split('(')[0].split())\n elif line.lstrip().startswith('antenna WGS 84 (geo)'):\n if line.split(':')[1].lstrip()[0] in ['N', 'S']:\n # skip arcmin, arcsec line\n pass\n else:\n lat, _, lon, _ = line.split(':')[1].split(None, 3)\n info['lat'] = float(lat)\n lon = float(lon)\n while lon > 180:\n lon -= 360\n info['lon'] = lon\n elif line.lstrip().startswith('WGS 84 height'):\n assert line.rstrip().endswith('m')\n info['height'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('|qc - header| position'):\n # make sure units are [m]\n assert line.rstrip()[-1] == 'm'\n info['xyz error'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Observation interval'):\n info['interval'] = float(line.split(':')[1].split()[0])\n elif line.startswith('Moving average MP12'):\n info['MP12'] = float(line.split(':')[1].rstrip()[:-1])\n elif line.startswith('Moving average MP21'):\n info['MP21'] = float(line.split(':')[1].rstrip()[:-1])\n # query the RINEX file via teqc quality check --- process in given\n # work area to avoid intermediate file pollution\n with SmartTempDir(work_path) as work_path:\n intermediate_rinex_fname = replace_path(work_path, rinex_fname)\n os.symlink(os.path.abspath(rinex_fname),\n intermediate_rinex_fname)\n intermediate_nav_fname = replace_path(work_path, nav_fname)\n os.symlink(os.path.abspath(nav_fname),\n intermediate_nav_fname)\n sh.teqc('+qc',\n '+quiet',\n '-R',\n '-S',\n '-E',\n '-C',\n '-J',\n '-nav', intermediate_nav_fname,\n intermediate_rinex_fname,\n _cwd=work_path,\n _out=process_output,\n _err=sys.stderr)\n os.remove(intermediate_rinex_fname)\n os.remove(intermediate_nav_fname)\n return info\n\n\ndef rinex_merge(output_fname, rinex_fnames, _err=sys.stderr):\n \"\"\"\n Using teqc, merge *rinex_fnames* and store to the file\n *output_fname*. Returns *output_fname*. Redirect error output to\n *_err*.\n \"\"\"\n args = ['-pch'] + rinex_fnames\n sh.teqc(*args,\n _out=output_fname,\n _err=_err)\n return output_fname\n\n\nif __name__ == '__main__':\n logging.basicConfig(level=logging.INFO)\n logging.getLogger('sh').setLevel(logging.WARNING)\n\n rinex_fname = '/Users/butala/src/absolute_tec/jplm0010.14o'\n nav_fname = '/Users/butala/src/absolute_tec/jplm0010.14n'\n\n info = rinex_info(rinex_fname,\n nav_fname)\n\n for key in sorted(info):\n print('{:10s}: {}'.format(key, info[key]))\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
import wx import os # os.environ["HTTPS_PROXY"] = "http://user:[email protected]:3128" import wikipedia import wolframalpha import pyttsx3 import webbrowser import winshell import json import requests import ctypes import random from urllib.request import urlopen import speech_recognition as sr import ssl import urllib.request import urllib.parse import re from regression import Regression # Remove SSL error requests.packages.urllib3.disable_warnings() try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context headers = {'''user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/53.0.2785.143 Safari/537.36'''} #speak = wincl.Dispatch("SAPI.SpVoice") speak = pyttsx3.init() voices = speak.getProperty('voices') voice = voices[1] speak.setProperty('voice', voice.id) # Requirements videos = ['C:\\Users\\nEW u\\Videos\\Um4WR.mkv', 'C:\\Users\\nEW u\\Videos\\Jaatishwar.mkv'] app_id = 'GY6T92-YG5RXA85AV' # GUI creation class MyFrame(wx.Frame): def __init__(self): wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size=wx.Size(450, 100), style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION | wx.CLOSE_BOX | wx.CLIP_CHILDREN, title="Assistant") panel = wx.Panel(self) #ico = wx.Icon('programming.jpg', type=wx.ICON_ASTERISK, desiredWidth=-1, desiredHeight=-1) #self.SetIcon(ico) my_sizer = wx.BoxSizer(wx.VERTICAL) lbl = wx.StaticText(panel, label="Hello Sir. How can I help you?") my_sizer.Add(lbl, 0, wx.ALL, 5) self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400, 30)) self.txt.SetFocus() self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter) my_sizer.Add(self.txt, 0, wx.ALL, 5) panel.SetSizer(my_sizer) self.Show() speak.say('''Welcome back Sir, Your assistant at your service.''') speak.runAndWait() def OnEnter(self, event): put = self.txt.GetValue() put = put.lower() link = put.split() r = sr.Recognizer() if put == '': with sr.Microphone() as src: r.adjust_for_ambient_noise(src) speak.say("Yes? How can I help You?") speak.runAndWait() audio = r.listen(src) try: put = r.recognize_google(audio) put = put.lower() link = put.split() self.txt.SetValue(put) except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") except sr.RequestError as e: print("Could not request results from Google STT; {0}".format(e)) except: print("Unknown exception occurred!") # Open a webpage if put.startswith('open '): try: speak.say("opening "+link[1]) speak.runAndWait() webbrowser.open('http://www.'+link[1]+'.com') except: print('Sorry, No Internet Connection!') # Play Song on Youtube elif put.startswith('play '): try: link = '+'.join(link[1:]) s = link.replace('+', ' ') query_string = urllib.parse.urlencode({"search_query" : link}) html_content = urllib.request.urlopen("http://www.youtube.com/results?" + query_string) search_results = re.findall(r'href=\"\/watch\?v=(.{11})', html_content.read().decode()) print("http://www.youtube.com/watch?v=" + search_results[0]) speak.say("playing "+s) speak.runAndWait() webbrowser.open("http://www.youtube.com/watch?v=" + search_results[0]) except: print('Sorry, No internet connection!') # Google Search elif put.startswith('search '): try: link = '+'.join(link[1:]) say = link.replace('+', ' ') speak.say("searching on google for "+say) speak.runAndWait() webbrowser.open('https://www.google.co.in/search?q='+link) except: print('Sorry, No internet connection!') # Empty Recycle bin elif put.startswith('empty '): try: winshell.recycle_bin().empty(confirm=False, show_progress=False, sound=True) speak.say("Recycle Bin Empty") speak.runAndWait() except: speak.say("Unknown Error") speak.runAndWait() # News elif put.startswith('science '): try: jsonObj = urlopen('''https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here''') data = json.load(jsonObj) i = 1 speak.say('''Here are some top science news from new scientist''') speak.runAndWait() print(''' ================NEW SCIENTIST============= '''+'\n') for item in data['articles']: print(str(i)+'. '+item['title']+'\n') print(item['description']+'\n') i += 1 except: print('Sorry, No internet connection') elif put.startswith('headlines '): try: jsonObj = urlopen('''https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here''') data = json.load(jsonObj) i = 1 speak.say('Here are some top news from the times of india') speak.runAndWait() print(''' ===============TIMES OF INDIA============''' +'\n') for item in data['articles']: print(str(i)+'. '+item['title']+'\n') print(item['description']+'\n') i += 1 except Exception as e: print(str(e)) # Lock the device elif put.startswith('lock '): try: speak.say("locking the device") speak.runAndWait() ctypes.windll.user32.LockWorkStation() except Exception as e: print(str(e)) # Play videos in boredom elif put.endswith('bored'): try: speak.say('''Sir, I\'m playing a video. Hope you like it''') speak.runAndWait() video = random.choice(videos) os.startfile(video) except Exception as e: print(str(e)) # Say Whats up elif put.startswith('whats up'): try: speak.say('''Nothing much, just trying to become the perfect assistant!''') speak.runAndWait() except Exception as e: print(str(e)) #Show stocks elif put.startswith('show stocks'): try: Regression.execute() except Exception as e: print(str(e)) # Other Cases else: try: # wolframalpha client = wolframalpha.Client(app_id) res = client.query(put) ans = next(res.results).text print(ans) speak.say(ans) speak.runAndWait() except: # wikipedia/google put = put.split() put = ' '.join(put[:]) #print(put) print(wikipedia.summary(put)) speak.say('Searched google for '+put) speak.runAndWait() webbrowser.open('https://www.google.co.in/search?q='+put) # Trigger GUI if __name__ == "__main__": app = wx.App(True) frame = MyFrame() app.MainLoop()
normal
{ "blob_id": "8f1e6ea93b2dd7add256cb31d2c621aa69721609", "index": 8834, "step-1": "<mask token>\n\n\nclass MyFrame(wx.Frame):\n\n def __init__(self):\n wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size=wx.Size(\n 450, 100), style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION |\n wx.CLOSE_BOX | wx.CLIP_CHILDREN, title='Assistant')\n panel = wx.Panel(self)\n my_sizer = wx.BoxSizer(wx.VERTICAL)\n lbl = wx.StaticText(panel, label='Hello Sir. How can I help you?')\n my_sizer.Add(lbl, 0, wx.ALL, 5)\n self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400, 30)\n )\n self.txt.SetFocus()\n self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter)\n my_sizer.Add(self.txt, 0, wx.ALL, 5)\n panel.SetSizer(my_sizer)\n self.Show()\n speak.say('Welcome back Sir, Your assistant at your service.')\n speak.runAndWait()\n\n def OnEnter(self, event):\n put = self.txt.GetValue()\n put = put.lower()\n link = put.split()\n r = sr.Recognizer()\n if put == '':\n with sr.Microphone() as src:\n r.adjust_for_ambient_noise(src)\n speak.say('Yes? How can I help You?')\n speak.runAndWait()\n audio = r.listen(src)\n try:\n put = r.recognize_google(audio)\n put = put.lower()\n link = put.split()\n self.txt.SetValue(put)\n except sr.UnknownValueError:\n print('Google Speech Recognition could not understand audio')\n except sr.RequestError as e:\n print('Could not request results from Google STT; {0}'.\n format(e))\n except:\n print('Unknown exception occurred!')\n if put.startswith('open '):\n try:\n speak.say('opening ' + link[1])\n speak.runAndWait()\n webbrowser.open('http://www.' + link[1] + '.com')\n except:\n print('Sorry, No Internet Connection!')\n elif put.startswith('play '):\n try:\n link = '+'.join(link[1:])\n s = link.replace('+', ' ')\n query_string = urllib.parse.urlencode({'search_query': link})\n html_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n search_results = re.findall('href=\\\\\"\\\\/watch\\\\?v=(.{11})',\n html_content.read().decode())\n print('http://www.youtube.com/watch?v=' + search_results[0])\n speak.say('playing ' + s)\n speak.runAndWait()\n webbrowser.open('http://www.youtube.com/watch?v=' +\n search_results[0])\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('search '):\n try:\n link = '+'.join(link[1:])\n say = link.replace('+', ' ')\n speak.say('searching on google for ' + say)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + link)\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('empty '):\n try:\n winshell.recycle_bin().empty(confirm=False, show_progress=\n False, sound=True)\n speak.say('Recycle Bin Empty')\n speak.runAndWait()\n except:\n speak.say('Unknown Error')\n speak.runAndWait()\n elif put.startswith('science '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top science news from new scientist')\n speak.runAndWait()\n print(\n \"\"\" ================NEW SCIENTIST=============\n \"\"\"\n + '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except:\n print('Sorry, No internet connection')\n elif put.startswith('headlines '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top news from the times of india')\n speak.runAndWait()\n print(\n ' ===============TIMES OF INDIA============' +\n '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except Exception as e:\n print(str(e))\n elif put.startswith('lock '):\n try:\n speak.say('locking the device')\n speak.runAndWait()\n ctypes.windll.user32.LockWorkStation()\n except Exception as e:\n print(str(e))\n elif put.endswith('bored'):\n try:\n speak.say(\n \"\"\"Sir, I'm playing a video.\n Hope you like it\"\"\"\n )\n speak.runAndWait()\n video = random.choice(videos)\n os.startfile(video)\n except Exception as e:\n print(str(e))\n elif put.startswith('whats up'):\n try:\n speak.say(\n 'Nothing much, just trying to become the perfect assistant!'\n )\n speak.runAndWait()\n except Exception as e:\n print(str(e))\n elif put.startswith('show stocks'):\n try:\n Regression.execute()\n except Exception as e:\n print(str(e))\n else:\n try:\n client = wolframalpha.Client(app_id)\n res = client.query(put)\n ans = next(res.results).text\n print(ans)\n speak.say(ans)\n speak.runAndWait()\n except:\n put = put.split()\n put = ' '.join(put[:])\n print(wikipedia.summary(put))\n speak.say('Searched google for ' + put)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + put)\n\n\n<mask token>\n", "step-2": "<mask token>\nrequests.packages.urllib3.disable_warnings()\ntry:\n _create_unverified_https_context = ssl._create_unverified_context\nexcept AttributeError:\n pass\nelse:\n ssl._create_default_https_context = _create_unverified_https_context\n<mask token>\nspeak.setProperty('voice', voice.id)\n<mask token>\n\n\nclass MyFrame(wx.Frame):\n\n def __init__(self):\n wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size=wx.Size(\n 450, 100), style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION |\n wx.CLOSE_BOX | wx.CLIP_CHILDREN, title='Assistant')\n panel = wx.Panel(self)\n my_sizer = wx.BoxSizer(wx.VERTICAL)\n lbl = wx.StaticText(panel, label='Hello Sir. How can I help you?')\n my_sizer.Add(lbl, 0, wx.ALL, 5)\n self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400, 30)\n )\n self.txt.SetFocus()\n self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter)\n my_sizer.Add(self.txt, 0, wx.ALL, 5)\n panel.SetSizer(my_sizer)\n self.Show()\n speak.say('Welcome back Sir, Your assistant at your service.')\n speak.runAndWait()\n\n def OnEnter(self, event):\n put = self.txt.GetValue()\n put = put.lower()\n link = put.split()\n r = sr.Recognizer()\n if put == '':\n with sr.Microphone() as src:\n r.adjust_for_ambient_noise(src)\n speak.say('Yes? How can I help You?')\n speak.runAndWait()\n audio = r.listen(src)\n try:\n put = r.recognize_google(audio)\n put = put.lower()\n link = put.split()\n self.txt.SetValue(put)\n except sr.UnknownValueError:\n print('Google Speech Recognition could not understand audio')\n except sr.RequestError as e:\n print('Could not request results from Google STT; {0}'.\n format(e))\n except:\n print('Unknown exception occurred!')\n if put.startswith('open '):\n try:\n speak.say('opening ' + link[1])\n speak.runAndWait()\n webbrowser.open('http://www.' + link[1] + '.com')\n except:\n print('Sorry, No Internet Connection!')\n elif put.startswith('play '):\n try:\n link = '+'.join(link[1:])\n s = link.replace('+', ' ')\n query_string = urllib.parse.urlencode({'search_query': link})\n html_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n search_results = re.findall('href=\\\\\"\\\\/watch\\\\?v=(.{11})',\n html_content.read().decode())\n print('http://www.youtube.com/watch?v=' + search_results[0])\n speak.say('playing ' + s)\n speak.runAndWait()\n webbrowser.open('http://www.youtube.com/watch?v=' +\n search_results[0])\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('search '):\n try:\n link = '+'.join(link[1:])\n say = link.replace('+', ' ')\n speak.say('searching on google for ' + say)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + link)\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('empty '):\n try:\n winshell.recycle_bin().empty(confirm=False, show_progress=\n False, sound=True)\n speak.say('Recycle Bin Empty')\n speak.runAndWait()\n except:\n speak.say('Unknown Error')\n speak.runAndWait()\n elif put.startswith('science '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top science news from new scientist')\n speak.runAndWait()\n print(\n \"\"\" ================NEW SCIENTIST=============\n \"\"\"\n + '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except:\n print('Sorry, No internet connection')\n elif put.startswith('headlines '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top news from the times of india')\n speak.runAndWait()\n print(\n ' ===============TIMES OF INDIA============' +\n '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except Exception as e:\n print(str(e))\n elif put.startswith('lock '):\n try:\n speak.say('locking the device')\n speak.runAndWait()\n ctypes.windll.user32.LockWorkStation()\n except Exception as e:\n print(str(e))\n elif put.endswith('bored'):\n try:\n speak.say(\n \"\"\"Sir, I'm playing a video.\n Hope you like it\"\"\"\n )\n speak.runAndWait()\n video = random.choice(videos)\n os.startfile(video)\n except Exception as e:\n print(str(e))\n elif put.startswith('whats up'):\n try:\n speak.say(\n 'Nothing much, just trying to become the perfect assistant!'\n )\n speak.runAndWait()\n except Exception as e:\n print(str(e))\n elif put.startswith('show stocks'):\n try:\n Regression.execute()\n except Exception as e:\n print(str(e))\n else:\n try:\n client = wolframalpha.Client(app_id)\n res = client.query(put)\n ans = next(res.results).text\n print(ans)\n speak.say(ans)\n speak.runAndWait()\n except:\n put = put.split()\n put = ' '.join(put[:])\n print(wikipedia.summary(put))\n speak.say('Searched google for ' + put)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + put)\n\n\nif __name__ == '__main__':\n app = wx.App(True)\n frame = MyFrame()\n app.MainLoop()\n", "step-3": "<mask token>\nrequests.packages.urllib3.disable_warnings()\ntry:\n _create_unverified_https_context = ssl._create_unverified_context\nexcept AttributeError:\n pass\nelse:\n ssl._create_default_https_context = _create_unverified_https_context\nheaders = {\n \"\"\"user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)\n AppleWebKit/537.36 (KHTML, like Gecko)\n Chrome/53.0.2785.143 Safari/537.36\"\"\"\n }\nspeak = pyttsx3.init()\nvoices = speak.getProperty('voices')\nvoice = voices[1]\nspeak.setProperty('voice', voice.id)\nvideos = ['C:\\\\Users\\\\nEW u\\\\Videos\\\\Um4WR.mkv',\n 'C:\\\\Users\\\\nEW u\\\\Videos\\\\Jaatishwar.mkv']\napp_id = 'GY6T92-YG5RXA85AV'\n\n\nclass MyFrame(wx.Frame):\n\n def __init__(self):\n wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size=wx.Size(\n 450, 100), style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION |\n wx.CLOSE_BOX | wx.CLIP_CHILDREN, title='Assistant')\n panel = wx.Panel(self)\n my_sizer = wx.BoxSizer(wx.VERTICAL)\n lbl = wx.StaticText(panel, label='Hello Sir. How can I help you?')\n my_sizer.Add(lbl, 0, wx.ALL, 5)\n self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400, 30)\n )\n self.txt.SetFocus()\n self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter)\n my_sizer.Add(self.txt, 0, wx.ALL, 5)\n panel.SetSizer(my_sizer)\n self.Show()\n speak.say('Welcome back Sir, Your assistant at your service.')\n speak.runAndWait()\n\n def OnEnter(self, event):\n put = self.txt.GetValue()\n put = put.lower()\n link = put.split()\n r = sr.Recognizer()\n if put == '':\n with sr.Microphone() as src:\n r.adjust_for_ambient_noise(src)\n speak.say('Yes? How can I help You?')\n speak.runAndWait()\n audio = r.listen(src)\n try:\n put = r.recognize_google(audio)\n put = put.lower()\n link = put.split()\n self.txt.SetValue(put)\n except sr.UnknownValueError:\n print('Google Speech Recognition could not understand audio')\n except sr.RequestError as e:\n print('Could not request results from Google STT; {0}'.\n format(e))\n except:\n print('Unknown exception occurred!')\n if put.startswith('open '):\n try:\n speak.say('opening ' + link[1])\n speak.runAndWait()\n webbrowser.open('http://www.' + link[1] + '.com')\n except:\n print('Sorry, No Internet Connection!')\n elif put.startswith('play '):\n try:\n link = '+'.join(link[1:])\n s = link.replace('+', ' ')\n query_string = urllib.parse.urlencode({'search_query': link})\n html_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n search_results = re.findall('href=\\\\\"\\\\/watch\\\\?v=(.{11})',\n html_content.read().decode())\n print('http://www.youtube.com/watch?v=' + search_results[0])\n speak.say('playing ' + s)\n speak.runAndWait()\n webbrowser.open('http://www.youtube.com/watch?v=' +\n search_results[0])\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('search '):\n try:\n link = '+'.join(link[1:])\n say = link.replace('+', ' ')\n speak.say('searching on google for ' + say)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + link)\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('empty '):\n try:\n winshell.recycle_bin().empty(confirm=False, show_progress=\n False, sound=True)\n speak.say('Recycle Bin Empty')\n speak.runAndWait()\n except:\n speak.say('Unknown Error')\n speak.runAndWait()\n elif put.startswith('science '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top science news from new scientist')\n speak.runAndWait()\n print(\n \"\"\" ================NEW SCIENTIST=============\n \"\"\"\n + '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except:\n print('Sorry, No internet connection')\n elif put.startswith('headlines '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top news from the times of india')\n speak.runAndWait()\n print(\n ' ===============TIMES OF INDIA============' +\n '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except Exception as e:\n print(str(e))\n elif put.startswith('lock '):\n try:\n speak.say('locking the device')\n speak.runAndWait()\n ctypes.windll.user32.LockWorkStation()\n except Exception as e:\n print(str(e))\n elif put.endswith('bored'):\n try:\n speak.say(\n \"\"\"Sir, I'm playing a video.\n Hope you like it\"\"\"\n )\n speak.runAndWait()\n video = random.choice(videos)\n os.startfile(video)\n except Exception as e:\n print(str(e))\n elif put.startswith('whats up'):\n try:\n speak.say(\n 'Nothing much, just trying to become the perfect assistant!'\n )\n speak.runAndWait()\n except Exception as e:\n print(str(e))\n elif put.startswith('show stocks'):\n try:\n Regression.execute()\n except Exception as e:\n print(str(e))\n else:\n try:\n client = wolframalpha.Client(app_id)\n res = client.query(put)\n ans = next(res.results).text\n print(ans)\n speak.say(ans)\n speak.runAndWait()\n except:\n put = put.split()\n put = ' '.join(put[:])\n print(wikipedia.summary(put))\n speak.say('Searched google for ' + put)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + put)\n\n\nif __name__ == '__main__':\n app = wx.App(True)\n frame = MyFrame()\n app.MainLoop()\n", "step-4": "import wx\nimport os\nimport wikipedia\nimport wolframalpha\nimport pyttsx3\nimport webbrowser\nimport winshell\nimport json\nimport requests\nimport ctypes\nimport random\nfrom urllib.request import urlopen\nimport speech_recognition as sr\nimport ssl\nimport urllib.request\nimport urllib.parse\nimport re\nfrom regression import Regression\nrequests.packages.urllib3.disable_warnings()\ntry:\n _create_unverified_https_context = ssl._create_unverified_context\nexcept AttributeError:\n pass\nelse:\n ssl._create_default_https_context = _create_unverified_https_context\nheaders = {\n \"\"\"user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)\n AppleWebKit/537.36 (KHTML, like Gecko)\n Chrome/53.0.2785.143 Safari/537.36\"\"\"\n }\nspeak = pyttsx3.init()\nvoices = speak.getProperty('voices')\nvoice = voices[1]\nspeak.setProperty('voice', voice.id)\nvideos = ['C:\\\\Users\\\\nEW u\\\\Videos\\\\Um4WR.mkv',\n 'C:\\\\Users\\\\nEW u\\\\Videos\\\\Jaatishwar.mkv']\napp_id = 'GY6T92-YG5RXA85AV'\n\n\nclass MyFrame(wx.Frame):\n\n def __init__(self):\n wx.Frame.__init__(self, None, pos=wx.DefaultPosition, size=wx.Size(\n 450, 100), style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION |\n wx.CLOSE_BOX | wx.CLIP_CHILDREN, title='Assistant')\n panel = wx.Panel(self)\n my_sizer = wx.BoxSizer(wx.VERTICAL)\n lbl = wx.StaticText(panel, label='Hello Sir. How can I help you?')\n my_sizer.Add(lbl, 0, wx.ALL, 5)\n self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER, size=(400, 30)\n )\n self.txt.SetFocus()\n self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter)\n my_sizer.Add(self.txt, 0, wx.ALL, 5)\n panel.SetSizer(my_sizer)\n self.Show()\n speak.say('Welcome back Sir, Your assistant at your service.')\n speak.runAndWait()\n\n def OnEnter(self, event):\n put = self.txt.GetValue()\n put = put.lower()\n link = put.split()\n r = sr.Recognizer()\n if put == '':\n with sr.Microphone() as src:\n r.adjust_for_ambient_noise(src)\n speak.say('Yes? How can I help You?')\n speak.runAndWait()\n audio = r.listen(src)\n try:\n put = r.recognize_google(audio)\n put = put.lower()\n link = put.split()\n self.txt.SetValue(put)\n except sr.UnknownValueError:\n print('Google Speech Recognition could not understand audio')\n except sr.RequestError as e:\n print('Could not request results from Google STT; {0}'.\n format(e))\n except:\n print('Unknown exception occurred!')\n if put.startswith('open '):\n try:\n speak.say('opening ' + link[1])\n speak.runAndWait()\n webbrowser.open('http://www.' + link[1] + '.com')\n except:\n print('Sorry, No Internet Connection!')\n elif put.startswith('play '):\n try:\n link = '+'.join(link[1:])\n s = link.replace('+', ' ')\n query_string = urllib.parse.urlencode({'search_query': link})\n html_content = urllib.request.urlopen(\n 'http://www.youtube.com/results?' + query_string)\n search_results = re.findall('href=\\\\\"\\\\/watch\\\\?v=(.{11})',\n html_content.read().decode())\n print('http://www.youtube.com/watch?v=' + search_results[0])\n speak.say('playing ' + s)\n speak.runAndWait()\n webbrowser.open('http://www.youtube.com/watch?v=' +\n search_results[0])\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('search '):\n try:\n link = '+'.join(link[1:])\n say = link.replace('+', ' ')\n speak.say('searching on google for ' + say)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + link)\n except:\n print('Sorry, No internet connection!')\n elif put.startswith('empty '):\n try:\n winshell.recycle_bin().empty(confirm=False, show_progress=\n False, sound=True)\n speak.say('Recycle Bin Empty')\n speak.runAndWait()\n except:\n speak.say('Unknown Error')\n speak.runAndWait()\n elif put.startswith('science '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top science news from new scientist')\n speak.runAndWait()\n print(\n \"\"\" ================NEW SCIENTIST=============\n \"\"\"\n + '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except:\n print('Sorry, No internet connection')\n elif put.startswith('headlines '):\n try:\n jsonObj = urlopen(\n 'https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here'\n )\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top news from the times of india')\n speak.runAndWait()\n print(\n ' ===============TIMES OF INDIA============' +\n '\\n')\n for item in data['articles']:\n print(str(i) + '. ' + item['title'] + '\\n')\n print(item['description'] + '\\n')\n i += 1\n except Exception as e:\n print(str(e))\n elif put.startswith('lock '):\n try:\n speak.say('locking the device')\n speak.runAndWait()\n ctypes.windll.user32.LockWorkStation()\n except Exception as e:\n print(str(e))\n elif put.endswith('bored'):\n try:\n speak.say(\n \"\"\"Sir, I'm playing a video.\n Hope you like it\"\"\"\n )\n speak.runAndWait()\n video = random.choice(videos)\n os.startfile(video)\n except Exception as e:\n print(str(e))\n elif put.startswith('whats up'):\n try:\n speak.say(\n 'Nothing much, just trying to become the perfect assistant!'\n )\n speak.runAndWait()\n except Exception as e:\n print(str(e))\n elif put.startswith('show stocks'):\n try:\n Regression.execute()\n except Exception as e:\n print(str(e))\n else:\n try:\n client = wolframalpha.Client(app_id)\n res = client.query(put)\n ans = next(res.results).text\n print(ans)\n speak.say(ans)\n speak.runAndWait()\n except:\n put = put.split()\n put = ' '.join(put[:])\n print(wikipedia.summary(put))\n speak.say('Searched google for ' + put)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q=' + put)\n\n\nif __name__ == '__main__':\n app = wx.App(True)\n frame = MyFrame()\n app.MainLoop()\n", "step-5": "import wx\nimport os\n# os.environ[\"HTTPS_PROXY\"] = \"http://user:[email protected]:3128\"\nimport wikipedia\nimport wolframalpha\nimport pyttsx3\nimport webbrowser\nimport winshell\nimport json\nimport requests\nimport ctypes\nimport random\nfrom urllib.request import urlopen\nimport speech_recognition as sr\nimport ssl\nimport urllib.request\nimport urllib.parse\nimport re\nfrom regression import Regression\n# Remove SSL error\nrequests.packages.urllib3.disable_warnings()\n\ntry:\n _create_unverified_https_context = ssl._create_unverified_context\nexcept AttributeError:\n # Legacy Python that doesn't verify HTTPS certificates by default\n pass\nelse:\n # Handle target environment that doesn't support HTTPS verification\n ssl._create_default_https_context = _create_unverified_https_context\n\n\nheaders = {'''user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)\n AppleWebKit/537.36 (KHTML, like Gecko)\n Chrome/53.0.2785.143 Safari/537.36'''}\n\n#speak = wincl.Dispatch(\"SAPI.SpVoice\")\nspeak = pyttsx3.init()\nvoices = speak.getProperty('voices')\nvoice = voices[1]\nspeak.setProperty('voice', voice.id)\n\n# Requirements\nvideos = ['C:\\\\Users\\\\nEW u\\\\Videos\\\\Um4WR.mkv', 'C:\\\\Users\\\\nEW u\\\\Videos\\\\Jaatishwar.mkv']\napp_id = 'GY6T92-YG5RXA85AV'\n\n\n# GUI creation\nclass MyFrame(wx.Frame):\n def __init__(self):\n wx.Frame.__init__(self, None,\n pos=wx.DefaultPosition, size=wx.Size(450, 100),\n style=wx.MINIMIZE_BOX | wx.SYSTEM_MENU | wx.CAPTION |\n wx.CLOSE_BOX | wx.CLIP_CHILDREN,\n title=\"Assistant\")\n panel = wx.Panel(self)\n\n #ico = wx.Icon('programming.jpg', type=wx.ICON_ASTERISK, desiredWidth=-1, desiredHeight=-1)\n #self.SetIcon(ico)\n \n my_sizer = wx.BoxSizer(wx.VERTICAL)\n lbl = wx.StaticText(panel,\n label=\"Hello Sir. How can I help you?\")\n my_sizer.Add(lbl, 0, wx.ALL, 5)\n self.txt = wx.TextCtrl(panel, style=wx.TE_PROCESS_ENTER,\n size=(400, 30))\n self.txt.SetFocus()\n self.txt.Bind(wx.EVT_TEXT_ENTER, self.OnEnter)\n my_sizer.Add(self.txt, 0, wx.ALL, 5)\n panel.SetSizer(my_sizer)\n self.Show()\n speak.say('''Welcome back Sir, Your assistant at your service.''')\n speak.runAndWait()\n\n\n def OnEnter(self, event):\n put = self.txt.GetValue()\n put = put.lower()\n link = put.split()\n r = sr.Recognizer()\n if put == '':\n with sr.Microphone() as src:\n r.adjust_for_ambient_noise(src) \n speak.say(\"Yes? How can I help You?\")\n speak.runAndWait()\n audio = r.listen(src)\n try:\n put = r.recognize_google(audio)\n put = put.lower()\n link = put.split()\n self.txt.SetValue(put)\n\n except sr.UnknownValueError:\n print(\"Google Speech Recognition could not understand audio\")\n except sr.RequestError as e:\n print(\"Could not request results from Google STT; {0}\".format(e))\n except:\n print(\"Unknown exception occurred!\")\n\n # Open a webpage\n if put.startswith('open '):\n try:\n speak.say(\"opening \"+link[1])\n speak.runAndWait()\n webbrowser.open('http://www.'+link[1]+'.com')\n except:\n print('Sorry, No Internet Connection!')\n # Play Song on Youtube\n elif put.startswith('play '):\n try:\n link = '+'.join(link[1:])\n s = link.replace('+', ' ')\n query_string = urllib.parse.urlencode({\"search_query\" : link})\n html_content = urllib.request.urlopen(\"http://www.youtube.com/results?\" + query_string)\n search_results = re.findall(r'href=\\\"\\/watch\\?v=(.{11})', html_content.read().decode())\n print(\"http://www.youtube.com/watch?v=\" + search_results[0])\n speak.say(\"playing \"+s)\n speak.runAndWait()\n webbrowser.open(\"http://www.youtube.com/watch?v=\" + search_results[0])\n except:\n print('Sorry, No internet connection!')\n # Google Search\n elif put.startswith('search '):\n try:\n link = '+'.join(link[1:])\n say = link.replace('+', ' ')\n speak.say(\"searching on google for \"+say)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q='+link)\n except:\n print('Sorry, No internet connection!')\n # Empty Recycle bin\n elif put.startswith('empty '):\n try:\n winshell.recycle_bin().empty(confirm=False,\n show_progress=False, sound=True)\n speak.say(\"Recycle Bin Empty\")\n speak.runAndWait()\n except:\n speak.say(\"Unknown Error\")\n speak.runAndWait()\n # News\n elif put.startswith('science '):\n try:\n jsonObj = urlopen('''https://newsapi.org/v1/articles?source=new-scientist&sortBy=top&apiKey=your_API_here''')\n data = json.load(jsonObj)\n i = 1\n speak.say('''Here are some top science news from new scientist''')\n speak.runAndWait()\n print(''' ================NEW SCIENTIST=============\n '''+'\\n')\n for item in data['articles']:\n print(str(i)+'. '+item['title']+'\\n')\n print(item['description']+'\\n')\n i += 1\n except:\n print('Sorry, No internet connection')\n elif put.startswith('headlines '):\n try:\n jsonObj = urlopen('''https://newsapi.org/v1/articles?source=the-times-of-india&sortBy=top&apiKey=your_API_here''')\n data = json.load(jsonObj)\n i = 1\n speak.say('Here are some top news from the times of india')\n speak.runAndWait()\n print(''' ===============TIMES OF INDIA============'''\n +'\\n')\n for item in data['articles']:\n print(str(i)+'. '+item['title']+'\\n')\n print(item['description']+'\\n')\n i += 1\n except Exception as e:\n print(str(e))\n # Lock the device\n elif put.startswith('lock '):\n try:\n speak.say(\"locking the device\")\n speak.runAndWait()\n ctypes.windll.user32.LockWorkStation()\n except Exception as e:\n print(str(e)) \n # Play videos in boredom\n elif put.endswith('bored'):\n try:\n speak.say('''Sir, I\\'m playing a video.\n Hope you like it''')\n speak.runAndWait()\n video = random.choice(videos)\n os.startfile(video)\n except Exception as e:\n print(str(e)) \n # Say Whats up \n elif put.startswith('whats up'):\n try:\n speak.say('''Nothing much, just trying to become the perfect assistant!''')\n speak.runAndWait()\n except Exception as e:\n print(str(e)) \n #Show stocks\n elif put.startswith('show stocks'):\n try:\n Regression.execute()\n except Exception as e:\n print(str(e))\n \n # Other Cases\n else:\n try:\n # wolframalpha\n client = wolframalpha.Client(app_id)\n res = client.query(put)\n ans = next(res.results).text\n print(ans)\n speak.say(ans)\n speak.runAndWait()\n\n except:\n # wikipedia/google\n put = put.split()\n put = ' '.join(put[:])\n #print(put)\n print(wikipedia.summary(put))\n speak.say('Searched google for '+put)\n speak.runAndWait()\n webbrowser.open('https://www.google.co.in/search?q='+put)\n\n\n# Trigger GUI\nif __name__ == \"__main__\":\n app = wx.App(True)\n frame = MyFrame()\n app.MainLoop()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
class NumMatrix(object): def __init__(self, matrix): if matrix: self.dp = [[0] * (len(matrix[0]) + 1) for i in range(len(matrix)+1)] for i in xrange(1,len(matrix)+1): for j in xrange(1,len(matrix[0])+1): self.dp[i][j] = self.dp[i-1][j] + self.dp[i][j-1] + matrix[i-1][j-1] - self.dp[i-1][j-1] def sumRegion(self, row1, col1, row2, col2): return self.dp[row2+1][col2+1] + self.dp[row1][col1] - self.dp[row1][col2+1] - self.dp[row2+1][col1] # Your NumMatrix object will be instantiated and called as such: matrix = [[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]] for m in matrix: print m print numMatrix = NumMatrix(matrix) print numMatrix.sumRegion(2, 1, 4, 3) print numMatrix.sumRegion(1, 2, 3, 4)
normal
{ "blob_id": "443ce5c2ec86b9f89ad39ef2ac6772fa002e7e16", "index": 8377, "step-1": "class NumMatrix(object):\n\n def __init__(self, matrix):\n if matrix:\n self.dp = [[0] * (len(matrix[0]) + 1) for i in range(len(matrix)+1)]\n for i in xrange(1,len(matrix)+1):\n for j in xrange(1,len(matrix[0])+1):\n self.dp[i][j] = self.dp[i-1][j] + self.dp[i][j-1] + matrix[i-1][j-1] - self.dp[i-1][j-1]\n\n\n\n def sumRegion(self, row1, col1, row2, col2):\n\n return self.dp[row2+1][col2+1] + self.dp[row1][col1] - self.dp[row1][col2+1] - self.dp[row2+1][col1]\n\n\n\n# Your NumMatrix object will be instantiated and called as such:\nmatrix = [[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]\nfor m in matrix:\n print m\nprint\nnumMatrix = NumMatrix(matrix)\nprint numMatrix.sumRegion(2, 1, 4, 3)\nprint numMatrix.sumRegion(1, 2, 3, 4)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
<|reserved_special_token_0|> class ArbertmoPreprocessor: <|reserved_special_token_0|> def __init__(self, model_name, keep_emojis=False, remove_html_markup= True, replace_urls_emails_mentions=True, strip_tashkeel=True, strip_tatweel=True, insert_white_spaces=True, remove_elongation=True): """ model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character """ model_name = model_name.replace('aubmindlab/', '') if model_name not in ACCEPTED_MODELS: logging.warning( "Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation" ) self.model_name = 'bert-base-arabertv02' else: self.model_name = model_name if self.model_name in SEGMENTED_MODELS: logging.info( 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter' ) try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except: logging.warning( 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy' ) else: logging.info( "Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.model_name in SEGMENTED_MODELS: logging.warning( 'Keeping tweets with Farasa Segmentation is 10 times slower' ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_elongation = remove_elongation def preprocess(self, text): """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if self.model_name == 'bert-base-arabert': return self._old_preprocess(text, do_farasa_tokenization=True) if self.model_name == 'bert-base-arabertv01': return self._old_preprocess(text, do_farasa_tokenization=False) text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: for reg in url_regexes: text = re.sub(reg, ' [رابط] ', text) for reg in email_regexes: text = re.sub(reg, ' [بريد] ', text) text = re.sub(user_mention_regex, ' [مستخدم] ', text) if self.remove_html_markup: text = re.sub('<br />', ' ', text) text = re.sub('</?[^>]+>', ' ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\[\\]])', ' \\1 ', text) text = re.sub('(\\d+)([ء-غف-ي٠-٬]+)', ' \\1 \\2 ', text) text = re.sub('([ء-غف-ي٠-٬]+)(\\d+)', ' \\1 \\2 ', text) if self.keep_emojis: emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys())) rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, ' ', text) else: text = re.sub(rejected_chars_regex, ' ', text) text = ' '.join(text.replace('️', '').split()) if (self.model_name == 'bert-base-arabertv2' or self.model_name == 'bert-large-arabertv2'): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = ' '.join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) return text def unpreprocess(self, text, desegment=True): """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (str): input text to be un-preprocessed desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.model_name in SEGMENTED_MODELS and desegment: text = self.desegment(text) text = re.sub(white_spaced_double_quotation_regex, '"' + '\\1' + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + '\\1' + "'", text) text = re.sub(white_spaced_back_quotation_regex, '\\`' + '\\1' + '\\`', text) text = re.sub(white_spaced_back_quotation_regex, '\\—' + '\\1' + '\\—', text) text = text.replace('.', ' . ') text = ' '.join(text.split()) text = re.sub('(\\d+) \\. (\\d+)', '\\1.\\2', text) text = re.sub('(\\d+) \\, (\\d+)', '\\1,\\2', text) text = re.sub(left_and_right_spaced_chars, '\\1', text) text = re.sub(left_spaced_chars, '\\1', text) text = re.sub(right_spaced_chars, '\\1', text) return text def desegment(self, text): """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace('+ ', '+') text = text.replace(' +', '+') text = ' '.join([self._desegmentword(word) for word in text.split(' ')] ) return text def _desegmentword(self, orig_word: str) ->str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace('ل+ال+', 'لل') if 'ال+ال' not in orig_word: word = word.replace('ل+ال', 'لل') word = word.replace('+', '') word = word.replace('للل', 'لل') return word def _old_preprocess(self, text, do_farasa_tokenization): """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub('\\d+\\/[ء-ي]+\\/\\d+\\]', '', text) text = re.sub('ـ', '', text) text = re.sub('[«»]', ' " ', text) if self.replace_urls_emails_mentions: text = re.sub(regex_url_step1, '[رابط]', text) text = re.sub(regex_url_step2, '[رابط]', text) text = re.sub(regex_url, '[رابط]', text) text = re.sub(regex_email, '[بريد]', text) text = re.sub(regex_mention, '[مستخدم]', text) text = re.sub('…', '\\.', text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub('\\[ رابط \\]|\\[ رابط\\]|\\[رابط \\]', ' [رابط] ', text) text = re.sub('\\[ بريد \\]|\\[ بريد\\]|\\[بريد \\]', ' [بريد] ', text) text = re.sub('\\[ مستخدم \\]|\\[ مستخدم\\]|\\[مستخدم \\]', ' [مستخدم] ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\[\\]])', ' \\1 ', text) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) return text.strip() def _farasa_segment(self, text): line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue if '+' not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _split_farasa_output(self, word): segmented_word = [] temp_token = '' for i, c in enumerate(word): if c == '+': if temp_token == 'ك': if i == 1: segmented_word.append(temp_token + '+') temp_token = '' elif word[i - 2] == '+': if segmented_word[-1][-1] == '+': segmented_word.append(temp_token + '+') temp_token = '' else: segmented_word.append('+' + temp_token) temp_token = '' elif temp_token in prefix_list: segmented_word.append(temp_token + '+') temp_token = '' elif temp_token in suffix_list: segmented_word.append('+' + temp_token) temp_token = '' else: segmented_word.append(temp_token) temp_token = '' continue temp_token += c if temp_token != '': if temp_token in suffix_list: segmented_word.append('+' + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input): if self.keep_emojis: line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue segmented_word = [] for token in word.split('+'): if token in prefix_list: segmented_word.append(token + '+') elif token in suffix_list: segmented_word.append('+' + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _remove_elongation(self, text): """ :param text: the input text to remove elongation :return: delongated text """ for index_ in range(len(re.findall(regex_tatweel, text))): elongation = re.search(regex_tatweel, text) if elongation: elongation_pattern = elongation.group() elongation_replacement = elongation_pattern[0] elongation_pattern = re.escape(elongation_pattern) text = re.sub(elongation_pattern, elongation_replacement, text, flags=re.MULTILINE) else: break return text def _remove_redundant_punct(self, text): text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = ' ' + ''.join(list(sub)) + ' ' text = ''.join((text[:result.span()[0] + dif], sub, text[result .span()[1] + dif:])) text_ = ''.join((text_[:result.span()[0]], text_[result.span()[ 1]:])).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub('\\s+', ' ', text) return text.strip() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class ArbertmoPreprocessor: """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character Returns: ArBERTMoPreprocessor: the preprocessor class Example: from preprocess import ArBERTMoPreprocessor arabert_prep = ArBERTMoPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ def __init__(self, model_name, keep_emojis=False, remove_html_markup= True, replace_urls_emails_mentions=True, strip_tashkeel=True, strip_tatweel=True, insert_white_spaces=True, remove_elongation=True): """ model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character """ model_name = model_name.replace('aubmindlab/', '') if model_name not in ACCEPTED_MODELS: logging.warning( "Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation" ) self.model_name = 'bert-base-arabertv02' else: self.model_name = model_name if self.model_name in SEGMENTED_MODELS: logging.info( 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter' ) try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except: logging.warning( 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy' ) else: logging.info( "Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.model_name in SEGMENTED_MODELS: logging.warning( 'Keeping tweets with Farasa Segmentation is 10 times slower' ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_elongation = remove_elongation def preprocess(self, text): """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if self.model_name == 'bert-base-arabert': return self._old_preprocess(text, do_farasa_tokenization=True) if self.model_name == 'bert-base-arabertv01': return self._old_preprocess(text, do_farasa_tokenization=False) text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: for reg in url_regexes: text = re.sub(reg, ' [رابط] ', text) for reg in email_regexes: text = re.sub(reg, ' [بريد] ', text) text = re.sub(user_mention_regex, ' [مستخدم] ', text) if self.remove_html_markup: text = re.sub('<br />', ' ', text) text = re.sub('</?[^>]+>', ' ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\[\\]])', ' \\1 ', text) text = re.sub('(\\d+)([ء-غف-ي٠-٬]+)', ' \\1 \\2 ', text) text = re.sub('([ء-غف-ي٠-٬]+)(\\d+)', ' \\1 \\2 ', text) if self.keep_emojis: emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys())) rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, ' ', text) else: text = re.sub(rejected_chars_regex, ' ', text) text = ' '.join(text.replace('️', '').split()) if (self.model_name == 'bert-base-arabertv2' or self.model_name == 'bert-large-arabertv2'): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = ' '.join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) return text def unpreprocess(self, text, desegment=True): """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (str): input text to be un-preprocessed desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.model_name in SEGMENTED_MODELS and desegment: text = self.desegment(text) text = re.sub(white_spaced_double_quotation_regex, '"' + '\\1' + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + '\\1' + "'", text) text = re.sub(white_spaced_back_quotation_regex, '\\`' + '\\1' + '\\`', text) text = re.sub(white_spaced_back_quotation_regex, '\\—' + '\\1' + '\\—', text) text = text.replace('.', ' . ') text = ' '.join(text.split()) text = re.sub('(\\d+) \\. (\\d+)', '\\1.\\2', text) text = re.sub('(\\d+) \\, (\\d+)', '\\1,\\2', text) text = re.sub(left_and_right_spaced_chars, '\\1', text) text = re.sub(left_spaced_chars, '\\1', text) text = re.sub(right_spaced_chars, '\\1', text) return text def desegment(self, text): """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace('+ ', '+') text = text.replace(' +', '+') text = ' '.join([self._desegmentword(word) for word in text.split(' ')] ) return text def _desegmentword(self, orig_word: str) ->str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace('ل+ال+', 'لل') if 'ال+ال' not in orig_word: word = word.replace('ل+ال', 'لل') word = word.replace('+', '') word = word.replace('للل', 'لل') return word def _old_preprocess(self, text, do_farasa_tokenization): """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub('\\d+\\/[ء-ي]+\\/\\d+\\]', '', text) text = re.sub('ـ', '', text) text = re.sub('[«»]', ' " ', text) if self.replace_urls_emails_mentions: text = re.sub(regex_url_step1, '[رابط]', text) text = re.sub(regex_url_step2, '[رابط]', text) text = re.sub(regex_url, '[رابط]', text) text = re.sub(regex_email, '[بريد]', text) text = re.sub(regex_mention, '[مستخدم]', text) text = re.sub('…', '\\.', text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub('\\[ رابط \\]|\\[ رابط\\]|\\[رابط \\]', ' [رابط] ', text) text = re.sub('\\[ بريد \\]|\\[ بريد\\]|\\[بريد \\]', ' [بريد] ', text) text = re.sub('\\[ مستخدم \\]|\\[ مستخدم\\]|\\[مستخدم \\]', ' [مستخدم] ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\[\\]])', ' \\1 ', text) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) return text.strip() def _farasa_segment(self, text): line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue if '+' not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _split_farasa_output(self, word): segmented_word = [] temp_token = '' for i, c in enumerate(word): if c == '+': if temp_token == 'ك': if i == 1: segmented_word.append(temp_token + '+') temp_token = '' elif word[i - 2] == '+': if segmented_word[-1][-1] == '+': segmented_word.append(temp_token + '+') temp_token = '' else: segmented_word.append('+' + temp_token) temp_token = '' elif temp_token in prefix_list: segmented_word.append(temp_token + '+') temp_token = '' elif temp_token in suffix_list: segmented_word.append('+' + temp_token) temp_token = '' else: segmented_word.append(temp_token) temp_token = '' continue temp_token += c if temp_token != '': if temp_token in suffix_list: segmented_word.append('+' + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input): if self.keep_emojis: line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue segmented_word = [] for token in word.split('+'): if token in prefix_list: segmented_word.append(token + '+') elif token in suffix_list: segmented_word.append('+' + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _remove_elongation(self, text): """ :param text: the input text to remove elongation :return: delongated text """ for index_ in range(len(re.findall(regex_tatweel, text))): elongation = re.search(regex_tatweel, text) if elongation: elongation_pattern = elongation.group() elongation_replacement = elongation_pattern[0] elongation_pattern = re.escape(elongation_pattern) text = re.sub(elongation_pattern, elongation_replacement, text, flags=re.MULTILINE) else: break return text def _remove_redundant_punct(self, text): text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = ' ' + ''.join(list(sub)) + ' ' text = ''.join((text[:result.span()[0] + dif], sub, text[result .span()[1] + dif:])) text_ = ''.join((text_[:result.span()[0]], text_[result.span()[ 1]:])).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub('\\s+', ' ', text) return text.strip() <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> ACCEPTED_MODELS = ['bert-base-arabertv01', 'bert-base-arabert', 'bert-base-arabertv02', 'bert-base-arabertv2', 'bert-large-arabertv02', 'bert-large-arabertv2', 'araelectra-base', 'araelectra-base-discriminator', 'araelectra-base-generator', 'aragpt2-base', 'aragpt2-medium', 'aragpt2-large', 'aragpt2-mega'] SEGMENTED_MODELS = ['bert-base-arabert', 'bert-base-arabertv2', 'bert-large-arabertv2'] class ArbertmoPreprocessor: """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character Returns: ArBERTMoPreprocessor: the preprocessor class Example: from preprocess import ArBERTMoPreprocessor arabert_prep = ArBERTMoPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ def __init__(self, model_name, keep_emojis=False, remove_html_markup= True, replace_urls_emails_mentions=True, strip_tashkeel=True, strip_tatweel=True, insert_white_spaces=True, remove_elongation=True): """ model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character """ model_name = model_name.replace('aubmindlab/', '') if model_name not in ACCEPTED_MODELS: logging.warning( "Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation" ) self.model_name = 'bert-base-arabertv02' else: self.model_name = model_name if self.model_name in SEGMENTED_MODELS: logging.info( 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter' ) try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except: logging.warning( 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy' ) else: logging.info( "Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.model_name in SEGMENTED_MODELS: logging.warning( 'Keeping tweets with Farasa Segmentation is 10 times slower' ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_elongation = remove_elongation def preprocess(self, text): """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if self.model_name == 'bert-base-arabert': return self._old_preprocess(text, do_farasa_tokenization=True) if self.model_name == 'bert-base-arabertv01': return self._old_preprocess(text, do_farasa_tokenization=False) text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: for reg in url_regexes: text = re.sub(reg, ' [رابط] ', text) for reg in email_regexes: text = re.sub(reg, ' [بريد] ', text) text = re.sub(user_mention_regex, ' [مستخدم] ', text) if self.remove_html_markup: text = re.sub('<br />', ' ', text) text = re.sub('</?[^>]+>', ' ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\[\\]])', ' \\1 ', text) text = re.sub('(\\d+)([ء-غف-ي٠-٬]+)', ' \\1 \\2 ', text) text = re.sub('([ء-غف-ي٠-٬]+)(\\d+)', ' \\1 \\2 ', text) if self.keep_emojis: emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys())) rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, ' ', text) else: text = re.sub(rejected_chars_regex, ' ', text) text = ' '.join(text.replace('️', '').split()) if (self.model_name == 'bert-base-arabertv2' or self.model_name == 'bert-large-arabertv2'): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = ' '.join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) return text def unpreprocess(self, text, desegment=True): """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (str): input text to be un-preprocessed desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.model_name in SEGMENTED_MODELS and desegment: text = self.desegment(text) text = re.sub(white_spaced_double_quotation_regex, '"' + '\\1' + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + '\\1' + "'", text) text = re.sub(white_spaced_back_quotation_regex, '\\`' + '\\1' + '\\`', text) text = re.sub(white_spaced_back_quotation_regex, '\\—' + '\\1' + '\\—', text) text = text.replace('.', ' . ') text = ' '.join(text.split()) text = re.sub('(\\d+) \\. (\\d+)', '\\1.\\2', text) text = re.sub('(\\d+) \\, (\\d+)', '\\1,\\2', text) text = re.sub(left_and_right_spaced_chars, '\\1', text) text = re.sub(left_spaced_chars, '\\1', text) text = re.sub(right_spaced_chars, '\\1', text) return text def desegment(self, text): """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace('+ ', '+') text = text.replace(' +', '+') text = ' '.join([self._desegmentword(word) for word in text.split(' ')] ) return text def _desegmentword(self, orig_word: str) ->str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace('ل+ال+', 'لل') if 'ال+ال' not in orig_word: word = word.replace('ل+ال', 'لل') word = word.replace('+', '') word = word.replace('للل', 'لل') return word def _old_preprocess(self, text, do_farasa_tokenization): """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub('\\d+\\/[ء-ي]+\\/\\d+\\]', '', text) text = re.sub('ـ', '', text) text = re.sub('[«»]', ' " ', text) if self.replace_urls_emails_mentions: text = re.sub(regex_url_step1, '[رابط]', text) text = re.sub(regex_url_step2, '[رابط]', text) text = re.sub(regex_url, '[رابط]', text) text = re.sub(regex_email, '[بريد]', text) text = re.sub(regex_mention, '[مستخدم]', text) text = re.sub('…', '\\.', text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub('\\[ رابط \\]|\\[ رابط\\]|\\[رابط \\]', ' [رابط] ', text) text = re.sub('\\[ بريد \\]|\\[ بريد\\]|\\[بريد \\]', ' [بريد] ', text) text = re.sub('\\[ مستخدم \\]|\\[ مستخدم\\]|\\[مستخدم \\]', ' [مستخدم] ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\[\\]])', ' \\1 ', text) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) return text.strip() def _farasa_segment(self, text): line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue if '+' not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _split_farasa_output(self, word): segmented_word = [] temp_token = '' for i, c in enumerate(word): if c == '+': if temp_token == 'ك': if i == 1: segmented_word.append(temp_token + '+') temp_token = '' elif word[i - 2] == '+': if segmented_word[-1][-1] == '+': segmented_word.append(temp_token + '+') temp_token = '' else: segmented_word.append('+' + temp_token) temp_token = '' elif temp_token in prefix_list: segmented_word.append(temp_token + '+') temp_token = '' elif temp_token in suffix_list: segmented_word.append('+' + temp_token) temp_token = '' else: segmented_word.append(temp_token) temp_token = '' continue temp_token += c if temp_token != '': if temp_token in suffix_list: segmented_word.append('+' + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input): if self.keep_emojis: line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue segmented_word = [] for token in word.split('+'): if token in prefix_list: segmented_word.append(token + '+') elif token in suffix_list: segmented_word.append('+' + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _remove_elongation(self, text): """ :param text: the input text to remove elongation :return: delongated text """ for index_ in range(len(re.findall(regex_tatweel, text))): elongation = re.search(regex_tatweel, text) if elongation: elongation_pattern = elongation.group() elongation_replacement = elongation_pattern[0] elongation_pattern = re.escape(elongation_pattern) text = re.sub(elongation_pattern, elongation_replacement, text, flags=re.MULTILINE) else: break return text def _remove_redundant_punct(self, text): text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = ' ' + ''.join(list(sub)) + ' ' text = ''.join((text[:result.span()[0] + dif], sub, text[result .span()[1] + dif:])) text_ = ''.join((text_[:result.span()[0]], text_[result.span()[ 1]:])).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub('\\s+', ' ', text) return text.strip() prefix_list = ['ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'س'] suffix_list = ['ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة', 'ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة'] other_tokens = ['[رابط]', '[مستخدم]', '[بريد]'] prefix_symbols = [(x + '+') for x in prefix_list] suffix_symblos = [('+' + x) for x in suffix_list] never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens)) url_regexes = [ '(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)' , '@(https?|ftp)://(-\\.)?([^\\s/?\\.#-]+\\.?)+(/[^\\s]*)?$@iS', 'http[s]?://[a-zA-Z0-9_\\-./~\\?=%&]+', 'www[a-zA-Z0-9_\\-?=%&/.~]+', '[a-zA-Z]+\\.com', '(?=http)[^\\s]+', '(?=www)[^\\s]+', '://'] user_mention_regex = '@[\\w\\d]+' email_regexes = ['[\\w-]+@([\\w-]+\\.)+[\\w-]+', '\\S+@\\S+'] redundant_punct_pattern = ( '([!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ【»؛\\s+«–…‘]{2,})' ) regex_tatweel = '(\\D)\\1{2,}' rejected_chars_regex = ( '[^0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘]' ) regex_url_step1 = '(?=http)[^\\s]+' regex_url_step2 = '(?=www)[^\\s]+' regex_url = ( '(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)' ) regex_mention = '@[\\w\\d]+' regex_email = '\\S+@\\S+' chars_regex = ( '0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘' ) white_spaced_double_quotation_regex = '\\"\\s+([^"]+)\\s+\\"' white_spaced_single_quotation_regex = "\\'\\s+([^']+)\\s+\\'" white_spaced_back_quotation_regex = '\\`\\s+([^`]+)\\s+\\`' white_spaced_em_dash = '\\—\\s+([^—]+)\\s+\\—' left_spaced_chars = ' ([\\]!#\\$%\\),\\.:;\\?}٪’،؟”؛…»·])' right_spaced_chars = '([\\[\\(\\{“«‘*\\~]) ' left_and_right_spaced_chars = ' ([\\+\\-\\<\\=\\>\\@\\\\\\^\\_\\|\\–]) ' <|reserved_special_token_1|> import html import logging import re import pyarabic.araby as araby ACCEPTED_MODELS = ['bert-base-arabertv01', 'bert-base-arabert', 'bert-base-arabertv02', 'bert-base-arabertv2', 'bert-large-arabertv02', 'bert-large-arabertv2', 'araelectra-base', 'araelectra-base-discriminator', 'araelectra-base-generator', 'aragpt2-base', 'aragpt2-medium', 'aragpt2-large', 'aragpt2-mega'] SEGMENTED_MODELS = ['bert-base-arabert', 'bert-base-arabertv2', 'bert-large-arabertv2'] class ArbertmoPreprocessor: """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character Returns: ArBERTMoPreprocessor: the preprocessor class Example: from preprocess import ArBERTMoPreprocessor arabert_prep = ArBERTMoPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ def __init__(self, model_name, keep_emojis=False, remove_html_markup= True, replace_urls_emails_mentions=True, strip_tashkeel=True, strip_tatweel=True, insert_white_spaces=True, remove_elongation=True): """ model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character """ model_name = model_name.replace('aubmindlab/', '') if model_name not in ACCEPTED_MODELS: logging.warning( "Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation" ) self.model_name = 'bert-base-arabertv02' else: self.model_name = model_name if self.model_name in SEGMENTED_MODELS: logging.info( 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter' ) try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except: logging.warning( 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy' ) else: logging.info( "Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.model_name in SEGMENTED_MODELS: logging.warning( 'Keeping tweets with Farasa Segmentation is 10 times slower' ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_elongation = remove_elongation def preprocess(self, text): """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if self.model_name == 'bert-base-arabert': return self._old_preprocess(text, do_farasa_tokenization=True) if self.model_name == 'bert-base-arabertv01': return self._old_preprocess(text, do_farasa_tokenization=False) text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: for reg in url_regexes: text = re.sub(reg, ' [رابط] ', text) for reg in email_regexes: text = re.sub(reg, ' [بريد] ', text) text = re.sub(user_mention_regex, ' [مستخدم] ', text) if self.remove_html_markup: text = re.sub('<br />', ' ', text) text = re.sub('</?[^>]+>', ' ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\[\\]])', ' \\1 ', text) text = re.sub('(\\d+)([ء-غف-ي٠-٬]+)', ' \\1 \\2 ', text) text = re.sub('([ء-غف-ي٠-٬]+)(\\d+)', ' \\1 \\2 ', text) if self.keep_emojis: emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys())) rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, ' ', text) else: text = re.sub(rejected_chars_regex, ' ', text) text = ' '.join(text.replace('️', '').split()) if (self.model_name == 'bert-base-arabertv2' or self.model_name == 'bert-large-arabertv2'): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = ' '.join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) return text def unpreprocess(self, text, desegment=True): """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (str): input text to be un-preprocessed desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.model_name in SEGMENTED_MODELS and desegment: text = self.desegment(text) text = re.sub(white_spaced_double_quotation_regex, '"' + '\\1' + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + '\\1' + "'", text) text = re.sub(white_spaced_back_quotation_regex, '\\`' + '\\1' + '\\`', text) text = re.sub(white_spaced_back_quotation_regex, '\\—' + '\\1' + '\\—', text) text = text.replace('.', ' . ') text = ' '.join(text.split()) text = re.sub('(\\d+) \\. (\\d+)', '\\1.\\2', text) text = re.sub('(\\d+) \\, (\\d+)', '\\1,\\2', text) text = re.sub(left_and_right_spaced_chars, '\\1', text) text = re.sub(left_spaced_chars, '\\1', text) text = re.sub(right_spaced_chars, '\\1', text) return text def desegment(self, text): """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace('+ ', '+') text = text.replace(' +', '+') text = ' '.join([self._desegmentword(word) for word in text.split(' ')] ) return text def _desegmentword(self, orig_word: str) ->str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace('ل+ال+', 'لل') if 'ال+ال' not in orig_word: word = word.replace('ل+ال', 'لل') word = word.replace('+', '') word = word.replace('للل', 'لل') return word def _old_preprocess(self, text, do_farasa_tokenization): """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub('\\d+\\/[ء-ي]+\\/\\d+\\]', '', text) text = re.sub('ـ', '', text) text = re.sub('[«»]', ' " ', text) if self.replace_urls_emails_mentions: text = re.sub(regex_url_step1, '[رابط]', text) text = re.sub(regex_url_step2, '[رابط]', text) text = re.sub(regex_url, '[رابط]', text) text = re.sub(regex_email, '[بريد]', text) text = re.sub(regex_mention, '[مستخدم]', text) text = re.sub('…', '\\.', text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub('\\[ رابط \\]|\\[ رابط\\]|\\[رابط \\]', ' [رابط] ', text) text = re.sub('\\[ بريد \\]|\\[ بريد\\]|\\[بريد \\]', ' [بريد] ', text) text = re.sub('\\[ مستخدم \\]|\\[ مستخدم\\]|\\[مستخدم \\]', ' [مستخدم] ', text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\[\\]])', ' \\1 ', text) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) return text.strip() def _farasa_segment(self, text): line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue if '+' not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _split_farasa_output(self, word): segmented_word = [] temp_token = '' for i, c in enumerate(word): if c == '+': if temp_token == 'ك': if i == 1: segmented_word.append(temp_token + '+') temp_token = '' elif word[i - 2] == '+': if segmented_word[-1][-1] == '+': segmented_word.append(temp_token + '+') temp_token = '' else: segmented_word.append('+' + temp_token) temp_token = '' elif temp_token in prefix_list: segmented_word.append(temp_token + '+') temp_token = '' elif temp_token in suffix_list: segmented_word.append('+' + temp_token) temp_token = '' else: segmented_word.append(temp_token) temp_token = '' continue temp_token += c if temp_token != '': if temp_token in suffix_list: segmented_word.append('+' + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input): if self.keep_emojis: line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI['en'].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ['[', ']']: continue if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1 ] in ['[', ']']: segmented_line.append('[' + word + ']') continue segmented_word = [] for token in word.split('+'): if token in prefix_list: segmented_word.append(token + '+') elif token in suffix_list: segmented_word.append('+' + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return ' '.join(segmented_line) def _remove_elongation(self, text): """ :param text: the input text to remove elongation :return: delongated text """ for index_ in range(len(re.findall(regex_tatweel, text))): elongation = re.search(regex_tatweel, text) if elongation: elongation_pattern = elongation.group() elongation_replacement = elongation_pattern[0] elongation_pattern = re.escape(elongation_pattern) text = re.sub(elongation_pattern, elongation_replacement, text, flags=re.MULTILINE) else: break return text def _remove_redundant_punct(self, text): text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = ' ' + ''.join(list(sub)) + ' ' text = ''.join((text[:result.span()[0] + dif], sub, text[result .span()[1] + dif:])) text_ = ''.join((text_[:result.span()[0]], text_[result.span()[ 1]:])).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub('\\s+', ' ', text) return text.strip() prefix_list = ['ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'س'] suffix_list = ['ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة', 'ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة'] other_tokens = ['[رابط]', '[مستخدم]', '[بريد]'] prefix_symbols = [(x + '+') for x in prefix_list] suffix_symblos = [('+' + x) for x in suffix_list] never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens)) url_regexes = [ '(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)' , '@(https?|ftp)://(-\\.)?([^\\s/?\\.#-]+\\.?)+(/[^\\s]*)?$@iS', 'http[s]?://[a-zA-Z0-9_\\-./~\\?=%&]+', 'www[a-zA-Z0-9_\\-?=%&/.~]+', '[a-zA-Z]+\\.com', '(?=http)[^\\s]+', '(?=www)[^\\s]+', '://'] user_mention_regex = '@[\\w\\d]+' email_regexes = ['[\\w-]+@([\\w-]+\\.)+[\\w-]+', '\\S+@\\S+'] redundant_punct_pattern = ( '([!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ【»؛\\s+«–…‘]{2,})' ) regex_tatweel = '(\\D)\\1{2,}' rejected_chars_regex = ( '[^0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘]' ) regex_url_step1 = '(?=http)[^\\s]+' regex_url_step2 = '(?=www)[^\\s]+' regex_url = ( '(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)' ) regex_mention = '@[\\w\\d]+' regex_email = '\\S+@\\S+' chars_regex = ( '0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\"#\\$%\\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘' ) white_spaced_double_quotation_regex = '\\"\\s+([^"]+)\\s+\\"' white_spaced_single_quotation_regex = "\\'\\s+([^']+)\\s+\\'" white_spaced_back_quotation_regex = '\\`\\s+([^`]+)\\s+\\`' white_spaced_em_dash = '\\—\\s+([^—]+)\\s+\\—' left_spaced_chars = ' ([\\]!#\\$%\\),\\.:;\\?}٪’،؟”؛…»·])' right_spaced_chars = '([\\[\\(\\{“«‘*\\~]) ' left_and_right_spaced_chars = ' ([\\+\\-\\<\\=\\>\\@\\\\\\^\\_\\|\\–]) ' <|reserved_special_token_1|> import html import logging import re import pyarabic.araby as araby ACCEPTED_MODELS = [ "bert-base-arabertv01", "bert-base-arabert", "bert-base-arabertv02", "bert-base-arabertv2", "bert-large-arabertv02", "bert-large-arabertv2", "araelectra-base", "araelectra-base-discriminator", "araelectra-base-generator", "aragpt2-base", "aragpt2-medium", "aragpt2-large", "aragpt2-mega", ] SEGMENTED_MODELS = [ "bert-base-arabert", "bert-base-arabertv2", "bert-large-arabertv2", ] class ArbertmoPreprocessor: """ A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo. It also can unprocess the text ouput of the generated text Args: model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character Returns: ArBERTMoPreprocessor: the preprocessor class Example: from preprocess import ArBERTMoPreprocessor arabert_prep = ArBERTMoPreprocessor("aubmindlab/bert-base-arabertv2") arabert_prep.preprocess("SOME ARABIC TEXT") """ def __init__( self, model_name, keep_emojis=False, remove_html_markup=True, replace_urls_emails_mentions=True, strip_tashkeel=True, strip_tatweel=True, insert_white_spaces=True, remove_elongation=True, ): """ model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to "bert-base-arabertv02". Current accepted models are: - :obj:`"bert-base-arabertv01"`: No farasa segmentation. - :obj:`"bert-base-arabert"`: with farasa segmentation. - :obj:`"bert-base-arabertv02"`: No farasas egmentation. - :obj:`"bert-base-arabertv2"`: with farasa segmentation. - :obj:`"bert-large-arabertv02"`: No farasas egmentation. - :obj:`"bert-large-arabertv2"`: with farasa segmentation. - :obj:`"araelectra-base"`: No farasa segmentation. - :obj:`"araelectra-base-discriminator"`: No farasa segmentation. - :obj:`"araelectra-base-generator"`: No farasa segmentation. - :obj:`"aragpt2-base"`: No farasa segmentation. - :obj:`"aragpt2-medium"`: No farasa segmentation. - :obj:`"aragpt2-large"`: No farasa segmentation. - :obj:`"aragpt2-mega"`: No farasa segmentation. keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA) strip_tatweel(:obj: `bool`): remove tatweel '\\u0640' insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character """ model_name = model_name.replace("aubmindlab/", "") if model_name not in ACCEPTED_MODELS: logging.warning( "Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation" ) self.model_name = "bert-base-arabertv02" else: self.model_name = model_name if self.model_name in SEGMENTED_MODELS: logging.info( "Selected Model requires pre-segmentation, Initializing FarasaSegmenter" ) try: from farasa.segmenter import FarasaSegmenter self.farasa_segmenter = FarasaSegmenter(interactive=True) except: logging.warning( "farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy" ) else: logging.info( "Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization" ) self.keep_emojis = keep_emojis if self.keep_emojis: import emoji self.emoji = emoji if self.model_name in SEGMENTED_MODELS: logging.warning( "Keeping tweets with Farasa Segmentation is 10 times slower" ) self.remove_html_markup = remove_html_markup self.replace_urls_emails_mentions = replace_urls_emails_mentions self.strip_tashkeel = strip_tashkeel self.strip_tatweel = strip_tatweel self.insert_white_spaces = insert_white_spaces self.remove_elongation = remove_elongation def preprocess(self, text): """ Preprocess takes an input text line an applies the same preprocessing used in AraBERT pretraining Args: text (:obj:`str`): inout text string Returns: string: A preprocessed string depending on which model was selected """ if self.model_name == "bert-base-arabert": return self._old_preprocess( text, do_farasa_tokenization=True, ) if self.model_name == "bert-base-arabertv01": return self._old_preprocess(text, do_farasa_tokenization=False) text = str(text) text = html.unescape(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) if self.strip_tatweel: text = araby.strip_tatweel(text) if self.replace_urls_emails_mentions: # replace all possible URLs for reg in url_regexes: text = re.sub(reg, " [رابط] ", text) # REplace Emails with [بريد] for reg in email_regexes: text = re.sub(reg, " [بريد] ", text) # replace mentions with [مستخدم] text = re.sub(user_mention_regex, " [مستخدم] ", text) if self.remove_html_markup: # remove html line breaks text = re.sub("<br />", " ", text) # remove html markup text = re.sub("</?[^>]+>", " ", text) # remove repeated characters >2 if self.remove_elongation: text = self._remove_elongation(text) # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets if self.insert_white_spaces: text = re.sub( "([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])", r" \1 ", text, ) # insert whitespace between words and numbers or numbers and words text = re.sub( "(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text ) text = re.sub( "([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text ) # remove unwanted characters if self.keep_emojis: emoji_regex = "".join(list(self.emoji.UNICODE_EMOJI["en"].keys())) rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex) text = re.sub(rejected_chars_regex2, " ", text) else: text = re.sub(rejected_chars_regex, " ", text) # remove extra spaces text = " ".join(text.replace("\uFE0F", "").split()) if ( self.model_name == "bert-base-arabertv2" or self.model_name == "bert-large-arabertv2" ): if self.keep_emojis: new_text = [] for word in text.split(): if word in list(self.emoji.UNICODE_EMOJI["en"].keys()): new_text.append(word) else: new_text.append(self.farasa_segmenter.segment(word)) text = " ".join(new_text) else: text = self.farasa_segmenter.segment(text) return self._farasa_segment(text) # ALl the other models dont require Farasa Segmentation return text def unpreprocess(self, text, desegment=True): """Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces. The objective is to make the generated text of any model appear natural and not preprocessed. Args: text (str): input text to be un-preprocessed desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True. Returns: str: The unpreprocessed (and possibly Farasa-desegmented) text. """ if self.model_name in SEGMENTED_MODELS and desegment: text = self.desegment(text) # removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple # https://stackoverflow.com/a/53436792/5381220 text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text) text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text) text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text) text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text) # during generation, sometimes the models don't put a space after the dot, this handles it text = text.replace(".", " . ") text = " ".join(text.split()) # handle decimals text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text) text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text) text = re.sub(left_and_right_spaced_chars, r"\1", text) text = re.sub(left_spaced_chars, r"\1", text) text = re.sub(right_spaced_chars, r"\1", text) return text def desegment(self, text): """ Use this function if sentence tokenization was done using `from arabert.preprocess_arabert import preprocess` with Farasa enabled AraBERT segmentation using Farasa adds a space after the '+' for prefixes, and after before the '+' for suffixes Example: >>> desegment('ال+ دراس +ات') الدراسات """ text = text.replace("+ ", "+") text = text.replace(" +", "+") text = " ".join([self._desegmentword(word) for word in text.split(" ")]) return text def _desegmentword(self, orig_word: str) -> str: """ Word segmentor that takes a Farasa Segmented Word and removes the '+' signs Example: >>> _desegmentword("ال+يومي+ة") اليومية """ word = orig_word.replace("ل+ال+", "لل") if "ال+ال" not in orig_word: word = word.replace("ل+ال", "لل") word = word.replace("+", "") word = word.replace("للل", "لل") return word def _old_preprocess(self, text, do_farasa_tokenization): """ AraBERTv1 preprocessing Function """ text = str(text) if self.strip_tashkeel: text = araby.strip_tashkeel(text) text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text) text = re.sub("ـ", "", text) text = re.sub("[«»]", ' " ', text) if self.replace_urls_emails_mentions: # replace the [رابط] token with space if you want to clean links text = re.sub(regex_url_step1, "[رابط]", text) text = re.sub(regex_url_step2, "[رابط]", text) text = re.sub(regex_url, "[رابط]", text) text = re.sub(regex_email, "[بريد]", text) text = re.sub(regex_mention, "[مستخدم]", text) text = re.sub("…", r"\.", text).strip() text = self._remove_redundant_punct(text) if self.replace_urls_emails_mentions: text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text) text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text) text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text) if self.remove_elongation: text = self._remove_elongation(text) if self.insert_white_spaces: text = re.sub( "([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])", r" \1 ", text, ) if do_farasa_tokenization: text = self._tokenize_arabic_words_farasa(text) return text.strip() def _farasa_segment(self, text): line_farasa = text.split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ["[", "]"]: continue if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [ "[", "]", ]: segmented_line.append("[" + word + "]") continue if "+" not in word: segmented_line.append(word) continue segmented_word = self._split_farasa_output(word) segmented_line.extend(segmented_word) return " ".join(segmented_line) def _split_farasa_output(self, word): segmented_word = [] temp_token = "" for i, c in enumerate(word): if c == "+": # if the token is KAF, it could be a suffix or prefix if temp_token == "ك": # if we are at the second token, then KAF is surely a prefix if i == 1: segmented_word.append(temp_token + "+") temp_token = "" # If the KAF token is between 2 tokens elif word[i - 2] == "+": # if the previous token is prefix, then this KAF must be a prefix if segmented_word[-1][-1] == "+": segmented_word.append(temp_token + "+") temp_token = "" # else it is a suffix, this KAF could not be a second suffix else: segmented_word.append("+" + temp_token) temp_token = "" # if Kaf is at the end, this is handled with the statement after the loop elif temp_token in prefix_list: segmented_word.append(temp_token + "+") temp_token = "" elif temp_token in suffix_list: segmented_word.append("+" + temp_token) temp_token = "" else: segmented_word.append(temp_token) temp_token = "" continue temp_token += c if temp_token != "": if temp_token in suffix_list: segmented_word.append("+" + temp_token) else: segmented_word.append(temp_token) return segmented_word def _tokenize_arabic_words_farasa(self, line_input): if self.keep_emojis: # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets line_farasa = [] for word in line_input.split(): if word in list(self.emoji.UNICODE_EMOJI["en"].keys()): line_farasa.append(word) else: line_farasa.append(self.farasa_segmenter.segment(word)) else: line_farasa = self.farasa_segmenter.segment(line_input).split() segmented_line = [] for index, word in enumerate(line_farasa): if word in ["[", "]"]: continue if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [ "[", "]", ]: segmented_line.append("[" + word + "]") continue segmented_word = [] for token in word.split("+"): if token in prefix_list: segmented_word.append(token + "+") elif token in suffix_list: segmented_word.append("+" + token) else: segmented_word.append(token) segmented_line.extend(segmented_word) return " ".join(segmented_line) def _remove_elongation(self, text): """ :param text: the input text to remove elongation :return: delongated text """ # loop over the number of times the regex matched the text for index_ in range(len(re.findall(regex_tatweel, text))): elongation = re.search(regex_tatweel, text) if elongation: elongation_pattern = elongation.group() elongation_replacement = elongation_pattern[0] elongation_pattern = re.escape(elongation_pattern) text = re.sub( elongation_pattern, elongation_replacement, text, flags=re.MULTILINE ) else: break return text def _remove_redundant_punct(self, text): text_ = text result = re.search(redundant_punct_pattern, text) dif = 0 while result: sub = result.group() sub = sorted(set(sub), key=sub.index) sub = " " + "".join(list(sub)) + " " text = "".join( (text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :]) ) text_ = "".join( (text_[: result.span()[0]], text_[result.span()[1] :]) ).strip() dif = abs(len(text) - len(text_)) result = re.search(redundant_punct_pattern, text_) text = re.sub(r"\s+", " ", text) return text.strip() prefix_list = [ "ال", "و", "ف", "ب", "ك", "ل", "لل", "\u0627\u0644", "\u0648", "\u0641", "\u0628", "\u0643", "\u0644", "\u0644\u0644", "س", ] suffix_list = [ "ه", "ها", "ك", "ي", "هما", "كما", "نا", "كم", "هم", "هن", "كن", "ا", "ان", "ين", "ون", "وا", "ات", "ت", "ن", "ة", "\u0647", "\u0647\u0627", "\u0643", "\u064a", "\u0647\u0645\u0627", "\u0643\u0645\u0627", "\u0646\u0627", "\u0643\u0645", "\u0647\u0645", "\u0647\u0646", "\u0643\u0646", "\u0627", "\u0627\u0646", "\u064a\u0646", "\u0648\u0646", "\u0648\u0627", "\u0627\u062a", "\u062a", "\u0646", "\u0629", ] other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"] # the never_split list is ussed with the transformers library prefix_symbols = [x + "+" for x in prefix_list] suffix_symblos = ["+" + x for x in suffix_list] never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens)) url_regexes = [ r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)", r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS", r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+", r"www[a-zA-Z0-9_\-?=%&/.~]+", r"[a-zA-Z]+\.com", r"(?=http)[^\s]+", r"(?=www)[^\s]+", r"://", ] user_mention_regex = r"@[\w\d]+" email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"] redundant_punct_pattern = ( r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})" ) regex_tatweel = r"(\D)\1{2,}" rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]" regex_url_step1 = r"(?=http)[^\s]+" regex_url_step2 = r"(?=www)[^\s]+" regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)" regex_mention = r"@[\w\d]+" regex_email = r"\S+@\S+" chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘" white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"' white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'" white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`" white_spaced_em_dash = r"\—\s+([^—]+)\s+\—" left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])" right_spaced_chars = r"([\[\(\{“«‘*\~]) " left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
flexible
{ "blob_id": "6c3f60f05adbebe521ba08d7a7e9fc10b1cc914f", "index": 2907, "step-1": "<mask token>\n\n\nclass ArbertmoPreprocessor:\n <mask token>\n\n def __init__(self, model_name, keep_emojis=False, remove_html_markup=\n True, replace_urls_emails_mentions=True, strip_tashkeel=True,\n strip_tatweel=True, insert_white_spaces=True, remove_elongation=True):\n \"\"\"\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n \"\"\"\n model_name = model_name.replace('aubmindlab/', '')\n if model_name not in ACCEPTED_MODELS:\n logging.warning(\n \"Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation\"\n )\n self.model_name = 'bert-base-arabertv02'\n else:\n self.model_name = model_name\n if self.model_name in SEGMENTED_MODELS:\n logging.info(\n 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter'\n )\n try:\n from farasa.segmenter import FarasaSegmenter\n self.farasa_segmenter = FarasaSegmenter(interactive=True)\n except:\n logging.warning(\n 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy'\n )\n else:\n logging.info(\n \"Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization\"\n )\n self.keep_emojis = keep_emojis\n if self.keep_emojis:\n import emoji\n self.emoji = emoji\n if self.model_name in SEGMENTED_MODELS:\n logging.warning(\n 'Keeping tweets with Farasa Segmentation is 10 times slower'\n )\n self.remove_html_markup = remove_html_markup\n self.replace_urls_emails_mentions = replace_urls_emails_mentions\n self.strip_tashkeel = strip_tashkeel\n self.strip_tatweel = strip_tatweel\n self.insert_white_spaces = insert_white_spaces\n self.remove_elongation = remove_elongation\n\n def preprocess(self, text):\n \"\"\"\n Preprocess takes an input text line an applies the same preprocessing used in AraBERT\n pretraining\n\n Args:\n\n text (:obj:`str`): inout text string\n\n Returns:\n\n string: A preprocessed string depending on which model was selected\n \"\"\"\n if self.model_name == 'bert-base-arabert':\n return self._old_preprocess(text, do_farasa_tokenization=True)\n if self.model_name == 'bert-base-arabertv01':\n return self._old_preprocess(text, do_farasa_tokenization=False)\n text = str(text)\n text = html.unescape(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n if self.strip_tatweel:\n text = araby.strip_tatweel(text)\n if self.replace_urls_emails_mentions:\n for reg in url_regexes:\n text = re.sub(reg, ' [رابط] ', text)\n for reg in email_regexes:\n text = re.sub(reg, ' [بريد] ', text)\n text = re.sub(user_mention_regex, ' [مستخدم] ', text)\n if self.remove_html_markup:\n text = re.sub('<br />', ' ', text)\n text = re.sub('</?[^>]+>', ' ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n text = re.sub('(\\\\d+)([ء-غف-ي٠-٬]+)', ' \\\\1 \\\\2 ', text)\n text = re.sub('([ء-غف-ي٠-٬]+)(\\\\d+)', ' \\\\1 \\\\2 ', text)\n if self.keep_emojis:\n emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys()))\n rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex)\n text = re.sub(rejected_chars_regex2, ' ', text)\n else:\n text = re.sub(rejected_chars_regex, ' ', text)\n text = ' '.join(text.replace('️', '').split())\n if (self.model_name == 'bert-base-arabertv2' or self.model_name ==\n 'bert-large-arabertv2'):\n if self.keep_emojis:\n new_text = []\n for word in text.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n new_text.append(word)\n else:\n new_text.append(self.farasa_segmenter.segment(word))\n text = ' '.join(new_text)\n else:\n text = self.farasa_segmenter.segment(text)\n return self._farasa_segment(text)\n return text\n\n def unpreprocess(self, text, desegment=True):\n \"\"\"Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.\n The objective is to make the generated text of any model appear natural and not preprocessed.\n\n Args:\n text (str): input text to be un-preprocessed\n desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True.\n\n Returns:\n str: The unpreprocessed (and possibly Farasa-desegmented) text.\n \"\"\"\n if self.model_name in SEGMENTED_MODELS and desegment:\n text = self.desegment(text)\n text = re.sub(white_spaced_double_quotation_regex, '\"' + '\\\\1' +\n '\"', text)\n text = re.sub(white_spaced_single_quotation_regex, \"'\" + '\\\\1' +\n \"'\", text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\`' + '\\\\1' +\n '\\\\`', text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\—' + '\\\\1' +\n '\\\\—', text)\n text = text.replace('.', ' . ')\n text = ' '.join(text.split())\n text = re.sub('(\\\\d+) \\\\. (\\\\d+)', '\\\\1.\\\\2', text)\n text = re.sub('(\\\\d+) \\\\, (\\\\d+)', '\\\\1,\\\\2', text)\n text = re.sub(left_and_right_spaced_chars, '\\\\1', text)\n text = re.sub(left_spaced_chars, '\\\\1', text)\n text = re.sub(right_spaced_chars, '\\\\1', text)\n return text\n\n def desegment(self, text):\n \"\"\"\n Use this function if sentence tokenization was done using\n `from arabert.preprocess_arabert import preprocess` with Farasa enabled\n AraBERT segmentation using Farasa adds a space after the '+' for prefixes,\n and after before the '+' for suffixes\n\n Example:\n >>> desegment('ال+ دراس +ات')\n الدراسات\n \"\"\"\n text = text.replace('+ ', '+')\n text = text.replace(' +', '+')\n text = ' '.join([self._desegmentword(word) for word in text.split(' ')]\n )\n return text\n\n def _desegmentword(self, orig_word: str) ->str:\n \"\"\"\n Word segmentor that takes a Farasa Segmented Word and removes the '+' signs\n\n Example:\n >>> _desegmentword(\"ال+يومي+ة\")\n اليومية\n \"\"\"\n word = orig_word.replace('ل+ال+', 'لل')\n if 'ال+ال' not in orig_word:\n word = word.replace('ل+ال', 'لل')\n word = word.replace('+', '')\n word = word.replace('للل', 'لل')\n return word\n\n def _old_preprocess(self, text, do_farasa_tokenization):\n \"\"\"\n AraBERTv1 preprocessing Function\n \"\"\"\n text = str(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n text = re.sub('\\\\d+\\\\/[ء-ي]+\\\\/\\\\d+\\\\]', '', text)\n text = re.sub('ـ', '', text)\n text = re.sub('[«»]', ' \" ', text)\n if self.replace_urls_emails_mentions:\n text = re.sub(regex_url_step1, '[رابط]', text)\n text = re.sub(regex_url_step2, '[رابط]', text)\n text = re.sub(regex_url, '[رابط]', text)\n text = re.sub(regex_email, '[بريد]', text)\n text = re.sub(regex_mention, '[مستخدم]', text)\n text = re.sub('…', '\\\\.', text).strip()\n text = self._remove_redundant_punct(text)\n if self.replace_urls_emails_mentions:\n text = re.sub('\\\\[ رابط \\\\]|\\\\[ رابط\\\\]|\\\\[رابط \\\\]',\n ' [رابط] ', text)\n text = re.sub('\\\\[ بريد \\\\]|\\\\[ بريد\\\\]|\\\\[بريد \\\\]',\n ' [بريد] ', text)\n text = re.sub('\\\\[ مستخدم \\\\]|\\\\[ مستخدم\\\\]|\\\\[مستخدم \\\\]',\n ' [مستخدم] ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n if do_farasa_tokenization:\n text = self._tokenize_arabic_words_farasa(text)\n return text.strip()\n\n def _farasa_segment(self, text):\n line_farasa = text.split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n if '+' not in word:\n segmented_line.append(word)\n continue\n segmented_word = self._split_farasa_output(word)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _split_farasa_output(self, word):\n segmented_word = []\n temp_token = ''\n for i, c in enumerate(word):\n if c == '+':\n if temp_token == 'ك':\n if i == 1:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif word[i - 2] == '+':\n if segmented_word[-1][-1] == '+':\n segmented_word.append(temp_token + '+')\n temp_token = ''\n else:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n elif temp_token in prefix_list:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n else:\n segmented_word.append(temp_token)\n temp_token = ''\n continue\n temp_token += c\n if temp_token != '':\n if temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n else:\n segmented_word.append(temp_token)\n return segmented_word\n\n def _tokenize_arabic_words_farasa(self, line_input):\n if self.keep_emojis:\n line_farasa = []\n for word in line_input.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n line_farasa.append(word)\n else:\n line_farasa.append(self.farasa_segmenter.segment(word))\n else:\n line_farasa = self.farasa_segmenter.segment(line_input).split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n segmented_word = []\n for token in word.split('+'):\n if token in prefix_list:\n segmented_word.append(token + '+')\n elif token in suffix_list:\n segmented_word.append('+' + token)\n else:\n segmented_word.append(token)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _remove_elongation(self, text):\n \"\"\"\n :param text: the input text to remove elongation\n :return: delongated text\n \"\"\"\n for index_ in range(len(re.findall(regex_tatweel, text))):\n elongation = re.search(regex_tatweel, text)\n if elongation:\n elongation_pattern = elongation.group()\n elongation_replacement = elongation_pattern[0]\n elongation_pattern = re.escape(elongation_pattern)\n text = re.sub(elongation_pattern, elongation_replacement,\n text, flags=re.MULTILINE)\n else:\n break\n return text\n\n def _remove_redundant_punct(self, text):\n text_ = text\n result = re.search(redundant_punct_pattern, text)\n dif = 0\n while result:\n sub = result.group()\n sub = sorted(set(sub), key=sub.index)\n sub = ' ' + ''.join(list(sub)) + ' '\n text = ''.join((text[:result.span()[0] + dif], sub, text[result\n .span()[1] + dif:]))\n text_ = ''.join((text_[:result.span()[0]], text_[result.span()[\n 1]:])).strip()\n dif = abs(len(text) - len(text_))\n result = re.search(redundant_punct_pattern, text_)\n text = re.sub('\\\\s+', ' ', text)\n return text.strip()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ArbertmoPreprocessor:\n \"\"\"\n A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.\n It also can unprocess the text ouput of the generated text\n\n Args:\n\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n\n Returns:\n\n ArBERTMoPreprocessor: the preprocessor class\n\n Example:\n\n from preprocess import ArBERTMoPreprocessor\n\n arabert_prep = ArBERTMoPreprocessor(\"aubmindlab/bert-base-arabertv2\")\n\n arabert_prep.preprocess(\"SOME ARABIC TEXT\")\n \"\"\"\n\n def __init__(self, model_name, keep_emojis=False, remove_html_markup=\n True, replace_urls_emails_mentions=True, strip_tashkeel=True,\n strip_tatweel=True, insert_white_spaces=True, remove_elongation=True):\n \"\"\"\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n \"\"\"\n model_name = model_name.replace('aubmindlab/', '')\n if model_name not in ACCEPTED_MODELS:\n logging.warning(\n \"Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation\"\n )\n self.model_name = 'bert-base-arabertv02'\n else:\n self.model_name = model_name\n if self.model_name in SEGMENTED_MODELS:\n logging.info(\n 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter'\n )\n try:\n from farasa.segmenter import FarasaSegmenter\n self.farasa_segmenter = FarasaSegmenter(interactive=True)\n except:\n logging.warning(\n 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy'\n )\n else:\n logging.info(\n \"Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization\"\n )\n self.keep_emojis = keep_emojis\n if self.keep_emojis:\n import emoji\n self.emoji = emoji\n if self.model_name in SEGMENTED_MODELS:\n logging.warning(\n 'Keeping tweets with Farasa Segmentation is 10 times slower'\n )\n self.remove_html_markup = remove_html_markup\n self.replace_urls_emails_mentions = replace_urls_emails_mentions\n self.strip_tashkeel = strip_tashkeel\n self.strip_tatweel = strip_tatweel\n self.insert_white_spaces = insert_white_spaces\n self.remove_elongation = remove_elongation\n\n def preprocess(self, text):\n \"\"\"\n Preprocess takes an input text line an applies the same preprocessing used in AraBERT\n pretraining\n\n Args:\n\n text (:obj:`str`): inout text string\n\n Returns:\n\n string: A preprocessed string depending on which model was selected\n \"\"\"\n if self.model_name == 'bert-base-arabert':\n return self._old_preprocess(text, do_farasa_tokenization=True)\n if self.model_name == 'bert-base-arabertv01':\n return self._old_preprocess(text, do_farasa_tokenization=False)\n text = str(text)\n text = html.unescape(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n if self.strip_tatweel:\n text = araby.strip_tatweel(text)\n if self.replace_urls_emails_mentions:\n for reg in url_regexes:\n text = re.sub(reg, ' [رابط] ', text)\n for reg in email_regexes:\n text = re.sub(reg, ' [بريد] ', text)\n text = re.sub(user_mention_regex, ' [مستخدم] ', text)\n if self.remove_html_markup:\n text = re.sub('<br />', ' ', text)\n text = re.sub('</?[^>]+>', ' ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n text = re.sub('(\\\\d+)([ء-غف-ي٠-٬]+)', ' \\\\1 \\\\2 ', text)\n text = re.sub('([ء-غف-ي٠-٬]+)(\\\\d+)', ' \\\\1 \\\\2 ', text)\n if self.keep_emojis:\n emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys()))\n rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex)\n text = re.sub(rejected_chars_regex2, ' ', text)\n else:\n text = re.sub(rejected_chars_regex, ' ', text)\n text = ' '.join(text.replace('️', '').split())\n if (self.model_name == 'bert-base-arabertv2' or self.model_name ==\n 'bert-large-arabertv2'):\n if self.keep_emojis:\n new_text = []\n for word in text.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n new_text.append(word)\n else:\n new_text.append(self.farasa_segmenter.segment(word))\n text = ' '.join(new_text)\n else:\n text = self.farasa_segmenter.segment(text)\n return self._farasa_segment(text)\n return text\n\n def unpreprocess(self, text, desegment=True):\n \"\"\"Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.\n The objective is to make the generated text of any model appear natural and not preprocessed.\n\n Args:\n text (str): input text to be un-preprocessed\n desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True.\n\n Returns:\n str: The unpreprocessed (and possibly Farasa-desegmented) text.\n \"\"\"\n if self.model_name in SEGMENTED_MODELS and desegment:\n text = self.desegment(text)\n text = re.sub(white_spaced_double_quotation_regex, '\"' + '\\\\1' +\n '\"', text)\n text = re.sub(white_spaced_single_quotation_regex, \"'\" + '\\\\1' +\n \"'\", text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\`' + '\\\\1' +\n '\\\\`', text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\—' + '\\\\1' +\n '\\\\—', text)\n text = text.replace('.', ' . ')\n text = ' '.join(text.split())\n text = re.sub('(\\\\d+) \\\\. (\\\\d+)', '\\\\1.\\\\2', text)\n text = re.sub('(\\\\d+) \\\\, (\\\\d+)', '\\\\1,\\\\2', text)\n text = re.sub(left_and_right_spaced_chars, '\\\\1', text)\n text = re.sub(left_spaced_chars, '\\\\1', text)\n text = re.sub(right_spaced_chars, '\\\\1', text)\n return text\n\n def desegment(self, text):\n \"\"\"\n Use this function if sentence tokenization was done using\n `from arabert.preprocess_arabert import preprocess` with Farasa enabled\n AraBERT segmentation using Farasa adds a space after the '+' for prefixes,\n and after before the '+' for suffixes\n\n Example:\n >>> desegment('ال+ دراس +ات')\n الدراسات\n \"\"\"\n text = text.replace('+ ', '+')\n text = text.replace(' +', '+')\n text = ' '.join([self._desegmentword(word) for word in text.split(' ')]\n )\n return text\n\n def _desegmentword(self, orig_word: str) ->str:\n \"\"\"\n Word segmentor that takes a Farasa Segmented Word and removes the '+' signs\n\n Example:\n >>> _desegmentword(\"ال+يومي+ة\")\n اليومية\n \"\"\"\n word = orig_word.replace('ل+ال+', 'لل')\n if 'ال+ال' not in orig_word:\n word = word.replace('ل+ال', 'لل')\n word = word.replace('+', '')\n word = word.replace('للل', 'لل')\n return word\n\n def _old_preprocess(self, text, do_farasa_tokenization):\n \"\"\"\n AraBERTv1 preprocessing Function\n \"\"\"\n text = str(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n text = re.sub('\\\\d+\\\\/[ء-ي]+\\\\/\\\\d+\\\\]', '', text)\n text = re.sub('ـ', '', text)\n text = re.sub('[«»]', ' \" ', text)\n if self.replace_urls_emails_mentions:\n text = re.sub(regex_url_step1, '[رابط]', text)\n text = re.sub(regex_url_step2, '[رابط]', text)\n text = re.sub(regex_url, '[رابط]', text)\n text = re.sub(regex_email, '[بريد]', text)\n text = re.sub(regex_mention, '[مستخدم]', text)\n text = re.sub('…', '\\\\.', text).strip()\n text = self._remove_redundant_punct(text)\n if self.replace_urls_emails_mentions:\n text = re.sub('\\\\[ رابط \\\\]|\\\\[ رابط\\\\]|\\\\[رابط \\\\]',\n ' [رابط] ', text)\n text = re.sub('\\\\[ بريد \\\\]|\\\\[ بريد\\\\]|\\\\[بريد \\\\]',\n ' [بريد] ', text)\n text = re.sub('\\\\[ مستخدم \\\\]|\\\\[ مستخدم\\\\]|\\\\[مستخدم \\\\]',\n ' [مستخدم] ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n if do_farasa_tokenization:\n text = self._tokenize_arabic_words_farasa(text)\n return text.strip()\n\n def _farasa_segment(self, text):\n line_farasa = text.split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n if '+' not in word:\n segmented_line.append(word)\n continue\n segmented_word = self._split_farasa_output(word)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _split_farasa_output(self, word):\n segmented_word = []\n temp_token = ''\n for i, c in enumerate(word):\n if c == '+':\n if temp_token == 'ك':\n if i == 1:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif word[i - 2] == '+':\n if segmented_word[-1][-1] == '+':\n segmented_word.append(temp_token + '+')\n temp_token = ''\n else:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n elif temp_token in prefix_list:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n else:\n segmented_word.append(temp_token)\n temp_token = ''\n continue\n temp_token += c\n if temp_token != '':\n if temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n else:\n segmented_word.append(temp_token)\n return segmented_word\n\n def _tokenize_arabic_words_farasa(self, line_input):\n if self.keep_emojis:\n line_farasa = []\n for word in line_input.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n line_farasa.append(word)\n else:\n line_farasa.append(self.farasa_segmenter.segment(word))\n else:\n line_farasa = self.farasa_segmenter.segment(line_input).split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n segmented_word = []\n for token in word.split('+'):\n if token in prefix_list:\n segmented_word.append(token + '+')\n elif token in suffix_list:\n segmented_word.append('+' + token)\n else:\n segmented_word.append(token)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _remove_elongation(self, text):\n \"\"\"\n :param text: the input text to remove elongation\n :return: delongated text\n \"\"\"\n for index_ in range(len(re.findall(regex_tatweel, text))):\n elongation = re.search(regex_tatweel, text)\n if elongation:\n elongation_pattern = elongation.group()\n elongation_replacement = elongation_pattern[0]\n elongation_pattern = re.escape(elongation_pattern)\n text = re.sub(elongation_pattern, elongation_replacement,\n text, flags=re.MULTILINE)\n else:\n break\n return text\n\n def _remove_redundant_punct(self, text):\n text_ = text\n result = re.search(redundant_punct_pattern, text)\n dif = 0\n while result:\n sub = result.group()\n sub = sorted(set(sub), key=sub.index)\n sub = ' ' + ''.join(list(sub)) + ' '\n text = ''.join((text[:result.span()[0] + dif], sub, text[result\n .span()[1] + dif:]))\n text_ = ''.join((text_[:result.span()[0]], text_[result.span()[\n 1]:])).strip()\n dif = abs(len(text) - len(text_))\n result = re.search(redundant_punct_pattern, text_)\n text = re.sub('\\\\s+', ' ', text)\n return text.strip()\n\n\n<mask token>\n", "step-3": "<mask token>\nACCEPTED_MODELS = ['bert-base-arabertv01', 'bert-base-arabert',\n 'bert-base-arabertv02', 'bert-base-arabertv2', 'bert-large-arabertv02',\n 'bert-large-arabertv2', 'araelectra-base',\n 'araelectra-base-discriminator', 'araelectra-base-generator',\n 'aragpt2-base', 'aragpt2-medium', 'aragpt2-large', 'aragpt2-mega']\nSEGMENTED_MODELS = ['bert-base-arabert', 'bert-base-arabertv2',\n 'bert-large-arabertv2']\n\n\nclass ArbertmoPreprocessor:\n \"\"\"\n A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.\n It also can unprocess the text ouput of the generated text\n\n Args:\n\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n\n Returns:\n\n ArBERTMoPreprocessor: the preprocessor class\n\n Example:\n\n from preprocess import ArBERTMoPreprocessor\n\n arabert_prep = ArBERTMoPreprocessor(\"aubmindlab/bert-base-arabertv2\")\n\n arabert_prep.preprocess(\"SOME ARABIC TEXT\")\n \"\"\"\n\n def __init__(self, model_name, keep_emojis=False, remove_html_markup=\n True, replace_urls_emails_mentions=True, strip_tashkeel=True,\n strip_tatweel=True, insert_white_spaces=True, remove_elongation=True):\n \"\"\"\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n \"\"\"\n model_name = model_name.replace('aubmindlab/', '')\n if model_name not in ACCEPTED_MODELS:\n logging.warning(\n \"Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation\"\n )\n self.model_name = 'bert-base-arabertv02'\n else:\n self.model_name = model_name\n if self.model_name in SEGMENTED_MODELS:\n logging.info(\n 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter'\n )\n try:\n from farasa.segmenter import FarasaSegmenter\n self.farasa_segmenter = FarasaSegmenter(interactive=True)\n except:\n logging.warning(\n 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy'\n )\n else:\n logging.info(\n \"Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization\"\n )\n self.keep_emojis = keep_emojis\n if self.keep_emojis:\n import emoji\n self.emoji = emoji\n if self.model_name in SEGMENTED_MODELS:\n logging.warning(\n 'Keeping tweets with Farasa Segmentation is 10 times slower'\n )\n self.remove_html_markup = remove_html_markup\n self.replace_urls_emails_mentions = replace_urls_emails_mentions\n self.strip_tashkeel = strip_tashkeel\n self.strip_tatweel = strip_tatweel\n self.insert_white_spaces = insert_white_spaces\n self.remove_elongation = remove_elongation\n\n def preprocess(self, text):\n \"\"\"\n Preprocess takes an input text line an applies the same preprocessing used in AraBERT\n pretraining\n\n Args:\n\n text (:obj:`str`): inout text string\n\n Returns:\n\n string: A preprocessed string depending on which model was selected\n \"\"\"\n if self.model_name == 'bert-base-arabert':\n return self._old_preprocess(text, do_farasa_tokenization=True)\n if self.model_name == 'bert-base-arabertv01':\n return self._old_preprocess(text, do_farasa_tokenization=False)\n text = str(text)\n text = html.unescape(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n if self.strip_tatweel:\n text = araby.strip_tatweel(text)\n if self.replace_urls_emails_mentions:\n for reg in url_regexes:\n text = re.sub(reg, ' [رابط] ', text)\n for reg in email_regexes:\n text = re.sub(reg, ' [بريد] ', text)\n text = re.sub(user_mention_regex, ' [مستخدم] ', text)\n if self.remove_html_markup:\n text = re.sub('<br />', ' ', text)\n text = re.sub('</?[^>]+>', ' ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n text = re.sub('(\\\\d+)([ء-غف-ي٠-٬]+)', ' \\\\1 \\\\2 ', text)\n text = re.sub('([ء-غف-ي٠-٬]+)(\\\\d+)', ' \\\\1 \\\\2 ', text)\n if self.keep_emojis:\n emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys()))\n rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex)\n text = re.sub(rejected_chars_regex2, ' ', text)\n else:\n text = re.sub(rejected_chars_regex, ' ', text)\n text = ' '.join(text.replace('️', '').split())\n if (self.model_name == 'bert-base-arabertv2' or self.model_name ==\n 'bert-large-arabertv2'):\n if self.keep_emojis:\n new_text = []\n for word in text.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n new_text.append(word)\n else:\n new_text.append(self.farasa_segmenter.segment(word))\n text = ' '.join(new_text)\n else:\n text = self.farasa_segmenter.segment(text)\n return self._farasa_segment(text)\n return text\n\n def unpreprocess(self, text, desegment=True):\n \"\"\"Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.\n The objective is to make the generated text of any model appear natural and not preprocessed.\n\n Args:\n text (str): input text to be un-preprocessed\n desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True.\n\n Returns:\n str: The unpreprocessed (and possibly Farasa-desegmented) text.\n \"\"\"\n if self.model_name in SEGMENTED_MODELS and desegment:\n text = self.desegment(text)\n text = re.sub(white_spaced_double_quotation_regex, '\"' + '\\\\1' +\n '\"', text)\n text = re.sub(white_spaced_single_quotation_regex, \"'\" + '\\\\1' +\n \"'\", text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\`' + '\\\\1' +\n '\\\\`', text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\—' + '\\\\1' +\n '\\\\—', text)\n text = text.replace('.', ' . ')\n text = ' '.join(text.split())\n text = re.sub('(\\\\d+) \\\\. (\\\\d+)', '\\\\1.\\\\2', text)\n text = re.sub('(\\\\d+) \\\\, (\\\\d+)', '\\\\1,\\\\2', text)\n text = re.sub(left_and_right_spaced_chars, '\\\\1', text)\n text = re.sub(left_spaced_chars, '\\\\1', text)\n text = re.sub(right_spaced_chars, '\\\\1', text)\n return text\n\n def desegment(self, text):\n \"\"\"\n Use this function if sentence tokenization was done using\n `from arabert.preprocess_arabert import preprocess` with Farasa enabled\n AraBERT segmentation using Farasa adds a space after the '+' for prefixes,\n and after before the '+' for suffixes\n\n Example:\n >>> desegment('ال+ دراس +ات')\n الدراسات\n \"\"\"\n text = text.replace('+ ', '+')\n text = text.replace(' +', '+')\n text = ' '.join([self._desegmentword(word) for word in text.split(' ')]\n )\n return text\n\n def _desegmentword(self, orig_word: str) ->str:\n \"\"\"\n Word segmentor that takes a Farasa Segmented Word and removes the '+' signs\n\n Example:\n >>> _desegmentword(\"ال+يومي+ة\")\n اليومية\n \"\"\"\n word = orig_word.replace('ل+ال+', 'لل')\n if 'ال+ال' not in orig_word:\n word = word.replace('ل+ال', 'لل')\n word = word.replace('+', '')\n word = word.replace('للل', 'لل')\n return word\n\n def _old_preprocess(self, text, do_farasa_tokenization):\n \"\"\"\n AraBERTv1 preprocessing Function\n \"\"\"\n text = str(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n text = re.sub('\\\\d+\\\\/[ء-ي]+\\\\/\\\\d+\\\\]', '', text)\n text = re.sub('ـ', '', text)\n text = re.sub('[«»]', ' \" ', text)\n if self.replace_urls_emails_mentions:\n text = re.sub(regex_url_step1, '[رابط]', text)\n text = re.sub(regex_url_step2, '[رابط]', text)\n text = re.sub(regex_url, '[رابط]', text)\n text = re.sub(regex_email, '[بريد]', text)\n text = re.sub(regex_mention, '[مستخدم]', text)\n text = re.sub('…', '\\\\.', text).strip()\n text = self._remove_redundant_punct(text)\n if self.replace_urls_emails_mentions:\n text = re.sub('\\\\[ رابط \\\\]|\\\\[ رابط\\\\]|\\\\[رابط \\\\]',\n ' [رابط] ', text)\n text = re.sub('\\\\[ بريد \\\\]|\\\\[ بريد\\\\]|\\\\[بريد \\\\]',\n ' [بريد] ', text)\n text = re.sub('\\\\[ مستخدم \\\\]|\\\\[ مستخدم\\\\]|\\\\[مستخدم \\\\]',\n ' [مستخدم] ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n if do_farasa_tokenization:\n text = self._tokenize_arabic_words_farasa(text)\n return text.strip()\n\n def _farasa_segment(self, text):\n line_farasa = text.split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n if '+' not in word:\n segmented_line.append(word)\n continue\n segmented_word = self._split_farasa_output(word)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _split_farasa_output(self, word):\n segmented_word = []\n temp_token = ''\n for i, c in enumerate(word):\n if c == '+':\n if temp_token == 'ك':\n if i == 1:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif word[i - 2] == '+':\n if segmented_word[-1][-1] == '+':\n segmented_word.append(temp_token + '+')\n temp_token = ''\n else:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n elif temp_token in prefix_list:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n else:\n segmented_word.append(temp_token)\n temp_token = ''\n continue\n temp_token += c\n if temp_token != '':\n if temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n else:\n segmented_word.append(temp_token)\n return segmented_word\n\n def _tokenize_arabic_words_farasa(self, line_input):\n if self.keep_emojis:\n line_farasa = []\n for word in line_input.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n line_farasa.append(word)\n else:\n line_farasa.append(self.farasa_segmenter.segment(word))\n else:\n line_farasa = self.farasa_segmenter.segment(line_input).split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n segmented_word = []\n for token in word.split('+'):\n if token in prefix_list:\n segmented_word.append(token + '+')\n elif token in suffix_list:\n segmented_word.append('+' + token)\n else:\n segmented_word.append(token)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _remove_elongation(self, text):\n \"\"\"\n :param text: the input text to remove elongation\n :return: delongated text\n \"\"\"\n for index_ in range(len(re.findall(regex_tatweel, text))):\n elongation = re.search(regex_tatweel, text)\n if elongation:\n elongation_pattern = elongation.group()\n elongation_replacement = elongation_pattern[0]\n elongation_pattern = re.escape(elongation_pattern)\n text = re.sub(elongation_pattern, elongation_replacement,\n text, flags=re.MULTILINE)\n else:\n break\n return text\n\n def _remove_redundant_punct(self, text):\n text_ = text\n result = re.search(redundant_punct_pattern, text)\n dif = 0\n while result:\n sub = result.group()\n sub = sorted(set(sub), key=sub.index)\n sub = ' ' + ''.join(list(sub)) + ' '\n text = ''.join((text[:result.span()[0] + dif], sub, text[result\n .span()[1] + dif:]))\n text_ = ''.join((text_[:result.span()[0]], text_[result.span()[\n 1]:])).strip()\n dif = abs(len(text) - len(text_))\n result = re.search(redundant_punct_pattern, text_)\n text = re.sub('\\\\s+', ' ', text)\n return text.strip()\n\n\nprefix_list = ['ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'ال', 'و', 'ف', 'ب',\n 'ك', 'ل', 'لل', 'س']\nsuffix_list = ['ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن',\n 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة', 'ه', 'ها', 'ك',\n 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون',\n 'وا', 'ات', 'ت', 'ن', 'ة']\nother_tokens = ['[رابط]', '[مستخدم]', '[بريد]']\nprefix_symbols = [(x + '+') for x in prefix_list]\nsuffix_symblos = [('+' + x) for x in suffix_list]\nnever_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))\nurl_regexes = [\n '(http(s)?:\\\\/\\\\/.)?(www\\\\.)?[-a-zA-Z0-9@:%._\\\\+~#=]{2,256}\\\\.[a-z]{2,6}\\\\b([-a-zA-Z0-9@:%_\\\\+.~#?&//=]*)'\n , '@(https?|ftp)://(-\\\\.)?([^\\\\s/?\\\\.#-]+\\\\.?)+(/[^\\\\s]*)?$@iS',\n 'http[s]?://[a-zA-Z0-9_\\\\-./~\\\\?=%&]+', 'www[a-zA-Z0-9_\\\\-?=%&/.~]+',\n '[a-zA-Z]+\\\\.com', '(?=http)[^\\\\s]+', '(?=www)[^\\\\s]+', '://']\nuser_mention_regex = '@[\\\\w\\\\d]+'\nemail_regexes = ['[\\\\w-]+@([\\\\w-]+\\\\.)+[\\\\w-]+', '\\\\S+@\\\\S+']\nredundant_punct_pattern = (\n '([!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ【»؛\\\\s+«–…‘]{2,})'\n )\nregex_tatweel = '(\\\\D)\\\\1{2,}'\nrejected_chars_regex = (\n '[^0-9\\\\u0621-\\\\u063A\\\\u0640-\\\\u066C\\\\u0671-\\\\u0674a-zA-Z\\\\[\\\\]!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ»؛\\\\s+«–…‘]'\n )\nregex_url_step1 = '(?=http)[^\\\\s]+'\nregex_url_step2 = '(?=www)[^\\\\s]+'\nregex_url = (\n '(http(s)?:\\\\/\\\\/.)?(www\\\\.)?[-a-zA-Z0-9@:%._\\\\+~#=]{2,256}\\\\.[a-z]{2,6}\\\\b([-a-zA-Z0-9@:%_\\\\+.~#?&//=]*)'\n )\nregex_mention = '@[\\\\w\\\\d]+'\nregex_email = '\\\\S+@\\\\S+'\nchars_regex = (\n '0-9\\\\u0621-\\\\u063A\\\\u0640-\\\\u066C\\\\u0671-\\\\u0674a-zA-Z\\\\[\\\\]!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ»؛\\\\s+«–…‘'\n )\nwhite_spaced_double_quotation_regex = '\\\\\"\\\\s+([^\"]+)\\\\s+\\\\\"'\nwhite_spaced_single_quotation_regex = \"\\\\'\\\\s+([^']+)\\\\s+\\\\'\"\nwhite_spaced_back_quotation_regex = '\\\\`\\\\s+([^`]+)\\\\s+\\\\`'\nwhite_spaced_em_dash = '\\\\—\\\\s+([^—]+)\\\\s+\\\\—'\nleft_spaced_chars = ' ([\\\\]!#\\\\$%\\\\),\\\\.:;\\\\?}٪’،؟”؛…»·])'\nright_spaced_chars = '([\\\\[\\\\(\\\\{“«‘*\\\\~]) '\nleft_and_right_spaced_chars = ' ([\\\\+\\\\-\\\\<\\\\=\\\\>\\\\@\\\\\\\\\\\\^\\\\_\\\\|\\\\–]) '\n", "step-4": "import html\nimport logging\nimport re\nimport pyarabic.araby as araby\nACCEPTED_MODELS = ['bert-base-arabertv01', 'bert-base-arabert',\n 'bert-base-arabertv02', 'bert-base-arabertv2', 'bert-large-arabertv02',\n 'bert-large-arabertv2', 'araelectra-base',\n 'araelectra-base-discriminator', 'araelectra-base-generator',\n 'aragpt2-base', 'aragpt2-medium', 'aragpt2-large', 'aragpt2-mega']\nSEGMENTED_MODELS = ['bert-base-arabert', 'bert-base-arabertv2',\n 'bert-large-arabertv2']\n\n\nclass ArbertmoPreprocessor:\n \"\"\"\n A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.\n It also can unprocess the text ouput of the generated text\n\n Args:\n\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n\n Returns:\n\n ArBERTMoPreprocessor: the preprocessor class\n\n Example:\n\n from preprocess import ArBERTMoPreprocessor\n\n arabert_prep = ArBERTMoPreprocessor(\"aubmindlab/bert-base-arabertv2\")\n\n arabert_prep.preprocess(\"SOME ARABIC TEXT\")\n \"\"\"\n\n def __init__(self, model_name, keep_emojis=False, remove_html_markup=\n True, replace_urls_emails_mentions=True, strip_tashkeel=True,\n strip_tatweel=True, insert_white_spaces=True, remove_elongation=True):\n \"\"\"\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n \"\"\"\n model_name = model_name.replace('aubmindlab/', '')\n if model_name not in ACCEPTED_MODELS:\n logging.warning(\n \"Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation\"\n )\n self.model_name = 'bert-base-arabertv02'\n else:\n self.model_name = model_name\n if self.model_name in SEGMENTED_MODELS:\n logging.info(\n 'Selected Model requires pre-segmentation, Initializing FarasaSegmenter'\n )\n try:\n from farasa.segmenter import FarasaSegmenter\n self.farasa_segmenter = FarasaSegmenter(interactive=True)\n except:\n logging.warning(\n 'farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy'\n )\n else:\n logging.info(\n \"Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization\"\n )\n self.keep_emojis = keep_emojis\n if self.keep_emojis:\n import emoji\n self.emoji = emoji\n if self.model_name in SEGMENTED_MODELS:\n logging.warning(\n 'Keeping tweets with Farasa Segmentation is 10 times slower'\n )\n self.remove_html_markup = remove_html_markup\n self.replace_urls_emails_mentions = replace_urls_emails_mentions\n self.strip_tashkeel = strip_tashkeel\n self.strip_tatweel = strip_tatweel\n self.insert_white_spaces = insert_white_spaces\n self.remove_elongation = remove_elongation\n\n def preprocess(self, text):\n \"\"\"\n Preprocess takes an input text line an applies the same preprocessing used in AraBERT\n pretraining\n\n Args:\n\n text (:obj:`str`): inout text string\n\n Returns:\n\n string: A preprocessed string depending on which model was selected\n \"\"\"\n if self.model_name == 'bert-base-arabert':\n return self._old_preprocess(text, do_farasa_tokenization=True)\n if self.model_name == 'bert-base-arabertv01':\n return self._old_preprocess(text, do_farasa_tokenization=False)\n text = str(text)\n text = html.unescape(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n if self.strip_tatweel:\n text = araby.strip_tatweel(text)\n if self.replace_urls_emails_mentions:\n for reg in url_regexes:\n text = re.sub(reg, ' [رابط] ', text)\n for reg in email_regexes:\n text = re.sub(reg, ' [بريد] ', text)\n text = re.sub(user_mention_regex, ' [مستخدم] ', text)\n if self.remove_html_markup:\n text = re.sub('<br />', ' ', text)\n text = re.sub('</?[^>]+>', ' ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-ي٠-٩a-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n text = re.sub('(\\\\d+)([ء-غف-ي٠-٬]+)', ' \\\\1 \\\\2 ', text)\n text = re.sub('([ء-غف-ي٠-٬]+)(\\\\d+)', ' \\\\1 \\\\2 ', text)\n if self.keep_emojis:\n emoji_regex = ''.join(list(self.emoji.UNICODE_EMOJI['en'].keys()))\n rejected_chars_regex2 = '[^%s%s]' % (chars_regex, emoji_regex)\n text = re.sub(rejected_chars_regex2, ' ', text)\n else:\n text = re.sub(rejected_chars_regex, ' ', text)\n text = ' '.join(text.replace('️', '').split())\n if (self.model_name == 'bert-base-arabertv2' or self.model_name ==\n 'bert-large-arabertv2'):\n if self.keep_emojis:\n new_text = []\n for word in text.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n new_text.append(word)\n else:\n new_text.append(self.farasa_segmenter.segment(word))\n text = ' '.join(new_text)\n else:\n text = self.farasa_segmenter.segment(text)\n return self._farasa_segment(text)\n return text\n\n def unpreprocess(self, text, desegment=True):\n \"\"\"Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.\n The objective is to make the generated text of any model appear natural and not preprocessed.\n\n Args:\n text (str): input text to be un-preprocessed\n desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True.\n\n Returns:\n str: The unpreprocessed (and possibly Farasa-desegmented) text.\n \"\"\"\n if self.model_name in SEGMENTED_MODELS and desegment:\n text = self.desegment(text)\n text = re.sub(white_spaced_double_quotation_regex, '\"' + '\\\\1' +\n '\"', text)\n text = re.sub(white_spaced_single_quotation_regex, \"'\" + '\\\\1' +\n \"'\", text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\`' + '\\\\1' +\n '\\\\`', text)\n text = re.sub(white_spaced_back_quotation_regex, '\\\\—' + '\\\\1' +\n '\\\\—', text)\n text = text.replace('.', ' . ')\n text = ' '.join(text.split())\n text = re.sub('(\\\\d+) \\\\. (\\\\d+)', '\\\\1.\\\\2', text)\n text = re.sub('(\\\\d+) \\\\, (\\\\d+)', '\\\\1,\\\\2', text)\n text = re.sub(left_and_right_spaced_chars, '\\\\1', text)\n text = re.sub(left_spaced_chars, '\\\\1', text)\n text = re.sub(right_spaced_chars, '\\\\1', text)\n return text\n\n def desegment(self, text):\n \"\"\"\n Use this function if sentence tokenization was done using\n `from arabert.preprocess_arabert import preprocess` with Farasa enabled\n AraBERT segmentation using Farasa adds a space after the '+' for prefixes,\n and after before the '+' for suffixes\n\n Example:\n >>> desegment('ال+ دراس +ات')\n الدراسات\n \"\"\"\n text = text.replace('+ ', '+')\n text = text.replace(' +', '+')\n text = ' '.join([self._desegmentword(word) for word in text.split(' ')]\n )\n return text\n\n def _desegmentword(self, orig_word: str) ->str:\n \"\"\"\n Word segmentor that takes a Farasa Segmented Word and removes the '+' signs\n\n Example:\n >>> _desegmentword(\"ال+يومي+ة\")\n اليومية\n \"\"\"\n word = orig_word.replace('ل+ال+', 'لل')\n if 'ال+ال' not in orig_word:\n word = word.replace('ل+ال', 'لل')\n word = word.replace('+', '')\n word = word.replace('للل', 'لل')\n return word\n\n def _old_preprocess(self, text, do_farasa_tokenization):\n \"\"\"\n AraBERTv1 preprocessing Function\n \"\"\"\n text = str(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n text = re.sub('\\\\d+\\\\/[ء-ي]+\\\\/\\\\d+\\\\]', '', text)\n text = re.sub('ـ', '', text)\n text = re.sub('[«»]', ' \" ', text)\n if self.replace_urls_emails_mentions:\n text = re.sub(regex_url_step1, '[رابط]', text)\n text = re.sub(regex_url_step2, '[رابط]', text)\n text = re.sub(regex_url, '[رابط]', text)\n text = re.sub(regex_email, '[بريد]', text)\n text = re.sub(regex_mention, '[مستخدم]', text)\n text = re.sub('…', '\\\\.', text).strip()\n text = self._remove_redundant_punct(text)\n if self.replace_urls_emails_mentions:\n text = re.sub('\\\\[ رابط \\\\]|\\\\[ رابط\\\\]|\\\\[رابط \\\\]',\n ' [رابط] ', text)\n text = re.sub('\\\\[ بريد \\\\]|\\\\[ بريد\\\\]|\\\\[بريد \\\\]',\n ' [بريد] ', text)\n text = re.sub('\\\\[ مستخدم \\\\]|\\\\[ مستخدم\\\\]|\\\\[مستخدم \\\\]',\n ' [مستخدم] ', text)\n if self.remove_elongation:\n text = self._remove_elongation(text)\n if self.insert_white_spaces:\n text = re.sub('([^0-9ء-غف-٩ٱ-ٳa-zA-Z\\\\[\\\\]])', ' \\\\1 ', text)\n if do_farasa_tokenization:\n text = self._tokenize_arabic_words_farasa(text)\n return text.strip()\n\n def _farasa_segment(self, text):\n line_farasa = text.split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n if '+' not in word:\n segmented_line.append(word)\n continue\n segmented_word = self._split_farasa_output(word)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _split_farasa_output(self, word):\n segmented_word = []\n temp_token = ''\n for i, c in enumerate(word):\n if c == '+':\n if temp_token == 'ك':\n if i == 1:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif word[i - 2] == '+':\n if segmented_word[-1][-1] == '+':\n segmented_word.append(temp_token + '+')\n temp_token = ''\n else:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n elif temp_token in prefix_list:\n segmented_word.append(temp_token + '+')\n temp_token = ''\n elif temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n temp_token = ''\n else:\n segmented_word.append(temp_token)\n temp_token = ''\n continue\n temp_token += c\n if temp_token != '':\n if temp_token in suffix_list:\n segmented_word.append('+' + temp_token)\n else:\n segmented_word.append(temp_token)\n return segmented_word\n\n def _tokenize_arabic_words_farasa(self, line_input):\n if self.keep_emojis:\n line_farasa = []\n for word in line_input.split():\n if word in list(self.emoji.UNICODE_EMOJI['en'].keys()):\n line_farasa.append(word)\n else:\n line_farasa.append(self.farasa_segmenter.segment(word))\n else:\n line_farasa = self.farasa_segmenter.segment(line_input).split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in ['[', ']']:\n continue\n if word in ['رابط', 'بريد', 'مستخدم'] and line_farasa[index - 1\n ] in ['[', ']']:\n segmented_line.append('[' + word + ']')\n continue\n segmented_word = []\n for token in word.split('+'):\n if token in prefix_list:\n segmented_word.append(token + '+')\n elif token in suffix_list:\n segmented_word.append('+' + token)\n else:\n segmented_word.append(token)\n segmented_line.extend(segmented_word)\n return ' '.join(segmented_line)\n\n def _remove_elongation(self, text):\n \"\"\"\n :param text: the input text to remove elongation\n :return: delongated text\n \"\"\"\n for index_ in range(len(re.findall(regex_tatweel, text))):\n elongation = re.search(regex_tatweel, text)\n if elongation:\n elongation_pattern = elongation.group()\n elongation_replacement = elongation_pattern[0]\n elongation_pattern = re.escape(elongation_pattern)\n text = re.sub(elongation_pattern, elongation_replacement,\n text, flags=re.MULTILINE)\n else:\n break\n return text\n\n def _remove_redundant_punct(self, text):\n text_ = text\n result = re.search(redundant_punct_pattern, text)\n dif = 0\n while result:\n sub = result.group()\n sub = sorted(set(sub), key=sub.index)\n sub = ' ' + ''.join(list(sub)) + ' '\n text = ''.join((text[:result.span()[0] + dif], sub, text[result\n .span()[1] + dif:]))\n text_ = ''.join((text_[:result.span()[0]], text_[result.span()[\n 1]:])).strip()\n dif = abs(len(text) - len(text_))\n result = re.search(redundant_punct_pattern, text_)\n text = re.sub('\\\\s+', ' ', text)\n return text.strip()\n\n\nprefix_list = ['ال', 'و', 'ف', 'ب', 'ك', 'ل', 'لل', 'ال', 'و', 'ف', 'ب',\n 'ك', 'ل', 'لل', 'س']\nsuffix_list = ['ه', 'ها', 'ك', 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن',\n 'كن', 'ا', 'ان', 'ين', 'ون', 'وا', 'ات', 'ت', 'ن', 'ة', 'ه', 'ها', 'ك',\n 'ي', 'هما', 'كما', 'نا', 'كم', 'هم', 'هن', 'كن', 'ا', 'ان', 'ين', 'ون',\n 'وا', 'ات', 'ت', 'ن', 'ة']\nother_tokens = ['[رابط]', '[مستخدم]', '[بريد]']\nprefix_symbols = [(x + '+') for x in prefix_list]\nsuffix_symblos = [('+' + x) for x in suffix_list]\nnever_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))\nurl_regexes = [\n '(http(s)?:\\\\/\\\\/.)?(www\\\\.)?[-a-zA-Z0-9@:%._\\\\+~#=]{2,256}\\\\.[a-z]{2,6}\\\\b([-a-zA-Z0-9@:%_\\\\+.~#?&//=]*)'\n , '@(https?|ftp)://(-\\\\.)?([^\\\\s/?\\\\.#-]+\\\\.?)+(/[^\\\\s]*)?$@iS',\n 'http[s]?://[a-zA-Z0-9_\\\\-./~\\\\?=%&]+', 'www[a-zA-Z0-9_\\\\-?=%&/.~]+',\n '[a-zA-Z]+\\\\.com', '(?=http)[^\\\\s]+', '(?=www)[^\\\\s]+', '://']\nuser_mention_regex = '@[\\\\w\\\\d]+'\nemail_regexes = ['[\\\\w-]+@([\\\\w-]+\\\\.)+[\\\\w-]+', '\\\\S+@\\\\S+']\nredundant_punct_pattern = (\n '([!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ【»؛\\\\s+«–…‘]{2,})'\n )\nregex_tatweel = '(\\\\D)\\\\1{2,}'\nrejected_chars_regex = (\n '[^0-9\\\\u0621-\\\\u063A\\\\u0640-\\\\u066C\\\\u0671-\\\\u0674a-zA-Z\\\\[\\\\]!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ»؛\\\\s+«–…‘]'\n )\nregex_url_step1 = '(?=http)[^\\\\s]+'\nregex_url_step2 = '(?=www)[^\\\\s]+'\nregex_url = (\n '(http(s)?:\\\\/\\\\/.)?(www\\\\.)?[-a-zA-Z0-9@:%._\\\\+~#=]{2,256}\\\\.[a-z]{2,6}\\\\b([-a-zA-Z0-9@:%_\\\\+.~#?&//=]*)'\n )\nregex_mention = '@[\\\\w\\\\d]+'\nregex_email = '\\\\S+@\\\\S+'\nchars_regex = (\n '0-9\\\\u0621-\\\\u063A\\\\u0640-\\\\u066C\\\\u0671-\\\\u0674a-zA-Z\\\\[\\\\]!\\\\\"#\\\\$%\\\\\\'\\\\(\\\\)\\\\*\\\\+,\\\\.:;\\\\-<=·>?@\\\\[\\\\\\\\\\\\]\\\\^_ـ`{\\\\|}~—٪’،؟`୍“؛”ۚ»؛\\\\s+«–…‘'\n )\nwhite_spaced_double_quotation_regex = '\\\\\"\\\\s+([^\"]+)\\\\s+\\\\\"'\nwhite_spaced_single_quotation_regex = \"\\\\'\\\\s+([^']+)\\\\s+\\\\'\"\nwhite_spaced_back_quotation_regex = '\\\\`\\\\s+([^`]+)\\\\s+\\\\`'\nwhite_spaced_em_dash = '\\\\—\\\\s+([^—]+)\\\\s+\\\\—'\nleft_spaced_chars = ' ([\\\\]!#\\\\$%\\\\),\\\\.:;\\\\?}٪’،؟”؛…»·])'\nright_spaced_chars = '([\\\\[\\\\(\\\\{“«‘*\\\\~]) '\nleft_and_right_spaced_chars = ' ([\\\\+\\\\-\\\\<\\\\=\\\\>\\\\@\\\\\\\\\\\\^\\\\_\\\\|\\\\–]) '\n", "step-5": "import html\nimport logging\nimport re\n\nimport pyarabic.araby as araby\n\nACCEPTED_MODELS = [\n \"bert-base-arabertv01\",\n \"bert-base-arabert\",\n \"bert-base-arabertv02\",\n \"bert-base-arabertv2\",\n \"bert-large-arabertv02\",\n \"bert-large-arabertv2\",\n \"araelectra-base\",\n \"araelectra-base-discriminator\",\n \"araelectra-base-generator\",\n \"aragpt2-base\",\n \"aragpt2-medium\",\n \"aragpt2-large\",\n \"aragpt2-mega\",\n]\n\nSEGMENTED_MODELS = [\n \"bert-base-arabert\",\n \"bert-base-arabertv2\",\n \"bert-large-arabertv2\",\n]\n\n\nclass ArbertmoPreprocessor:\n \"\"\"\n A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.\n It also can unprocess the text ouput of the generated text\n\n Args:\n\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n\n Returns:\n\n ArBERTMoPreprocessor: the preprocessor class\n\n Example:\n\n from preprocess import ArBERTMoPreprocessor\n\n arabert_prep = ArBERTMoPreprocessor(\"aubmindlab/bert-base-arabertv2\")\n\n arabert_prep.preprocess(\"SOME ARABIC TEXT\")\n \"\"\"\n\n def __init__(\n self,\n model_name,\n keep_emojis=False,\n remove_html_markup=True,\n replace_urls_emails_mentions=True,\n strip_tashkeel=True,\n strip_tatweel=True,\n insert_white_spaces=True,\n remove_elongation=True,\n ):\n \"\"\"\n model_name (:obj:`str`): model name from the HuggingFace Models page without the aubmindlab tag. Defaults to \"bert-base-arabertv02\". Current accepted models are:\n\n - :obj:`\"bert-base-arabertv01\"`: No farasa segmentation.\n - :obj:`\"bert-base-arabert\"`: with farasa segmentation.\n - :obj:`\"bert-base-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-base-arabertv2\"`: with farasa segmentation.\n - :obj:`\"bert-large-arabertv02\"`: No farasas egmentation.\n - :obj:`\"bert-large-arabertv2\"`: with farasa segmentation.\n - :obj:`\"araelectra-base\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-discriminator\"`: No farasa segmentation.\n - :obj:`\"araelectra-base-generator\"`: No farasa segmentation.\n - :obj:`\"aragpt2-base\"`: No farasa segmentation.\n - :obj:`\"aragpt2-medium\"`: No farasa segmentation.\n - :obj:`\"aragpt2-large\"`: No farasa segmentation.\n - :obj:`\"aragpt2-mega\"`: No farasa segmentation.\n\n keep_emojis(:obj: `bool`): don't remove emojis while preprocessing. Defaults to False\n\n remove_html_markup(:obj: `bool`): Whether to remove html artfacts, should be set to False when preprocessing TyDi QA. Defaults to True\n\n replace_urls_emails_mentions(:obj: `bool`): Whether to replace email urls and mentions by special tokens. Defaults to True\n\n strip_tashkeel(:obj: `bool`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA, KASRA, SUKUN, SHADDA)\n\n strip_tatweel(:obj: `bool`): remove tatweel '\\\\u0640'\n\n insert_white_spaces(:obj: `bool`): insert whitespace before and after all non Arabic digits or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace between words and numbers or numbers and words\n\n remove_elongation(:obj: `bool`): replace repetition of more than 2 non-digit character with 2 of this character\n\n \"\"\"\n model_name = model_name.replace(\"aubmindlab/\", \"\")\n\n if model_name not in ACCEPTED_MODELS:\n logging.warning(\n \"Model provided is not in the accepted model list. Assuming you don't want Farasa Segmentation\"\n )\n self.model_name = \"bert-base-arabertv02\"\n else:\n self.model_name = model_name\n\n if self.model_name in SEGMENTED_MODELS:\n logging.info(\n \"Selected Model requires pre-segmentation, Initializing FarasaSegmenter\"\n )\n try:\n from farasa.segmenter import FarasaSegmenter\n\n self.farasa_segmenter = FarasaSegmenter(interactive=True)\n except:\n logging.warning(\n \"farasapy is not installed, you want be able to process text for AraBERTv1 and v2. Install it using: pip install farasapy\"\n )\n else:\n logging.info(\n \"Selected Model doesn't require pre-segmentation, skipping FarasaSegmenter initialization\"\n )\n\n self.keep_emojis = keep_emojis\n if self.keep_emojis:\n import emoji\n\n self.emoji = emoji\n if self.model_name in SEGMENTED_MODELS:\n logging.warning(\n \"Keeping tweets with Farasa Segmentation is 10 times slower\"\n )\n\n self.remove_html_markup = remove_html_markup\n self.replace_urls_emails_mentions = replace_urls_emails_mentions\n self.strip_tashkeel = strip_tashkeel\n self.strip_tatweel = strip_tatweel\n self.insert_white_spaces = insert_white_spaces\n self.remove_elongation = remove_elongation\n\n def preprocess(self, text):\n \"\"\"\n Preprocess takes an input text line an applies the same preprocessing used in AraBERT\n pretraining\n\n Args:\n\n text (:obj:`str`): inout text string\n\n Returns:\n\n string: A preprocessed string depending on which model was selected\n \"\"\"\n if self.model_name == \"bert-base-arabert\":\n return self._old_preprocess(\n text,\n do_farasa_tokenization=True,\n )\n\n if self.model_name == \"bert-base-arabertv01\":\n return self._old_preprocess(text, do_farasa_tokenization=False)\n\n text = str(text)\n text = html.unescape(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n if self.strip_tatweel:\n text = araby.strip_tatweel(text)\n\n if self.replace_urls_emails_mentions:\n # replace all possible URLs\n for reg in url_regexes:\n text = re.sub(reg, \" [رابط] \", text)\n # REplace Emails with [بريد]\n for reg in email_regexes:\n text = re.sub(reg, \" [بريد] \", text)\n # replace mentions with [مستخدم]\n text = re.sub(user_mention_regex, \" [مستخدم] \", text)\n\n if self.remove_html_markup:\n # remove html line breaks\n text = re.sub(\"<br />\", \" \", text)\n # remove html markup\n text = re.sub(\"</?[^>]+>\", \" \", text)\n\n # remove repeated characters >2\n if self.remove_elongation:\n text = self._remove_elongation(text)\n\n # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets\n if self.insert_white_spaces:\n text = re.sub(\n \"([^0-9\\u0621-\\u063A\\u0641-\\u064A\\u0660-\\u0669a-zA-Z\\[\\]])\",\n r\" \\1 \",\n text,\n )\n\n # insert whitespace between words and numbers or numbers and words\n text = re.sub(\n \"(\\d+)([\\u0621-\\u063A\\u0641-\\u064A\\u0660-\\u066C]+)\", r\" \\1 \\2 \", text\n )\n text = re.sub(\n \"([\\u0621-\\u063A\\u0641-\\u064A\\u0660-\\u066C]+)(\\d+)\", r\" \\1 \\2 \", text\n )\n\n # remove unwanted characters\n if self.keep_emojis:\n emoji_regex = \"\".join(list(self.emoji.UNICODE_EMOJI[\"en\"].keys()))\n rejected_chars_regex2 = \"[^%s%s]\" % (chars_regex, emoji_regex)\n text = re.sub(rejected_chars_regex2, \" \", text)\n else:\n text = re.sub(rejected_chars_regex, \" \", text)\n\n # remove extra spaces\n text = \" \".join(text.replace(\"\\uFE0F\", \"\").split())\n\n if (\n self.model_name == \"bert-base-arabertv2\"\n or self.model_name == \"bert-large-arabertv2\"\n ):\n if self.keep_emojis:\n new_text = []\n for word in text.split():\n if word in list(self.emoji.UNICODE_EMOJI[\"en\"].keys()):\n new_text.append(word)\n else:\n new_text.append(self.farasa_segmenter.segment(word))\n text = \" \".join(new_text)\n else:\n text = self.farasa_segmenter.segment(text)\n return self._farasa_segment(text)\n\n # ALl the other models dont require Farasa Segmentation\n return text\n\n def unpreprocess(self, text, desegment=True):\n \"\"\"Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.\n The objective is to make the generated text of any model appear natural and not preprocessed.\n\n Args:\n text (str): input text to be un-preprocessed\n desegment (bool, optional): [whether or not to remove farasa pre-segmentation before]. Defaults to True.\n\n Returns:\n str: The unpreprocessed (and possibly Farasa-desegmented) text.\n \"\"\"\n\n if self.model_name in SEGMENTED_MODELS and desegment:\n text = self.desegment(text)\n\n # removes the spaces around quotation marks ex: i \" ate \" an apple --> i \"ate\" an apple\n # https://stackoverflow.com/a/53436792/5381220\n text = re.sub(white_spaced_double_quotation_regex, '\"' + r\"\\1\" + '\"', text)\n text = re.sub(white_spaced_single_quotation_regex, \"'\" + r\"\\1\" + \"'\", text)\n text = re.sub(white_spaced_back_quotation_regex, \"\\`\" + r\"\\1\" + \"\\`\", text)\n text = re.sub(white_spaced_back_quotation_regex, \"\\—\" + r\"\\1\" + \"\\—\", text)\n\n # during generation, sometimes the models don't put a space after the dot, this handles it\n text = text.replace(\".\", \" . \")\n text = \" \".join(text.split())\n\n # handle decimals\n text = re.sub(r\"(\\d+) \\. (\\d+)\", r\"\\1.\\2\", text)\n text = re.sub(r\"(\\d+) \\, (\\d+)\", r\"\\1,\\2\", text)\n\n text = re.sub(left_and_right_spaced_chars, r\"\\1\", text)\n text = re.sub(left_spaced_chars, r\"\\1\", text)\n text = re.sub(right_spaced_chars, r\"\\1\", text)\n\n return text\n\n def desegment(self, text):\n \"\"\"\n Use this function if sentence tokenization was done using\n `from arabert.preprocess_arabert import preprocess` with Farasa enabled\n AraBERT segmentation using Farasa adds a space after the '+' for prefixes,\n and after before the '+' for suffixes\n\n Example:\n >>> desegment('ال+ دراس +ات')\n الدراسات\n \"\"\"\n text = text.replace(\"+ \", \"+\")\n text = text.replace(\" +\", \"+\")\n text = \" \".join([self._desegmentword(word) for word in text.split(\" \")])\n return text\n\n def _desegmentword(self, orig_word: str) -> str:\n \"\"\"\n Word segmentor that takes a Farasa Segmented Word and removes the '+' signs\n\n Example:\n >>> _desegmentword(\"ال+يومي+ة\")\n اليومية\n \"\"\"\n word = orig_word.replace(\"ل+ال+\", \"لل\")\n if \"ال+ال\" not in orig_word:\n word = word.replace(\"ل+ال\", \"لل\")\n word = word.replace(\"+\", \"\")\n word = word.replace(\"للل\", \"لل\")\n return word\n\n def _old_preprocess(self, text, do_farasa_tokenization):\n \"\"\"\n AraBERTv1 preprocessing Function\n \"\"\"\n text = str(text)\n if self.strip_tashkeel:\n text = araby.strip_tashkeel(text)\n\n text = re.sub(r\"\\d+\\/[ء-ي]+\\/\\d+\\]\", \"\", text)\n text = re.sub(\"ـ\", \"\", text)\n text = re.sub(\"[«»]\", ' \" ', text)\n\n if self.replace_urls_emails_mentions:\n # replace the [رابط] token with space if you want to clean links\n text = re.sub(regex_url_step1, \"[رابط]\", text)\n text = re.sub(regex_url_step2, \"[رابط]\", text)\n text = re.sub(regex_url, \"[رابط]\", text)\n text = re.sub(regex_email, \"[بريد]\", text)\n text = re.sub(regex_mention, \"[مستخدم]\", text)\n text = re.sub(\"…\", r\"\\.\", text).strip()\n text = self._remove_redundant_punct(text)\n\n if self.replace_urls_emails_mentions:\n text = re.sub(r\"\\[ رابط \\]|\\[ رابط\\]|\\[رابط \\]\", \" [رابط] \", text)\n text = re.sub(r\"\\[ بريد \\]|\\[ بريد\\]|\\[بريد \\]\", \" [بريد] \", text)\n text = re.sub(r\"\\[ مستخدم \\]|\\[ مستخدم\\]|\\[مستخدم \\]\", \" [مستخدم] \", text)\n\n if self.remove_elongation:\n text = self._remove_elongation(text)\n\n if self.insert_white_spaces:\n text = re.sub(\n \"([^0-9\\u0621-\\u063A\\u0641-\\u0669\\u0671-\\u0673a-zA-Z\\[\\]])\",\n r\" \\1 \",\n text,\n )\n if do_farasa_tokenization:\n text = self._tokenize_arabic_words_farasa(text)\n\n return text.strip()\n\n def _farasa_segment(self, text):\n line_farasa = text.split()\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in [\"[\", \"]\"]:\n continue\n if word in [\"رابط\", \"بريد\", \"مستخدم\"] and line_farasa[index - 1] in [\n \"[\",\n \"]\",\n ]:\n segmented_line.append(\"[\" + word + \"]\")\n continue\n if \"+\" not in word:\n segmented_line.append(word)\n continue\n segmented_word = self._split_farasa_output(word)\n segmented_line.extend(segmented_word)\n\n return \" \".join(segmented_line)\n\n def _split_farasa_output(self, word):\n segmented_word = []\n temp_token = \"\"\n for i, c in enumerate(word):\n if c == \"+\":\n # if the token is KAF, it could be a suffix or prefix\n if temp_token == \"ك\":\n # if we are at the second token, then KAF is surely a prefix\n if i == 1:\n segmented_word.append(temp_token + \"+\")\n temp_token = \"\"\n # If the KAF token is between 2 tokens\n elif word[i - 2] == \"+\":\n # if the previous token is prefix, then this KAF must be a prefix\n if segmented_word[-1][-1] == \"+\":\n segmented_word.append(temp_token + \"+\")\n temp_token = \"\"\n # else it is a suffix, this KAF could not be a second suffix\n else:\n segmented_word.append(\"+\" + temp_token)\n temp_token = \"\"\n # if Kaf is at the end, this is handled with the statement after the loop\n elif temp_token in prefix_list:\n segmented_word.append(temp_token + \"+\")\n temp_token = \"\"\n elif temp_token in suffix_list:\n segmented_word.append(\"+\" + temp_token)\n temp_token = \"\"\n else:\n segmented_word.append(temp_token)\n temp_token = \"\"\n continue\n temp_token += c\n if temp_token != \"\":\n if temp_token in suffix_list:\n segmented_word.append(\"+\" + temp_token)\n else:\n segmented_word.append(temp_token)\n return segmented_word\n\n def _tokenize_arabic_words_farasa(self, line_input):\n\n if self.keep_emojis:\n # insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets\n line_farasa = []\n for word in line_input.split():\n if word in list(self.emoji.UNICODE_EMOJI[\"en\"].keys()):\n line_farasa.append(word)\n else:\n line_farasa.append(self.farasa_segmenter.segment(word))\n else:\n line_farasa = self.farasa_segmenter.segment(line_input).split()\n\n segmented_line = []\n for index, word in enumerate(line_farasa):\n if word in [\"[\", \"]\"]:\n continue\n if word in [\"رابط\", \"بريد\", \"مستخدم\"] and line_farasa[index - 1] in [\n \"[\",\n \"]\",\n ]:\n segmented_line.append(\"[\" + word + \"]\")\n continue\n segmented_word = []\n for token in word.split(\"+\"):\n if token in prefix_list:\n segmented_word.append(token + \"+\")\n elif token in suffix_list:\n segmented_word.append(\"+\" + token)\n else:\n segmented_word.append(token)\n segmented_line.extend(segmented_word)\n return \" \".join(segmented_line)\n\n def _remove_elongation(self, text):\n \"\"\"\n :param text: the input text to remove elongation\n :return: delongated text\n \"\"\"\n # loop over the number of times the regex matched the text\n for index_ in range(len(re.findall(regex_tatweel, text))):\n elongation = re.search(regex_tatweel, text)\n if elongation:\n elongation_pattern = elongation.group()\n elongation_replacement = elongation_pattern[0]\n elongation_pattern = re.escape(elongation_pattern)\n text = re.sub(\n elongation_pattern, elongation_replacement, text, flags=re.MULTILINE\n )\n else:\n break\n return text\n\n def _remove_redundant_punct(self, text):\n text_ = text\n result = re.search(redundant_punct_pattern, text)\n dif = 0\n while result:\n sub = result.group()\n sub = sorted(set(sub), key=sub.index)\n sub = \" \" + \"\".join(list(sub)) + \" \"\n text = \"\".join(\n (text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])\n )\n text_ = \"\".join(\n (text_[: result.span()[0]], text_[result.span()[1] :])\n ).strip()\n dif = abs(len(text) - len(text_))\n result = re.search(redundant_punct_pattern, text_)\n text = re.sub(r\"\\s+\", \" \", text)\n return text.strip()\n\n\nprefix_list = [\n \"ال\",\n \"و\",\n \"ف\",\n \"ب\",\n \"ك\",\n \"ل\",\n \"لل\",\n \"\\u0627\\u0644\",\n \"\\u0648\",\n \"\\u0641\",\n \"\\u0628\",\n \"\\u0643\",\n \"\\u0644\",\n \"\\u0644\\u0644\",\n \"س\",\n]\nsuffix_list = [\n \"ه\",\n \"ها\",\n \"ك\",\n \"ي\",\n \"هما\",\n \"كما\",\n \"نا\",\n \"كم\",\n \"هم\",\n \"هن\",\n \"كن\",\n \"ا\",\n \"ان\",\n \"ين\",\n \"ون\",\n \"وا\",\n \"ات\",\n \"ت\",\n \"ن\",\n \"ة\",\n \"\\u0647\",\n \"\\u0647\\u0627\",\n \"\\u0643\",\n \"\\u064a\",\n \"\\u0647\\u0645\\u0627\",\n \"\\u0643\\u0645\\u0627\",\n \"\\u0646\\u0627\",\n \"\\u0643\\u0645\",\n \"\\u0647\\u0645\",\n \"\\u0647\\u0646\",\n \"\\u0643\\u0646\",\n \"\\u0627\",\n \"\\u0627\\u0646\",\n \"\\u064a\\u0646\",\n \"\\u0648\\u0646\",\n \"\\u0648\\u0627\",\n \"\\u0627\\u062a\",\n \"\\u062a\",\n \"\\u0646\",\n \"\\u0629\",\n]\nother_tokens = [\"[رابط]\", \"[مستخدم]\", \"[بريد]\"]\n\n# the never_split list is ussed with the transformers library\nprefix_symbols = [x + \"+\" for x in prefix_list]\nsuffix_symblos = [\"+\" + x for x in suffix_list]\nnever_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))\n\nurl_regexes = [\n r\"(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)\",\n r\"@(https?|ftp)://(-\\.)?([^\\s/?\\.#-]+\\.?)+(/[^\\s]*)?$@iS\",\n r\"http[s]?://[a-zA-Z0-9_\\-./~\\?=%&]+\",\n r\"www[a-zA-Z0-9_\\-?=%&/.~]+\",\n r\"[a-zA-Z]+\\.com\",\n r\"(?=http)[^\\s]+\",\n r\"(?=www)[^\\s]+\",\n r\"://\",\n]\nuser_mention_regex = r\"@[\\w\\d]+\"\nemail_regexes = [r\"[\\w-]+@([\\w-]+\\.)+[\\w-]+\", r\"\\S+@\\S+\"]\nredundant_punct_pattern = (\n r\"([!\\\"#\\$%\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ【»؛\\s+«–…‘]{2,})\"\n)\nregex_tatweel = r\"(\\D)\\1{2,}\"\nrejected_chars_regex = r\"[^0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\\"#\\$%\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘]\"\n\nregex_url_step1 = r\"(?=http)[^\\s]+\"\nregex_url_step2 = r\"(?=www)[^\\s]+\"\nregex_url = r\"(http(s)?:\\/\\/.)?(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)\"\nregex_mention = r\"@[\\w\\d]+\"\nregex_email = r\"\\S+@\\S+\"\n\nchars_regex = r\"0-9\\u0621-\\u063A\\u0640-\\u066C\\u0671-\\u0674a-zA-Z\\[\\]!\\\"#\\$%\\'\\(\\)\\*\\+,\\.:;\\-<=·>?@\\[\\\\\\]\\^_ـ`{\\|}~—٪’،؟`୍“؛”ۚ»؛\\s+«–…‘\"\n\nwhite_spaced_double_quotation_regex = r'\\\"\\s+([^\"]+)\\s+\\\"'\nwhite_spaced_single_quotation_regex = r\"\\'\\s+([^']+)\\s+\\'\"\nwhite_spaced_back_quotation_regex = r\"\\`\\s+([^`]+)\\s+\\`\"\nwhite_spaced_em_dash = r\"\\—\\s+([^—]+)\\s+\\—\"\n\nleft_spaced_chars = r\" ([\\]!#\\$%\\),\\.:;\\?}٪’،؟”؛…»·])\"\nright_spaced_chars = r\"([\\[\\(\\{“«‘*\\~]) \"\nleft_and_right_spaced_chars = r\" ([\\+\\-\\<\\=\\>\\@\\\\\\^\\_\\|\\–]) \"\n", "step-ids": [ 12, 13, 14, 15, 16 ] }
[ 12, 13, 14, 15, 16 ]
import operator import theano.tensor as T from collections import OrderedDict from lasagne.layers import get_output from stanza.research import config from neural import SimpleLasagneModel, NeuralLearner from vectorizers import SequenceVectorizer, BucketsVectorizer from neural import OPTIMIZERS, get_named_layers from listener import LISTENERS, PRIORS as LISTENER_PRIORS from speaker import SPEAKERS, PRIORS as SPEAKER_PRIORS parser = config.get_options_parser() parser.add_argument('--rsa_listeners', type=int, default=1, help='Number of listeners to use in RSA cooperative nets graph') parser.add_argument('--rsa_speakers', type=int, default=1, help='Number of speakers to use in RSA cooperative nets graph') parser.add_argument('--listener_class', default=['Listener'], choices=LISTENERS.keys(), nargs='+', help='The name of the listener model to use in the RSA network.') parser.add_argument('--speaker_class', default=['Speaker'], choices=SPEAKERS.keys(), nargs='+', help='The name of the speaker model to use in the RSA network.') parser.add_argument('--eval_agent', type=int, default=0, help='Index of the agent (listener/speaker) to use as the primary object ' 'of evaluation. Whether this agent is a listener or speaker will be ' 'inferred from the --listener flag.') parser.add_argument('--rsa_optimizer', choices=OPTIMIZERS.keys(), default='rmsprop', help='The optimization (update) algorithm to use for RSA training.') parser.add_argument('--rsa_learning_rate', type=float, default=0.1, help='The learning rate to use for RSA training.') parser.add_argument('--rsa_alpha', type=float, nargs='*', default=[1.0], help='Weights for the log-likelihood of the dataset according to the ' 'listeners. Provide as many values as there are listeners.') parser.add_argument('--rsa_beta', type=float, nargs='*', default=[1.0], help='Weights for the log-likelihood of the dataset according to the ' 'speakers. Provide as many values as there are speakers.') parser.add_argument('--rsa_mu', type=float, nargs='*', default=[1.0], help='Weights for KL(L_j||S_k). Provide values to fill a ' 'rsa_listeners x rsa_speakers matrix, in row-major order ' '(i.e. all speakers for first listener, then all speakers for second ' 'listener, etc.).') parser.add_argument('--rsa_nu', type=float, nargs='*', default=[1.0], help='Weights for KL(S_k||L_j). Provide values to fill a ' 'rsa_listeners x rsa_speakers matrix, in row-major order ' '(i.e. all speakers for first listener, then all speakers for second ' 'listener, etc.).') parser.add_argument('--listener_samples', type=int, default=128, help='Number of samples to draw from the listener per minibatch.') parser.add_argument('--speaker_samples', type=int, default=128, help='Number of samples to draw from the speaker per minibatch.') parser.add_argument('--monitor_sublosses', type=config.boolean, default=False, help='If `True`, return sub-losses for monitoring and write them to the ' 'TensorBoard events file. This will likely increase compilation time.') parser.add_argument('--monitor_subgrads', type=config.boolean, default=False, help='If `True`, return sub-gradients for monitoring and write them to the ' 'TensorBoard events file. This will likely increase compilation time.') parser.add_argument('--grad_of_est', type=config.boolean, default=False, help='If `True`, optimize using the gradient of the estimated loss; ' 'otherwise, use the manually-derived estimate of the gradient of ' 'the true loss.') parser.add_argument('--layer_by_layer', type=config.boolean, default=False, help='If `True`, train RSA agents layer-by-layer (only use the log-likelihood ' 'sub-gradients, equivalent to training each agent on data generated from ' 'the other agents); otherwise, use the gradient of the full RSA ' 'objective.') parser.add_argument('--listener_sample_smoothed', type=config.boolean, default=False, help='If `True`, take samples from the smoothed utterance prior; otherwise, ' 'sample from the empirical utterance prior.') parser.add_argument('--speaker_sample_smoothed', type=config.boolean, default=False, help='If `True`, take samples from the smoothed world prior; otherwise, ' 'sample from the empirical world prior.') class AggregatePrior(object): def __init__(self, listeners, speakers, prior_name='prior_emp'): self.listeners = listeners self.speakers = speakers self.prior_name = prior_name def train(self, training_instances, listener=False): for agent in self.listeners: getattr(agent, self.prior_name).train(training_instances, listener=listener) for agent in self.speakers: getattr(agent, self.prior_name).train(training_instances, listener=listener) def apply(self, input_vars): assert False, ("AggregatePrior.apply shouldn't be called; " "only individual model priors are used in RSA coop nets model") class RSASubModel(SimpleLasagneModel): ''' A SimpleLasagneModel for a subcomponent of an RSA graph. ''' def __init__(self, input_vars, target_vars, l_out, loss, optimizer, learning_rate=0.001, id=None): super(RSASubModel, self).__init__(input_vars, target_vars, l_out, loss, optimizer, learning_rate=learning_rate, id=id) if len(target_vars) != 1: raise ValueError('target_vars should be a sequence of length 1, instead got %s' % (target_vars,)) self.target_var = target_vars[0] def build_sample_vars(self, num_other_agents): self.sample_inputs_self = [v.type('%s_sample_self' % (v.name,)) for v in self.input_vars] self.sample_inputs_others = [[v.type('%s_sample_other%d' % (v.name, i)) for v in self.input_vars] for i in range(num_other_agents)] t = self.target_var self.sample_target_self = t.type('%s_sample_self' % (t.name,)) self.sample_target_others = [t.type('%s_sample_other%d' % (t.name, i)) for i in range(num_other_agents)] self.all_synth_vars = (self.sample_inputs_self + [self.sample_target_self] + [v for o_inputs, o_target in zip(self.sample_inputs_others, self.sample_target_others) for v in o_inputs + [o_target]]) def data_to_synth_arrays(self, agent, samples_self, samples_others): def flatten(arrays): inputs, targets = arrays return inputs + targets return [arr for i, samples in enumerate([samples_self] + samples_others) for arr in flatten(agent._data_to_arrays(samples, inverted=(i != 0)))] class RSAGraphModel(SimpleLasagneModel): def __init__(self, listeners, speakers, eval_agent, id=None): self.get_options() self.listeners = listeners self.speakers = speakers self.eval_agent = eval_agent input_vars = ([v for listener in listeners for v in listener.model.input_vars] + [v for speaker in speakers for v in speaker.model.input_vars]) target_vars = ([listener.model.target_var for listener in listeners] + [speaker.model.target_var for speaker in speakers]) super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out=eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self.options.rsa_optimizer], learning_rate=self.options.rsa_learning_rate, id=id) def params(self): result = [] for listener in self.listeners: result.extend(listener.params()) for speaker in self.speakers: result.extend(speaker.params()) return result def get_train_loss(self, target_vars, params): for agent in self.speakers: agent.model.build_sample_vars(len(self.listeners)) for agent in self.listeners: agent.model.build_sample_vars(len(self.speakers)) monitored = self.get_est_loss(layer_by_layer=self.options.layer_by_layer) if self.options.grad_of_est: est_grad, monitored_grads = self.get_grad_of_est(monitored, params) else: est_grad, monitored_grads = self.get_est_grad( params, layer_by_layer=self.options.layer_by_layer) monitored.update(monitored_grads) synth_vars = [v for agent in self.listeners + self.speakers for v in agent.model.all_synth_vars] return monitored, est_grad, synth_vars def get_est_loss(self, layer_by_layer=False): def kl(agent_p, agent_q, other_idx): if layer_by_layer: return agent_q.loss_out(agent_q.model.sample_inputs_others[other_idx], agent_q.model.sample_target_others[other_idx]).mean() else: return ( agent_p.log_joint_emp(agent_p.model.sample_inputs_self, agent_p.model.sample_target_self) - agent_q.log_joint_smooth(agent_q.model.sample_inputs_others[other_idx], agent_q.model.sample_target_others[other_idx]) ).mean() id_tag_log = (self.id + ': ') if self.id else '' id_tag = (self.id + '/') if self.id else '' # \alpha * KL(dataset || L) = \alpha * log L(dataset) + C if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || L)') alpha_losses = [ ('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean()) for alpha, listener in zip(self.options.rsa_alpha, self.listeners) ] # \beta * KL(dataset || S) = \beta * log S(dataset) + C if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(dataset || S)') beta_losses = [ ('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.loss_out().mean()) for beta, speaker in zip(self.options.rsa_beta, self.speakers) ] # \mu * KL(L || S) if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(L || S)') mu_losses = [ ('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ] # \nu * KL(S || L) if self.options.verbosity >= 4: print(id_tag_log + 'loss: KL(S || L)') nu_losses = [ ('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ] all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses est_loss = t_sum(loss for tag, loss in all_sublosses) monitored = OrderedDict([('loss', est_loss)]) if self.options.monitor_sublosses: monitored.update(all_sublosses) if self.options.monitor_activations: for agent in self.listeners + self.speakers: for name, layer in get_named_layers(agent.l_out).iteritems(): monitored['activation/' + name] = get_output(layer) return monitored def get_est_grad(self, params, layer_by_layer=False): def mean_weighted_grad(weights, loss): # Lop to the rescue! Here I was calling T.jacobian and trying to # broadcast things and elementwise-multiply through the resulting lists, # when a function already existed to do all of that for me... return T.Lop(loss, params, weights / T.cast(weights.shape[0], 'float32'), disconnected_inputs='ignore') # TODO: control variates? def mean_grad(loss): return T.grad(loss.mean(), params, disconnected_inputs='ignore') id_tag = (self.id + ': ') if self.id else '' # alpha and beta: train the agents directly against the dataset. # \alpha_j E_D [-d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: alpha') all_subgrads = [ ('grad_alpha/%s' % (listener.id,), mean_grad(alpha * listener.loss_out())) for alpha, listener in zip(self.options.rsa_alpha, self.listeners) ] # \beta_k E_D [-d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: beta') all_subgrads.extend([ ('grad_beta/%s' % (speaker.id,), mean_grad(beta * speaker.loss_out())) for beta, speaker in zip(self.options.rsa_beta, self.speakers) ]) # The "simple" mu and nu terms: train the agents directly against each other. # These are still ordinary log-likelihood terms; the complexity comes from # identifying the right input variables and iterating over the m x n dyads. # sum_k \nu_jk E_{G_S(\phi_k)} [-d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: nu co-training') all_subgrads.extend([ ('grad_nu_co/%s_%s' % (listener.id, speaker.id), mean_grad(nu * listener.loss_out(listener.model.sample_inputs_others[k], listener.model.sample_target_others[k]))) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ]) # sum_j \nu_jk E_{G_L(\theta_j)} [-d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: mu co-training') all_subgrads.extend([ ('grad_mu_co/%s_%s' % (listener.id, speaker.id), mean_grad(mu * speaker.loss_out(speaker.model.sample_inputs_others[j], speaker.model.sample_target_others[j]))) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ]) # The "hard" mu and nu terms: regularize the agents with maximum entropy and # accommodating other agents' priors. # # Zero out these subgradients if we're doing layer-by-layer training. if not layer_by_layer: # sum_k \mu_jk E_{G_L(\theta_j)} # [(1 + log G_L(c, m; \theta_j) - log H_S(c, m; \phi_k)) * # d/d\theta_j log L(c | m; \theta_j)] if self.options.verbosity >= 4: print(id_tag + 'grad: mu regularizer') all_subgrads.extend([ ('grad_mu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad( mu * (1 + listener.log_joint_emp(listener.model.sample_inputs_self, listener.model.sample_target_self) - speaker.log_joint_smooth(speaker.model.sample_inputs_others[j], speaker.model.sample_target_others[j])), listener.loss_out(listener.model.sample_inputs_self, listener.model.sample_target_self))) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads()) ]) # sum_j \nu_jk E_{G_S(\phi_k)} # [(1 + log G_S(c, m; \phi_k) - log H_L(c, m; \theta_j)) * # d/d\phi_k log S(m | c; \phi_k)] if self.options.verbosity >= 4: print(id_tag + 'grad: nu regularizer') all_subgrads.extend([ ('grad_nu_reg/%s_%s' % (listener.id, speaker.id), mean_weighted_grad( nu * (1 + speaker.log_joint_emp(speaker.model.sample_inputs_self, speaker.model.sample_target_self) - listener.log_joint_smooth(listener.model.sample_inputs_others[k], listener.model.sample_target_others[k])), speaker.loss_out(speaker.model.sample_inputs_self, speaker.model.sample_target_self))) for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads()) ]) est_grad = t_sum([grads for tag, grads in all_subgrads], nested=True) monitored = OrderedDict() if self.options.monitor_grads: monitored.update([ ('grad/' + param.name, grad) for param, grad in zip(params, est_grad) ]) if self.options.monitor_subgrads: monitored.update([ (tag + '/' + param.name, grad) for tag, grads in all_subgrads for param, grad in zip(params, grads) ]) return est_grad, monitored def get_grad_of_est(self, monitored, params): grad_of_est = T.grad(monitored['loss'], params) monitored_grads = OrderedDict() if self.options.monitor_grads: monitored_grads.update([ ('grad/' + param.name, grad) for param, grad in zip(params, grad_of_est) ]) if self.options.monitor_subgrads: monitored_grads.update([ (tag + '/' + param.name, grad) for tag, subloss in monitored.iteritems() if tag != 'loss' for param, grad in zip(params, T.grad(subloss, params, disconnected_inputs='ignore')) ]) return grad_of_est, monitored_grads def dyads(self): for j, listener in enumerate(self.listeners): for k, speaker in enumerate(self.speakers): yield (listener, j, speaker, k) def minibatches(self, inputs, targets, batch_size, shuffle=False): agents = self.listeners + self.speakers batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size, shuffle=shuffle) for dataset_inputs, dataset_targets, _synth in batches: inputs_batch = [] targets_batch = [] synth_batch = [] filtered = self.filter_arrays(dataset_inputs, dataset_targets) for agent, (agent_inputs, agent_targets) in zip(agents, filtered): inputs_batch.extend(agent_inputs) targets_batch.extend(agent_targets) input_types = [a.shape for a in agent_inputs] target_types = [a.shape for a in agent_targets] if self.options.verbosity >= 8: print('%s: %s -> %s' % (agent.id, input_types, target_types)) listener_samples = [listener.sample_joint_smooth(self.options.listener_samples) if self.options.listener_sample_smoothed else listener.sample_joint_emp(self.options.listener_samples) for listener in self.listeners] speaker_samples = [speaker.sample_joint_smooth(self.options.speaker_samples) if self.options.speaker_sample_smoothed else speaker.sample_joint_emp(self.options.listener_samples) for speaker in self.speakers] for listener, samples in zip(self.listeners, listener_samples): arrays = listener.model.data_to_synth_arrays(listener, samples, speaker_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (listener.id, synth_types)) for speaker, samples in zip(self.speakers, speaker_samples): arrays = speaker.model.data_to_synth_arrays(speaker, samples, listener_samples) synth_batch.extend(arrays) synth_types = [a.shape for a in arrays] if self.options.verbosity >= 8: print('%s synth: %s' % (speaker.id, synth_types)) yield inputs_batch, targets_batch, synth_batch def filter_arrays(self, inputs, targets): result = [] input_idx = 0 for agent, target in zip(self.listeners + self.speakers, targets): assert input_idx + len(agent.model.input_vars) <= len(inputs), \ (input_idx, len(agent.model.input_vars), len(inputs)) agent_inputs = inputs[input_idx:input_idx + len(agent.model.input_vars)] agent_targets = [target] result.append((agent_inputs, agent_targets)) input_idx += len(agent.model.input_vars) return result class RSALearner(NeuralLearner): def __init__(self, id=None): self.get_options() self.init_submodels(id) super(RSALearner, self).__init__(id=id) color_resolution = (self.options.listener_color_resolution if self.options.listener else self.options.speaker_color_resolution) self.seq_vec = SequenceVectorizer() self.color_vec = BucketsVectorizer(color_resolution, hsv=self.options.speaker_hsv) def init_submodels(self, id=None): id_tag = (id + '/') if id else '' self.get_options() listener_classes = self.options.listener_class speaker_classes = self.options.speaker_class if len(listener_classes) != self.options.rsa_listeners: assert len(listener_classes) == 1, len(listener_classes) listener_classes = listener_classes * self.options.rsa_listeners if len(speaker_classes) != self.options.rsa_speakers: assert len(speaker_classes) == 1, len(speaker_classes) speaker_classes = speaker_classes * self.options.rsa_speakers self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (id_tag, j)) for j in range(self.options.rsa_listeners)] self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k)) for k in range(self.options.rsa_speakers)] agents = self.listeners if self.options.listener else self.speakers self.eval_agent = agents[self.options.eval_agent] def predict(self, eval_instances, verbosity=0): return self.eval_agent.predict(eval_instances, verbosity=verbosity) def score(self, eval_instances, verbosity=0): return self.eval_agent.score(eval_instances, verbosity=verbosity) def predict_and_score(self, eval_instances, verbosity=0): return self.eval_agent.predict_and_score(eval_instances, verbosity=verbosity) def on_iter_end(self, step, writer): for agent in self.speakers + self.listeners: agent.on_iter_end(step, writer) def sample_joint_smooth(self, num_samples): return self.eval_agent.sample_joint_smooth(num_samples) def _data_to_arrays(self, training_instances, init_vectorizer=False, test=False, inverted=False): input_arrays = [] target_arrays = [] if self.options.listener != inverted: listener_dataset = training_instances speaker_dataset = [inst.inverted() for inst in training_instances] else: listener_dataset = [inst.inverted() for inst in training_instances] speaker_dataset = training_instances for listener in self.listeners: if not test: listener.dataset = listener_dataset inputs, targets = listener._data_to_arrays(listener_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) for speaker in self.speakers: if not test: speaker.dataset = speaker_dataset inputs, targets = speaker._data_to_arrays(speaker_dataset, test=test, init_vectorizer=init_vectorizer) input_arrays.extend(inputs) target_arrays.extend(targets) return input_arrays, target_arrays def _build_model(self): for agent in self.listeners + self.speakers: agent._build_model(RSASubModel) self.build_aggregate_model() def train_priors(self, training_instances, listener_data=False): prior_class = (LISTENER_PRIORS[self.options.listener_prior] if self.options.listener else SPEAKER_PRIORS[self.options.speaker_prior]) self.prior_emp = prior_class() self.prior_smooth = prior_class() self.prior_emp.train(training_instances, listener_data=listener_data) self.prior_smooth.train(training_instances, listener_data=listener_data) for agent in self.listeners + self.speakers: agent.train_priors(training_instances, listener_data=listener_data) def build_aggregate_model(self): self.model = RSAGraphModel(self.listeners, self.speakers, self.eval_agent) self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp') self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth') def __getstate__(self): return (self.seq_vec, self.color_vec, [agent.__getstate__() for agent in self.listeners + self.speakers]) def __setstate__(self, state): self.seq_vec, self.color_vec, submodels = state self.init_submodels() for agent, substate in zip(self.listeners + self.speakers, submodels): agent.unpickle(substate, RSASubModel) self.build_aggregate_model() def t_sum(seq, start=None, nested=False): '''A version of sum that doesn't start with 0, for constructing Theano graphs without superfluous TensorConstants. If `nested` is True, sum expressions embedded within lists, elementwise (for use with the output for T.jacobian). >>> t_sum([1, 2, 3]) 6 >>> t_sum(xrange(1, 4), start=4) 10 >>> t_sum([[1, 2], [3, 4], [5, 6]], nested=True) [9, 12] >>> t_sum([[1, 2], [3, 4], [5, 6]], start=[-1, -2], nested=True) [8, 10] ''' if nested: if not isinstance(seq, list): seq = list(seq) if start: return [t_sum(subseq, start_elem) for subseq, start_elem in zip(zip(*seq), start)] else: return [t_sum(subseq) for subseq in zip(*seq)] seq_list = list(seq) if seq_list: reduced = reduce(operator.add, seq_list) if start: reduced = start + reduced return reduced elif start: return start else: return 0
normal
{ "blob_id": "3496216de9f6b7d9d3db69eb4d8f8c0fdcd5123c", "index": 1358, "step-1": "<mask token>\n\n\nclass RSAGraphModel(SimpleLasagneModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass RSALearner(NeuralLearner):\n\n def __init__(self, id=None):\n self.get_options()\n self.init_submodels(id)\n super(RSALearner, self).__init__(id=id)\n color_resolution = (self.options.listener_color_resolution if self.\n options.listener else self.options.speaker_color_resolution)\n self.seq_vec = SequenceVectorizer()\n self.color_vec = BucketsVectorizer(color_resolution, hsv=self.\n options.speaker_hsv)\n\n def init_submodels(self, id=None):\n id_tag = id + '/' if id else ''\n self.get_options()\n listener_classes = self.options.listener_class\n speaker_classes = self.options.speaker_class\n if len(listener_classes) != self.options.rsa_listeners:\n assert len(listener_classes) == 1, len(listener_classes)\n listener_classes = listener_classes * self.options.rsa_listeners\n if len(speaker_classes) != self.options.rsa_speakers:\n assert len(speaker_classes) == 1, len(speaker_classes)\n speaker_classes = speaker_classes * self.options.rsa_speakers\n self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (\n id_tag, j)) for j in range(self.options.rsa_listeners)]\n self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag,\n k)) for k in range(self.options.rsa_speakers)]\n agents = self.listeners if self.options.listener else self.speakers\n self.eval_agent = agents[self.options.eval_agent]\n\n def predict(self, eval_instances, verbosity=0):\n return self.eval_agent.predict(eval_instances, verbosity=verbosity)\n\n def score(self, eval_instances, verbosity=0):\n return self.eval_agent.score(eval_instances, verbosity=verbosity)\n\n def predict_and_score(self, eval_instances, verbosity=0):\n return self.eval_agent.predict_and_score(eval_instances, verbosity=\n verbosity)\n\n def on_iter_end(self, step, writer):\n for agent in (self.speakers + self.listeners):\n agent.on_iter_end(step, writer)\n\n def sample_joint_smooth(self, num_samples):\n return self.eval_agent.sample_joint_smooth(num_samples)\n\n def _data_to_arrays(self, training_instances, init_vectorizer=False,\n test=False, inverted=False):\n input_arrays = []\n target_arrays = []\n if self.options.listener != inverted:\n listener_dataset = training_instances\n speaker_dataset = [inst.inverted() for inst in training_instances]\n else:\n listener_dataset = [inst.inverted() for inst in training_instances]\n speaker_dataset = training_instances\n for listener in self.listeners:\n if not test:\n listener.dataset = listener_dataset\n inputs, targets = listener._data_to_arrays(listener_dataset,\n test=test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n for speaker in self.speakers:\n if not test:\n speaker.dataset = speaker_dataset\n inputs, targets = speaker._data_to_arrays(speaker_dataset, test\n =test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n return input_arrays, target_arrays\n\n def _build_model(self):\n for agent in (self.listeners + self.speakers):\n agent._build_model(RSASubModel)\n self.build_aggregate_model()\n\n def train_priors(self, training_instances, listener_data=False):\n prior_class = LISTENER_PRIORS[self.options.listener_prior\n ] if self.options.listener else SPEAKER_PRIORS[self.options.\n speaker_prior]\n self.prior_emp = prior_class()\n self.prior_smooth = prior_class()\n self.prior_emp.train(training_instances, listener_data=listener_data)\n self.prior_smooth.train(training_instances, listener_data=listener_data\n )\n for agent in (self.listeners + self.speakers):\n agent.train_priors(training_instances, listener_data=listener_data)\n\n def build_aggregate_model(self):\n self.model = RSAGraphModel(self.listeners, self.speakers, self.\n eval_agent)\n self.prior_emp = AggregatePrior(self.listeners, self.speakers,\n 'prior_emp')\n self.prior_smooth = AggregatePrior(self.listeners, self.speakers,\n 'prior_smooth')\n\n def __getstate__(self):\n return self.seq_vec, self.color_vec, [agent.__getstate__() for\n agent in self.listeners + self.speakers]\n\n def __setstate__(self, state):\n self.seq_vec, self.color_vec, submodels = state\n self.init_submodels()\n for agent, substate in zip(self.listeners + self.speakers, submodels):\n agent.unpickle(substate, RSASubModel)\n self.build_aggregate_model()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RSAGraphModel(SimpleLasagneModel):\n <mask token>\n\n def params(self):\n result = []\n for listener in self.listeners:\n result.extend(listener.params())\n for speaker in self.speakers:\n result.extend(speaker.params())\n return result\n\n def get_train_loss(self, target_vars, params):\n for agent in self.speakers:\n agent.model.build_sample_vars(len(self.listeners))\n for agent in self.listeners:\n agent.model.build_sample_vars(len(self.speakers))\n monitored = self.get_est_loss(layer_by_layer=self.options.\n layer_by_layer)\n if self.options.grad_of_est:\n est_grad, monitored_grads = self.get_grad_of_est(monitored, params)\n else:\n est_grad, monitored_grads = self.get_est_grad(params,\n layer_by_layer=self.options.layer_by_layer)\n monitored.update(monitored_grads)\n synth_vars = [v for agent in self.listeners + self.speakers for v in\n agent.model.all_synth_vars]\n return monitored, est_grad, synth_vars\n\n def get_est_loss(self, layer_by_layer=False):\n\n def kl(agent_p, agent_q, other_idx):\n if layer_by_layer:\n return agent_q.loss_out(agent_q.model.sample_inputs_others[\n other_idx], agent_q.model.sample_target_others[other_idx]\n ).mean()\n else:\n return (agent_p.log_joint_emp(agent_p.model.\n sample_inputs_self, agent_p.model.sample_target_self) -\n agent_q.log_joint_smooth(agent_q.model.\n sample_inputs_others[other_idx], agent_q.model.\n sample_target_others[other_idx])).mean()\n id_tag_log = self.id + ': ' if self.id else ''\n id_tag = self.id + '/' if self.id else ''\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || L)')\n alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha *\n listener.loss_out().mean()) for alpha, listener in zip(self.\n options.rsa_alpha, self.listeners)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || S)')\n beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.\n loss_out().mean()) for beta, speaker in zip(self.options.\n rsa_beta, self.speakers)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(L || S)')\n mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu *\n kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in\n zip(self.options.rsa_mu, self.dyads())]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(S || L)')\n nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu *\n kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in\n zip(self.options.rsa_nu, self.dyads())]\n all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses\n est_loss = t_sum(loss for tag, loss in all_sublosses)\n monitored = OrderedDict([('loss', est_loss)])\n if self.options.monitor_sublosses:\n monitored.update(all_sublosses)\n if self.options.monitor_activations:\n for agent in (self.listeners + self.speakers):\n for name, layer in get_named_layers(agent.l_out).iteritems():\n monitored['activation/' + name] = get_output(layer)\n return monitored\n <mask token>\n <mask token>\n\n def dyads(self):\n for j, listener in enumerate(self.listeners):\n for k, speaker in enumerate(self.speakers):\n yield listener, j, speaker, k\n\n def minibatches(self, inputs, targets, batch_size, shuffle=False):\n agents = self.listeners + self.speakers\n batches = super(RSAGraphModel, self).minibatches(inputs, targets,\n batch_size, shuffle=shuffle)\n for dataset_inputs, dataset_targets, _synth in batches:\n inputs_batch = []\n targets_batch = []\n synth_batch = []\n filtered = self.filter_arrays(dataset_inputs, dataset_targets)\n for agent, (agent_inputs, agent_targets) in zip(agents, filtered):\n inputs_batch.extend(agent_inputs)\n targets_batch.extend(agent_targets)\n input_types = [a.shape for a in agent_inputs]\n target_types = [a.shape for a in agent_targets]\n if self.options.verbosity >= 8:\n print('%s: %s -> %s' % (agent.id, input_types,\n target_types))\n listener_samples = [(listener.sample_joint_smooth(self.options.\n listener_samples) if self.options.listener_sample_smoothed else\n listener.sample_joint_emp(self.options.listener_samples)) for\n listener in self.listeners]\n speaker_samples = [(speaker.sample_joint_smooth(self.options.\n speaker_samples) if self.options.speaker_sample_smoothed else\n speaker.sample_joint_emp(self.options.listener_samples)) for\n speaker in self.speakers]\n for listener, samples in zip(self.listeners, listener_samples):\n arrays = listener.model.data_to_synth_arrays(listener,\n samples, speaker_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (listener.id, synth_types))\n for speaker, samples in zip(self.speakers, speaker_samples):\n arrays = speaker.model.data_to_synth_arrays(speaker,\n samples, listener_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (speaker.id, synth_types))\n yield inputs_batch, targets_batch, synth_batch\n\n def filter_arrays(self, inputs, targets):\n result = []\n input_idx = 0\n for agent, target in zip(self.listeners + self.speakers, targets):\n assert input_idx + len(agent.model.input_vars) <= len(inputs), (\n input_idx, len(agent.model.input_vars), len(inputs))\n agent_inputs = inputs[input_idx:input_idx + len(agent.model.\n input_vars)]\n agent_targets = [target]\n result.append((agent_inputs, agent_targets))\n input_idx += len(agent.model.input_vars)\n return result\n\n\nclass RSALearner(NeuralLearner):\n\n def __init__(self, id=None):\n self.get_options()\n self.init_submodels(id)\n super(RSALearner, self).__init__(id=id)\n color_resolution = (self.options.listener_color_resolution if self.\n options.listener else self.options.speaker_color_resolution)\n self.seq_vec = SequenceVectorizer()\n self.color_vec = BucketsVectorizer(color_resolution, hsv=self.\n options.speaker_hsv)\n\n def init_submodels(self, id=None):\n id_tag = id + '/' if id else ''\n self.get_options()\n listener_classes = self.options.listener_class\n speaker_classes = self.options.speaker_class\n if len(listener_classes) != self.options.rsa_listeners:\n assert len(listener_classes) == 1, len(listener_classes)\n listener_classes = listener_classes * self.options.rsa_listeners\n if len(speaker_classes) != self.options.rsa_speakers:\n assert len(speaker_classes) == 1, len(speaker_classes)\n speaker_classes = speaker_classes * self.options.rsa_speakers\n self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (\n id_tag, j)) for j in range(self.options.rsa_listeners)]\n self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag,\n k)) for k in range(self.options.rsa_speakers)]\n agents = self.listeners if self.options.listener else self.speakers\n self.eval_agent = agents[self.options.eval_agent]\n\n def predict(self, eval_instances, verbosity=0):\n return self.eval_agent.predict(eval_instances, verbosity=verbosity)\n\n def score(self, eval_instances, verbosity=0):\n return self.eval_agent.score(eval_instances, verbosity=verbosity)\n\n def predict_and_score(self, eval_instances, verbosity=0):\n return self.eval_agent.predict_and_score(eval_instances, verbosity=\n verbosity)\n\n def on_iter_end(self, step, writer):\n for agent in (self.speakers + self.listeners):\n agent.on_iter_end(step, writer)\n\n def sample_joint_smooth(self, num_samples):\n return self.eval_agent.sample_joint_smooth(num_samples)\n\n def _data_to_arrays(self, training_instances, init_vectorizer=False,\n test=False, inverted=False):\n input_arrays = []\n target_arrays = []\n if self.options.listener != inverted:\n listener_dataset = training_instances\n speaker_dataset = [inst.inverted() for inst in training_instances]\n else:\n listener_dataset = [inst.inverted() for inst in training_instances]\n speaker_dataset = training_instances\n for listener in self.listeners:\n if not test:\n listener.dataset = listener_dataset\n inputs, targets = listener._data_to_arrays(listener_dataset,\n test=test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n for speaker in self.speakers:\n if not test:\n speaker.dataset = speaker_dataset\n inputs, targets = speaker._data_to_arrays(speaker_dataset, test\n =test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n return input_arrays, target_arrays\n\n def _build_model(self):\n for agent in (self.listeners + self.speakers):\n agent._build_model(RSASubModel)\n self.build_aggregate_model()\n\n def train_priors(self, training_instances, listener_data=False):\n prior_class = LISTENER_PRIORS[self.options.listener_prior\n ] if self.options.listener else SPEAKER_PRIORS[self.options.\n speaker_prior]\n self.prior_emp = prior_class()\n self.prior_smooth = prior_class()\n self.prior_emp.train(training_instances, listener_data=listener_data)\n self.prior_smooth.train(training_instances, listener_data=listener_data\n )\n for agent in (self.listeners + self.speakers):\n agent.train_priors(training_instances, listener_data=listener_data)\n\n def build_aggregate_model(self):\n self.model = RSAGraphModel(self.listeners, self.speakers, self.\n eval_agent)\n self.prior_emp = AggregatePrior(self.listeners, self.speakers,\n 'prior_emp')\n self.prior_smooth = AggregatePrior(self.listeners, self.speakers,\n 'prior_smooth')\n\n def __getstate__(self):\n return self.seq_vec, self.color_vec, [agent.__getstate__() for\n agent in self.listeners + self.speakers]\n\n def __setstate__(self, state):\n self.seq_vec, self.color_vec, submodels = state\n self.init_submodels()\n for agent, substate in zip(self.listeners + self.speakers, submodels):\n agent.unpickle(substate, RSASubModel)\n self.build_aggregate_model()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass RSAGraphModel(SimpleLasagneModel):\n\n def __init__(self, listeners, speakers, eval_agent, id=None):\n self.get_options()\n self.listeners = listeners\n self.speakers = speakers\n self.eval_agent = eval_agent\n input_vars = [v for listener in listeners for v in listener.model.\n input_vars] + [v for speaker in speakers for v in speaker.model\n .input_vars]\n target_vars = [listener.model.target_var for listener in listeners] + [\n speaker.model.target_var for speaker in speakers]\n super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out=\n eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self.\n options.rsa_optimizer], learning_rate=self.options.\n rsa_learning_rate, id=id)\n\n def params(self):\n result = []\n for listener in self.listeners:\n result.extend(listener.params())\n for speaker in self.speakers:\n result.extend(speaker.params())\n return result\n\n def get_train_loss(self, target_vars, params):\n for agent in self.speakers:\n agent.model.build_sample_vars(len(self.listeners))\n for agent in self.listeners:\n agent.model.build_sample_vars(len(self.speakers))\n monitored = self.get_est_loss(layer_by_layer=self.options.\n layer_by_layer)\n if self.options.grad_of_est:\n est_grad, monitored_grads = self.get_grad_of_est(monitored, params)\n else:\n est_grad, monitored_grads = self.get_est_grad(params,\n layer_by_layer=self.options.layer_by_layer)\n monitored.update(monitored_grads)\n synth_vars = [v for agent in self.listeners + self.speakers for v in\n agent.model.all_synth_vars]\n return monitored, est_grad, synth_vars\n\n def get_est_loss(self, layer_by_layer=False):\n\n def kl(agent_p, agent_q, other_idx):\n if layer_by_layer:\n return agent_q.loss_out(agent_q.model.sample_inputs_others[\n other_idx], agent_q.model.sample_target_others[other_idx]\n ).mean()\n else:\n return (agent_p.log_joint_emp(agent_p.model.\n sample_inputs_self, agent_p.model.sample_target_self) -\n agent_q.log_joint_smooth(agent_q.model.\n sample_inputs_others[other_idx], agent_q.model.\n sample_target_others[other_idx])).mean()\n id_tag_log = self.id + ': ' if self.id else ''\n id_tag = self.id + '/' if self.id else ''\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || L)')\n alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha *\n listener.loss_out().mean()) for alpha, listener in zip(self.\n options.rsa_alpha, self.listeners)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || S)')\n beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.\n loss_out().mean()) for beta, speaker in zip(self.options.\n rsa_beta, self.speakers)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(L || S)')\n mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu *\n kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in\n zip(self.options.rsa_mu, self.dyads())]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(S || L)')\n nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu *\n kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in\n zip(self.options.rsa_nu, self.dyads())]\n all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses\n est_loss = t_sum(loss for tag, loss in all_sublosses)\n monitored = OrderedDict([('loss', est_loss)])\n if self.options.monitor_sublosses:\n monitored.update(all_sublosses)\n if self.options.monitor_activations:\n for agent in (self.listeners + self.speakers):\n for name, layer in get_named_layers(agent.l_out).iteritems():\n monitored['activation/' + name] = get_output(layer)\n return monitored\n <mask token>\n\n def get_grad_of_est(self, monitored, params):\n grad_of_est = T.grad(monitored['loss'], params)\n monitored_grads = OrderedDict()\n if self.options.monitor_grads:\n monitored_grads.update([('grad/' + param.name, grad) for param,\n grad in zip(params, grad_of_est)])\n if self.options.monitor_subgrads:\n monitored_grads.update([(tag + '/' + param.name, grad) for tag,\n subloss in monitored.iteritems() if tag != 'loss' for param,\n grad in zip(params, T.grad(subloss, params,\n disconnected_inputs='ignore'))])\n return grad_of_est, monitored_grads\n\n def dyads(self):\n for j, listener in enumerate(self.listeners):\n for k, speaker in enumerate(self.speakers):\n yield listener, j, speaker, k\n\n def minibatches(self, inputs, targets, batch_size, shuffle=False):\n agents = self.listeners + self.speakers\n batches = super(RSAGraphModel, self).minibatches(inputs, targets,\n batch_size, shuffle=shuffle)\n for dataset_inputs, dataset_targets, _synth in batches:\n inputs_batch = []\n targets_batch = []\n synth_batch = []\n filtered = self.filter_arrays(dataset_inputs, dataset_targets)\n for agent, (agent_inputs, agent_targets) in zip(agents, filtered):\n inputs_batch.extend(agent_inputs)\n targets_batch.extend(agent_targets)\n input_types = [a.shape for a in agent_inputs]\n target_types = [a.shape for a in agent_targets]\n if self.options.verbosity >= 8:\n print('%s: %s -> %s' % (agent.id, input_types,\n target_types))\n listener_samples = [(listener.sample_joint_smooth(self.options.\n listener_samples) if self.options.listener_sample_smoothed else\n listener.sample_joint_emp(self.options.listener_samples)) for\n listener in self.listeners]\n speaker_samples = [(speaker.sample_joint_smooth(self.options.\n speaker_samples) if self.options.speaker_sample_smoothed else\n speaker.sample_joint_emp(self.options.listener_samples)) for\n speaker in self.speakers]\n for listener, samples in zip(self.listeners, listener_samples):\n arrays = listener.model.data_to_synth_arrays(listener,\n samples, speaker_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (listener.id, synth_types))\n for speaker, samples in zip(self.speakers, speaker_samples):\n arrays = speaker.model.data_to_synth_arrays(speaker,\n samples, listener_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (speaker.id, synth_types))\n yield inputs_batch, targets_batch, synth_batch\n\n def filter_arrays(self, inputs, targets):\n result = []\n input_idx = 0\n for agent, target in zip(self.listeners + self.speakers, targets):\n assert input_idx + len(agent.model.input_vars) <= len(inputs), (\n input_idx, len(agent.model.input_vars), len(inputs))\n agent_inputs = inputs[input_idx:input_idx + len(agent.model.\n input_vars)]\n agent_targets = [target]\n result.append((agent_inputs, agent_targets))\n input_idx += len(agent.model.input_vars)\n return result\n\n\nclass RSALearner(NeuralLearner):\n\n def __init__(self, id=None):\n self.get_options()\n self.init_submodels(id)\n super(RSALearner, self).__init__(id=id)\n color_resolution = (self.options.listener_color_resolution if self.\n options.listener else self.options.speaker_color_resolution)\n self.seq_vec = SequenceVectorizer()\n self.color_vec = BucketsVectorizer(color_resolution, hsv=self.\n options.speaker_hsv)\n\n def init_submodels(self, id=None):\n id_tag = id + '/' if id else ''\n self.get_options()\n listener_classes = self.options.listener_class\n speaker_classes = self.options.speaker_class\n if len(listener_classes) != self.options.rsa_listeners:\n assert len(listener_classes) == 1, len(listener_classes)\n listener_classes = listener_classes * self.options.rsa_listeners\n if len(speaker_classes) != self.options.rsa_speakers:\n assert len(speaker_classes) == 1, len(speaker_classes)\n speaker_classes = speaker_classes * self.options.rsa_speakers\n self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (\n id_tag, j)) for j in range(self.options.rsa_listeners)]\n self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag,\n k)) for k in range(self.options.rsa_speakers)]\n agents = self.listeners if self.options.listener else self.speakers\n self.eval_agent = agents[self.options.eval_agent]\n\n def predict(self, eval_instances, verbosity=0):\n return self.eval_agent.predict(eval_instances, verbosity=verbosity)\n\n def score(self, eval_instances, verbosity=0):\n return self.eval_agent.score(eval_instances, verbosity=verbosity)\n\n def predict_and_score(self, eval_instances, verbosity=0):\n return self.eval_agent.predict_and_score(eval_instances, verbosity=\n verbosity)\n\n def on_iter_end(self, step, writer):\n for agent in (self.speakers + self.listeners):\n agent.on_iter_end(step, writer)\n\n def sample_joint_smooth(self, num_samples):\n return self.eval_agent.sample_joint_smooth(num_samples)\n\n def _data_to_arrays(self, training_instances, init_vectorizer=False,\n test=False, inverted=False):\n input_arrays = []\n target_arrays = []\n if self.options.listener != inverted:\n listener_dataset = training_instances\n speaker_dataset = [inst.inverted() for inst in training_instances]\n else:\n listener_dataset = [inst.inverted() for inst in training_instances]\n speaker_dataset = training_instances\n for listener in self.listeners:\n if not test:\n listener.dataset = listener_dataset\n inputs, targets = listener._data_to_arrays(listener_dataset,\n test=test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n for speaker in self.speakers:\n if not test:\n speaker.dataset = speaker_dataset\n inputs, targets = speaker._data_to_arrays(speaker_dataset, test\n =test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n return input_arrays, target_arrays\n\n def _build_model(self):\n for agent in (self.listeners + self.speakers):\n agent._build_model(RSASubModel)\n self.build_aggregate_model()\n\n def train_priors(self, training_instances, listener_data=False):\n prior_class = LISTENER_PRIORS[self.options.listener_prior\n ] if self.options.listener else SPEAKER_PRIORS[self.options.\n speaker_prior]\n self.prior_emp = prior_class()\n self.prior_smooth = prior_class()\n self.prior_emp.train(training_instances, listener_data=listener_data)\n self.prior_smooth.train(training_instances, listener_data=listener_data\n )\n for agent in (self.listeners + self.speakers):\n agent.train_priors(training_instances, listener_data=listener_data)\n\n def build_aggregate_model(self):\n self.model = RSAGraphModel(self.listeners, self.speakers, self.\n eval_agent)\n self.prior_emp = AggregatePrior(self.listeners, self.speakers,\n 'prior_emp')\n self.prior_smooth = AggregatePrior(self.listeners, self.speakers,\n 'prior_smooth')\n\n def __getstate__(self):\n return self.seq_vec, self.color_vec, [agent.__getstate__() for\n agent in self.listeners + self.speakers]\n\n def __setstate__(self, state):\n self.seq_vec, self.color_vec, submodels = state\n self.init_submodels()\n for agent, substate in zip(self.listeners + self.speakers, submodels):\n agent.unpickle(substate, RSASubModel)\n self.build_aggregate_model()\n\n\n<mask token>\n", "step-4": "<mask token>\nparser = config.get_options_parser()\nparser.add_argument('--rsa_listeners', type=int, default=1, help=\n 'Number of listeners to use in RSA cooperative nets graph')\nparser.add_argument('--rsa_speakers', type=int, default=1, help=\n 'Number of speakers to use in RSA cooperative nets graph')\nparser.add_argument('--listener_class', default=['Listener'], choices=\n LISTENERS.keys(), nargs='+', help=\n 'The name of the listener model to use in the RSA network.')\nparser.add_argument('--speaker_class', default=['Speaker'], choices=\n SPEAKERS.keys(), nargs='+', help=\n 'The name of the speaker model to use in the RSA network.')\nparser.add_argument('--eval_agent', type=int, default=0, help=\n 'Index of the agent (listener/speaker) to use as the primary object of evaluation. Whether this agent is a listener or speaker will be inferred from the --listener flag.'\n )\nparser.add_argument('--rsa_optimizer', choices=OPTIMIZERS.keys(), default=\n 'rmsprop', help=\n 'The optimization (update) algorithm to use for RSA training.')\nparser.add_argument('--rsa_learning_rate', type=float, default=0.1, help=\n 'The learning rate to use for RSA training.')\nparser.add_argument('--rsa_alpha', type=float, nargs='*', default=[1.0],\n help=\n 'Weights for the log-likelihood of the dataset according to the listeners. Provide as many values as there are listeners.'\n )\nparser.add_argument('--rsa_beta', type=float, nargs='*', default=[1.0],\n help=\n 'Weights for the log-likelihood of the dataset according to the speakers. Provide as many values as there are speakers.'\n )\nparser.add_argument('--rsa_mu', type=float, nargs='*', default=[1.0], help=\n 'Weights for KL(L_j||S_k). Provide values to fill a rsa_listeners x rsa_speakers matrix, in row-major order (i.e. all speakers for first listener, then all speakers for second listener, etc.).'\n )\nparser.add_argument('--rsa_nu', type=float, nargs='*', default=[1.0], help=\n 'Weights for KL(S_k||L_j). Provide values to fill a rsa_listeners x rsa_speakers matrix, in row-major order (i.e. all speakers for first listener, then all speakers for second listener, etc.).'\n )\nparser.add_argument('--listener_samples', type=int, default=128, help=\n 'Number of samples to draw from the listener per minibatch.')\nparser.add_argument('--speaker_samples', type=int, default=128, help=\n 'Number of samples to draw from the speaker per minibatch.')\nparser.add_argument('--monitor_sublosses', type=config.boolean, default=\n False, help=\n 'If `True`, return sub-losses for monitoring and write them to the TensorBoard events file. This will likely increase compilation time.'\n )\nparser.add_argument('--monitor_subgrads', type=config.boolean, default=\n False, help=\n 'If `True`, return sub-gradients for monitoring and write them to the TensorBoard events file. This will likely increase compilation time.'\n )\nparser.add_argument('--grad_of_est', type=config.boolean, default=False,\n help=\n 'If `True`, optimize using the gradient of the estimated loss; otherwise, use the manually-derived estimate of the gradient of the true loss.'\n )\nparser.add_argument('--layer_by_layer', type=config.boolean, default=False,\n help=\n 'If `True`, train RSA agents layer-by-layer (only use the log-likelihood sub-gradients, equivalent to training each agent on data generated from the other agents); otherwise, use the gradient of the full RSA objective.'\n )\nparser.add_argument('--listener_sample_smoothed', type=config.boolean,\n default=False, help=\n 'If `True`, take samples from the smoothed utterance prior; otherwise, sample from the empirical utterance prior.'\n )\nparser.add_argument('--speaker_sample_smoothed', type=config.boolean,\n default=False, help=\n 'If `True`, take samples from the smoothed world prior; otherwise, sample from the empirical world prior.'\n )\n\n\nclass AggregatePrior(object):\n\n def __init__(self, listeners, speakers, prior_name='prior_emp'):\n self.listeners = listeners\n self.speakers = speakers\n self.prior_name = prior_name\n\n def train(self, training_instances, listener=False):\n for agent in self.listeners:\n getattr(agent, self.prior_name).train(training_instances,\n listener=listener)\n for agent in self.speakers:\n getattr(agent, self.prior_name).train(training_instances,\n listener=listener)\n\n def apply(self, input_vars):\n assert False, \"AggregatePrior.apply shouldn't be called; only individual model priors are used in RSA coop nets model\"\n\n\nclass RSASubModel(SimpleLasagneModel):\n \"\"\"\n A SimpleLasagneModel for a subcomponent of an RSA graph.\n \"\"\"\n\n def __init__(self, input_vars, target_vars, l_out, loss, optimizer,\n learning_rate=0.001, id=None):\n super(RSASubModel, self).__init__(input_vars, target_vars, l_out,\n loss, optimizer, learning_rate=learning_rate, id=id)\n if len(target_vars) != 1:\n raise ValueError(\n 'target_vars should be a sequence of length 1, instead got %s'\n % (target_vars,))\n self.target_var = target_vars[0]\n\n def build_sample_vars(self, num_other_agents):\n self.sample_inputs_self = [v.type('%s_sample_self' % (v.name,)) for\n v in self.input_vars]\n self.sample_inputs_others = [[v.type('%s_sample_other%d' % (v.name,\n i)) for v in self.input_vars] for i in range(num_other_agents)]\n t = self.target_var\n self.sample_target_self = t.type('%s_sample_self' % (t.name,))\n self.sample_target_others = [t.type('%s_sample_other%d' % (t.name,\n i)) for i in range(num_other_agents)]\n self.all_synth_vars = self.sample_inputs_self + [self.\n sample_target_self] + [v for o_inputs, o_target in zip(self.\n sample_inputs_others, self.sample_target_others) for v in \n o_inputs + [o_target]]\n\n def data_to_synth_arrays(self, agent, samples_self, samples_others):\n\n def flatten(arrays):\n inputs, targets = arrays\n return inputs + targets\n return [arr for i, samples in enumerate([samples_self] +\n samples_others) for arr in flatten(agent._data_to_arrays(\n samples, inverted=i != 0))]\n\n\nclass RSAGraphModel(SimpleLasagneModel):\n\n def __init__(self, listeners, speakers, eval_agent, id=None):\n self.get_options()\n self.listeners = listeners\n self.speakers = speakers\n self.eval_agent = eval_agent\n input_vars = [v for listener in listeners for v in listener.model.\n input_vars] + [v for speaker in speakers for v in speaker.model\n .input_vars]\n target_vars = [listener.model.target_var for listener in listeners] + [\n speaker.model.target_var for speaker in speakers]\n super(RSAGraphModel, self).__init__(input_vars, target_vars, l_out=\n eval_agent.model.l_out, loss=None, optimizer=OPTIMIZERS[self.\n options.rsa_optimizer], learning_rate=self.options.\n rsa_learning_rate, id=id)\n\n def params(self):\n result = []\n for listener in self.listeners:\n result.extend(listener.params())\n for speaker in self.speakers:\n result.extend(speaker.params())\n return result\n\n def get_train_loss(self, target_vars, params):\n for agent in self.speakers:\n agent.model.build_sample_vars(len(self.listeners))\n for agent in self.listeners:\n agent.model.build_sample_vars(len(self.speakers))\n monitored = self.get_est_loss(layer_by_layer=self.options.\n layer_by_layer)\n if self.options.grad_of_est:\n est_grad, monitored_grads = self.get_grad_of_est(monitored, params)\n else:\n est_grad, monitored_grads = self.get_est_grad(params,\n layer_by_layer=self.options.layer_by_layer)\n monitored.update(monitored_grads)\n synth_vars = [v for agent in self.listeners + self.speakers for v in\n agent.model.all_synth_vars]\n return monitored, est_grad, synth_vars\n\n def get_est_loss(self, layer_by_layer=False):\n\n def kl(agent_p, agent_q, other_idx):\n if layer_by_layer:\n return agent_q.loss_out(agent_q.model.sample_inputs_others[\n other_idx], agent_q.model.sample_target_others[other_idx]\n ).mean()\n else:\n return (agent_p.log_joint_emp(agent_p.model.\n sample_inputs_self, agent_p.model.sample_target_self) -\n agent_q.log_joint_smooth(agent_q.model.\n sample_inputs_others[other_idx], agent_q.model.\n sample_target_others[other_idx])).mean()\n id_tag_log = self.id + ': ' if self.id else ''\n id_tag = self.id + '/' if self.id else ''\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || L)')\n alpha_losses = [('%salpha_%s' % (id_tag, listener.id), alpha *\n listener.loss_out().mean()) for alpha, listener in zip(self.\n options.rsa_alpha, self.listeners)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || S)')\n beta_losses = [('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.\n loss_out().mean()) for beta, speaker in zip(self.options.\n rsa_beta, self.speakers)]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(L || S)')\n mu_losses = [('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu *\n kl(listener, speaker, j)) for mu, (listener, j, speaker, k) in\n zip(self.options.rsa_mu, self.dyads())]\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(S || L)')\n nu_losses = [('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu *\n kl(speaker, listener, k)) for nu, (listener, j, speaker, k) in\n zip(self.options.rsa_nu, self.dyads())]\n all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses\n est_loss = t_sum(loss for tag, loss in all_sublosses)\n monitored = OrderedDict([('loss', est_loss)])\n if self.options.monitor_sublosses:\n monitored.update(all_sublosses)\n if self.options.monitor_activations:\n for agent in (self.listeners + self.speakers):\n for name, layer in get_named_layers(agent.l_out).iteritems():\n monitored['activation/' + name] = get_output(layer)\n return monitored\n\n def get_est_grad(self, params, layer_by_layer=False):\n\n def mean_weighted_grad(weights, loss):\n return T.Lop(loss, params, weights / T.cast(weights.shape[0],\n 'float32'), disconnected_inputs='ignore')\n\n def mean_grad(loss):\n return T.grad(loss.mean(), params, disconnected_inputs='ignore')\n id_tag = self.id + ': ' if self.id else ''\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: alpha')\n all_subgrads = [('grad_alpha/%s' % (listener.id,), mean_grad(alpha *\n listener.loss_out())) for alpha, listener in zip(self.options.\n rsa_alpha, self.listeners)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: beta')\n all_subgrads.extend([('grad_beta/%s' % (speaker.id,), mean_grad(\n beta * speaker.loss_out())) for beta, speaker in zip(self.\n options.rsa_beta, self.speakers)])\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: nu co-training')\n all_subgrads.extend([('grad_nu_co/%s_%s' % (listener.id, speaker.id\n ), mean_grad(nu * listener.loss_out(listener.model.\n sample_inputs_others[k], listener.model.sample_target_others[k]\n ))) for nu, (listener, j, speaker, k) in zip(self.options.\n rsa_nu, self.dyads())])\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: mu co-training')\n all_subgrads.extend([('grad_mu_co/%s_%s' % (listener.id, speaker.id\n ), mean_grad(mu * speaker.loss_out(speaker.model.\n sample_inputs_others[j], speaker.model.sample_target_others[j])\n )) for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu,\n self.dyads())])\n if not layer_by_layer:\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: mu regularizer')\n all_subgrads.extend([('grad_mu_reg/%s_%s' % (listener.id,\n speaker.id), mean_weighted_grad(mu * (1 + listener.\n log_joint_emp(listener.model.sample_inputs_self, listener.\n model.sample_target_self) - speaker.log_joint_smooth(\n speaker.model.sample_inputs_others[j], speaker.model.\n sample_target_others[j])), listener.loss_out(listener.model\n .sample_inputs_self, listener.model.sample_target_self))) for\n mu, (listener, j, speaker, k) in zip(self.options.rsa_mu,\n self.dyads())])\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: nu regularizer')\n all_subgrads.extend([('grad_nu_reg/%s_%s' % (listener.id,\n speaker.id), mean_weighted_grad(nu * (1 + speaker.\n log_joint_emp(speaker.model.sample_inputs_self, speaker.\n model.sample_target_self) - listener.log_joint_smooth(\n listener.model.sample_inputs_others[k], listener.model.\n sample_target_others[k])), speaker.loss_out(speaker.model.\n sample_inputs_self, speaker.model.sample_target_self))) for\n nu, (listener, j, speaker, k) in zip(self.options.rsa_nu,\n self.dyads())])\n est_grad = t_sum([grads for tag, grads in all_subgrads], nested=True)\n monitored = OrderedDict()\n if self.options.monitor_grads:\n monitored.update([('grad/' + param.name, grad) for param, grad in\n zip(params, est_grad)])\n if self.options.monitor_subgrads:\n monitored.update([(tag + '/' + param.name, grad) for tag, grads in\n all_subgrads for param, grad in zip(params, grads)])\n return est_grad, monitored\n\n def get_grad_of_est(self, monitored, params):\n grad_of_est = T.grad(monitored['loss'], params)\n monitored_grads = OrderedDict()\n if self.options.monitor_grads:\n monitored_grads.update([('grad/' + param.name, grad) for param,\n grad in zip(params, grad_of_est)])\n if self.options.monitor_subgrads:\n monitored_grads.update([(tag + '/' + param.name, grad) for tag,\n subloss in monitored.iteritems() if tag != 'loss' for param,\n grad in zip(params, T.grad(subloss, params,\n disconnected_inputs='ignore'))])\n return grad_of_est, monitored_grads\n\n def dyads(self):\n for j, listener in enumerate(self.listeners):\n for k, speaker in enumerate(self.speakers):\n yield listener, j, speaker, k\n\n def minibatches(self, inputs, targets, batch_size, shuffle=False):\n agents = self.listeners + self.speakers\n batches = super(RSAGraphModel, self).minibatches(inputs, targets,\n batch_size, shuffle=shuffle)\n for dataset_inputs, dataset_targets, _synth in batches:\n inputs_batch = []\n targets_batch = []\n synth_batch = []\n filtered = self.filter_arrays(dataset_inputs, dataset_targets)\n for agent, (agent_inputs, agent_targets) in zip(agents, filtered):\n inputs_batch.extend(agent_inputs)\n targets_batch.extend(agent_targets)\n input_types = [a.shape for a in agent_inputs]\n target_types = [a.shape for a in agent_targets]\n if self.options.verbosity >= 8:\n print('%s: %s -> %s' % (agent.id, input_types,\n target_types))\n listener_samples = [(listener.sample_joint_smooth(self.options.\n listener_samples) if self.options.listener_sample_smoothed else\n listener.sample_joint_emp(self.options.listener_samples)) for\n listener in self.listeners]\n speaker_samples = [(speaker.sample_joint_smooth(self.options.\n speaker_samples) if self.options.speaker_sample_smoothed else\n speaker.sample_joint_emp(self.options.listener_samples)) for\n speaker in self.speakers]\n for listener, samples in zip(self.listeners, listener_samples):\n arrays = listener.model.data_to_synth_arrays(listener,\n samples, speaker_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (listener.id, synth_types))\n for speaker, samples in zip(self.speakers, speaker_samples):\n arrays = speaker.model.data_to_synth_arrays(speaker,\n samples, listener_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (speaker.id, synth_types))\n yield inputs_batch, targets_batch, synth_batch\n\n def filter_arrays(self, inputs, targets):\n result = []\n input_idx = 0\n for agent, target in zip(self.listeners + self.speakers, targets):\n assert input_idx + len(agent.model.input_vars) <= len(inputs), (\n input_idx, len(agent.model.input_vars), len(inputs))\n agent_inputs = inputs[input_idx:input_idx + len(agent.model.\n input_vars)]\n agent_targets = [target]\n result.append((agent_inputs, agent_targets))\n input_idx += len(agent.model.input_vars)\n return result\n\n\nclass RSALearner(NeuralLearner):\n\n def __init__(self, id=None):\n self.get_options()\n self.init_submodels(id)\n super(RSALearner, self).__init__(id=id)\n color_resolution = (self.options.listener_color_resolution if self.\n options.listener else self.options.speaker_color_resolution)\n self.seq_vec = SequenceVectorizer()\n self.color_vec = BucketsVectorizer(color_resolution, hsv=self.\n options.speaker_hsv)\n\n def init_submodels(self, id=None):\n id_tag = id + '/' if id else ''\n self.get_options()\n listener_classes = self.options.listener_class\n speaker_classes = self.options.speaker_class\n if len(listener_classes) != self.options.rsa_listeners:\n assert len(listener_classes) == 1, len(listener_classes)\n listener_classes = listener_classes * self.options.rsa_listeners\n if len(speaker_classes) != self.options.rsa_speakers:\n assert len(speaker_classes) == 1, len(speaker_classes)\n speaker_classes = speaker_classes * self.options.rsa_speakers\n self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (\n id_tag, j)) for j in range(self.options.rsa_listeners)]\n self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag,\n k)) for k in range(self.options.rsa_speakers)]\n agents = self.listeners if self.options.listener else self.speakers\n self.eval_agent = agents[self.options.eval_agent]\n\n def predict(self, eval_instances, verbosity=0):\n return self.eval_agent.predict(eval_instances, verbosity=verbosity)\n\n def score(self, eval_instances, verbosity=0):\n return self.eval_agent.score(eval_instances, verbosity=verbosity)\n\n def predict_and_score(self, eval_instances, verbosity=0):\n return self.eval_agent.predict_and_score(eval_instances, verbosity=\n verbosity)\n\n def on_iter_end(self, step, writer):\n for agent in (self.speakers + self.listeners):\n agent.on_iter_end(step, writer)\n\n def sample_joint_smooth(self, num_samples):\n return self.eval_agent.sample_joint_smooth(num_samples)\n\n def _data_to_arrays(self, training_instances, init_vectorizer=False,\n test=False, inverted=False):\n input_arrays = []\n target_arrays = []\n if self.options.listener != inverted:\n listener_dataset = training_instances\n speaker_dataset = [inst.inverted() for inst in training_instances]\n else:\n listener_dataset = [inst.inverted() for inst in training_instances]\n speaker_dataset = training_instances\n for listener in self.listeners:\n if not test:\n listener.dataset = listener_dataset\n inputs, targets = listener._data_to_arrays(listener_dataset,\n test=test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n for speaker in self.speakers:\n if not test:\n speaker.dataset = speaker_dataset\n inputs, targets = speaker._data_to_arrays(speaker_dataset, test\n =test, init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n return input_arrays, target_arrays\n\n def _build_model(self):\n for agent in (self.listeners + self.speakers):\n agent._build_model(RSASubModel)\n self.build_aggregate_model()\n\n def train_priors(self, training_instances, listener_data=False):\n prior_class = LISTENER_PRIORS[self.options.listener_prior\n ] if self.options.listener else SPEAKER_PRIORS[self.options.\n speaker_prior]\n self.prior_emp = prior_class()\n self.prior_smooth = prior_class()\n self.prior_emp.train(training_instances, listener_data=listener_data)\n self.prior_smooth.train(training_instances, listener_data=listener_data\n )\n for agent in (self.listeners + self.speakers):\n agent.train_priors(training_instances, listener_data=listener_data)\n\n def build_aggregate_model(self):\n self.model = RSAGraphModel(self.listeners, self.speakers, self.\n eval_agent)\n self.prior_emp = AggregatePrior(self.listeners, self.speakers,\n 'prior_emp')\n self.prior_smooth = AggregatePrior(self.listeners, self.speakers,\n 'prior_smooth')\n\n def __getstate__(self):\n return self.seq_vec, self.color_vec, [agent.__getstate__() for\n agent in self.listeners + self.speakers]\n\n def __setstate__(self, state):\n self.seq_vec, self.color_vec, submodels = state\n self.init_submodels()\n for agent, substate in zip(self.listeners + self.speakers, submodels):\n agent.unpickle(substate, RSASubModel)\n self.build_aggregate_model()\n\n\ndef t_sum(seq, start=None, nested=False):\n \"\"\"A version of sum that doesn't start with 0, for constructing\n Theano graphs without superfluous TensorConstants.\n\n If `nested` is True, sum expressions embedded within lists,\n elementwise (for use with the output for T.jacobian).\n\n >>> t_sum([1, 2, 3])\n 6\n >>> t_sum(xrange(1, 4), start=4)\n 10\n >>> t_sum([[1, 2], [3, 4], [5, 6]], nested=True)\n [9, 12]\n >>> t_sum([[1, 2], [3, 4], [5, 6]], start=[-1, -2], nested=True)\n [8, 10]\n \"\"\"\n if nested:\n if not isinstance(seq, list):\n seq = list(seq)\n if start:\n return [t_sum(subseq, start_elem) for subseq, start_elem in zip\n (zip(*seq), start)]\n else:\n return [t_sum(subseq) for subseq in zip(*seq)]\n seq_list = list(seq)\n if seq_list:\n reduced = reduce(operator.add, seq_list)\n if start:\n reduced = start + reduced\n return reduced\n elif start:\n return start\n else:\n return 0\n", "step-5": "import operator\nimport theano.tensor as T\nfrom collections import OrderedDict\nfrom lasagne.layers import get_output\n\nfrom stanza.research import config\nfrom neural import SimpleLasagneModel, NeuralLearner\nfrom vectorizers import SequenceVectorizer, BucketsVectorizer\nfrom neural import OPTIMIZERS, get_named_layers\nfrom listener import LISTENERS, PRIORS as LISTENER_PRIORS\nfrom speaker import SPEAKERS, PRIORS as SPEAKER_PRIORS\n\nparser = config.get_options_parser()\nparser.add_argument('--rsa_listeners', type=int, default=1,\n help='Number of listeners to use in RSA cooperative nets graph')\nparser.add_argument('--rsa_speakers', type=int, default=1,\n help='Number of speakers to use in RSA cooperative nets graph')\nparser.add_argument('--listener_class', default=['Listener'], choices=LISTENERS.keys(), nargs='+',\n help='The name of the listener model to use in the RSA network.')\nparser.add_argument('--speaker_class', default=['Speaker'], choices=SPEAKERS.keys(), nargs='+',\n help='The name of the speaker model to use in the RSA network.')\nparser.add_argument('--eval_agent', type=int, default=0,\n help='Index of the agent (listener/speaker) to use as the primary object '\n 'of evaluation. Whether this agent is a listener or speaker will be '\n 'inferred from the --listener flag.')\nparser.add_argument('--rsa_optimizer', choices=OPTIMIZERS.keys(), default='rmsprop',\n help='The optimization (update) algorithm to use for RSA training.')\nparser.add_argument('--rsa_learning_rate', type=float, default=0.1,\n help='The learning rate to use for RSA training.')\n\nparser.add_argument('--rsa_alpha', type=float, nargs='*', default=[1.0],\n help='Weights for the log-likelihood of the dataset according to the '\n 'listeners. Provide as many values as there are listeners.')\nparser.add_argument('--rsa_beta', type=float, nargs='*', default=[1.0],\n help='Weights for the log-likelihood of the dataset according to the '\n 'speakers. Provide as many values as there are speakers.')\nparser.add_argument('--rsa_mu', type=float, nargs='*', default=[1.0],\n help='Weights for KL(L_j||S_k). Provide values to fill a '\n 'rsa_listeners x rsa_speakers matrix, in row-major order '\n '(i.e. all speakers for first listener, then all speakers for second '\n 'listener, etc.).')\nparser.add_argument('--rsa_nu', type=float, nargs='*', default=[1.0],\n help='Weights for KL(S_k||L_j). Provide values to fill a '\n 'rsa_listeners x rsa_speakers matrix, in row-major order '\n '(i.e. all speakers for first listener, then all speakers for second '\n 'listener, etc.).')\n\nparser.add_argument('--listener_samples', type=int, default=128,\n help='Number of samples to draw from the listener per minibatch.')\nparser.add_argument('--speaker_samples', type=int, default=128,\n help='Number of samples to draw from the speaker per minibatch.')\n\nparser.add_argument('--monitor_sublosses', type=config.boolean, default=False,\n help='If `True`, return sub-losses for monitoring and write them to the '\n 'TensorBoard events file. This will likely increase compilation time.')\nparser.add_argument('--monitor_subgrads', type=config.boolean, default=False,\n help='If `True`, return sub-gradients for monitoring and write them to the '\n 'TensorBoard events file. This will likely increase compilation time.')\nparser.add_argument('--grad_of_est', type=config.boolean, default=False,\n help='If `True`, optimize using the gradient of the estimated loss; '\n 'otherwise, use the manually-derived estimate of the gradient of '\n 'the true loss.')\nparser.add_argument('--layer_by_layer', type=config.boolean, default=False,\n help='If `True`, train RSA agents layer-by-layer (only use the log-likelihood '\n 'sub-gradients, equivalent to training each agent on data generated from '\n 'the other agents); otherwise, use the gradient of the full RSA '\n 'objective.')\nparser.add_argument('--listener_sample_smoothed', type=config.boolean, default=False,\n help='If `True`, take samples from the smoothed utterance prior; otherwise, '\n 'sample from the empirical utterance prior.')\nparser.add_argument('--speaker_sample_smoothed', type=config.boolean, default=False,\n help='If `True`, take samples from the smoothed world prior; otherwise, '\n 'sample from the empirical world prior.')\n\n\nclass AggregatePrior(object):\n def __init__(self, listeners, speakers, prior_name='prior_emp'):\n self.listeners = listeners\n self.speakers = speakers\n self.prior_name = prior_name\n\n def train(self, training_instances, listener=False):\n for agent in self.listeners:\n getattr(agent, self.prior_name).train(training_instances, listener=listener)\n for agent in self.speakers:\n getattr(agent, self.prior_name).train(training_instances, listener=listener)\n\n def apply(self, input_vars):\n assert False, (\"AggregatePrior.apply shouldn't be called; \"\n \"only individual model priors are used in RSA coop nets model\")\n\n\nclass RSASubModel(SimpleLasagneModel):\n '''\n A SimpleLasagneModel for a subcomponent of an RSA graph.\n '''\n def __init__(self, input_vars, target_vars, l_out, loss, optimizer,\n learning_rate=0.001, id=None):\n super(RSASubModel, self).__init__(input_vars, target_vars, l_out, loss, optimizer,\n learning_rate=learning_rate, id=id)\n if len(target_vars) != 1:\n raise ValueError('target_vars should be a sequence of length 1, instead got %s' %\n (target_vars,))\n self.target_var = target_vars[0]\n\n def build_sample_vars(self, num_other_agents):\n self.sample_inputs_self = [v.type('%s_sample_self' % (v.name,))\n for v in self.input_vars]\n self.sample_inputs_others = [[v.type('%s_sample_other%d' % (v.name, i))\n for v in self.input_vars]\n for i in range(num_other_agents)]\n t = self.target_var\n self.sample_target_self = t.type('%s_sample_self' % (t.name,))\n self.sample_target_others = [t.type('%s_sample_other%d' % (t.name, i))\n for i in range(num_other_agents)]\n\n self.all_synth_vars = (self.sample_inputs_self +\n [self.sample_target_self] +\n [v\n for o_inputs, o_target in zip(self.sample_inputs_others,\n self.sample_target_others)\n for v in o_inputs + [o_target]])\n\n def data_to_synth_arrays(self, agent, samples_self, samples_others):\n def flatten(arrays):\n inputs, targets = arrays\n return inputs + targets\n\n return [arr\n for i, samples in enumerate([samples_self] + samples_others)\n for arr in flatten(agent._data_to_arrays(samples, inverted=(i != 0)))]\n\n\nclass RSAGraphModel(SimpleLasagneModel):\n def __init__(self, listeners, speakers, eval_agent, id=None):\n self.get_options()\n\n self.listeners = listeners\n self.speakers = speakers\n self.eval_agent = eval_agent\n input_vars = ([v for listener in listeners for v in listener.model.input_vars] +\n [v for speaker in speakers for v in speaker.model.input_vars])\n target_vars = ([listener.model.target_var for listener in listeners] +\n [speaker.model.target_var for speaker in speakers])\n super(RSAGraphModel, self).__init__(input_vars, target_vars,\n l_out=eval_agent.model.l_out, loss=None,\n optimizer=OPTIMIZERS[self.options.rsa_optimizer],\n learning_rate=self.options.rsa_learning_rate,\n id=id)\n\n def params(self):\n result = []\n for listener in self.listeners:\n result.extend(listener.params())\n for speaker in self.speakers:\n result.extend(speaker.params())\n return result\n\n def get_train_loss(self, target_vars, params):\n for agent in self.speakers:\n agent.model.build_sample_vars(len(self.listeners))\n for agent in self.listeners:\n agent.model.build_sample_vars(len(self.speakers))\n\n monitored = self.get_est_loss(layer_by_layer=self.options.layer_by_layer)\n if self.options.grad_of_est:\n est_grad, monitored_grads = self.get_grad_of_est(monitored, params)\n else:\n est_grad, monitored_grads = self.get_est_grad(\n params, layer_by_layer=self.options.layer_by_layer)\n monitored.update(monitored_grads)\n synth_vars = [v\n for agent in self.listeners + self.speakers\n for v in agent.model.all_synth_vars]\n\n return monitored, est_grad, synth_vars\n\n def get_est_loss(self, layer_by_layer=False):\n def kl(agent_p, agent_q, other_idx):\n if layer_by_layer:\n return agent_q.loss_out(agent_q.model.sample_inputs_others[other_idx],\n agent_q.model.sample_target_others[other_idx]).mean()\n else:\n return (\n agent_p.log_joint_emp(agent_p.model.sample_inputs_self,\n agent_p.model.sample_target_self) -\n agent_q.log_joint_smooth(agent_q.model.sample_inputs_others[other_idx],\n agent_q.model.sample_target_others[other_idx])\n ).mean()\n\n id_tag_log = (self.id + ': ') if self.id else ''\n id_tag = (self.id + '/') if self.id else ''\n # \\alpha * KL(dataset || L) = \\alpha * log L(dataset) + C\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || L)')\n alpha_losses = [\n ('%salpha_%s' % (id_tag, listener.id), alpha * listener.loss_out().mean())\n for alpha, listener in zip(self.options.rsa_alpha, self.listeners)\n ]\n # \\beta * KL(dataset || S) = \\beta * log S(dataset) + C\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(dataset || S)')\n beta_losses = [\n ('%sbeta_%s' % (id_tag, speaker.id), beta * speaker.loss_out().mean())\n for beta, speaker in zip(self.options.rsa_beta, self.speakers)\n ]\n\n # \\mu * KL(L || S)\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(L || S)')\n mu_losses = [\n ('%smu_%s_%s' % (id_tag, listener.id, speaker.id), mu * kl(listener, speaker, j))\n for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())\n ]\n # \\nu * KL(S || L)\n if self.options.verbosity >= 4:\n print(id_tag_log + 'loss: KL(S || L)')\n nu_losses = [\n ('%snu_%s_%s' % (id_tag, speaker.id, listener.id), nu * kl(speaker, listener, k))\n for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())\n ]\n\n all_sublosses = alpha_losses + beta_losses + mu_losses + nu_losses\n est_loss = t_sum(loss for tag, loss in all_sublosses)\n\n monitored = OrderedDict([('loss', est_loss)])\n if self.options.monitor_sublosses:\n monitored.update(all_sublosses)\n if self.options.monitor_activations:\n for agent in self.listeners + self.speakers:\n for name, layer in get_named_layers(agent.l_out).iteritems():\n monitored['activation/' + name] = get_output(layer)\n return monitored\n\n def get_est_grad(self, params, layer_by_layer=False):\n def mean_weighted_grad(weights, loss):\n # Lop to the rescue! Here I was calling T.jacobian and trying to\n # broadcast things and elementwise-multiply through the resulting lists,\n # when a function already existed to do all of that for me...\n return T.Lop(loss, params, weights / T.cast(weights.shape[0], 'float32'),\n disconnected_inputs='ignore')\n # TODO: control variates?\n\n def mean_grad(loss):\n return T.grad(loss.mean(), params, disconnected_inputs='ignore')\n\n id_tag = (self.id + ': ') if self.id else ''\n # alpha and beta: train the agents directly against the dataset.\n # \\alpha_j E_D [-d/d\\theta_j log L(c | m; \\theta_j)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: alpha')\n all_subgrads = [\n ('grad_alpha/%s' % (listener.id,),\n mean_grad(alpha * listener.loss_out()))\n for alpha, listener in zip(self.options.rsa_alpha, self.listeners)\n ]\n # \\beta_k E_D [-d/d\\phi_k log S(m | c; \\phi_k)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: beta')\n all_subgrads.extend([\n ('grad_beta/%s' % (speaker.id,),\n mean_grad(beta * speaker.loss_out()))\n for beta, speaker in zip(self.options.rsa_beta, self.speakers)\n ])\n\n # The \"simple\" mu and nu terms: train the agents directly against each other.\n # These are still ordinary log-likelihood terms; the complexity comes from\n # identifying the right input variables and iterating over the m x n dyads.\n # sum_k \\nu_jk E_{G_S(\\phi_k)} [-d/d\\theta_j log L(c | m; \\theta_j)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: nu co-training')\n all_subgrads.extend([\n ('grad_nu_co/%s_%s' % (listener.id, speaker.id),\n mean_grad(nu * listener.loss_out(listener.model.sample_inputs_others[k],\n listener.model.sample_target_others[k])))\n for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())\n ])\n # sum_j \\nu_jk E_{G_L(\\theta_j)} [-d/d\\phi_k log S(m | c; \\phi_k)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: mu co-training')\n all_subgrads.extend([\n ('grad_mu_co/%s_%s' % (listener.id, speaker.id),\n mean_grad(mu * speaker.loss_out(speaker.model.sample_inputs_others[j],\n speaker.model.sample_target_others[j])))\n for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())\n ])\n\n # The \"hard\" mu and nu terms: regularize the agents with maximum entropy and\n # accommodating other agents' priors.\n #\n # Zero out these subgradients if we're doing layer-by-layer training.\n if not layer_by_layer:\n # sum_k \\mu_jk E_{G_L(\\theta_j)}\n # [(1 + log G_L(c, m; \\theta_j) - log H_S(c, m; \\phi_k)) *\n # d/d\\theta_j log L(c | m; \\theta_j)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: mu regularizer')\n all_subgrads.extend([\n ('grad_mu_reg/%s_%s' % (listener.id, speaker.id),\n mean_weighted_grad(\n mu *\n (1 + listener.log_joint_emp(listener.model.sample_inputs_self,\n listener.model.sample_target_self) -\n speaker.log_joint_smooth(speaker.model.sample_inputs_others[j],\n speaker.model.sample_target_others[j])),\n listener.loss_out(listener.model.sample_inputs_self,\n listener.model.sample_target_self)))\n for mu, (listener, j, speaker, k) in zip(self.options.rsa_mu, self.dyads())\n ])\n # sum_j \\nu_jk E_{G_S(\\phi_k)}\n # [(1 + log G_S(c, m; \\phi_k) - log H_L(c, m; \\theta_j)) *\n # d/d\\phi_k log S(m | c; \\phi_k)]\n if self.options.verbosity >= 4:\n print(id_tag + 'grad: nu regularizer')\n all_subgrads.extend([\n ('grad_nu_reg/%s_%s' % (listener.id, speaker.id),\n mean_weighted_grad(\n nu *\n (1 + speaker.log_joint_emp(speaker.model.sample_inputs_self,\n speaker.model.sample_target_self) -\n listener.log_joint_smooth(listener.model.sample_inputs_others[k],\n listener.model.sample_target_others[k])),\n speaker.loss_out(speaker.model.sample_inputs_self,\n speaker.model.sample_target_self)))\n for nu, (listener, j, speaker, k) in zip(self.options.rsa_nu, self.dyads())\n ])\n\n est_grad = t_sum([grads for tag, grads in all_subgrads], nested=True)\n\n monitored = OrderedDict()\n if self.options.monitor_grads:\n monitored.update([\n ('grad/' + param.name, grad)\n for param, grad in zip(params, est_grad)\n ])\n if self.options.monitor_subgrads:\n monitored.update([\n (tag + '/' + param.name, grad)\n for tag, grads in all_subgrads\n for param, grad in zip(params, grads)\n ])\n return est_grad, monitored\n\n def get_grad_of_est(self, monitored, params):\n grad_of_est = T.grad(monitored['loss'], params)\n\n monitored_grads = OrderedDict()\n if self.options.monitor_grads:\n monitored_grads.update([\n ('grad/' + param.name, grad)\n for param, grad in zip(params, grad_of_est)\n ])\n if self.options.monitor_subgrads:\n monitored_grads.update([\n (tag + '/' + param.name, grad)\n for tag, subloss in monitored.iteritems() if tag != 'loss'\n for param, grad in zip(params, T.grad(subloss, params,\n disconnected_inputs='ignore'))\n ])\n\n return grad_of_est, monitored_grads\n\n def dyads(self):\n for j, listener in enumerate(self.listeners):\n for k, speaker in enumerate(self.speakers):\n yield (listener, j, speaker, k)\n\n def minibatches(self, inputs, targets, batch_size, shuffle=False):\n agents = self.listeners + self.speakers\n batches = super(RSAGraphModel, self).minibatches(inputs, targets, batch_size,\n shuffle=shuffle)\n for dataset_inputs, dataset_targets, _synth in batches:\n inputs_batch = []\n targets_batch = []\n synth_batch = []\n\n filtered = self.filter_arrays(dataset_inputs, dataset_targets)\n for agent, (agent_inputs, agent_targets) in zip(agents, filtered):\n inputs_batch.extend(agent_inputs)\n targets_batch.extend(agent_targets)\n input_types = [a.shape for a in agent_inputs]\n target_types = [a.shape for a in agent_targets]\n if self.options.verbosity >= 8:\n print('%s: %s -> %s' % (agent.id, input_types, target_types))\n\n listener_samples = [listener.sample_joint_smooth(self.options.listener_samples)\n if self.options.listener_sample_smoothed else\n listener.sample_joint_emp(self.options.listener_samples)\n for listener in self.listeners]\n speaker_samples = [speaker.sample_joint_smooth(self.options.speaker_samples)\n if self.options.speaker_sample_smoothed else\n speaker.sample_joint_emp(self.options.listener_samples)\n for speaker in self.speakers]\n\n for listener, samples in zip(self.listeners, listener_samples):\n arrays = listener.model.data_to_synth_arrays(listener, samples,\n speaker_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (listener.id, synth_types))\n for speaker, samples in zip(self.speakers, speaker_samples):\n arrays = speaker.model.data_to_synth_arrays(speaker, samples,\n listener_samples)\n synth_batch.extend(arrays)\n synth_types = [a.shape for a in arrays]\n if self.options.verbosity >= 8:\n print('%s synth: %s' % (speaker.id, synth_types))\n yield inputs_batch, targets_batch, synth_batch\n\n def filter_arrays(self, inputs, targets):\n result = []\n input_idx = 0\n for agent, target in zip(self.listeners + self.speakers, targets):\n assert input_idx + len(agent.model.input_vars) <= len(inputs), \\\n (input_idx, len(agent.model.input_vars), len(inputs))\n agent_inputs = inputs[input_idx:input_idx + len(agent.model.input_vars)]\n agent_targets = [target]\n result.append((agent_inputs, agent_targets))\n input_idx += len(agent.model.input_vars)\n return result\n\n\nclass RSALearner(NeuralLearner):\n def __init__(self, id=None):\n self.get_options()\n self.init_submodels(id)\n super(RSALearner, self).__init__(id=id)\n\n color_resolution = (self.options.listener_color_resolution\n if self.options.listener else\n self.options.speaker_color_resolution)\n self.seq_vec = SequenceVectorizer()\n self.color_vec = BucketsVectorizer(color_resolution, hsv=self.options.speaker_hsv)\n\n def init_submodels(self, id=None):\n id_tag = (id + '/') if id else ''\n self.get_options()\n\n listener_classes = self.options.listener_class\n speaker_classes = self.options.speaker_class\n if len(listener_classes) != self.options.rsa_listeners:\n assert len(listener_classes) == 1, len(listener_classes)\n listener_classes = listener_classes * self.options.rsa_listeners\n if len(speaker_classes) != self.options.rsa_speakers:\n assert len(speaker_classes) == 1, len(speaker_classes)\n speaker_classes = speaker_classes * self.options.rsa_speakers\n self.listeners = [LISTENERS[listener_classes[j]](id='%sL%d' % (id_tag, j))\n for j in range(self.options.rsa_listeners)]\n self.speakers = [SPEAKERS[speaker_classes[k]](id='%sS%d' % (id_tag, k))\n for k in range(self.options.rsa_speakers)]\n\n agents = self.listeners if self.options.listener else self.speakers\n self.eval_agent = agents[self.options.eval_agent]\n\n def predict(self, eval_instances, verbosity=0):\n return self.eval_agent.predict(eval_instances, verbosity=verbosity)\n\n def score(self, eval_instances, verbosity=0):\n return self.eval_agent.score(eval_instances, verbosity=verbosity)\n\n def predict_and_score(self, eval_instances, verbosity=0):\n return self.eval_agent.predict_and_score(eval_instances, verbosity=verbosity)\n\n def on_iter_end(self, step, writer):\n for agent in self.speakers + self.listeners:\n agent.on_iter_end(step, writer)\n\n def sample_joint_smooth(self, num_samples):\n return self.eval_agent.sample_joint_smooth(num_samples)\n\n def _data_to_arrays(self, training_instances,\n init_vectorizer=False, test=False, inverted=False):\n input_arrays = []\n target_arrays = []\n\n if self.options.listener != inverted:\n listener_dataset = training_instances\n speaker_dataset = [inst.inverted() for inst in training_instances]\n else:\n listener_dataset = [inst.inverted() for inst in training_instances]\n speaker_dataset = training_instances\n\n for listener in self.listeners:\n if not test:\n listener.dataset = listener_dataset\n inputs, targets = listener._data_to_arrays(listener_dataset, test=test,\n init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n for speaker in self.speakers:\n if not test:\n speaker.dataset = speaker_dataset\n inputs, targets = speaker._data_to_arrays(speaker_dataset, test=test,\n init_vectorizer=init_vectorizer)\n input_arrays.extend(inputs)\n target_arrays.extend(targets)\n\n return input_arrays, target_arrays\n\n def _build_model(self):\n for agent in self.listeners + self.speakers:\n agent._build_model(RSASubModel)\n self.build_aggregate_model()\n\n def train_priors(self, training_instances, listener_data=False):\n prior_class = (LISTENER_PRIORS[self.options.listener_prior]\n if self.options.listener else\n SPEAKER_PRIORS[self.options.speaker_prior])\n self.prior_emp = prior_class()\n self.prior_smooth = prior_class()\n\n self.prior_emp.train(training_instances, listener_data=listener_data)\n self.prior_smooth.train(training_instances, listener_data=listener_data)\n\n for agent in self.listeners + self.speakers:\n agent.train_priors(training_instances, listener_data=listener_data)\n\n def build_aggregate_model(self):\n self.model = RSAGraphModel(self.listeners, self.speakers, self.eval_agent)\n self.prior_emp = AggregatePrior(self.listeners, self.speakers, 'prior_emp')\n self.prior_smooth = AggregatePrior(self.listeners, self.speakers, 'prior_smooth')\n\n def __getstate__(self):\n return (self.seq_vec, self.color_vec,\n [agent.__getstate__() for agent in self.listeners + self.speakers])\n\n def __setstate__(self, state):\n self.seq_vec, self.color_vec, submodels = state\n self.init_submodels()\n for agent, substate in zip(self.listeners + self.speakers, submodels):\n agent.unpickle(substate, RSASubModel)\n self.build_aggregate_model()\n\n\ndef t_sum(seq, start=None, nested=False):\n '''A version of sum that doesn't start with 0, for constructing\n Theano graphs without superfluous TensorConstants.\n\n If `nested` is True, sum expressions embedded within lists,\n elementwise (for use with the output for T.jacobian).\n\n >>> t_sum([1, 2, 3])\n 6\n >>> t_sum(xrange(1, 4), start=4)\n 10\n >>> t_sum([[1, 2], [3, 4], [5, 6]], nested=True)\n [9, 12]\n >>> t_sum([[1, 2], [3, 4], [5, 6]], start=[-1, -2], nested=True)\n [8, 10]\n '''\n if nested:\n if not isinstance(seq, list):\n seq = list(seq)\n if start:\n return [t_sum(subseq, start_elem) for subseq, start_elem in zip(zip(*seq), start)]\n else:\n return [t_sum(subseq) for subseq in zip(*seq)]\n\n seq_list = list(seq)\n if seq_list:\n reduced = reduce(operator.add, seq_list)\n if start:\n reduced = start + reduced\n return reduced\n elif start:\n return start\n else:\n return 0\n", "step-ids": [ 15, 21, 23, 36, 38 ] }
[ 15, 21, 23, 36, 38 ]
# -*- coding: utf-8 -*- import json import argparse def parse_args(): """ Parse input arguments. :return: """ parser = argparse.ArgumentParser(description='以图搜图API测试') parser.add_argument('--ak', dest='access_key', help='access_key for qiniu account', type=str) parser.add_argument('--sk', dest='secret_key', help='secret_key for qiniu account', type=str) parser.add_argument('--in', dest='json_file', help='json file', type=str) return parser.parse_args() if __name__ == '__main__': args = parse_args() file = open(args.json_file,'r') res = [] a = 0 for line in file.readlines(): dic = json.loads(line) img_url = dic["url"] t = {"url": img_url, "true":0, "simialr_uri":[]} if not "error" in dic.keys(): a += 1 #im_num = img_url.split('.')[-2].split('/')[-1].lstrip('image_group_test_') im_num = img_url.split('.')[-2].split('/')[-1]#.lstrip('image_group_test_') print(im_num) for i in dic["result"]: uri = [] #print((i["uri"].split('/'))[4].split('__')[0]=="eval",(i["uri"].split('/'))[4].split('-')[0]) print((i["uri"].split('/'))[4]) if ((i["uri"].split('/'))[4].split('__')[0]=="eval") and (im_num in (i["uri"].split('/'))[4].split('-')[0]): t["simialr_uri"].append(i) t["true"] += 1 res.append(t) r = 0 for i in range(a): r += res[i]["true"] correct = r/(float(a)*15) print ("The top-5 correct percentage is %f" % correct)
normal
{ "blob_id": "c7147741784b37b42200869002d4df5ddc900675", "index": 2001, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_args():\n \"\"\"\n Parse input arguments.\n :return:\n \"\"\"\n parser = argparse.ArgumentParser(description='以图搜图API测试')\n parser.add_argument('--ak', dest='access_key', help=\n 'access_key for qiniu account', type=str)\n parser.add_argument('--sk', dest='secret_key', help=\n 'secret_key for qiniu account', type=str)\n parser.add_argument('--in', dest='json_file', help='json file', type=str)\n return parser.parse_args()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef parse_args():\n \"\"\"\n Parse input arguments.\n :return:\n \"\"\"\n parser = argparse.ArgumentParser(description='以图搜图API测试')\n parser.add_argument('--ak', dest='access_key', help=\n 'access_key for qiniu account', type=str)\n parser.add_argument('--sk', dest='secret_key', help=\n 'secret_key for qiniu account', type=str)\n parser.add_argument('--in', dest='json_file', help='json file', type=str)\n return parser.parse_args()\n\n\nif __name__ == '__main__':\n args = parse_args()\n file = open(args.json_file, 'r')\n res = []\n a = 0\n for line in file.readlines():\n dic = json.loads(line)\n img_url = dic['url']\n t = {'url': img_url, 'true': 0, 'simialr_uri': []}\n if not 'error' in dic.keys():\n a += 1\n im_num = img_url.split('.')[-2].split('/')[-1]\n print(im_num)\n for i in dic['result']:\n uri = []\n print(i['uri'].split('/')[4])\n if i['uri'].split('/')[4].split('__')[0\n ] == 'eval' and im_num in i['uri'].split('/')[4].split('-'\n )[0]:\n t['simialr_uri'].append(i)\n t['true'] += 1\n res.append(t)\n r = 0\n for i in range(a):\n r += res[i]['true']\n correct = r / (float(a) * 15)\n print('The top-5 correct percentage is %f' % correct)\n", "step-4": "import json\nimport argparse\n\n\ndef parse_args():\n \"\"\"\n Parse input arguments.\n :return:\n \"\"\"\n parser = argparse.ArgumentParser(description='以图搜图API测试')\n parser.add_argument('--ak', dest='access_key', help=\n 'access_key for qiniu account', type=str)\n parser.add_argument('--sk', dest='secret_key', help=\n 'secret_key for qiniu account', type=str)\n parser.add_argument('--in', dest='json_file', help='json file', type=str)\n return parser.parse_args()\n\n\nif __name__ == '__main__':\n args = parse_args()\n file = open(args.json_file, 'r')\n res = []\n a = 0\n for line in file.readlines():\n dic = json.loads(line)\n img_url = dic['url']\n t = {'url': img_url, 'true': 0, 'simialr_uri': []}\n if not 'error' in dic.keys():\n a += 1\n im_num = img_url.split('.')[-2].split('/')[-1]\n print(im_num)\n for i in dic['result']:\n uri = []\n print(i['uri'].split('/')[4])\n if i['uri'].split('/')[4].split('__')[0\n ] == 'eval' and im_num in i['uri'].split('/')[4].split('-'\n )[0]:\n t['simialr_uri'].append(i)\n t['true'] += 1\n res.append(t)\n r = 0\n for i in range(a):\n r += res[i]['true']\n correct = r / (float(a) * 15)\n print('The top-5 correct percentage is %f' % correct)\n", "step-5": "# -*- coding: utf-8 -*-\nimport json\nimport argparse\n\ndef parse_args():\n \"\"\"\n Parse input arguments.\n :return:\n \"\"\"\n parser = argparse.ArgumentParser(description='以图搜图API测试')\n parser.add_argument('--ak', dest='access_key', help='access_key for qiniu account',\n type=str)\n\n parser.add_argument('--sk', dest='secret_key', help='secret_key for qiniu account',\n type=str)\n\n parser.add_argument('--in', dest='json_file', help='json file',\n type=str)\n\n return parser.parse_args()\n\n\nif __name__ == '__main__':\n args = parse_args()\n\n file = open(args.json_file,'r')\n res = []\n a = 0\n\n for line in file.readlines():\n dic = json.loads(line)\n img_url = dic[\"url\"]\n t = {\"url\": img_url, \"true\":0, \"simialr_uri\":[]}\n if not \"error\" in dic.keys():\n a += 1\n #im_num = img_url.split('.')[-2].split('/')[-1].lstrip('image_group_test_')\n im_num = img_url.split('.')[-2].split('/')[-1]#.lstrip('image_group_test_')\n print(im_num)\n for i in dic[\"result\"]:\n uri = []\n #print((i[\"uri\"].split('/'))[4].split('__')[0]==\"eval\",(i[\"uri\"].split('/'))[4].split('-')[0])\n print((i[\"uri\"].split('/'))[4])\n if ((i[\"uri\"].split('/'))[4].split('__')[0]==\"eval\") and (im_num in (i[\"uri\"].split('/'))[4].split('-')[0]):\n t[\"simialr_uri\"].append(i)\n t[\"true\"] += 1\n res.append(t)\n\n r = 0\n for i in range(a):\n r += res[i][\"true\"]\n\n correct = r/(float(a)*15)\n print (\"The top-5 correct percentage is %f\" % correct)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
<|reserved_special_token_0|> <|reserved_special_token_1|> from .submit import * from .fck import *
flexible
{ "blob_id": "9a5ba88a61f5c27c0bc7b980fa9d865b52cbbb20", "index": 7266, "step-1": "<mask token>\n", "step-2": "from .submit import *\nfrom .fck import *\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
<|reserved_special_token_0|> class BasicTestSuite(unittest.TestCase): <|reserved_special_token_0|> def test_hello_world(self): self.assertEqual(hello_world(), 'hello world') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class BasicTestSuite(unittest.TestCase): """Basic test cases.""" def test_hello_world(self): self.assertEqual(hello_world(), 'hello world') <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class BasicTestSuite(unittest.TestCase): """Basic test cases.""" def test_hello_world(self): self.assertEqual(hello_world(), 'hello world') if __name__ == '__main__': unittest.main() <|reserved_special_token_1|> import unittest from .context import * class BasicTestSuite(unittest.TestCase): """Basic test cases.""" def test_hello_world(self): self.assertEqual(hello_world(), 'hello world') if __name__ == '__main__': unittest.main()
flexible
{ "blob_id": "6420d1b9da7ff205e1e138f72b194f63d1011012", "index": 4554, "step-1": "<mask token>\n\n\nclass BasicTestSuite(unittest.TestCase):\n <mask token>\n\n def test_hello_world(self):\n self.assertEqual(hello_world(), 'hello world')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass BasicTestSuite(unittest.TestCase):\n \"\"\"Basic test cases.\"\"\"\n\n def test_hello_world(self):\n self.assertEqual(hello_world(), 'hello world')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass BasicTestSuite(unittest.TestCase):\n \"\"\"Basic test cases.\"\"\"\n\n def test_hello_world(self):\n self.assertEqual(hello_world(), 'hello world')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-4": "import unittest\nfrom .context import *\n\n\nclass BasicTestSuite(unittest.TestCase):\n \"\"\"Basic test cases.\"\"\"\n\n def test_hello_world(self):\n self.assertEqual(hello_world(), 'hello world')\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
<|reserved_special_token_0|> class TestRailAPI(Session): <|reserved_special_token_0|> @property def attachments(self) ->_category.Attachments: """ https://www.gurock.com/testrail/docs/api/reference/attachments Use the following API methods to upload, retrieve and delete attachments. """ return _category.Attachments(self) @property def cases(self) ->_category.Cases: """ https://www.gurock.com/testrail/docs/api/reference/cases Use the following API methods to request details about test cases and to create or modify test cases. """ return _category.Cases(self) @property def case_fields(self) ->_category.CaseFields: """ https://www.gurock.com/testrail/docs/api/reference/case-fields Use the following API methods to request details about custom fields for test cases. """ return _category.CaseFields(self) @property def case_types(self) ->_category.CaseTypes: """ https://www.gurock.com/testrail/docs/api/reference/case-types Use the following API methods to request details about case type. """ return _category.CaseTypes(self) <|reserved_special_token_0|> @property def milestones(self) ->_category.Milestones: """ https://www.gurock.com/testrail/docs/api/reference/milestones Use the following API methods to request details about milestones and to create or modify milestones. """ return _category.Milestones(self) @property def plans(self) ->_category.Plans: """ https://www.gurock.com/testrail/docs/api/reference/plans Use the following API methods to request details about test plans and to create or modify test plans. """ return _category.Plans(self) @property def priorities(self) ->_category.Priorities: """ https://www.gurock.com/testrail/docs/api/reference/priorities Use the following API methods to request details about priorities. """ return _category.Priorities(self) @property def projects(self) ->_category.Projects: """ https://www.gurock.com/testrail/docs/api/reference/projects Use the following API methods to request details about projects and to create or modify projects """ return _category.Projects(self) @property def reports(self) ->_category.Reports: """ https://www.gurock.com/testrail/docs/api/reference/reports Use the following methods to get and run reports that have been made accessible to the API. """ return _category.Reports(self) <|reserved_special_token_0|> <|reserved_special_token_0|> @property def runs(self) ->_category.Runs: """ https://www.gurock.com/testrail/docs/api/reference/runs Use the following API methods to request details about test runs and to create or modify test runs. """ return _category.Runs(self) @property def sections(self) ->_category.Sections: """ https://www.gurock.com/testrail/docs/api/reference/sections Use the following API methods to request details about sections and to create or modify sections. Sections are used to group and organize test cases in test suites. """ return _category.Sections(self) @property def shared_steps(self) ->_category.SharedSteps: """ https://www.gurock.com/testrail/docs/api/reference/api-shared-steps Use the following API methods to request details about shared steps. """ return _category.SharedSteps(self) @property def statuses(self) ->_category.Statuses: """ https://www.gurock.com/testrail/docs/api/reference/statuses Use the following API methods to request details about test statuses. """ return _category.Statuses(self) @property def suites(self) ->_category.Suites: """ https://www.gurock.com/testrail/docs/api/reference/suites Use the following API methods to request details about test suites and to create or modify test suites. """ return _category.Suites(self) @property def templates(self) ->_category.Template: """ https://www.gurock.com/testrail/docs/api/reference/templates Use the following API methods to request details about templates (field layouts for cases/results) """ return _category.Template(self) @property def tests(self) ->_category.Tests: """ https://www.gurock.com/testrail/docs/api/reference/tests Use the following API methods to request details about tests. """ return _category.Tests(self) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestRailAPI(Session): <|reserved_special_token_0|> @property def attachments(self) ->_category.Attachments: """ https://www.gurock.com/testrail/docs/api/reference/attachments Use the following API methods to upload, retrieve and delete attachments. """ return _category.Attachments(self) @property def cases(self) ->_category.Cases: """ https://www.gurock.com/testrail/docs/api/reference/cases Use the following API methods to request details about test cases and to create or modify test cases. """ return _category.Cases(self) @property def case_fields(self) ->_category.CaseFields: """ https://www.gurock.com/testrail/docs/api/reference/case-fields Use the following API methods to request details about custom fields for test cases. """ return _category.CaseFields(self) @property def case_types(self) ->_category.CaseTypes: """ https://www.gurock.com/testrail/docs/api/reference/case-types Use the following API methods to request details about case type. """ return _category.CaseTypes(self) @property def configurations(self) ->_category.Configurations: """ https://www.gurock.com/testrail/docs/api/reference/configurations Use the following API methods to request details about configurations and to create or modify configurations. """ return _category.Configurations(self) @property def milestones(self) ->_category.Milestones: """ https://www.gurock.com/testrail/docs/api/reference/milestones Use the following API methods to request details about milestones and to create or modify milestones. """ return _category.Milestones(self) @property def plans(self) ->_category.Plans: """ https://www.gurock.com/testrail/docs/api/reference/plans Use the following API methods to request details about test plans and to create or modify test plans. """ return _category.Plans(self) @property def priorities(self) ->_category.Priorities: """ https://www.gurock.com/testrail/docs/api/reference/priorities Use the following API methods to request details about priorities. """ return _category.Priorities(self) @property def projects(self) ->_category.Projects: """ https://www.gurock.com/testrail/docs/api/reference/projects Use the following API methods to request details about projects and to create or modify projects """ return _category.Projects(self) @property def reports(self) ->_category.Reports: """ https://www.gurock.com/testrail/docs/api/reference/reports Use the following methods to get and run reports that have been made accessible to the API. """ return _category.Reports(self) @property def results(self) ->_category.Results: """ https://www.gurock.com/testrail/docs/api/reference/results Use the following API methods to request details about test results and to add new test results. """ return _category.Results(self) @property def result_fields(self) ->_category.ResultFields: """ https://www.gurock.com/testrail/docs/api/reference/result-fields Use the following API methods to request details about custom fields for test results. """ return _category.ResultFields(self) @property def runs(self) ->_category.Runs: """ https://www.gurock.com/testrail/docs/api/reference/runs Use the following API methods to request details about test runs and to create or modify test runs. """ return _category.Runs(self) @property def sections(self) ->_category.Sections: """ https://www.gurock.com/testrail/docs/api/reference/sections Use the following API methods to request details about sections and to create or modify sections. Sections are used to group and organize test cases in test suites. """ return _category.Sections(self) @property def shared_steps(self) ->_category.SharedSteps: """ https://www.gurock.com/testrail/docs/api/reference/api-shared-steps Use the following API methods to request details about shared steps. """ return _category.SharedSteps(self) @property def statuses(self) ->_category.Statuses: """ https://www.gurock.com/testrail/docs/api/reference/statuses Use the following API methods to request details about test statuses. """ return _category.Statuses(self) @property def suites(self) ->_category.Suites: """ https://www.gurock.com/testrail/docs/api/reference/suites Use the following API methods to request details about test suites and to create or modify test suites. """ return _category.Suites(self) @property def templates(self) ->_category.Template: """ https://www.gurock.com/testrail/docs/api/reference/templates Use the following API methods to request details about templates (field layouts for cases/results) """ return _category.Template(self) @property def tests(self) ->_category.Tests: """ https://www.gurock.com/testrail/docs/api/reference/tests Use the following API methods to request details about tests. """ return _category.Tests(self) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class TestRailAPI(Session): <|reserved_special_token_0|> @property def attachments(self) ->_category.Attachments: """ https://www.gurock.com/testrail/docs/api/reference/attachments Use the following API methods to upload, retrieve and delete attachments. """ return _category.Attachments(self) @property def cases(self) ->_category.Cases: """ https://www.gurock.com/testrail/docs/api/reference/cases Use the following API methods to request details about test cases and to create or modify test cases. """ return _category.Cases(self) @property def case_fields(self) ->_category.CaseFields: """ https://www.gurock.com/testrail/docs/api/reference/case-fields Use the following API methods to request details about custom fields for test cases. """ return _category.CaseFields(self) @property def case_types(self) ->_category.CaseTypes: """ https://www.gurock.com/testrail/docs/api/reference/case-types Use the following API methods to request details about case type. """ return _category.CaseTypes(self) @property def configurations(self) ->_category.Configurations: """ https://www.gurock.com/testrail/docs/api/reference/configurations Use the following API methods to request details about configurations and to create or modify configurations. """ return _category.Configurations(self) @property def milestones(self) ->_category.Milestones: """ https://www.gurock.com/testrail/docs/api/reference/milestones Use the following API methods to request details about milestones and to create or modify milestones. """ return _category.Milestones(self) @property def plans(self) ->_category.Plans: """ https://www.gurock.com/testrail/docs/api/reference/plans Use the following API methods to request details about test plans and to create or modify test plans. """ return _category.Plans(self) @property def priorities(self) ->_category.Priorities: """ https://www.gurock.com/testrail/docs/api/reference/priorities Use the following API methods to request details about priorities. """ return _category.Priorities(self) @property def projects(self) ->_category.Projects: """ https://www.gurock.com/testrail/docs/api/reference/projects Use the following API methods to request details about projects and to create or modify projects """ return _category.Projects(self) @property def reports(self) ->_category.Reports: """ https://www.gurock.com/testrail/docs/api/reference/reports Use the following methods to get and run reports that have been made accessible to the API. """ return _category.Reports(self) @property def results(self) ->_category.Results: """ https://www.gurock.com/testrail/docs/api/reference/results Use the following API methods to request details about test results and to add new test results. """ return _category.Results(self) @property def result_fields(self) ->_category.ResultFields: """ https://www.gurock.com/testrail/docs/api/reference/result-fields Use the following API methods to request details about custom fields for test results. """ return _category.ResultFields(self) @property def runs(self) ->_category.Runs: """ https://www.gurock.com/testrail/docs/api/reference/runs Use the following API methods to request details about test runs and to create or modify test runs. """ return _category.Runs(self) @property def sections(self) ->_category.Sections: """ https://www.gurock.com/testrail/docs/api/reference/sections Use the following API methods to request details about sections and to create or modify sections. Sections are used to group and organize test cases in test suites. """ return _category.Sections(self) @property def shared_steps(self) ->_category.SharedSteps: """ https://www.gurock.com/testrail/docs/api/reference/api-shared-steps Use the following API methods to request details about shared steps. """ return _category.SharedSteps(self) @property def statuses(self) ->_category.Statuses: """ https://www.gurock.com/testrail/docs/api/reference/statuses Use the following API methods to request details about test statuses. """ return _category.Statuses(self) @property def suites(self) ->_category.Suites: """ https://www.gurock.com/testrail/docs/api/reference/suites Use the following API methods to request details about test suites and to create or modify test suites. """ return _category.Suites(self) @property def templates(self) ->_category.Template: """ https://www.gurock.com/testrail/docs/api/reference/templates Use the following API methods to request details about templates (field layouts for cases/results) """ return _category.Template(self) @property def tests(self) ->_category.Tests: """ https://www.gurock.com/testrail/docs/api/reference/tests Use the following API methods to request details about tests. """ return _category.Tests(self) @property def users(self) ->_category.Users: """ https://www.gurock.com/testrail/docs/api/reference/users Use the following API methods to request details about users. """ return _category.Users(self) <|reserved_special_token_1|> <|reserved_special_token_0|> class TestRailAPI(Session): """Categories""" @property def attachments(self) ->_category.Attachments: """ https://www.gurock.com/testrail/docs/api/reference/attachments Use the following API methods to upload, retrieve and delete attachments. """ return _category.Attachments(self) @property def cases(self) ->_category.Cases: """ https://www.gurock.com/testrail/docs/api/reference/cases Use the following API methods to request details about test cases and to create or modify test cases. """ return _category.Cases(self) @property def case_fields(self) ->_category.CaseFields: """ https://www.gurock.com/testrail/docs/api/reference/case-fields Use the following API methods to request details about custom fields for test cases. """ return _category.CaseFields(self) @property def case_types(self) ->_category.CaseTypes: """ https://www.gurock.com/testrail/docs/api/reference/case-types Use the following API methods to request details about case type. """ return _category.CaseTypes(self) @property def configurations(self) ->_category.Configurations: """ https://www.gurock.com/testrail/docs/api/reference/configurations Use the following API methods to request details about configurations and to create or modify configurations. """ return _category.Configurations(self) @property def milestones(self) ->_category.Milestones: """ https://www.gurock.com/testrail/docs/api/reference/milestones Use the following API methods to request details about milestones and to create or modify milestones. """ return _category.Milestones(self) @property def plans(self) ->_category.Plans: """ https://www.gurock.com/testrail/docs/api/reference/plans Use the following API methods to request details about test plans and to create or modify test plans. """ return _category.Plans(self) @property def priorities(self) ->_category.Priorities: """ https://www.gurock.com/testrail/docs/api/reference/priorities Use the following API methods to request details about priorities. """ return _category.Priorities(self) @property def projects(self) ->_category.Projects: """ https://www.gurock.com/testrail/docs/api/reference/projects Use the following API methods to request details about projects and to create or modify projects """ return _category.Projects(self) @property def reports(self) ->_category.Reports: """ https://www.gurock.com/testrail/docs/api/reference/reports Use the following methods to get and run reports that have been made accessible to the API. """ return _category.Reports(self) @property def results(self) ->_category.Results: """ https://www.gurock.com/testrail/docs/api/reference/results Use the following API methods to request details about test results and to add new test results. """ return _category.Results(self) @property def result_fields(self) ->_category.ResultFields: """ https://www.gurock.com/testrail/docs/api/reference/result-fields Use the following API methods to request details about custom fields for test results. """ return _category.ResultFields(self) @property def runs(self) ->_category.Runs: """ https://www.gurock.com/testrail/docs/api/reference/runs Use the following API methods to request details about test runs and to create or modify test runs. """ return _category.Runs(self) @property def sections(self) ->_category.Sections: """ https://www.gurock.com/testrail/docs/api/reference/sections Use the following API methods to request details about sections and to create or modify sections. Sections are used to group and organize test cases in test suites. """ return _category.Sections(self) @property def shared_steps(self) ->_category.SharedSteps: """ https://www.gurock.com/testrail/docs/api/reference/api-shared-steps Use the following API methods to request details about shared steps. """ return _category.SharedSteps(self) @property def statuses(self) ->_category.Statuses: """ https://www.gurock.com/testrail/docs/api/reference/statuses Use the following API methods to request details about test statuses. """ return _category.Statuses(self) @property def suites(self) ->_category.Suites: """ https://www.gurock.com/testrail/docs/api/reference/suites Use the following API methods to request details about test suites and to create or modify test suites. """ return _category.Suites(self) @property def templates(self) ->_category.Template: """ https://www.gurock.com/testrail/docs/api/reference/templates Use the following API methods to request details about templates (field layouts for cases/results) """ return _category.Template(self) @property def tests(self) ->_category.Tests: """ https://www.gurock.com/testrail/docs/api/reference/tests Use the following API methods to request details about tests. """ return _category.Tests(self) @property def users(self) ->_category.Users: """ https://www.gurock.com/testrail/docs/api/reference/users Use the following API methods to request details about users. """ return _category.Users(self) <|reserved_special_token_1|> """ TestRail API Categories """ from . import _category from ._session import Session class TestRailAPI(Session): """Categories""" @property def attachments(self) -> _category.Attachments: """ https://www.gurock.com/testrail/docs/api/reference/attachments Use the following API methods to upload, retrieve and delete attachments. """ return _category.Attachments(self) @property def cases(self) -> _category.Cases: """ https://www.gurock.com/testrail/docs/api/reference/cases Use the following API methods to request details about test cases and to create or modify test cases. """ return _category.Cases(self) @property def case_fields(self) -> _category.CaseFields: """ https://www.gurock.com/testrail/docs/api/reference/case-fields Use the following API methods to request details about custom fields for test cases. """ return _category.CaseFields(self) @property def case_types(self) -> _category.CaseTypes: """ https://www.gurock.com/testrail/docs/api/reference/case-types Use the following API methods to request details about case type. """ return _category.CaseTypes(self) @property def configurations(self) -> _category.Configurations: """ https://www.gurock.com/testrail/docs/api/reference/configurations Use the following API methods to request details about configurations and to create or modify configurations. """ return _category.Configurations(self) @property def milestones(self) -> _category.Milestones: """ https://www.gurock.com/testrail/docs/api/reference/milestones Use the following API methods to request details about milestones and to create or modify milestones. """ return _category.Milestones(self) @property def plans(self) -> _category.Plans: """ https://www.gurock.com/testrail/docs/api/reference/plans Use the following API methods to request details about test plans and to create or modify test plans. """ return _category.Plans(self) @property def priorities(self) -> _category.Priorities: """ https://www.gurock.com/testrail/docs/api/reference/priorities Use the following API methods to request details about priorities. """ return _category.Priorities(self) @property def projects(self) -> _category.Projects: """ https://www.gurock.com/testrail/docs/api/reference/projects Use the following API methods to request details about projects and to create or modify projects """ return _category.Projects(self) @property def reports(self) -> _category.Reports: """ https://www.gurock.com/testrail/docs/api/reference/reports Use the following methods to get and run reports that have been made accessible to the API. """ return _category.Reports(self) @property def results(self) -> _category.Results: """ https://www.gurock.com/testrail/docs/api/reference/results Use the following API methods to request details about test results and to add new test results. """ return _category.Results(self) @property def result_fields(self) -> _category.ResultFields: """ https://www.gurock.com/testrail/docs/api/reference/result-fields Use the following API methods to request details about custom fields for test results. """ return _category.ResultFields(self) @property def runs(self) -> _category.Runs: """ https://www.gurock.com/testrail/docs/api/reference/runs Use the following API methods to request details about test runs and to create or modify test runs. """ return _category.Runs(self) @property def sections(self) -> _category.Sections: """ https://www.gurock.com/testrail/docs/api/reference/sections Use the following API methods to request details about sections and to create or modify sections. Sections are used to group and organize test cases in test suites. """ return _category.Sections(self) @property def shared_steps(self) -> _category.SharedSteps: """ https://www.gurock.com/testrail/docs/api/reference/api-shared-steps Use the following API methods to request details about shared steps. """ return _category.SharedSteps(self) @property def statuses(self) -> _category.Statuses: """ https://www.gurock.com/testrail/docs/api/reference/statuses Use the following API methods to request details about test statuses. """ return _category.Statuses(self) @property def suites(self) -> _category.Suites: """ https://www.gurock.com/testrail/docs/api/reference/suites Use the following API methods to request details about test suites and to create or modify test suites. """ return _category.Suites(self) @property def templates(self) -> _category.Template: """ https://www.gurock.com/testrail/docs/api/reference/templates Use the following API methods to request details about templates (field layouts for cases/results) """ return _category.Template(self) @property def tests(self) -> _category.Tests: """ https://www.gurock.com/testrail/docs/api/reference/tests Use the following API methods to request details about tests. """ return _category.Tests(self) @property def users(self) -> _category.Users: """ https://www.gurock.com/testrail/docs/api/reference/users Use the following API methods to request details about users. """ return _category.Users(self)
flexible
{ "blob_id": "c2467e94a2ad474f0413e7ee3863aa134bf9c51f", "index": 3399, "step-1": "<mask token>\n\n\nclass TestRailAPI(Session):\n <mask token>\n\n @property\n def attachments(self) ->_category.Attachments:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/attachments\n Use the following API methods to upload, retrieve and delete attachments.\n \"\"\"\n return _category.Attachments(self)\n\n @property\n def cases(self) ->_category.Cases:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/cases\n Use the following API methods to request details about test cases and\n to create or modify test cases.\n \"\"\"\n return _category.Cases(self)\n\n @property\n def case_fields(self) ->_category.CaseFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-fields\n Use the following API methods to request details about custom fields\n for test cases.\n \"\"\"\n return _category.CaseFields(self)\n\n @property\n def case_types(self) ->_category.CaseTypes:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-types\n Use the following API methods to request details about case type.\n \"\"\"\n return _category.CaseTypes(self)\n <mask token>\n\n @property\n def milestones(self) ->_category.Milestones:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/milestones\n Use the following API methods to request details about milestones and\n to create or modify milestones.\n \"\"\"\n return _category.Milestones(self)\n\n @property\n def plans(self) ->_category.Plans:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/plans\n Use the following API methods to request details about test plans and\n to create or modify test plans.\n \"\"\"\n return _category.Plans(self)\n\n @property\n def priorities(self) ->_category.Priorities:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/priorities\n Use the following API methods to request details about priorities.\n \"\"\"\n return _category.Priorities(self)\n\n @property\n def projects(self) ->_category.Projects:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/projects\n Use the following API methods to request details about projects and\n to create or modify projects\n \"\"\"\n return _category.Projects(self)\n\n @property\n def reports(self) ->_category.Reports:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/reports\n Use the following methods to get and run reports that have been\n made accessible to the API.\n \"\"\"\n return _category.Reports(self)\n <mask token>\n <mask token>\n\n @property\n def runs(self) ->_category.Runs:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/runs\n Use the following API methods to request details about test runs and\n to create or modify test runs.\n \"\"\"\n return _category.Runs(self)\n\n @property\n def sections(self) ->_category.Sections:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/sections\n Use the following API methods to request details about sections and\n to create or modify sections.\n Sections are used to group and organize test cases in test suites.\n \"\"\"\n return _category.Sections(self)\n\n @property\n def shared_steps(self) ->_category.SharedSteps:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/api-shared-steps\n Use the following API methods to request details about shared steps.\n \"\"\"\n return _category.SharedSteps(self)\n\n @property\n def statuses(self) ->_category.Statuses:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/statuses\n Use the following API methods to request details about test statuses.\n \"\"\"\n return _category.Statuses(self)\n\n @property\n def suites(self) ->_category.Suites:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/suites\n Use the following API methods to request details about test suites and\n to create or modify test suites.\n \"\"\"\n return _category.Suites(self)\n\n @property\n def templates(self) ->_category.Template:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/templates\n Use the following API methods to request details about templates\n (field layouts for cases/results)\n \"\"\"\n return _category.Template(self)\n\n @property\n def tests(self) ->_category.Tests:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/tests\n Use the following API methods to request details about tests.\n \"\"\"\n return _category.Tests(self)\n <mask token>\n", "step-2": "<mask token>\n\n\nclass TestRailAPI(Session):\n <mask token>\n\n @property\n def attachments(self) ->_category.Attachments:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/attachments\n Use the following API methods to upload, retrieve and delete attachments.\n \"\"\"\n return _category.Attachments(self)\n\n @property\n def cases(self) ->_category.Cases:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/cases\n Use the following API methods to request details about test cases and\n to create or modify test cases.\n \"\"\"\n return _category.Cases(self)\n\n @property\n def case_fields(self) ->_category.CaseFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-fields\n Use the following API methods to request details about custom fields\n for test cases.\n \"\"\"\n return _category.CaseFields(self)\n\n @property\n def case_types(self) ->_category.CaseTypes:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-types\n Use the following API methods to request details about case type.\n \"\"\"\n return _category.CaseTypes(self)\n\n @property\n def configurations(self) ->_category.Configurations:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/configurations\n Use the following API methods to request details about configurations and\n to create or modify configurations.\n \"\"\"\n return _category.Configurations(self)\n\n @property\n def milestones(self) ->_category.Milestones:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/milestones\n Use the following API methods to request details about milestones and\n to create or modify milestones.\n \"\"\"\n return _category.Milestones(self)\n\n @property\n def plans(self) ->_category.Plans:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/plans\n Use the following API methods to request details about test plans and\n to create or modify test plans.\n \"\"\"\n return _category.Plans(self)\n\n @property\n def priorities(self) ->_category.Priorities:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/priorities\n Use the following API methods to request details about priorities.\n \"\"\"\n return _category.Priorities(self)\n\n @property\n def projects(self) ->_category.Projects:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/projects\n Use the following API methods to request details about projects and\n to create or modify projects\n \"\"\"\n return _category.Projects(self)\n\n @property\n def reports(self) ->_category.Reports:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/reports\n Use the following methods to get and run reports that have been\n made accessible to the API.\n \"\"\"\n return _category.Reports(self)\n\n @property\n def results(self) ->_category.Results:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/results\n Use the following API methods to request details about test results and\n to add new test results.\n \"\"\"\n return _category.Results(self)\n\n @property\n def result_fields(self) ->_category.ResultFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/result-fields\n Use the following API methods to request details about custom fields\n for test results.\n \"\"\"\n return _category.ResultFields(self)\n\n @property\n def runs(self) ->_category.Runs:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/runs\n Use the following API methods to request details about test runs and\n to create or modify test runs.\n \"\"\"\n return _category.Runs(self)\n\n @property\n def sections(self) ->_category.Sections:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/sections\n Use the following API methods to request details about sections and\n to create or modify sections.\n Sections are used to group and organize test cases in test suites.\n \"\"\"\n return _category.Sections(self)\n\n @property\n def shared_steps(self) ->_category.SharedSteps:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/api-shared-steps\n Use the following API methods to request details about shared steps.\n \"\"\"\n return _category.SharedSteps(self)\n\n @property\n def statuses(self) ->_category.Statuses:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/statuses\n Use the following API methods to request details about test statuses.\n \"\"\"\n return _category.Statuses(self)\n\n @property\n def suites(self) ->_category.Suites:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/suites\n Use the following API methods to request details about test suites and\n to create or modify test suites.\n \"\"\"\n return _category.Suites(self)\n\n @property\n def templates(self) ->_category.Template:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/templates\n Use the following API methods to request details about templates\n (field layouts for cases/results)\n \"\"\"\n return _category.Template(self)\n\n @property\n def tests(self) ->_category.Tests:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/tests\n Use the following API methods to request details about tests.\n \"\"\"\n return _category.Tests(self)\n <mask token>\n", "step-3": "<mask token>\n\n\nclass TestRailAPI(Session):\n <mask token>\n\n @property\n def attachments(self) ->_category.Attachments:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/attachments\n Use the following API methods to upload, retrieve and delete attachments.\n \"\"\"\n return _category.Attachments(self)\n\n @property\n def cases(self) ->_category.Cases:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/cases\n Use the following API methods to request details about test cases and\n to create or modify test cases.\n \"\"\"\n return _category.Cases(self)\n\n @property\n def case_fields(self) ->_category.CaseFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-fields\n Use the following API methods to request details about custom fields\n for test cases.\n \"\"\"\n return _category.CaseFields(self)\n\n @property\n def case_types(self) ->_category.CaseTypes:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-types\n Use the following API methods to request details about case type.\n \"\"\"\n return _category.CaseTypes(self)\n\n @property\n def configurations(self) ->_category.Configurations:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/configurations\n Use the following API methods to request details about configurations and\n to create or modify configurations.\n \"\"\"\n return _category.Configurations(self)\n\n @property\n def milestones(self) ->_category.Milestones:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/milestones\n Use the following API methods to request details about milestones and\n to create or modify milestones.\n \"\"\"\n return _category.Milestones(self)\n\n @property\n def plans(self) ->_category.Plans:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/plans\n Use the following API methods to request details about test plans and\n to create or modify test plans.\n \"\"\"\n return _category.Plans(self)\n\n @property\n def priorities(self) ->_category.Priorities:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/priorities\n Use the following API methods to request details about priorities.\n \"\"\"\n return _category.Priorities(self)\n\n @property\n def projects(self) ->_category.Projects:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/projects\n Use the following API methods to request details about projects and\n to create or modify projects\n \"\"\"\n return _category.Projects(self)\n\n @property\n def reports(self) ->_category.Reports:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/reports\n Use the following methods to get and run reports that have been\n made accessible to the API.\n \"\"\"\n return _category.Reports(self)\n\n @property\n def results(self) ->_category.Results:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/results\n Use the following API methods to request details about test results and\n to add new test results.\n \"\"\"\n return _category.Results(self)\n\n @property\n def result_fields(self) ->_category.ResultFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/result-fields\n Use the following API methods to request details about custom fields\n for test results.\n \"\"\"\n return _category.ResultFields(self)\n\n @property\n def runs(self) ->_category.Runs:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/runs\n Use the following API methods to request details about test runs and\n to create or modify test runs.\n \"\"\"\n return _category.Runs(self)\n\n @property\n def sections(self) ->_category.Sections:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/sections\n Use the following API methods to request details about sections and\n to create or modify sections.\n Sections are used to group and organize test cases in test suites.\n \"\"\"\n return _category.Sections(self)\n\n @property\n def shared_steps(self) ->_category.SharedSteps:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/api-shared-steps\n Use the following API methods to request details about shared steps.\n \"\"\"\n return _category.SharedSteps(self)\n\n @property\n def statuses(self) ->_category.Statuses:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/statuses\n Use the following API methods to request details about test statuses.\n \"\"\"\n return _category.Statuses(self)\n\n @property\n def suites(self) ->_category.Suites:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/suites\n Use the following API methods to request details about test suites and\n to create or modify test suites.\n \"\"\"\n return _category.Suites(self)\n\n @property\n def templates(self) ->_category.Template:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/templates\n Use the following API methods to request details about templates\n (field layouts for cases/results)\n \"\"\"\n return _category.Template(self)\n\n @property\n def tests(self) ->_category.Tests:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/tests\n Use the following API methods to request details about tests.\n \"\"\"\n return _category.Tests(self)\n\n @property\n def users(self) ->_category.Users:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/users\n Use the following API methods to request details about users.\n \"\"\"\n return _category.Users(self)\n", "step-4": "<mask token>\n\n\nclass TestRailAPI(Session):\n \"\"\"Categories\"\"\"\n\n @property\n def attachments(self) ->_category.Attachments:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/attachments\n Use the following API methods to upload, retrieve and delete attachments.\n \"\"\"\n return _category.Attachments(self)\n\n @property\n def cases(self) ->_category.Cases:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/cases\n Use the following API methods to request details about test cases and\n to create or modify test cases.\n \"\"\"\n return _category.Cases(self)\n\n @property\n def case_fields(self) ->_category.CaseFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-fields\n Use the following API methods to request details about custom fields\n for test cases.\n \"\"\"\n return _category.CaseFields(self)\n\n @property\n def case_types(self) ->_category.CaseTypes:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-types\n Use the following API methods to request details about case type.\n \"\"\"\n return _category.CaseTypes(self)\n\n @property\n def configurations(self) ->_category.Configurations:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/configurations\n Use the following API methods to request details about configurations and\n to create or modify configurations.\n \"\"\"\n return _category.Configurations(self)\n\n @property\n def milestones(self) ->_category.Milestones:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/milestones\n Use the following API methods to request details about milestones and\n to create or modify milestones.\n \"\"\"\n return _category.Milestones(self)\n\n @property\n def plans(self) ->_category.Plans:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/plans\n Use the following API methods to request details about test plans and\n to create or modify test plans.\n \"\"\"\n return _category.Plans(self)\n\n @property\n def priorities(self) ->_category.Priorities:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/priorities\n Use the following API methods to request details about priorities.\n \"\"\"\n return _category.Priorities(self)\n\n @property\n def projects(self) ->_category.Projects:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/projects\n Use the following API methods to request details about projects and\n to create or modify projects\n \"\"\"\n return _category.Projects(self)\n\n @property\n def reports(self) ->_category.Reports:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/reports\n Use the following methods to get and run reports that have been\n made accessible to the API.\n \"\"\"\n return _category.Reports(self)\n\n @property\n def results(self) ->_category.Results:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/results\n Use the following API methods to request details about test results and\n to add new test results.\n \"\"\"\n return _category.Results(self)\n\n @property\n def result_fields(self) ->_category.ResultFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/result-fields\n Use the following API methods to request details about custom fields\n for test results.\n \"\"\"\n return _category.ResultFields(self)\n\n @property\n def runs(self) ->_category.Runs:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/runs\n Use the following API methods to request details about test runs and\n to create or modify test runs.\n \"\"\"\n return _category.Runs(self)\n\n @property\n def sections(self) ->_category.Sections:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/sections\n Use the following API methods to request details about sections and\n to create or modify sections.\n Sections are used to group and organize test cases in test suites.\n \"\"\"\n return _category.Sections(self)\n\n @property\n def shared_steps(self) ->_category.SharedSteps:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/api-shared-steps\n Use the following API methods to request details about shared steps.\n \"\"\"\n return _category.SharedSteps(self)\n\n @property\n def statuses(self) ->_category.Statuses:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/statuses\n Use the following API methods to request details about test statuses.\n \"\"\"\n return _category.Statuses(self)\n\n @property\n def suites(self) ->_category.Suites:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/suites\n Use the following API methods to request details about test suites and\n to create or modify test suites.\n \"\"\"\n return _category.Suites(self)\n\n @property\n def templates(self) ->_category.Template:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/templates\n Use the following API methods to request details about templates\n (field layouts for cases/results)\n \"\"\"\n return _category.Template(self)\n\n @property\n def tests(self) ->_category.Tests:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/tests\n Use the following API methods to request details about tests.\n \"\"\"\n return _category.Tests(self)\n\n @property\n def users(self) ->_category.Users:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/users\n Use the following API methods to request details about users.\n \"\"\"\n return _category.Users(self)\n", "step-5": "\"\"\"\nTestRail API Categories\n\"\"\"\n\nfrom . import _category\nfrom ._session import Session\n\n\nclass TestRailAPI(Session):\n \"\"\"Categories\"\"\"\n\n @property\n def attachments(self) -> _category.Attachments:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/attachments\n Use the following API methods to upload, retrieve and delete attachments.\n \"\"\"\n return _category.Attachments(self)\n\n @property\n def cases(self) -> _category.Cases:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/cases\n Use the following API methods to request details about test cases and\n to create or modify test cases.\n \"\"\"\n return _category.Cases(self)\n\n @property\n def case_fields(self) -> _category.CaseFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-fields\n Use the following API methods to request details about custom fields\n for test cases.\n \"\"\"\n return _category.CaseFields(self)\n\n @property\n def case_types(self) -> _category.CaseTypes:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/case-types\n Use the following API methods to request details about case type.\n \"\"\"\n return _category.CaseTypes(self)\n\n @property\n def configurations(self) -> _category.Configurations:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/configurations\n Use the following API methods to request details about configurations and\n to create or modify configurations.\n \"\"\"\n return _category.Configurations(self)\n\n @property\n def milestones(self) -> _category.Milestones:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/milestones\n Use the following API methods to request details about milestones and\n to create or modify milestones.\n \"\"\"\n return _category.Milestones(self)\n\n @property\n def plans(self) -> _category.Plans:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/plans\n Use the following API methods to request details about test plans and\n to create or modify test plans.\n \"\"\"\n return _category.Plans(self)\n\n @property\n def priorities(self) -> _category.Priorities:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/priorities\n Use the following API methods to request details about priorities.\n \"\"\"\n return _category.Priorities(self)\n\n @property\n def projects(self) -> _category.Projects:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/projects\n Use the following API methods to request details about projects and\n to create or modify projects\n \"\"\"\n return _category.Projects(self)\n\n @property\n def reports(self) -> _category.Reports:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/reports\n Use the following methods to get and run reports that have been\n made accessible to the API.\n \"\"\"\n return _category.Reports(self)\n\n @property\n def results(self) -> _category.Results:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/results\n Use the following API methods to request details about test results and\n to add new test results.\n \"\"\"\n return _category.Results(self)\n\n @property\n def result_fields(self) -> _category.ResultFields:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/result-fields\n Use the following API methods to request details about custom fields\n for test results.\n \"\"\"\n return _category.ResultFields(self)\n\n @property\n def runs(self) -> _category.Runs:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/runs\n Use the following API methods to request details about test runs and\n to create or modify test runs.\n \"\"\"\n return _category.Runs(self)\n\n @property\n def sections(self) -> _category.Sections:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/sections\n Use the following API methods to request details about sections and\n to create or modify sections.\n Sections are used to group and organize test cases in test suites.\n \"\"\"\n return _category.Sections(self)\n\n @property\n def shared_steps(self) -> _category.SharedSteps:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/api-shared-steps\n Use the following API methods to request details about shared steps.\n \"\"\"\n return _category.SharedSteps(self)\n\n @property\n def statuses(self) -> _category.Statuses:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/statuses\n Use the following API methods to request details about test statuses.\n \"\"\"\n return _category.Statuses(self)\n\n @property\n def suites(self) -> _category.Suites:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/suites\n Use the following API methods to request details about test suites and\n to create or modify test suites.\n \"\"\"\n return _category.Suites(self)\n\n @property\n def templates(self) -> _category.Template:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/templates\n Use the following API methods to request details about templates\n (field layouts for cases/results)\n \"\"\"\n return _category.Template(self)\n\n @property\n def tests(self) -> _category.Tests:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/tests\n Use the following API methods to request details about tests.\n \"\"\"\n return _category.Tests(self)\n\n @property\n def users(self) -> _category.Users:\n \"\"\"\n https://www.gurock.com/testrail/docs/api/reference/users\n Use the following API methods to request details about users.\n \"\"\"\n return _category.Users(self)\n", "step-ids": [ 17, 20, 21, 22, 24 ] }
[ 17, 20, 21, 22, 24 ]
import org.cogroo.gc.cmdline import typing class __module_protocol__(typing.Protocol): # A module protocol which reflects the result of ``jp.JPackage("org.cogroo.gc")``. cmdline: org.cogroo.gc.cmdline.__module_protocol__
normal
{ "blob_id": "f615e7bbfa9179d0bfb321242cd8df4ae7b48993", "index": 3181, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass __module_protocol__(typing.Protocol):\n cmdline: org.cogroo.gc.cmdline.__module_protocol__\n", "step-3": "import org.cogroo.gc.cmdline\nimport typing\n\n\nclass __module_protocol__(typing.Protocol):\n cmdline: org.cogroo.gc.cmdline.__module_protocol__\n", "step-4": "import org.cogroo.gc.cmdline\nimport typing\n\n\nclass __module_protocol__(typing.Protocol):\n # A module protocol which reflects the result of ``jp.JPackage(\"org.cogroo.gc\")``.\n\n cmdline: org.cogroo.gc.cmdline.__module_protocol__\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> class Odbserver(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Meta: ordering = ['name'] verbose_name = '服务器信息' verbose_name_plural = verbose_name <|reserved_special_token_0|> <|reserved_special_token_0|> class Ousers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') user = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间') status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') created = models.DateField(null=True, blank=True, verbose_name='创建时间') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['user'] verbose_name = '数据库用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business class Osysusers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='名称') user = models.CharField(max_length=20, verbose_name='用户') passwd = models.CharField(max_length=20, verbose_name='密码') class Meta: ordering = ['dbserver'] verbose_name = '系统用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Omysqluser(models.Model): dbserver = models.ForeignKey(Odbserver, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') dbname = models.CharField(max_length=20, verbose_name='数据库名') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['dbserver'] verbose_name = 'MYSQL用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business <|reserved_special_token_1|> <|reserved_special_token_0|> class Odbserver(models.Model): <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> <|reserved_special_token_0|> class Meta: ordering = ['name'] verbose_name = '服务器信息' verbose_name_plural = verbose_name <|reserved_special_token_0|> def __str__(self): return u'%s' % self.name class Ousers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') user = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间') status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') created = models.DateField(null=True, blank=True, verbose_name='创建时间') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['user'] verbose_name = '数据库用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business class Osysusers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='名称') user = models.CharField(max_length=20, verbose_name='用户') passwd = models.CharField(max_length=20, verbose_name='密码') class Meta: ordering = ['dbserver'] verbose_name = '系统用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Omysqluser(models.Model): dbserver = models.ForeignKey(Odbserver, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') dbname = models.CharField(max_length=20, verbose_name='数据库名') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['dbserver'] verbose_name = 'MYSQL用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business <|reserved_special_token_1|> <|reserved_special_token_0|> class Odbserver(models.Model): name = models.CharField(max_length=30, verbose_name='名称') ip = models.GenericIPAddressField(verbose_name='IP') pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE, verbose_name='位置') sn = models.CharField(null=True, blank=True, max_length=50, verbose_name='序列号') sid = models.CharField(null=True, blank=True, max_length=50, verbose_name='快速服务代码') firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name ='厂商') model = models.CharField(null=True, blank=True, max_length=30, verbose_name='型号') feature = models.TextField(null=True, blank=True, verbose_name='配置') buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间') service_range = models.IntegerField(default=1, choices= SERVICE_RANGE_CHOISE, verbose_name='服务年限') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['name'] verbose_name = '服务器信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Ousers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') user = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间') status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') created = models.DateField(null=True, blank=True, verbose_name='创建时间') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['user'] verbose_name = '数据库用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business class Osysusers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='名称') user = models.CharField(max_length=20, verbose_name='用户') passwd = models.CharField(max_length=20, verbose_name='密码') class Meta: ordering = ['dbserver'] verbose_name = '系统用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Omysqluser(models.Model): dbserver = models.ForeignKey(Odbserver, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') dbname = models.CharField(max_length=20, verbose_name='数据库名') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['dbserver'] verbose_name = 'MYSQL用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business <|reserved_special_token_1|> <|reserved_special_token_0|> SERVICE_RANGE_CHOISE = {(1, '1年'), (2, '2年'), (3, '3年'), (4, '4年'), (5, '5年'), (6, '6年'), (7, '7年'), (8, '8年'), (0, '长期')} USER_STATUS_CHOISE = {(1, '停用'), (2, '正常'), (3, '锁定')} DBSERVER_POS_CHOISE = {(1, '8层机房'), (2, '11层机房')} FIRM_CHOISE = {(1, 'DELL'), (2, 'IBM'), (3, 'EMC')} class Odbserver(models.Model): name = models.CharField(max_length=30, verbose_name='名称') ip = models.GenericIPAddressField(verbose_name='IP') pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE, verbose_name='位置') sn = models.CharField(null=True, blank=True, max_length=50, verbose_name='序列号') sid = models.CharField(null=True, blank=True, max_length=50, verbose_name='快速服务代码') firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name ='厂商') model = models.CharField(null=True, blank=True, max_length=30, verbose_name='型号') feature = models.TextField(null=True, blank=True, verbose_name='配置') buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间') service_range = models.IntegerField(default=1, choices= SERVICE_RANGE_CHOISE, verbose_name='服务年限') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['name'] verbose_name = '服务器信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Ousers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') user = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间') status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') created = models.DateField(null=True, blank=True, verbose_name='创建时间') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['user'] verbose_name = '数据库用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business class Osysusers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='名称') user = models.CharField(max_length=20, verbose_name='用户') passwd = models.CharField(max_length=20, verbose_name='密码') class Meta: ordering = ['dbserver'] verbose_name = '系统用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Omysqluser(models.Model): dbserver = models.ForeignKey(Odbserver, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') dbname = models.CharField(max_length=20, verbose_name='数据库名') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ['dbserver'] verbose_name = 'MYSQL用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business <|reserved_special_token_1|> # -*- coding:utf-8 -*- from __future__ import unicode_literals from django.db import models SERVICE_RANGE_CHOISE = {(1, '1年'), (2, '2年'), (3, '3年'), (4, '4年'), (5, '5年'), (6, '6年'), (7, '7年'), (8, '8年'), (0, '长期')} USER_STATUS_CHOISE = {(1, '停用'), (2, '正常'), (3, '锁定')} DBSERVER_POS_CHOISE = {(1, '8层机房'), (2, '11层机房')} FIRM_CHOISE = {(1, 'DELL'), (2, 'IBM'), (3, 'EMC')} class Odbserver(models.Model): name = models.CharField(max_length=30, verbose_name='名称') ip = models.GenericIPAddressField(verbose_name='IP') pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE, verbose_name='位置') sn = models.CharField(null=True, blank=True, max_length=50, verbose_name='序列号') sid = models.CharField(null=True, blank=True, max_length=50, verbose_name='快速服务代码') firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name='厂商') model = models.CharField(null=True, blank=True, max_length=30, verbose_name='型号') feature = models.TextField(null=True, blank=True, verbose_name='配置') buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间') service_range = models.IntegerField(default=1, choices=SERVICE_RANGE_CHOISE, verbose_name='服务年限') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ["name"] verbose_name = '服务器信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Ousers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') user = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间') status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') created = models.DateField(null=True, blank=True, verbose_name='创建时间') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ["user"] verbose_name = '数据库用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business class Osysusers(models.Model): dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='名称') user = models.CharField(max_length=20, verbose_name='用户') passwd = models.CharField(max_length=20, verbose_name='密码') class Meta: ordering = ["dbserver"] verbose_name = '系统用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.name def __str__(self): return u'%s' % self.name class Omysqluser(models.Model): dbserver = models.ForeignKey(Odbserver, verbose_name='服务器') name = models.CharField(max_length=20, verbose_name='用户名') passwd = models.CharField(max_length=20, verbose_name='密码') dbname = models.CharField(max_length=20, verbose_name='数据库名') business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务') comment = models.TextField(null=True, blank=True, verbose_name='备注') class Meta: ordering = ["dbserver"] verbose_name = 'MYSQL用户信息' verbose_name_plural = verbose_name def __unicode__(self): return u'%s' % self.business def __str__(self): return u'%s' % self.business
flexible
{ "blob_id": "c2490c3aacfa3ce22c3f47a69dbc44b695c2a2e5", "index": 9509, "step-1": "<mask token>\n\n\nclass Odbserver(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n ordering = ['name']\n verbose_name = '服务器信息'\n verbose_name_plural = verbose_name\n <mask token>\n <mask token>\n\n\nclass Ousers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n user = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n tablespace = models.CharField(max_length=20, null=True, blank=True,\n verbose_name='表空间')\n status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n created = models.DateField(null=True, blank=True, verbose_name='创建时间')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['user']\n verbose_name = '数据库用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n\n\nclass Osysusers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='名称')\n user = models.CharField(max_length=20, verbose_name='用户')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = '系统用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Omysqluser(models.Model):\n dbserver = models.ForeignKey(Odbserver, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n dbname = models.CharField(max_length=20, verbose_name='数据库名')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = 'MYSQL用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n", "step-2": "<mask token>\n\n\nclass Odbserver(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n ordering = ['name']\n verbose_name = '服务器信息'\n verbose_name_plural = verbose_name\n <mask token>\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Ousers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n user = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n tablespace = models.CharField(max_length=20, null=True, blank=True,\n verbose_name='表空间')\n status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n created = models.DateField(null=True, blank=True, verbose_name='创建时间')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['user']\n verbose_name = '数据库用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n\n\nclass Osysusers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='名称')\n user = models.CharField(max_length=20, verbose_name='用户')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = '系统用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Omysqluser(models.Model):\n dbserver = models.ForeignKey(Odbserver, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n dbname = models.CharField(max_length=20, verbose_name='数据库名')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = 'MYSQL用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n", "step-3": "<mask token>\n\n\nclass Odbserver(models.Model):\n name = models.CharField(max_length=30, verbose_name='名称')\n ip = models.GenericIPAddressField(verbose_name='IP')\n pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE,\n verbose_name='位置')\n sn = models.CharField(null=True, blank=True, max_length=50,\n verbose_name='序列号')\n sid = models.CharField(null=True, blank=True, max_length=50,\n verbose_name='快速服务代码')\n firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name\n ='厂商')\n model = models.CharField(null=True, blank=True, max_length=30,\n verbose_name='型号')\n feature = models.TextField(null=True, blank=True, verbose_name='配置')\n buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间')\n service_range = models.IntegerField(default=1, choices=\n SERVICE_RANGE_CHOISE, verbose_name='服务年限')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['name']\n verbose_name = '服务器信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Ousers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n user = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n tablespace = models.CharField(max_length=20, null=True, blank=True,\n verbose_name='表空间')\n status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n created = models.DateField(null=True, blank=True, verbose_name='创建时间')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['user']\n verbose_name = '数据库用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n\n\nclass Osysusers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='名称')\n user = models.CharField(max_length=20, verbose_name='用户')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = '系统用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Omysqluser(models.Model):\n dbserver = models.ForeignKey(Odbserver, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n dbname = models.CharField(max_length=20, verbose_name='数据库名')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = 'MYSQL用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n", "step-4": "<mask token>\nSERVICE_RANGE_CHOISE = {(1, '1年'), (2, '2年'), (3, '3年'), (4, '4年'), (5,\n '5年'), (6, '6年'), (7, '7年'), (8, '8年'), (0, '长期')}\nUSER_STATUS_CHOISE = {(1, '停用'), (2, '正常'), (3, '锁定')}\nDBSERVER_POS_CHOISE = {(1, '8层机房'), (2, '11层机房')}\nFIRM_CHOISE = {(1, 'DELL'), (2, 'IBM'), (3, 'EMC')}\n\n\nclass Odbserver(models.Model):\n name = models.CharField(max_length=30, verbose_name='名称')\n ip = models.GenericIPAddressField(verbose_name='IP')\n pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE,\n verbose_name='位置')\n sn = models.CharField(null=True, blank=True, max_length=50,\n verbose_name='序列号')\n sid = models.CharField(null=True, blank=True, max_length=50,\n verbose_name='快速服务代码')\n firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name\n ='厂商')\n model = models.CharField(null=True, blank=True, max_length=30,\n verbose_name='型号')\n feature = models.TextField(null=True, blank=True, verbose_name='配置')\n buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间')\n service_range = models.IntegerField(default=1, choices=\n SERVICE_RANGE_CHOISE, verbose_name='服务年限')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['name']\n verbose_name = '服务器信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Ousers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n user = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n tablespace = models.CharField(max_length=20, null=True, blank=True,\n verbose_name='表空间')\n status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n created = models.DateField(null=True, blank=True, verbose_name='创建时间')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['user']\n verbose_name = '数据库用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n\n\nclass Osysusers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True,\n verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='名称')\n user = models.CharField(max_length=20, verbose_name='用户')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = '系统用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Omysqluser(models.Model):\n dbserver = models.ForeignKey(Odbserver, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n dbname = models.CharField(max_length=20, verbose_name='数据库名')\n business = models.CharField(null=True, blank=True, max_length=100,\n verbose_name='业务')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n\n class Meta:\n ordering = ['dbserver']\n verbose_name = 'MYSQL用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n", "step-5": "# -*- coding:utf-8 -*-\nfrom __future__ import unicode_literals\n\nfrom django.db import models\n\nSERVICE_RANGE_CHOISE = {(1, '1年'), (2, '2年'), (3, '3年'), (4, '4年'), (5, '5年'), (6, '6年'), (7, '7年'), (8, '8年'), (0, '长期')}\nUSER_STATUS_CHOISE = {(1, '停用'), (2, '正常'), (3, '锁定')}\nDBSERVER_POS_CHOISE = {(1, '8层机房'), (2, '11层机房')}\nFIRM_CHOISE = {(1, 'DELL'), (2, 'IBM'), (3, 'EMC')}\n\n\nclass Odbserver(models.Model):\n name = models.CharField(max_length=30, verbose_name='名称')\n ip = models.GenericIPAddressField(verbose_name='IP')\n pos = models.IntegerField(default=1, choices=DBSERVER_POS_CHOISE, verbose_name='位置')\n sn = models.CharField(null=True, blank=True, max_length=50, verbose_name='序列号')\n sid = models.CharField(null=True, blank=True, max_length=50, verbose_name='快速服务代码')\n firm = models.IntegerField(default=1, choices=FIRM_CHOISE, verbose_name='厂商')\n model = models.CharField(null=True, blank=True, max_length=30, verbose_name='型号')\n feature = models.TextField(null=True, blank=True, verbose_name='配置')\n buy_time = models.DateField(null=True, blank=True, verbose_name='购买时间')\n service_range = models.IntegerField(default=1, choices=SERVICE_RANGE_CHOISE, verbose_name='服务年限')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n class Meta:\n ordering = [\"name\"]\n verbose_name = '服务器信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Ousers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器')\n user = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n tablespace = models.CharField(max_length=20, null=True, blank=True, verbose_name='表空间')\n status = models.IntegerField(choices=USER_STATUS_CHOISE, verbose_name='状态')\n business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务')\n created = models.DateField(null=True, blank=True, verbose_name='创建时间')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n class Meta:\n ordering = [\"user\"]\n verbose_name = '数据库用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n\n\nclass Osysusers(models.Model):\n dbserver = models.ForeignKey(Odbserver, null=True, blank=True, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='名称')\n user = models.CharField(max_length=20, verbose_name='用户')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n\n class Meta:\n ordering = [\"dbserver\"]\n verbose_name = '系统用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.name\n\n def __str__(self):\n return u'%s' % self.name\n\n\nclass Omysqluser(models.Model):\n dbserver = models.ForeignKey(Odbserver, verbose_name='服务器')\n name = models.CharField(max_length=20, verbose_name='用户名')\n passwd = models.CharField(max_length=20, verbose_name='密码')\n dbname = models.CharField(max_length=20, verbose_name='数据库名')\n business = models.CharField(null=True, blank=True, max_length=100, verbose_name='业务')\n comment = models.TextField(null=True, blank=True, verbose_name='备注')\n\n class Meta:\n ordering = [\"dbserver\"]\n verbose_name = 'MYSQL用户信息'\n verbose_name_plural = verbose_name\n\n def __unicode__(self):\n return u'%s' % self.business\n\n def __str__(self):\n return u'%s' % self.business\n", "step-ids": [ 13, 14, 16, 17, 19 ] }
[ 13, 14, 16, 17, 19 ]
<|reserved_special_token_0|> def read_file(string_object): """ Opens and reads through a file, returning none if it isnt found """ try: return open(string_object, 'r') except FileNotFoundError: return None <|reserved_special_token_0|> def populate_weight_tuple_list(list_object): """ Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements """ tuple_list = [] for i in range(len(list_object[0])): weight_tuple = list_object[0][i], float(list_object[1][i]) tuple_list.append(weight_tuple) return tuple_list def populate_grades_tuple_list(list_object1, list_object2): """ Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples """ tuple_list = [] for i in range(len(list_object1)): grades_tuple = list_object1[i], list_object2[i] tuple_list.append(grades_tuple) return tuple_list def calculate_final_grade(list_object1, list_object2): """ Takes lists containing information about grades and course weights and calculates the final grade from the course """ list_object1 = [list(element) for element in list_object1] for i in range(len(list_object1)): final_grade = 0.0 for j in range(len(list_object1[i][1])): final_grade += list_object1[i][1][j] * list_object2[j][1] list_object1[i].append(final_grade) list_object1 = [tuple(element) for element in list_object1] return list_object1 <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def read_file(string_object): """ Opens and reads through a file, returning none if it isnt found """ try: return open(string_object, 'r') except FileNotFoundError: return None <|reserved_special_token_0|> def populate_weight_tuple_list(list_object): """ Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements """ tuple_list = [] for i in range(len(list_object[0])): weight_tuple = list_object[0][i], float(list_object[1][i]) tuple_list.append(weight_tuple) return tuple_list def populate_grades_tuple_list(list_object1, list_object2): """ Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples """ tuple_list = [] for i in range(len(list_object1)): grades_tuple = list_object1[i], list_object2[i] tuple_list.append(grades_tuple) return tuple_list def calculate_final_grade(list_object1, list_object2): """ Takes lists containing information about grades and course weights and calculates the final grade from the course """ list_object1 = [list(element) for element in list_object1] for i in range(len(list_object1)): final_grade = 0.0 for j in range(len(list_object1[i][1])): final_grade += list_object1[i][1][j] * list_object2[j][1] list_object1[i].append(final_grade) list_object1 = [tuple(element) for element in list_object1] return list_object1 def print_results(list_object1, list_object2): """ Takes lists containing information about course parts and student grades and prints them in a formatted menu """ STUDENT_COLUMN = 16 GENERAL_COLUMN = 14 print() print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='') for i in range(len(list_object1)): print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='') print('{:>{}}'.format('Course grade', GENERAL_COLUMN)) for tuple_element in list_object2: print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='') for i, value in enumerate(tuple_element[1]): print('{:>{}}'.format(value, GENERAL_COLUMN), end='') print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def read_file(string_object): """ Opens and reads through a file, returning none if it isnt found """ try: return open(string_object, 'r') except FileNotFoundError: return None <|reserved_special_token_0|> def populate_grades_list(file_object): """ Takes information from a file containing student emails and grades and puts each in seperate lists """ email_list = [] grade_list = [] for line in file_object: tmp_list = line.split() email_list.append(tmp_list[0]) grade_list.append(tmp_list[1:]) for value_list in grade_list: for i, value in enumerate(value_list): value_list[i] = float(value) return email_list, grade_list def populate_weight_tuple_list(list_object): """ Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements """ tuple_list = [] for i in range(len(list_object[0])): weight_tuple = list_object[0][i], float(list_object[1][i]) tuple_list.append(weight_tuple) return tuple_list def populate_grades_tuple_list(list_object1, list_object2): """ Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples """ tuple_list = [] for i in range(len(list_object1)): grades_tuple = list_object1[i], list_object2[i] tuple_list.append(grades_tuple) return tuple_list def calculate_final_grade(list_object1, list_object2): """ Takes lists containing information about grades and course weights and calculates the final grade from the course """ list_object1 = [list(element) for element in list_object1] for i in range(len(list_object1)): final_grade = 0.0 for j in range(len(list_object1[i][1])): final_grade += list_object1[i][1][j] * list_object2[j][1] list_object1[i].append(final_grade) list_object1 = [tuple(element) for element in list_object1] return list_object1 def print_results(list_object1, list_object2): """ Takes lists containing information about course parts and student grades and prints them in a formatted menu """ STUDENT_COLUMN = 16 GENERAL_COLUMN = 14 print() print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='') for i in range(len(list_object1)): print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='') print('{:>{}}'.format('Course grade', GENERAL_COLUMN)) for tuple_element in list_object2: print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='') for i, value in enumerate(tuple_element[1]): print('{:>{}}'.format(value, GENERAL_COLUMN), end='') print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN)) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def read_file(string_object): """ Opens and reads through a file, returning none if it isnt found """ try: return open(string_object, 'r') except FileNotFoundError: return None def populate_weight_list(file_object): """ Takes information from a file object containing course weights and puts it into a list """ new_list = [] for line in file_object: new_list.append(line.split()) return new_list def populate_grades_list(file_object): """ Takes information from a file containing student emails and grades and puts each in seperate lists """ email_list = [] grade_list = [] for line in file_object: tmp_list = line.split() email_list.append(tmp_list[0]) grade_list.append(tmp_list[1:]) for value_list in grade_list: for i, value in enumerate(value_list): value_list[i] = float(value) return email_list, grade_list def populate_weight_tuple_list(list_object): """ Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements """ tuple_list = [] for i in range(len(list_object[0])): weight_tuple = list_object[0][i], float(list_object[1][i]) tuple_list.append(weight_tuple) return tuple_list def populate_grades_tuple_list(list_object1, list_object2): """ Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples """ tuple_list = [] for i in range(len(list_object1)): grades_tuple = list_object1[i], list_object2[i] tuple_list.append(grades_tuple) return tuple_list def calculate_final_grade(list_object1, list_object2): """ Takes lists containing information about grades and course weights and calculates the final grade from the course """ list_object1 = [list(element) for element in list_object1] for i in range(len(list_object1)): final_grade = 0.0 for j in range(len(list_object1[i][1])): final_grade += list_object1[i][1][j] * list_object2[j][1] list_object1[i].append(final_grade) list_object1 = [tuple(element) for element in list_object1] return list_object1 def print_results(list_object1, list_object2): """ Takes lists containing information about course parts and student grades and prints them in a formatted menu """ STUDENT_COLUMN = 16 GENERAL_COLUMN = 14 print() print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='') for i in range(len(list_object1)): print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='') print('{:>{}}'.format('Course grade', GENERAL_COLUMN)) for tuple_element in list_object2: print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='') for i, value in enumerate(tuple_element[1]): print('{:>{}}'.format(value, GENERAL_COLUMN), end='') print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN)) def main_func(): """ Main function """ parts_file_name = input('Enter filename for parts: ') parts_file = read_file(parts_file_name) if parts_file == None: print('File {} not found'.format(parts_file_name)) else: parts_list = populate_weight_list(parts_file) weight_tuples_list = populate_weight_tuple_list(parts_list) print(weight_tuples_list) grades_file_name = input('Enter filename for grades: ') grade_file = read_file(grades_file_name) if grade_file == None: print('File {} not found'.format(grades_file_name)) else: email_list, grades_list = populate_grades_list(grade_file) grades_tuple_list = populate_grades_tuple_list(email_list, grades_list) print(grades_tuple_list) modified_grade_tuple_list = calculate_final_grade(grades_tuple_list , weight_tuples_list) print(modified_grade_tuple_list) print_results(weight_tuples_list, modified_grade_tuple_list) <|reserved_special_token_0|> <|reserved_special_token_1|> """ This program takes information about students and their coursework and calculates their final grades based on the weight of each course factor """ def read_file(string_object): """ Opens and reads through a file, returning none if it isnt found """ try: return open(string_object,"r") except FileNotFoundError: return None def populate_weight_list(file_object): """ Takes information from a file object containing course weights and puts it into a list """ new_list = [] for line in file_object: new_list.append(line.split()) return new_list def populate_grades_list(file_object): """ Takes information from a file containing student emails and grades and puts each in seperate lists """ email_list = [] grade_list = [] for line in file_object: tmp_list = line.split() email_list.append(tmp_list[0]) grade_list.append(tmp_list[1::]) for value_list in grade_list: for i, value in enumerate(value_list): value_list[i] = float(value) return email_list, grade_list def populate_weight_tuple_list(list_object): """ Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements """ tuple_list = [] for i in range(len(list_object[0])): weight_tuple = (list_object[0][i], float(list_object[1][i])) tuple_list.append(weight_tuple) return tuple_list def populate_grades_tuple_list(list_object1, list_object2): """ Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples """ tuple_list = [] for i in range(len(list_object1)): grades_tuple = (list_object1[i], list_object2[i]) tuple_list.append(grades_tuple) return tuple_list def calculate_final_grade(list_object1, list_object2): """ Takes lists containing information about grades and course weights and calculates the final grade from the course """ list_object1 = [list(element) for element in list_object1] #Have to turn the tuples in the list to lists so that we can add the final grade to the list for i in range(len(list_object1)): final_grade = 0.0 for j in range(len(list_object1[i][1])): final_grade += (list_object1[i][1][j] * list_object2[j][1]) list_object1[i].append(final_grade) list_object1 = [tuple(element) for element in list_object1] #Turn the lists in the list into tuples again return list_object1 def print_results(list_object1, list_object2): """ Takes lists containing information about course parts and student grades and prints them in a formatted menu """ STUDENT_COLUMN = 16 GENERAL_COLUMN = 14 print() print("{:>{}}".format("Student ID",STUDENT_COLUMN),end="") for i in range(len(list_object1)): print("{:>{}}".format(list_object1[i][0],GENERAL_COLUMN),end="") print("{:>{}}".format("Course grade",GENERAL_COLUMN)) for tuple_element in list_object2: print("{:>{}}".format(tuple_element[0],STUDENT_COLUMN),end="") for i, value in enumerate(tuple_element[1]): print("{:>{}}".format(value,GENERAL_COLUMN),end="") print("{:>{}}".format(round(tuple_element[-1],2),GENERAL_COLUMN)) def main_func(): """ Main function """ parts_file_name = input("Enter filename for parts: ") parts_file = read_file(parts_file_name) if parts_file == None: print("File {} not found".format(parts_file_name)) else: parts_list = populate_weight_list(parts_file) weight_tuples_list = populate_weight_tuple_list(parts_list) print(weight_tuples_list) grades_file_name = input("Enter filename for grades: ") grade_file = read_file(grades_file_name) if grade_file == None: print("File {} not found".format(grades_file_name)) else: email_list, grades_list = populate_grades_list(grade_file) grades_tuple_list = populate_grades_tuple_list(email_list, grades_list) print(grades_tuple_list) modified_grade_tuple_list = calculate_final_grade(grades_tuple_list, weight_tuples_list) print(modified_grade_tuple_list) print_results(weight_tuples_list,modified_grade_tuple_list) main_func()
flexible
{ "blob_id": "d8af8e36bd00fbfc966ef1c4dd0c6385cbb019ee", "index": 2064, "step-1": "<mask token>\n\n\ndef read_file(string_object):\n \"\"\" Opens and reads through a file, returning none if it isnt found \"\"\"\n try:\n return open(string_object, 'r')\n except FileNotFoundError:\n return None\n\n\n<mask token>\n\n\ndef populate_weight_tuple_list(list_object):\n \"\"\" Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements \"\"\"\n tuple_list = []\n for i in range(len(list_object[0])):\n weight_tuple = list_object[0][i], float(list_object[1][i])\n tuple_list.append(weight_tuple)\n return tuple_list\n\n\ndef populate_grades_tuple_list(list_object1, list_object2):\n \"\"\" Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples \"\"\"\n tuple_list = []\n for i in range(len(list_object1)):\n grades_tuple = list_object1[i], list_object2[i]\n tuple_list.append(grades_tuple)\n return tuple_list\n\n\ndef calculate_final_grade(list_object1, list_object2):\n \"\"\" Takes lists containing information about grades and course weights and calculates the final grade from the course \"\"\"\n list_object1 = [list(element) for element in list_object1]\n for i in range(len(list_object1)):\n final_grade = 0.0\n for j in range(len(list_object1[i][1])):\n final_grade += list_object1[i][1][j] * list_object2[j][1]\n list_object1[i].append(final_grade)\n list_object1 = [tuple(element) for element in list_object1]\n return list_object1\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef read_file(string_object):\n \"\"\" Opens and reads through a file, returning none if it isnt found \"\"\"\n try:\n return open(string_object, 'r')\n except FileNotFoundError:\n return None\n\n\n<mask token>\n\n\ndef populate_weight_tuple_list(list_object):\n \"\"\" Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements \"\"\"\n tuple_list = []\n for i in range(len(list_object[0])):\n weight_tuple = list_object[0][i], float(list_object[1][i])\n tuple_list.append(weight_tuple)\n return tuple_list\n\n\ndef populate_grades_tuple_list(list_object1, list_object2):\n \"\"\" Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples \"\"\"\n tuple_list = []\n for i in range(len(list_object1)):\n grades_tuple = list_object1[i], list_object2[i]\n tuple_list.append(grades_tuple)\n return tuple_list\n\n\ndef calculate_final_grade(list_object1, list_object2):\n \"\"\" Takes lists containing information about grades and course weights and calculates the final grade from the course \"\"\"\n list_object1 = [list(element) for element in list_object1]\n for i in range(len(list_object1)):\n final_grade = 0.0\n for j in range(len(list_object1[i][1])):\n final_grade += list_object1[i][1][j] * list_object2[j][1]\n list_object1[i].append(final_grade)\n list_object1 = [tuple(element) for element in list_object1]\n return list_object1\n\n\ndef print_results(list_object1, list_object2):\n \"\"\" Takes lists containing information about course parts and student grades and prints them in a formatted menu \"\"\"\n STUDENT_COLUMN = 16\n GENERAL_COLUMN = 14\n print()\n print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='')\n for i in range(len(list_object1)):\n print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='')\n print('{:>{}}'.format('Course grade', GENERAL_COLUMN))\n for tuple_element in list_object2:\n print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='')\n for i, value in enumerate(tuple_element[1]):\n print('{:>{}}'.format(value, GENERAL_COLUMN), end='')\n print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef read_file(string_object):\n \"\"\" Opens and reads through a file, returning none if it isnt found \"\"\"\n try:\n return open(string_object, 'r')\n except FileNotFoundError:\n return None\n\n\n<mask token>\n\n\ndef populate_grades_list(file_object):\n \"\"\" Takes information from a file containing student emails and grades and puts each in seperate lists \"\"\"\n email_list = []\n grade_list = []\n for line in file_object:\n tmp_list = line.split()\n email_list.append(tmp_list[0])\n grade_list.append(tmp_list[1:])\n for value_list in grade_list:\n for i, value in enumerate(value_list):\n value_list[i] = float(value)\n return email_list, grade_list\n\n\ndef populate_weight_tuple_list(list_object):\n \"\"\" Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements \"\"\"\n tuple_list = []\n for i in range(len(list_object[0])):\n weight_tuple = list_object[0][i], float(list_object[1][i])\n tuple_list.append(weight_tuple)\n return tuple_list\n\n\ndef populate_grades_tuple_list(list_object1, list_object2):\n \"\"\" Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples \"\"\"\n tuple_list = []\n for i in range(len(list_object1)):\n grades_tuple = list_object1[i], list_object2[i]\n tuple_list.append(grades_tuple)\n return tuple_list\n\n\ndef calculate_final_grade(list_object1, list_object2):\n \"\"\" Takes lists containing information about grades and course weights and calculates the final grade from the course \"\"\"\n list_object1 = [list(element) for element in list_object1]\n for i in range(len(list_object1)):\n final_grade = 0.0\n for j in range(len(list_object1[i][1])):\n final_grade += list_object1[i][1][j] * list_object2[j][1]\n list_object1[i].append(final_grade)\n list_object1 = [tuple(element) for element in list_object1]\n return list_object1\n\n\ndef print_results(list_object1, list_object2):\n \"\"\" Takes lists containing information about course parts and student grades and prints them in a formatted menu \"\"\"\n STUDENT_COLUMN = 16\n GENERAL_COLUMN = 14\n print()\n print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='')\n for i in range(len(list_object1)):\n print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='')\n print('{:>{}}'.format('Course grade', GENERAL_COLUMN))\n for tuple_element in list_object2:\n print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='')\n for i, value in enumerate(tuple_element[1]):\n print('{:>{}}'.format(value, GENERAL_COLUMN), end='')\n print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN))\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef read_file(string_object):\n \"\"\" Opens and reads through a file, returning none if it isnt found \"\"\"\n try:\n return open(string_object, 'r')\n except FileNotFoundError:\n return None\n\n\ndef populate_weight_list(file_object):\n \"\"\" Takes information from a file object containing course weights and puts it into a list \"\"\"\n new_list = []\n for line in file_object:\n new_list.append(line.split())\n return new_list\n\n\ndef populate_grades_list(file_object):\n \"\"\" Takes information from a file containing student emails and grades and puts each in seperate lists \"\"\"\n email_list = []\n grade_list = []\n for line in file_object:\n tmp_list = line.split()\n email_list.append(tmp_list[0])\n grade_list.append(tmp_list[1:])\n for value_list in grade_list:\n for i, value in enumerate(value_list):\n value_list[i] = float(value)\n return email_list, grade_list\n\n\ndef populate_weight_tuple_list(list_object):\n \"\"\" Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements \"\"\"\n tuple_list = []\n for i in range(len(list_object[0])):\n weight_tuple = list_object[0][i], float(list_object[1][i])\n tuple_list.append(weight_tuple)\n return tuple_list\n\n\ndef populate_grades_tuple_list(list_object1, list_object2):\n \"\"\" Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples \"\"\"\n tuple_list = []\n for i in range(len(list_object1)):\n grades_tuple = list_object1[i], list_object2[i]\n tuple_list.append(grades_tuple)\n return tuple_list\n\n\ndef calculate_final_grade(list_object1, list_object2):\n \"\"\" Takes lists containing information about grades and course weights and calculates the final grade from the course \"\"\"\n list_object1 = [list(element) for element in list_object1]\n for i in range(len(list_object1)):\n final_grade = 0.0\n for j in range(len(list_object1[i][1])):\n final_grade += list_object1[i][1][j] * list_object2[j][1]\n list_object1[i].append(final_grade)\n list_object1 = [tuple(element) for element in list_object1]\n return list_object1\n\n\ndef print_results(list_object1, list_object2):\n \"\"\" Takes lists containing information about course parts and student grades and prints them in a formatted menu \"\"\"\n STUDENT_COLUMN = 16\n GENERAL_COLUMN = 14\n print()\n print('{:>{}}'.format('Student ID', STUDENT_COLUMN), end='')\n for i in range(len(list_object1)):\n print('{:>{}}'.format(list_object1[i][0], GENERAL_COLUMN), end='')\n print('{:>{}}'.format('Course grade', GENERAL_COLUMN))\n for tuple_element in list_object2:\n print('{:>{}}'.format(tuple_element[0], STUDENT_COLUMN), end='')\n for i, value in enumerate(tuple_element[1]):\n print('{:>{}}'.format(value, GENERAL_COLUMN), end='')\n print('{:>{}}'.format(round(tuple_element[-1], 2), GENERAL_COLUMN))\n\n\ndef main_func():\n \"\"\" Main function \"\"\"\n parts_file_name = input('Enter filename for parts: ')\n parts_file = read_file(parts_file_name)\n if parts_file == None:\n print('File {} not found'.format(parts_file_name))\n else:\n parts_list = populate_weight_list(parts_file)\n weight_tuples_list = populate_weight_tuple_list(parts_list)\n print(weight_tuples_list)\n grades_file_name = input('Enter filename for grades: ')\n grade_file = read_file(grades_file_name)\n if grade_file == None:\n print('File {} not found'.format(grades_file_name))\n else:\n email_list, grades_list = populate_grades_list(grade_file)\n grades_tuple_list = populate_grades_tuple_list(email_list,\n grades_list)\n print(grades_tuple_list)\n modified_grade_tuple_list = calculate_final_grade(grades_tuple_list\n , weight_tuples_list)\n print(modified_grade_tuple_list)\n print_results(weight_tuples_list, modified_grade_tuple_list)\n\n\n<mask token>\n", "step-5": "\"\"\"\nThis program takes information about students and their coursework and calculates their final grades based on the weight of each course factor\n\"\"\"\n\ndef read_file(string_object):\n \"\"\" Opens and reads through a file, returning none if it isnt found \"\"\"\n try:\n return open(string_object,\"r\")\n except FileNotFoundError:\n return None\n\ndef populate_weight_list(file_object):\n \"\"\" Takes information from a file object containing course weights and puts it into a list \"\"\"\n new_list = []\n\n for line in file_object:\n new_list.append(line.split())\n \n return new_list\n\ndef populate_grades_list(file_object):\n \"\"\" Takes information from a file containing student emails and grades and puts each in seperate lists \"\"\"\n email_list = []\n grade_list = []\n\n for line in file_object:\n tmp_list = line.split()\n email_list.append(tmp_list[0])\n grade_list.append(tmp_list[1::])\n\n for value_list in grade_list:\n for i, value in enumerate(value_list):\n value_list[i] = float(value)\n\n return email_list, grade_list\n\ndef populate_weight_tuple_list(list_object):\n \"\"\" Takes elements from a list containing course part names and their weights and returns a list of tuples containing those elements \"\"\"\n tuple_list = []\n\n for i in range(len(list_object[0])):\n weight_tuple = (list_object[0][i], float(list_object[1][i]))\n tuple_list.append(weight_tuple)\n \n return tuple_list\n\ndef populate_grades_tuple_list(list_object1, list_object2):\n \"\"\" Takes elements from a list containing student emails and a list containing grades and returns a list of corresponding emails and grades in tuples \"\"\"\n tuple_list = []\n\n for i in range(len(list_object1)):\n grades_tuple = (list_object1[i], list_object2[i])\n tuple_list.append(grades_tuple)\n \n return tuple_list\n\ndef calculate_final_grade(list_object1, list_object2):\n \"\"\" Takes lists containing information about grades and course weights and calculates the final grade from the course \"\"\"\n\n list_object1 = [list(element) for element in list_object1] #Have to turn the tuples in the list to lists so that we can add the final grade to the list\n\n for i in range(len(list_object1)):\n final_grade = 0.0\n for j in range(len(list_object1[i][1])):\n final_grade += (list_object1[i][1][j] * list_object2[j][1])\n list_object1[i].append(final_grade)\n \n list_object1 = [tuple(element) for element in list_object1] #Turn the lists in the list into tuples again\n\n return list_object1\n\ndef print_results(list_object1, list_object2):\n \"\"\" Takes lists containing information about course parts and student grades and prints them in a formatted menu \"\"\"\n STUDENT_COLUMN = 16\n GENERAL_COLUMN = 14\n\n print()\n print(\"{:>{}}\".format(\"Student ID\",STUDENT_COLUMN),end=\"\")\n\n for i in range(len(list_object1)):\n print(\"{:>{}}\".format(list_object1[i][0],GENERAL_COLUMN),end=\"\")\n \n print(\"{:>{}}\".format(\"Course grade\",GENERAL_COLUMN))\n\n for tuple_element in list_object2:\n\n print(\"{:>{}}\".format(tuple_element[0],STUDENT_COLUMN),end=\"\")\n\n for i, value in enumerate(tuple_element[1]):\n print(\"{:>{}}\".format(value,GENERAL_COLUMN),end=\"\")\n \n print(\"{:>{}}\".format(round(tuple_element[-1],2),GENERAL_COLUMN))\n\n\ndef main_func():\n \"\"\" Main function \"\"\"\n\n parts_file_name = input(\"Enter filename for parts: \")\n parts_file = read_file(parts_file_name)\n\n if parts_file == None:\n print(\"File {} not found\".format(parts_file_name))\n else:\n parts_list = populate_weight_list(parts_file)\n weight_tuples_list = populate_weight_tuple_list(parts_list)\n print(weight_tuples_list)\n\n grades_file_name = input(\"Enter filename for grades: \")\n grade_file = read_file(grades_file_name)\n if grade_file == None:\n print(\"File {} not found\".format(grades_file_name))\n else:\n email_list, grades_list = populate_grades_list(grade_file)\n grades_tuple_list = populate_grades_tuple_list(email_list, grades_list)\n print(grades_tuple_list)\n\n modified_grade_tuple_list = calculate_final_grade(grades_tuple_list, weight_tuples_list)\n print(modified_grade_tuple_list)\n\n print_results(weight_tuples_list,modified_grade_tuple_list)\n\nmain_func() \n", "step-ids": [ 4, 5, 6, 8, 10 ] }
[ 4, 5, 6, 8, 10 ]
from scrapera.image.duckduckgo import DuckDuckGoScraper scraper = DuckDuckGoScraper() scraper.scrape('spongebob squarepants', 1, r'path/to/output/directory')
normal
{ "blob_id": "d234034f7f232e842d0b4e465ea6ec314af6964d", "index": 4209, "step-1": "<mask token>\n", "step-2": "<mask token>\nscraper.scrape('spongebob squarepants', 1, 'path/to/output/directory')\n", "step-3": "<mask token>\nscraper = DuckDuckGoScraper()\nscraper.scrape('spongebob squarepants', 1, 'path/to/output/directory')\n", "step-4": "from scrapera.image.duckduckgo import DuckDuckGoScraper\nscraper = DuckDuckGoScraper()\nscraper.scrape('spongebob squarepants', 1, 'path/to/output/directory')\n", "step-5": "from scrapera.image.duckduckgo import DuckDuckGoScraper\n\nscraper = DuckDuckGoScraper()\nscraper.scrape('spongebob squarepants', 1, r'path/to/output/directory')\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""For logging training information to files.""" import os def delete_log(file_path): """Delete a log file. Args: file_path: String, the full path to the log file. Raises: ValueError: if file not found. """ if os.path.exists(file_path): print('Deleting log %s...' % file_path) os.remove(file_path) else: raise ValueError("File %r doesn't exists - cannot delete." % file_path) class Logger: """For logging information to file.""" def __init__(self, file_path, print_too=True, override=False): """Create a new Logger. Args: file_path: String, the full path to the target file. print_too: Bool, whether or not to also print logger info to terminal. override: Bool, whether or not to delete any old files. """ self.file_path = file_path self.print_too = print_too if override: if os.path.exists(file_path): print('Overriding - deleting previous log...') os.remove(file_path) os.makedirs(os.path.dirname(file_path), exist_ok=True) def log(self, info): with open(self.file_path, 'a') as file: file.write('\n' + info) if self.print_too: print(info)
normal
{ "blob_id": "1355c3abfd2683f6dc869703fdb79a04e264099c", "index": 3421, "step-1": "<mask token>\n\n\nclass Logger:\n <mask token>\n\n def __init__(self, file_path, print_too=True, override=False):\n \"\"\"Create a new Logger.\n\n Args:\n file_path: String, the full path to the target file.\n print_too: Bool, whether or not to also print logger info to terminal.\n override: Bool, whether or not to delete any old files.\n \"\"\"\n self.file_path = file_path\n self.print_too = print_too\n if override:\n if os.path.exists(file_path):\n print('Overriding - deleting previous log...')\n os.remove(file_path)\n os.makedirs(os.path.dirname(file_path), exist_ok=True)\n\n def log(self, info):\n with open(self.file_path, 'a') as file:\n file.write('\\n' + info)\n if self.print_too:\n print(info)\n", "step-2": "<mask token>\n\n\nclass Logger:\n \"\"\"For logging information to file.\"\"\"\n\n def __init__(self, file_path, print_too=True, override=False):\n \"\"\"Create a new Logger.\n\n Args:\n file_path: String, the full path to the target file.\n print_too: Bool, whether or not to also print logger info to terminal.\n override: Bool, whether or not to delete any old files.\n \"\"\"\n self.file_path = file_path\n self.print_too = print_too\n if override:\n if os.path.exists(file_path):\n print('Overriding - deleting previous log...')\n os.remove(file_path)\n os.makedirs(os.path.dirname(file_path), exist_ok=True)\n\n def log(self, info):\n with open(self.file_path, 'a') as file:\n file.write('\\n' + info)\n if self.print_too:\n print(info)\n", "step-3": "<mask token>\n\n\ndef delete_log(file_path):\n \"\"\"Delete a log file.\n\n Args:\n file_path: String, the full path to the log file.\n\n Raises:\n ValueError: if file not found.\n \"\"\"\n if os.path.exists(file_path):\n print('Deleting log %s...' % file_path)\n os.remove(file_path)\n else:\n raise ValueError(\"File %r doesn't exists - cannot delete.\" % file_path\n )\n\n\nclass Logger:\n \"\"\"For logging information to file.\"\"\"\n\n def __init__(self, file_path, print_too=True, override=False):\n \"\"\"Create a new Logger.\n\n Args:\n file_path: String, the full path to the target file.\n print_too: Bool, whether or not to also print logger info to terminal.\n override: Bool, whether or not to delete any old files.\n \"\"\"\n self.file_path = file_path\n self.print_too = print_too\n if override:\n if os.path.exists(file_path):\n print('Overriding - deleting previous log...')\n os.remove(file_path)\n os.makedirs(os.path.dirname(file_path), exist_ok=True)\n\n def log(self, info):\n with open(self.file_path, 'a') as file:\n file.write('\\n' + info)\n if self.print_too:\n print(info)\n", "step-4": "<mask token>\nimport os\n\n\ndef delete_log(file_path):\n \"\"\"Delete a log file.\n\n Args:\n file_path: String, the full path to the log file.\n\n Raises:\n ValueError: if file not found.\n \"\"\"\n if os.path.exists(file_path):\n print('Deleting log %s...' % file_path)\n os.remove(file_path)\n else:\n raise ValueError(\"File %r doesn't exists - cannot delete.\" % file_path\n )\n\n\nclass Logger:\n \"\"\"For logging information to file.\"\"\"\n\n def __init__(self, file_path, print_too=True, override=False):\n \"\"\"Create a new Logger.\n\n Args:\n file_path: String, the full path to the target file.\n print_too: Bool, whether or not to also print logger info to terminal.\n override: Bool, whether or not to delete any old files.\n \"\"\"\n self.file_path = file_path\n self.print_too = print_too\n if override:\n if os.path.exists(file_path):\n print('Overriding - deleting previous log...')\n os.remove(file_path)\n os.makedirs(os.path.dirname(file_path), exist_ok=True)\n\n def log(self, info):\n with open(self.file_path, 'a') as file:\n file.write('\\n' + info)\n if self.print_too:\n print(info)\n", "step-5": "\"\"\"For logging training information to files.\"\"\"\nimport os\n\n\ndef delete_log(file_path):\n \"\"\"Delete a log file.\n\n Args:\n file_path: String, the full path to the log file.\n\n Raises:\n ValueError: if file not found.\n \"\"\"\n if os.path.exists(file_path):\n print('Deleting log %s...' % file_path)\n os.remove(file_path)\n else:\n raise ValueError(\"File %r doesn't exists - cannot delete.\" % file_path)\n\n\nclass Logger:\n \"\"\"For logging information to file.\"\"\"\n\n def __init__(self, file_path, print_too=True, override=False):\n \"\"\"Create a new Logger.\n\n Args:\n file_path: String, the full path to the target file.\n print_too: Bool, whether or not to also print logger info to terminal.\n override: Bool, whether or not to delete any old files.\n \"\"\"\n self.file_path = file_path\n self.print_too = print_too\n if override:\n if os.path.exists(file_path):\n print('Overriding - deleting previous log...')\n os.remove(file_path)\n os.makedirs(os.path.dirname(file_path), exist_ok=True)\n\n def log(self, info):\n with open(self.file_path, 'a') as file:\n file.write('\\n' + info)\n if self.print_too:\n print(info)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
<|reserved_special_token_0|> class Gobang: <|reserved_special_token_0|> <|reserved_special_token_0|> def new(self): """新局""" self.__init__() def printcb(self): """打印棋盘""" print('\x1b[7;32;40m+ ', end='') for c in range(65, 80): print(chr(c), end=' ') print('\x1b[0m\n') for row in range(len(self.chessboard)): print('\x1b[7;32;40m' + chr(row + 97), end='\x1b[0m ') for i in self.chessboard[row]: if i == 0: print(i, end=' ') elif i == 1: print('\x1b[31m{}\x1b[0m'.format(i), end=' ') elif i == 2: print('\x1b[34m{}\x1b[0m'.format(i), end=' ') print('\n') def player(self): """获取玩家ID""" return len(self.step) % 2 + 1 def sortstep(self): """将总步表分配给黑白子""" self.white, self.black = {}, {} for s in self.step.items(): if s[0] % 2 == 1: self.black.update({s[0]: s[1]}) else: self.white.update({s[0]: s[1]}) <|reserved_special_token_0|> def recall(self, s=-1): """ 悔棋 """ if s == -1: try: if len(self.max_step) < len(self.step): self.max_step = self.step.copy() if len(self.step) == 0: raise KeyError except KeyError: return False else: self.step.popitem() return self.loadstep() elif s == 1: if len(self.max_step) > len(self.step): self.step.update({(len(self.step) + 1): self.max_step[len( self.step) + 1]}) return self.loadstep() else: return False <|reserved_special_token_0|> def iswin(self): """判断是否结束 """ step_set_ls = [] cb = self.chessboard for s in self.step.values(): step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97)) for r, c in step_set_ls: try: if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1 ] == cb[r][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c ] == cb[r + 2][c] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1 ][c + 1] == cb[r + 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1 ][c + 1] == cb[r - 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass return False, 0 def __init__(self): self.chessboard = [[(0) for i in range(self.SIDE)] for j in range( self.SIDE)] self.step = {} self.max_step = {} self.black = {} self.white = {} <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Gobang: <|reserved_special_token_0|> SIDE = 15 def new(self): """新局""" self.__init__() def printcb(self): """打印棋盘""" print('\x1b[7;32;40m+ ', end='') for c in range(65, 80): print(chr(c), end=' ') print('\x1b[0m\n') for row in range(len(self.chessboard)): print('\x1b[7;32;40m' + chr(row + 97), end='\x1b[0m ') for i in self.chessboard[row]: if i == 0: print(i, end=' ') elif i == 1: print('\x1b[31m{}\x1b[0m'.format(i), end=' ') elif i == 2: print('\x1b[34m{}\x1b[0m'.format(i), end=' ') print('\n') def player(self): """获取玩家ID""" return len(self.step) % 2 + 1 def sortstep(self): """将总步表分配给黑白子""" self.white, self.black = {}, {} for s in self.step.items(): if s[0] % 2 == 1: self.black.update({s[0]: s[1]}) else: self.white.update({s[0]: s[1]}) def loadstep(self): """ 载入步表 将 self.step 载入到棋盘上 """ try: self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(self.SIDE)] step_list = list(self.step.values()).copy() for i in range(len(step_list)): self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i] [1]) - 97] = i % 2 + 1 self.sortstep() return True except TypeError: return False def recall(self, s=-1): """ 悔棋 """ if s == -1: try: if len(self.max_step) < len(self.step): self.max_step = self.step.copy() if len(self.step) == 0: raise KeyError except KeyError: return False else: self.step.popitem() return self.loadstep() elif s == 1: if len(self.max_step) > len(self.step): self.step.update({(len(self.step) + 1): self.max_step[len( self.step) + 1]}) return self.loadstep() else: return False def move(self, row: int=7, column: int=7, **kwgs): """移動棋盘 row: 棋盘的行号 column: 棋盘的列号 """ if 's' in kwgs: row = ord(kwgs['s'][0].lower()) - 97 column = ord(kwgs['s'][1].lower()) - 97 if 0 <= row < self.SIDE and 0 <= column < self.SIDE: if self.chessboard[row][column] == 0: self.chessboard[row][column] = self.player() self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97 ) self.sortstep() return True return False def iswin(self): """判断是否结束 """ step_set_ls = [] cb = self.chessboard for s in self.step.values(): step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97)) for r, c in step_set_ls: try: if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1 ] == cb[r][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c ] == cb[r + 2][c] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1 ][c + 1] == cb[r + 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1 ][c + 1] == cb[r - 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass return False, 0 def __init__(self): self.chessboard = [[(0) for i in range(self.SIDE)] for j in range( self.SIDE)] self.step = {} self.max_step = {} self.black = {} self.white = {} <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> class Gobang: """ 五子棋 ===== 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 : new(): 新局 printcb(): 打印棋盘 player(): 获取当前应落子 ID (轮走方) sortstep(): 处理总步表 loadstep(): 将 step 步表的内容载入棋盘 recall(): 前进后退的操作 move(): 落子 iswin(): 判断是否获胜 """ SIDE = 15 def new(self): """新局""" self.__init__() def printcb(self): """打印棋盘""" print('\x1b[7;32;40m+ ', end='') for c in range(65, 80): print(chr(c), end=' ') print('\x1b[0m\n') for row in range(len(self.chessboard)): print('\x1b[7;32;40m' + chr(row + 97), end='\x1b[0m ') for i in self.chessboard[row]: if i == 0: print(i, end=' ') elif i == 1: print('\x1b[31m{}\x1b[0m'.format(i), end=' ') elif i == 2: print('\x1b[34m{}\x1b[0m'.format(i), end=' ') print('\n') def player(self): """获取玩家ID""" return len(self.step) % 2 + 1 def sortstep(self): """将总步表分配给黑白子""" self.white, self.black = {}, {} for s in self.step.items(): if s[0] % 2 == 1: self.black.update({s[0]: s[1]}) else: self.white.update({s[0]: s[1]}) def loadstep(self): """ 载入步表 将 self.step 载入到棋盘上 """ try: self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(self.SIDE)] step_list = list(self.step.values()).copy() for i in range(len(step_list)): self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i] [1]) - 97] = i % 2 + 1 self.sortstep() return True except TypeError: return False def recall(self, s=-1): """ 悔棋 """ if s == -1: try: if len(self.max_step) < len(self.step): self.max_step = self.step.copy() if len(self.step) == 0: raise KeyError except KeyError: return False else: self.step.popitem() return self.loadstep() elif s == 1: if len(self.max_step) > len(self.step): self.step.update({(len(self.step) + 1): self.max_step[len( self.step) + 1]}) return self.loadstep() else: return False def move(self, row: int=7, column: int=7, **kwgs): """移動棋盘 row: 棋盘的行号 column: 棋盘的列号 """ if 's' in kwgs: row = ord(kwgs['s'][0].lower()) - 97 column = ord(kwgs['s'][1].lower()) - 97 if 0 <= row < self.SIDE and 0 <= column < self.SIDE: if self.chessboard[row][column] == 0: self.chessboard[row][column] = self.player() self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97 ) self.sortstep() return True return False def iswin(self): """判断是否结束 """ step_set_ls = [] cb = self.chessboard for s in self.step.values(): step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97)) for r, c in step_set_ls: try: if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1 ] == cb[r][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c ] == cb[r + 2][c] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1 ][c + 1] == cb[r + 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1 ][c + 1] == cb[r - 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass return False, 0 def __init__(self): self.chessboard = [[(0) for i in range(self.SIDE)] for j in range( self.SIDE)] self.step = {} self.max_step = {} self.black = {} self.white = {} def _test(): a = Gobang() a.step = {(1): 'no', (2): 'oo', (3): 'mn', (4): 'nn', (5): 'lm', (6): 'mm', (7): 'kl', (8): 'll'} a.loadstep() a.move(9, 10) a.printcb() print(a.iswin()) a.new() a.printcb() if __name__ == '__main__': _test() <|reserved_special_token_1|> __version__ = '0.2.2' __author__ = 'Anton Vanke <[email protected]>' class Gobang: """ 五子棋 ===== 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 : new(): 新局 printcb(): 打印棋盘 player(): 获取当前应落子 ID (轮走方) sortstep(): 处理总步表 loadstep(): 将 step 步表的内容载入棋盘 recall(): 前进后退的操作 move(): 落子 iswin(): 判断是否获胜 """ SIDE = 15 def new(self): """新局""" self.__init__() def printcb(self): """打印棋盘""" print('\x1b[7;32;40m+ ', end='') for c in range(65, 80): print(chr(c), end=' ') print('\x1b[0m\n') for row in range(len(self.chessboard)): print('\x1b[7;32;40m' + chr(row + 97), end='\x1b[0m ') for i in self.chessboard[row]: if i == 0: print(i, end=' ') elif i == 1: print('\x1b[31m{}\x1b[0m'.format(i), end=' ') elif i == 2: print('\x1b[34m{}\x1b[0m'.format(i), end=' ') print('\n') def player(self): """获取玩家ID""" return len(self.step) % 2 + 1 def sortstep(self): """将总步表分配给黑白子""" self.white, self.black = {}, {} for s in self.step.items(): if s[0] % 2 == 1: self.black.update({s[0]: s[1]}) else: self.white.update({s[0]: s[1]}) def loadstep(self): """ 载入步表 将 self.step 载入到棋盘上 """ try: self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(self.SIDE)] step_list = list(self.step.values()).copy() for i in range(len(step_list)): self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i] [1]) - 97] = i % 2 + 1 self.sortstep() return True except TypeError: return False def recall(self, s=-1): """ 悔棋 """ if s == -1: try: if len(self.max_step) < len(self.step): self.max_step = self.step.copy() if len(self.step) == 0: raise KeyError except KeyError: return False else: self.step.popitem() return self.loadstep() elif s == 1: if len(self.max_step) > len(self.step): self.step.update({(len(self.step) + 1): self.max_step[len( self.step) + 1]}) return self.loadstep() else: return False def move(self, row: int=7, column: int=7, **kwgs): """移動棋盘 row: 棋盘的行号 column: 棋盘的列号 """ if 's' in kwgs: row = ord(kwgs['s'][0].lower()) - 97 column = ord(kwgs['s'][1].lower()) - 97 if 0 <= row < self.SIDE and 0 <= column < self.SIDE: if self.chessboard[row][column] == 0: self.chessboard[row][column] = self.player() self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97 ) self.sortstep() return True return False def iswin(self): """判断是否结束 """ step_set_ls = [] cb = self.chessboard for s in self.step.values(): step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97)) for r, c in step_set_ls: try: if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1 ] == cb[r][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c ] == cb[r + 2][c] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1 ][c + 1] == cb[r + 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1 ][c + 1] == cb[r - 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass return False, 0 def __init__(self): self.chessboard = [[(0) for i in range(self.SIDE)] for j in range( self.SIDE)] self.step = {} self.max_step = {} self.black = {} self.white = {} def _test(): a = Gobang() a.step = {(1): 'no', (2): 'oo', (3): 'mn', (4): 'nn', (5): 'lm', (6): 'mm', (7): 'kl', (8): 'll'} a.loadstep() a.move(9, 10) a.printcb() print(a.iswin()) a.new() a.printcb() if __name__ == '__main__': _test() <|reserved_special_token_1|> #!/usr/bin/python3.8 # -*- coding: utf-8 -*- __version__ = "0.2.2" __author__ = 'Anton Vanke <[email protected]>' class Gobang: """ 五子棋 ===== 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 : new(): 新局 printcb(): 打印棋盘 player(): 获取当前应落子 ID (轮走方) sortstep(): 处理总步表 loadstep(): 将 step 步表的内容载入棋盘 recall(): 前进后退的操作 move(): 落子 iswin(): 判断是否获胜 """ # 棋盘的边长 SIDE = 15 def new(self): """新局""" self.__init__() def printcb(self): """打印棋盘""" print("\033[7;32;40m+ ", end="") for c in range(65, 80): print(chr(c), end=" ") print("\033[0m\n") for row in range(len(self.chessboard)): print("\033[7;32;40m" + chr(row + 97), end="\033[0m ") for i in self.chessboard[row]: if i == 0: print(i, end=" ") elif i == 1: print("\033[31m{}\033[0m".format(i), end=" ") elif i == 2: print("\033[34m{}\033[0m".format(i), end=" ") print("\n") def player(self): """获取玩家ID""" return (len(self.step) % 2) + 1 def sortstep(self): """将总步表分配给黑白子""" self.white, self.black = {}, {} for s in self.step.items(): if s[0] % 2 == 1: self.black.update({s[0]: s[1]}) else: self.white.update({s[0]: s[1]}) def loadstep(self): """ 载入步表 将 self.step 载入到棋盘上 """ try: self.chessboard = [[0 for i in range(self.SIDE)] for j in range(self.SIDE)] step_list = list(self.step.values()).copy() for i in range(len(step_list)): self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i][1]) - 97] = (i % 2) + 1 self.sortstep() return True except TypeError: return False def recall(self, s=-1): """ 悔棋 """ if s == -1: try: if len(self.max_step) < len(self.step): self.max_step = self.step.copy() if len(self.step) == 0: raise KeyError except KeyError: return False else: self.step.popitem() return self.loadstep() # 重下 elif s == 1: if len(self.max_step) > len(self.step): self.step.update( {len(self.step) + 1: self.max_step[len(self.step) + 1]}) return self.loadstep() else: return False def move(self, row: int = 7, column: int = 7, **kwgs): """移動棋盘 row: 棋盘的行号 column: 棋盘的列号 """ if 's' in kwgs: row = ord(kwgs['s'][0].lower()) - 97 column = ord(kwgs['s'][1].lower()) - 97 # 判斷是否在棋盤上 if 0 <= row < self.SIDE and 0 <= column < self.SIDE: # 判斷該位置上是否有子落過 if self.chessboard[row][column] == 0: self.chessboard[row][column] = self.player() self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97) self.sortstep() return True return False def iswin(self): """判断是否结束 """ step_set_ls = [] cb = self.chessboard # 将步表转换为列表 for s in self.step.values(): step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97)) # print(step_set_ls) for r, c in step_set_ls: try: # 判断 -- 行有 5 子 if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][ c + 1] == cb[r][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: # 判断 | 有 5 子 if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[ r + 1][c] == cb[r + 2][c] in (1, 2): return True, cb[r][c] except IndexError: pass try: # 判断 \ 有 5 子 if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[ r + 1][c + 1] == cb[r + 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass try: # 判断 / 列有 5 子 if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[ r - 1][c + 1] == cb[r - 2][c + 2] in (1, 2): return True, cb[r][c] except IndexError: pass return False, 0 def __init__(self): # 棋盤 self.chessboard = [[0 for i in range(self.SIDE)] for j in range(self.SIDE)] # 總步表 self.step = {} # 单局最长步表 self.max_step = {} # 黑子步表 self.black = {} # 白子步表 self.white = {} def _test(): a = Gobang() # 输入步表 a.step = { 1: 'no', 2: 'oo', 3: 'mn', 4: 'nn', 5: 'lm', 6: 'mm', 7: 'kl', 8: 'll', } # 加载 a.loadstep() # 落子 a.move(9, 10) # 打印棋盘 a.printcb() # 输出输赢 print(a.iswin()) a.new() a.printcb() if __name__ == "__main__": _test()
flexible
{ "blob_id": "e0394bfed51cd0af9bca06867e9b556b226f37d1", "index": 1720, "step-1": "<mask token>\n\n\nclass Gobang:\n <mask token>\n <mask token>\n\n def new(self):\n \"\"\"新局\"\"\"\n self.__init__()\n\n def printcb(self):\n \"\"\"打印棋盘\"\"\"\n print('\\x1b[7;32;40m+ ', end='')\n for c in range(65, 80):\n print(chr(c), end=' ')\n print('\\x1b[0m\\n')\n for row in range(len(self.chessboard)):\n print('\\x1b[7;32;40m' + chr(row + 97), end='\\x1b[0m ')\n for i in self.chessboard[row]:\n if i == 0:\n print(i, end=' ')\n elif i == 1:\n print('\\x1b[31m{}\\x1b[0m'.format(i), end=' ')\n elif i == 2:\n print('\\x1b[34m{}\\x1b[0m'.format(i), end=' ')\n print('\\n')\n\n def player(self):\n \"\"\"获取玩家ID\"\"\"\n return len(self.step) % 2 + 1\n\n def sortstep(self):\n \"\"\"将总步表分配给黑白子\"\"\"\n self.white, self.black = {}, {}\n for s in self.step.items():\n if s[0] % 2 == 1:\n self.black.update({s[0]: s[1]})\n else:\n self.white.update({s[0]: s[1]})\n <mask token>\n\n def recall(self, s=-1):\n \"\"\" 悔棋\n \"\"\"\n if s == -1:\n try:\n if len(self.max_step) < len(self.step):\n self.max_step = self.step.copy()\n if len(self.step) == 0:\n raise KeyError\n except KeyError:\n return False\n else:\n self.step.popitem()\n return self.loadstep()\n elif s == 1:\n if len(self.max_step) > len(self.step):\n self.step.update({(len(self.step) + 1): self.max_step[len(\n self.step) + 1]})\n return self.loadstep()\n else:\n return False\n <mask token>\n\n def iswin(self):\n \"\"\"判断是否结束\n \"\"\"\n step_set_ls = []\n cb = self.chessboard\n for s in self.step.values():\n step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97))\n for r, c in step_set_ls:\n try:\n if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1\n ] == cb[r][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c\n ] == cb[r + 2][c] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1\n ][c + 1] == cb[r + 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1\n ][c + 1] == cb[r - 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n return False, 0\n\n def __init__(self):\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(\n self.SIDE)]\n self.step = {}\n self.max_step = {}\n self.black = {}\n self.white = {}\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Gobang:\n <mask token>\n SIDE = 15\n\n def new(self):\n \"\"\"新局\"\"\"\n self.__init__()\n\n def printcb(self):\n \"\"\"打印棋盘\"\"\"\n print('\\x1b[7;32;40m+ ', end='')\n for c in range(65, 80):\n print(chr(c), end=' ')\n print('\\x1b[0m\\n')\n for row in range(len(self.chessboard)):\n print('\\x1b[7;32;40m' + chr(row + 97), end='\\x1b[0m ')\n for i in self.chessboard[row]:\n if i == 0:\n print(i, end=' ')\n elif i == 1:\n print('\\x1b[31m{}\\x1b[0m'.format(i), end=' ')\n elif i == 2:\n print('\\x1b[34m{}\\x1b[0m'.format(i), end=' ')\n print('\\n')\n\n def player(self):\n \"\"\"获取玩家ID\"\"\"\n return len(self.step) % 2 + 1\n\n def sortstep(self):\n \"\"\"将总步表分配给黑白子\"\"\"\n self.white, self.black = {}, {}\n for s in self.step.items():\n if s[0] % 2 == 1:\n self.black.update({s[0]: s[1]})\n else:\n self.white.update({s[0]: s[1]})\n\n def loadstep(self):\n \"\"\" 载入步表\n 将 self.step 载入到棋盘上\n \"\"\"\n try:\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in\n range(self.SIDE)]\n step_list = list(self.step.values()).copy()\n for i in range(len(step_list)):\n self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i]\n [1]) - 97] = i % 2 + 1\n self.sortstep()\n return True\n except TypeError:\n return False\n\n def recall(self, s=-1):\n \"\"\" 悔棋\n \"\"\"\n if s == -1:\n try:\n if len(self.max_step) < len(self.step):\n self.max_step = self.step.copy()\n if len(self.step) == 0:\n raise KeyError\n except KeyError:\n return False\n else:\n self.step.popitem()\n return self.loadstep()\n elif s == 1:\n if len(self.max_step) > len(self.step):\n self.step.update({(len(self.step) + 1): self.max_step[len(\n self.step) + 1]})\n return self.loadstep()\n else:\n return False\n\n def move(self, row: int=7, column: int=7, **kwgs):\n \"\"\"移動棋盘\n row: 棋盘的行号\n column: 棋盘的列号\n \"\"\"\n if 's' in kwgs:\n row = ord(kwgs['s'][0].lower()) - 97\n column = ord(kwgs['s'][1].lower()) - 97\n if 0 <= row < self.SIDE and 0 <= column < self.SIDE:\n if self.chessboard[row][column] == 0:\n self.chessboard[row][column] = self.player()\n self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97\n )\n self.sortstep()\n return True\n return False\n\n def iswin(self):\n \"\"\"判断是否结束\n \"\"\"\n step_set_ls = []\n cb = self.chessboard\n for s in self.step.values():\n step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97))\n for r, c in step_set_ls:\n try:\n if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1\n ] == cb[r][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c\n ] == cb[r + 2][c] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1\n ][c + 1] == cb[r + 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1\n ][c + 1] == cb[r - 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n return False, 0\n\n def __init__(self):\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(\n self.SIDE)]\n self.step = {}\n self.max_step = {}\n self.black = {}\n self.white = {}\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Gobang:\n \"\"\"\n 五子棋\n =====\n 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 :\n\n new(): 新局\n printcb(): 打印棋盘\n player(): 获取当前应落子 ID (轮走方)\n sortstep(): 处理总步表\n loadstep(): 将 step 步表的内容载入棋盘\n recall(): 前进后退的操作\n move(): 落子\n iswin(): 判断是否获胜\n \"\"\"\n SIDE = 15\n\n def new(self):\n \"\"\"新局\"\"\"\n self.__init__()\n\n def printcb(self):\n \"\"\"打印棋盘\"\"\"\n print('\\x1b[7;32;40m+ ', end='')\n for c in range(65, 80):\n print(chr(c), end=' ')\n print('\\x1b[0m\\n')\n for row in range(len(self.chessboard)):\n print('\\x1b[7;32;40m' + chr(row + 97), end='\\x1b[0m ')\n for i in self.chessboard[row]:\n if i == 0:\n print(i, end=' ')\n elif i == 1:\n print('\\x1b[31m{}\\x1b[0m'.format(i), end=' ')\n elif i == 2:\n print('\\x1b[34m{}\\x1b[0m'.format(i), end=' ')\n print('\\n')\n\n def player(self):\n \"\"\"获取玩家ID\"\"\"\n return len(self.step) % 2 + 1\n\n def sortstep(self):\n \"\"\"将总步表分配给黑白子\"\"\"\n self.white, self.black = {}, {}\n for s in self.step.items():\n if s[0] % 2 == 1:\n self.black.update({s[0]: s[1]})\n else:\n self.white.update({s[0]: s[1]})\n\n def loadstep(self):\n \"\"\" 载入步表\n 将 self.step 载入到棋盘上\n \"\"\"\n try:\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in\n range(self.SIDE)]\n step_list = list(self.step.values()).copy()\n for i in range(len(step_list)):\n self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i]\n [1]) - 97] = i % 2 + 1\n self.sortstep()\n return True\n except TypeError:\n return False\n\n def recall(self, s=-1):\n \"\"\" 悔棋\n \"\"\"\n if s == -1:\n try:\n if len(self.max_step) < len(self.step):\n self.max_step = self.step.copy()\n if len(self.step) == 0:\n raise KeyError\n except KeyError:\n return False\n else:\n self.step.popitem()\n return self.loadstep()\n elif s == 1:\n if len(self.max_step) > len(self.step):\n self.step.update({(len(self.step) + 1): self.max_step[len(\n self.step) + 1]})\n return self.loadstep()\n else:\n return False\n\n def move(self, row: int=7, column: int=7, **kwgs):\n \"\"\"移動棋盘\n row: 棋盘的行号\n column: 棋盘的列号\n \"\"\"\n if 's' in kwgs:\n row = ord(kwgs['s'][0].lower()) - 97\n column = ord(kwgs['s'][1].lower()) - 97\n if 0 <= row < self.SIDE and 0 <= column < self.SIDE:\n if self.chessboard[row][column] == 0:\n self.chessboard[row][column] = self.player()\n self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97\n )\n self.sortstep()\n return True\n return False\n\n def iswin(self):\n \"\"\"判断是否结束\n \"\"\"\n step_set_ls = []\n cb = self.chessboard\n for s in self.step.values():\n step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97))\n for r, c in step_set_ls:\n try:\n if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1\n ] == cb[r][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c\n ] == cb[r + 2][c] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1\n ][c + 1] == cb[r + 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1\n ][c + 1] == cb[r - 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n return False, 0\n\n def __init__(self):\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(\n self.SIDE)]\n self.step = {}\n self.max_step = {}\n self.black = {}\n self.white = {}\n\n\ndef _test():\n a = Gobang()\n a.step = {(1): 'no', (2): 'oo', (3): 'mn', (4): 'nn', (5): 'lm', (6):\n 'mm', (7): 'kl', (8): 'll'}\n a.loadstep()\n a.move(9, 10)\n a.printcb()\n print(a.iswin())\n a.new()\n a.printcb()\n\n\nif __name__ == '__main__':\n _test()\n", "step-4": "__version__ = '0.2.2'\n__author__ = 'Anton Vanke <[email protected]>'\n\n\nclass Gobang:\n \"\"\"\n 五子棋\n =====\n 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 :\n\n new(): 新局\n printcb(): 打印棋盘\n player(): 获取当前应落子 ID (轮走方)\n sortstep(): 处理总步表\n loadstep(): 将 step 步表的内容载入棋盘\n recall(): 前进后退的操作\n move(): 落子\n iswin(): 判断是否获胜\n \"\"\"\n SIDE = 15\n\n def new(self):\n \"\"\"新局\"\"\"\n self.__init__()\n\n def printcb(self):\n \"\"\"打印棋盘\"\"\"\n print('\\x1b[7;32;40m+ ', end='')\n for c in range(65, 80):\n print(chr(c), end=' ')\n print('\\x1b[0m\\n')\n for row in range(len(self.chessboard)):\n print('\\x1b[7;32;40m' + chr(row + 97), end='\\x1b[0m ')\n for i in self.chessboard[row]:\n if i == 0:\n print(i, end=' ')\n elif i == 1:\n print('\\x1b[31m{}\\x1b[0m'.format(i), end=' ')\n elif i == 2:\n print('\\x1b[34m{}\\x1b[0m'.format(i), end=' ')\n print('\\n')\n\n def player(self):\n \"\"\"获取玩家ID\"\"\"\n return len(self.step) % 2 + 1\n\n def sortstep(self):\n \"\"\"将总步表分配给黑白子\"\"\"\n self.white, self.black = {}, {}\n for s in self.step.items():\n if s[0] % 2 == 1:\n self.black.update({s[0]: s[1]})\n else:\n self.white.update({s[0]: s[1]})\n\n def loadstep(self):\n \"\"\" 载入步表\n 将 self.step 载入到棋盘上\n \"\"\"\n try:\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in\n range(self.SIDE)]\n step_list = list(self.step.values()).copy()\n for i in range(len(step_list)):\n self.chessboard[ord(step_list[i][0]) - 97][ord(step_list[i]\n [1]) - 97] = i % 2 + 1\n self.sortstep()\n return True\n except TypeError:\n return False\n\n def recall(self, s=-1):\n \"\"\" 悔棋\n \"\"\"\n if s == -1:\n try:\n if len(self.max_step) < len(self.step):\n self.max_step = self.step.copy()\n if len(self.step) == 0:\n raise KeyError\n except KeyError:\n return False\n else:\n self.step.popitem()\n return self.loadstep()\n elif s == 1:\n if len(self.max_step) > len(self.step):\n self.step.update({(len(self.step) + 1): self.max_step[len(\n self.step) + 1]})\n return self.loadstep()\n else:\n return False\n\n def move(self, row: int=7, column: int=7, **kwgs):\n \"\"\"移動棋盘\n row: 棋盘的行号\n column: 棋盘的列号\n \"\"\"\n if 's' in kwgs:\n row = ord(kwgs['s'][0].lower()) - 97\n column = ord(kwgs['s'][1].lower()) - 97\n if 0 <= row < self.SIDE and 0 <= column < self.SIDE:\n if self.chessboard[row][column] == 0:\n self.chessboard[row][column] = self.player()\n self.step[len(self.step) + 1] = chr(row + 97) + chr(column + 97\n )\n self.sortstep()\n return True\n return False\n\n def iswin(self):\n \"\"\"判断是否结束\n \"\"\"\n step_set_ls = []\n cb = self.chessboard\n for s in self.step.values():\n step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97))\n for r, c in step_set_ls:\n try:\n if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][c + 1\n ] == cb[r][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[r + 1][c\n ] == cb[r + 2][c] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[r + 1\n ][c + 1] == cb[r + 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[r - 1\n ][c + 1] == cb[r - 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n return False, 0\n\n def __init__(self):\n self.chessboard = [[(0) for i in range(self.SIDE)] for j in range(\n self.SIDE)]\n self.step = {}\n self.max_step = {}\n self.black = {}\n self.white = {}\n\n\ndef _test():\n a = Gobang()\n a.step = {(1): 'no', (2): 'oo', (3): 'mn', (4): 'nn', (5): 'lm', (6):\n 'mm', (7): 'kl', (8): 'll'}\n a.loadstep()\n a.move(9, 10)\n a.printcb()\n print(a.iswin())\n a.new()\n a.printcb()\n\n\nif __name__ == '__main__':\n _test()\n", "step-5": "#!/usr/bin/python3.8\n# -*- coding: utf-8 -*-\n__version__ = \"0.2.2\"\n__author__ = 'Anton Vanke <[email protected]>'\n\n\nclass Gobang:\n \"\"\"\n 五子棋\n =====\n 一个简单的五子棋类, 可以在控制台下五子棋. 提供以下函数 :\n\n new(): 新局\n printcb(): 打印棋盘\n player(): 获取当前应落子 ID (轮走方)\n sortstep(): 处理总步表\n loadstep(): 将 step 步表的内容载入棋盘\n recall(): 前进后退的操作\n move(): 落子\n iswin(): 判断是否获胜\n \"\"\"\n # 棋盘的边长\n SIDE = 15\n\n def new(self):\n \"\"\"新局\"\"\"\n self.__init__()\n\n def printcb(self):\n \"\"\"打印棋盘\"\"\"\n print(\"\\033[7;32;40m+ \", end=\"\")\n for c in range(65, 80):\n print(chr(c), end=\" \")\n print(\"\\033[0m\\n\")\n for row in range(len(self.chessboard)):\n print(\"\\033[7;32;40m\" + chr(row + 97), end=\"\\033[0m \")\n for i in self.chessboard[row]:\n if i == 0:\n print(i, end=\" \")\n elif i == 1:\n print(\"\\033[31m{}\\033[0m\".format(i), end=\" \")\n elif i == 2:\n print(\"\\033[34m{}\\033[0m\".format(i), end=\" \")\n print(\"\\n\")\n\n def player(self):\n \"\"\"获取玩家ID\"\"\"\n return (len(self.step) % 2) + 1\n\n def sortstep(self):\n \"\"\"将总步表分配给黑白子\"\"\"\n self.white, self.black = {}, {}\n for s in self.step.items():\n if s[0] % 2 == 1:\n self.black.update({s[0]: s[1]})\n else:\n self.white.update({s[0]: s[1]})\n\n def loadstep(self):\n \"\"\" 载入步表\n 将 self.step 载入到棋盘上\n \"\"\"\n try:\n self.chessboard = [[0 for i in range(self.SIDE)]\n for j in range(self.SIDE)]\n step_list = list(self.step.values()).copy()\n for i in range(len(step_list)):\n self.chessboard[ord(step_list[i][0]) -\n 97][ord(step_list[i][1]) - 97] = (i % 2) + 1\n self.sortstep()\n return True\n except TypeError:\n return False\n\n def recall(self, s=-1):\n \"\"\" 悔棋\n \"\"\"\n if s == -1:\n try:\n if len(self.max_step) < len(self.step):\n self.max_step = self.step.copy()\n if len(self.step) == 0:\n raise KeyError\n except KeyError:\n return False\n else:\n self.step.popitem()\n return self.loadstep()\n # 重下\n elif s == 1:\n if len(self.max_step) > len(self.step):\n self.step.update(\n {len(self.step) + 1: self.max_step[len(self.step) + 1]})\n return self.loadstep()\n else:\n return False\n\n def move(self, row: int = 7, column: int = 7, **kwgs):\n \"\"\"移動棋盘\n row: 棋盘的行号\n column: 棋盘的列号\n \"\"\"\n if 's' in kwgs:\n row = ord(kwgs['s'][0].lower()) - 97\n column = ord(kwgs['s'][1].lower()) - 97\n # 判斷是否在棋盤上\n if 0 <= row < self.SIDE and 0 <= column < self.SIDE:\n # 判斷該位置上是否有子落過\n if self.chessboard[row][column] == 0:\n self.chessboard[row][column] = self.player()\n self.step[len(self.step) +\n 1] = chr(row + 97) + chr(column + 97)\n self.sortstep()\n return True\n return False\n\n def iswin(self):\n \"\"\"判断是否结束\n \"\"\"\n step_set_ls = []\n cb = self.chessboard\n # 将步表转换为列表\n for s in self.step.values():\n step_set_ls.append((ord(s[0]) - 97, ord(s[1]) - 97))\n # print(step_set_ls)\n for r, c in step_set_ls:\n try:\n # 判断 -- 行有 5 子\n if cb[r][c - 2] == cb[r][c - 1] == cb[r][c] == cb[r][\n c + 1] == cb[r][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n # 判断 | 有 5 子\n if cb[r - 2][c] == cb[r - 1][c] == cb[r][c] == cb[\n r + 1][c] == cb[r + 2][c] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n # 判断 \\ 有 5 子\n if cb[r - 2][c - 2] == cb[r - 1][c - 1] == cb[r][c] == cb[\n r + 1][c + 1] == cb[r + 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n try:\n # 判断 / 列有 5 子\n if cb[r + 2][c - 2] == cb[r + 1][c - 1] == cb[r][c] == cb[\n r - 1][c + 1] == cb[r - 2][c + 2] in (1, 2):\n return True, cb[r][c]\n except IndexError:\n pass\n return False, 0\n\n def __init__(self):\n # 棋盤\n self.chessboard = [[0 for i in range(self.SIDE)]\n for j in range(self.SIDE)]\n # 總步表\n self.step = {}\n # 单局最长步表\n self.max_step = {}\n # 黑子步表\n self.black = {}\n # 白子步表\n self.white = {}\n\n\ndef _test():\n a = Gobang()\n # 输入步表\n a.step = {\n 1: 'no',\n 2: 'oo',\n 3: 'mn',\n 4: 'nn',\n 5: 'lm',\n 6: 'mm',\n 7: 'kl',\n 8: 'll',\n }\n # 加载\n a.loadstep()\n # 落子\n a.move(9, 10)\n # 打印棋盘\n a.printcb()\n # 输出输赢\n print(a.iswin())\n a.new()\n a.printcb()\n\n\nif __name__ == \"__main__\":\n _test()\n", "step-ids": [ 8, 11, 14, 15, 16 ] }
[ 8, 11, 14, 15, 16 ]
Xeval[[1,2],:] # *** Spyder Python Console History Log *** Xeval[:,:] optfunc.P(Xeval[:,:]) optfunc.P(Xeval) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.P(Xeval[[0,1,],:]) optfunc.P(Xeval[[0,1],:]) optfunc.P(Xeval[[0,1,2,3],:]) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.P(Xeval[[0,1,2],:]) Xeval[[0,1,2,3,4],:] Xeval[[0,1,2,3],:] Xeval[[0,1,2],:] optfunc.gp_list[0] optfunc.gp_list[0](Xeval) optfunc.gp_list[0].preduct(Xeval) optfunc.gp_list[0].predict(Xeval) optfunc.gp_list[0].predict(Xeval[[0,1,2,3,4],:]) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:]) optfunc.gp_list[0].predict(Xeval[[0,1,2],:]) optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.ypred optfunc.P(Xeval[[0,1,2],:]) optfunc.ypred optfunc.P(Xeval[[0,1,2,3,4],:]) optfunc.MSE optfunc.sigma optfunc.P(Xeval[[0,1,2],:]) optfunc.sigma optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,1,1],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[zeros(1,5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[np.zeros(1,5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[np.zeros(1,5),:],eval_MSE=True) np.zeros(1,5) np.zeros(5) optfunc.gp_list[0].predict(Xeval[np.zeros(15),:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[np.zeros(5),:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[np.zeros(5)],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:] optfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True) Xeval[[0,1,2,3]] Xeval[[0,1,2]] Xeval[[0,1,2],:] optfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True) optfunc.gp_list[0].predict([0.5,0.5],:],eval_MSE=True) optfunc.gp_list[0].predict([0.5,0.5],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.49]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.48]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.495]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.499]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.4999]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.49999]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True) optfunc.gp_list[0].predict([[0.5,0.5001]],eval_MSE=True) for i in range(0,100) for i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = [] s = [] for i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) for i in range(0,100): optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) for i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y optfunc.gp_list[0] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') y = [] s = [] for i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b] runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3') ##---(Wed Mar 23 11:14:55 2016)--- runfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')
normal
{ "blob_id": "02b20c3f5941873dfd22a7fbedb825e66c613ace", "index": 2278, "step-1": "Xeval[[1,2],:]\r\n# *** Spyder Python Console History Log ***\r\nXeval[:,:]\r\noptfunc.P(Xeval[:,:])\r\noptfunc.P(Xeval)\r\noptfunc.P(Xeval[[0,1,2,3,4],:])\r\noptfunc.P(Xeval[[0,1,],:])\r\noptfunc.P(Xeval[[0,1],:])\r\noptfunc.P(Xeval[[0,1,2,3],:])\r\noptfunc.P(Xeval[[0,1,2,3,4],:])\r\noptfunc.P(Xeval[[0,1,2],:])\r\nXeval[[0,1,2,3,4],:]\r\nXeval[[0,1,2,3],:]\r\nXeval[[0,1,2],:]\r\noptfunc.gp_list[0]\r\noptfunc.gp_list[0](Xeval)\r\noptfunc.gp_list[0].preduct(Xeval)\r\noptfunc.gp_list[0].predict(Xeval)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2,3,4],:])\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2,3],:])\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2],:])\r\noptfunc.P(Xeval[[0,1,2,3,4],:])\r\noptfunc.ypred\r\noptfunc.P(Xeval[[0,1,2],:])\r\noptfunc.ypred\r\noptfunc.P(Xeval[[0,1,2,3,4],:])\r\noptfunc.MSE\r\noptfunc.sigma\r\noptfunc.P(Xeval[[0,1,2],:])\r\noptfunc.sigma\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,1],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,1,1],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[zeros(1,5)],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[np.zeros(1,5)],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[np.zeros(1,5),:],eval_MSE=True)\r\nnp.zeros(1,5)\r\nnp.zeros(5)\r\noptfunc.gp_list[0].predict(Xeval[np.zeros(15),:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[np.zeros(5),:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[np.zeros(5)],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True)\r\nXeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:]\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2,3],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,1,2],:],eval_MSE=True)\r\nXeval[[0,1,2,3]]\r\nXeval[[0,1,2]]\r\nXeval[[0,1,2],:]\r\noptfunc.gp_list[0].predict(Xeval[[0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict(Xeval[[0,0,0,0],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict([0.5,0.5],:],eval_MSE=True)\r\noptfunc.gp_list[0].predict([0.5,0.5],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.49]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.48]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.495]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.499]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.4999]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.49999]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.5]],eval_MSE=True)\r\noptfunc.gp_list[0].predict([[0.5,0.5001]],eval_MSE=True)\r\nfor i in range(0,100)\r\nfor i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True)\r\ny = []\r\ns = []\r\nfor i in range(0,100): y[i],s[i] = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True)\r\nfor i in range(0,100): optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True)\r\nfor i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\ny\r\noptfunc.gp_list[0]\r\nrunfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')\r\ny = []\r\ns = []\r\nfor i in range(0,100): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\ny = []\r\ns = []\r\nfor i in range(0,200): a, b = optfunc.gp_list[0].predict([[0.5,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\ny = []\r\ns = []\r\nfor i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\nrunfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')\r\ny = []\r\ns = []\r\nfor i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\nrunfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')\r\ny = []\r\ns = []\r\nfor i in range(0,200): a, b = optfunc.gp_list[0].predict([[1.,i*0.01]],eval_MSE=True) y = np.r_[y,a] s = np.r_[s,b]\r\nrunfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')\r\n\r\n##---(Wed Mar 23 11:14:55 2016)---\r\nrunfile('C:/Users/b4/.spyder2-py3/PEIOPT.py', wdir='C:/Users/b4/.spyder2-py3')", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
class Persona: <|reserved_special_token_0|> <|reserved_special_token_0|> def hola(self): print('Hola Mundo') class Empleado(Persona): def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado, residencia_empleado): super().__init__(nombre_empleado, edad_empleado, residencia_empleado) self.salario = salario self.antiguedad_persona = antiguedad super().hola() def descripcion(self): super().descripcion() print('Salario: ', self.salario, 'Antiguedad: ', self. antiguedad_persona) <|reserved_special_token_0|> <|reserved_special_token_1|> class Persona: def __init__(self, nombre, edad, lugar_residencia): self.nombre = nombre self.edad = edad self.residencia = lugar_residencia <|reserved_special_token_0|> def hola(self): print('Hola Mundo') class Empleado(Persona): def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado, residencia_empleado): super().__init__(nombre_empleado, edad_empleado, residencia_empleado) self.salario = salario self.antiguedad_persona = antiguedad super().hola() def descripcion(self): super().descripcion() print('Salario: ', self.salario, 'Antiguedad: ', self. antiguedad_persona) <|reserved_special_token_0|> <|reserved_special_token_1|> class Persona: def __init__(self, nombre, edad, lugar_residencia): self.nombre = nombre self.edad = edad self.residencia = lugar_residencia def descripcion(self): print('Nombre: ', self.nombre, ' Edad: ', self.edad, ' Lugar de residencia: ', self.residencia) def hola(self): print('Hola Mundo') class Empleado(Persona): def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado, residencia_empleado): super().__init__(nombre_empleado, edad_empleado, residencia_empleado) self.salario = salario self.antiguedad_persona = antiguedad super().hola() def descripcion(self): super().descripcion() print('Salario: ', self.salario, 'Antiguedad: ', self. antiguedad_persona) <|reserved_special_token_0|> Antonio.descripcion() print(isinstance(Antonio, Empleado)) <|reserved_special_token_1|> class Persona: def __init__(self, nombre, edad, lugar_residencia): self.nombre = nombre self.edad = edad self.residencia = lugar_residencia def descripcion(self): print('Nombre: ', self.nombre, ' Edad: ', self.edad, ' Lugar de residencia: ', self.residencia) def hola(self): print('Hola Mundo') class Empleado(Persona): def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado, residencia_empleado): super().__init__(nombre_empleado, edad_empleado, residencia_empleado) self.salario = salario self.antiguedad_persona = antiguedad super().hola() def descripcion(self): super().descripcion() print('Salario: ', self.salario, 'Antiguedad: ', self. antiguedad_persona) Antonio = Persona('Alex', 23, 'Merida') Antonio.descripcion() print(isinstance(Antonio, Empleado)) <|reserved_special_token_1|> #Aplicacion de la funcion super() class Persona(): def __init__(self,nombre,edad,lugar_residencia): self.nombre = nombre self.edad = edad self.residencia = lugar_residencia def descripcion(self): print("Nombre: ",self.nombre," Edad: ", self.edad," Lugar de residencia: ",self.residencia) def hola(self): print("Hola Mundo") class Empleado(Persona): def __init__(self,salario,antiguedad,nombre_empleado,edad_empleado,residencia_empleado): super().__init__(nombre_empleado,edad_empleado,residencia_empleado)#Hace la llamada al constructor de la clase padre que esta heredando self.salario = salario self.antiguedad_persona=antiguedad super().hola() def descripcion(self): super().descripcion() print("Salario: " ,self.salario, "Antiguedad: ",self.antiguedad_persona) Antonio = Persona("Alex",23,"Merida") Antonio.descripcion() print(isinstance(Antonio,Empleado)) #Principio de sustitucion #consiste en plantearse las siguientes preguntas: #es siempre un o una #funcion isinstance()--> nos informa si un objeto es instancia de una clase determinada devuelve verdadero o falso
flexible
{ "blob_id": "92a50bcdbb4c03d1a4813a93c2e0986250516f14", "index": 1117, "step-1": "class Persona:\n <mask token>\n <mask token>\n\n def hola(self):\n print('Hola Mundo')\n\n\nclass Empleado(Persona):\n\n def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado,\n residencia_empleado):\n super().__init__(nombre_empleado, edad_empleado, residencia_empleado)\n self.salario = salario\n self.antiguedad_persona = antiguedad\n super().hola()\n\n def descripcion(self):\n super().descripcion()\n print('Salario: ', self.salario, 'Antiguedad: ', self.\n antiguedad_persona)\n\n\n<mask token>\n", "step-2": "class Persona:\n\n def __init__(self, nombre, edad, lugar_residencia):\n self.nombre = nombre\n self.edad = edad\n self.residencia = lugar_residencia\n <mask token>\n\n def hola(self):\n print('Hola Mundo')\n\n\nclass Empleado(Persona):\n\n def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado,\n residencia_empleado):\n super().__init__(nombre_empleado, edad_empleado, residencia_empleado)\n self.salario = salario\n self.antiguedad_persona = antiguedad\n super().hola()\n\n def descripcion(self):\n super().descripcion()\n print('Salario: ', self.salario, 'Antiguedad: ', self.\n antiguedad_persona)\n\n\n<mask token>\n", "step-3": "class Persona:\n\n def __init__(self, nombre, edad, lugar_residencia):\n self.nombre = nombre\n self.edad = edad\n self.residencia = lugar_residencia\n\n def descripcion(self):\n print('Nombre: ', self.nombre, ' Edad: ', self.edad,\n ' Lugar de residencia: ', self.residencia)\n\n def hola(self):\n print('Hola Mundo')\n\n\nclass Empleado(Persona):\n\n def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado,\n residencia_empleado):\n super().__init__(nombre_empleado, edad_empleado, residencia_empleado)\n self.salario = salario\n self.antiguedad_persona = antiguedad\n super().hola()\n\n def descripcion(self):\n super().descripcion()\n print('Salario: ', self.salario, 'Antiguedad: ', self.\n antiguedad_persona)\n\n\n<mask token>\nAntonio.descripcion()\nprint(isinstance(Antonio, Empleado))\n", "step-4": "class Persona:\n\n def __init__(self, nombre, edad, lugar_residencia):\n self.nombre = nombre\n self.edad = edad\n self.residencia = lugar_residencia\n\n def descripcion(self):\n print('Nombre: ', self.nombre, ' Edad: ', self.edad,\n ' Lugar de residencia: ', self.residencia)\n\n def hola(self):\n print('Hola Mundo')\n\n\nclass Empleado(Persona):\n\n def __init__(self, salario, antiguedad, nombre_empleado, edad_empleado,\n residencia_empleado):\n super().__init__(nombre_empleado, edad_empleado, residencia_empleado)\n self.salario = salario\n self.antiguedad_persona = antiguedad\n super().hola()\n\n def descripcion(self):\n super().descripcion()\n print('Salario: ', self.salario, 'Antiguedad: ', self.\n antiguedad_persona)\n\n\nAntonio = Persona('Alex', 23, 'Merida')\nAntonio.descripcion()\nprint(isinstance(Antonio, Empleado))\n", "step-5": "\n\n#Aplicacion de la funcion super()\n\nclass Persona():\n def __init__(self,nombre,edad,lugar_residencia):\n self.nombre = nombre\n self.edad = edad\n self.residencia = lugar_residencia\n \n def descripcion(self):\n print(\"Nombre: \",self.nombre,\" Edad: \", self.edad,\" Lugar de residencia: \",self.residencia)\n \n def hola(self):\n print(\"Hola Mundo\")\n\nclass Empleado(Persona):\n\n def __init__(self,salario,antiguedad,nombre_empleado,edad_empleado,residencia_empleado):\n\n super().__init__(nombre_empleado,edad_empleado,residencia_empleado)#Hace la llamada al constructor de la clase padre que esta heredando\n self.salario = salario\n self.antiguedad_persona=antiguedad\n\n super().hola()\n \n def descripcion(self):\n super().descripcion()\n print(\"Salario: \" ,self.salario, \"Antiguedad: \",self.antiguedad_persona)\n\n\nAntonio = Persona(\"Alex\",23,\"Merida\")\nAntonio.descripcion()\n\nprint(isinstance(Antonio,Empleado))\n\n\n#Principio de sustitucion\n#consiste en plantearse las siguientes preguntas:\n\n#es siempre un o una\n\n#funcion isinstance()--> nos informa si un objeto es instancia de una clase determinada devuelve verdadero o falso\n\n\n\n", "step-ids": [ 5, 6, 8, 9, 10 ] }
[ 5, 6, 8, 9, 10 ]
n = eval(input("Entrez valeur: ")) res = 0 while n > 0: res += n%10 n //= 10 print(res, n) print(res)
normal
{ "blob_id": "391ecb2f23cc0ce59bd9fac6f97bd4c1788444b9", "index": 4416, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile n > 0:\n res += n % 10\n n //= 10\n print(res, n)\nprint(res)\n", "step-3": "n = eval(input('Entrez valeur: '))\nres = 0\nwhile n > 0:\n res += n % 10\n n //= 10\n print(res, n)\nprint(res)\n", "step-4": "n = eval(input(\"Entrez valeur: \"))\nres = 0\n\nwhile n > 0:\n res += n%10\n n //= 10\n print(res, n)\n\nprint(res)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
<|reserved_special_token_0|> def CreateCGCS2000prj(shpPath): body = ( 'GEOGCS["CGCS_2000",DATUM["D_2000",SPHEROID["S_2000",6378137.0,298.2572221010041]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def writePrj(shpPath, test): prj = open(shpPath.split('.')[0] + '.prj', 'w') prj.write(test) prj.close() def CreateCGCS2000prj(shpPath): body = ( 'GEOGCS["CGCS_2000",DATUM["D_2000",SPHEROID["S_2000",6378137.0,298.2572221010041]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateWGS84(shpPath): body = ( 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) <|reserved_special_token_0|> <|reserved_special_token_1|> <|reserved_special_token_0|> def writePrj(shpPath, test): prj = open(shpPath.split('.')[0] + '.prj', 'w') prj.write(test) prj.close() def CreateCGCS2000prj(shpPath): body = ( 'GEOGCS["CGCS_2000",DATUM["D_2000",SPHEROID["S_2000",6378137.0,298.2572221010041]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateWGS84(shpPath): body = ( 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateBeijing54(shpPath): body = ( 'GEOGCS["GCS_Beijing_1954",DATUM["D_Beijing_1954",SPHEROID["Krasovsky_1940",6378245.0,298.3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateXian54(shpPath): body = ( 'GEOGCS["GCS_Xian_1980",DATUM["D_Xian_1980",SPHEROID["Xian_1980",6378140.0,298.257]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreatePoint(shpPath, pointList): point = arcpy.Point() pointGeoms = [] for pt in pointList: point.X = pt[0] point.Y = pt[1] pointGeoms.append(arcpy.PointGeometry(point)) arcpy.CopyFeatures_management(pointGeoms, shpPath) <|reserved_special_token_0|> <|reserved_special_token_1|> import sys import os arcpy_path = ['D:\\software\\ArcGIS\\python 27\\ArcGIS10.2\\Lib\\site-packages' , 'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\arcpy', 'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\bin', 'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\ArcToolbox\\Scripts'] sys.path.extend(arcpy_path) import arcpy arcpy.gp.overweiteOutput = 1 def writePrj(shpPath, test): prj = open(shpPath.split('.')[0] + '.prj', 'w') prj.write(test) prj.close() def CreateCGCS2000prj(shpPath): body = ( 'GEOGCS["CGCS_2000",DATUM["D_2000",SPHEROID["S_2000",6378137.0,298.2572221010041]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateWGS84(shpPath): body = ( 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateBeijing54(shpPath): body = ( 'GEOGCS["GCS_Beijing_1954",DATUM["D_Beijing_1954",SPHEROID["Krasovsky_1940",6378245.0,298.3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreateXian54(shpPath): body = ( 'GEOGCS["GCS_Xian_1980",DATUM["D_Xian_1980",SPHEROID["Xian_1980",6378140.0,298.257]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' ) writePrj(shpPath, body) def CreatePoint(shpPath, pointList): point = arcpy.Point() pointGeoms = [] for pt in pointList: point.X = pt[0] point.Y = pt[1] pointGeoms.append(arcpy.PointGeometry(point)) arcpy.CopyFeatures_management(pointGeoms, shpPath) ptList = [[20.0, 43.0], [25.5, 45.085], [26.574, 46.025], [28.131, 48.124]] shpPath = 'D:\\geodata\\test\\point.shp' CreatePoint(shpPath, ptList) CreateCGCS2000prj(shpPath) <|reserved_special_token_1|> import sys import os arcpy_path = [r'D:\software\ArcGIS\python 27\ArcGIS10.2\Lib\site-packages', r'D:\software\ArcGIS\Desktop 10.2\Desktop10.2\arcpy', r'D:\software\ArcGIS\Desktop 10.2\Desktop10.2\bin', r'D:\software\ArcGIS\Desktop 10.2\Desktop10.2\ArcToolbox\Scripts'] sys.path.extend(arcpy_path) import arcpy arcpy.gp.overweiteOutput = 1 def writePrj(shpPath, test): prj = open(shpPath.split('.')[0] + '.prj', 'w') prj.write(test) prj.close() def CreateCGCS2000prj(shpPath): body = 'GEOGCS["CGCS_2000",DATUM["D_2000",SPHEROID["S_2000",6378137.0,298.2572221010041]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' writePrj(shpPath, body) def CreateWGS84(shpPath): body = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' writePrj(shpPath, body) def CreateBeijing54(shpPath): body = 'GEOGCS["GCS_Beijing_1954",DATUM["D_Beijing_1954",SPHEROID["Krasovsky_1940",6378245.0,298.3]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' writePrj(shpPath, body) def CreateXian54(shpPath): body = 'GEOGCS["GCS_Xian_1980",DATUM["D_Xian_1980",SPHEROID["Xian_1980",6378140.0,298.257]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]' writePrj(shpPath, body) def CreatePoint(shpPath, pointList): point = arcpy.Point() pointGeoms = [] for pt in pointList: point.X = pt[0] point.Y = pt[1] pointGeoms.append(arcpy.PointGeometry(point)) arcpy.CopyFeatures_management(pointGeoms, shpPath) ptList =[[20.000,43.000],[25.500, 45.085],[26.574, 46.025], [28.131, 48.124]] shpPath = r'D:\geodata\test\point.shp' CreatePoint(shpPath, ptList) CreateCGCS2000prj(shpPath)
flexible
{ "blob_id": "eab2cdd92d3be5760f13e747b05ca902eaf9aca8", "index": 8287, "step-1": "<mask token>\n\n\ndef CreateCGCS2000prj(shpPath):\n body = (\n 'GEOGCS[\"CGCS_2000\",DATUM[\"D_2000\",SPHEROID[\"S_2000\",6378137.0,298.2572221010041]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef writePrj(shpPath, test):\n prj = open(shpPath.split('.')[0] + '.prj', 'w')\n prj.write(test)\n prj.close()\n\n\ndef CreateCGCS2000prj(shpPath):\n body = (\n 'GEOGCS[\"CGCS_2000\",DATUM[\"D_2000\",SPHEROID[\"S_2000\",6378137.0,298.2572221010041]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateWGS84(shpPath):\n body = (\n 'GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef writePrj(shpPath, test):\n prj = open(shpPath.split('.')[0] + '.prj', 'w')\n prj.write(test)\n prj.close()\n\n\ndef CreateCGCS2000prj(shpPath):\n body = (\n 'GEOGCS[\"CGCS_2000\",DATUM[\"D_2000\",SPHEROID[\"S_2000\",6378137.0,298.2572221010041]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateWGS84(shpPath):\n body = (\n 'GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateBeijing54(shpPath):\n body = (\n 'GEOGCS[\"GCS_Beijing_1954\",DATUM[\"D_Beijing_1954\",SPHEROID[\"Krasovsky_1940\",6378245.0,298.3]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateXian54(shpPath):\n body = (\n 'GEOGCS[\"GCS_Xian_1980\",DATUM[\"D_Xian_1980\",SPHEROID[\"Xian_1980\",6378140.0,298.257]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreatePoint(shpPath, pointList):\n point = arcpy.Point()\n pointGeoms = []\n for pt in pointList:\n point.X = pt[0]\n point.Y = pt[1]\n pointGeoms.append(arcpy.PointGeometry(point))\n arcpy.CopyFeatures_management(pointGeoms, shpPath)\n\n\n<mask token>\n", "step-4": "import sys\nimport os\narcpy_path = ['D:\\\\software\\\\ArcGIS\\\\python 27\\\\ArcGIS10.2\\\\Lib\\\\site-packages'\n , 'D:\\\\software\\\\ArcGIS\\\\Desktop 10.2\\\\Desktop10.2\\\\arcpy',\n 'D:\\\\software\\\\ArcGIS\\\\Desktop 10.2\\\\Desktop10.2\\\\bin',\n 'D:\\\\software\\\\ArcGIS\\\\Desktop 10.2\\\\Desktop10.2\\\\ArcToolbox\\\\Scripts']\nsys.path.extend(arcpy_path)\nimport arcpy\narcpy.gp.overweiteOutput = 1\n\n\ndef writePrj(shpPath, test):\n prj = open(shpPath.split('.')[0] + '.prj', 'w')\n prj.write(test)\n prj.close()\n\n\ndef CreateCGCS2000prj(shpPath):\n body = (\n 'GEOGCS[\"CGCS_2000\",DATUM[\"D_2000\",SPHEROID[\"S_2000\",6378137.0,298.2572221010041]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateWGS84(shpPath):\n body = (\n 'GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateBeijing54(shpPath):\n body = (\n 'GEOGCS[\"GCS_Beijing_1954\",DATUM[\"D_Beijing_1954\",SPHEROID[\"Krasovsky_1940\",6378245.0,298.3]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreateXian54(shpPath):\n body = (\n 'GEOGCS[\"GCS_Xian_1980\",DATUM[\"D_Xian_1980\",SPHEROID[\"Xian_1980\",6378140.0,298.257]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n )\n writePrj(shpPath, body)\n\n\ndef CreatePoint(shpPath, pointList):\n point = arcpy.Point()\n pointGeoms = []\n for pt in pointList:\n point.X = pt[0]\n point.Y = pt[1]\n pointGeoms.append(arcpy.PointGeometry(point))\n arcpy.CopyFeatures_management(pointGeoms, shpPath)\n\n\nptList = [[20.0, 43.0], [25.5, 45.085], [26.574, 46.025], [28.131, 48.124]]\nshpPath = 'D:\\\\geodata\\\\test\\\\point.shp'\nCreatePoint(shpPath, ptList)\nCreateCGCS2000prj(shpPath)\n", "step-5": "import sys\nimport os\n\narcpy_path = [r'D:\\software\\ArcGIS\\python 27\\ArcGIS10.2\\Lib\\site-packages',\n r'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\arcpy',\n r'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\bin',\n r'D:\\software\\ArcGIS\\Desktop 10.2\\Desktop10.2\\ArcToolbox\\Scripts']\n\nsys.path.extend(arcpy_path)\n\nimport arcpy\narcpy.gp.overweiteOutput = 1\n\ndef writePrj(shpPath, test):\n prj = open(shpPath.split('.')[0] + '.prj', 'w')\n prj.write(test)\n prj.close()\n\ndef CreateCGCS2000prj(shpPath):\n body = 'GEOGCS[\"CGCS_2000\",DATUM[\"D_2000\",SPHEROID[\"S_2000\",6378137.0,298.2572221010041]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n writePrj(shpPath, body)\ndef CreateWGS84(shpPath):\n body = 'GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n writePrj(shpPath, body)\ndef CreateBeijing54(shpPath):\n body = 'GEOGCS[\"GCS_Beijing_1954\",DATUM[\"D_Beijing_1954\",SPHEROID[\"Krasovsky_1940\",6378245.0,298.3]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n writePrj(shpPath, body)\ndef CreateXian54(shpPath):\n body = 'GEOGCS[\"GCS_Xian_1980\",DATUM[\"D_Xian_1980\",SPHEROID[\"Xian_1980\",6378140.0,298.257]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]'\n writePrj(shpPath, body)\n \n \ndef CreatePoint(shpPath, pointList):\n point = arcpy.Point()\n pointGeoms = []\n for pt in pointList:\n point.X = pt[0]\n point.Y = pt[1]\n pointGeoms.append(arcpy.PointGeometry(point))\n arcpy.CopyFeatures_management(pointGeoms, shpPath)\n\nptList =[[20.000,43.000],[25.500, 45.085],[26.574, 46.025], [28.131, 48.124]]\nshpPath = r'D:\\geodata\\test\\point.shp'\nCreatePoint(shpPath, ptList)\nCreateCGCS2000prj(shpPath)", "step-ids": [ 1, 3, 6, 9, 10 ] }
[ 1, 3, 6, 9, 10 ]
# -*- coding: utf-8 -*- from __future__ import absolute_import import sh import reqwire.helpers.cli log_methods = ( 'echo', 'error', 'fatal', 'info', 'warn', 'warning', ) def test_emojize_win32(mocker): mocker.patch('sys.platform', 'win32') assert reqwire.helpers.cli.emojize( ':thumbs_up_sign: foo').encode('utf-8') == b'foo' def test_emojize_linux(mocker): mocker.patch('sys.platform', 'linux') mocker.patch('io.open', mocker.mock_open( read_data='Linux version 4.4.0-31-generic (gcc version 5.3.1)')) assert reqwire.helpers.cli.emojize( ':thumbs_up_sign:').encode('utf-8') == b'\xf0\x9f\x91\x8d' def test_emojize_linux_ioerror(mocker): mocker.patch('sys.platform', 'linux') mocker.patch('io.open', side_effect=IOError) assert reqwire.helpers.cli.emojize( ':thumbs_up_sign:').encode('utf-8') == b'\xf0\x9f\x91\x8d' def test_emojize_wsl(mocker): mocker.patch('sys.platform', 'linux') mocker.patch('io.open', mocker.mock_open( read_data='Linux version 3.4.0-Microsoft ([email protected])')) assert reqwire.helpers.cli.emojize( ':thumbs_up_sign: foo').encode('utf-8') == b'foo' def test_console_writer_quiet(mocker): click_echo = mocker.patch('click.echo') console = reqwire.helpers.cli.ConsoleWriter(verbose=False) for method in log_methods: getattr(console, method)('test') click_echo.assert_not_called() def test_console_writer_verbose(mocker): mocker.patch('sys.platform', 'linux') mocker.patch('io.open', mocker.mock_open( read_data='Linux version 4.4.0-31-generic (gcc version 5.3.1)')) click_echo = mocker.patch('click.echo') console = reqwire.helpers.cli.ConsoleWriter(verbose=True) for method in log_methods: getattr(console, method)('test') fmt = console.format_strings.get(method, '{msg}') message = reqwire.helpers.cli.emojize(fmt.format(msg='test')) click_echo.assert_called_once_with(message) click_echo.reset_mock() def test_build_with_pip_compile_options(cli_runner, mocker): from reqwire.cli import main pip_compile = mocker.patch.object(sh, 'pip_compile') result = cli_runner.invoke(main, ['build', '-t', 'main', '--', '--no-header']) assert result.exit_code == 0, result.output assert pip_compile.call_args[0][2] == '--no-header' def test_main_remove(cli_runner): from reqwire.cli import main result = cli_runner.invoke(main, ['remove', 'Flask']) assert result.exit_code == 0, result.output
normal
{ "blob_id": "1a7a2c2cfb2aa94401defd7a7a500f7dd2e7e0aa", "index": 9680, "step-1": "<mask token>\n\n\ndef test_emojize_win32(mocker):\n mocker.patch('sys.platform', 'win32')\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_emojize_linux(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_linux_ioerror(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', side_effect=IOError)\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_wsl(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 3.4.0-Microsoft ([email protected])'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_console_writer_quiet(mocker):\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=False)\n for method in log_methods:\n getattr(console, method)('test')\n click_echo.assert_not_called()\n\n\ndef test_console_writer_verbose(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=True)\n for method in log_methods:\n getattr(console, method)('test')\n fmt = console.format_strings.get(method, '{msg}')\n message = reqwire.helpers.cli.emojize(fmt.format(msg='test'))\n click_echo.assert_called_once_with(message)\n click_echo.reset_mock()\n\n\n<mask token>\n\n\ndef test_main_remove(cli_runner):\n from reqwire.cli import main\n result = cli_runner.invoke(main, ['remove', 'Flask'])\n assert result.exit_code == 0, result.output\n", "step-2": "<mask token>\n\n\ndef test_emojize_win32(mocker):\n mocker.patch('sys.platform', 'win32')\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_emojize_linux(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_linux_ioerror(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', side_effect=IOError)\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_wsl(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 3.4.0-Microsoft ([email protected])'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_console_writer_quiet(mocker):\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=False)\n for method in log_methods:\n getattr(console, method)('test')\n click_echo.assert_not_called()\n\n\ndef test_console_writer_verbose(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=True)\n for method in log_methods:\n getattr(console, method)('test')\n fmt = console.format_strings.get(method, '{msg}')\n message = reqwire.helpers.cli.emojize(fmt.format(msg='test'))\n click_echo.assert_called_once_with(message)\n click_echo.reset_mock()\n\n\ndef test_build_with_pip_compile_options(cli_runner, mocker):\n from reqwire.cli import main\n pip_compile = mocker.patch.object(sh, 'pip_compile')\n result = cli_runner.invoke(main, ['build', '-t', 'main', '--',\n '--no-header'])\n assert result.exit_code == 0, result.output\n assert pip_compile.call_args[0][2] == '--no-header'\n\n\ndef test_main_remove(cli_runner):\n from reqwire.cli import main\n result = cli_runner.invoke(main, ['remove', 'Flask'])\n assert result.exit_code == 0, result.output\n", "step-3": "<mask token>\nlog_methods = 'echo', 'error', 'fatal', 'info', 'warn', 'warning'\n\n\ndef test_emojize_win32(mocker):\n mocker.patch('sys.platform', 'win32')\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_emojize_linux(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_linux_ioerror(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', side_effect=IOError)\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_wsl(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 3.4.0-Microsoft ([email protected])'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_console_writer_quiet(mocker):\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=False)\n for method in log_methods:\n getattr(console, method)('test')\n click_echo.assert_not_called()\n\n\ndef test_console_writer_verbose(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=True)\n for method in log_methods:\n getattr(console, method)('test')\n fmt = console.format_strings.get(method, '{msg}')\n message = reqwire.helpers.cli.emojize(fmt.format(msg='test'))\n click_echo.assert_called_once_with(message)\n click_echo.reset_mock()\n\n\ndef test_build_with_pip_compile_options(cli_runner, mocker):\n from reqwire.cli import main\n pip_compile = mocker.patch.object(sh, 'pip_compile')\n result = cli_runner.invoke(main, ['build', '-t', 'main', '--',\n '--no-header'])\n assert result.exit_code == 0, result.output\n assert pip_compile.call_args[0][2] == '--no-header'\n\n\ndef test_main_remove(cli_runner):\n from reqwire.cli import main\n result = cli_runner.invoke(main, ['remove', 'Flask'])\n assert result.exit_code == 0, result.output\n", "step-4": "from __future__ import absolute_import\nimport sh\nimport reqwire.helpers.cli\nlog_methods = 'echo', 'error', 'fatal', 'info', 'warn', 'warning'\n\n\ndef test_emojize_win32(mocker):\n mocker.patch('sys.platform', 'win32')\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_emojize_linux(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_linux_ioerror(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', side_effect=IOError)\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign:').encode('utf-8'\n ) == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_wsl(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 3.4.0-Microsoft ([email protected])'))\n assert reqwire.helpers.cli.emojize(':thumbs_up_sign: foo').encode('utf-8'\n ) == b'foo'\n\n\ndef test_console_writer_quiet(mocker):\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=False)\n for method in log_methods:\n getattr(console, method)('test')\n click_echo.assert_not_called()\n\n\ndef test_console_writer_verbose(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(read_data=\n 'Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=True)\n for method in log_methods:\n getattr(console, method)('test')\n fmt = console.format_strings.get(method, '{msg}')\n message = reqwire.helpers.cli.emojize(fmt.format(msg='test'))\n click_echo.assert_called_once_with(message)\n click_echo.reset_mock()\n\n\ndef test_build_with_pip_compile_options(cli_runner, mocker):\n from reqwire.cli import main\n pip_compile = mocker.patch.object(sh, 'pip_compile')\n result = cli_runner.invoke(main, ['build', '-t', 'main', '--',\n '--no-header'])\n assert result.exit_code == 0, result.output\n assert pip_compile.call_args[0][2] == '--no-header'\n\n\ndef test_main_remove(cli_runner):\n from reqwire.cli import main\n result = cli_runner.invoke(main, ['remove', 'Flask'])\n assert result.exit_code == 0, result.output\n", "step-5": "# -*- coding: utf-8 -*-\nfrom __future__ import absolute_import\n\nimport sh\n\nimport reqwire.helpers.cli\n\n\nlog_methods = (\n 'echo',\n 'error',\n 'fatal',\n 'info',\n 'warn',\n 'warning',\n)\n\n\ndef test_emojize_win32(mocker):\n mocker.patch('sys.platform', 'win32')\n assert reqwire.helpers.cli.emojize(\n ':thumbs_up_sign: foo').encode('utf-8') == b'foo'\n\n\ndef test_emojize_linux(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(\n read_data='Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n assert reqwire.helpers.cli.emojize(\n ':thumbs_up_sign:').encode('utf-8') == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_linux_ioerror(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', side_effect=IOError)\n assert reqwire.helpers.cli.emojize(\n ':thumbs_up_sign:').encode('utf-8') == b'\\xf0\\x9f\\x91\\x8d'\n\n\ndef test_emojize_wsl(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(\n read_data='Linux version 3.4.0-Microsoft ([email protected])'))\n assert reqwire.helpers.cli.emojize(\n ':thumbs_up_sign: foo').encode('utf-8') == b'foo'\n\n\ndef test_console_writer_quiet(mocker):\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=False)\n for method in log_methods:\n getattr(console, method)('test')\n click_echo.assert_not_called()\n\n\ndef test_console_writer_verbose(mocker):\n mocker.patch('sys.platform', 'linux')\n mocker.patch('io.open', mocker.mock_open(\n read_data='Linux version 4.4.0-31-generic (gcc version 5.3.1)'))\n click_echo = mocker.patch('click.echo')\n console = reqwire.helpers.cli.ConsoleWriter(verbose=True)\n for method in log_methods:\n getattr(console, method)('test')\n fmt = console.format_strings.get(method, '{msg}')\n message = reqwire.helpers.cli.emojize(fmt.format(msg='test'))\n click_echo.assert_called_once_with(message)\n click_echo.reset_mock()\n\n\ndef test_build_with_pip_compile_options(cli_runner, mocker):\n from reqwire.cli import main\n pip_compile = mocker.patch.object(sh, 'pip_compile')\n result = cli_runner.invoke(main, ['build', '-t', 'main', '--',\n '--no-header'])\n assert result.exit_code == 0, result.output\n assert pip_compile.call_args[0][2] == '--no-header'\n\n\ndef test_main_remove(cli_runner):\n from reqwire.cli import main\n result = cli_runner.invoke(main, ['remove', 'Flask'])\n assert result.exit_code == 0, result.output\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]