code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
from plprofiler_tool import main from plprofiler import plprofiler
normal
{ "blob_id": "6b616f5ee0a301b76ad3f7284b47f225a694d33c", "index": 1281, "step-1": "<mask token>\n", "step-2": "from plprofiler_tool import main\nfrom plprofiler import plprofiler\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
# Generated by Django 3.0.8 on 2020-07-29 18:30 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('scenario', '0005_auto_20200729_1149'), ] operations = [ migrations.RemoveField( model_name='weapon', name='vehicle', ), migrations.DeleteModel( name='Vehicle', ), ]
normal
{ "blob_id": "b99093fb13c59d4b9bb0a4f32fb62423d6752118", "index": 6480, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('scenario', '0005_auto_20200729_1149')]\n operations = [migrations.RemoveField(model_name='weapon', name=\n 'vehicle'), migrations.DeleteModel(name='Vehicle')]\n", "step-4": "from django.db import migrations\n\n\nclass Migration(migrations.Migration):\n dependencies = [('scenario', '0005_auto_20200729_1149')]\n operations = [migrations.RemoveField(model_name='weapon', name=\n 'vehicle'), migrations.DeleteModel(name='Vehicle')]\n", "step-5": "# Generated by Django 3.0.8 on 2020-07-29 18:30\n\nfrom django.db import migrations\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('scenario', '0005_auto_20200729_1149'),\n ]\n\n operations = [\n migrations.RemoveField(\n model_name='weapon',\n name='vehicle',\n ),\n migrations.DeleteModel(\n name='Vehicle',\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!c:\Python\python.exe # Fig 35.16: fig35_16.py # Program to display CGI environment variables import os import cgi print "Content-type: text/html" print print """<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "DTD/xhtml1-transitional.dtd">""" print """ <html xmlns = "http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head><title>Environment Variables</title></head> <body><table style = "border: 0">""" rowNumber = 0 for item in os.environ.keys(): rowNumber += 1 if rowNumber % 2 == 0: backgroundColor = "white" else: backgroundColor = "lightgrey" print """<tr style = "background-color: %s"> <td>%s</td><td>%s</td></tr>""" \ % ( backgroundColor, item, cgi.escape( os.environ[ item ] ) ) print """</table></body></html>""" ########################################################################## # (C) Copyright 1992-2004 by Deitel & Associates, Inc. and # # Pearson Education, Inc. All Rights Reserved. # # # # DISCLAIMER: The authors and publisher of this book have used their # # best efforts in preparing the book. These efforts include the # # development, research, and testing of the theories and programs # # to determine their effectiveness. The authors and publisher make # # no warranty of any kind, expressed or implied, with regard to these # # programs or to the documentation contained in these books. The authors # # and publisher shall not be liable in any event for incidental or # # consequential damages in connection with, or arising out of, the # # furnishing, performance, or use of these programs. # ##########################################################################
normal
{ "blob_id": "61b28088e4344d8a94006e5c04c189a44bbb6ff3", "index": 3334, "step-1": "#!c:\\Python\\python.exe\r\n# Fig 35.16: fig35_16.py\r\n# Program to display CGI environment variables\r\n\r\nimport os\r\nimport cgi\r\n\r\nprint \"Content-type: text/html\"\r\nprint\r\n\r\nprint \"\"\"<!DOCTYPE html PUBLIC\r\n \"-//W3C//DTD XHTML 1.0 Transitional//EN\"\r\n \"DTD/xhtml1-transitional.dtd\">\"\"\"\r\n\r\nprint \"\"\"\r\n<html xmlns = \"http://www.w3.org/1999/xhtml\" xml:lang=\"en\"\r\n lang=\"en\">\r\n <head><title>Environment Variables</title></head>\r\n <body><table style = \"border: 0\">\"\"\"\r\n\r\nrowNumber = 0\r\n\r\nfor item in os.environ.keys():\r\n rowNumber += 1\r\n\r\n if rowNumber % 2 == 0:\r\n backgroundColor = \"white\"\r\n else:\r\n backgroundColor = \"lightgrey\"\r\n\r\n print \"\"\"<tr style = \"background-color: %s\">\r\n <td>%s</td><td>%s</td></tr>\"\"\" \\\r\n % ( backgroundColor, item,\r\n cgi.escape( os.environ[ item ] ) )\r\n\r\nprint \"\"\"</table></body></html>\"\"\"\r\n\r\n########################################################################## \r\n# (C) Copyright 1992-2004 by Deitel & Associates, Inc. and #\r\n# Pearson Education, Inc. All Rights Reserved. #\r\n# #\r\n# DISCLAIMER: The authors and publisher of this book have used their #\r\n# best efforts in preparing the book. These efforts include the #\r\n# development, research, and testing of the theories and programs #\r\n# to determine their effectiveness. The authors and publisher make #\r\n# no warranty of any kind, expressed or implied, with regard to these #\r\n# programs or to the documentation contained in these books. The authors #\r\n# and publisher shall not be liable in any event for incidental or #\r\n# consequential damages in connection with, or arising out of, the #\r\n# furnishing, performance, or use of these programs. #\r\n##########################################################################", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr1/local/bin/python import os, sys, re, shutil, random from tempfile import * # program location prog_dir = '/home/jpei/test_promals3d_package/bar/promals_package/bin/' # program names promals_web = prog_dir + "progress_for_web.py" csv_cutoff_g = 5 alphabet = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' def run_promals(): csv_cutoff = csv_cutoff_g # check and parse the command line cmd_line = sys.argv if len(cmd_line) <= 1: promals_help() sys.exit(1) elif not os.path.isfile(cmd_line[1]): print >> sys.stderr, "Error reading input file:", cmd_line[1] promals_help() sys.exit(1) else: randomstring = "" infile = os.path.abspath(cmd_line[1]) infiledir = os.path.split(infile)[0] for x in random.sample(alphabet,40): randomstring+=x ranfile = "%s/%s" %(infiledir, randomstring) try: fp = open(ranfile, "w") except: print >> sys.stderr, "Error:" print >> sys.stderr, " The directory containing your input file is not writable:", infiledir print >> sys.stderr, " Input file should be in a writable directory" sys.exit(1) fp.close() os.system("rm -f %s" %ranfile) cmd_line1 = [] outputfile = "" blast_dir = "" resnum = 1 caa_freq = 0.8 for i in range(len(cmd_line)): arg = cmd_line[i] if i == 0: arg = prog_dir + 'promals_c' # change inputfile name to full path name if i == 1: arg = os.path.abspath(arg) inputfile = arg # change outfile name to full path name if arg == '-outfile': if i+1 < len(cmd_line): cmd_line[i+1] = os.path.abspath(cmd_line[i+1]) outputfile = cmd_line[i+1] # change blast_dir name to full path name if arg == '-blast_dir': if i+1 < len(cmd_line): cmd_line[i+1] = os.path.abspath(cmd_line[i+1]) #if arg == '-ssw': arg = '-ss_weight' #if arg == '-aaw': arg = '-score_weight' #if arg == '-max_homologs': arg = '-max_num_sequences' #if arg == '-iter_num': arg = '-iter_number' if arg == '-csv_index': if i+1 < len(cmd_line): csv_cutoff = int(cmd_line[i+1]) if (csv_cutoff<0) or (csv_cutoff>9): csv_cutoff = 5 if arg == "-resnum": resnum = int(cmd_line[i+1]) if arg == "-caa_freq": caa_freq = float(sys.argv[i+1]) cmd_line1.append(arg) if not outputfile: if re.search("\.fa$", inputfile): outputfile = re.sub("\.fa$", "", inputfile) + ".promals.aln" else: outputfile = inputfile + ".promals.aln" if not blast_dir: blast_dir = "%s_blast" %inputfile promals_c = ' '.join(cmd_line1) promals_c = re.sub("\s+-resnum\s+\S+", " ", promals_c) promals_c = re.sub("\s+-caa_freq\s+\S+", " ", promals_c) promals_c = re.sub("\s+-csv_index\s+\S+", " ", promals_c) if "-blast_dir" not in promals_c: promals_c += " -blast_dir %s " %blast_dir outputlogfile = inputfile+".prmls.oUTpUT" promals_c = promals_c + " > " + outputlogfile print "promals command:" print promals_c print sys.stdout.flush() # run programs in a temporary directory to avoid .ncbirc problem cwd = os.getcwd() tmpdir = mkdtemp() os.chdir(tmpdir) os.system("cp %s.ncbirc ." %prog_dir) s1 = os.system(promals_c) if s1 == 0: print "output alignment file is:", outputfile print "blast intermediate files are in:", blast_dir print else: print "Error running promals - check log file for details:", outputlogfile print print "html file command:" print "python %s %s %s -cutoff %d -resnum %d -caa_freq %f" %(promals_web, outputfile, outputlogfile, csv_cutoff, resnum, caa_freq) print sys.stdout.flush() s2 = os.system("python %s %s %s -cutoff %d -resnum %d -caa_freq %f 2>/dev/null" %(promals_web, outputfile, outputlogfile, csv_cutoff, resnum, caa_freq) ) if s2 == 0: print "output html alignment file is:", outputfile + ".html" print else: print "Error generating html file" print os.chdir(cwd) shutil.rmtree(tmpdir) def promals_help(): help_content = ''' promals with 3D information command: promals input_file [options] > input_file.log python promals input_file [options] > input_file.log input: input_file needs to be FASTA format output: Two alignment files will be generated. One is in CLUSTAL format alignment (file name can be specified by option -outfile). The other file is an html file of colored alignment. Options: For alignment strategies: -id_thr [0, 1] Identity threshold that determined the partition of fast and slow alignment processes. If two groups of sequences has average identity above this threshold, align them in a fast way. Otherwise, use slower but more accurate way (by profile-profile alignment with predicted secondary structures and available 3D constraints). Default: 0.6 (corresponding to 60% identity) For using 3D information: -dali [0 or 1] Use DaliLite structural alignment (1) or not use fast alignment (0) ("DaliLite" executable needs to be present in bin/ directory). Default: 0 (it is relatively slow to run DaliLite) -fast [0 or 1] Use fast structural alignment (1) or not use fast alignment (0) ("fast" executable needs to be present in bin/ directory). Default: 1 -tmalign [0 or 1] Use TMalign structural alignment (1) or not use fast TMalign alignment (0) ("TMalign" executable needs to be present in bin/ directory). Default: 1 -struct_weight [0, inf[ Weight of structural constraints relative to sequence constraints. Default: 1.5 For profile scoring: -ss_weight [0,inf[ Weight of predicted secondary structure in profile-profile scoring. Default: 0.2 -score_weight [0,inf[ Weight of amino acids in profile-profile scoring. Default: 0.8 For running PSI-BLAST to get sequence profile: -iter_number <int> Number of PSI-BLAST iterations for profile generation. Default: 3 -evalue [0, inf[ PSI-BLAST evalue cutoff for inclusion. Default: 0.001 -low_id_thr [0,1] Remove PSI-BLAST hits with identity to the query less than this value. Default: 0.2 -blast_dir <file> Directory of running PSI-BLAST and store other intermediate results. -clean_blast_before [0 or 1] Remove any file in the directory that stores intermediate results (specified by -blast_dir option) before running PSI-BLAST. Default: 0. -clean_blast_after [0 or 1] Remove any file in the PSI-BLAST directory after running PSI-BLAST. Default: 0 For output: -outfile <file> The name of output alignment file. -blocksize <int> Number of letters in clustal-format alignment blocks. Default: 70 -resnum [0 or 1] In colored html alignment, show residue numbers for alignment blocks. Default: 1 -caa_freq [0, 1] In colored html alignment, show amino acid consensus symbol if the fraction of a class of residues is higher than this threshold. Default: 0.8 ''' print help_content if __name__ == '__main__': run_promals()
normal
{ "blob_id": "b9386cf8c17b28fd1fea6e587ca4401de247cbea", "index": 7779, "step-1": "#!/usr1/local/bin/python\n\nimport os, sys, re, shutil, random\nfrom tempfile import *\n\n\n# program location\nprog_dir = '/home/jpei/test_promals3d_package/bar/promals_package/bin/'\n\n# program names\npromals_web = prog_dir + \"progress_for_web.py\"\n\ncsv_cutoff_g = 5\n\nalphabet = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'\n\ndef run_promals():\n\n\tcsv_cutoff = csv_cutoff_g\n\t# check and parse the command line\n\tcmd_line = sys.argv\n\tif len(cmd_line) <= 1: \n\t\tpromals_help()\n\t\tsys.exit(1)\n\telif not os.path.isfile(cmd_line[1]):\n print >> sys.stderr, \"Error reading input file:\", cmd_line[1]\n\t\tpromals_help()\n\t\tsys.exit(1)\n else:\n randomstring = \"\"\n infile = os.path.abspath(cmd_line[1])\n infiledir = os.path.split(infile)[0]\n for x in random.sample(alphabet,40):\n randomstring+=x\n ranfile = \"%s/%s\" %(infiledir, randomstring)\n try:\n fp = open(ranfile, \"w\")\n except:\n print >> sys.stderr, \"Error:\"\n print >> sys.stderr, \" The directory containing your input file is not writable:\", infiledir\n print >> sys.stderr, \" Input file should be in a writable directory\"\n sys.exit(1)\n fp.close()\n os.system(\"rm -f %s\" %ranfile)\n\n\tcmd_line1 = []\n\toutputfile = \"\"\n blast_dir = \"\"\n resnum = 1\n caa_freq = 0.8\n\tfor i in range(len(cmd_line)):\n\t\targ = cmd_line[i]\n\t\tif i == 0: arg = prog_dir + 'promals_c'\n # change inputfile name to full path name\n\t\tif i == 1: \n arg = os.path.abspath(arg)\n inputfile = arg\n # change outfile name to full path name\n\t\tif arg == '-outfile':\n\t\t\tif i+1 < len(cmd_line): \n cmd_line[i+1] = os.path.abspath(cmd_line[i+1])\n outputfile = cmd_line[i+1]\n # change blast_dir name to full path name\n\t\tif arg == '-blast_dir':\n\t\t\tif i+1 < len(cmd_line): \n cmd_line[i+1] = os.path.abspath(cmd_line[i+1])\n\t\t#if arg == '-ssw': arg = '-ss_weight'\n\t\t#if arg == '-aaw': arg = '-score_weight'\n\t\t#if arg == '-max_homologs': arg = '-max_num_sequences'\n\t\t#if arg == '-iter_num': arg = '-iter_number'\n\t\tif arg == '-csv_index': \n\t\t\tif i+1 < len(cmd_line):\n\t\t\t\tcsv_cutoff = int(cmd_line[i+1])\n\t\t\t\tif (csv_cutoff<0) or (csv_cutoff>9):\n\t\t\t\t\tcsv_cutoff = 5\n if arg == \"-resnum\":\n resnum = int(cmd_line[i+1])\n if arg == \"-caa_freq\":\n caa_freq = float(sys.argv[i+1])\n\t\tcmd_line1.append(arg)\n\t\n\tif not outputfile:\n\t\tif re.search(\"\\.fa$\", inputfile):\n\t\t\toutputfile = re.sub(\"\\.fa$\", \"\", inputfile) + \".promals.aln\"\n else: outputfile = inputfile + \".promals.aln\"\n\tif not blast_dir:\n blast_dir = \"%s_blast\" %inputfile\n\t\n\tpromals_c = ' '.join(cmd_line1)\n promals_c = re.sub(\"\\s+-resnum\\s+\\S+\", \" \", promals_c)\n promals_c = re.sub(\"\\s+-caa_freq\\s+\\S+\", \" \", promals_c)\n promals_c = re.sub(\"\\s+-csv_index\\s+\\S+\", \" \", promals_c)\n if \"-blast_dir\" not in promals_c:\n promals_c += \" -blast_dir %s \" %blast_dir\n\toutputlogfile = inputfile+\".prmls.oUTpUT\"\n\tpromals_c = promals_c + \" > \" + outputlogfile\n print \"promals command:\"\n\tprint promals_c\n print\n sys.stdout.flush()\n\t\n\t# run programs in a temporary directory to avoid .ncbirc problem\n cwd = os.getcwd()\n tmpdir = mkdtemp()\n os.chdir(tmpdir)\n os.system(\"cp %s.ncbirc .\" %prog_dir)\n\ts1 = os.system(promals_c)\n if s1 == 0:\n print \"output alignment file is:\", outputfile\n print \"blast intermediate files are in:\", blast_dir\n print\n else:\n print \"Error running promals - check log file for details:\", outputlogfile\n print\n print \"html file command:\"\n\tprint \"python %s %s %s -cutoff %d -resnum %d -caa_freq %f\" %(promals_web, outputfile, outputlogfile, csv_cutoff, resnum, caa_freq) \n print\n sys.stdout.flush()\n\ts2 = os.system(\"python %s %s %s -cutoff %d -resnum %d -caa_freq %f 2>/dev/null\" %(promals_web, outputfile, outputlogfile, csv_cutoff, resnum, caa_freq) )\n if s2 == 0:\n print \"output html alignment file is:\", outputfile + \".html\"\n print\n else:\n print \"Error generating html file\"\n print\n\n os.chdir(cwd)\n shutil.rmtree(tmpdir)\n\ndef promals_help():\n\n help_content = '''\n\npromals with 3D information\n \n command: \n promals input_file [options] > input_file.log\n python promals input_file [options] > input_file.log\n\n input:\n input_file needs to be FASTA format\n\n output: \n Two alignment files will be generated. One is in CLUSTAL \n format alignment (file name can be specified by option -outfile). \n The other file is an html file of colored alignment.\n \n Options:\n\n For alignment strategies:\n -id_thr [0, 1] Identity threshold that determined the partition of\n fast and slow alignment processes. If two groups of\n sequences has average identity above this threshold,\n align them in a fast way. Otherwise, use slower but\n more accurate way (by profile-profile alignment with\n predicted secondary structures and available 3D \n constraints). Default: 0.6 (corresponding to 60% identity)\n\n For using 3D information:\n -dali [0 or 1] Use DaliLite structural alignment (1) or not use \n fast alignment (0) (\"DaliLite\" executable needs to \n be present in bin/ directory). Default: 0 (it is \n relatively slow to run DaliLite)\n -fast [0 or 1] Use fast structural alignment (1) or not use fast \n alignment (0) (\"fast\" executable needs to be present \n in bin/ directory). Default: 1\n -tmalign [0 or 1] Use TMalign structural alignment (1) or not use fast \n TMalign alignment (0) (\"TMalign\" executable needs to \n be present in bin/ directory). Default: 1\n -struct_weight [0, inf[ Weight of structural constraints relative to sequence \n constraints. Default: 1.5\n\n For profile scoring:\n -ss_weight [0,inf[ Weight of predicted secondary structure in profile-profile \n scoring. Default: 0.2\n -score_weight [0,inf[ Weight of amino acids in profile-profile scoring. \n Default: 0.8\n\n For running PSI-BLAST to get sequence profile:\n -iter_number <int> Number of PSI-BLAST iterations for profile generation. \n Default: 3\n -evalue [0, inf[ PSI-BLAST evalue cutoff for inclusion. Default: 0.001\n -low_id_thr [0,1] Remove PSI-BLAST hits with identity to the query less than \n this value. Default: 0.2\n -blast_dir <file> Directory of running PSI-BLAST and store other intermediate \n results.\n -clean_blast_before [0 or 1] Remove any file in the directory that stores \n intermediate results (specified by -blast_dir option) before\n running PSI-BLAST. Default: 0. \n -clean_blast_after [0 or 1] Remove any file in the PSI-BLAST directory after running\n PSI-BLAST. Default: 0\n\n For output:\n -outfile <file> The name of output alignment file.\n -blocksize <int> Number of letters in clustal-format alignment blocks. \n Default: 70\n -resnum [0 or 1] In colored html alignment, show residue numbers for \n alignment blocks. Default: 1\n -caa_freq [0, 1] In colored html alignment, show amino acid consensus\n symbol if the fraction of a class of residues is higher\n than this threshold. Default: 0.8\n\n '''\n\n print help_content\n\n\nif __name__ == '__main__':\n\n\trun_promals()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # coding: utf-8 from sklearn.metrics import confusion_matrix import numpy as np import pandas as pd df = pd.read_csv('orb.csv') d = pd.pivot_table(df,index='col1',columns='col2',values='result') d.fillna(0,inplace=True)
normal
{ "blob_id": "ce65a672cae26bdb8ec8cb04eabfe1877f9cd7d4", "index": 9558, "step-1": "<mask token>\n", "step-2": "<mask token>\nd.fillna(0, inplace=True)\n", "step-3": "<mask token>\ndf = pd.read_csv('orb.csv')\nd = pd.pivot_table(df, index='col1', columns='col2', values='result')\nd.fillna(0, inplace=True)\n", "step-4": "from sklearn.metrics import confusion_matrix\nimport numpy as np\nimport pandas as pd\ndf = pd.read_csv('orb.csv')\nd = pd.pivot_table(df, index='col1', columns='col2', values='result')\nd.fillna(0, inplace=True)\n", "step-5": "#!/usr/bin/env python\n# coding: utf-8\n\nfrom sklearn.metrics import confusion_matrix\nimport numpy as np\nimport pandas as pd\n\n\ndf = pd.read_csv('orb.csv')\nd = pd.pivot_table(df,index='col1',columns='col2',values='result')\nd.fillna(0,inplace=True)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import numpy as np import cv2 import time cap = cv2.VideoCapture(0) ret, frame = cap.read() average_stack = np.float32(np.copy(frame))/255 frames = 1.0 while(True): # Capture frame-by-frame ret, frame = cap.read() frame = np.float32(frame)/255 average_stack = average_stack * frames + frame frames += 1.0 average_stack = average_stack/frames # Display the resulting frame cv2.imshow('frame',np.uint8(average_stack*255)) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
normal
{ "blob_id": "7fd89272d3d3584f35fd8f552cb7b14e57b7ed1b", "index": 1591, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n ret, frame = cap.read()\n frame = np.float32(frame) / 255\n average_stack = average_stack * frames + frame\n frames += 1.0\n average_stack = average_stack / frames\n cv2.imshow('frame', np.uint8(average_stack * 255))\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\n", "step-3": "<mask token>\ncap = cv2.VideoCapture(0)\nret, frame = cap.read()\naverage_stack = np.float32(np.copy(frame)) / 255\nframes = 1.0\nwhile True:\n ret, frame = cap.read()\n frame = np.float32(frame) / 255\n average_stack = average_stack * frames + frame\n frames += 1.0\n average_stack = average_stack / frames\n cv2.imshow('frame', np.uint8(average_stack * 255))\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\n", "step-4": "import numpy as np\nimport cv2\nimport time\ncap = cv2.VideoCapture(0)\nret, frame = cap.read()\naverage_stack = np.float32(np.copy(frame)) / 255\nframes = 1.0\nwhile True:\n ret, frame = cap.read()\n frame = np.float32(frame) / 255\n average_stack = average_stack * frames + frame\n frames += 1.0\n average_stack = average_stack / frames\n cv2.imshow('frame', np.uint8(average_stack * 255))\n if cv2.waitKey(1) & 255 == ord('q'):\n break\ncap.release()\ncv2.destroyAllWindows()\n", "step-5": "import numpy as np\nimport cv2\nimport time\n\ncap = cv2.VideoCapture(0)\nret, frame = cap.read()\naverage_stack = np.float32(np.copy(frame))/255\nframes = 1.0\n\nwhile(True):\n # Capture frame-by-frame\n ret, frame = cap.read()\n frame = np.float32(frame)/255\n\n average_stack = average_stack * frames + frame\n frames += 1.0\n average_stack = average_stack/frames\n\n # Display the resulting frame\n cv2.imshow('frame',np.uint8(average_stack*255))\n if cv2.waitKey(1) & 0xFF == ord('q'):\n break\n# When everything done, release the capture\ncap.release()\ncv2.destroyAllWindows()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/env python3 import pandas as pd import csv def get_apriori_input(input_file,output_file,sample_col="Sample",gene_id_col="Gene_ID"): df=pd.read_csv(input_file,sep="\t") sample_names=df[sample_col].unique() with open(output_file,"w") as out: csv_writer=csv.writer(out,delimiter="\t") for sample_name in sample_names: bool=df[sample_col]==sample_name df_sample=df[bool] gene_ids=df_sample[gene_id_col] gene_string=",".join(gene_ids) csv_writer.writerow([sample_name,gene_string]) if __name__ == "__main__": import sys program,input_file,output_file,sample_col,gene_id_col=sys.argv get_apriori_input(input_file,output_file,sample_col,gene_id_col)
normal
{ "blob_id": "e14bea6376c8649bf9c9c5759d530af773664cd4", "index": 891, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_apriori_input(input_file, output_file, sample_col='Sample',\n gene_id_col='Gene_ID'):\n df = pd.read_csv(input_file, sep='\\t')\n sample_names = df[sample_col].unique()\n with open(output_file, 'w') as out:\n csv_writer = csv.writer(out, delimiter='\\t')\n for sample_name in sample_names:\n bool = df[sample_col] == sample_name\n df_sample = df[bool]\n gene_ids = df_sample[gene_id_col]\n gene_string = ','.join(gene_ids)\n csv_writer.writerow([sample_name, gene_string])\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef get_apriori_input(input_file, output_file, sample_col='Sample',\n gene_id_col='Gene_ID'):\n df = pd.read_csv(input_file, sep='\\t')\n sample_names = df[sample_col].unique()\n with open(output_file, 'w') as out:\n csv_writer = csv.writer(out, delimiter='\\t')\n for sample_name in sample_names:\n bool = df[sample_col] == sample_name\n df_sample = df[bool]\n gene_ids = df_sample[gene_id_col]\n gene_string = ','.join(gene_ids)\n csv_writer.writerow([sample_name, gene_string])\n\n\nif __name__ == '__main__':\n import sys\n program, input_file, output_file, sample_col, gene_id_col = sys.argv\n get_apriori_input(input_file, output_file, sample_col, gene_id_col)\n", "step-4": "import pandas as pd\nimport csv\n\n\ndef get_apriori_input(input_file, output_file, sample_col='Sample',\n gene_id_col='Gene_ID'):\n df = pd.read_csv(input_file, sep='\\t')\n sample_names = df[sample_col].unique()\n with open(output_file, 'w') as out:\n csv_writer = csv.writer(out, delimiter='\\t')\n for sample_name in sample_names:\n bool = df[sample_col] == sample_name\n df_sample = df[bool]\n gene_ids = df_sample[gene_id_col]\n gene_string = ','.join(gene_ids)\n csv_writer.writerow([sample_name, gene_string])\n\n\nif __name__ == '__main__':\n import sys\n program, input_file, output_file, sample_col, gene_id_col = sys.argv\n get_apriori_input(input_file, output_file, sample_col, gene_id_col)\n", "step-5": "#!/usr/bin/env python3\nimport pandas as pd\nimport csv\ndef get_apriori_input(input_file,output_file,sample_col=\"Sample\",gene_id_col=\"Gene_ID\"):\n df=pd.read_csv(input_file,sep=\"\\t\")\n sample_names=df[sample_col].unique()\n with open(output_file,\"w\") as out:\n csv_writer=csv.writer(out,delimiter=\"\\t\")\n for sample_name in sample_names:\n bool=df[sample_col]==sample_name\n df_sample=df[bool]\n gene_ids=df_sample[gene_id_col]\n gene_string=\",\".join(gene_ids)\n csv_writer.writerow([sample_name,gene_string])\n\n\nif __name__ == \"__main__\":\n import sys\n program,input_file,output_file,sample_col,gene_id_col=sys.argv\n get_apriori_input(input_file,output_file,sample_col,gene_id_col)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#a list of functions/Classes to be inported when a user imports * from swarmpose __all__ = ['Swarmpose']
normal
{ "blob_id": "e375501e6b815530e61af9181d4cade83d4588ca", "index": 8762, "step-1": "<mask token>\n", "step-2": "__all__ = ['Swarmpose']\n", "step-3": "#a list of functions/Classes to be inported when a user imports * from swarmpose\n__all__ = ['Swarmpose']", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import json # No llego a solucionarlo entero. #Aparcamientos que estan cubiertos en el centro de deportes . from pprint import pprint with open('Aparcamientos.json') as data_file: data = json.load(data_file) for x in data['docs']: if x['TIPOLOGIA'] == 'Cubierto': print(x['NOMBRE']) elif x['TIPOLOGIA'] == 'Pabellón de deportes': print(x['NOMBRE']) print(x['TIPOLOGIA'])
normal
{ "blob_id": "d111f93144a1d2790470365d0ca31bcea17713d7", "index": 8766, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('Aparcamientos.json') as data_file:\n data = json.load(data_file)\nfor x in data['docs']:\n if x['TIPOLOGIA'] == 'Cubierto':\n print(x['NOMBRE'])\n elif x['TIPOLOGIA'] == 'Pabellón de deportes':\n print(x['NOMBRE'])\n print(x['TIPOLOGIA'])\n", "step-3": "import json\nfrom pprint import pprint\nwith open('Aparcamientos.json') as data_file:\n data = json.load(data_file)\nfor x in data['docs']:\n if x['TIPOLOGIA'] == 'Cubierto':\n print(x['NOMBRE'])\n elif x['TIPOLOGIA'] == 'Pabellón de deportes':\n print(x['NOMBRE'])\n print(x['TIPOLOGIA'])\n", "step-4": "import json\n# No llego a solucionarlo entero.\n#Aparcamientos que estan cubiertos en el centro de deportes .\nfrom pprint import pprint\n\nwith open('Aparcamientos.json') as data_file: \n data = json.load(data_file)\nfor x in data['docs']:\n\tif x['TIPOLOGIA'] == 'Cubierto':\n\t\tprint(x['NOMBRE'])\n\telif x['TIPOLOGIA'] == 'Pabellón de deportes':\n\t\tprint(x['NOMBRE'])\n\t\tprint(x['TIPOLOGIA'])\n\n\n\n\t\t\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import streamlit as st from streamlit.components.v1 import components from streamlit.report_thread import get_report_ctx from util.session import * from multipage import MultiPage from pages import register def app(page): if not login_status(): title_container = st.empty() remail_input_container = st.empty() rpw_input_container = st.empty() rregister_button_container = st.empty() # title_container.write("Register") email = remail_input_container.text_input("Email ") password = rpw_input_container.text_input("Password ", type="password") rregister_button = rregister_button_container.button('Register') if rregister_button: title_container.empty() remail_input_container.empty() rpw_input_container.empty() rregister_button_container.empty() login() page.app() st.experimental_rerun()
normal
{ "blob_id": "41cfd558824b6561114a48a694b1e6e6a7cb8c05", "index": 7, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef app(page):\n if not login_status():\n title_container = st.empty()\n remail_input_container = st.empty()\n rpw_input_container = st.empty()\n rregister_button_container = st.empty()\n email = remail_input_container.text_input('Email ')\n password = rpw_input_container.text_input('Password ', type='password')\n rregister_button = rregister_button_container.button('Register')\n if rregister_button:\n title_container.empty()\n remail_input_container.empty()\n rpw_input_container.empty()\n rregister_button_container.empty()\n login()\n page.app()\n st.experimental_rerun()\n", "step-3": "import streamlit as st\nfrom streamlit.components.v1 import components\nfrom streamlit.report_thread import get_report_ctx\nfrom util.session import *\nfrom multipage import MultiPage\nfrom pages import register\n\n\ndef app(page):\n if not login_status():\n title_container = st.empty()\n remail_input_container = st.empty()\n rpw_input_container = st.empty()\n rregister_button_container = st.empty()\n email = remail_input_container.text_input('Email ')\n password = rpw_input_container.text_input('Password ', type='password')\n rregister_button = rregister_button_container.button('Register')\n if rregister_button:\n title_container.empty()\n remail_input_container.empty()\n rpw_input_container.empty()\n rregister_button_container.empty()\n login()\n page.app()\n st.experimental_rerun()\n", "step-4": "import streamlit as st\nfrom streamlit.components.v1 import components\nfrom streamlit.report_thread import get_report_ctx\nfrom util.session import *\nfrom multipage import MultiPage\nfrom pages import register\n\ndef app(page):\n if not login_status():\n title_container = st.empty()\n remail_input_container = st.empty()\n rpw_input_container = st.empty()\n rregister_button_container = st.empty()\n\n # title_container.write(\"Register\")\n email = remail_input_container.text_input(\"Email \")\n password = rpw_input_container.text_input(\"Password \", type=\"password\")\n rregister_button = rregister_button_container.button('Register')\n\n if rregister_button:\n title_container.empty()\n remail_input_container.empty()\n rpw_input_container.empty()\n rregister_button_container.empty()\n login()\n page.app()\n st.experimental_rerun()", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
__author__ = 'Jager' from equipment import Equipment class Weapon (Equipment): def __init__(self, name, power): super(Weapon, self).__init__(name) self.power = power @staticmethod def fromJSON(jsonstr): obj = Equipment.fromJSON(jsonstr) return Weapon(obj["name"], obj["power"]) def __str__(self): return "{}: Power({})".format(self.name, self.power)
normal
{ "blob_id": "276d7ac493ddcb327dbce279d9f4bc8a74c98245", "index": 5749, "step-1": "<mask token>\n\n\nclass Weapon(Equipment):\n\n def __init__(self, name, power):\n super(Weapon, self).__init__(name)\n self.power = power\n <mask token>\n\n def __str__(self):\n return '{}: Power({})'.format(self.name, self.power)\n", "step-2": "<mask token>\n\n\nclass Weapon(Equipment):\n\n def __init__(self, name, power):\n super(Weapon, self).__init__(name)\n self.power = power\n\n @staticmethod\n def fromJSON(jsonstr):\n obj = Equipment.fromJSON(jsonstr)\n return Weapon(obj['name'], obj['power'])\n\n def __str__(self):\n return '{}: Power({})'.format(self.name, self.power)\n", "step-3": "__author__ = 'Jager'\n<mask token>\n\n\nclass Weapon(Equipment):\n\n def __init__(self, name, power):\n super(Weapon, self).__init__(name)\n self.power = power\n\n @staticmethod\n def fromJSON(jsonstr):\n obj = Equipment.fromJSON(jsonstr)\n return Weapon(obj['name'], obj['power'])\n\n def __str__(self):\n return '{}: Power({})'.format(self.name, self.power)\n", "step-4": "__author__ = 'Jager'\nfrom equipment import Equipment\n\n\nclass Weapon(Equipment):\n\n def __init__(self, name, power):\n super(Weapon, self).__init__(name)\n self.power = power\n\n @staticmethod\n def fromJSON(jsonstr):\n obj = Equipment.fromJSON(jsonstr)\n return Weapon(obj['name'], obj['power'])\n\n def __str__(self):\n return '{}: Power({})'.format(self.name, self.power)\n", "step-5": "__author__ = 'Jager'\nfrom equipment import Equipment\n\n\nclass Weapon (Equipment):\n def __init__(self, name, power):\n super(Weapon, self).__init__(name)\n self.power = power\n\n @staticmethod\n def fromJSON(jsonstr):\n obj = Equipment.fromJSON(jsonstr)\n return Weapon(obj[\"name\"], obj[\"power\"])\n\n def __str__(self):\n return \"{}: Power({})\".format(self.name, self.power)", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys,os,traceback from PIL import Image class ResizeImageBuilder: def __init__(self): # print(self.__class__) pass def setOriginImagePath(self, filePath): try: img = Image.open(filePath) # img = img.convert('RGB') # size = 32, 32 # img.thumbnail(size) print('origin image mode:', img.mode) img = img.convert('RGB') print('target image mode:', img.mode) # img.show() self.baseImage = img return None except (BaseException,e): return str(filePath + " open error: " + traceback.format_exc(e)) def createImageWithOriginImage(self, img, imageSize): return img.resize((imageSize, imageSize),Image.ANTIALIAS) def saveImageWithPath(self, img, savePath): img.save(savePath) def createImage(self, savePath, imageSize): if self.baseImage == None: print('error: self.baseImage == None, please call setOriginImagePath() before createImage()') return try: newimg = self.createImageWithOriginImage(self.baseImage, imageSize) self.saveImageWithPath(newimg, savePath) # print('done') except (BaseException,e): return 'createImage error: ' + traceback.format_exc(e) def main(): # builder = ResizeImageBuilder() # builder.setOriginImagePath(originImagePath) # builder.createImage(path1, size1) # builder.createImage(path2, size2) pass if __name__ == '__main__': main()
normal
{ "blob_id": "47119f46cdbbb7306aef8237d4f56f0f10690ae4", "index": 9245, "step-1": "<mask token>\n\n\nclass ResizeImageBuilder:\n\n def __init__(self):\n pass\n\n def setOriginImagePath(self, filePath):\n try:\n img = Image.open(filePath)\n print('origin image mode:', img.mode)\n img = img.convert('RGB')\n print('target image mode:', img.mode)\n self.baseImage = img\n return None\n except (BaseException, e):\n return str(filePath + ' open error: ' + traceback.format_exc(e))\n\n def createImageWithOriginImage(self, img, imageSize):\n return img.resize((imageSize, imageSize), Image.ANTIALIAS)\n <mask token>\n\n def createImage(self, savePath, imageSize):\n if self.baseImage == None:\n print(\n 'error: self.baseImage == None, please call setOriginImagePath() before createImage()'\n )\n return\n try:\n newimg = self.createImageWithOriginImage(self.baseImage, imageSize)\n self.saveImageWithPath(newimg, savePath)\n except (BaseException, e):\n return 'createImage error: ' + traceback.format_exc(e)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ResizeImageBuilder:\n\n def __init__(self):\n pass\n\n def setOriginImagePath(self, filePath):\n try:\n img = Image.open(filePath)\n print('origin image mode:', img.mode)\n img = img.convert('RGB')\n print('target image mode:', img.mode)\n self.baseImage = img\n return None\n except (BaseException, e):\n return str(filePath + ' open error: ' + traceback.format_exc(e))\n\n def createImageWithOriginImage(self, img, imageSize):\n return img.resize((imageSize, imageSize), Image.ANTIALIAS)\n\n def saveImageWithPath(self, img, savePath):\n img.save(savePath)\n\n def createImage(self, savePath, imageSize):\n if self.baseImage == None:\n print(\n 'error: self.baseImage == None, please call setOriginImagePath() before createImage()'\n )\n return\n try:\n newimg = self.createImageWithOriginImage(self.baseImage, imageSize)\n self.saveImageWithPath(newimg, savePath)\n except (BaseException, e):\n return 'createImage error: ' + traceback.format_exc(e)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ResizeImageBuilder:\n\n def __init__(self):\n pass\n\n def setOriginImagePath(self, filePath):\n try:\n img = Image.open(filePath)\n print('origin image mode:', img.mode)\n img = img.convert('RGB')\n print('target image mode:', img.mode)\n self.baseImage = img\n return None\n except (BaseException, e):\n return str(filePath + ' open error: ' + traceback.format_exc(e))\n\n def createImageWithOriginImage(self, img, imageSize):\n return img.resize((imageSize, imageSize), Image.ANTIALIAS)\n\n def saveImageWithPath(self, img, savePath):\n img.save(savePath)\n\n def createImage(self, savePath, imageSize):\n if self.baseImage == None:\n print(\n 'error: self.baseImage == None, please call setOriginImagePath() before createImage()'\n )\n return\n try:\n newimg = self.createImageWithOriginImage(self.baseImage, imageSize)\n self.saveImageWithPath(newimg, savePath)\n except (BaseException, e):\n return 'createImage error: ' + traceback.format_exc(e)\n\n\ndef main():\n pass\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "import sys, os, traceback\nfrom PIL import Image\n\n\nclass ResizeImageBuilder:\n\n def __init__(self):\n pass\n\n def setOriginImagePath(self, filePath):\n try:\n img = Image.open(filePath)\n print('origin image mode:', img.mode)\n img = img.convert('RGB')\n print('target image mode:', img.mode)\n self.baseImage = img\n return None\n except (BaseException, e):\n return str(filePath + ' open error: ' + traceback.format_exc(e))\n\n def createImageWithOriginImage(self, img, imageSize):\n return img.resize((imageSize, imageSize), Image.ANTIALIAS)\n\n def saveImageWithPath(self, img, savePath):\n img.save(savePath)\n\n def createImage(self, savePath, imageSize):\n if self.baseImage == None:\n print(\n 'error: self.baseImage == None, please call setOriginImagePath() before createImage()'\n )\n return\n try:\n newimg = self.createImageWithOriginImage(self.baseImage, imageSize)\n self.saveImageWithPath(newimg, savePath)\n except (BaseException, e):\n return 'createImage error: ' + traceback.format_exc(e)\n\n\ndef main():\n pass\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n# -*- coding: utf-8 -*-\n\nimport sys,os,traceback\nfrom PIL import Image\n\nclass ResizeImageBuilder:\n def __init__(self):\n # print(self.__class__)\n pass\n\n def setOriginImagePath(self, filePath):\n try:\n img = Image.open(filePath)\n # img = img.convert('RGB')\n # size = 32, 32\n # img.thumbnail(size)\n print('origin image mode:', img.mode)\n img = img.convert('RGB')\n print('target image mode:', img.mode)\n # img.show()\n self.baseImage = img\n return None\n except (BaseException,e):\n return str(filePath + \" open error: \" + traceback.format_exc(e))\n\n def createImageWithOriginImage(self, img, imageSize):\n return img.resize((imageSize, imageSize),Image.ANTIALIAS)\n\n def saveImageWithPath(self, img, savePath):\n img.save(savePath)\n\n def createImage(self, savePath, imageSize):\n if self.baseImage == None:\n print('error: self.baseImage == None, please call setOriginImagePath() before createImage()')\n return\n\n try:\n newimg = self.createImageWithOriginImage(self.baseImage, imageSize)\n self.saveImageWithPath(newimg, savePath)\n # print('done')\n except (BaseException,e):\n return 'createImage error: ' + traceback.format_exc(e)\n\ndef main():\n # builder = ResizeImageBuilder()\n # builder.setOriginImagePath(originImagePath)\n # builder.createImage(path1, size1)\n # builder.createImage(path2, size2)\n pass\n\nif __name__ == '__main__':\n main()", "step-ids": [ 5, 6, 8, 9, 10 ] }
[ 5, 6, 8, 9, 10 ]
from string import Template import os #-----template objects----- #for putting a template inside an ifdef guard TIfGuard = Template("""if(${condition}) ${innerbody} endif()\n""") #For minimum cmake version and project name TProjectSettings = Template("""cmake_minimum_required (VERSION ${MinCmakeVer}) project(${Name}) set_property(GLOBAL PROPERTY USE_FOLDERS ${UseFolders}) set(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)\n""") #for including a definition TDefinition = Template("add_definitions(-D${definition})") #include directories TIncludeDirectory = Template('include_directories("${dir}")') #for globbing source files in a dir TSourceGlob = Template('FILE(GLOB ${source_id} "${dir}/*.c*")') #for globbing header files in a dir THeaderGlob = Template('FILE(GLOB ${header_id} "${dir}/*.h*")') #template for source group (so they appear in VS filters etc. TSourceGroup = Template('source_group("${folder}" FILES $${${files}})\n') #for outputting an executable TExecutable = Template("add_executable(${project} $${SOURCES} $${HEADERS})\n") #for outputting a shared library TSharedLib = Template("add_library(${project} SHARED $${SOURCES} $${HEADERS})\n") #for outputting a static library TStaticLib = Template("add_library(${project} STATIC $${SOURCES} $${HEADERS})\n") #for outputting a collection of code files to an object file TObjectLib = Template("add_library(${project} OBJECT $${SOURCES}") #template for appending a cmake variable to another cmake variable TAppendVariable = Template("set( ${var} $${${var}} $${${appendedval}})\n") #template for appending a python variable to a cmake variable TAppendPythonVariable = Template("set( ${var} $${${var}} ${appendedval})\n") #template for setting cmake variable TMakeVariable = Template('set (${var} ${value})\n') #template for adding a link directory TLinkDirectory = Template('link_directories("${dir}")') #template for targeting link libs TTargetLinkLibs = Template("""if(NOT LIBS STREQUAL "") target_link_libraries(${name} $${LIBS}) endif() """) #for linking a framework on the mac TLinkFramework = Template("""find_library(${framework}_LIB ${framework}) MARK_AS_ADVANCED(${framework}_LIB) set(LIBS $${LIBS} $${${framework}_LIB})""") #for linking a system library TLinkSystemLib = Template("""find_package(${framework} REQUIRED) include_directories($${${framework_upper}_INCLUDE_DIRS}) set(LIBS $${LIBS} $${${framework_upper}_LIBRARIES})""") #for linking objects into this module TLinkObject = Template("set(LIBS $${LIBS} $<TARGET_OBJECTS>:${object})") #template for exectuable output TExecutableOutput = Template('set(EXECUTABLE_OUTPUT_PATH "${dir}")\n') #template for exectuable output TRuntimeOutput = Template('set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${dir}")\n') #template for library output TLibraryoutput = Template('set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${dir}")\nset(LIBRARY_OUTPUT_PATH "${dir}")\n') #template for including a submodule TSubmoduleInclude = Template('add_subdirectory(${dir})') #-----Helper Functions---- def WriteToFile(f, output, condition = False, conditionID = ""): f.write(output if not condition else WrapInGuard(conditionID, output)) def InsertEnvVariable(s): return Template(s).substitute(os.environ) def ContainsEnvVariable(s): return ("$" in s) #removes all characters that may cause issues with cmake #such as ${} characters for environment variables def Strip(s): chars = "${}" for i in range(0,len(chars)): s=s.replace(chars[i],"") return s #-----Write Functions----- #Puts innerbody into TIfGuard template with the given condition #then returns the string def WrapInGuard(condition, innerbody): return TIfGuard.substitute(dict(condition=condition, innerbody=innerbody)) def WriteProjectSettings(f, section): #defaults if "UseFolders" not in section.data: section.data["UseFolders"] = "OFF" #output output = TProjectSettings.substitute(section.data) f.write(output) #writes required CMAKE variables to the file def WriteRequiredVariables(f): #all required variables go here to initialise variables = [ dict(var="INCLUDES", value='""'), dict(var="SOURCES", value='""'), dict(var="LIBS", value='""') ] #write them to file for v in variables: f.write(TMakeVariable.substitute(v)) #definitions such as #defines def WriteDefinitions(f, sections): #first write the one which is not platform specific for s in sections: defs = s.data[":"] #gather definitions to be output output = "" for d in defs: output += TDefinition.substitute(dict(definition=d)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition) #project include directories def WriteIncludeDirectories(f, rootDir, sections): #first write the one which is not platform specific for s in sections: dirs = s.data[":"] #gather definitions to be output output = "" for d in dirs: localDir = d if d.startswith("/") else "/"+d headerID = Strip(localDir.replace('/','_')) #insert any environment variables if ContainsEnvVariable(d): d = InsertEnvVariable(d) else: d = rootDir + localDir #add include directory output = TIncludeDirectory.substitute(dict(dir=d)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition) #glob all header files output = THeaderGlob.substitute(dict(dir=d, header_id=headerID)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition) #append to HEADERS variable output = TAppendVariable.substitute(dict(var="HEADERS", appendedval=headerID)) WriteToFile(f,output, s.HasCondition(), s.condition) #make source group so they appear in filters localDir = Strip(localDir.replace('/','\\\\')) output = TSourceGroup.substitute(dict(folder="Header Files" + localDir, files=headerID)) WriteToFile(f,output, s.HasCondition(), s.condition) #project source directories def WriteSourceDirectories(f, rootDir, sections): #first write the one which is not platform specific for s in sections: dirs = s.data[":"] output = "" for d in dirs: localDir = d if d.startswith("/") else "/"+d sourceID = Strip(localDir.replace('/','_')) #insert any environment variables if ContainsEnvVariable(d): d = InsertEnvVariable(d) else: d = rootDir + localDir #glob all source files output = TSourceGlob.substitute(dict(dir=d, source_id=sourceID)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition) #append globbed source files to SOURCES cmake variable output = TAppendVariable.substitute(dict(var="SOURCES", appendedval=sourceID)) WriteToFile(f,output, s.HasCondition(), s.condition) #make source group so they appear in filters localDir = Strip(localDir.replace('/','\\\\')) output = TSourceGroup.substitute(dict(folder="Source Files" + localDir, files=sourceID)) WriteToFile(f,output, s.HasCondition(), s.condition) #includes local library directories def WriteProjectLibDirectories(f, rootDir, sections): #first write the one which is not platform specific for s in sections: dirs = s.data[":"] output = "" for d in dirs: #insert any environment variables if ContainsEnvVariable(d): d = InsertEnvVariable(d) else: d = d if d.startswith('/') else "/"+d d = rootDir + d #include lib directory output = TLinkDirectory.substitute(dict(dir=d)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition) #adds all libs to the LIBS cmake var def WriteLinkLibs(f, rootDir, sections): #first write the one which is not platform specific for s in sections: libs = s.data[":"] output = "" for l in libs: if "-framework" in l: frameworkName = l.replace("-framework ", "") frameworkName = frameworkName.strip() output = TLinkFramework.substitute(dict(framework=frameworkName)) +"\n" WriteToFile(f,output, s.HasCondition(), s.condition) elif "-system" in l: systemLibName = l.replace("-system ", "") systemLibName = systemLibName.strip() output = TLinkSystemLib.substitute(dict(framework=systemLibName,framework_upper=systemLibName.upper())) +"\n" WriteToFile(f,output, s.HasCondition(), s.condition) elif "-object" in l: objectLibName = l.replace("-object ", "") objectLibName = objectLibName.strip() output = TLinkObject.substitute(dict(object=objectLibName)) +"\n" WriteToFile(f,output, s.HasCondition(), s.condition) else: #add to LIBS cmake var output = TAppendPythonVariable.substitute(dict(var="LIBS", appendedval=l)) WriteToFile(f,output, s.HasCondition(), s.condition) #Writes the cmake runtime/lib etc. outputs def WriteOutputs(f, rootDir, sections): for s in sections: if "Executable" in s.data: runtime = s.data["Executable"] #insert any environment variables if ContainsEnvVariable(runtime): runtime = InsertEnvVariable(runtime) else: runtime = runtime if runtime.startswith('/') else "/"+runtime runtime = rootDir + runtime output = TRuntimeOutput.substitute(dict(dir=runtime)) WriteToFile(f,output, s.HasCondition(), s.condition) if "Runtime" in s.data: runtime = s.data["Runtime"] #insert any environment variables if ContainsEnvVariable(runtime): runtime = InsertEnvVariable(runtime) else: runtime = runtime if runtime.startswith('/') else "/"+runtime runtime = rootDir + runtime output = TExecutableOutput.substitute(dict(dir=runtime)) WriteToFile(f,output, s.HasCondition(), s.condition) if "Libs" in s.data: print("LIBS OUTPUT BEING SET") statics = s.data["Libs"] #insert any environment variables if ContainsEnvVariable(statics): statics = InsertEnvVariable(statics) else: statics = statics if statics.startswith('/') else "/"+statics statics = rootDir + statics output = TLibraryoutput.substitute(dict(dir=statics)) WriteToFile(f,output, s.HasCondition(), s.condition) #Writes the module output section of the CmakeLists file def WriteModuleOutput(f, rootDir, m): name = m.settings.data["Name"] #name of lib/exe t = m.settings.data["Type"] #build type (lib/exe) if "exe" in t: f.write(TExecutable.substitute(dict(project=name))) f.write(TTargetLinkLibs.substitute(dict(name=name))) elif "shared" in t: f.write(TSharedLib.substitute(dict(project=name))) f.write(TTargetLinkLibs.substitute(dict(name=name))) elif "static" in t: f.write(TStaticLib.substitute(dict(project=name))) f.write(TTargetLinkLibs.substitute(dict(name=name))) elif "object" in t: f.write(TObjectLib.substitute(dict(project=name))) f.write(TTargetLinkLibs.substitute(dict(name=name))) return None #writes the include for a submodule def WriteSubmoduleIncludes(f, rootDir, sections): for s in sections: submods = s.data[":"] for sm in submods: sm = sm if sm.startswith('/') else "/"+sm output = TSubmoduleInclude.substitute(dict(dir=rootDir+sm)) + "\n" WriteToFile(f,output, s.HasCondition(), s.condition)
normal
{ "blob_id": "8cba57e3552e0072720fe42fa1949534f29d71b5", "index": 1562, "step-1": "<mask token>\n\n\ndef WriteToFile(f, output, condition=False, conditionID=''):\n f.write(output if not condition else WrapInGuard(conditionID, output))\n\n\n<mask token>\n\n\ndef WrapInGuard(condition, innerbody):\n return TIfGuard.substitute(dict(condition=condition, innerbody=innerbody))\n\n\n<mask token>\n\n\ndef WriteRequiredVariables(f):\n variables = [dict(var='INCLUDES', value='\"\"'), dict(var='SOURCES',\n value='\"\"'), dict(var='LIBS', value='\"\"')]\n for v in variables:\n f.write(TMakeVariable.substitute(v))\n\n\ndef WriteDefinitions(f, sections):\n for s in sections:\n defs = s.data[':']\n output = ''\n for d in defs:\n output += TDefinition.substitute(dict(definition=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\n<mask token>\n\n\ndef WriteProjectLibDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = d if d.startswith('/') else '/' + d\n d = rootDir + d\n output = TLinkDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteLinkLibs(f, rootDir, sections):\n for s in sections:\n libs = s.data[':']\n output = ''\n for l in libs:\n if '-framework' in l:\n frameworkName = l.replace('-framework ', '')\n frameworkName = frameworkName.strip()\n output = TLinkFramework.substitute(dict(framework=\n frameworkName)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-system' in l:\n systemLibName = l.replace('-system ', '')\n systemLibName = systemLibName.strip()\n output = TLinkSystemLib.substitute(dict(framework=\n systemLibName, framework_upper=systemLibName.upper())\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-object' in l:\n objectLibName = l.replace('-object ', '')\n objectLibName = objectLibName.strip()\n output = TLinkObject.substitute(dict(object=objectLibName)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n else:\n output = TAppendPythonVariable.substitute(dict(var='LIBS',\n appendedval=l))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteOutputs(f, rootDir, sections):\n for s in sections:\n if 'Executable' in s.data:\n runtime = s.data['Executable']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TRuntimeOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Runtime' in s.data:\n runtime = s.data['Runtime']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TExecutableOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Libs' in s.data:\n print('LIBS OUTPUT BEING SET')\n statics = s.data['Libs']\n if ContainsEnvVariable(statics):\n statics = InsertEnvVariable(statics)\n else:\n statics = statics if statics.startswith('/') else '/' + statics\n statics = rootDir + statics\n output = TLibraryoutput.substitute(dict(dir=statics))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteModuleOutput(f, rootDir, m):\n name = m.settings.data['Name']\n t = m.settings.data['Type']\n if 'exe' in t:\n f.write(TExecutable.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'shared' in t:\n f.write(TSharedLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'static' in t:\n f.write(TStaticLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'object' in t:\n f.write(TObjectLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n return None\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef WriteToFile(f, output, condition=False, conditionID=''):\n f.write(output if not condition else WrapInGuard(conditionID, output))\n\n\n<mask token>\n\n\ndef Strip(s):\n chars = '${}'\n for i in range(0, len(chars)):\n s = s.replace(chars[i], '')\n return s\n\n\ndef WrapInGuard(condition, innerbody):\n return TIfGuard.substitute(dict(condition=condition, innerbody=innerbody))\n\n\ndef WriteProjectSettings(f, section):\n if 'UseFolders' not in section.data:\n section.data['UseFolders'] = 'OFF'\n output = TProjectSettings.substitute(section.data)\n f.write(output)\n\n\ndef WriteRequiredVariables(f):\n variables = [dict(var='INCLUDES', value='\"\"'), dict(var='SOURCES',\n value='\"\"'), dict(var='LIBS', value='\"\"')]\n for v in variables:\n f.write(TMakeVariable.substitute(v))\n\n\ndef WriteDefinitions(f, sections):\n for s in sections:\n defs = s.data[':']\n output = ''\n for d in defs:\n output += TDefinition.substitute(dict(definition=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteIncludeDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n headerID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TIncludeDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = THeaderGlob.substitute(dict(dir=d, header_id=headerID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='HEADERS',\n appendedval=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Header Files' +\n localDir, files=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteSourceDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n sourceID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TSourceGlob.substitute(dict(dir=d, source_id=sourceID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='SOURCES',\n appendedval=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Source Files' +\n localDir, files=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteProjectLibDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = d if d.startswith('/') else '/' + d\n d = rootDir + d\n output = TLinkDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteLinkLibs(f, rootDir, sections):\n for s in sections:\n libs = s.data[':']\n output = ''\n for l in libs:\n if '-framework' in l:\n frameworkName = l.replace('-framework ', '')\n frameworkName = frameworkName.strip()\n output = TLinkFramework.substitute(dict(framework=\n frameworkName)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-system' in l:\n systemLibName = l.replace('-system ', '')\n systemLibName = systemLibName.strip()\n output = TLinkSystemLib.substitute(dict(framework=\n systemLibName, framework_upper=systemLibName.upper())\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-object' in l:\n objectLibName = l.replace('-object ', '')\n objectLibName = objectLibName.strip()\n output = TLinkObject.substitute(dict(object=objectLibName)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n else:\n output = TAppendPythonVariable.substitute(dict(var='LIBS',\n appendedval=l))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteOutputs(f, rootDir, sections):\n for s in sections:\n if 'Executable' in s.data:\n runtime = s.data['Executable']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TRuntimeOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Runtime' in s.data:\n runtime = s.data['Runtime']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TExecutableOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Libs' in s.data:\n print('LIBS OUTPUT BEING SET')\n statics = s.data['Libs']\n if ContainsEnvVariable(statics):\n statics = InsertEnvVariable(statics)\n else:\n statics = statics if statics.startswith('/') else '/' + statics\n statics = rootDir + statics\n output = TLibraryoutput.substitute(dict(dir=statics))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteModuleOutput(f, rootDir, m):\n name = m.settings.data['Name']\n t = m.settings.data['Type']\n if 'exe' in t:\n f.write(TExecutable.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'shared' in t:\n f.write(TSharedLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'static' in t:\n f.write(TStaticLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'object' in t:\n f.write(TObjectLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n return None\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef WriteToFile(f, output, condition=False, conditionID=''):\n f.write(output if not condition else WrapInGuard(conditionID, output))\n\n\ndef InsertEnvVariable(s):\n return Template(s).substitute(os.environ)\n\n\ndef ContainsEnvVariable(s):\n return '$' in s\n\n\ndef Strip(s):\n chars = '${}'\n for i in range(0, len(chars)):\n s = s.replace(chars[i], '')\n return s\n\n\ndef WrapInGuard(condition, innerbody):\n return TIfGuard.substitute(dict(condition=condition, innerbody=innerbody))\n\n\ndef WriteProjectSettings(f, section):\n if 'UseFolders' not in section.data:\n section.data['UseFolders'] = 'OFF'\n output = TProjectSettings.substitute(section.data)\n f.write(output)\n\n\ndef WriteRequiredVariables(f):\n variables = [dict(var='INCLUDES', value='\"\"'), dict(var='SOURCES',\n value='\"\"'), dict(var='LIBS', value='\"\"')]\n for v in variables:\n f.write(TMakeVariable.substitute(v))\n\n\ndef WriteDefinitions(f, sections):\n for s in sections:\n defs = s.data[':']\n output = ''\n for d in defs:\n output += TDefinition.substitute(dict(definition=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteIncludeDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n headerID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TIncludeDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = THeaderGlob.substitute(dict(dir=d, header_id=headerID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='HEADERS',\n appendedval=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Header Files' +\n localDir, files=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteSourceDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n sourceID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TSourceGlob.substitute(dict(dir=d, source_id=sourceID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='SOURCES',\n appendedval=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Source Files' +\n localDir, files=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteProjectLibDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = d if d.startswith('/') else '/' + d\n d = rootDir + d\n output = TLinkDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteLinkLibs(f, rootDir, sections):\n for s in sections:\n libs = s.data[':']\n output = ''\n for l in libs:\n if '-framework' in l:\n frameworkName = l.replace('-framework ', '')\n frameworkName = frameworkName.strip()\n output = TLinkFramework.substitute(dict(framework=\n frameworkName)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-system' in l:\n systemLibName = l.replace('-system ', '')\n systemLibName = systemLibName.strip()\n output = TLinkSystemLib.substitute(dict(framework=\n systemLibName, framework_upper=systemLibName.upper())\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-object' in l:\n objectLibName = l.replace('-object ', '')\n objectLibName = objectLibName.strip()\n output = TLinkObject.substitute(dict(object=objectLibName)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n else:\n output = TAppendPythonVariable.substitute(dict(var='LIBS',\n appendedval=l))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteOutputs(f, rootDir, sections):\n for s in sections:\n if 'Executable' in s.data:\n runtime = s.data['Executable']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TRuntimeOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Runtime' in s.data:\n runtime = s.data['Runtime']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TExecutableOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Libs' in s.data:\n print('LIBS OUTPUT BEING SET')\n statics = s.data['Libs']\n if ContainsEnvVariable(statics):\n statics = InsertEnvVariable(statics)\n else:\n statics = statics if statics.startswith('/') else '/' + statics\n statics = rootDir + statics\n output = TLibraryoutput.substitute(dict(dir=statics))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteModuleOutput(f, rootDir, m):\n name = m.settings.data['Name']\n t = m.settings.data['Type']\n if 'exe' in t:\n f.write(TExecutable.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'shared' in t:\n f.write(TSharedLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'static' in t:\n f.write(TStaticLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'object' in t:\n f.write(TObjectLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n return None\n\n\ndef WriteSubmoduleIncludes(f, rootDir, sections):\n for s in sections:\n submods = s.data[':']\n for sm in submods:\n sm = sm if sm.startswith('/') else '/' + sm\n output = TSubmoduleInclude.substitute(dict(dir=rootDir + sm)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n", "step-4": "<mask token>\nTIfGuard = Template(\"\"\"if(${condition})\n${innerbody}\nendif()\n\"\"\")\nTProjectSettings = Template(\n \"\"\"cmake_minimum_required (VERSION ${MinCmakeVer})\nproject(${Name})\nset_property(GLOBAL PROPERTY USE_FOLDERS ${UseFolders})\nset(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)\n\"\"\"\n )\nTDefinition = Template('add_definitions(-D${definition})')\nTIncludeDirectory = Template('include_directories(\"${dir}\")')\nTSourceGlob = Template('FILE(GLOB ${source_id} \"${dir}/*.c*\")')\nTHeaderGlob = Template('FILE(GLOB ${header_id} \"${dir}/*.h*\")')\nTSourceGroup = Template('source_group(\"${folder}\" FILES $${${files}})\\n')\nTExecutable = Template('add_executable(${project} $${SOURCES} $${HEADERS})\\n')\nTSharedLib = Template(\n 'add_library(${project} SHARED $${SOURCES} $${HEADERS})\\n')\nTStaticLib = Template(\n 'add_library(${project} STATIC $${SOURCES} $${HEADERS})\\n')\nTObjectLib = Template('add_library(${project} OBJECT $${SOURCES}')\nTAppendVariable = Template('set( ${var} $${${var}} $${${appendedval}})\\n')\nTAppendPythonVariable = Template('set( ${var} $${${var}} ${appendedval})\\n')\nTMakeVariable = Template('set (${var} ${value})\\n')\nTLinkDirectory = Template('link_directories(\"${dir}\")')\nTTargetLinkLibs = Template(\n \"\"\"if(NOT LIBS STREQUAL \"\")\ntarget_link_libraries(${name} $${LIBS})\nendif()\n\"\"\"\n )\nTLinkFramework = Template(\n \"\"\"find_library(${framework}_LIB ${framework})\nMARK_AS_ADVANCED(${framework}_LIB)\nset(LIBS $${LIBS} $${${framework}_LIB})\"\"\"\n )\nTLinkSystemLib = Template(\n \"\"\"find_package(${framework} REQUIRED)\ninclude_directories($${${framework_upper}_INCLUDE_DIRS})\nset(LIBS $${LIBS} $${${framework_upper}_LIBRARIES})\"\"\"\n )\nTLinkObject = Template('set(LIBS $${LIBS} $<TARGET_OBJECTS>:${object})')\nTExecutableOutput = Template('set(EXECUTABLE_OUTPUT_PATH \"${dir}\")\\n')\nTRuntimeOutput = Template('set(CMAKE_RUNTIME_OUTPUT_DIRECTORY \"${dir}\")\\n')\nTLibraryoutput = Template(\n \"\"\"set(CMAKE_LIBRARY_OUTPUT_DIRECTORY \"${dir}\")\nset(LIBRARY_OUTPUT_PATH \"${dir}\")\n\"\"\"\n )\nTSubmoduleInclude = Template('add_subdirectory(${dir})')\n\n\ndef WriteToFile(f, output, condition=False, conditionID=''):\n f.write(output if not condition else WrapInGuard(conditionID, output))\n\n\ndef InsertEnvVariable(s):\n return Template(s).substitute(os.environ)\n\n\ndef ContainsEnvVariable(s):\n return '$' in s\n\n\ndef Strip(s):\n chars = '${}'\n for i in range(0, len(chars)):\n s = s.replace(chars[i], '')\n return s\n\n\ndef WrapInGuard(condition, innerbody):\n return TIfGuard.substitute(dict(condition=condition, innerbody=innerbody))\n\n\ndef WriteProjectSettings(f, section):\n if 'UseFolders' not in section.data:\n section.data['UseFolders'] = 'OFF'\n output = TProjectSettings.substitute(section.data)\n f.write(output)\n\n\ndef WriteRequiredVariables(f):\n variables = [dict(var='INCLUDES', value='\"\"'), dict(var='SOURCES',\n value='\"\"'), dict(var='LIBS', value='\"\"')]\n for v in variables:\n f.write(TMakeVariable.substitute(v))\n\n\ndef WriteDefinitions(f, sections):\n for s in sections:\n defs = s.data[':']\n output = ''\n for d in defs:\n output += TDefinition.substitute(dict(definition=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteIncludeDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n headerID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TIncludeDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = THeaderGlob.substitute(dict(dir=d, header_id=headerID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='HEADERS',\n appendedval=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Header Files' +\n localDir, files=headerID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteSourceDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n localDir = d if d.startswith('/') else '/' + d\n sourceID = Strip(localDir.replace('/', '_'))\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = rootDir + localDir\n output = TSourceGlob.substitute(dict(dir=d, source_id=sourceID)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n output = TAppendVariable.substitute(dict(var='SOURCES',\n appendedval=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n localDir = Strip(localDir.replace('/', '\\\\\\\\'))\n output = TSourceGroup.substitute(dict(folder='Source Files' +\n localDir, files=sourceID))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteProjectLibDirectories(f, rootDir, sections):\n for s in sections:\n dirs = s.data[':']\n output = ''\n for d in dirs:\n if ContainsEnvVariable(d):\n d = InsertEnvVariable(d)\n else:\n d = d if d.startswith('/') else '/' + d\n d = rootDir + d\n output = TLinkDirectory.substitute(dict(dir=d)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteLinkLibs(f, rootDir, sections):\n for s in sections:\n libs = s.data[':']\n output = ''\n for l in libs:\n if '-framework' in l:\n frameworkName = l.replace('-framework ', '')\n frameworkName = frameworkName.strip()\n output = TLinkFramework.substitute(dict(framework=\n frameworkName)) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-system' in l:\n systemLibName = l.replace('-system ', '')\n systemLibName = systemLibName.strip()\n output = TLinkSystemLib.substitute(dict(framework=\n systemLibName, framework_upper=systemLibName.upper())\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n elif '-object' in l:\n objectLibName = l.replace('-object ', '')\n objectLibName = objectLibName.strip()\n output = TLinkObject.substitute(dict(object=objectLibName)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n else:\n output = TAppendPythonVariable.substitute(dict(var='LIBS',\n appendedval=l))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteOutputs(f, rootDir, sections):\n for s in sections:\n if 'Executable' in s.data:\n runtime = s.data['Executable']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TRuntimeOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Runtime' in s.data:\n runtime = s.data['Runtime']\n if ContainsEnvVariable(runtime):\n runtime = InsertEnvVariable(runtime)\n else:\n runtime = runtime if runtime.startswith('/') else '/' + runtime\n runtime = rootDir + runtime\n output = TExecutableOutput.substitute(dict(dir=runtime))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n if 'Libs' in s.data:\n print('LIBS OUTPUT BEING SET')\n statics = s.data['Libs']\n if ContainsEnvVariable(statics):\n statics = InsertEnvVariable(statics)\n else:\n statics = statics if statics.startswith('/') else '/' + statics\n statics = rootDir + statics\n output = TLibraryoutput.substitute(dict(dir=statics))\n WriteToFile(f, output, s.HasCondition(), s.condition)\n\n\ndef WriteModuleOutput(f, rootDir, m):\n name = m.settings.data['Name']\n t = m.settings.data['Type']\n if 'exe' in t:\n f.write(TExecutable.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'shared' in t:\n f.write(TSharedLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'static' in t:\n f.write(TStaticLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n elif 'object' in t:\n f.write(TObjectLib.substitute(dict(project=name)))\n f.write(TTargetLinkLibs.substitute(dict(name=name)))\n return None\n\n\ndef WriteSubmoduleIncludes(f, rootDir, sections):\n for s in sections:\n submods = s.data[':']\n for sm in submods:\n sm = sm if sm.startswith('/') else '/' + sm\n output = TSubmoduleInclude.substitute(dict(dir=rootDir + sm)\n ) + '\\n'\n WriteToFile(f, output, s.HasCondition(), s.condition)\n", "step-5": "from string import Template\nimport os\n\n#-----template objects-----\n\n#for putting a template inside an ifdef guard\nTIfGuard = Template(\"\"\"if(${condition})\n${innerbody}\nendif()\\n\"\"\")\n\n#For minimum cmake version and project name\nTProjectSettings = Template(\"\"\"cmake_minimum_required (VERSION ${MinCmakeVer})\nproject(${Name})\nset_property(GLOBAL PROPERTY USE_FOLDERS ${UseFolders})\nset(CMAKE_INSTALL_RPATH_USE_LINK_PATH TRUE)\\n\"\"\")\n\n\n#for including a definition\nTDefinition = Template(\"add_definitions(-D${definition})\")\n\n#include directories\nTIncludeDirectory = Template('include_directories(\"${dir}\")')\n\n#for globbing source files in a dir\nTSourceGlob = Template('FILE(GLOB ${source_id} \"${dir}/*.c*\")')\n\n#for globbing header files in a dir\nTHeaderGlob = Template('FILE(GLOB ${header_id} \"${dir}/*.h*\")')\n\n#template for source group (so they appear in VS filters etc.\nTSourceGroup = Template('source_group(\"${folder}\" FILES $${${files}})\\n')\n\n#for outputting an executable\nTExecutable = Template(\"add_executable(${project} $${SOURCES} $${HEADERS})\\n\")\n\n#for outputting a shared library\nTSharedLib = Template(\"add_library(${project} SHARED $${SOURCES} $${HEADERS})\\n\")\n\n#for outputting a static library\nTStaticLib = Template(\"add_library(${project} STATIC $${SOURCES} $${HEADERS})\\n\")\n\n#for outputting a collection of code files to an object file\nTObjectLib = Template(\"add_library(${project} OBJECT $${SOURCES}\")\n\n#template for appending a cmake variable to another cmake variable\nTAppendVariable = Template(\"set( ${var} $${${var}} $${${appendedval}})\\n\")\n\n#template for appending a python variable to a cmake variable\nTAppendPythonVariable = Template(\"set( ${var} $${${var}} ${appendedval})\\n\")\n\n#template for setting cmake variable\nTMakeVariable = Template('set (${var} ${value})\\n')\n\n#template for adding a link directory\nTLinkDirectory = Template('link_directories(\"${dir}\")')\n\n#template for targeting link libs\nTTargetLinkLibs = Template(\"\"\"if(NOT LIBS STREQUAL \"\")\ntarget_link_libraries(${name} $${LIBS})\nendif()\n\"\"\")\n\n#for linking a framework on the mac\nTLinkFramework = Template(\"\"\"find_library(${framework}_LIB ${framework})\nMARK_AS_ADVANCED(${framework}_LIB)\nset(LIBS $${LIBS} $${${framework}_LIB})\"\"\")\n\n#for linking a system library\nTLinkSystemLib = Template(\"\"\"find_package(${framework} REQUIRED)\ninclude_directories($${${framework_upper}_INCLUDE_DIRS})\nset(LIBS $${LIBS} $${${framework_upper}_LIBRARIES})\"\"\")\n\n#for linking objects into this module\nTLinkObject = Template(\"set(LIBS $${LIBS} $<TARGET_OBJECTS>:${object})\")\n\n#template for exectuable output\nTExecutableOutput = Template('set(EXECUTABLE_OUTPUT_PATH \"${dir}\")\\n')\n\n#template for exectuable output\nTRuntimeOutput = Template('set(CMAKE_RUNTIME_OUTPUT_DIRECTORY \"${dir}\")\\n')\n\n#template for library output\nTLibraryoutput = Template('set(CMAKE_LIBRARY_OUTPUT_DIRECTORY \"${dir}\")\\nset(LIBRARY_OUTPUT_PATH \"${dir}\")\\n')\n\n#template for including a submodule\nTSubmoduleInclude = Template('add_subdirectory(${dir})')\n\n#-----Helper Functions----\ndef WriteToFile(f, output, condition = False, conditionID = \"\"):\n\tf.write(output if not condition else WrapInGuard(conditionID, output))\n\ndef InsertEnvVariable(s):\n\treturn Template(s).substitute(os.environ)\n\ndef ContainsEnvVariable(s):\n\treturn (\"$\" in s)\n\n#removes all characters that may cause issues with cmake\n#such as ${} characters for environment variables\ndef Strip(s):\n\tchars = \"${}\"\n\tfor i in range(0,len(chars)):\n\t\ts=s.replace(chars[i],\"\")\n\treturn s\n\n#-----Write Functions-----\n#Puts innerbody into TIfGuard template with the given condition\n#then returns the string\ndef WrapInGuard(condition, innerbody):\n\treturn TIfGuard.substitute(dict(condition=condition, innerbody=innerbody))\n\t\ndef WriteProjectSettings(f, section):\n\t#defaults\n\tif \"UseFolders\" not in section.data: section.data[\"UseFolders\"] = \"OFF\"\n\t\n\t#output\n\toutput = TProjectSettings.substitute(section.data)\n\tf.write(output)\n\t\n#writes required CMAKE variables to the file\ndef WriteRequiredVariables(f):\n\t#all required variables go here to initialise\n\tvariables = [\n\t\tdict(var=\"INCLUDES\", value='\"\"'), \n\t\tdict(var=\"SOURCES\", value='\"\"'), \n\t\tdict(var=\"LIBS\", value='\"\"') \n\t\t]\n\t\n\t#write them to file\t\n\tfor v in variables:\n\t\tf.write(TMakeVariable.substitute(v))\n\t\n#definitions such as #defines \t\ndef WriteDefinitions(f, sections):\n\t#first write the one which is not platform specific\n\tfor s in sections:\n\t\tdefs = s.data[\":\"]\n\t\t\n\t\t#gather definitions to be output\n\t\toutput = \"\"\n\t\tfor d in defs:\n\t\t\toutput += TDefinition.substitute(dict(definition=d)) + \"\\n\"\n\t\t\n\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\n#project include directories\ndef WriteIncludeDirectories(f, rootDir, sections):\n\t#first write the one which is not platform specific\n\tfor s in sections:\n\t\tdirs = s.data[\":\"]\n\t\t\n\t\t#gather definitions to be output\n\t\toutput = \"\"\n\t\tfor d in dirs:\n\t\t\tlocalDir = d if d.startswith(\"/\") else \"/\"+d\n\t\t\theaderID = Strip(localDir.replace('/','_'))\n\t\t\t\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(d):\n\t\t\t\td = InsertEnvVariable(d)\n\t\t\telse:\n\t\t\t\td = rootDir + localDir\n\t\t\t\t\n\t\t\t#add include directory\n\t\t\toutput = TIncludeDirectory.substitute(dict(dir=d)) + \"\\n\"\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t#glob all header files\n\t\t\toutput = THeaderGlob.substitute(dict(dir=d, header_id=headerID)) + \"\\n\"\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t#append to HEADERS variable\n\t\t\toutput = TAppendVariable.substitute(dict(var=\"HEADERS\", appendedval=headerID))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t#make source group so they appear in filters\n\t\t\tlocalDir = Strip(localDir.replace('/','\\\\\\\\'))\n\t\t\toutput = TSourceGroup.substitute(dict(folder=\"Header Files\" + localDir, files=headerID))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\n#project source directories\ndef WriteSourceDirectories(f, rootDir, sections):\n\t#first write the one which is not platform specific\n\tfor s in sections:\n\t\tdirs = s.data[\":\"]\n\n\t\toutput = \"\"\n\t\tfor d in dirs:\n\t\t\tlocalDir = d if d.startswith(\"/\") else \"/\"+d\n\t\t\tsourceID = Strip(localDir.replace('/','_'))\n\t\t\t\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(d):\n\t\t\t\td = InsertEnvVariable(d)\n\t\t\telse:\n\t\t\t\td = rootDir + localDir\n\t\t\t\t\n\t\t\t#glob all source files\n\t\t\toutput = TSourceGlob.substitute(dict(dir=d, source_id=sourceID)) + \"\\n\"\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t#append globbed source files to SOURCES cmake variable\n\t\t\toutput = TAppendVariable.substitute(dict(var=\"SOURCES\", appendedval=sourceID))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t#make source group so they appear in filters\n\t\t\tlocalDir = Strip(localDir.replace('/','\\\\\\\\'))\n\t\t\toutput = TSourceGroup.substitute(dict(folder=\"Source Files\" + localDir, files=sourceID))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\n#includes local library directories \ndef WriteProjectLibDirectories(f, rootDir, sections):\n\t#first write the one which is not platform specific\n\tfor s in sections:\n\t\tdirs = s.data[\":\"]\n\n\t\toutput = \"\"\n\t\tfor d in dirs:\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(d):\n\t\t\t\td = InsertEnvVariable(d)\n\t\t\telse:\n\t\t\t\td = d if d.startswith('/') else \"/\"+d\n\t\t\t\td = rootDir + d\n\t\t\t\t\n\t\t\t#include lib directory\n\t\t\toutput = TLinkDirectory.substitute(dict(dir=d)) + \"\\n\"\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\n#adds all libs to the LIBS cmake var\ndef WriteLinkLibs(f, rootDir, sections):\n\t#first write the one which is not platform specific\n\tfor s in sections:\n\t\tlibs = s.data[\":\"]\n\n\t\toutput = \"\"\n\t\tfor l in libs:\n\t\t\tif \"-framework\" in l:\n\t\t\t\tframeworkName = l.replace(\"-framework \", \"\")\n\t\t\t\tframeworkName = frameworkName.strip()\n\t\t\t\t\n\t\t\t\toutput = TLinkFramework.substitute(dict(framework=frameworkName)) +\"\\n\"\n\t\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\t\n\t\t\telif \"-system\" in l:\n\t\t\t\tsystemLibName = l.replace(\"-system \", \"\")\n\t\t\t\tsystemLibName = systemLibName.strip()\n\t\t\t\t\n\t\t\t\toutput = TLinkSystemLib.substitute(dict(framework=systemLibName,framework_upper=systemLibName.upper())) +\"\\n\"\n\t\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\telif \"-object\" in l:\n\t\t\t\tobjectLibName = l.replace(\"-object \", \"\")\n\t\t\t\tobjectLibName = objectLibName.strip()\n\t\t\t\t\n\t\t\t\toutput = TLinkObject.substitute(dict(object=objectLibName)) +\"\\n\"\n\t\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\telse:\n\t\t\t\t#add to LIBS cmake var\n\t\t\t\toutput = TAppendPythonVariable.substitute(dict(var=\"LIBS\", appendedval=l))\n\t\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t\n\t\t\t\n#Writes the cmake runtime/lib etc. outputs\ndef WriteOutputs(f, rootDir, sections):\n\tfor s in sections:\n\t\tif \"Executable\" in s.data:\n\t\t\truntime = s.data[\"Executable\"]\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(runtime):\n\t\t\t\truntime = InsertEnvVariable(runtime)\n\t\t\telse:\n\t\t\t\truntime = runtime if runtime.startswith('/') else \"/\"+runtime\n\t\t\t\truntime = rootDir + runtime\n\t\t\toutput = TRuntimeOutput.substitute(dict(dir=runtime))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\tif \"Runtime\" in s.data:\n\t\t\truntime = s.data[\"Runtime\"]\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(runtime):\n\t\t\t\truntime = InsertEnvVariable(runtime)\n\t\t\telse:\n\t\t\t\truntime = runtime if runtime.startswith('/') else \"/\"+runtime\n\t\t\t\truntime = rootDir + runtime\n\t\t\toutput = TExecutableOutput.substitute(dict(dir=runtime))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\tif \"Libs\" in s.data:\n\t\t\tprint(\"LIBS OUTPUT BEING SET\")\n\t\t\tstatics = s.data[\"Libs\"]\n\t\t\t#insert any environment variables\n\t\t\tif ContainsEnvVariable(statics):\n\t\t\t\tstatics = InsertEnvVariable(statics)\n\t\t\telse:\n\t\t\t\tstatics = statics if statics.startswith('/') else \"/\"+statics\n\t\t\t\tstatics = rootDir + statics\n\t\t\toutput = TLibraryoutput.substitute(dict(dir=statics))\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)\n\t\t\t\n\t\t\t\n#Writes the module output section of the CmakeLists file\ndef WriteModuleOutput(f, rootDir, m):\n\tname = m.settings.data[\"Name\"]\t#name of lib/exe\n\tt = m.settings.data[\"Type\"]\t#build type (lib/exe)\n\tif \"exe\" in t:\n\t\tf.write(TExecutable.substitute(dict(project=name)))\n\t\tf.write(TTargetLinkLibs.substitute(dict(name=name)))\n\telif \"shared\" in t:\n\t\tf.write(TSharedLib.substitute(dict(project=name)))\n\t\tf.write(TTargetLinkLibs.substitute(dict(name=name)))\n\telif \"static\" in t:\n\t\tf.write(TStaticLib.substitute(dict(project=name)))\n\t\tf.write(TTargetLinkLibs.substitute(dict(name=name)))\n\telif \"object\" in t:\n\t\tf.write(TObjectLib.substitute(dict(project=name)))\n\t\tf.write(TTargetLinkLibs.substitute(dict(name=name)))\n\treturn None\n\t\n\n#writes the include for a submodule\ndef WriteSubmoduleIncludes(f, rootDir, sections):\n\tfor s in sections:\n\t\tsubmods = s.data[\":\"]\n\t\t\n\t\tfor sm in submods:\n\t\t\tsm = sm if sm.startswith('/') else \"/\"+sm\n\t\t\t\n\t\t\toutput = TSubmoduleInclude.substitute(dict(dir=rootDir+sm)) + \"\\n\"\n\t\t\tWriteToFile(f,output, s.HasCondition(), s.condition)", "step-ids": [ 8, 12, 15, 16, 18 ] }
[ 8, 12, 15, 16, 18 ]
from django.shortcuts import render from django.http import HttpResponse, HttpResponseRedirect from interface_app.models import TestTask, TestCase from interface_app.extend.task_run import run_cases import os import json from interface_app.apps import TASK_PATH, RUN_TASK_FILE """ 说明:接口任务文件,返回HTML页面 """ # 获取任务列表 def task_manage(request): testtasks = TestTask.objects.all() if request.method == "GET": return render(request, "task_manage.html", { "type": "list", "testtasks": testtasks, }) else: return HttpResponse("404") # 创建任务 def add_task(request): if request.method == "GET": return render(request, "add_task.html", { "type": "add", }) else: return HttpResponse("404") # 运行任务 def run_task(request, tid): if request.method == "GET": task_obj = TestTask.objects.get(id=tid) cases_list = task_obj.cases.split(",") cases_list.pop(-1) task_obj.status = 1 # 修改状态 task_obj.save() print(cases_list) # run_cases() #运行函数 all_cases_dict = {} for case_id in cases_list: case_obj = TestCase.objects.get(id=case_id) case_dict = { "url": case_obj.url, "method": case_obj.req_method, "type_": case_obj.req_type, "header": case_obj.req_header, "parameter": case_obj.req_parameter, "assert_": case_obj.resp_assert } all_cases_dict[case_obj.id] = case_dict print(all_cases_dict) cases_str = json.dumps(all_cases_dict) cases_data_file = TASK_PATH + "cases_data.json" print(cases_data_file) with open(cases_data_file, "w+") as f: f.write(cases_str) # 运行测试 os.system("python3 " + RUN_TASK_FILE) return HttpResponseRedirect("/interface/task_manage") else: return HttpResponse("404") # 如何去运行这些用例?--单元测试框架 + 数据驱动 # unittest + ddt
normal
{ "blob_id": "8be70543a7aa177d9ad48fb736228b1ffba5df16", "index": 6179, "step-1": "<mask token>\n\n\ndef run_task(request, tid):\n if request.method == 'GET':\n task_obj = TestTask.objects.get(id=tid)\n cases_list = task_obj.cases.split(',')\n cases_list.pop(-1)\n task_obj.status = 1\n task_obj.save()\n print(cases_list)\n all_cases_dict = {}\n for case_id in cases_list:\n case_obj = TestCase.objects.get(id=case_id)\n case_dict = {'url': case_obj.url, 'method': case_obj.req_method,\n 'type_': case_obj.req_type, 'header': case_obj.req_header,\n 'parameter': case_obj.req_parameter, 'assert_': case_obj.\n resp_assert}\n all_cases_dict[case_obj.id] = case_dict\n print(all_cases_dict)\n cases_str = json.dumps(all_cases_dict)\n cases_data_file = TASK_PATH + 'cases_data.json'\n print(cases_data_file)\n with open(cases_data_file, 'w+') as f:\n f.write(cases_str)\n os.system('python3 ' + RUN_TASK_FILE)\n return HttpResponseRedirect('/interface/task_manage')\n else:\n return HttpResponse('404')\n", "step-2": "<mask token>\n\n\ndef add_task(request):\n if request.method == 'GET':\n return render(request, 'add_task.html', {'type': 'add'})\n else:\n return HttpResponse('404')\n\n\ndef run_task(request, tid):\n if request.method == 'GET':\n task_obj = TestTask.objects.get(id=tid)\n cases_list = task_obj.cases.split(',')\n cases_list.pop(-1)\n task_obj.status = 1\n task_obj.save()\n print(cases_list)\n all_cases_dict = {}\n for case_id in cases_list:\n case_obj = TestCase.objects.get(id=case_id)\n case_dict = {'url': case_obj.url, 'method': case_obj.req_method,\n 'type_': case_obj.req_type, 'header': case_obj.req_header,\n 'parameter': case_obj.req_parameter, 'assert_': case_obj.\n resp_assert}\n all_cases_dict[case_obj.id] = case_dict\n print(all_cases_dict)\n cases_str = json.dumps(all_cases_dict)\n cases_data_file = TASK_PATH + 'cases_data.json'\n print(cases_data_file)\n with open(cases_data_file, 'w+') as f:\n f.write(cases_str)\n os.system('python3 ' + RUN_TASK_FILE)\n return HttpResponseRedirect('/interface/task_manage')\n else:\n return HttpResponse('404')\n", "step-3": "<mask token>\n\n\ndef task_manage(request):\n testtasks = TestTask.objects.all()\n if request.method == 'GET':\n return render(request, 'task_manage.html', {'type': 'list',\n 'testtasks': testtasks})\n else:\n return HttpResponse('404')\n\n\ndef add_task(request):\n if request.method == 'GET':\n return render(request, 'add_task.html', {'type': 'add'})\n else:\n return HttpResponse('404')\n\n\ndef run_task(request, tid):\n if request.method == 'GET':\n task_obj = TestTask.objects.get(id=tid)\n cases_list = task_obj.cases.split(',')\n cases_list.pop(-1)\n task_obj.status = 1\n task_obj.save()\n print(cases_list)\n all_cases_dict = {}\n for case_id in cases_list:\n case_obj = TestCase.objects.get(id=case_id)\n case_dict = {'url': case_obj.url, 'method': case_obj.req_method,\n 'type_': case_obj.req_type, 'header': case_obj.req_header,\n 'parameter': case_obj.req_parameter, 'assert_': case_obj.\n resp_assert}\n all_cases_dict[case_obj.id] = case_dict\n print(all_cases_dict)\n cases_str = json.dumps(all_cases_dict)\n cases_data_file = TASK_PATH + 'cases_data.json'\n print(cases_data_file)\n with open(cases_data_file, 'w+') as f:\n f.write(cases_str)\n os.system('python3 ' + RUN_TASK_FILE)\n return HttpResponseRedirect('/interface/task_manage')\n else:\n return HttpResponse('404')\n", "step-4": "from django.shortcuts import render\nfrom django.http import HttpResponse, HttpResponseRedirect\nfrom interface_app.models import TestTask, TestCase\nfrom interface_app.extend.task_run import run_cases\nimport os\nimport json\nfrom interface_app.apps import TASK_PATH, RUN_TASK_FILE\n<mask token>\n\n\ndef task_manage(request):\n testtasks = TestTask.objects.all()\n if request.method == 'GET':\n return render(request, 'task_manage.html', {'type': 'list',\n 'testtasks': testtasks})\n else:\n return HttpResponse('404')\n\n\ndef add_task(request):\n if request.method == 'GET':\n return render(request, 'add_task.html', {'type': 'add'})\n else:\n return HttpResponse('404')\n\n\ndef run_task(request, tid):\n if request.method == 'GET':\n task_obj = TestTask.objects.get(id=tid)\n cases_list = task_obj.cases.split(',')\n cases_list.pop(-1)\n task_obj.status = 1\n task_obj.save()\n print(cases_list)\n all_cases_dict = {}\n for case_id in cases_list:\n case_obj = TestCase.objects.get(id=case_id)\n case_dict = {'url': case_obj.url, 'method': case_obj.req_method,\n 'type_': case_obj.req_type, 'header': case_obj.req_header,\n 'parameter': case_obj.req_parameter, 'assert_': case_obj.\n resp_assert}\n all_cases_dict[case_obj.id] = case_dict\n print(all_cases_dict)\n cases_str = json.dumps(all_cases_dict)\n cases_data_file = TASK_PATH + 'cases_data.json'\n print(cases_data_file)\n with open(cases_data_file, 'w+') as f:\n f.write(cases_str)\n os.system('python3 ' + RUN_TASK_FILE)\n return HttpResponseRedirect('/interface/task_manage')\n else:\n return HttpResponse('404')\n", "step-5": "from django.shortcuts import render\nfrom django.http import HttpResponse, HttpResponseRedirect\nfrom interface_app.models import TestTask, TestCase\nfrom interface_app.extend.task_run import run_cases\nimport os \nimport json\nfrom interface_app.apps import TASK_PATH, RUN_TASK_FILE\n\n\n\"\"\"\n说明:接口任务文件,返回HTML页面\n\"\"\"\n\n# 获取任务列表\ndef task_manage(request):\n testtasks = TestTask.objects.all()\n \n if request.method == \"GET\":\n return render(request, \"task_manage.html\", {\n \"type\": \"list\",\n \"testtasks\": testtasks,\n })\n else:\n return HttpResponse(\"404\")\n\n\n# 创建任务\ndef add_task(request):\n if request.method == \"GET\":\n return render(request, \"add_task.html\", {\n \"type\": \"add\",\n })\n else:\n return HttpResponse(\"404\")\n\n\n# 运行任务\ndef run_task(request, tid):\n if request.method == \"GET\":\n task_obj = TestTask.objects.get(id=tid)\n cases_list = task_obj.cases.split(\",\")\n cases_list.pop(-1)\n\n task_obj.status = 1 # 修改状态\n task_obj.save()\n\n \n print(cases_list)\n # run_cases() #运行函数\n all_cases_dict = {}\n for case_id in cases_list:\n case_obj = TestCase.objects.get(id=case_id)\n case_dict = {\n \"url\": case_obj.url,\n \"method\": case_obj.req_method,\n \"type_\": case_obj.req_type,\n \"header\": case_obj.req_header,\n \"parameter\": case_obj.req_parameter,\n \"assert_\": case_obj.resp_assert\n } \n all_cases_dict[case_obj.id] = case_dict\n\n print(all_cases_dict)\n\n cases_str = json.dumps(all_cases_dict)\n\n cases_data_file = TASK_PATH + \"cases_data.json\"\n print(cases_data_file)\n\n with open(cases_data_file, \"w+\") as f:\n f.write(cases_str)\n\n # 运行测试\n os.system(\"python3 \" + RUN_TASK_FILE)\n \n return HttpResponseRedirect(\"/interface/task_manage\")\n else:\n return HttpResponse(\"404\")\n\n\n# 如何去运行这些用例?--单元测试框架 + 数据驱动\n\n# unittest + ddt\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import os #defaults = {"N":20, "K":3, "POP_SIZE":200, "MUT_RATE":.05, "TOURNAMENT_SIZE":2, "SELECTION":0, "CHANGE_RATE":100000, "MAX_GENS": 5000, "FILTER_LENGTH":50} defaults = {"N":20, "K":3, "POP_SIZE":200, "MUT_RATE":.05, "TOURNAMENT_SIZE":2, "SELECTION":0, "CHANGE_RATE":100000, "MAX_GENS": 5000, "FILTER_LENGTH":"POP_SIZE"} conditions = [{},{"K":10}, {"N":100, "MUT_RATE":.01}, {"MUT_RATE":.005}, {"MUT_RATE": .1}, {"POP_SIZE":20}, {"POP_SIZE":2000}, {"SELECTION":1}, {"SELECTION":1, "FILTER_LENGTH":1000}, {"CHANGE_RATE":500}, {"CHANGE_RATE":500, "CHANGE_TYPE":1}] seed = 0 for condition in conditions: print(condition) command = ["./nk_oee -MODES_RESOLUTION 10 -SEED", seed] dir_name = [] for var in defaults: if var not in condition: condition[var] = defaults[var] for var in condition: while condition[var] in condition: condition[var] = condition[condition[var]] command.append("-"+var) dir_name.append("".join(var.split("_"))) # Underscores in variable names will screw up parsing later val = str(condition[var]) command.append(val) dir_name.append(val) str_dir_name = "_".join(dir_name) if not os.path.exists(str_dir_name): os.mkdir(str_dir_name) for i in range(30): if os.path.exists(str_dir_name+"/"+str(i)+"/command.sh"): continue seed += 1 command[1] = str(seed) print(command) os.mkdir(str_dir_name+"/"+str(i)) with open(str_dir_name+"/"+str(i)+"/command.sh", "w") as infile: infile.write(" ".join(command))
normal
{ "blob_id": "a826f33361ec59824f3c4a83d01e94c6b307b0a9", "index": 9144, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor condition in conditions:\n print(condition)\n command = ['./nk_oee -MODES_RESOLUTION 10 -SEED', seed]\n dir_name = []\n for var in defaults:\n if var not in condition:\n condition[var] = defaults[var]\n for var in condition:\n while condition[var] in condition:\n condition[var] = condition[condition[var]]\n command.append('-' + var)\n dir_name.append(''.join(var.split('_')))\n val = str(condition[var])\n command.append(val)\n dir_name.append(val)\n str_dir_name = '_'.join(dir_name)\n if not os.path.exists(str_dir_name):\n os.mkdir(str_dir_name)\n for i in range(30):\n if os.path.exists(str_dir_name + '/' + str(i) + '/command.sh'):\n continue\n seed += 1\n command[1] = str(seed)\n print(command)\n os.mkdir(str_dir_name + '/' + str(i))\n with open(str_dir_name + '/' + str(i) + '/command.sh', 'w') as infile:\n infile.write(' '.join(command))\n", "step-3": "<mask token>\ndefaults = {'N': 20, 'K': 3, 'POP_SIZE': 200, 'MUT_RATE': 0.05,\n 'TOURNAMENT_SIZE': 2, 'SELECTION': 0, 'CHANGE_RATE': 100000, 'MAX_GENS':\n 5000, 'FILTER_LENGTH': 'POP_SIZE'}\nconditions = [{}, {'K': 10}, {'N': 100, 'MUT_RATE': 0.01}, {'MUT_RATE': \n 0.005}, {'MUT_RATE': 0.1}, {'POP_SIZE': 20}, {'POP_SIZE': 2000}, {\n 'SELECTION': 1}, {'SELECTION': 1, 'FILTER_LENGTH': 1000}, {\n 'CHANGE_RATE': 500}, {'CHANGE_RATE': 500, 'CHANGE_TYPE': 1}]\nseed = 0\nfor condition in conditions:\n print(condition)\n command = ['./nk_oee -MODES_RESOLUTION 10 -SEED', seed]\n dir_name = []\n for var in defaults:\n if var not in condition:\n condition[var] = defaults[var]\n for var in condition:\n while condition[var] in condition:\n condition[var] = condition[condition[var]]\n command.append('-' + var)\n dir_name.append(''.join(var.split('_')))\n val = str(condition[var])\n command.append(val)\n dir_name.append(val)\n str_dir_name = '_'.join(dir_name)\n if not os.path.exists(str_dir_name):\n os.mkdir(str_dir_name)\n for i in range(30):\n if os.path.exists(str_dir_name + '/' + str(i) + '/command.sh'):\n continue\n seed += 1\n command[1] = str(seed)\n print(command)\n os.mkdir(str_dir_name + '/' + str(i))\n with open(str_dir_name + '/' + str(i) + '/command.sh', 'w') as infile:\n infile.write(' '.join(command))\n", "step-4": "import os\ndefaults = {'N': 20, 'K': 3, 'POP_SIZE': 200, 'MUT_RATE': 0.05,\n 'TOURNAMENT_SIZE': 2, 'SELECTION': 0, 'CHANGE_RATE': 100000, 'MAX_GENS':\n 5000, 'FILTER_LENGTH': 'POP_SIZE'}\nconditions = [{}, {'K': 10}, {'N': 100, 'MUT_RATE': 0.01}, {'MUT_RATE': \n 0.005}, {'MUT_RATE': 0.1}, {'POP_SIZE': 20}, {'POP_SIZE': 2000}, {\n 'SELECTION': 1}, {'SELECTION': 1, 'FILTER_LENGTH': 1000}, {\n 'CHANGE_RATE': 500}, {'CHANGE_RATE': 500, 'CHANGE_TYPE': 1}]\nseed = 0\nfor condition in conditions:\n print(condition)\n command = ['./nk_oee -MODES_RESOLUTION 10 -SEED', seed]\n dir_name = []\n for var in defaults:\n if var not in condition:\n condition[var] = defaults[var]\n for var in condition:\n while condition[var] in condition:\n condition[var] = condition[condition[var]]\n command.append('-' + var)\n dir_name.append(''.join(var.split('_')))\n val = str(condition[var])\n command.append(val)\n dir_name.append(val)\n str_dir_name = '_'.join(dir_name)\n if not os.path.exists(str_dir_name):\n os.mkdir(str_dir_name)\n for i in range(30):\n if os.path.exists(str_dir_name + '/' + str(i) + '/command.sh'):\n continue\n seed += 1\n command[1] = str(seed)\n print(command)\n os.mkdir(str_dir_name + '/' + str(i))\n with open(str_dir_name + '/' + str(i) + '/command.sh', 'w') as infile:\n infile.write(' '.join(command))\n", "step-5": "import os\n\n\n#defaults = {\"N\":20, \"K\":3, \"POP_SIZE\":200, \"MUT_RATE\":.05, \"TOURNAMENT_SIZE\":2, \"SELECTION\":0, \"CHANGE_RATE\":100000, \"MAX_GENS\": 5000, \"FILTER_LENGTH\":50}\ndefaults = {\"N\":20, \"K\":3, \"POP_SIZE\":200, \"MUT_RATE\":.05, \"TOURNAMENT_SIZE\":2, \"SELECTION\":0, \"CHANGE_RATE\":100000, \"MAX_GENS\": 5000, \"FILTER_LENGTH\":\"POP_SIZE\"}\nconditions = [{},{\"K\":10}, {\"N\":100, \"MUT_RATE\":.01}, {\"MUT_RATE\":.005}, {\"MUT_RATE\": .1}, {\"POP_SIZE\":20}, {\"POP_SIZE\":2000}, {\"SELECTION\":1}, {\"SELECTION\":1, \"FILTER_LENGTH\":1000}, {\"CHANGE_RATE\":500}, {\"CHANGE_RATE\":500, \"CHANGE_TYPE\":1}]\n\nseed = 0\n\nfor condition in conditions:\n print(condition)\n command = [\"./nk_oee -MODES_RESOLUTION 10 -SEED\", seed]\n dir_name = []\n for var in defaults:\n if var not in condition:\n condition[var] = defaults[var]\n\n for var in condition:\n while condition[var] in condition:\n condition[var] = condition[condition[var]]\n\n command.append(\"-\"+var)\n dir_name.append(\"\".join(var.split(\"_\"))) # Underscores in variable names will screw up parsing later\n val = str(condition[var])\n command.append(val)\n dir_name.append(val)\n\n \n str_dir_name = \"_\".join(dir_name)\n if not os.path.exists(str_dir_name):\n os.mkdir(str_dir_name)\n \n for i in range(30):\n if os.path.exists(str_dir_name+\"/\"+str(i)+\"/command.sh\"):\n continue\n seed += 1\n command[1] = str(seed)\n print(command)\n os.mkdir(str_dir_name+\"/\"+str(i))\n with open(str_dir_name+\"/\"+str(i)+\"/command.sh\", \"w\") as infile:\n infile.write(\" \".join(command))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
a = 1 b = a print(a) print(b) a = 2 print(a) print(b) # 全部大写字符代表常量 USER_NAME = "常量" print(USER_NAME) print(USER_NAME)
normal
{ "blob_id": "1cc9a7bbe1bda06ce76fa8ec1cdc17c7b2fde73b", "index": 4051, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(a)\nprint(b)\n<mask token>\nprint(a)\nprint(b)\n<mask token>\nprint(USER_NAME)\nprint(USER_NAME)\n", "step-3": "a = 1\nb = a\nprint(a)\nprint(b)\na = 2\nprint(a)\nprint(b)\nUSER_NAME = '常量'\nprint(USER_NAME)\nprint(USER_NAME)\n", "step-4": "\na = 1\nb = a\nprint(a)\nprint(b)\n\na = 2\nprint(a)\nprint(b)\n\n# 全部大写字符代表常量\n\nUSER_NAME = \"常量\"\nprint(USER_NAME)\n\nprint(USER_NAME)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import pickle import select import socket import sys from threading import Thread from typing import Dict, Tuple import pygame from pygame.locals import * import c from models import * class Game: location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2] velocity: list[int, int] = [0, 0] current_player: Player = None other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {} connection: socket.socket font: pygame.font.Font def __init__(self): pygame.init() self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.screen = pygame.display.set_mode((c.WIDTH, c.HEIGHT)) pygame.display.set_caption('Socket Game') self.clock = pygame.time.Clock() self.screen.fill('white') self.font = pygame.font.SysFont(None, c.FONT_SIZE) def start(self): self.connect_to_server() while True: self.game_loop() def connect_to_server(self): self.connection.connect((c.HOST, c.PORT)) def listen_to_server(self): ins, outs, ex = select.select([self.connection], [], [], 0) for inm in ins: received_data = inm.recv(c.BUFFSIZE) event: Event = pickle.loads(received_data) print("<<<", event) if isinstance(event, CurrentPlayerEvent): pygame.display.set_caption(f'Socket Game - {event.player.nickname}') self.current_player = event.player elif isinstance(event, PlayerDidMoveEvent): self.update_player(event.player, event.location) elif isinstance(event, PlayerJoinedEvent): self.update_player(event.player) def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT / 2)): self.other_players[player.nickname] = (player, location) def update_server(self): if self.current_player is not None: self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.current_player, ( self.location[0], self.location[1], )))) def game_loop(self): self.listen_to_server() self.event_handling() self.update_location() self.render() self.update_server() self.clock.tick(60) def update_location(self): oldx, oldy = self.location vx, vy = self.velocity newx, newy = oldx + vx, oldy + vy if newx > c.WIDTH - c.PLAYER_SIZE: newx = c.WIDTH - c.PLAYER_SIZE if newx < 0: newx = 0 if newy > c.HEIGHT - c.PLAYER_SIZE: newy = c.HEIGHT - c.PLAYER_SIZE if newy < 0: newy = 0 self.location = [newx, newy] def render_player(self, player: Player, location: Tuple[int, int]): x, y = location img = self.font.render(player.nickname, True, player.color) pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c.PLAYER_SIZE)) self.screen.blit(img, (x, y - img.get_height())) def render(self): self.screen.fill((255, 255, 255)) if self.current_player is not None: self.render_player(self.current_player, (self.location[0], self.location[1])) for nickname, (player, location) in self.other_players.items(): self.render_player(player, location) pygame.display.flip() def event_handling(self): for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == KEYDOWN: if event.key == K_LEFT: self.velocity[0] = -c.MOVEMENT_SPEED if event.key == K_RIGHT: self.velocity[0] = c.MOVEMENT_SPEED if event.key == K_UP: self.velocity[1] = -c.MOVEMENT_SPEED if event.key == K_DOWN: self.velocity[1] = c.MOVEMENT_SPEED if event.type == KEYUP: if event.key == K_LEFT: self.velocity[0] = 0 if event.key == K_RIGHT: self.velocity[0] = 0 if event.key == K_UP: self.velocity[1] = 0 if event.key == K_DOWN: self.velocity[1] = 0 if __name__ == "__main__": s = Game() s.start()
normal
{ "blob_id": "418798369578e80ecbf82da802b23dc6ca922569", "index": 7107, "step-1": "<mask token>\n\n\nclass Game:\n location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2]\n velocity: list[int, int] = [0, 0]\n current_player: Player = None\n other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {}\n connection: socket.socket\n font: pygame.font.Font\n <mask token>\n <mask token>\n\n def connect_to_server(self):\n self.connection.connect((c.HOST, c.PORT))\n\n def listen_to_server(self):\n ins, outs, ex = select.select([self.connection], [], [], 0)\n for inm in ins:\n received_data = inm.recv(c.BUFFSIZE)\n event: Event = pickle.loads(received_data)\n print('<<<', event)\n if isinstance(event, CurrentPlayerEvent):\n pygame.display.set_caption(\n f'Socket Game - {event.player.nickname}')\n self.current_player = event.player\n elif isinstance(event, PlayerDidMoveEvent):\n self.update_player(event.player, event.location)\n elif isinstance(event, PlayerJoinedEvent):\n self.update_player(event.player)\n\n def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT /\n 2)):\n self.other_players[player.nickname] = player, location\n\n def update_server(self):\n if self.current_player is not None:\n self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.\n current_player, (self.location[0], self.location[1]))))\n\n def game_loop(self):\n self.listen_to_server()\n self.event_handling()\n self.update_location()\n self.render()\n self.update_server()\n self.clock.tick(60)\n\n def update_location(self):\n oldx, oldy = self.location\n vx, vy = self.velocity\n newx, newy = oldx + vx, oldy + vy\n if newx > c.WIDTH - c.PLAYER_SIZE:\n newx = c.WIDTH - c.PLAYER_SIZE\n if newx < 0:\n newx = 0\n if newy > c.HEIGHT - c.PLAYER_SIZE:\n newy = c.HEIGHT - c.PLAYER_SIZE\n if newy < 0:\n newy = 0\n self.location = [newx, newy]\n\n def render_player(self, player: Player, location: Tuple[int, int]):\n x, y = location\n img = self.font.render(player.nickname, True, player.color)\n pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c\n .PLAYER_SIZE))\n self.screen.blit(img, (x, y - img.get_height()))\n\n def render(self):\n self.screen.fill((255, 255, 255))\n if self.current_player is not None:\n self.render_player(self.current_player, (self.location[0], self\n .location[1]))\n for nickname, (player, location) in self.other_players.items():\n self.render_player(player, location)\n pygame.display.flip()\n\n def event_handling(self):\n for event in pygame.event.get():\n if event.type == QUIT:\n pygame.quit()\n sys.exit()\n if event.type == KEYDOWN:\n if event.key == K_LEFT:\n self.velocity[0] = -c.MOVEMENT_SPEED\n if event.key == K_RIGHT:\n self.velocity[0] = c.MOVEMENT_SPEED\n if event.key == K_UP:\n self.velocity[1] = -c.MOVEMENT_SPEED\n if event.key == K_DOWN:\n self.velocity[1] = c.MOVEMENT_SPEED\n if event.type == KEYUP:\n if event.key == K_LEFT:\n self.velocity[0] = 0\n if event.key == K_RIGHT:\n self.velocity[0] = 0\n if event.key == K_UP:\n self.velocity[1] = 0\n if event.key == K_DOWN:\n self.velocity[1] = 0\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Game:\n location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2]\n velocity: list[int, int] = [0, 0]\n current_player: Player = None\n other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {}\n connection: socket.socket\n font: pygame.font.Font\n\n def __init__(self):\n pygame.init()\n self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n self.screen = pygame.display.set_mode((c.WIDTH, c.HEIGHT))\n pygame.display.set_caption('Socket Game')\n self.clock = pygame.time.Clock()\n self.screen.fill('white')\n self.font = pygame.font.SysFont(None, c.FONT_SIZE)\n <mask token>\n\n def connect_to_server(self):\n self.connection.connect((c.HOST, c.PORT))\n\n def listen_to_server(self):\n ins, outs, ex = select.select([self.connection], [], [], 0)\n for inm in ins:\n received_data = inm.recv(c.BUFFSIZE)\n event: Event = pickle.loads(received_data)\n print('<<<', event)\n if isinstance(event, CurrentPlayerEvent):\n pygame.display.set_caption(\n f'Socket Game - {event.player.nickname}')\n self.current_player = event.player\n elif isinstance(event, PlayerDidMoveEvent):\n self.update_player(event.player, event.location)\n elif isinstance(event, PlayerJoinedEvent):\n self.update_player(event.player)\n\n def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT /\n 2)):\n self.other_players[player.nickname] = player, location\n\n def update_server(self):\n if self.current_player is not None:\n self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.\n current_player, (self.location[0], self.location[1]))))\n\n def game_loop(self):\n self.listen_to_server()\n self.event_handling()\n self.update_location()\n self.render()\n self.update_server()\n self.clock.tick(60)\n\n def update_location(self):\n oldx, oldy = self.location\n vx, vy = self.velocity\n newx, newy = oldx + vx, oldy + vy\n if newx > c.WIDTH - c.PLAYER_SIZE:\n newx = c.WIDTH - c.PLAYER_SIZE\n if newx < 0:\n newx = 0\n if newy > c.HEIGHT - c.PLAYER_SIZE:\n newy = c.HEIGHT - c.PLAYER_SIZE\n if newy < 0:\n newy = 0\n self.location = [newx, newy]\n\n def render_player(self, player: Player, location: Tuple[int, int]):\n x, y = location\n img = self.font.render(player.nickname, True, player.color)\n pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c\n .PLAYER_SIZE))\n self.screen.blit(img, (x, y - img.get_height()))\n\n def render(self):\n self.screen.fill((255, 255, 255))\n if self.current_player is not None:\n self.render_player(self.current_player, (self.location[0], self\n .location[1]))\n for nickname, (player, location) in self.other_players.items():\n self.render_player(player, location)\n pygame.display.flip()\n\n def event_handling(self):\n for event in pygame.event.get():\n if event.type == QUIT:\n pygame.quit()\n sys.exit()\n if event.type == KEYDOWN:\n if event.key == K_LEFT:\n self.velocity[0] = -c.MOVEMENT_SPEED\n if event.key == K_RIGHT:\n self.velocity[0] = c.MOVEMENT_SPEED\n if event.key == K_UP:\n self.velocity[1] = -c.MOVEMENT_SPEED\n if event.key == K_DOWN:\n self.velocity[1] = c.MOVEMENT_SPEED\n if event.type == KEYUP:\n if event.key == K_LEFT:\n self.velocity[0] = 0\n if event.key == K_RIGHT:\n self.velocity[0] = 0\n if event.key == K_UP:\n self.velocity[1] = 0\n if event.key == K_DOWN:\n self.velocity[1] = 0\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass Game:\n location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2]\n velocity: list[int, int] = [0, 0]\n current_player: Player = None\n other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {}\n connection: socket.socket\n font: pygame.font.Font\n\n def __init__(self):\n pygame.init()\n self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n self.screen = pygame.display.set_mode((c.WIDTH, c.HEIGHT))\n pygame.display.set_caption('Socket Game')\n self.clock = pygame.time.Clock()\n self.screen.fill('white')\n self.font = pygame.font.SysFont(None, c.FONT_SIZE)\n\n def start(self):\n self.connect_to_server()\n while True:\n self.game_loop()\n\n def connect_to_server(self):\n self.connection.connect((c.HOST, c.PORT))\n\n def listen_to_server(self):\n ins, outs, ex = select.select([self.connection], [], [], 0)\n for inm in ins:\n received_data = inm.recv(c.BUFFSIZE)\n event: Event = pickle.loads(received_data)\n print('<<<', event)\n if isinstance(event, CurrentPlayerEvent):\n pygame.display.set_caption(\n f'Socket Game - {event.player.nickname}')\n self.current_player = event.player\n elif isinstance(event, PlayerDidMoveEvent):\n self.update_player(event.player, event.location)\n elif isinstance(event, PlayerJoinedEvent):\n self.update_player(event.player)\n\n def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT /\n 2)):\n self.other_players[player.nickname] = player, location\n\n def update_server(self):\n if self.current_player is not None:\n self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.\n current_player, (self.location[0], self.location[1]))))\n\n def game_loop(self):\n self.listen_to_server()\n self.event_handling()\n self.update_location()\n self.render()\n self.update_server()\n self.clock.tick(60)\n\n def update_location(self):\n oldx, oldy = self.location\n vx, vy = self.velocity\n newx, newy = oldx + vx, oldy + vy\n if newx > c.WIDTH - c.PLAYER_SIZE:\n newx = c.WIDTH - c.PLAYER_SIZE\n if newx < 0:\n newx = 0\n if newy > c.HEIGHT - c.PLAYER_SIZE:\n newy = c.HEIGHT - c.PLAYER_SIZE\n if newy < 0:\n newy = 0\n self.location = [newx, newy]\n\n def render_player(self, player: Player, location: Tuple[int, int]):\n x, y = location\n img = self.font.render(player.nickname, True, player.color)\n pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c\n .PLAYER_SIZE))\n self.screen.blit(img, (x, y - img.get_height()))\n\n def render(self):\n self.screen.fill((255, 255, 255))\n if self.current_player is not None:\n self.render_player(self.current_player, (self.location[0], self\n .location[1]))\n for nickname, (player, location) in self.other_players.items():\n self.render_player(player, location)\n pygame.display.flip()\n\n def event_handling(self):\n for event in pygame.event.get():\n if event.type == QUIT:\n pygame.quit()\n sys.exit()\n if event.type == KEYDOWN:\n if event.key == K_LEFT:\n self.velocity[0] = -c.MOVEMENT_SPEED\n if event.key == K_RIGHT:\n self.velocity[0] = c.MOVEMENT_SPEED\n if event.key == K_UP:\n self.velocity[1] = -c.MOVEMENT_SPEED\n if event.key == K_DOWN:\n self.velocity[1] = c.MOVEMENT_SPEED\n if event.type == KEYUP:\n if event.key == K_LEFT:\n self.velocity[0] = 0\n if event.key == K_RIGHT:\n self.velocity[0] = 0\n if event.key == K_UP:\n self.velocity[1] = 0\n if event.key == K_DOWN:\n self.velocity[1] = 0\n\n\n<mask token>\n", "step-4": "import pickle\nimport select\nimport socket\nimport sys\nfrom threading import Thread\nfrom typing import Dict, Tuple\nimport pygame\nfrom pygame.locals import *\nimport c\nfrom models import *\n\n\nclass Game:\n location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2]\n velocity: list[int, int] = [0, 0]\n current_player: Player = None\n other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {}\n connection: socket.socket\n font: pygame.font.Font\n\n def __init__(self):\n pygame.init()\n self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n self.screen = pygame.display.set_mode((c.WIDTH, c.HEIGHT))\n pygame.display.set_caption('Socket Game')\n self.clock = pygame.time.Clock()\n self.screen.fill('white')\n self.font = pygame.font.SysFont(None, c.FONT_SIZE)\n\n def start(self):\n self.connect_to_server()\n while True:\n self.game_loop()\n\n def connect_to_server(self):\n self.connection.connect((c.HOST, c.PORT))\n\n def listen_to_server(self):\n ins, outs, ex = select.select([self.connection], [], [], 0)\n for inm in ins:\n received_data = inm.recv(c.BUFFSIZE)\n event: Event = pickle.loads(received_data)\n print('<<<', event)\n if isinstance(event, CurrentPlayerEvent):\n pygame.display.set_caption(\n f'Socket Game - {event.player.nickname}')\n self.current_player = event.player\n elif isinstance(event, PlayerDidMoveEvent):\n self.update_player(event.player, event.location)\n elif isinstance(event, PlayerJoinedEvent):\n self.update_player(event.player)\n\n def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT /\n 2)):\n self.other_players[player.nickname] = player, location\n\n def update_server(self):\n if self.current_player is not None:\n self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.\n current_player, (self.location[0], self.location[1]))))\n\n def game_loop(self):\n self.listen_to_server()\n self.event_handling()\n self.update_location()\n self.render()\n self.update_server()\n self.clock.tick(60)\n\n def update_location(self):\n oldx, oldy = self.location\n vx, vy = self.velocity\n newx, newy = oldx + vx, oldy + vy\n if newx > c.WIDTH - c.PLAYER_SIZE:\n newx = c.WIDTH - c.PLAYER_SIZE\n if newx < 0:\n newx = 0\n if newy > c.HEIGHT - c.PLAYER_SIZE:\n newy = c.HEIGHT - c.PLAYER_SIZE\n if newy < 0:\n newy = 0\n self.location = [newx, newy]\n\n def render_player(self, player: Player, location: Tuple[int, int]):\n x, y = location\n img = self.font.render(player.nickname, True, player.color)\n pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c\n .PLAYER_SIZE))\n self.screen.blit(img, (x, y - img.get_height()))\n\n def render(self):\n self.screen.fill((255, 255, 255))\n if self.current_player is not None:\n self.render_player(self.current_player, (self.location[0], self\n .location[1]))\n for nickname, (player, location) in self.other_players.items():\n self.render_player(player, location)\n pygame.display.flip()\n\n def event_handling(self):\n for event in pygame.event.get():\n if event.type == QUIT:\n pygame.quit()\n sys.exit()\n if event.type == KEYDOWN:\n if event.key == K_LEFT:\n self.velocity[0] = -c.MOVEMENT_SPEED\n if event.key == K_RIGHT:\n self.velocity[0] = c.MOVEMENT_SPEED\n if event.key == K_UP:\n self.velocity[1] = -c.MOVEMENT_SPEED\n if event.key == K_DOWN:\n self.velocity[1] = c.MOVEMENT_SPEED\n if event.type == KEYUP:\n if event.key == K_LEFT:\n self.velocity[0] = 0\n if event.key == K_RIGHT:\n self.velocity[0] = 0\n if event.key == K_UP:\n self.velocity[1] = 0\n if event.key == K_DOWN:\n self.velocity[1] = 0\n\n\nif __name__ == '__main__':\n s = Game()\n s.start()\n", "step-5": "import pickle\nimport select\nimport socket\nimport sys\nfrom threading import Thread\nfrom typing import Dict, Tuple\n\nimport pygame\nfrom pygame.locals import *\n\nimport c\nfrom models import *\n\n\nclass Game:\n location: list[int, int] = [c.WIDTH / 2, c.HEIGHT / 2]\n velocity: list[int, int] = [0, 0]\n current_player: Player = None\n other_players: Dict[str, Tuple[Player, Tuple[int, int]]] = {}\n connection: socket.socket\n font: pygame.font.Font\n\n def __init__(self):\n pygame.init()\n self.connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n self.screen = pygame.display.set_mode((c.WIDTH, c.HEIGHT))\n pygame.display.set_caption('Socket Game')\n self.clock = pygame.time.Clock()\n self.screen.fill('white')\n self.font = pygame.font.SysFont(None, c.FONT_SIZE)\n\n def start(self):\n self.connect_to_server()\n while True:\n self.game_loop()\n\n def connect_to_server(self):\n self.connection.connect((c.HOST, c.PORT))\n\n def listen_to_server(self):\n ins, outs, ex = select.select([self.connection], [], [], 0)\n for inm in ins:\n received_data = inm.recv(c.BUFFSIZE)\n event: Event = pickle.loads(received_data)\n print(\"<<<\", event)\n if isinstance(event, CurrentPlayerEvent):\n pygame.display.set_caption(f'Socket Game - {event.player.nickname}')\n self.current_player = event.player\n elif isinstance(event, PlayerDidMoveEvent):\n self.update_player(event.player, event.location)\n elif isinstance(event, PlayerJoinedEvent):\n self.update_player(event.player)\n\n def update_player(self, player: Player, location=(c.WIDTH / 2, c.HEIGHT / 2)):\n self.other_players[player.nickname] = (player, location)\n\n def update_server(self):\n if self.current_player is not None:\n self.connection.send(pickle.dumps(PlayerDidMoveEvent(self.current_player, (\n self.location[0], self.location[1],\n ))))\n\n def game_loop(self):\n self.listen_to_server()\n self.event_handling()\n self.update_location()\n self.render()\n self.update_server()\n self.clock.tick(60)\n\n def update_location(self):\n oldx, oldy = self.location\n vx, vy = self.velocity\n newx, newy = oldx + vx, oldy + vy\n if newx > c.WIDTH - c.PLAYER_SIZE:\n newx = c.WIDTH - c.PLAYER_SIZE\n if newx < 0:\n newx = 0\n\n if newy > c.HEIGHT - c.PLAYER_SIZE:\n newy = c.HEIGHT - c.PLAYER_SIZE\n if newy < 0:\n newy = 0\n\n self.location = [newx, newy]\n\n def render_player(self, player: Player, location: Tuple[int, int]):\n x, y = location\n img = self.font.render(player.nickname, True, player.color)\n pygame.draw.rect(self.screen, player.color, (x, y, c.PLAYER_SIZE, c.PLAYER_SIZE))\n self.screen.blit(img, (x, y - img.get_height()))\n\n def render(self):\n self.screen.fill((255, 255, 255))\n if self.current_player is not None:\n self.render_player(self.current_player, (self.location[0], self.location[1]))\n for nickname, (player, location) in self.other_players.items():\n self.render_player(player, location)\n\n pygame.display.flip()\n\n def event_handling(self):\n for event in pygame.event.get():\n if event.type == QUIT:\n pygame.quit()\n sys.exit()\n if event.type == KEYDOWN:\n if event.key == K_LEFT: self.velocity[0] = -c.MOVEMENT_SPEED\n if event.key == K_RIGHT: self.velocity[0] = c.MOVEMENT_SPEED\n if event.key == K_UP: self.velocity[1] = -c.MOVEMENT_SPEED\n if event.key == K_DOWN: self.velocity[1] = c.MOVEMENT_SPEED\n if event.type == KEYUP:\n if event.key == K_LEFT: self.velocity[0] = 0\n if event.key == K_RIGHT: self.velocity[0] = 0\n if event.key == K_UP: self.velocity[1] = 0\n if event.key == K_DOWN: self.velocity[1] = 0\n\n\nif __name__ == \"__main__\":\n s = Game()\n s.start()\n", "step-ids": [ 10, 11, 12, 14, 15 ] }
[ 10, 11, 12, 14, 15 ]
# vim:sw=4 ts=4 et: # Copyright (c) 2015 Torchbox Ltd. # [email protected] 2017-12-07 # # Permission is granted to anyone to use this software for any purpose, # including commercial applications, and to alter it and redistribute it # freely. This software is provided 'as-is', without any express or implied # warranty. # from django import forms from .utils import render_markdown from .widgets import MarkdownTextarea try: from wagtail.core.blocks import TextBlock except ImportError: from wagtail.wagtailcore.blocks import TextBlock class MarkdownBlock(TextBlock): def __init__(self, required=True, help_text=None, **kwargs): self.field = forms.CharField( required=required, help_text=help_text, widget=MarkdownTextarea() ) super(MarkdownBlock, self).__init__(**kwargs) def render_basic(self, value, context=None): return render_markdown(value, context)
normal
{ "blob_id": "6f271e6cfb03977d52c50562c3c394b962c9af83", "index": 7538, "step-1": "<mask token>\n\n\nclass MarkdownBlock(TextBlock):\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass MarkdownBlock(TextBlock):\n\n def __init__(self, required=True, help_text=None, **kwargs):\n self.field = forms.CharField(required=required, help_text=help_text,\n widget=MarkdownTextarea())\n super(MarkdownBlock, self).__init__(**kwargs)\n\n def render_basic(self, value, context=None):\n return render_markdown(value, context)\n", "step-3": "<mask token>\ntry:\n from wagtail.core.blocks import TextBlock\nexcept ImportError:\n from wagtail.wagtailcore.blocks import TextBlock\n\n\nclass MarkdownBlock(TextBlock):\n\n def __init__(self, required=True, help_text=None, **kwargs):\n self.field = forms.CharField(required=required, help_text=help_text,\n widget=MarkdownTextarea())\n super(MarkdownBlock, self).__init__(**kwargs)\n\n def render_basic(self, value, context=None):\n return render_markdown(value, context)\n", "step-4": "from django import forms\nfrom .utils import render_markdown\nfrom .widgets import MarkdownTextarea\ntry:\n from wagtail.core.blocks import TextBlock\nexcept ImportError:\n from wagtail.wagtailcore.blocks import TextBlock\n\n\nclass MarkdownBlock(TextBlock):\n\n def __init__(self, required=True, help_text=None, **kwargs):\n self.field = forms.CharField(required=required, help_text=help_text,\n widget=MarkdownTextarea())\n super(MarkdownBlock, self).__init__(**kwargs)\n\n def render_basic(self, value, context=None):\n return render_markdown(value, context)\n", "step-5": "# vim:sw=4 ts=4 et:\n# Copyright (c) 2015 Torchbox Ltd.\n# [email protected] 2017-12-07\n#\n# Permission is granted to anyone to use this software for any purpose,\n# including commercial applications, and to alter it and redistribute it\n# freely. This software is provided 'as-is', without any express or implied\n# warranty.\n#\nfrom django import forms\n\nfrom .utils import render_markdown\nfrom .widgets import MarkdownTextarea\n\ntry:\n from wagtail.core.blocks import TextBlock\nexcept ImportError:\n from wagtail.wagtailcore.blocks import TextBlock\n\n\nclass MarkdownBlock(TextBlock):\n def __init__(self, required=True, help_text=None, **kwargs):\n self.field = forms.CharField(\n required=required, help_text=help_text, widget=MarkdownTextarea()\n )\n super(MarkdownBlock, self).__init__(**kwargs)\n\n def render_basic(self, value, context=None):\n return render_markdown(value, context)\n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
from Adafruit_LSM9DS0 import Adafruit_LSM9DS0 import math imu = Adafruit_LSM9DS0() pi = 3.14159265358979323846 # Written here to increase performance/ speed r2d = 57.2957795 # 1 radian in degrees loop = 0.05 # tuning = 0.98 # Constant for tuning Complimentary filter # Converting accelerometer readings to degrees ax = #x ay = #y az = #z xAngle = math.atan( ax / ( math.sqrt( ay**2 + az**2 ))) yAngle = math.atan( ay / ( math.sqrt( ax**2 + az**2 ))) zAngle = math.atan( sqrt( ax**2 + ay**2 ) / az)
normal
{ "blob_id": "973a58013160cbc71ca46f570bde61eaff87f6a7", "index": 7489, "step-1": "from Adafruit_LSM9DS0 import Adafruit_LSM9DS0\nimport math\n\nimu = Adafruit_LSM9DS0()\n\npi = 3.14159265358979323846 # Written here to increase performance/ speed\nr2d = 57.2957795 # 1 radian in degrees\nloop = 0.05 #\ntuning = 0.98 # Constant for tuning Complimentary filter\n\n# Converting accelerometer readings to degrees\nax = #x\nay = #y\naz = #z\n\n xAngle = math.atan( ax / ( math.sqrt( ay**2 + az**2 )))\n yAngle = math.atan( ay / ( math.sqrt( ax**2 + az**2 )))\n zAngle = math.atan( sqrt( ax**2 + ay**2 ) / az)\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python # Copyright 2013 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import subprocess import sys import os def main(): parser = argparse.ArgumentParser( description='Create the symbol specifying the location of test fixtures.') parser.add_argument('--fixtures_location_file', type=str, required=True) parser.add_argument('--fixtures_location', type=str, required=True) args = parser.parse_args() with open(args.fixtures_location_file, 'w') as file: file.write('namespace flutter {namespace testing {const char* GetFixturesPath() {return "%s";}}}' % args.fixtures_location) if __name__ == '__main__': sys.exit(main())
normal
{ "blob_id": "d5c6582547df540ffc9c73d10a3405ec97487bba", "index": 4513, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Create the symbol specifying the location of test fixtures.')\n parser.add_argument('--fixtures_location_file', type=str, required=True)\n parser.add_argument('--fixtures_location', type=str, required=True)\n args = parser.parse_args()\n with open(args.fixtures_location_file, 'w') as file:\n file.write(\n 'namespace flutter {namespace testing {const char* GetFixturesPath() {return \"%s\";}}}'\n % args.fixtures_location)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Create the symbol specifying the location of test fixtures.')\n parser.add_argument('--fixtures_location_file', type=str, required=True)\n parser.add_argument('--fixtures_location', type=str, required=True)\n args = parser.parse_args()\n with open(args.fixtures_location_file, 'w') as file:\n file.write(\n 'namespace flutter {namespace testing {const char* GetFixturesPath() {return \"%s\";}}}'\n % args.fixtures_location)\n\n\nif __name__ == '__main__':\n sys.exit(main())\n", "step-4": "import argparse\nimport subprocess\nimport sys\nimport os\n\n\ndef main():\n parser = argparse.ArgumentParser(description=\n 'Create the symbol specifying the location of test fixtures.')\n parser.add_argument('--fixtures_location_file', type=str, required=True)\n parser.add_argument('--fixtures_location', type=str, required=True)\n args = parser.parse_args()\n with open(args.fixtures_location_file, 'w') as file:\n file.write(\n 'namespace flutter {namespace testing {const char* GetFixturesPath() {return \"%s\";}}}'\n % args.fixtures_location)\n\n\nif __name__ == '__main__':\n sys.exit(main())\n", "step-5": "#!/usr/bin/env python\n# Copyright 2013 The Flutter Authors. All rights reserved.\n# Use of this source code is governed by a BSD-style license that can be\n# found in the LICENSE file.\n\nimport argparse\nimport subprocess\nimport sys\nimport os\n\n\ndef main():\n parser = argparse.ArgumentParser(\n description='Create the symbol specifying the location of test fixtures.')\n\n parser.add_argument('--fixtures_location_file', type=str, required=True)\n parser.add_argument('--fixtures_location', type=str, required=True)\n\n args = parser.parse_args()\n\n with open(args.fixtures_location_file, 'w') as file:\n file.write('namespace flutter {namespace testing {const char* GetFixturesPath() {return \"%s\";}}}'\n % args.fixtures_location)\n\n\nif __name__ == '__main__':\n sys.exit(main())\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.http import HttpResponse from django.shortcuts import render_to_response from django.template import Context from books.models import book,Author def index(request): book_list=book.objects.all() c=Context({"book_list":book_list}) return render_to_response("index.html",c)
normal
{ "blob_id": "441d224c37e0eae531c17db0e903b3344c570516", "index": 9867, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef index(request):\n book_list = book.objects.all()\n c = Context({'book_list': book_list})\n return render_to_response('index.html', c)\n", "step-3": "from django.http import HttpResponse\nfrom django.shortcuts import render_to_response\nfrom django.template import Context\nfrom books.models import book, Author\n\n\ndef index(request):\n book_list = book.objects.all()\n c = Context({'book_list': book_list})\n return render_to_response('index.html', c)\n", "step-4": "from django.http import HttpResponse\nfrom django.shortcuts import render_to_response\nfrom django.template import Context\nfrom books.models import book,Author\ndef index(request):\n book_list=book.objects.all()\n c=Context({\"book_list\":book_list})\n return render_to_response(\"index.html\",c)\n\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# pylint: disable=W0621,C0114,C0116,W0212,W0613 import io import textwrap from typing import cast, Any, Dict import toml import pytest from dae.testing import convert_to_tab_separated from dae.configuration.gpf_config_parser import GPFConfigParser from dae.configuration.schemas.person_sets import person_set_collections_schema from dae.pedigrees.loader import FamiliesLoader from dae.person_sets import PersonSetCollection from impala_storage.schema1.impala_variants import ImpalaVariants @pytest.fixture def families_fixture(): ped_content = io.StringIO(convert_to_tab_separated( """ familyId personId dadId momId sex status role f1 mom1 0 0 2 1 mom f1 dad1 0 0 1 1 dad f1 prb1 dad1 mom1 1 2 prb f1 sib1 dad1 mom1 2 2 sib f1 sib2 dad1 mom1 2 2 sib f2 grmom2 0 0 2 0 maternal_grandmother f2 grdad2 0 0 1 0 maternal_grandfather f2 mom2 grdad2 grmom2 2 1 mom f2 dad2 0 0 1 1 dad f2 prb2 dad2 mom2 1 2 prb f2 sib2_3 dad2 mom2 2 2 sib """)) families = FamiliesLoader(ped_content).load() assert families is not None return families def get_person_set_collections_config(content: str): return GPFConfigParser.process_config( cast(Dict[str, Any], toml.loads(content)), {"person_set_collections": person_set_collections_schema}, ).person_set_collections @pytest.fixture def status_collection(families_fixture): content = textwrap.dedent( """ [person_set_collections] selected_person_set_collections = ["status"] status.id = "status" status.name = "Affected Status" status.sources = [{ from = "pedigree", source = "status" }] status.domain = [ { id = "affected", name = "Affected", values = ["affected"], color = "#aabbcc" }, { id = "unaffected", name = "Unaffected", values = ["unaffected"], color = "#ffffff" }, ] status.default = {id = "unknown",name = "Unknown",color = "#aaaaaa"} """) config = get_person_set_collections_config(content) collection = PersonSetCollection.from_families( config.status, families_fixture) return collection def test_status_person_set_collection(status_collection): assert status_collection is not None psc = status_collection assert len(psc.person_sets) == 3 assert len(psc.person_sets["unknown"].persons) == 2 assert len(psc.person_sets["affected"].persons) == 5 assert len(psc.person_sets["unaffected"].persons) == 4 def test_status_person_set_collection_all_selected( status_collection): query = ImpalaVariants.build_person_set_collection_query( status_collection, ("status", {"affected", "unaffected", "unknown"}) ) assert query == () def test_status_person_set_collection_some_selected_no_default( status_collection): query = ImpalaVariants.build_person_set_collection_query( status_collection, ("status", {"affected"}) ) assert query == ([{"status": "affected"}], []) def test_status_person_set_collection_some_selected_and_default( status_collection): query = ImpalaVariants.build_person_set_collection_query( status_collection, ("status", {"affected", "unknown"}) ) assert query == ([], [{"status": "unaffected"}]) @pytest.fixture def status_sex_collection(families_fixture): config = get_person_set_collections_config(textwrap.dedent(""" [person_set_collections] selected_person_set_collections = ["status_sex"] status_sex.id = "status_sex" status_sex.name = "Affected Status and Sex" status_sex.sources = [ { from = "pedigree", source = "status" }, { from = "pedigree", source = "sex" }, ] status_sex.domain = [ { id = "affected_male", name = "Affected Male", values = ["affected", "M"], color = "#ffffff" }, { id = "affected_female", name = "Affected Female", values = ["affected", "F"], color = "#ffffff" }, { id = "unaffected_male", name = "Unaffected Male", values = ["unaffected", "M"], color = "#ffffff" }, { id = "unaffected_female", name = "Unaffected Female", values = ["unaffected", "F"], color = "#ffffff" }, ] status_sex.default = { id="other", name="Other", color="#aaaaaa"} """)) return PersonSetCollection.from_families( config.status_sex, families_fixture ) def test_status_sex_person_set_collection_all_selected( status_sex_collection): query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "affected_male", "affected_female", "unaffected_male", "unaffected_female", "other"}) ) assert query == () def test_status_sex_person_set_collection_some_selected_no_default( status_sex_collection): query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "affected_male", "affected_female"}) ) assert query == ( [ {"sex": "F", "status": "affected"}, {"sex": "M", "status": "affected"}, ], []) query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "unaffected_male", "unaffected_female"}) ) assert query == ( [ {"sex": "F", "status": "unaffected"}, {"sex": "M", "status": "unaffected"} ], []) query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "affected_male", "unaffected_female"}) ) assert query == ([ {"sex": "M", "status": "affected"}, {"sex": "F", "status": "unaffected"}, ], []) def test_status_sex_person_set_collection_some_selected_with_default( status_sex_collection): query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "affected_male", "affected_female", "other"}) ) assert query == ([], [ {"sex": "F", "status": "unaffected"}, {"sex": "M", "status": "unaffected"}, ]) query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "unaffected_male", "unaffected_female", "other"})) assert query == ([], [ {"sex": "F", "status": "affected"}, {"sex": "M", "status": "affected"}, ]) query = ImpalaVariants.build_person_set_collection_query( status_sex_collection, ("status_sex", { "affected_male", "unaffected_female", "other"}) ) assert query == ([], [ {"sex": "F", "status": "affected"}, {"sex": "M", "status": "unaffected"}, ])
normal
{ "blob_id": "6c8f690e1b43d459535238e24cccc8aa118e2d57", "index": 3038, "step-1": "<mask token>\n\n\[email protected]\ndef families_fixture():\n ped_content = io.StringIO(convert_to_tab_separated(\n \"\"\"\n familyId personId dadId\t momId\tsex status role\n f1 mom1 0 0 2 1 mom\n f1 dad1 0 0 1 1 dad\n f1 prb1 dad1 mom1 1 2 prb\n f1 sib1 dad1 mom1 2 2 sib\n f1 sib2 dad1 mom1 2 2 sib\n f2 grmom2 0 0 2 0 maternal_grandmother\n f2 grdad2 0 0 1 0 maternal_grandfather\n f2 mom2 grdad2 grmom2 2 1 mom\n f2 dad2 0 0 1 1 dad\n f2 prb2 dad2 mom2 1 2 prb\n f2 sib2_3 dad2 mom2 2 2 sib\n \"\"\"\n ))\n families = FamiliesLoader(ped_content).load()\n assert families is not None\n return families\n\n\ndef get_person_set_collections_config(content: str):\n return GPFConfigParser.process_config(cast(Dict[str, Any], toml.loads(\n content)), {'person_set_collections': person_set_collections_schema}\n ).person_set_collections\n\n\n<mask token>\n\n\ndef test_status_person_set_collection(status_collection):\n assert status_collection is not None\n psc = status_collection\n assert len(psc.person_sets) == 3\n assert len(psc.person_sets['unknown'].persons) == 2\n assert len(psc.person_sets['affected'].persons) == 5\n assert len(psc.person_sets['unaffected'].persons) == 4\n\n\ndef test_status_person_set_collection_all_selected(status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unaffected', 'unknown'}))\n assert query == ()\n\n\n<mask token>\n\n\ndef test_status_person_set_collection_some_selected_and_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unknown'}))\n assert query == ([], [{'status': 'unaffected'}])\n\n\[email protected]\ndef status_sex_collection(families_fixture):\n config = get_person_set_collections_config(textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status_sex\"]\n\n status_sex.id = \"status_sex\"\n status_sex.name = \"Affected Status and Sex\"\n status_sex.sources = [\n { from = \"pedigree\", source = \"status\" },\n { from = \"pedigree\", source = \"sex\" },\n ]\n status_sex.domain = [\n { id = \"affected_male\", name = \"Affected Male\",\n values = [\"affected\", \"M\"], color = \"#ffffff\" },\n { id = \"affected_female\", name = \"Affected Female\",\n values = [\"affected\", \"F\"], color = \"#ffffff\" },\n { id = \"unaffected_male\", name = \"Unaffected Male\",\n values = [\"unaffected\", \"M\"], color = \"#ffffff\" },\n { id = \"unaffected_female\", name = \"Unaffected Female\",\n values = [\"unaffected\", \"F\"], color = \"#ffffff\" },\n ]\n status_sex.default = { id=\"other\", name=\"Other\", color=\"#aaaaaa\"}\n \"\"\"\n ))\n return PersonSetCollection.from_families(config.status_sex,\n families_fixture)\n\n\n<mask token>\n\n\ndef test_status_sex_person_set_collection_some_selected_with_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n", "step-2": "<mask token>\n\n\[email protected]\ndef families_fixture():\n ped_content = io.StringIO(convert_to_tab_separated(\n \"\"\"\n familyId personId dadId\t momId\tsex status role\n f1 mom1 0 0 2 1 mom\n f1 dad1 0 0 1 1 dad\n f1 prb1 dad1 mom1 1 2 prb\n f1 sib1 dad1 mom1 2 2 sib\n f1 sib2 dad1 mom1 2 2 sib\n f2 grmom2 0 0 2 0 maternal_grandmother\n f2 grdad2 0 0 1 0 maternal_grandfather\n f2 mom2 grdad2 grmom2 2 1 mom\n f2 dad2 0 0 1 1 dad\n f2 prb2 dad2 mom2 1 2 prb\n f2 sib2_3 dad2 mom2 2 2 sib\n \"\"\"\n ))\n families = FamiliesLoader(ped_content).load()\n assert families is not None\n return families\n\n\ndef get_person_set_collections_config(content: str):\n return GPFConfigParser.process_config(cast(Dict[str, Any], toml.loads(\n content)), {'person_set_collections': person_set_collections_schema}\n ).person_set_collections\n\n\n<mask token>\n\n\ndef test_status_person_set_collection(status_collection):\n assert status_collection is not None\n psc = status_collection\n assert len(psc.person_sets) == 3\n assert len(psc.person_sets['unknown'].persons) == 2\n assert len(psc.person_sets['affected'].persons) == 5\n assert len(psc.person_sets['unaffected'].persons) == 4\n\n\ndef test_status_person_set_collection_all_selected(status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unaffected', 'unknown'}))\n assert query == ()\n\n\n<mask token>\n\n\ndef test_status_person_set_collection_some_selected_and_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unknown'}))\n assert query == ([], [{'status': 'unaffected'}])\n\n\[email protected]\ndef status_sex_collection(families_fixture):\n config = get_person_set_collections_config(textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status_sex\"]\n\n status_sex.id = \"status_sex\"\n status_sex.name = \"Affected Status and Sex\"\n status_sex.sources = [\n { from = \"pedigree\", source = \"status\" },\n { from = \"pedigree\", source = \"sex\" },\n ]\n status_sex.domain = [\n { id = \"affected_male\", name = \"Affected Male\",\n values = [\"affected\", \"M\"], color = \"#ffffff\" },\n { id = \"affected_female\", name = \"Affected Female\",\n values = [\"affected\", \"F\"], color = \"#ffffff\" },\n { id = \"unaffected_male\", name = \"Unaffected Male\",\n values = [\"unaffected\", \"M\"], color = \"#ffffff\" },\n { id = \"unaffected_female\", name = \"Unaffected Female\",\n values = [\"unaffected\", \"F\"], color = \"#ffffff\" },\n ]\n status_sex.default = { id=\"other\", name=\"Other\", color=\"#aaaaaa\"}\n \"\"\"\n ))\n return PersonSetCollection.from_families(config.status_sex,\n families_fixture)\n\n\n<mask token>\n\n\ndef test_status_sex_person_set_collection_some_selected_no_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female'}))\n assert query == ([{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'M', 'status': 'affected'}, {'sex': 'F',\n 'status': 'unaffected'}], [])\n\n\ndef test_status_sex_person_set_collection_some_selected_with_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n", "step-3": "<mask token>\n\n\[email protected]\ndef families_fixture():\n ped_content = io.StringIO(convert_to_tab_separated(\n \"\"\"\n familyId personId dadId\t momId\tsex status role\n f1 mom1 0 0 2 1 mom\n f1 dad1 0 0 1 1 dad\n f1 prb1 dad1 mom1 1 2 prb\n f1 sib1 dad1 mom1 2 2 sib\n f1 sib2 dad1 mom1 2 2 sib\n f2 grmom2 0 0 2 0 maternal_grandmother\n f2 grdad2 0 0 1 0 maternal_grandfather\n f2 mom2 grdad2 grmom2 2 1 mom\n f2 dad2 0 0 1 1 dad\n f2 prb2 dad2 mom2 1 2 prb\n f2 sib2_3 dad2 mom2 2 2 sib\n \"\"\"\n ))\n families = FamiliesLoader(ped_content).load()\n assert families is not None\n return families\n\n\ndef get_person_set_collections_config(content: str):\n return GPFConfigParser.process_config(cast(Dict[str, Any], toml.loads(\n content)), {'person_set_collections': person_set_collections_schema}\n ).person_set_collections\n\n\[email protected]\ndef status_collection(families_fixture):\n content = textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status\"]\n status.id = \"status\"\n status.name = \"Affected Status\"\n status.sources = [{ from = \"pedigree\", source = \"status\" }]\n status.domain = [\n {\n id = \"affected\",\n name = \"Affected\",\n values = [\"affected\"],\n color = \"#aabbcc\"\n },\n {\n id = \"unaffected\",\n name = \"Unaffected\",\n values = [\"unaffected\"],\n color = \"#ffffff\"\n },\n ]\n status.default = {id = \"unknown\",name = \"Unknown\",color = \"#aaaaaa\"}\n\n \"\"\"\n )\n config = get_person_set_collections_config(content)\n collection = PersonSetCollection.from_families(config.status,\n families_fixture)\n return collection\n\n\ndef test_status_person_set_collection(status_collection):\n assert status_collection is not None\n psc = status_collection\n assert len(psc.person_sets) == 3\n assert len(psc.person_sets['unknown'].persons) == 2\n assert len(psc.person_sets['affected'].persons) == 5\n assert len(psc.person_sets['unaffected'].persons) == 4\n\n\ndef test_status_person_set_collection_all_selected(status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unaffected', 'unknown'}))\n assert query == ()\n\n\ndef test_status_person_set_collection_some_selected_no_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected'}))\n assert query == ([{'status': 'affected'}], [])\n\n\ndef test_status_person_set_collection_some_selected_and_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unknown'}))\n assert query == ([], [{'status': 'unaffected'}])\n\n\[email protected]\ndef status_sex_collection(families_fixture):\n config = get_person_set_collections_config(textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status_sex\"]\n\n status_sex.id = \"status_sex\"\n status_sex.name = \"Affected Status and Sex\"\n status_sex.sources = [\n { from = \"pedigree\", source = \"status\" },\n { from = \"pedigree\", source = \"sex\" },\n ]\n status_sex.domain = [\n { id = \"affected_male\", name = \"Affected Male\",\n values = [\"affected\", \"M\"], color = \"#ffffff\" },\n { id = \"affected_female\", name = \"Affected Female\",\n values = [\"affected\", \"F\"], color = \"#ffffff\" },\n { id = \"unaffected_male\", name = \"Unaffected Male\",\n values = [\"unaffected\", \"M\"], color = \"#ffffff\" },\n { id = \"unaffected_female\", name = \"Unaffected Female\",\n values = [\"unaffected\", \"F\"], color = \"#ffffff\" },\n ]\n status_sex.default = { id=\"other\", name=\"Other\", color=\"#aaaaaa\"}\n \"\"\"\n ))\n return PersonSetCollection.from_families(config.status_sex,\n families_fixture)\n\n\n<mask token>\n\n\ndef test_status_sex_person_set_collection_some_selected_no_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female'}))\n assert query == ([{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'M', 'status': 'affected'}, {'sex': 'F',\n 'status': 'unaffected'}], [])\n\n\ndef test_status_sex_person_set_collection_some_selected_with_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n", "step-4": "<mask token>\n\n\[email protected]\ndef families_fixture():\n ped_content = io.StringIO(convert_to_tab_separated(\n \"\"\"\n familyId personId dadId\t momId\tsex status role\n f1 mom1 0 0 2 1 mom\n f1 dad1 0 0 1 1 dad\n f1 prb1 dad1 mom1 1 2 prb\n f1 sib1 dad1 mom1 2 2 sib\n f1 sib2 dad1 mom1 2 2 sib\n f2 grmom2 0 0 2 0 maternal_grandmother\n f2 grdad2 0 0 1 0 maternal_grandfather\n f2 mom2 grdad2 grmom2 2 1 mom\n f2 dad2 0 0 1 1 dad\n f2 prb2 dad2 mom2 1 2 prb\n f2 sib2_3 dad2 mom2 2 2 sib\n \"\"\"\n ))\n families = FamiliesLoader(ped_content).load()\n assert families is not None\n return families\n\n\ndef get_person_set_collections_config(content: str):\n return GPFConfigParser.process_config(cast(Dict[str, Any], toml.loads(\n content)), {'person_set_collections': person_set_collections_schema}\n ).person_set_collections\n\n\[email protected]\ndef status_collection(families_fixture):\n content = textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status\"]\n status.id = \"status\"\n status.name = \"Affected Status\"\n status.sources = [{ from = \"pedigree\", source = \"status\" }]\n status.domain = [\n {\n id = \"affected\",\n name = \"Affected\",\n values = [\"affected\"],\n color = \"#aabbcc\"\n },\n {\n id = \"unaffected\",\n name = \"Unaffected\",\n values = [\"unaffected\"],\n color = \"#ffffff\"\n },\n ]\n status.default = {id = \"unknown\",name = \"Unknown\",color = \"#aaaaaa\"}\n\n \"\"\"\n )\n config = get_person_set_collections_config(content)\n collection = PersonSetCollection.from_families(config.status,\n families_fixture)\n return collection\n\n\ndef test_status_person_set_collection(status_collection):\n assert status_collection is not None\n psc = status_collection\n assert len(psc.person_sets) == 3\n assert len(psc.person_sets['unknown'].persons) == 2\n assert len(psc.person_sets['affected'].persons) == 5\n assert len(psc.person_sets['unaffected'].persons) == 4\n\n\ndef test_status_person_set_collection_all_selected(status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unaffected', 'unknown'}))\n assert query == ()\n\n\ndef test_status_person_set_collection_some_selected_no_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected'}))\n assert query == ([{'status': 'affected'}], [])\n\n\ndef test_status_person_set_collection_some_selected_and_default(\n status_collection):\n query = ImpalaVariants.build_person_set_collection_query(status_collection,\n ('status', {'affected', 'unknown'}))\n assert query == ([], [{'status': 'unaffected'}])\n\n\[email protected]\ndef status_sex_collection(families_fixture):\n config = get_person_set_collections_config(textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status_sex\"]\n\n status_sex.id = \"status_sex\"\n status_sex.name = \"Affected Status and Sex\"\n status_sex.sources = [\n { from = \"pedigree\", source = \"status\" },\n { from = \"pedigree\", source = \"sex\" },\n ]\n status_sex.domain = [\n { id = \"affected_male\", name = \"Affected Male\",\n values = [\"affected\", \"M\"], color = \"#ffffff\" },\n { id = \"affected_female\", name = \"Affected Female\",\n values = [\"affected\", \"F\"], color = \"#ffffff\" },\n { id = \"unaffected_male\", name = \"Unaffected Male\",\n values = [\"unaffected\", \"M\"], color = \"#ffffff\" },\n { id = \"unaffected_female\", name = \"Unaffected Female\",\n values = [\"unaffected\", \"F\"], color = \"#ffffff\" },\n ]\n status_sex.default = { id=\"other\", name=\"Other\", color=\"#aaaaaa\"}\n \"\"\"\n ))\n return PersonSetCollection.from_families(config.status_sex,\n families_fixture)\n\n\ndef test_status_sex_person_set_collection_all_selected(status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female', 'unaffected_male', 'unaffected_female', 'other'}))\n assert query == ()\n\n\ndef test_status_sex_person_set_collection_some_selected_no_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female'}))\n assert query == ([{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}], [])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female'}))\n assert query == ([{'sex': 'M', 'status': 'affected'}, {'sex': 'F',\n 'status': 'unaffected'}], [])\n\n\ndef test_status_sex_person_set_collection_some_selected_with_default(\n status_sex_collection):\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'affected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'unaffected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'unaffected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'affected'}])\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection, ('status_sex', {'affected_male',\n 'unaffected_female', 'other'}))\n assert query == ([], [{'sex': 'F', 'status': 'affected'}, {'sex': 'M',\n 'status': 'unaffected'}])\n", "step-5": "# pylint: disable=W0621,C0114,C0116,W0212,W0613\nimport io\nimport textwrap\nfrom typing import cast, Any, Dict\n\nimport toml\nimport pytest\n\nfrom dae.testing import convert_to_tab_separated\nfrom dae.configuration.gpf_config_parser import GPFConfigParser\nfrom dae.configuration.schemas.person_sets import person_set_collections_schema\nfrom dae.pedigrees.loader import FamiliesLoader\nfrom dae.person_sets import PersonSetCollection\n\nfrom impala_storage.schema1.impala_variants import ImpalaVariants\n\n\[email protected]\ndef families_fixture():\n ped_content = io.StringIO(convert_to_tab_separated(\n \"\"\"\n familyId personId dadId\t momId\tsex status role\n f1 mom1 0 0 2 1 mom\n f1 dad1 0 0 1 1 dad\n f1 prb1 dad1 mom1 1 2 prb\n f1 sib1 dad1 mom1 2 2 sib\n f1 sib2 dad1 mom1 2 2 sib\n f2 grmom2 0 0 2 0 maternal_grandmother\n f2 grdad2 0 0 1 0 maternal_grandfather\n f2 mom2 grdad2 grmom2 2 1 mom\n f2 dad2 0 0 1 1 dad\n f2 prb2 dad2 mom2 1 2 prb\n f2 sib2_3 dad2 mom2 2 2 sib\n \"\"\"))\n families = FamiliesLoader(ped_content).load()\n assert families is not None\n return families\n\n\ndef get_person_set_collections_config(content: str):\n return GPFConfigParser.process_config(\n cast(Dict[str, Any], toml.loads(content)),\n {\"person_set_collections\": person_set_collections_schema},\n ).person_set_collections\n\n\[email protected]\ndef status_collection(families_fixture):\n content = textwrap.dedent(\n \"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status\"]\n status.id = \"status\"\n status.name = \"Affected Status\"\n status.sources = [{ from = \"pedigree\", source = \"status\" }]\n status.domain = [\n {\n id = \"affected\",\n name = \"Affected\",\n values = [\"affected\"],\n color = \"#aabbcc\"\n },\n {\n id = \"unaffected\",\n name = \"Unaffected\",\n values = [\"unaffected\"],\n color = \"#ffffff\"\n },\n ]\n status.default = {id = \"unknown\",name = \"Unknown\",color = \"#aaaaaa\"}\n\n \"\"\")\n\n config = get_person_set_collections_config(content)\n\n collection = PersonSetCollection.from_families(\n config.status, families_fixture)\n return collection\n\n\ndef test_status_person_set_collection(status_collection):\n assert status_collection is not None\n psc = status_collection\n\n assert len(psc.person_sets) == 3\n assert len(psc.person_sets[\"unknown\"].persons) == 2\n assert len(psc.person_sets[\"affected\"].persons) == 5\n assert len(psc.person_sets[\"unaffected\"].persons) == 4\n\n\ndef test_status_person_set_collection_all_selected(\n status_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_collection,\n (\"status\", {\"affected\", \"unaffected\", \"unknown\"})\n )\n\n assert query == ()\n\n\ndef test_status_person_set_collection_some_selected_no_default(\n status_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_collection,\n (\"status\", {\"affected\"})\n )\n\n assert query == ([{\"status\": \"affected\"}], [])\n\n\ndef test_status_person_set_collection_some_selected_and_default(\n status_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_collection,\n (\"status\", {\"affected\", \"unknown\"})\n )\n\n assert query == ([], [{\"status\": \"unaffected\"}])\n\n\[email protected]\ndef status_sex_collection(families_fixture):\n config = get_person_set_collections_config(textwrap.dedent(\"\"\"\n [person_set_collections]\n selected_person_set_collections = [\"status_sex\"]\n\n status_sex.id = \"status_sex\"\n status_sex.name = \"Affected Status and Sex\"\n status_sex.sources = [\n { from = \"pedigree\", source = \"status\" },\n { from = \"pedigree\", source = \"sex\" },\n ]\n status_sex.domain = [\n { id = \"affected_male\", name = \"Affected Male\",\n values = [\"affected\", \"M\"], color = \"#ffffff\" },\n { id = \"affected_female\", name = \"Affected Female\",\n values = [\"affected\", \"F\"], color = \"#ffffff\" },\n { id = \"unaffected_male\", name = \"Unaffected Male\",\n values = [\"unaffected\", \"M\"], color = \"#ffffff\" },\n { id = \"unaffected_female\", name = \"Unaffected Female\",\n values = [\"unaffected\", \"F\"], color = \"#ffffff\" },\n ]\n status_sex.default = { id=\"other\", name=\"Other\", color=\"#aaaaaa\"}\n \"\"\"))\n\n return PersonSetCollection.from_families(\n config.status_sex, families_fixture\n )\n\n\ndef test_status_sex_person_set_collection_all_selected(\n status_sex_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"affected_male\", \"affected_female\",\n \"unaffected_male\", \"unaffected_female\",\n \"other\"})\n )\n\n assert query == ()\n\n\ndef test_status_sex_person_set_collection_some_selected_no_default(\n status_sex_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"affected_male\", \"affected_female\"})\n )\n\n assert query == (\n [\n {\"sex\": \"F\", \"status\": \"affected\"},\n {\"sex\": \"M\", \"status\": \"affected\"},\n ], [])\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"unaffected_male\", \"unaffected_female\"})\n )\n\n assert query == (\n [\n {\"sex\": \"F\", \"status\": \"unaffected\"},\n {\"sex\": \"M\", \"status\": \"unaffected\"}\n ], [])\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"affected_male\", \"unaffected_female\"})\n )\n\n assert query == ([\n {\"sex\": \"M\", \"status\": \"affected\"},\n {\"sex\": \"F\", \"status\": \"unaffected\"},\n ], [])\n\n\ndef test_status_sex_person_set_collection_some_selected_with_default(\n status_sex_collection):\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"affected_male\", \"affected_female\", \"other\"})\n )\n\n assert query == ([], [\n {\"sex\": \"F\", \"status\": \"unaffected\"},\n {\"sex\": \"M\", \"status\": \"unaffected\"},\n ])\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"unaffected_male\", \"unaffected_female\", \"other\"}))\n\n assert query == ([], [\n {\"sex\": \"F\", \"status\": \"affected\"},\n {\"sex\": \"M\", \"status\": \"affected\"},\n ])\n\n query = ImpalaVariants.build_person_set_collection_query(\n status_sex_collection,\n (\"status_sex\", {\n \"affected_male\", \"unaffected_female\", \"other\"})\n )\n\n assert query == ([], [\n {\"sex\": \"F\", \"status\": \"affected\"},\n {\"sex\": \"M\", \"status\": \"unaffected\"},\n ])\n", "step-ids": [ 7, 8, 10, 11, 13 ] }
[ 7, 8, 10, 11, 13 ]
from sqlalchemy import (Column, Integer, Float, String, ForeignKey) from sqlalchemy.dialects.postgresql import UUID from sqlalchemy.orm import relationship from .meta import Base, BaseModel class Stock(Base, BaseModel): __tablename__ = 'stock' name = Column(String(255), nullable=False) starting_price = Column(Float, nullable=False) current_price = Column(Float, nullable=False) max_price = Column(Float, nullable=True) min_price = Column(Float, nullable=True) starting_stock = Column(Integer, nullable=True) current_stock = Column(Integer, nullable=True) stock_type_id = Column(UUID(as_uuid=True), ForeignKey('stock_type.id')) stock_type = relationship('StockType', back_ref='stocks') user_id = Column(UUID(as_uuid=True), ForeignKey('user.id')) user = relationship('User') def __json__(self, _): return { "id": self.id, "name": self.name, "starting_price": self.starting_price, "current_price": self.current_price, "max_price": self.max_price, "min_price": self.min_price, "starting_stock": self.starting_stock, "current_stock": self.current_stock } class StockType(Base, BaseModel): __tablename__ = 'stock_type' name = Column(String(255), nullable=False) stocks = relationship('Stock', back_ref='stock_type') user_id = Column(UUID(as_uuid=True), ForeignKey('user.id')) user = relationship('User') def __json__(self, _): return { "id": self.id, "name": self.name }
normal
{ "blob_id": "7251d32918b16166e9b7c9613726e6dc51d6fea4", "index": 3834, "step-1": "<mask token>\n\n\nclass StockType(Base, BaseModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name}\n", "step-2": "<mask token>\n\n\nclass StockType(Base, BaseModel):\n __tablename__ = 'stock_type'\n name = Column(String(255), nullable=False)\n stocks = relationship('Stock', back_ref='stock_type')\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name}\n", "step-3": "<mask token>\n\n\nclass Stock(Base, BaseModel):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name, 'starting_price': self.\n starting_price, 'current_price': self.current_price,\n 'max_price': self.max_price, 'min_price': self.min_price,\n 'starting_stock': self.starting_stock, 'current_stock': self.\n current_stock}\n\n\nclass StockType(Base, BaseModel):\n __tablename__ = 'stock_type'\n name = Column(String(255), nullable=False)\n stocks = relationship('Stock', back_ref='stock_type')\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name}\n", "step-4": "<mask token>\n\n\nclass Stock(Base, BaseModel):\n __tablename__ = 'stock'\n name = Column(String(255), nullable=False)\n starting_price = Column(Float, nullable=False)\n current_price = Column(Float, nullable=False)\n max_price = Column(Float, nullable=True)\n min_price = Column(Float, nullable=True)\n starting_stock = Column(Integer, nullable=True)\n current_stock = Column(Integer, nullable=True)\n stock_type_id = Column(UUID(as_uuid=True), ForeignKey('stock_type.id'))\n stock_type = relationship('StockType', back_ref='stocks')\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name, 'starting_price': self.\n starting_price, 'current_price': self.current_price,\n 'max_price': self.max_price, 'min_price': self.min_price,\n 'starting_stock': self.starting_stock, 'current_stock': self.\n current_stock}\n\n\nclass StockType(Base, BaseModel):\n __tablename__ = 'stock_type'\n name = Column(String(255), nullable=False)\n stocks = relationship('Stock', back_ref='stock_type')\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {'id': self.id, 'name': self.name}\n", "step-5": "from sqlalchemy import (Column, Integer, Float, String, ForeignKey)\nfrom sqlalchemy.dialects.postgresql import UUID\nfrom sqlalchemy.orm import relationship\n\nfrom .meta import Base, BaseModel\n\n\nclass Stock(Base, BaseModel):\n __tablename__ = 'stock'\n\n name = Column(String(255), nullable=False)\n starting_price = Column(Float, nullable=False)\n current_price = Column(Float, nullable=False)\n max_price = Column(Float, nullable=True)\n min_price = Column(Float, nullable=True)\n starting_stock = Column(Integer, nullable=True)\n current_stock = Column(Integer, nullable=True)\n\n stock_type_id = Column(UUID(as_uuid=True), ForeignKey('stock_type.id'))\n stock_type = relationship('StockType', back_ref='stocks')\n\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {\n \"id\": self.id,\n \"name\": self.name,\n \"starting_price\": self.starting_price,\n \"current_price\": self.current_price,\n \"max_price\": self.max_price,\n \"min_price\": self.min_price,\n \"starting_stock\": self.starting_stock,\n \"current_stock\": self.current_stock\n }\n\n\nclass StockType(Base, BaseModel):\n __tablename__ = 'stock_type'\n\n name = Column(String(255), nullable=False)\n stocks = relationship('Stock', back_ref='stock_type')\n\n user_id = Column(UUID(as_uuid=True), ForeignKey('user.id'))\n user = relationship('User')\n\n def __json__(self, _):\n return {\n \"id\": self.id,\n \"name\": self.name\n }\n", "step-ids": [ 2, 3, 5, 6, 8 ] }
[ 2, 3, 5, 6, 8 ]
#!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'ghou' from datetime import datetime bGameValid = True dAskUserInfo = {} gAccMode = 0 #============UserSyncResource2.py=================== #============前端资源热更白名单测试功能================ #============去读配置表config.xml================== #============大于配置标号的热更内容只有白名单可见======= gWhiteTestResourceVersion = None #============评审版本热更过滤======================== #============去读配置表config.xml================== #============等于配置标号的热更内容都不可见============= gInvalidClientVersion = None # 非法的客户端版本号
normal
{ "blob_id": "2e075c3ee6b245b1ffd0bb8c4e205199f794da76", "index": 5725, "step-1": "<mask token>\n", "step-2": "__author__ = 'ghou'\n<mask token>\nbGameValid = True\ndAskUserInfo = {}\ngAccMode = 0\ngWhiteTestResourceVersion = None\ngInvalidClientVersion = None\n", "step-3": "__author__ = 'ghou'\nfrom datetime import datetime\nbGameValid = True\ndAskUserInfo = {}\ngAccMode = 0\ngWhiteTestResourceVersion = None\ngInvalidClientVersion = None\n", "step-4": "#!/usr/bin/env python\n# -*- coding:utf-8 -*-\n\n__author__ = 'ghou'\n\nfrom datetime import datetime\n\nbGameValid = True\ndAskUserInfo = {}\ngAccMode = 0\n\n\n\n#============UserSyncResource2.py===================\n\n#============前端资源热更白名单测试功能================\n#============去读配置表config.xml==================\n#============大于配置标号的热更内容只有白名单可见=======\ngWhiteTestResourceVersion = None\n\n#============评审版本热更过滤========================\n#============去读配置表config.xml==================\n#============等于配置标号的热更内容都不可见=============\ngInvalidClientVersion = None # 非法的客户端版本号", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from pyplasm import * import random as r def gen_windows(plan_grid, n, m, window_model): return STRUCT([ T([1,2])([j,i])( gen_cube_windows(plan_grid, window_model)(i, j, n, m)) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_cube_windows(plan_grid, window_model): w = window_model hpcs = [CUBE(0.00001)] def gen_cube0(i, j, n, m): if j+1 == m or not plan_grid[i][j+1]: hpcs.append(T([1, 2])([1, .5])(MAP([S2, S1, S3])(w))) if j-1 < 0 or not plan_grid[i][j-1]: hpcs.append(T(2)(.5)(MAP([S2, S1, S3])(w))) if i+1 == n or not plan_grid[i+1][j]: hpcs.append(T([1, 2])([.5, 1])(w)) if i-1 < 0 or not plan_grid[i-1][j]: hpcs.append(T(1)(.5)(w)) return STRUCT(hpcs) return gen_cube0 def gen_body(plan_grid, n, m): c = CUBE(1) return STRUCT([ T([1,2])([j,i])(c) for i in range(n) for j in range(m) if plan_grid[i][j]]) def gen_house( box, plan_grid, door_model, window_model, roof_model): n = len(plan_grid) m = len(plan_grid[0]) body = STRUCT([ gen_body(plan_grid, n, m), T(3)(1), roof_model]) l2s_scale = map(lambda x,y: x/y, SIZE([1,2,3])(body), box) s2l_scale = [1/elem for elem in l2s_scale] scaled_win = S([1,2,3])(l2s_scale)(window_model) windows = gen_windows(plan_grid, n, m, scaled_win) house = STRUCT([body, windows]) return TEXTURE(['wood.jpg',True, True, 300,300, r.random()*3.1415, .1,.1, 0,0])( S([1,2,3])(s2l_scale)(house)) def l_shaped_house(box): grid = [ [False, False, True], [True, True, True]] roof = MKPOL([ [ [ 2, 0, 0], [2.5, 0, .5], [ 3, 0, 0], [ 3, 2, 0], [ 0, 2, 0], [ 0, 1.5, .5], [ 0, 1, 0], [ 2, 1, 0], [2.5, 1.5, .5] ], [ [3,2,1], [9,2,3,4], [5,6,9,4], [7,6,5], [7,8,9,6], [9,8,1,2] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def q_shaped_house(box): grid = [ [True, True, True], [True, True, True], [True, False, False]] roof = MKPOL([ [ [0,0,0], #1 [3,0,0], #2 [3,2,0], #3 [1,2,0], #4 [1,3,0], #5 [.5,3,.5], #6 [0,3,0], #7 [.5,.5,.5], #8 [2.5,.5,.5], #9 [2.5,1.5,.5], #10 [.5,1.5,.5] #11 ], [ [1,8,6,7], [1,2,9,8], [2,3,10,9], [10,3,4,11], [4,5,6,11], [6,5,7], [8,9,10,11] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def rectangular_house(box): grid = [ [True, True], [True, True], [True, True]] roof = MKPOL([ [ [0,0,0], #1 [1,0,1], #2 [2,0,0], #3 [2,3,0], #4 [1,3,1], #5 [0,3,0] #6 ], [ [1,2,5,6], [2,3,4,5], [1,3,2], [5,4,6] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) def squared_house(box): grid = [ [True, True, True], [True, True, True], [True, True, True]] roof = MKPOL([ [ [0,0,0], #1 [3,0,0], #2 [3,3,0], #3 [0,3,0], #4 [1.5,1.5,1] #5 ], [ [5,1,2], [5,2,3], [5,3,4], [5,4,1] ], [1]]) window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2])) return gen_house(box, grid, None, window, roof) if __name__=='__main__': VIEW(squared_house([15, 15, 8]))
normal
{ "blob_id": "cb48a1601798f72f9cf3759d3c13969bc824a0f6", "index": 707, "step-1": "<mask token>\n\n\ndef gen_windows(plan_grid, n, m, window_model):\n return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid,\n window_model)(i, j, n, m)) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\n<mask token>\n\n\ndef gen_body(plan_grid, n, m):\n c = CUBE(1)\n return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\n<mask token>\n\n\ndef q_shaped_house(box):\n grid = [[True, True, True], [True, True, True], [True, False, False]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [\n 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, \n 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10,\n 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef rectangular_house(box):\n grid = [[True, True], [True, True], [True, True]]\n roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [\n 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef squared_house(box):\n grid = [[True, True, True], [True, True, True], [True, True, True]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1\n ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef gen_windows(plan_grid, n, m, window_model):\n return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid,\n window_model)(i, j, n, m)) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\n<mask token>\n\n\ndef gen_body(plan_grid, n, m):\n c = CUBE(1)\n return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\ndef gen_house(box, plan_grid, door_model, window_model, roof_model):\n n = len(plan_grid)\n m = len(plan_grid[0])\n body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model])\n l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box)\n s2l_scale = [(1 / elem) for elem in l2s_scale]\n scaled_win = S([1, 2, 3])(l2s_scale)(window_model)\n windows = gen_windows(plan_grid, n, m, scaled_win)\n house = STRUCT([body, windows])\n return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, \n 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house))\n\n\ndef l_shaped_house(box):\n grid = [[False, False, True], [True, True, True]]\n roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0\n ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1\n ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2\n ]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef q_shaped_house(box):\n grid = [[True, True, True], [True, True, True], [True, False, False]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [\n 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, \n 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10,\n 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef rectangular_house(box):\n grid = [[True, True], [True, True], [True, True]]\n roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [\n 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef squared_house(box):\n grid = [[True, True, True], [True, True, True], [True, True, True]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1\n ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef gen_windows(plan_grid, n, m, window_model):\n return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid,\n window_model)(i, j, n, m)) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\ndef gen_cube_windows(plan_grid, window_model):\n w = window_model\n hpcs = [CUBE(1e-05)]\n\n def gen_cube0(i, j, n, m):\n if j + 1 == m or not plan_grid[i][j + 1]:\n hpcs.append(T([1, 2])([1, 0.5])(MAP([S2, S1, S3])(w)))\n if j - 1 < 0 or not plan_grid[i][j - 1]:\n hpcs.append(T(2)(0.5)(MAP([S2, S1, S3])(w)))\n if i + 1 == n or not plan_grid[i + 1][j]:\n hpcs.append(T([1, 2])([0.5, 1])(w))\n if i - 1 < 0 or not plan_grid[i - 1][j]:\n hpcs.append(T(1)(0.5)(w))\n return STRUCT(hpcs)\n return gen_cube0\n\n\ndef gen_body(plan_grid, n, m):\n c = CUBE(1)\n return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\ndef gen_house(box, plan_grid, door_model, window_model, roof_model):\n n = len(plan_grid)\n m = len(plan_grid[0])\n body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model])\n l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box)\n s2l_scale = [(1 / elem) for elem in l2s_scale]\n scaled_win = S([1, 2, 3])(l2s_scale)(window_model)\n windows = gen_windows(plan_grid, n, m, scaled_win)\n house = STRUCT([body, windows])\n return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, \n 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house))\n\n\ndef l_shaped_house(box):\n grid = [[False, False, True], [True, True, True]]\n roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0\n ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1\n ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2\n ]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef q_shaped_house(box):\n grid = [[True, True, True], [True, True, True], [True, False, False]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [\n 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, \n 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10,\n 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef rectangular_house(box):\n grid = [[True, True], [True, True], [True, True]]\n roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [\n 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef squared_house(box):\n grid = [[True, True, True], [True, True, True], [True, True, True]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1\n ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef gen_windows(plan_grid, n, m, window_model):\n return STRUCT([T([1, 2])([j, i])(gen_cube_windows(plan_grid,\n window_model)(i, j, n, m)) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\ndef gen_cube_windows(plan_grid, window_model):\n w = window_model\n hpcs = [CUBE(1e-05)]\n\n def gen_cube0(i, j, n, m):\n if j + 1 == m or not plan_grid[i][j + 1]:\n hpcs.append(T([1, 2])([1, 0.5])(MAP([S2, S1, S3])(w)))\n if j - 1 < 0 or not plan_grid[i][j - 1]:\n hpcs.append(T(2)(0.5)(MAP([S2, S1, S3])(w)))\n if i + 1 == n or not plan_grid[i + 1][j]:\n hpcs.append(T([1, 2])([0.5, 1])(w))\n if i - 1 < 0 or not plan_grid[i - 1][j]:\n hpcs.append(T(1)(0.5)(w))\n return STRUCT(hpcs)\n return gen_cube0\n\n\ndef gen_body(plan_grid, n, m):\n c = CUBE(1)\n return STRUCT([T([1, 2])([j, i])(c) for i in range(n) for j in range(m) if\n plan_grid[i][j]])\n\n\ndef gen_house(box, plan_grid, door_model, window_model, roof_model):\n n = len(plan_grid)\n m = len(plan_grid[0])\n body = STRUCT([gen_body(plan_grid, n, m), T(3)(1), roof_model])\n l2s_scale = map(lambda x, y: x / y, SIZE([1, 2, 3])(body), box)\n s2l_scale = [(1 / elem) for elem in l2s_scale]\n scaled_win = S([1, 2, 3])(l2s_scale)(window_model)\n windows = gen_windows(plan_grid, n, m, scaled_win)\n house = STRUCT([body, windows])\n return TEXTURE(['wood.jpg', True, True, 300, 300, r.random() * 3.1415, \n 0.1, 0.1, 0, 0])(S([1, 2, 3])(s2l_scale)(house))\n\n\ndef l_shaped_house(box):\n grid = [[False, False, True], [True, True, True]]\n roof = MKPOL([[[2, 0, 0], [2.5, 0, 0.5], [3, 0, 0], [3, 2, 0], [0, 2, 0\n ], [0, 1.5, 0.5], [0, 1, 0], [2, 1, 0], [2.5, 1.5, 0.5]], [[3, 2, 1\n ], [9, 2, 3, 4], [5, 6, 9, 4], [7, 6, 5], [7, 8, 9, 6], [9, 8, 1, 2\n ]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef q_shaped_house(box):\n grid = [[True, True, True], [True, True, True], [True, False, False]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 2, 0], [1, 2, 0], [1, 3, 0], [\n 0.5, 3, 0.5], [0, 3, 0], [0.5, 0.5, 0.5], [2.5, 0.5, 0.5], [2.5, \n 1.5, 0.5], [0.5, 1.5, 0.5]], [[1, 8, 6, 7], [1, 2, 9, 8], [2, 3, 10,\n 9], [10, 3, 4, 11], [4, 5, 6, 11], [6, 5, 7], [8, 9, 10, 11]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef rectangular_house(box):\n grid = [[True, True], [True, True], [True, True]]\n roof = MKPOL([[[0, 0, 0], [1, 0, 1], [2, 0, 0], [2, 3, 0], [1, 3, 1], [\n 0, 3, 0]], [[1, 2, 5, 6], [2, 3, 4, 5], [1, 3, 2], [5, 4, 6]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef squared_house(box):\n grid = [[True, True, True], [True, True, True], [True, True, True]]\n roof = MKPOL([[[0, 0, 0], [3, 0, 0], [3, 3, 0], [0, 3, 0], [1.5, 1.5, 1\n ]], [[5, 1, 2], [5, 2, 3], [5, 3, 4], [5, 4, 1]], [1]])\n window = T([1, 2, 3])([-0.75, -0.1, 1.2])(CUBOID([1.5, 0.2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\nif __name__ == '__main__':\n VIEW(squared_house([15, 15, 8]))\n", "step-5": "from pyplasm import *\nimport random as r\n\ndef gen_windows(plan_grid, n, m, window_model):\n return STRUCT([\n T([1,2])([j,i])(\n gen_cube_windows(plan_grid, window_model)(i, j, n, m))\n for i in range(n) \n for j in range(m) \n if plan_grid[i][j]])\n\ndef gen_cube_windows(plan_grid, window_model):\n w = window_model\n hpcs = [CUBE(0.00001)]\n \n def gen_cube0(i, j, n, m):\n if j+1 == m or not plan_grid[i][j+1]:\n hpcs.append(T([1, 2])([1, .5])(MAP([S2, S1, S3])(w)))\n \n if j-1 < 0 or not plan_grid[i][j-1]:\n hpcs.append(T(2)(.5)(MAP([S2, S1, S3])(w)))\n \n if i+1 == n or not plan_grid[i+1][j]:\n hpcs.append(T([1, 2])([.5, 1])(w))\n \n if i-1 < 0 or not plan_grid[i-1][j]:\n hpcs.append(T(1)(.5)(w))\n \n return STRUCT(hpcs)\n \n return gen_cube0\n \n\ndef gen_body(plan_grid, n, m):\n c = CUBE(1)\n return STRUCT([\n T([1,2])([j,i])(c)\n for i in range(n) \n for j in range(m) \n if plan_grid[i][j]])\n\n\ndef gen_house(\n box,\n plan_grid,\n door_model,\n window_model,\n roof_model):\n \n n = len(plan_grid)\n m = len(plan_grid[0])\n \n body = STRUCT([\n gen_body(plan_grid, n, m),\n T(3)(1),\n roof_model])\n \n l2s_scale = map(lambda x,y: x/y, SIZE([1,2,3])(body), box)\n s2l_scale = [1/elem for elem in l2s_scale]\n \n scaled_win = S([1,2,3])(l2s_scale)(window_model)\n \n windows = gen_windows(plan_grid, n, m, scaled_win)\n \n house = STRUCT([body, windows])\n \n return TEXTURE(['wood.jpg',True, True, 300,300, r.random()*3.1415, .1,.1, 0,0])(\n S([1,2,3])(s2l_scale)(house))\n\n\ndef l_shaped_house(box):\n \n grid = [\n [False, False, True],\n [True, True, True]]\n \n roof = MKPOL([\n [\n [ 2, 0, 0],\n [2.5, 0, .5],\n [ 3, 0, 0],\n [ 3, 2, 0],\n [ 0, 2, 0],\n [ 0, 1.5, .5],\n [ 0, 1, 0],\n [ 2, 1, 0],\n [2.5, 1.5, .5]\n ],\n [\n [3,2,1],\n [9,2,3,4],\n [5,6,9,4],\n [7,6,5],\n [7,8,9,6],\n [9,8,1,2]\n ],\n [1]])\n \n window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2]))\n return gen_house(box, grid, None, window, roof)\n \ndef q_shaped_house(box):\n\n grid = [\n [True, True, True],\n [True, True, True],\n [True, False, False]]\n roof = MKPOL([\n [\n [0,0,0], #1\n [3,0,0], #2\n [3,2,0], #3\n [1,2,0], #4\n [1,3,0], #5\n [.5,3,.5], #6\n [0,3,0], #7\n [.5,.5,.5], #8\n [2.5,.5,.5], #9\n [2.5,1.5,.5], #10\n [.5,1.5,.5] #11\n ],\n [\n [1,8,6,7],\n [1,2,9,8],\n [2,3,10,9],\n [10,3,4,11],\n [4,5,6,11],\n [6,5,7],\n [8,9,10,11]\n ],\n [1]])\n \n window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef rectangular_house(box):\n\n grid = [\n [True, True],\n [True, True],\n [True, True]]\n roof = MKPOL([\n [\n [0,0,0], #1\n [1,0,1], #2\n [2,0,0], #3\n [2,3,0], #4\n [1,3,1], #5\n [0,3,0] #6\n ],\n [\n [1,2,5,6],\n [2,3,4,5],\n [1,3,2],\n [5,4,6]\n ],\n [1]])\n \n window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2]))\n return gen_house(box, grid, None, window, roof)\n\n\ndef squared_house(box):\n \n grid = [\n [True, True, True],\n [True, True, True],\n [True, True, True]]\n roof = MKPOL([\n [\n [0,0,0], #1\n [3,0,0], #2\n [3,3,0], #3\n [0,3,0], #4\n [1.5,1.5,1] #5\n ],\n [\n [5,1,2],\n [5,2,3],\n [5,3,4],\n [5,4,1]\n ],\n [1]])\n \n window = T([1,2,3])([-.75, -.1, 1.2])(CUBOID([1.5, .2, 2]))\n return gen_house(box, grid, None, window, roof)\n \n\nif __name__=='__main__':\n VIEW(squared_house([15, 15, 8]))\n\n", "step-ids": [ 5, 7, 8, 9, 11 ] }
[ 5, 7, 8, 9, 11 ]
data_dir = "../data" output_dir = './' valid_id = dict() for category in ("beauty", "fashion", "mobile"): with open("%s/%s_data_info_val_competition.csv" % (data_dir, category), "r") as infile: next(infile) for line in infile: curr_id = line.strip().split(',')[0] valid_id[curr_id] = True # This is the new output submission file containing 977987 rows with open("submission_977.csv", "w") as outfile: outfile.write("id,tagging\n") # Please change the file below to your current submission filename containing 1174802 rows # with open("submission-in.csv", "r") as infile: with open("%s/submission_2103.csv" % output_dir, "r") as infile: next(infile) for line in infile: curr_id = line.strip().split('_')[0] if curr_id in valid_id: outfile.write(line.strip() + '\n')
normal
{ "blob_id": "82556291c456b9e43e4e589ea4a77d320430344b", "index": 7478, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor category in ('beauty', 'fashion', 'mobile'):\n with open('%s/%s_data_info_val_competition.csv' % (data_dir, category), 'r'\n ) as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split(',')[0]\n valid_id[curr_id] = True\nwith open('submission_977.csv', 'w') as outfile:\n outfile.write('id,tagging\\n')\n with open('%s/submission_2103.csv' % output_dir, 'r') as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split('_')[0]\n if curr_id in valid_id:\n outfile.write(line.strip() + '\\n')\n", "step-3": "data_dir = '../data'\noutput_dir = './'\nvalid_id = dict()\nfor category in ('beauty', 'fashion', 'mobile'):\n with open('%s/%s_data_info_val_competition.csv' % (data_dir, category), 'r'\n ) as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split(',')[0]\n valid_id[curr_id] = True\nwith open('submission_977.csv', 'w') as outfile:\n outfile.write('id,tagging\\n')\n with open('%s/submission_2103.csv' % output_dir, 'r') as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split('_')[0]\n if curr_id in valid_id:\n outfile.write(line.strip() + '\\n')\n", "step-4": "data_dir = \"../data\"\noutput_dir = './'\nvalid_id = dict()\n\nfor category in (\"beauty\", \"fashion\", \"mobile\"):\n with open(\"%s/%s_data_info_val_competition.csv\" % (data_dir, category), \"r\") as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split(',')[0]\n valid_id[curr_id] = True\n\n# This is the new output submission file containing 977987 rows\nwith open(\"submission_977.csv\", \"w\") as outfile:\n outfile.write(\"id,tagging\\n\")\n \n # Please change the file below to your current submission filename containing 1174802 rows\n # with open(\"submission-in.csv\", \"r\") as infile:\n with open(\"%s/submission_2103.csv\" % output_dir, \"r\") as infile:\n next(infile)\n for line in infile:\n curr_id = line.strip().split('_')[0]\n if curr_id in valid_id:\n outfile.write(line.strip() + '\\n')", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import sys from bs4 import BeautifulSoup def get_classes(html): """ returns a list of classes and titles, parsing through 'html' """ # elements = html.find_all("span", "code") # titles = html.find_all("span", "title") # classes = [] # for i in range(len(elements)): # item = elements[i] # tit = titles[i] # classes += [(item.text.replace('\xa0', ' '), tit.text.replace('\xa0', ' '))] # return classes
normal
{ "blob_id": "9bb8e0f732eac474dbc01c374f9c74178f65dc36", "index": 3063, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_classes(html):\n \"\"\"\n returns a list of classes and titles, parsing through 'html'\n \"\"\"\n", "step-3": "import sys\nfrom bs4 import BeautifulSoup\n\n\ndef get_classes(html):\n \"\"\"\n returns a list of classes and titles, parsing through 'html'\n \"\"\"\n", "step-4": "import sys\nfrom bs4 import BeautifulSoup\n\n\ndef get_classes(html):\n \"\"\"\n returns a list of classes and titles, parsing through 'html'\n \"\"\"\n # elements = html.find_all(\"span\", \"code\")\n # titles = html.find_all(\"span\", \"title\")\n # classes = []\n # for i in range(len(elements)):\n # item = elements[i]\n # tit = titles[i]\n # classes += [(item.text.replace('\\xa0', ' '), tit.text.replace('\\xa0', ' '))]\n # return classes\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
def randomizer(n, garrafa_vidro, lata_metal, copo_plastico, bola_papel, maça_organico): lixos = [garrafa_vidro, lata_metal, copo_plastico, bola_papel, maça_organico] return lixos[n]
normal
{ "blob_id": "71a9c9b8f47dcfbecc154c44d5a72ddbd852145a", "index": 328, "step-1": "<mask token>\n", "step-2": "def randomizer(n, garrafa_vidro, lata_metal, copo_plastico, bola_papel,\n maça_organico):\n lixos = [garrafa_vidro, lata_metal, copo_plastico, bola_papel,\n maça_organico]\n return lixos[n]\n", "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0, 1 ] }
[ 0, 1 ]
from arcade.sprite_list.sprite_list import SpriteList import GamePiece as gp from Errors import * class GameConfig: WINDOW_TITLE = "MyPyTris" SCREEN_WIDTH = 450 SCREEN_HEIGHT = 900 BLOCK_PX = 45 # 45px blocks on screen SPRITE_PX = 64 # 64px sprite BLOCK_SCALE = BLOCK_PX/SPRITE_PX # sprite scale ratio class GameBoard: """ Class to manage blocks on the game board """ def __init__(self, width: int, height: int): # 2D list of blocks initialized to empty in the width and height of our game board self.width = width self.height = height self.blocks = [[None for y in range(width)] for x in range(height)] self.playerSprites = SpriteList() self.groundSprites = SpriteList() def draw(self): self.playerSprites.draw() self.groundSprites.draw() def canMoveBlock(self, x: int, y: int) -> bool: return self.blocks[x][y] is None def canMoveGamePiece(self, gamePiece:gp.GamePiece, xTo:int, yTo:int) -> bool: for yDiff, row in enumerate(gamePiece.blocks): for xDiff, block in enumerate(row): if block is None: continue newX = xTo + xDiff newY = yTo + yDiff if newX >= self.width or newX < 0: return False if newY < 0 or newY >= self.height: return False if self.blocks[newY][newX] is not None \ and self.blocks[newY][newX] not in gamePiece.allBlocks(): return False return True def moveGamePiece(self, gamePiece:gp.GamePiece, xTo:int, yTo:int): if (not self.canMoveGamePiece(gamePiece, xTo, yTo)): return False # remove blocks from game board for y, row in enumerate(gamePiece.blocks): for x, block in enumerate(row): if block is not None: self.blocks[y + gamePiece.y][x + gamePiece.x] = None # add blocks in new positions for y, row in enumerate(gamePiece.blocks): for x, block in enumerate(row): if block is not None: blockXDiff = block.x - gamePiece.x blockYDiff = block.y - gamePiece.y newBlockX = xTo + blockXDiff newBlockY = yTo + blockYDiff self.blocks[newBlockY][newBlockX] = block block.moveTo(newBlockX, newBlockY) gamePiece.x = xTo gamePiece.y = yTo def addBlock(self, aBlock: gp.Block): """adds a block to the game board""" if self.blocks[aBlock.y][aBlock.x] != None: raise MovementError('game board space not empty') self.blocks[aBlock.y][aBlock.x] = aBlock self.groundSprites.append(aBlock.sprite) def addGamePiece(self, gamePiece:gp.GamePiece): for y in range(gamePiece.size): for x in range(gamePiece.size): block = gamePiece.blocks[y][x] if block is None: continue self.blocks[block.y][block.x] = block self.playerSprites.append(block.sprite) def moveBlock(self, aBlock: gp.Block, x: int, y: int): self.blocks[aBlock.y][aBlock.x] = None self.blocks[y][x] = aBlock def removeBlock(self, aBlock: gp.Block): """ remove a block from the game board """ for y, row in iter(self.blocks): for x, block in iter(row): if block is aBlock: self.blocks[y][x] = None self.playerSprites.remove(aBlock.sprite) return class GameManager: def __init__(self) -> None: pass def start(self): gameBoard = GameBoard(10, 20) gameBoard.addGamePiece()
normal
{ "blob_id": "2d7431996bc8d1099c08fddc815b4706deb4f023", "index": 4393, "step-1": "<mask token>\n\n\nclass GameBoard:\n <mask token>\n <mask token>\n\n def draw(self):\n self.playerSprites.draw()\n self.groundSprites.draw()\n <mask token>\n <mask token>\n\n def moveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int):\n if not self.canMoveGamePiece(gamePiece, xTo, yTo):\n return False\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n self.blocks[y + gamePiece.y][x + gamePiece.x] = None\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n blockXDiff = block.x - gamePiece.x\n blockYDiff = block.y - gamePiece.y\n newBlockX = xTo + blockXDiff\n newBlockY = yTo + blockYDiff\n self.blocks[newBlockY][newBlockX] = block\n block.moveTo(newBlockX, newBlockY)\n gamePiece.x = xTo\n gamePiece.y = yTo\n <mask token>\n <mask token>\n <mask token>\n\n def removeBlock(self, aBlock: gp.Block):\n \"\"\" remove a block from the game board \"\"\"\n for y, row in iter(self.blocks):\n for x, block in iter(row):\n if block is aBlock:\n self.blocks[y][x] = None\n self.playerSprites.remove(aBlock.sprite)\n return\n\n\nclass GameManager:\n\n def __init__(self) ->None:\n pass\n\n def start(self):\n gameBoard = GameBoard(10, 20)\n gameBoard.addGamePiece()\n", "step-2": "<mask token>\n\n\nclass GameBoard:\n <mask token>\n\n def __init__(self, width: int, height: int):\n self.width = width\n self.height = height\n self.blocks = [[None for y in range(width)] for x in range(height)]\n self.playerSprites = SpriteList()\n self.groundSprites = SpriteList()\n\n def draw(self):\n self.playerSprites.draw()\n self.groundSprites.draw()\n\n def canMoveBlock(self, x: int, y: int) ->bool:\n return self.blocks[x][y] is None\n <mask token>\n\n def moveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int):\n if not self.canMoveGamePiece(gamePiece, xTo, yTo):\n return False\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n self.blocks[y + gamePiece.y][x + gamePiece.x] = None\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n blockXDiff = block.x - gamePiece.x\n blockYDiff = block.y - gamePiece.y\n newBlockX = xTo + blockXDiff\n newBlockY = yTo + blockYDiff\n self.blocks[newBlockY][newBlockX] = block\n block.moveTo(newBlockX, newBlockY)\n gamePiece.x = xTo\n gamePiece.y = yTo\n\n def addBlock(self, aBlock: gp.Block):\n \"\"\"adds a block to the game board\"\"\"\n if self.blocks[aBlock.y][aBlock.x] != None:\n raise MovementError('game board space not empty')\n self.blocks[aBlock.y][aBlock.x] = aBlock\n self.groundSprites.append(aBlock.sprite)\n\n def addGamePiece(self, gamePiece: gp.GamePiece):\n for y in range(gamePiece.size):\n for x in range(gamePiece.size):\n block = gamePiece.blocks[y][x]\n if block is None:\n continue\n self.blocks[block.y][block.x] = block\n self.playerSprites.append(block.sprite)\n\n def moveBlock(self, aBlock: gp.Block, x: int, y: int):\n self.blocks[aBlock.y][aBlock.x] = None\n self.blocks[y][x] = aBlock\n\n def removeBlock(self, aBlock: gp.Block):\n \"\"\" remove a block from the game board \"\"\"\n for y, row in iter(self.blocks):\n for x, block in iter(row):\n if block is aBlock:\n self.blocks[y][x] = None\n self.playerSprites.remove(aBlock.sprite)\n return\n\n\nclass GameManager:\n\n def __init__(self) ->None:\n pass\n\n def start(self):\n gameBoard = GameBoard(10, 20)\n gameBoard.addGamePiece()\n", "step-3": "<mask token>\n\n\nclass GameBoard:\n <mask token>\n\n def __init__(self, width: int, height: int):\n self.width = width\n self.height = height\n self.blocks = [[None for y in range(width)] for x in range(height)]\n self.playerSprites = SpriteList()\n self.groundSprites = SpriteList()\n\n def draw(self):\n self.playerSprites.draw()\n self.groundSprites.draw()\n\n def canMoveBlock(self, x: int, y: int) ->bool:\n return self.blocks[x][y] is None\n\n def canMoveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int\n ) ->bool:\n for yDiff, row in enumerate(gamePiece.blocks):\n for xDiff, block in enumerate(row):\n if block is None:\n continue\n newX = xTo + xDiff\n newY = yTo + yDiff\n if newX >= self.width or newX < 0:\n return False\n if newY < 0 or newY >= self.height:\n return False\n if self.blocks[newY][newX] is not None and self.blocks[newY][\n newX] not in gamePiece.allBlocks():\n return False\n return True\n\n def moveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int):\n if not self.canMoveGamePiece(gamePiece, xTo, yTo):\n return False\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n self.blocks[y + gamePiece.y][x + gamePiece.x] = None\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n blockXDiff = block.x - gamePiece.x\n blockYDiff = block.y - gamePiece.y\n newBlockX = xTo + blockXDiff\n newBlockY = yTo + blockYDiff\n self.blocks[newBlockY][newBlockX] = block\n block.moveTo(newBlockX, newBlockY)\n gamePiece.x = xTo\n gamePiece.y = yTo\n\n def addBlock(self, aBlock: gp.Block):\n \"\"\"adds a block to the game board\"\"\"\n if self.blocks[aBlock.y][aBlock.x] != None:\n raise MovementError('game board space not empty')\n self.blocks[aBlock.y][aBlock.x] = aBlock\n self.groundSprites.append(aBlock.sprite)\n\n def addGamePiece(self, gamePiece: gp.GamePiece):\n for y in range(gamePiece.size):\n for x in range(gamePiece.size):\n block = gamePiece.blocks[y][x]\n if block is None:\n continue\n self.blocks[block.y][block.x] = block\n self.playerSprites.append(block.sprite)\n\n def moveBlock(self, aBlock: gp.Block, x: int, y: int):\n self.blocks[aBlock.y][aBlock.x] = None\n self.blocks[y][x] = aBlock\n\n def removeBlock(self, aBlock: gp.Block):\n \"\"\" remove a block from the game board \"\"\"\n for y, row in iter(self.blocks):\n for x, block in iter(row):\n if block is aBlock:\n self.blocks[y][x] = None\n self.playerSprites.remove(aBlock.sprite)\n return\n\n\nclass GameManager:\n\n def __init__(self) ->None:\n pass\n\n def start(self):\n gameBoard = GameBoard(10, 20)\n gameBoard.addGamePiece()\n", "step-4": "from arcade.sprite_list.sprite_list import SpriteList\nimport GamePiece as gp\nfrom Errors import *\n\n\nclass GameConfig:\n WINDOW_TITLE = 'MyPyTris'\n SCREEN_WIDTH = 450\n SCREEN_HEIGHT = 900\n BLOCK_PX = 45\n SPRITE_PX = 64\n BLOCK_SCALE = BLOCK_PX / SPRITE_PX\n\n\nclass GameBoard:\n \"\"\" Class to manage blocks on the game board \"\"\"\n\n def __init__(self, width: int, height: int):\n self.width = width\n self.height = height\n self.blocks = [[None for y in range(width)] for x in range(height)]\n self.playerSprites = SpriteList()\n self.groundSprites = SpriteList()\n\n def draw(self):\n self.playerSprites.draw()\n self.groundSprites.draw()\n\n def canMoveBlock(self, x: int, y: int) ->bool:\n return self.blocks[x][y] is None\n\n def canMoveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int\n ) ->bool:\n for yDiff, row in enumerate(gamePiece.blocks):\n for xDiff, block in enumerate(row):\n if block is None:\n continue\n newX = xTo + xDiff\n newY = yTo + yDiff\n if newX >= self.width or newX < 0:\n return False\n if newY < 0 or newY >= self.height:\n return False\n if self.blocks[newY][newX] is not None and self.blocks[newY][\n newX] not in gamePiece.allBlocks():\n return False\n return True\n\n def moveGamePiece(self, gamePiece: gp.GamePiece, xTo: int, yTo: int):\n if not self.canMoveGamePiece(gamePiece, xTo, yTo):\n return False\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n self.blocks[y + gamePiece.y][x + gamePiece.x] = None\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n blockXDiff = block.x - gamePiece.x\n blockYDiff = block.y - gamePiece.y\n newBlockX = xTo + blockXDiff\n newBlockY = yTo + blockYDiff\n self.blocks[newBlockY][newBlockX] = block\n block.moveTo(newBlockX, newBlockY)\n gamePiece.x = xTo\n gamePiece.y = yTo\n\n def addBlock(self, aBlock: gp.Block):\n \"\"\"adds a block to the game board\"\"\"\n if self.blocks[aBlock.y][aBlock.x] != None:\n raise MovementError('game board space not empty')\n self.blocks[aBlock.y][aBlock.x] = aBlock\n self.groundSprites.append(aBlock.sprite)\n\n def addGamePiece(self, gamePiece: gp.GamePiece):\n for y in range(gamePiece.size):\n for x in range(gamePiece.size):\n block = gamePiece.blocks[y][x]\n if block is None:\n continue\n self.blocks[block.y][block.x] = block\n self.playerSprites.append(block.sprite)\n\n def moveBlock(self, aBlock: gp.Block, x: int, y: int):\n self.blocks[aBlock.y][aBlock.x] = None\n self.blocks[y][x] = aBlock\n\n def removeBlock(self, aBlock: gp.Block):\n \"\"\" remove a block from the game board \"\"\"\n for y, row in iter(self.blocks):\n for x, block in iter(row):\n if block is aBlock:\n self.blocks[y][x] = None\n self.playerSprites.remove(aBlock.sprite)\n return\n\n\nclass GameManager:\n\n def __init__(self) ->None:\n pass\n\n def start(self):\n gameBoard = GameBoard(10, 20)\n gameBoard.addGamePiece()\n", "step-5": "\nfrom arcade.sprite_list.sprite_list import SpriteList\nimport GamePiece as gp\nfrom Errors import *\n\nclass GameConfig:\n WINDOW_TITLE = \"MyPyTris\"\n SCREEN_WIDTH = 450\n SCREEN_HEIGHT = 900\n BLOCK_PX = 45 # 45px blocks on screen\n SPRITE_PX = 64 # 64px sprite\n BLOCK_SCALE = BLOCK_PX/SPRITE_PX # sprite scale ratio\n\nclass GameBoard:\n \"\"\" Class to manage blocks on the game board \"\"\"\n\n def __init__(self, width: int, height: int):\n # 2D list of blocks initialized to empty in the width and height of our game board\n self.width = width\n self.height = height\n self.blocks = [[None for y in range(width)] for x in range(height)]\n self.playerSprites = SpriteList()\n self.groundSprites = SpriteList()\n\n\n def draw(self):\n self.playerSprites.draw()\n self.groundSprites.draw()\n\n def canMoveBlock(self, x: int, y: int) -> bool:\n return self.blocks[x][y] is None\n\n def canMoveGamePiece(self, gamePiece:gp.GamePiece, xTo:int, yTo:int) -> bool:\n for yDiff, row in enumerate(gamePiece.blocks):\n for xDiff, block in enumerate(row):\n if block is None:\n continue\n newX = xTo + xDiff\n newY = yTo + yDiff\n if newX >= self.width or newX < 0:\n return False\n if newY < 0 or newY >= self.height:\n return False\n if self.blocks[newY][newX] is not None \\\n and self.blocks[newY][newX] not in gamePiece.allBlocks():\n return False\n return True\n\n def moveGamePiece(self, gamePiece:gp.GamePiece, xTo:int, yTo:int):\n if (not self.canMoveGamePiece(gamePiece, xTo, yTo)):\n return False\n\n # remove blocks from game board\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n self.blocks[y + gamePiece.y][x + gamePiece.x] = None\n\n # add blocks in new positions\n for y, row in enumerate(gamePiece.blocks):\n for x, block in enumerate(row):\n if block is not None:\n blockXDiff = block.x - gamePiece.x\n blockYDiff = block.y - gamePiece.y\n newBlockX = xTo + blockXDiff\n newBlockY = yTo + blockYDiff\n self.blocks[newBlockY][newBlockX] = block\n block.moveTo(newBlockX, newBlockY)\n\n gamePiece.x = xTo\n gamePiece.y = yTo\n \n\n def addBlock(self, aBlock: gp.Block):\n \"\"\"adds a block to the game board\"\"\"\n\n if self.blocks[aBlock.y][aBlock.x] != None:\n raise MovementError('game board space not empty')\n self.blocks[aBlock.y][aBlock.x] = aBlock\n self.groundSprites.append(aBlock.sprite)\n\n def addGamePiece(self, gamePiece:gp.GamePiece):\n for y in range(gamePiece.size):\n for x in range(gamePiece.size):\n block = gamePiece.blocks[y][x]\n if block is None:\n continue\n self.blocks[block.y][block.x] = block\n self.playerSprites.append(block.sprite)\n\n def moveBlock(self, aBlock: gp.Block, x: int, y: int):\n self.blocks[aBlock.y][aBlock.x] = None\n self.blocks[y][x] = aBlock\n\n def removeBlock(self, aBlock: gp.Block):\n \"\"\" remove a block from the game board \"\"\"\n \n for y, row in iter(self.blocks):\n for x, block in iter(row):\n if block is aBlock:\n self.blocks[y][x] = None\n self.playerSprites.remove(aBlock.sprite)\n return\n\n\nclass GameManager:\n\n def __init__(self) -> None:\n pass\n \n def start(self):\n gameBoard = GameBoard(10, 20)\n gameBoard.addGamePiece()", "step-ids": [ 7, 12, 13, 17, 18 ] }
[ 7, 12, 13, 17, 18 ]
import numpy as np import tensorflow as tf import math from .. import util def debug_inference(inference, dummy, entropy, cross_entropy, expected_log_likelhood): dummy = tf.Print(dummy, [entropy], 'entropy: ') dummy = tf.Print(dummy, [cross_entropy], 'cross_entropy: ') dummy = tf.Print(dummy, [expected_log_likelhood], 'expected_log_likelhood: ') #dummy = tf.Print(dummy, [inference.q_means_u], 'self.q_means_u: ') #dummy = tf.Print(dummy, [inference.q_covars_u], 'self.q_covars_u: ') #dummy = tf.Print(dummy, [inference.q_means_v], 'self.q_means_v: ') #dummy = tf.Print(dummy, [inference.q_covars_v], 'self.q_covars_v: ') return dummy def matrix_conditions(session, inference): for j in range(inference.num_latent): k_j = inference.kern_f[j] K_zz_f = k_j.kernel(inference.inducing_locations, inference.inducing_locations, jitter=True) mat = K_zz_f.eval(session=session) cond = np.linalg.cond(mat) sigma = k_j.sigma.eval(session=session) ls = k_j.length_scales.eval(session=session) print('MATRIX CONDITION F('+str(j)+'): ', cond) print('SIGMA F('+str(j)+'): ', sigma) print('LENGTH_SCALES F('+str(j)+'): ', ls) print(mat) for j in range(inference.num_latent): for i in range(inference.num_outputs): k_ij = inference.kern_w[i][j] K_zz_w = k_ij.kernel(inference.inducing_locations, inference.inducing_locations, jitter=True) mat = K_zz_w.eval(session=session) cond = np.linalg.cond(mat) sigma = k_ij.sigma.eval(session=session) ls = k_ij.length_scales.eval(session=session) print('MATRIX CONDITION W('+str(i)+','+str(j)+'): ', cond) print('SIGMA W('+str(i)+','+str(j)+'): ', sigma) print('LENGTH_SCALES W('+str(i)+','+str(j)+'): ', ls) print(mat)
normal
{ "blob_id": "4758d6efde21e3b5d91f107188f24b6ddf7cbbe4", "index": 7935, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef debug_inference(inference, dummy, entropy, cross_entropy,\n expected_log_likelhood):\n dummy = tf.Print(dummy, [entropy], 'entropy: ')\n dummy = tf.Print(dummy, [cross_entropy], 'cross_entropy: ')\n dummy = tf.Print(dummy, [expected_log_likelhood],\n 'expected_log_likelhood: ')\n return dummy\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef debug_inference(inference, dummy, entropy, cross_entropy,\n expected_log_likelhood):\n dummy = tf.Print(dummy, [entropy], 'entropy: ')\n dummy = tf.Print(dummy, [cross_entropy], 'cross_entropy: ')\n dummy = tf.Print(dummy, [expected_log_likelhood],\n 'expected_log_likelhood: ')\n return dummy\n\n\ndef matrix_conditions(session, inference):\n for j in range(inference.num_latent):\n k_j = inference.kern_f[j]\n K_zz_f = k_j.kernel(inference.inducing_locations, inference.\n inducing_locations, jitter=True)\n mat = K_zz_f.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_j.sigma.eval(session=session)\n ls = k_j.length_scales.eval(session=session)\n print('MATRIX CONDITION F(' + str(j) + '): ', cond)\n print('SIGMA F(' + str(j) + '): ', sigma)\n print('LENGTH_SCALES F(' + str(j) + '): ', ls)\n print(mat)\n for j in range(inference.num_latent):\n for i in range(inference.num_outputs):\n k_ij = inference.kern_w[i][j]\n K_zz_w = k_ij.kernel(inference.inducing_locations, inference.\n inducing_locations, jitter=True)\n mat = K_zz_w.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_ij.sigma.eval(session=session)\n ls = k_ij.length_scales.eval(session=session)\n print('MATRIX CONDITION W(' + str(i) + ',' + str(j) + '): ', cond)\n print('SIGMA W(' + str(i) + ',' + str(j) + '): ', sigma)\n print('LENGTH_SCALES W(' + str(i) + ',' + str(j) + '): ', ls)\n print(mat)\n", "step-4": "import numpy as np\nimport tensorflow as tf\nimport math\nfrom .. import util\n\n\ndef debug_inference(inference, dummy, entropy, cross_entropy,\n expected_log_likelhood):\n dummy = tf.Print(dummy, [entropy], 'entropy: ')\n dummy = tf.Print(dummy, [cross_entropy], 'cross_entropy: ')\n dummy = tf.Print(dummy, [expected_log_likelhood],\n 'expected_log_likelhood: ')\n return dummy\n\n\ndef matrix_conditions(session, inference):\n for j in range(inference.num_latent):\n k_j = inference.kern_f[j]\n K_zz_f = k_j.kernel(inference.inducing_locations, inference.\n inducing_locations, jitter=True)\n mat = K_zz_f.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_j.sigma.eval(session=session)\n ls = k_j.length_scales.eval(session=session)\n print('MATRIX CONDITION F(' + str(j) + '): ', cond)\n print('SIGMA F(' + str(j) + '): ', sigma)\n print('LENGTH_SCALES F(' + str(j) + '): ', ls)\n print(mat)\n for j in range(inference.num_latent):\n for i in range(inference.num_outputs):\n k_ij = inference.kern_w[i][j]\n K_zz_w = k_ij.kernel(inference.inducing_locations, inference.\n inducing_locations, jitter=True)\n mat = K_zz_w.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_ij.sigma.eval(session=session)\n ls = k_ij.length_scales.eval(session=session)\n print('MATRIX CONDITION W(' + str(i) + ',' + str(j) + '): ', cond)\n print('SIGMA W(' + str(i) + ',' + str(j) + '): ', sigma)\n print('LENGTH_SCALES W(' + str(i) + ',' + str(j) + '): ', ls)\n print(mat)\n", "step-5": "import numpy as np\nimport tensorflow as tf\nimport math\nfrom .. import util\n\ndef debug_inference(inference, dummy, entropy, cross_entropy, expected_log_likelhood):\n dummy = tf.Print(dummy, [entropy], 'entropy: ')\n dummy = tf.Print(dummy, [cross_entropy], 'cross_entropy: ')\n dummy = tf.Print(dummy, [expected_log_likelhood], 'expected_log_likelhood: ')\n #dummy = tf.Print(dummy, [inference.q_means_u], 'self.q_means_u: ')\n #dummy = tf.Print(dummy, [inference.q_covars_u], 'self.q_covars_u: ')\n #dummy = tf.Print(dummy, [inference.q_means_v], 'self.q_means_v: ')\n #dummy = tf.Print(dummy, [inference.q_covars_v], 'self.q_covars_v: ')\n\n return dummy\n\ndef matrix_conditions(session, inference):\n for j in range(inference.num_latent):\n k_j = inference.kern_f[j]\n K_zz_f = k_j.kernel(inference.inducing_locations, inference.inducing_locations, jitter=True)\n mat = K_zz_f.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_j.sigma.eval(session=session)\n ls = k_j.length_scales.eval(session=session)\n print('MATRIX CONDITION F('+str(j)+'): ', cond)\n print('SIGMA F('+str(j)+'): ', sigma)\n print('LENGTH_SCALES F('+str(j)+'): ', ls)\n\n print(mat)\n\n for j in range(inference.num_latent):\n for i in range(inference.num_outputs):\n k_ij = inference.kern_w[i][j]\n K_zz_w = k_ij.kernel(inference.inducing_locations, inference.inducing_locations, jitter=True)\n mat = K_zz_w.eval(session=session)\n cond = np.linalg.cond(mat)\n sigma = k_ij.sigma.eval(session=session)\n ls = k_ij.length_scales.eval(session=session)\n print('MATRIX CONDITION W('+str(i)+','+str(j)+'): ', cond)\n print('SIGMA W('+str(i)+','+str(j)+'): ', sigma)\n print('LENGTH_SCALES W('+str(i)+','+str(j)+'): ', ls)\n print(mat)\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
######################################################### # Author: Todd A. Reisel # Date: 2/24/2003 # Class: StaticTemplateList ######################################################### from BaseClasses.TemplateList import *; class StaticTemplateList(TemplateList): def __init__(self, viewMode = None): TemplateList.__init__(self, viewMode); def getList(self): return [ ["graphical", "interface.html"], ["ada", "interface.html"] ]; def getFeatureName(self): return "static";
normal
{ "blob_id": "7de3c0ab2e7c8ac00d37f1dfb5948027cfa7806c", "index": 5084, "step-1": "<mask token>\n\n\nclass StaticTemplateList(TemplateList):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass StaticTemplateList(TemplateList):\n\n def __init__(self, viewMode=None):\n TemplateList.__init__(self, viewMode)\n <mask token>\n\n def getFeatureName(self):\n return 'static'\n", "step-3": "<mask token>\n\n\nclass StaticTemplateList(TemplateList):\n\n def __init__(self, viewMode=None):\n TemplateList.__init__(self, viewMode)\n\n def getList(self):\n return [['graphical', 'interface.html'], ['ada', 'interface.html']]\n\n def getFeatureName(self):\n return 'static'\n", "step-4": "from BaseClasses.TemplateList import *\n\n\nclass StaticTemplateList(TemplateList):\n\n def __init__(self, viewMode=None):\n TemplateList.__init__(self, viewMode)\n\n def getList(self):\n return [['graphical', 'interface.html'], ['ada', 'interface.html']]\n\n def getFeatureName(self):\n return 'static'\n", "step-5": "#########################################################\n# Author: Todd A. Reisel\n# Date: 2/24/2003\n# Class: StaticTemplateList\n#########################################################\n\nfrom BaseClasses.TemplateList import *;\n\nclass StaticTemplateList(TemplateList):\n def __init__(self, viewMode = None):\n TemplateList.__init__(self, viewMode);\n \n def getList(self):\n return [ [\"graphical\", \"interface.html\"], [\"ada\", \"interface.html\"] ];\n \n def getFeatureName(self):\n return \"static\";\n \n", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
# 데이터 출처: kaggle # 데이터 개요: 511, 유리를 위한 다양한 속성(화학원소)들로부터 type 구별 # 데이터 예측 모델: 이진클래스 # 적용 머신러닝 모델: 깊은 다층 퍼셉트론 신경망 # 훈련 데이터셋: 160건 # 검증 데이터셋: 건 # 시험 데이터셋: 수집데이터로서 시험셋을 확보할 수 없으므로 고려하지 않음 # 입력 데이터: 10개 항목의 데이터 # 은닉층: 2개 # 사용한 활성화 함수 # - 제1 은닉층: Relu # - 제2 은닉층: Relu # - Output Layer: Softmax # 사용한 손실함수: categorical_crossentropy # 사용한 Optimizer: rmsprop # Tensorflow 버전: 2.0.0 # 파이썬버전: 3.7.4 import pandas as pd from datetime import datetime from sklearn.model_selection import train_test_split import numpy as np from keras.models import Sequential from keras.layers import Dense from keras.utils import to_categorical np.random.seed(5) match_dic={} zoo_class = pd.read_csv('zoo.csv',sep=',',header=0) zoo_class.columns = zoo_class.columns.str.replace(' ','_') # 전체 독립변수 식별 input_data_header = list(zoo_class.columns.difference(["animal_name","class_type"])) input_data_number = len(input_data_header) label = zoo_class["class_type"] start_time = datetime.now() train_data, test_data, train_label, test_label = train_test_split(zoo_class[input_data_header],label) train_label = to_categorical(train_label, num_classes=7) test_label = to_categorical(test_label, num_classes=7) # 훈련셋과 시험셋 불러오기 # x_train = x_train.reshape(60000, width * height).astype('float32') / 255.0 # x_test = x_test.reshape(10000, width * height).astype('float32') / 255.0 # 모델 구성하기 model = Sequential() model.add(Dense(64, input_dim=input_data_number, activation='relu')) model.add(Dense(64, activation='relu')) # model.add(Dense(6, activation='sigmoid')) model.add(Dense(7, activation='softmax')) model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) # 4. 모델 학습시키기 hist = model.fit(train_data, train_label, epochs=20000, batch_size=64, validation_data=(test_data, test_label)) # hist = model.fit(train_data, train_label, epochs=1000, batch_size=64) end_time = datetime.now() # 5. 학습과정 살펴보기 import matplotlib.pyplot as plt fig, loss_ax = plt.subplots() acc_ax = loss_ax.twinx() loss_ax.plot(hist.history['loss'], 'y', label='train loss') loss_ax.plot(hist.history['val_loss'], 'r', label='val loss') # acc_ax.plot(hist.history['acc'], 'b', label='train acc') acc_ax.plot(hist.history['accuracy'], 'b', label='train acc') # acc_ax.plot(hist.history['val_acc'], 'g', label='val acc') acc_ax.plot(hist.history['val_accuracy'],'g', label='val acc') loss_ax.set_xlabel('epoch') loss_ax.set_ylabel('loss') acc_ax.set_ylabel('accuray') loss_ax.legend(loc='upper left') acc_ax.legend(loc='lower left') plt.show() # 6. 모델 평가하기 loss_and_metrics = model.evaluate(test_data, test_label, batch_size=32) print('loss_and_metrics : ' + str(loss_and_metrics)) scores = model.evaluate(test_data, test_label) print("%s: %.2f%%"%(model.metrics_names[1],scores[1]*100))
normal
{ "blob_id": "bfa5739949c26758e3762fcff8347d23ad70f704", "index": 6114, "step-1": "<mask token>\n", "step-2": "<mask token>\nnp.random.seed(5)\n<mask token>\nmodel.add(Dense(64, input_dim=input_data_number, activation='relu'))\nmodel.add(Dense(64, activation='relu'))\nmodel.add(Dense(7, activation='softmax'))\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\n<mask token>\nloss_ax.plot(hist.history['loss'], 'y', label='train loss')\nloss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\nacc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\nacc_ax.plot(hist.history['val_accuracy'], 'g', label='val acc')\nloss_ax.set_xlabel('epoch')\nloss_ax.set_ylabel('loss')\nacc_ax.set_ylabel('accuray')\nloss_ax.legend(loc='upper left')\nacc_ax.legend(loc='lower left')\nplt.show()\n<mask token>\nprint('loss_and_metrics : ' + str(loss_and_metrics))\n<mask token>\nprint('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))\n", "step-3": "<mask token>\nnp.random.seed(5)\nmatch_dic = {}\nzoo_class = pd.read_csv('zoo.csv', sep=',', header=0)\nzoo_class.columns = zoo_class.columns.str.replace(' ', '_')\ninput_data_header = list(zoo_class.columns.difference(['animal_name',\n 'class_type']))\ninput_data_number = len(input_data_header)\nlabel = zoo_class['class_type']\nstart_time = datetime.now()\ntrain_data, test_data, train_label, test_label = train_test_split(zoo_class\n [input_data_header], label)\ntrain_label = to_categorical(train_label, num_classes=7)\ntest_label = to_categorical(test_label, num_classes=7)\nmodel = Sequential()\nmodel.add(Dense(64, input_dim=input_data_number, activation='relu'))\nmodel.add(Dense(64, activation='relu'))\nmodel.add(Dense(7, activation='softmax'))\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\nhist = model.fit(train_data, train_label, epochs=20000, batch_size=64,\n validation_data=(test_data, test_label))\nend_time = datetime.now()\n<mask token>\nfig, loss_ax = plt.subplots()\nacc_ax = loss_ax.twinx()\nloss_ax.plot(hist.history['loss'], 'y', label='train loss')\nloss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\nacc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\nacc_ax.plot(hist.history['val_accuracy'], 'g', label='val acc')\nloss_ax.set_xlabel('epoch')\nloss_ax.set_ylabel('loss')\nacc_ax.set_ylabel('accuray')\nloss_ax.legend(loc='upper left')\nacc_ax.legend(loc='lower left')\nplt.show()\nloss_and_metrics = model.evaluate(test_data, test_label, batch_size=32)\nprint('loss_and_metrics : ' + str(loss_and_metrics))\nscores = model.evaluate(test_data, test_label)\nprint('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))\n", "step-4": "import pandas as pd\nfrom datetime import datetime\nfrom sklearn.model_selection import train_test_split\nimport numpy as np\nfrom keras.models import Sequential\nfrom keras.layers import Dense\nfrom keras.utils import to_categorical\nnp.random.seed(5)\nmatch_dic = {}\nzoo_class = pd.read_csv('zoo.csv', sep=',', header=0)\nzoo_class.columns = zoo_class.columns.str.replace(' ', '_')\ninput_data_header = list(zoo_class.columns.difference(['animal_name',\n 'class_type']))\ninput_data_number = len(input_data_header)\nlabel = zoo_class['class_type']\nstart_time = datetime.now()\ntrain_data, test_data, train_label, test_label = train_test_split(zoo_class\n [input_data_header], label)\ntrain_label = to_categorical(train_label, num_classes=7)\ntest_label = to_categorical(test_label, num_classes=7)\nmodel = Sequential()\nmodel.add(Dense(64, input_dim=input_data_number, activation='relu'))\nmodel.add(Dense(64, activation='relu'))\nmodel.add(Dense(7, activation='softmax'))\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=[\n 'accuracy'])\nhist = model.fit(train_data, train_label, epochs=20000, batch_size=64,\n validation_data=(test_data, test_label))\nend_time = datetime.now()\nimport matplotlib.pyplot as plt\nfig, loss_ax = plt.subplots()\nacc_ax = loss_ax.twinx()\nloss_ax.plot(hist.history['loss'], 'y', label='train loss')\nloss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\nacc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\nacc_ax.plot(hist.history['val_accuracy'], 'g', label='val acc')\nloss_ax.set_xlabel('epoch')\nloss_ax.set_ylabel('loss')\nacc_ax.set_ylabel('accuray')\nloss_ax.legend(loc='upper left')\nacc_ax.legend(loc='lower left')\nplt.show()\nloss_and_metrics = model.evaluate(test_data, test_label, batch_size=32)\nprint('loss_and_metrics : ' + str(loss_and_metrics))\nscores = model.evaluate(test_data, test_label)\nprint('%s: %.2f%%' % (model.metrics_names[1], scores[1] * 100))\n", "step-5": "# 데이터 출처: kaggle\n# 데이터 개요: 511, 유리를 위한 다양한 속성(화학원소)들로부터 type 구별\n# 데이터 예측 모델: 이진클래스\n# 적용 머신러닝 모델: 깊은 다층 퍼셉트론 신경망\n# 훈련 데이터셋: 160건\n# 검증 데이터셋: 건\n# 시험 데이터셋: 수집데이터로서 시험셋을 확보할 수 없으므로 고려하지 않음\n# 입력 데이터: 10개 항목의 데이터\n# 은닉층: 2개\n# 사용한 활성화 함수\n# - 제1 은닉층: Relu\n# - 제2 은닉층: Relu\n# - Output Layer: Softmax\n# 사용한 손실함수: categorical_crossentropy\n# 사용한 Optimizer: rmsprop\n# Tensorflow 버전: 2.0.0\n# 파이썬버전: 3.7.4\n\nimport pandas as pd\nfrom datetime import datetime\nfrom sklearn.model_selection import train_test_split\nimport numpy as np\nfrom keras.models import Sequential\nfrom keras.layers import Dense\nfrom keras.utils import to_categorical\n\nnp.random.seed(5)\nmatch_dic={}\n\nzoo_class = pd.read_csv('zoo.csv',sep=',',header=0)\nzoo_class.columns = zoo_class.columns.str.replace(' ','_')\n\n\n# 전체 독립변수 식별\ninput_data_header = list(zoo_class.columns.difference([\"animal_name\",\"class_type\"]))\ninput_data_number = len(input_data_header)\nlabel = zoo_class[\"class_type\"]\n\nstart_time = datetime.now()\n\ntrain_data, test_data, train_label, test_label = train_test_split(zoo_class[input_data_header],label)\ntrain_label = to_categorical(train_label, num_classes=7)\ntest_label = to_categorical(test_label, num_classes=7)\n\n# 훈련셋과 시험셋 불러오기\n# x_train = x_train.reshape(60000, width * height).astype('float32') / 255.0\n# x_test = x_test.reshape(10000, width * height).astype('float32') / 255.0\n\n# 모델 구성하기\nmodel = Sequential()\nmodel.add(Dense(64, input_dim=input_data_number, activation='relu'))\nmodel.add(Dense(64, activation='relu'))\n# model.add(Dense(6, activation='sigmoid'))\nmodel.add(Dense(7, activation='softmax'))\n\nmodel.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n# model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy'])\n\n# 4. 모델 학습시키기\nhist = model.fit(train_data, train_label, epochs=20000, batch_size=64, validation_data=(test_data, test_label))\n# hist = model.fit(train_data, train_label, epochs=1000, batch_size=64)\n\nend_time = datetime.now()\n\n# 5. 학습과정 살펴보기\nimport matplotlib.pyplot as plt\n\nfig, loss_ax = plt.subplots()\n\nacc_ax = loss_ax.twinx()\n\nloss_ax.plot(hist.history['loss'], 'y', label='train loss')\nloss_ax.plot(hist.history['val_loss'], 'r', label='val loss')\n\n# acc_ax.plot(hist.history['acc'], 'b', label='train acc')\nacc_ax.plot(hist.history['accuracy'], 'b', label='train acc')\n# acc_ax.plot(hist.history['val_acc'], 'g', label='val acc')\nacc_ax.plot(hist.history['val_accuracy'],'g', label='val acc')\n\nloss_ax.set_xlabel('epoch')\nloss_ax.set_ylabel('loss')\nacc_ax.set_ylabel('accuray')\n\nloss_ax.legend(loc='upper left')\nacc_ax.legend(loc='lower left')\n\nplt.show()\n\n# 6. 모델 평가하기\nloss_and_metrics = model.evaluate(test_data, test_label, batch_size=32)\nprint('loss_and_metrics : ' + str(loss_and_metrics))\n\nscores = model.evaluate(test_data, test_label)\nprint(\"%s: %.2f%%\"%(model.metrics_names[1],scores[1]*100))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
plik=open("nowy_zad_84.txt", "w") print(" Podaj 5 imion") for i in range(1,6): imie=input(f" Podaj imie nr {i} ") # plik.write(imie) # plik.write("\n") plik.write(f" {imie} \n") plik.close() plik=open("nowy_zad_84.txt", "a") for i in range(1,101): plik.write(str(i)) plik.write("\n") plik.close()
normal
{ "blob_id": "0ac99e2b33f676a99674c9a8e5d9d47c5bce084b", "index": 5820, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(' Podaj 5 imion')\nfor i in range(1, 6):\n imie = input(f' Podaj imie nr {i} ')\n plik.write(f' {imie} \\n')\nplik.close()\n<mask token>\nfor i in range(1, 101):\n plik.write(str(i))\n plik.write('\\n')\nplik.close()\n", "step-3": "plik = open('nowy_zad_84.txt', 'w')\nprint(' Podaj 5 imion')\nfor i in range(1, 6):\n imie = input(f' Podaj imie nr {i} ')\n plik.write(f' {imie} \\n')\nplik.close()\nplik = open('nowy_zad_84.txt', 'a')\nfor i in range(1, 101):\n plik.write(str(i))\n plik.write('\\n')\nplik.close()\n", "step-4": "\r\n\r\nplik=open(\"nowy_zad_84.txt\", \"w\")\r\n\r\nprint(\" Podaj 5 imion\")\r\nfor i in range(1,6):\r\n imie=input(f\" Podaj imie nr {i} \")\r\n # plik.write(imie)\r\n # plik.write(\"\\n\")\r\n plik.write(f\" {imie} \\n\")\r\n\r\nplik.close()\r\n\r\nplik=open(\"nowy_zad_84.txt\", \"a\")\r\n\r\nfor i in range(1,101):\r\n plik.write(str(i))\r\n plik.write(\"\\n\")\r\n\r\nplik.close()\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import os import hashlib import argparse def hashfile(path, blocksize=65536): afile = open(path, 'rb') hasher = hashlib.md5() buf = afile.read(blocksize) while len(buf) > 0: hasher.update(buf) buf = afile.read(blocksize) afile.close() return hasher.hexdigest() def make_duplicate_list(filepath): unique_hashes = {} duplicate_files = {} for dir_name, subdir_list, file_list in os.walk(filepath): for filename in file_list: path = os.path.join(dir_name, filename) file_hash = hashfile(path) if file_hash in unique_hashes: if file_hash not in duplicate_files: # More than 2 duplicate files with same hash can exist, # so list of filepaths is created. duplicate_files[file_hash] = [] duplicate_files[file_hash].append(unique_hashes[file_hash]) duplicate_files[file_hash].append(path) else: unique_hashes[file_hash] = path return duplicate_files if __name__ == '__main__': parser = argparse.ArgumentParser(description="duplicates detector") parser.add_argument("path_to_folder", help="path to folder containig duplicates") args = parser.parse_args() path = args.path_to_folder duplicates = make_duplicate_list(path) for idx, (key, value) in enumerate(duplicates.items(), 1): print("{}) {} files with {} MD5 hash were " + "found:".format(idx, len(value), key)) for idx, folder in enumerate(value, 1): print(" {}. {}".format(idx, folder))
normal
{ "blob_id": "e99c158e54fd86b00e4e045e7fb28d961089800d", "index": 3289, "step-1": "<mask token>\n\n\ndef hashfile(path, blocksize=65536):\n afile = open(path, 'rb')\n hasher = hashlib.md5()\n buf = afile.read(blocksize)\n while len(buf) > 0:\n hasher.update(buf)\n buf = afile.read(blocksize)\n afile.close()\n return hasher.hexdigest()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef hashfile(path, blocksize=65536):\n afile = open(path, 'rb')\n hasher = hashlib.md5()\n buf = afile.read(blocksize)\n while len(buf) > 0:\n hasher.update(buf)\n buf = afile.read(blocksize)\n afile.close()\n return hasher.hexdigest()\n\n\ndef make_duplicate_list(filepath):\n unique_hashes = {}\n duplicate_files = {}\n for dir_name, subdir_list, file_list in os.walk(filepath):\n for filename in file_list:\n path = os.path.join(dir_name, filename)\n file_hash = hashfile(path)\n if file_hash in unique_hashes:\n if file_hash not in duplicate_files:\n duplicate_files[file_hash] = []\n duplicate_files[file_hash].append(unique_hashes[file_hash])\n duplicate_files[file_hash].append(path)\n else:\n unique_hashes[file_hash] = path\n return duplicate_files\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef hashfile(path, blocksize=65536):\n afile = open(path, 'rb')\n hasher = hashlib.md5()\n buf = afile.read(blocksize)\n while len(buf) > 0:\n hasher.update(buf)\n buf = afile.read(blocksize)\n afile.close()\n return hasher.hexdigest()\n\n\ndef make_duplicate_list(filepath):\n unique_hashes = {}\n duplicate_files = {}\n for dir_name, subdir_list, file_list in os.walk(filepath):\n for filename in file_list:\n path = os.path.join(dir_name, filename)\n file_hash = hashfile(path)\n if file_hash in unique_hashes:\n if file_hash not in duplicate_files:\n duplicate_files[file_hash] = []\n duplicate_files[file_hash].append(unique_hashes[file_hash])\n duplicate_files[file_hash].append(path)\n else:\n unique_hashes[file_hash] = path\n return duplicate_files\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description='duplicates detector')\n parser.add_argument('path_to_folder', help=\n 'path to folder containig duplicates')\n args = parser.parse_args()\n path = args.path_to_folder\n duplicates = make_duplicate_list(path)\n for idx, (key, value) in enumerate(duplicates.items(), 1):\n print('{}) {} files with {} MD5 hash were ' + 'found:'.format(idx,\n len(value), key))\n for idx, folder in enumerate(value, 1):\n print(' {}. {}'.format(idx, folder))\n", "step-4": "import os\nimport hashlib\nimport argparse\n\n\ndef hashfile(path, blocksize=65536):\n afile = open(path, 'rb')\n hasher = hashlib.md5()\n buf = afile.read(blocksize)\n while len(buf) > 0:\n hasher.update(buf)\n buf = afile.read(blocksize)\n afile.close()\n return hasher.hexdigest()\n\n\ndef make_duplicate_list(filepath):\n unique_hashes = {}\n duplicate_files = {}\n for dir_name, subdir_list, file_list in os.walk(filepath):\n for filename in file_list:\n path = os.path.join(dir_name, filename)\n file_hash = hashfile(path)\n if file_hash in unique_hashes:\n if file_hash not in duplicate_files:\n duplicate_files[file_hash] = []\n duplicate_files[file_hash].append(unique_hashes[file_hash])\n duplicate_files[file_hash].append(path)\n else:\n unique_hashes[file_hash] = path\n return duplicate_files\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description='duplicates detector')\n parser.add_argument('path_to_folder', help=\n 'path to folder containig duplicates')\n args = parser.parse_args()\n path = args.path_to_folder\n duplicates = make_duplicate_list(path)\n for idx, (key, value) in enumerate(duplicates.items(), 1):\n print('{}) {} files with {} MD5 hash were ' + 'found:'.format(idx,\n len(value), key))\n for idx, folder in enumerate(value, 1):\n print(' {}. {}'.format(idx, folder))\n", "step-5": "import os\nimport hashlib\nimport argparse\n\n\ndef hashfile(path, blocksize=65536):\n afile = open(path, 'rb')\n hasher = hashlib.md5()\n buf = afile.read(blocksize)\n while len(buf) > 0:\n hasher.update(buf)\n buf = afile.read(blocksize)\n afile.close()\n return hasher.hexdigest()\n\n\ndef make_duplicate_list(filepath):\n unique_hashes = {}\n duplicate_files = {}\n for dir_name, subdir_list, file_list in os.walk(filepath):\n for filename in file_list:\n path = os.path.join(dir_name, filename)\n file_hash = hashfile(path)\n if file_hash in unique_hashes:\n if file_hash not in duplicate_files:\n # More than 2 duplicate files with same hash can exist,\n # so list of filepaths is created.\n duplicate_files[file_hash] = []\n duplicate_files[file_hash].append(unique_hashes[file_hash])\n duplicate_files[file_hash].append(path)\n else:\n unique_hashes[file_hash] = path\n return duplicate_files\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser(description=\"duplicates detector\")\n parser.add_argument(\"path_to_folder\",\n help=\"path to folder containig duplicates\")\n args = parser.parse_args()\n path = args.path_to_folder\n duplicates = make_duplicate_list(path)\n for idx, (key, value) in enumerate(duplicates.items(), 1):\n print(\"{}) {} files with {} MD5 hash were \" +\n \"found:\".format(idx, len(value), key))\n for idx, folder in enumerate(value, 1):\n print(\" {}. {}\".format(idx, folder))\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
''' 文件读写的步骤 1.打开文件 2.处理数据 3.关闭文件 1.open函数: fileobj = open(filename, mode) fileobj是open()函数返回的文件对象 mode第一个字母指明文件类型和操作的字符串,第二个字母是文件类型: t(可省略)文本类型,b二进制类型。 文件打开模式:r只读(默认),w覆盖写(不存在则新创建) a追加模式(不存在则创建) 2.read(size):从文件读取长度为size的字符串,若未给定或为负则读取所有内容 3.readline():读取整行返回字符串 4.readlines():读取所有行并返回列表 5.write(s):把字符串s的内容写入文件 ''' ''' #复制一个文件 fileobj1 = open("test1.txt", "r") fileobj2 = open("test2.txt", "w") s = fileobj1.read() fileobj2.write(s) fileobj1.close() fileobj2.close() ''' #多行文件读写 fileobj3 = open("lines.txt", "r") for line in fileobj3.readlines(): print(line) fileobj3.close()
normal
{ "blob_id": "25f3c9f48b779d2aec260d529529156ff3c508ca", "index": 7719, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor line in fileobj3.readlines():\n print(line)\nfileobj3.close()\n", "step-3": "<mask token>\nfileobj3 = open('lines.txt', 'r')\nfor line in fileobj3.readlines():\n print(line)\nfileobj3.close()\n", "step-4": "'''\n文件读写的步骤\n 1.打开文件\n 2.处理数据\n 3.关闭文件\n1.open函数:\n fileobj = open(filename, mode)\n fileobj是open()函数返回的文件对象\n mode第一个字母指明文件类型和操作的字符串,第二个字母是文件类型:\n t(可省略)文本类型,b二进制类型。\n 文件打开模式:r只读(默认),w覆盖写(不存在则新创建)\n a追加模式(不存在则创建)\n2.read(size):从文件读取长度为size的字符串,若未给定或为负则读取所有内容\n3.readline():读取整行返回字符串\n4.readlines():读取所有行并返回列表\n5.write(s):把字符串s的内容写入文件\n'''\n'''\n#复制一个文件\nfileobj1 = open(\"test1.txt\", \"r\")\nfileobj2 = open(\"test2.txt\", \"w\")\ns = fileobj1.read()\nfileobj2.write(s)\nfileobj1.close()\nfileobj2.close()\n'''\n\n#多行文件读写\nfileobj3 = open(\"lines.txt\", \"r\")\nfor line in fileobj3.readlines():\n print(line)\nfileobj3.close()", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from scrapy import cmdline cmdline.execute("scrapy crawl rapo.com".split())
normal
{ "blob_id": "326f1b5bee8f488382a76fcc5559f4ea13734f21", "index": 6551, "step-1": "<mask token>\n", "step-2": "<mask token>\ncmdline.execute('scrapy crawl rapo.com'.split())\n", "step-3": "from scrapy import cmdline\ncmdline.execute('scrapy crawl rapo.com'.split())\n", "step-4": "from scrapy import cmdline\ncmdline.execute(\"scrapy crawl rapo.com\".split())\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from django.conf import settings from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseForbidden from django.views.decorators.csrf import csrf_exempt from linebot import LineBotApi, WebhookParser from linebot.exceptions import InvalidSignatureError, LineBotApiError from linebot.models import MessageEvent, TextMessage from module import func from urllib.parse import parse_qsl from func5api.models import users from django.shortcuts import render line_bot_api = LineBotApi(settings.LINE_CHANNEL_ACCESS_TOKEN) parser = WebhookParser(settings.LINE_CHANNEL_SECRET) @csrf_exempt def callback(request): if request.method == 'POST': signature = request.META['HTTP_X_LINE_SIGNATURE'] body = request.body.decode('utf-8') try: events = parser.parse(body, signature) except InvalidSignatureError: return HttpResponseForbidden() except LineBotApiError: return HttpResponseBadRequest() for event in events: if isinstance(event, MessageEvent): user_id = event.source.user_id #取得user_id if not(users.objects.filter(uid = user_id).exists()): #將user_id存入資料庫中 unit = users.objects.create(uid = user_id) unit.save() #將user_id上傳至資料庫 if isinstance(event.message, TextMessage): mtext = event.message.text if mtext == '@修繕申請': func.sendFix(event, user_id) elif mtext =='@修繕查詢': func.fix_inquire(event, user_id) elif mtext == 'admin_mode': func.judge(event, mtext, user_id) elif mtext[:6] == '123456' and len(mtext) > 6: #all func.judge(event, mtext, user_id) elif mtext[:2] == '++' and len(mtext) > 2: #specify func.judge(event, mtext, user_id) elif mtext[:2] == '##' and len(mtext) > 2: func.manageForm(event, mtext, user_id) elif mtext[:3] == '!!!' and len(mtext) > 3: func.personData(event, mtext, user_id) return HttpResponse() else: return HttpResponseBadRequest() def listall(request): user = users.objects.all().order_by('name') return render(request, "listall.html", locals())
normal
{ "blob_id": "19f202c32e1cf9f7ab2663827f1f98080f70b83e", "index": 8313, "step-1": "<mask token>\n\n\n@csrf_exempt\ndef callback(request):\n if request.method == 'POST':\n signature = request.META['HTTP_X_LINE_SIGNATURE']\n body = request.body.decode('utf-8')\n try:\n events = parser.parse(body, signature)\n except InvalidSignatureError:\n return HttpResponseForbidden()\n except LineBotApiError:\n return HttpResponseBadRequest()\n for event in events:\n if isinstance(event, MessageEvent):\n user_id = event.source.user_id\n if not users.objects.filter(uid=user_id).exists():\n unit = users.objects.create(uid=user_id)\n unit.save()\n if isinstance(event.message, TextMessage):\n mtext = event.message.text\n if mtext == '@修繕申請':\n func.sendFix(event, user_id)\n elif mtext == '@修繕查詢':\n func.fix_inquire(event, user_id)\n elif mtext == 'admin_mode':\n func.judge(event, mtext, user_id)\n elif mtext[:6] == '123456' and len(mtext) > 6:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '++' and len(mtext) > 2:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '##' and len(mtext) > 2:\n func.manageForm(event, mtext, user_id)\n elif mtext[:3] == '!!!' and len(mtext) > 3:\n func.personData(event, mtext, user_id)\n return HttpResponse()\n else:\n return HttpResponseBadRequest()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\n@csrf_exempt\ndef callback(request):\n if request.method == 'POST':\n signature = request.META['HTTP_X_LINE_SIGNATURE']\n body = request.body.decode('utf-8')\n try:\n events = parser.parse(body, signature)\n except InvalidSignatureError:\n return HttpResponseForbidden()\n except LineBotApiError:\n return HttpResponseBadRequest()\n for event in events:\n if isinstance(event, MessageEvent):\n user_id = event.source.user_id\n if not users.objects.filter(uid=user_id).exists():\n unit = users.objects.create(uid=user_id)\n unit.save()\n if isinstance(event.message, TextMessage):\n mtext = event.message.text\n if mtext == '@修繕申請':\n func.sendFix(event, user_id)\n elif mtext == '@修繕查詢':\n func.fix_inquire(event, user_id)\n elif mtext == 'admin_mode':\n func.judge(event, mtext, user_id)\n elif mtext[:6] == '123456' and len(mtext) > 6:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '++' and len(mtext) > 2:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '##' and len(mtext) > 2:\n func.manageForm(event, mtext, user_id)\n elif mtext[:3] == '!!!' and len(mtext) > 3:\n func.personData(event, mtext, user_id)\n return HttpResponse()\n else:\n return HttpResponseBadRequest()\n\n\ndef listall(request):\n user = users.objects.all().order_by('name')\n return render(request, 'listall.html', locals())\n", "step-3": "<mask token>\nline_bot_api = LineBotApi(settings.LINE_CHANNEL_ACCESS_TOKEN)\nparser = WebhookParser(settings.LINE_CHANNEL_SECRET)\n\n\n@csrf_exempt\ndef callback(request):\n if request.method == 'POST':\n signature = request.META['HTTP_X_LINE_SIGNATURE']\n body = request.body.decode('utf-8')\n try:\n events = parser.parse(body, signature)\n except InvalidSignatureError:\n return HttpResponseForbidden()\n except LineBotApiError:\n return HttpResponseBadRequest()\n for event in events:\n if isinstance(event, MessageEvent):\n user_id = event.source.user_id\n if not users.objects.filter(uid=user_id).exists():\n unit = users.objects.create(uid=user_id)\n unit.save()\n if isinstance(event.message, TextMessage):\n mtext = event.message.text\n if mtext == '@修繕申請':\n func.sendFix(event, user_id)\n elif mtext == '@修繕查詢':\n func.fix_inquire(event, user_id)\n elif mtext == 'admin_mode':\n func.judge(event, mtext, user_id)\n elif mtext[:6] == '123456' and len(mtext) > 6:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '++' and len(mtext) > 2:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '##' and len(mtext) > 2:\n func.manageForm(event, mtext, user_id)\n elif mtext[:3] == '!!!' and len(mtext) > 3:\n func.personData(event, mtext, user_id)\n return HttpResponse()\n else:\n return HttpResponseBadRequest()\n\n\ndef listall(request):\n user = users.objects.all().order_by('name')\n return render(request, 'listall.html', locals())\n", "step-4": "from django.conf import settings\nfrom django.http import HttpResponse, HttpResponseBadRequest, HttpResponseForbidden\nfrom django.views.decorators.csrf import csrf_exempt\nfrom linebot import LineBotApi, WebhookParser\nfrom linebot.exceptions import InvalidSignatureError, LineBotApiError\nfrom linebot.models import MessageEvent, TextMessage\nfrom module import func\nfrom urllib.parse import parse_qsl\nfrom func5api.models import users\nfrom django.shortcuts import render\nline_bot_api = LineBotApi(settings.LINE_CHANNEL_ACCESS_TOKEN)\nparser = WebhookParser(settings.LINE_CHANNEL_SECRET)\n\n\n@csrf_exempt\ndef callback(request):\n if request.method == 'POST':\n signature = request.META['HTTP_X_LINE_SIGNATURE']\n body = request.body.decode('utf-8')\n try:\n events = parser.parse(body, signature)\n except InvalidSignatureError:\n return HttpResponseForbidden()\n except LineBotApiError:\n return HttpResponseBadRequest()\n for event in events:\n if isinstance(event, MessageEvent):\n user_id = event.source.user_id\n if not users.objects.filter(uid=user_id).exists():\n unit = users.objects.create(uid=user_id)\n unit.save()\n if isinstance(event.message, TextMessage):\n mtext = event.message.text\n if mtext == '@修繕申請':\n func.sendFix(event, user_id)\n elif mtext == '@修繕查詢':\n func.fix_inquire(event, user_id)\n elif mtext == 'admin_mode':\n func.judge(event, mtext, user_id)\n elif mtext[:6] == '123456' and len(mtext) > 6:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '++' and len(mtext) > 2:\n func.judge(event, mtext, user_id)\n elif mtext[:2] == '##' and len(mtext) > 2:\n func.manageForm(event, mtext, user_id)\n elif mtext[:3] == '!!!' and len(mtext) > 3:\n func.personData(event, mtext, user_id)\n return HttpResponse()\n else:\n return HttpResponseBadRequest()\n\n\ndef listall(request):\n user = users.objects.all().order_by('name')\n return render(request, 'listall.html', locals())\n", "step-5": "from django.conf import settings\r\nfrom django.http import HttpResponse, HttpResponseBadRequest, HttpResponseForbidden\r\nfrom django.views.decorators.csrf import csrf_exempt\r\n\r\nfrom linebot import LineBotApi, WebhookParser\r\nfrom linebot.exceptions import InvalidSignatureError, LineBotApiError\r\nfrom linebot.models import MessageEvent, TextMessage\r\nfrom module import func\r\nfrom urllib.parse import parse_qsl\r\nfrom func5api.models import users\r\nfrom django.shortcuts import render\r\n\r\nline_bot_api = LineBotApi(settings.LINE_CHANNEL_ACCESS_TOKEN)\r\nparser = WebhookParser(settings.LINE_CHANNEL_SECRET)\r\n\r\n@csrf_exempt\r\ndef callback(request):\r\n if request.method == 'POST':\r\n signature = request.META['HTTP_X_LINE_SIGNATURE']\r\n body = request.body.decode('utf-8')\r\n try:\r\n events = parser.parse(body, signature)\r\n except InvalidSignatureError:\r\n return HttpResponseForbidden()\r\n except LineBotApiError:\r\n return HttpResponseBadRequest()\r\n\r\n for event in events:\r\n if isinstance(event, MessageEvent):\r\n user_id = event.source.user_id #取得user_id\r\n if not(users.objects.filter(uid = user_id).exists()): #將user_id存入資料庫中\r\n unit = users.objects.create(uid = user_id)\r\n unit.save() #將user_id上傳至資料庫\r\n if isinstance(event.message, TextMessage):\r\n mtext = event.message.text\r\n if mtext == '@修繕申請':\r\n func.sendFix(event, user_id)\r\n elif mtext =='@修繕查詢':\r\n func.fix_inquire(event, user_id)\r\n elif mtext == 'admin_mode':\r\n func.judge(event, mtext, user_id)\r\n elif mtext[:6] == '123456' and len(mtext) > 6: #all\r\n func.judge(event, mtext, user_id)\r\n elif mtext[:2] == '++' and len(mtext) > 2: #specify\r\n func.judge(event, mtext, user_id)\r\n elif mtext[:2] == '##' and len(mtext) > 2:\r\n func.manageForm(event, mtext, user_id)\r\n elif mtext[:3] == '!!!' and len(mtext) > 3:\r\n func.personData(event, mtext, user_id)\r\n \r\n return HttpResponse()\r\n\r\n else:\r\n return HttpResponseBadRequest()\r\n \r\ndef listall(request):\r\n user = users.objects.all().order_by('name')\r\n return render(request, \"listall.html\", locals())\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- encoding:ascii -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 6 _modified_time = 1383550959.0389481 _template_filename='templates/webapps/tool_shed/repository/browse_repository.mako' _template_uri='/webapps/tool_shed/repository/browse_repository.mako' _template_cache=cache.Cache(__name__, _modified_time) _source_encoding='ascii' _exports = ['stylesheets', 'javascripts'] # SOURCE LINE 7 def inherit(context): if context.get('use_panels'): return '/webapps/tool_shed/base_panels.mako' else: return '/base.mako' def _mako_get_namespace(context, name): try: return context.namespaces[(__name__, name)] except KeyError: _mako_generate_namespaces(context) return context.namespaces[(__name__, name)] def _mako_generate_namespaces(context): # SOURCE LINE 2 ns = runtime.TemplateNamespace('__anon_0x88e2e50', context._clean_inheritance_tokens(), templateuri=u'/message.mako', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, '__anon_0x88e2e50')] = ns # SOURCE LINE 4 ns = runtime.TemplateNamespace('__anon_0x7ee9750', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/common/common.mako', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, '__anon_0x7ee9750')] = ns # SOURCE LINE 5 ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/repository/common.mako', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, '__anon_0x8a2fd90')] = ns # SOURCE LINE 3 ns = runtime.TemplateNamespace('__anon_0x88e21d0', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/common/repository_actions_menu.mako', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, '__anon_0x88e21d0')] = ns def _mako_inherit(template, context): _mako_generate_namespaces(context) return runtime._inherit_from(context, (inherit(context)), _template_uri) def render_body(context,**pageargs): context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) _import_ns = {} _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg']) _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions']) status = _import_ns.get('status', context.get('status', UNDEFINED)) render_clone_str = _import_ns.get('render_clone_str', context.get('render_clone_str', UNDEFINED)) render_repository_type_select_field = _import_ns.get('render_repository_type_select_field', context.get('render_repository_type_select_field', UNDEFINED)) render_msg = _import_ns.get('render_msg', context.get('render_msg', UNDEFINED)) repository = _import_ns.get('repository', context.get('repository', UNDEFINED)) h = _import_ns.get('h', context.get('h', UNDEFINED)) render_tool_shed_repository_actions = _import_ns.get('render_tool_shed_repository_actions', context.get('render_tool_shed_repository_actions', UNDEFINED)) is_malicious = _import_ns.get('is_malicious', context.get('is_malicious', UNDEFINED)) repository_type_select_field = _import_ns.get('repository_type_select_field', context.get('repository_type_select_field', UNDEFINED)) commit_message = _import_ns.get('commit_message', context.get('commit_message', UNDEFINED)) message = _import_ns.get('message', context.get('message', UNDEFINED)) trans = _import_ns.get('trans', context.get('trans', UNDEFINED)) __M_writer = context.writer() # SOURCE LINE 1 __M_writer(u'\n') # SOURCE LINE 2 __M_writer(u'\n') # SOURCE LINE 3 __M_writer(u'\n') # SOURCE LINE 4 __M_writer(u'\n') # SOURCE LINE 5 __M_writer(u'\n\n') # SOURCE LINE 13 __M_writer(u'\n') # SOURCE LINE 14 __M_writer(u'\n\n') # SOURCE LINE 19 __M_writer(u'\n\n') # SOURCE LINE 25 __M_writer(u'\n\n') # SOURCE LINE 27 is_new = repository.is_new( trans.app ) can_push = trans.app.security_agent.can_push( trans.app, trans.user, repository ) can_download = not is_new and ( not is_malicious or can_push ) can_browse_contents = not is_new __M_locals_builtin_stored = __M_locals_builtin() __M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push','can_browse_contents','is_new','can_download'] if __M_key in __M_locals_builtin_stored])) # SOURCE LINE 32 __M_writer(u'\n\n') # SOURCE LINE 34 __M_writer(unicode(render_tool_shed_repository_actions( repository ))) __M_writer(u'\n\n') # SOURCE LINE 36 if message: # SOURCE LINE 37 __M_writer(u' ') __M_writer(unicode(render_msg( message, status ))) __M_writer(u'\n') pass # SOURCE LINE 39 __M_writer(u'\n') # SOURCE LINE 40 if can_browse_contents: # SOURCE LINE 41 __M_writer(u' <div class="toolForm">\n <div class="toolFormTitle">Repository \'') # SOURCE LINE 42 __M_writer(filters.html_escape(unicode(repository.name ))) __M_writer(u"' revision ") __M_writer(filters.html_escape(unicode(repository.tip( trans.app ) ))) __M_writer(u' (repository tip)</div>\n') # SOURCE LINE 43 if can_download: # SOURCE LINE 44 __M_writer(u' <div class="form-row">\n <label>Clone this repository:</label>\n ') # SOURCE LINE 46 __M_writer(unicode(render_clone_str( repository ))) __M_writer(u'\n </div>\n') pass # SOURCE LINE 49 __M_writer(u' <form name="repository_type">\n ') # SOURCE LINE 50 __M_writer(unicode(render_repository_type_select_field( repository_type_select_field, render_help=False ))) __M_writer(u'\n </form>\n') # SOURCE LINE 52 if can_push: # SOURCE LINE 53 __M_writer(u' <form name="select_files_to_delete" id="select_files_to_delete" action="') __M_writer(unicode(h.url_for( controller='repository', action='select_files_to_delete', id=trans.security.encode_id( repository.id )))) __M_writer(u'" method="post" >\n <div class="form-row" >\n <label>Contents:</label>\n <div id="tree" >\n Loading...\n </div>\n <div class="toolParamHelp" style="clear: both;">\n Click on a file to display it\'s contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\n </div>\n <input id="selected_files_to_delete" name="selected_files_to_delete" type="hidden" value=""/>\n </div>\n <div class="form-row">\n <label>Message:</label>\n <div class="form-row-input">\n') # SOURCE LINE 67 if commit_message: # SOURCE LINE 68 __M_writer(u' <textarea name="commit_message" rows="3" cols="35">') __M_writer(filters.html_escape(unicode(commit_message ))) __M_writer(u'</textarea>\n') # SOURCE LINE 69 else: # SOURCE LINE 70 __M_writer(u' <textarea name="commit_message" rows="3" cols="35"></textarea>\n') pass # SOURCE LINE 72 __M_writer(u' </div>\n <div class="toolParamHelp" style="clear: both;">\n This is the commit message for the mercurial change set that will be created if you delete selected files.\n </div>\n <div style="clear: both"></div>\n </div>\n <div class="form-row">\n <input type="submit" name="select_files_to_delete_button" value="Delete selected files"/>\n </div>\n <div class="form-row">\n <div id="file_contents" class="toolParamHelp" style="clear: both;background-color:#FAFAFA;"></div>\n </div>\n </form>\n') # SOURCE LINE 85 else: # SOURCE LINE 86 __M_writer(u' <div class="toolFormBody">\n <div class="form-row" >\n <label>Contents:</label>\n <div id="tree" >\n Loading...\n </div>\n </div>\n <div class="form-row">\n <div id="file_contents" class="toolParamHelp" style="clear: both;background-color:#FAFAFA;"></div>\n </div>\n </div>\n') pass # SOURCE LINE 98 __M_writer(u' </div>\n <p/>\n') pass return '' finally: context.caller_stack._pop_frame() def render_stylesheets(context): context.caller_stack._push_frame() try: _import_ns = {} _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg']) _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions']) h = _import_ns.get('h', context.get('h', UNDEFINED)) parent = _import_ns.get('parent', context.get('parent', UNDEFINED)) __M_writer = context.writer() # SOURCE LINE 16 __M_writer(u'\n ') # SOURCE LINE 17 __M_writer(unicode(parent.stylesheets())) __M_writer(u'\n ') # SOURCE LINE 18 __M_writer(unicode(h.css( "jquery.rating", "dynatree_skin/ui.dynatree" ))) __M_writer(u'\n') return '' finally: context.caller_stack._pop_frame() def render_javascripts(context): context.caller_stack._push_frame() try: _import_ns = {} _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg']) _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*']) _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions']) common_javascripts = _import_ns.get('common_javascripts', context.get('common_javascripts', UNDEFINED)) h = _import_ns.get('h', context.get('h', UNDEFINED)) repository = _import_ns.get('repository', context.get('repository', UNDEFINED)) parent = _import_ns.get('parent', context.get('parent', UNDEFINED)) __M_writer = context.writer() # SOURCE LINE 21 __M_writer(u'\n ') # SOURCE LINE 22 __M_writer(unicode(parent.javascripts())) __M_writer(u'\n ') # SOURCE LINE 23 __M_writer(unicode(h.js( "libs/jquery/jquery.rating", "libs/jquery/jquery-ui", "libs/jquery/jquery.cookie", "libs/jquery/jquery.dynatree" ))) __M_writer(u'\n ') # SOURCE LINE 24 __M_writer(unicode(common_javascripts(repository))) __M_writer(u'\n') return '' finally: context.caller_stack._pop_frame()
normal
{ "blob_id": "fd54bbfbc81aec371ad6c82bf402a5a3673a9f24", "index": 8892, "step-1": "<mask token>\n\n\ndef _mako_generate_namespaces(context):\n ns = runtime.TemplateNamespace('__anon_0x88e2e50', context.\n _clean_inheritance_tokens(), templateuri=u'/message.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e2e50'] = ns\n ns = runtime.TemplateNamespace('__anon_0x7ee9750', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x7ee9750'] = ns\n ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/repository/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x8a2fd90'] = ns\n ns = runtime.TemplateNamespace('__anon_0x88e21d0', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/repository_actions_menu.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e21d0'] = ns\n\n\ndef _mako_inherit(template, context):\n _mako_generate_namespaces(context)\n return runtime._inherit_from(context, inherit(context), _template_uri)\n\n\ndef render_body(context, **pageargs):\n context.caller_stack._push_frame()\n try:\n __M_locals = __M_dict_builtin(pageargs=pageargs)\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n status = _import_ns.get('status', context.get('status', UNDEFINED))\n render_clone_str = _import_ns.get('render_clone_str', context.get(\n 'render_clone_str', UNDEFINED))\n render_repository_type_select_field = _import_ns.get(\n 'render_repository_type_select_field', context.get(\n 'render_repository_type_select_field', UNDEFINED))\n render_msg = _import_ns.get('render_msg', context.get('render_msg',\n UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n render_tool_shed_repository_actions = _import_ns.get(\n 'render_tool_shed_repository_actions', context.get(\n 'render_tool_shed_repository_actions', UNDEFINED))\n is_malicious = _import_ns.get('is_malicious', context.get(\n 'is_malicious', UNDEFINED))\n repository_type_select_field = _import_ns.get(\n 'repository_type_select_field', context.get(\n 'repository_type_select_field', UNDEFINED))\n commit_message = _import_ns.get('commit_message', context.get(\n 'commit_message', UNDEFINED))\n message = _import_ns.get('message', context.get('message', UNDEFINED))\n trans = _import_ns.get('trans', context.get('trans', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n is_new = repository.is_new(trans.app)\n can_push = trans.app.security_agent.can_push(trans.app, trans.user,\n repository)\n can_download = not is_new and (not is_malicious or can_push)\n can_browse_contents = not is_new\n __M_locals_builtin_stored = __M_locals_builtin()\n __M_locals.update(__M_dict_builtin([(__M_key,\n __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push',\n 'can_browse_contents', 'is_new', 'can_download'] if __M_key in\n __M_locals_builtin_stored]))\n __M_writer(u'\\n\\n')\n __M_writer(unicode(render_tool_shed_repository_actions(repository)))\n __M_writer(u'\\n\\n')\n if message:\n __M_writer(u' ')\n __M_writer(unicode(render_msg(message, status)))\n __M_writer(u'\\n')\n pass\n __M_writer(u'\\n')\n if can_browse_contents:\n __M_writer(\n u\"\"\" <div class=\"toolForm\">\n <div class=\"toolFormTitle\">Repository '\"\"\"\n )\n __M_writer(filters.html_escape(unicode(repository.name)))\n __M_writer(u\"' revision \")\n __M_writer(filters.html_escape(unicode(repository.tip(trans.app))))\n __M_writer(u' (repository tip)</div>\\n')\n if can_download:\n __M_writer(\n u\"\"\" <div class=\"form-row\">\n <label>Clone this repository:</label>\n \"\"\"\n )\n __M_writer(unicode(render_clone_str(repository)))\n __M_writer(u'\\n </div>\\n')\n pass\n __M_writer(u' <form name=\"repository_type\">\\n ')\n __M_writer(unicode(render_repository_type_select_field(\n repository_type_select_field, render_help=False)))\n __M_writer(u'\\n </form>\\n')\n if can_push:\n __M_writer(\n u' <form name=\"select_files_to_delete\" id=\"select_files_to_delete\" action=\"'\n )\n __M_writer(unicode(h.url_for(controller='repository',\n action='select_files_to_delete', id=trans.security.\n encode_id(repository.id))))\n __M_writer(\n u\"\"\"\" method=\"post\" >\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n Click on a file to display it's contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\n </div>\n <input id=\"selected_files_to_delete\" name=\"selected_files_to_delete\" type=\"hidden\" value=\"\"/>\n </div>\n <div class=\"form-row\">\n <label>Message:</label>\n <div class=\"form-row-input\">\n\"\"\"\n )\n if commit_message:\n __M_writer(\n u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\">'\n )\n __M_writer(filters.html_escape(unicode(commit_message)))\n __M_writer(u'</textarea>\\n')\n else:\n __M_writer(\n u\"\"\" <textarea name=\"commit_message\" rows=\"3\" cols=\"35\"></textarea>\n\"\"\"\n )\n pass\n __M_writer(\n u\"\"\" </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n This is the commit message for the mercurial change set that will be created if you delete selected files.\n </div>\n <div style=\"clear: both\"></div>\n </div>\n <div class=\"form-row\">\n <input type=\"submit\" name=\"select_files_to_delete_button\" value=\"Delete selected files\"/>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </form>\n\"\"\"\n )\n else:\n __M_writer(\n u\"\"\" <div class=\"toolFormBody\">\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </div>\n\"\"\"\n )\n pass\n __M_writer(u' </div>\\n <p/>\\n')\n pass\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef inherit(context):\n if context.get('use_panels'):\n return '/webapps/tool_shed/base_panels.mako'\n else:\n return '/base.mako'\n\n\n<mask token>\n\n\ndef _mako_generate_namespaces(context):\n ns = runtime.TemplateNamespace('__anon_0x88e2e50', context.\n _clean_inheritance_tokens(), templateuri=u'/message.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e2e50'] = ns\n ns = runtime.TemplateNamespace('__anon_0x7ee9750', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x7ee9750'] = ns\n ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/repository/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x8a2fd90'] = ns\n ns = runtime.TemplateNamespace('__anon_0x88e21d0', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/repository_actions_menu.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e21d0'] = ns\n\n\ndef _mako_inherit(template, context):\n _mako_generate_namespaces(context)\n return runtime._inherit_from(context, inherit(context), _template_uri)\n\n\ndef render_body(context, **pageargs):\n context.caller_stack._push_frame()\n try:\n __M_locals = __M_dict_builtin(pageargs=pageargs)\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n status = _import_ns.get('status', context.get('status', UNDEFINED))\n render_clone_str = _import_ns.get('render_clone_str', context.get(\n 'render_clone_str', UNDEFINED))\n render_repository_type_select_field = _import_ns.get(\n 'render_repository_type_select_field', context.get(\n 'render_repository_type_select_field', UNDEFINED))\n render_msg = _import_ns.get('render_msg', context.get('render_msg',\n UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n render_tool_shed_repository_actions = _import_ns.get(\n 'render_tool_shed_repository_actions', context.get(\n 'render_tool_shed_repository_actions', UNDEFINED))\n is_malicious = _import_ns.get('is_malicious', context.get(\n 'is_malicious', UNDEFINED))\n repository_type_select_field = _import_ns.get(\n 'repository_type_select_field', context.get(\n 'repository_type_select_field', UNDEFINED))\n commit_message = _import_ns.get('commit_message', context.get(\n 'commit_message', UNDEFINED))\n message = _import_ns.get('message', context.get('message', UNDEFINED))\n trans = _import_ns.get('trans', context.get('trans', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n is_new = repository.is_new(trans.app)\n can_push = trans.app.security_agent.can_push(trans.app, trans.user,\n repository)\n can_download = not is_new and (not is_malicious or can_push)\n can_browse_contents = not is_new\n __M_locals_builtin_stored = __M_locals_builtin()\n __M_locals.update(__M_dict_builtin([(__M_key,\n __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push',\n 'can_browse_contents', 'is_new', 'can_download'] if __M_key in\n __M_locals_builtin_stored]))\n __M_writer(u'\\n\\n')\n __M_writer(unicode(render_tool_shed_repository_actions(repository)))\n __M_writer(u'\\n\\n')\n if message:\n __M_writer(u' ')\n __M_writer(unicode(render_msg(message, status)))\n __M_writer(u'\\n')\n pass\n __M_writer(u'\\n')\n if can_browse_contents:\n __M_writer(\n u\"\"\" <div class=\"toolForm\">\n <div class=\"toolFormTitle\">Repository '\"\"\"\n )\n __M_writer(filters.html_escape(unicode(repository.name)))\n __M_writer(u\"' revision \")\n __M_writer(filters.html_escape(unicode(repository.tip(trans.app))))\n __M_writer(u' (repository tip)</div>\\n')\n if can_download:\n __M_writer(\n u\"\"\" <div class=\"form-row\">\n <label>Clone this repository:</label>\n \"\"\"\n )\n __M_writer(unicode(render_clone_str(repository)))\n __M_writer(u'\\n </div>\\n')\n pass\n __M_writer(u' <form name=\"repository_type\">\\n ')\n __M_writer(unicode(render_repository_type_select_field(\n repository_type_select_field, render_help=False)))\n __M_writer(u'\\n </form>\\n')\n if can_push:\n __M_writer(\n u' <form name=\"select_files_to_delete\" id=\"select_files_to_delete\" action=\"'\n )\n __M_writer(unicode(h.url_for(controller='repository',\n action='select_files_to_delete', id=trans.security.\n encode_id(repository.id))))\n __M_writer(\n u\"\"\"\" method=\"post\" >\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n Click on a file to display it's contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\n </div>\n <input id=\"selected_files_to_delete\" name=\"selected_files_to_delete\" type=\"hidden\" value=\"\"/>\n </div>\n <div class=\"form-row\">\n <label>Message:</label>\n <div class=\"form-row-input\">\n\"\"\"\n )\n if commit_message:\n __M_writer(\n u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\">'\n )\n __M_writer(filters.html_escape(unicode(commit_message)))\n __M_writer(u'</textarea>\\n')\n else:\n __M_writer(\n u\"\"\" <textarea name=\"commit_message\" rows=\"3\" cols=\"35\"></textarea>\n\"\"\"\n )\n pass\n __M_writer(\n u\"\"\" </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n This is the commit message for the mercurial change set that will be created if you delete selected files.\n </div>\n <div style=\"clear: both\"></div>\n </div>\n <div class=\"form-row\">\n <input type=\"submit\" name=\"select_files_to_delete_button\" value=\"Delete selected files\"/>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </form>\n\"\"\"\n )\n else:\n __M_writer(\n u\"\"\" <div class=\"toolFormBody\">\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </div>\n\"\"\"\n )\n pass\n __M_writer(u' </div>\\n <p/>\\n')\n pass\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\n<mask token>\n\n\ndef render_javascripts(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n common_javascripts = _import_ns.get('common_javascripts', context.\n get('common_javascripts', UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n ')\n __M_writer(unicode(parent.javascripts()))\n __M_writer(u'\\n ')\n __M_writer(unicode(h.js('libs/jquery/jquery.rating',\n 'libs/jquery/jquery-ui', 'libs/jquery/jquery.cookie',\n 'libs/jquery/jquery.dynatree')))\n __M_writer(u'\\n ')\n __M_writer(unicode(common_javascripts(repository)))\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n", "step-3": "<mask token>\n\n\ndef inherit(context):\n if context.get('use_panels'):\n return '/webapps/tool_shed/base_panels.mako'\n else:\n return '/base.mako'\n\n\ndef _mako_get_namespace(context, name):\n try:\n return context.namespaces[__name__, name]\n except KeyError:\n _mako_generate_namespaces(context)\n return context.namespaces[__name__, name]\n\n\ndef _mako_generate_namespaces(context):\n ns = runtime.TemplateNamespace('__anon_0x88e2e50', context.\n _clean_inheritance_tokens(), templateuri=u'/message.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e2e50'] = ns\n ns = runtime.TemplateNamespace('__anon_0x7ee9750', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x7ee9750'] = ns\n ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/repository/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x8a2fd90'] = ns\n ns = runtime.TemplateNamespace('__anon_0x88e21d0', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/repository_actions_menu.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e21d0'] = ns\n\n\ndef _mako_inherit(template, context):\n _mako_generate_namespaces(context)\n return runtime._inherit_from(context, inherit(context), _template_uri)\n\n\ndef render_body(context, **pageargs):\n context.caller_stack._push_frame()\n try:\n __M_locals = __M_dict_builtin(pageargs=pageargs)\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n status = _import_ns.get('status', context.get('status', UNDEFINED))\n render_clone_str = _import_ns.get('render_clone_str', context.get(\n 'render_clone_str', UNDEFINED))\n render_repository_type_select_field = _import_ns.get(\n 'render_repository_type_select_field', context.get(\n 'render_repository_type_select_field', UNDEFINED))\n render_msg = _import_ns.get('render_msg', context.get('render_msg',\n UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n render_tool_shed_repository_actions = _import_ns.get(\n 'render_tool_shed_repository_actions', context.get(\n 'render_tool_shed_repository_actions', UNDEFINED))\n is_malicious = _import_ns.get('is_malicious', context.get(\n 'is_malicious', UNDEFINED))\n repository_type_select_field = _import_ns.get(\n 'repository_type_select_field', context.get(\n 'repository_type_select_field', UNDEFINED))\n commit_message = _import_ns.get('commit_message', context.get(\n 'commit_message', UNDEFINED))\n message = _import_ns.get('message', context.get('message', UNDEFINED))\n trans = _import_ns.get('trans', context.get('trans', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n is_new = repository.is_new(trans.app)\n can_push = trans.app.security_agent.can_push(trans.app, trans.user,\n repository)\n can_download = not is_new and (not is_malicious or can_push)\n can_browse_contents = not is_new\n __M_locals_builtin_stored = __M_locals_builtin()\n __M_locals.update(__M_dict_builtin([(__M_key,\n __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push',\n 'can_browse_contents', 'is_new', 'can_download'] if __M_key in\n __M_locals_builtin_stored]))\n __M_writer(u'\\n\\n')\n __M_writer(unicode(render_tool_shed_repository_actions(repository)))\n __M_writer(u'\\n\\n')\n if message:\n __M_writer(u' ')\n __M_writer(unicode(render_msg(message, status)))\n __M_writer(u'\\n')\n pass\n __M_writer(u'\\n')\n if can_browse_contents:\n __M_writer(\n u\"\"\" <div class=\"toolForm\">\n <div class=\"toolFormTitle\">Repository '\"\"\"\n )\n __M_writer(filters.html_escape(unicode(repository.name)))\n __M_writer(u\"' revision \")\n __M_writer(filters.html_escape(unicode(repository.tip(trans.app))))\n __M_writer(u' (repository tip)</div>\\n')\n if can_download:\n __M_writer(\n u\"\"\" <div class=\"form-row\">\n <label>Clone this repository:</label>\n \"\"\"\n )\n __M_writer(unicode(render_clone_str(repository)))\n __M_writer(u'\\n </div>\\n')\n pass\n __M_writer(u' <form name=\"repository_type\">\\n ')\n __M_writer(unicode(render_repository_type_select_field(\n repository_type_select_field, render_help=False)))\n __M_writer(u'\\n </form>\\n')\n if can_push:\n __M_writer(\n u' <form name=\"select_files_to_delete\" id=\"select_files_to_delete\" action=\"'\n )\n __M_writer(unicode(h.url_for(controller='repository',\n action='select_files_to_delete', id=trans.security.\n encode_id(repository.id))))\n __M_writer(\n u\"\"\"\" method=\"post\" >\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n Click on a file to display it's contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\n </div>\n <input id=\"selected_files_to_delete\" name=\"selected_files_to_delete\" type=\"hidden\" value=\"\"/>\n </div>\n <div class=\"form-row\">\n <label>Message:</label>\n <div class=\"form-row-input\">\n\"\"\"\n )\n if commit_message:\n __M_writer(\n u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\">'\n )\n __M_writer(filters.html_escape(unicode(commit_message)))\n __M_writer(u'</textarea>\\n')\n else:\n __M_writer(\n u\"\"\" <textarea name=\"commit_message\" rows=\"3\" cols=\"35\"></textarea>\n\"\"\"\n )\n pass\n __M_writer(\n u\"\"\" </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n This is the commit message for the mercurial change set that will be created if you delete selected files.\n </div>\n <div style=\"clear: both\"></div>\n </div>\n <div class=\"form-row\">\n <input type=\"submit\" name=\"select_files_to_delete_button\" value=\"Delete selected files\"/>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </form>\n\"\"\"\n )\n else:\n __M_writer(\n u\"\"\" <div class=\"toolFormBody\">\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </div>\n\"\"\"\n )\n pass\n __M_writer(u' </div>\\n <p/>\\n')\n pass\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_stylesheets(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n ')\n __M_writer(unicode(parent.stylesheets()))\n __M_writer(u'\\n ')\n __M_writer(unicode(h.css('jquery.rating', 'dynatree_skin/ui.dynatree'))\n )\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_javascripts(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n common_javascripts = _import_ns.get('common_javascripts', context.\n get('common_javascripts', UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n ')\n __M_writer(unicode(parent.javascripts()))\n __M_writer(u'\\n ')\n __M_writer(unicode(h.js('libs/jquery/jquery.rating',\n 'libs/jquery/jquery-ui', 'libs/jquery/jquery.cookie',\n 'libs/jquery/jquery.dynatree')))\n __M_writer(u'\\n ')\n __M_writer(unicode(common_javascripts(repository)))\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n", "step-4": "from mako import runtime, filters, cache\nUNDEFINED = runtime.UNDEFINED\n__M_dict_builtin = dict\n__M_locals_builtin = locals\n_magic_number = 6\n_modified_time = 1383550959.038948\n_template_filename = (\n 'templates/webapps/tool_shed/repository/browse_repository.mako')\n_template_uri = '/webapps/tool_shed/repository/browse_repository.mako'\n_template_cache = cache.Cache(__name__, _modified_time)\n_source_encoding = 'ascii'\n_exports = ['stylesheets', 'javascripts']\n\n\ndef inherit(context):\n if context.get('use_panels'):\n return '/webapps/tool_shed/base_panels.mako'\n else:\n return '/base.mako'\n\n\ndef _mako_get_namespace(context, name):\n try:\n return context.namespaces[__name__, name]\n except KeyError:\n _mako_generate_namespaces(context)\n return context.namespaces[__name__, name]\n\n\ndef _mako_generate_namespaces(context):\n ns = runtime.TemplateNamespace('__anon_0x88e2e50', context.\n _clean_inheritance_tokens(), templateuri=u'/message.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e2e50'] = ns\n ns = runtime.TemplateNamespace('__anon_0x7ee9750', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x7ee9750'] = ns\n ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/repository/common.mako', callables=None,\n calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x8a2fd90'] = ns\n ns = runtime.TemplateNamespace('__anon_0x88e21d0', context.\n _clean_inheritance_tokens(), templateuri=\n u'/webapps/tool_shed/common/repository_actions_menu.mako',\n callables=None, calling_uri=_template_uri)\n context.namespaces[__name__, '__anon_0x88e21d0'] = ns\n\n\ndef _mako_inherit(template, context):\n _mako_generate_namespaces(context)\n return runtime._inherit_from(context, inherit(context), _template_uri)\n\n\ndef render_body(context, **pageargs):\n context.caller_stack._push_frame()\n try:\n __M_locals = __M_dict_builtin(pageargs=pageargs)\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n status = _import_ns.get('status', context.get('status', UNDEFINED))\n render_clone_str = _import_ns.get('render_clone_str', context.get(\n 'render_clone_str', UNDEFINED))\n render_repository_type_select_field = _import_ns.get(\n 'render_repository_type_select_field', context.get(\n 'render_repository_type_select_field', UNDEFINED))\n render_msg = _import_ns.get('render_msg', context.get('render_msg',\n UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n render_tool_shed_repository_actions = _import_ns.get(\n 'render_tool_shed_repository_actions', context.get(\n 'render_tool_shed_repository_actions', UNDEFINED))\n is_malicious = _import_ns.get('is_malicious', context.get(\n 'is_malicious', UNDEFINED))\n repository_type_select_field = _import_ns.get(\n 'repository_type_select_field', context.get(\n 'repository_type_select_field', UNDEFINED))\n commit_message = _import_ns.get('commit_message', context.get(\n 'commit_message', UNDEFINED))\n message = _import_ns.get('message', context.get('message', UNDEFINED))\n trans = _import_ns.get('trans', context.get('trans', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n __M_writer(u'\\n\\n')\n is_new = repository.is_new(trans.app)\n can_push = trans.app.security_agent.can_push(trans.app, trans.user,\n repository)\n can_download = not is_new and (not is_malicious or can_push)\n can_browse_contents = not is_new\n __M_locals_builtin_stored = __M_locals_builtin()\n __M_locals.update(__M_dict_builtin([(__M_key,\n __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push',\n 'can_browse_contents', 'is_new', 'can_download'] if __M_key in\n __M_locals_builtin_stored]))\n __M_writer(u'\\n\\n')\n __M_writer(unicode(render_tool_shed_repository_actions(repository)))\n __M_writer(u'\\n\\n')\n if message:\n __M_writer(u' ')\n __M_writer(unicode(render_msg(message, status)))\n __M_writer(u'\\n')\n pass\n __M_writer(u'\\n')\n if can_browse_contents:\n __M_writer(\n u\"\"\" <div class=\"toolForm\">\n <div class=\"toolFormTitle\">Repository '\"\"\"\n )\n __M_writer(filters.html_escape(unicode(repository.name)))\n __M_writer(u\"' revision \")\n __M_writer(filters.html_escape(unicode(repository.tip(trans.app))))\n __M_writer(u' (repository tip)</div>\\n')\n if can_download:\n __M_writer(\n u\"\"\" <div class=\"form-row\">\n <label>Clone this repository:</label>\n \"\"\"\n )\n __M_writer(unicode(render_clone_str(repository)))\n __M_writer(u'\\n </div>\\n')\n pass\n __M_writer(u' <form name=\"repository_type\">\\n ')\n __M_writer(unicode(render_repository_type_select_field(\n repository_type_select_field, render_help=False)))\n __M_writer(u'\\n </form>\\n')\n if can_push:\n __M_writer(\n u' <form name=\"select_files_to_delete\" id=\"select_files_to_delete\" action=\"'\n )\n __M_writer(unicode(h.url_for(controller='repository',\n action='select_files_to_delete', id=trans.security.\n encode_id(repository.id))))\n __M_writer(\n u\"\"\"\" method=\"post\" >\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n Click on a file to display it's contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\n </div>\n <input id=\"selected_files_to_delete\" name=\"selected_files_to_delete\" type=\"hidden\" value=\"\"/>\n </div>\n <div class=\"form-row\">\n <label>Message:</label>\n <div class=\"form-row-input\">\n\"\"\"\n )\n if commit_message:\n __M_writer(\n u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\">'\n )\n __M_writer(filters.html_escape(unicode(commit_message)))\n __M_writer(u'</textarea>\\n')\n else:\n __M_writer(\n u\"\"\" <textarea name=\"commit_message\" rows=\"3\" cols=\"35\"></textarea>\n\"\"\"\n )\n pass\n __M_writer(\n u\"\"\" </div>\n <div class=\"toolParamHelp\" style=\"clear: both;\">\n This is the commit message for the mercurial change set that will be created if you delete selected files.\n </div>\n <div style=\"clear: both\"></div>\n </div>\n <div class=\"form-row\">\n <input type=\"submit\" name=\"select_files_to_delete_button\" value=\"Delete selected files\"/>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </form>\n\"\"\"\n )\n else:\n __M_writer(\n u\"\"\" <div class=\"toolFormBody\">\n <div class=\"form-row\" >\n <label>Contents:</label>\n <div id=\"tree\" >\n Loading...\n </div>\n </div>\n <div class=\"form-row\">\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\n </div>\n </div>\n\"\"\"\n )\n pass\n __M_writer(u' </div>\\n <p/>\\n')\n pass\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_stylesheets(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n ')\n __M_writer(unicode(parent.stylesheets()))\n __M_writer(u'\\n ')\n __M_writer(unicode(h.css('jquery.rating', 'dynatree_skin/ui.dynatree'))\n )\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_javascripts(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns,\n [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns,\n [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns,\n [u'render_tool_shed_repository_actions'])\n common_javascripts = _import_ns.get('common_javascripts', context.\n get('common_javascripts', UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository',\n UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n __M_writer(u'\\n ')\n __M_writer(unicode(parent.javascripts()))\n __M_writer(u'\\n ')\n __M_writer(unicode(h.js('libs/jquery/jquery.rating',\n 'libs/jquery/jquery-ui', 'libs/jquery/jquery.cookie',\n 'libs/jquery/jquery.dynatree')))\n __M_writer(u'\\n ')\n __M_writer(unicode(common_javascripts(repository)))\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n", "step-5": "# -*- encoding:ascii -*-\nfrom mako import runtime, filters, cache\nUNDEFINED = runtime.UNDEFINED\n__M_dict_builtin = dict\n__M_locals_builtin = locals\n_magic_number = 6\n_modified_time = 1383550959.0389481\n_template_filename='templates/webapps/tool_shed/repository/browse_repository.mako'\n_template_uri='/webapps/tool_shed/repository/browse_repository.mako'\n_template_cache=cache.Cache(__name__, _modified_time)\n_source_encoding='ascii'\n_exports = ['stylesheets', 'javascripts']\n\n\n# SOURCE LINE 7\n\ndef inherit(context):\n if context.get('use_panels'):\n return '/webapps/tool_shed/base_panels.mako'\n else:\n return '/base.mako'\n\n\ndef _mako_get_namespace(context, name):\n try:\n return context.namespaces[(__name__, name)]\n except KeyError:\n _mako_generate_namespaces(context)\n return context.namespaces[(__name__, name)]\ndef _mako_generate_namespaces(context):\n # SOURCE LINE 2\n ns = runtime.TemplateNamespace('__anon_0x88e2e50', context._clean_inheritance_tokens(), templateuri=u'/message.mako', callables=None, calling_uri=_template_uri)\n context.namespaces[(__name__, '__anon_0x88e2e50')] = ns\n\n # SOURCE LINE 4\n ns = runtime.TemplateNamespace('__anon_0x7ee9750', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/common/common.mako', callables=None, calling_uri=_template_uri)\n context.namespaces[(__name__, '__anon_0x7ee9750')] = ns\n\n # SOURCE LINE 5\n ns = runtime.TemplateNamespace('__anon_0x8a2fd90', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/repository/common.mako', callables=None, calling_uri=_template_uri)\n context.namespaces[(__name__, '__anon_0x8a2fd90')] = ns\n\n # SOURCE LINE 3\n ns = runtime.TemplateNamespace('__anon_0x88e21d0', context._clean_inheritance_tokens(), templateuri=u'/webapps/tool_shed/common/repository_actions_menu.mako', callables=None, calling_uri=_template_uri)\n context.namespaces[(__name__, '__anon_0x88e21d0')] = ns\n\ndef _mako_inherit(template, context):\n _mako_generate_namespaces(context)\n return runtime._inherit_from(context, (inherit(context)), _template_uri)\ndef render_body(context,**pageargs):\n context.caller_stack._push_frame()\n try:\n __M_locals = __M_dict_builtin(pageargs=pageargs)\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions'])\n status = _import_ns.get('status', context.get('status', UNDEFINED))\n render_clone_str = _import_ns.get('render_clone_str', context.get('render_clone_str', UNDEFINED))\n render_repository_type_select_field = _import_ns.get('render_repository_type_select_field', context.get('render_repository_type_select_field', UNDEFINED))\n render_msg = _import_ns.get('render_msg', context.get('render_msg', UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository', UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n render_tool_shed_repository_actions = _import_ns.get('render_tool_shed_repository_actions', context.get('render_tool_shed_repository_actions', UNDEFINED))\n is_malicious = _import_ns.get('is_malicious', context.get('is_malicious', UNDEFINED))\n repository_type_select_field = _import_ns.get('repository_type_select_field', context.get('repository_type_select_field', UNDEFINED))\n commit_message = _import_ns.get('commit_message', context.get('commit_message', UNDEFINED))\n message = _import_ns.get('message', context.get('message', UNDEFINED))\n trans = _import_ns.get('trans', context.get('trans', UNDEFINED))\n __M_writer = context.writer()\n # SOURCE LINE 1\n __M_writer(u'\\n')\n # SOURCE LINE 2\n __M_writer(u'\\n')\n # SOURCE LINE 3\n __M_writer(u'\\n')\n # SOURCE LINE 4\n __M_writer(u'\\n')\n # SOURCE LINE 5\n __M_writer(u'\\n\\n')\n # SOURCE LINE 13\n __M_writer(u'\\n')\n # SOURCE LINE 14\n __M_writer(u'\\n\\n')\n # SOURCE LINE 19\n __M_writer(u'\\n\\n')\n # SOURCE LINE 25\n __M_writer(u'\\n\\n')\n # SOURCE LINE 27\n\n is_new = repository.is_new( trans.app )\n can_push = trans.app.security_agent.can_push( trans.app, trans.user, repository )\n can_download = not is_new and ( not is_malicious or can_push )\n can_browse_contents = not is_new\n \n \n __M_locals_builtin_stored = __M_locals_builtin()\n __M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin_stored[__M_key]) for __M_key in ['can_push','can_browse_contents','is_new','can_download'] if __M_key in __M_locals_builtin_stored]))\n # SOURCE LINE 32\n __M_writer(u'\\n\\n')\n # SOURCE LINE 34\n __M_writer(unicode(render_tool_shed_repository_actions( repository )))\n __M_writer(u'\\n\\n')\n # SOURCE LINE 36\n if message:\n # SOURCE LINE 37\n __M_writer(u' ')\n __M_writer(unicode(render_msg( message, status )))\n __M_writer(u'\\n')\n pass\n # SOURCE LINE 39\n __M_writer(u'\\n')\n # SOURCE LINE 40\n if can_browse_contents:\n # SOURCE LINE 41\n __M_writer(u' <div class=\"toolForm\">\\n <div class=\"toolFormTitle\">Repository \\'')\n # SOURCE LINE 42\n __M_writer(filters.html_escape(unicode(repository.name )))\n __M_writer(u\"' revision \")\n __M_writer(filters.html_escape(unicode(repository.tip( trans.app ) )))\n __M_writer(u' (repository tip)</div>\\n')\n # SOURCE LINE 43\n if can_download:\n # SOURCE LINE 44\n __M_writer(u' <div class=\"form-row\">\\n <label>Clone this repository:</label>\\n ')\n # SOURCE LINE 46\n __M_writer(unicode(render_clone_str( repository )))\n __M_writer(u'\\n </div>\\n')\n pass\n # SOURCE LINE 49\n __M_writer(u' <form name=\"repository_type\">\\n ')\n # SOURCE LINE 50\n __M_writer(unicode(render_repository_type_select_field( repository_type_select_field, render_help=False )))\n __M_writer(u'\\n </form>\\n')\n # SOURCE LINE 52\n if can_push:\n # SOURCE LINE 53\n __M_writer(u' <form name=\"select_files_to_delete\" id=\"select_files_to_delete\" action=\"')\n __M_writer(unicode(h.url_for( controller='repository', action='select_files_to_delete', id=trans.security.encode_id( repository.id ))))\n __M_writer(u'\" method=\"post\" >\\n <div class=\"form-row\" >\\n <label>Contents:</label>\\n <div id=\"tree\" >\\n Loading...\\n </div>\\n <div class=\"toolParamHelp\" style=\"clear: both;\">\\n Click on a file to display it\\'s contents below. You may delete files from the repository by clicking the check box next to each file and clicking the <b>Delete selected files</b> button.\\n </div>\\n <input id=\"selected_files_to_delete\" name=\"selected_files_to_delete\" type=\"hidden\" value=\"\"/>\\n </div>\\n <div class=\"form-row\">\\n <label>Message:</label>\\n <div class=\"form-row-input\">\\n')\n # SOURCE LINE 67\n if commit_message:\n # SOURCE LINE 68\n __M_writer(u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\">')\n __M_writer(filters.html_escape(unicode(commit_message )))\n __M_writer(u'</textarea>\\n')\n # SOURCE LINE 69\n else:\n # SOURCE LINE 70\n __M_writer(u' <textarea name=\"commit_message\" rows=\"3\" cols=\"35\"></textarea>\\n')\n pass\n # SOURCE LINE 72\n __M_writer(u' </div>\\n <div class=\"toolParamHelp\" style=\"clear: both;\">\\n This is the commit message for the mercurial change set that will be created if you delete selected files.\\n </div>\\n <div style=\"clear: both\"></div>\\n </div>\\n <div class=\"form-row\">\\n <input type=\"submit\" name=\"select_files_to_delete_button\" value=\"Delete selected files\"/>\\n </div>\\n <div class=\"form-row\">\\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\\n </div>\\n </form>\\n')\n # SOURCE LINE 85\n else:\n # SOURCE LINE 86\n __M_writer(u' <div class=\"toolFormBody\">\\n <div class=\"form-row\" >\\n <label>Contents:</label>\\n <div id=\"tree\" >\\n Loading...\\n </div>\\n </div>\\n <div class=\"form-row\">\\n <div id=\"file_contents\" class=\"toolParamHelp\" style=\"clear: both;background-color:#FAFAFA;\"></div>\\n </div>\\n </div>\\n')\n pass\n # SOURCE LINE 98\n __M_writer(u' </div>\\n <p/>\\n')\n pass\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_stylesheets(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions'])\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n # SOURCE LINE 16\n __M_writer(u'\\n ')\n # SOURCE LINE 17\n __M_writer(unicode(parent.stylesheets()))\n __M_writer(u'\\n ')\n # SOURCE LINE 18\n __M_writer(unicode(h.css( \"jquery.rating\", \"dynatree_skin/ui.dynatree\" )))\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\ndef render_javascripts(context):\n context.caller_stack._push_frame()\n try:\n _import_ns = {}\n _mako_get_namespace(context, '__anon_0x88e2e50')._populate(_import_ns, [u'render_msg'])\n _mako_get_namespace(context, '__anon_0x7ee9750')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x8a2fd90')._populate(_import_ns, [u'*'])\n _mako_get_namespace(context, '__anon_0x88e21d0')._populate(_import_ns, [u'render_tool_shed_repository_actions'])\n common_javascripts = _import_ns.get('common_javascripts', context.get('common_javascripts', UNDEFINED))\n h = _import_ns.get('h', context.get('h', UNDEFINED))\n repository = _import_ns.get('repository', context.get('repository', UNDEFINED))\n parent = _import_ns.get('parent', context.get('parent', UNDEFINED))\n __M_writer = context.writer()\n # SOURCE LINE 21\n __M_writer(u'\\n ')\n # SOURCE LINE 22\n __M_writer(unicode(parent.javascripts()))\n __M_writer(u'\\n ')\n # SOURCE LINE 23\n __M_writer(unicode(h.js( \"libs/jquery/jquery.rating\", \"libs/jquery/jquery-ui\", \"libs/jquery/jquery.cookie\", \"libs/jquery/jquery.dynatree\" )))\n __M_writer(u'\\n ')\n # SOURCE LINE 24\n __M_writer(unicode(common_javascripts(repository)))\n __M_writer(u'\\n')\n return ''\n finally:\n context.caller_stack._pop_frame()\n\n\n", "step-ids": [ 3, 5, 7, 9, 10 ] }
[ 3, 5, 7, 9, 10 ]
#-*- coding: utf-8 -*- from django.db import models from authentication.models import Account class QuestionFaq(models.Model): title = models.CharField(max_length=50, verbose_name=u'Тема вопроса') question = models.TextField(verbose_name=u'Задайте вопрос') date = models.DateField(auto_now_add=True) checked = models.BooleanField(default=False) class Meta: verbose_name = u'Вопрос в FAQ' verbose_name_plural = u'Вопросы в FAQ' def __unicode__(self): return self.title class AnswerFaq(models.Model): account = models.ForeignKey(Account) answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ') question = models.ForeignKey(QuestionFaq) date = models.DateField(auto_now_add=True) class Meta: verbose_name = u'Ответ на вопрос в FAQ' verbose_name_plural = u'Ответы на вопросы в FAQ' def __unicode__(self): return u'%s - вопрос: "%s"' % ( self.account.get_full_name(), self.question.title)
normal
{ "blob_id": "b00c9f099fcb31262df947f47d7190912ee66965", "index": 6159, "step-1": "<mask token>\n\n\nclass AnswerFaq(models.Model):\n account = models.ForeignKey(Account)\n answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ')\n question = models.ForeignKey(QuestionFaq)\n date = models.DateField(auto_now_add=True)\n\n\n class Meta:\n verbose_name = u'Ответ на вопрос в FAQ'\n verbose_name_plural = u'Ответы на вопросы в FAQ'\n\n def __unicode__(self):\n return u'%s - вопрос: \"%s\"' % (self.account.get_full_name(), self.\n question.title)\n", "step-2": "<mask token>\n\n\nclass QuestionFaq(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\n class Meta:\n verbose_name = u'Вопрос в FAQ'\n verbose_name_plural = u'Вопросы в FAQ'\n <mask token>\n\n\nclass AnswerFaq(models.Model):\n account = models.ForeignKey(Account)\n answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ')\n question = models.ForeignKey(QuestionFaq)\n date = models.DateField(auto_now_add=True)\n\n\n class Meta:\n verbose_name = u'Ответ на вопрос в FAQ'\n verbose_name_plural = u'Ответы на вопросы в FAQ'\n\n def __unicode__(self):\n return u'%s - вопрос: \"%s\"' % (self.account.get_full_name(), self.\n question.title)\n", "step-3": "<mask token>\n\n\nclass QuestionFaq(models.Model):\n title = models.CharField(max_length=50, verbose_name=u'Тема вопроса')\n question = models.TextField(verbose_name=u'Задайте вопрос')\n date = models.DateField(auto_now_add=True)\n checked = models.BooleanField(default=False)\n\n\n class Meta:\n verbose_name = u'Вопрос в FAQ'\n verbose_name_plural = u'Вопросы в FAQ'\n\n def __unicode__(self):\n return self.title\n\n\nclass AnswerFaq(models.Model):\n account = models.ForeignKey(Account)\n answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ')\n question = models.ForeignKey(QuestionFaq)\n date = models.DateField(auto_now_add=True)\n\n\n class Meta:\n verbose_name = u'Ответ на вопрос в FAQ'\n verbose_name_plural = u'Ответы на вопросы в FAQ'\n\n def __unicode__(self):\n return u'%s - вопрос: \"%s\"' % (self.account.get_full_name(), self.\n question.title)\n", "step-4": "from django.db import models\nfrom authentication.models import Account\n\n\nclass QuestionFaq(models.Model):\n title = models.CharField(max_length=50, verbose_name=u'Тема вопроса')\n question = models.TextField(verbose_name=u'Задайте вопрос')\n date = models.DateField(auto_now_add=True)\n checked = models.BooleanField(default=False)\n\n\n class Meta:\n verbose_name = u'Вопрос в FAQ'\n verbose_name_plural = u'Вопросы в FAQ'\n\n def __unicode__(self):\n return self.title\n\n\nclass AnswerFaq(models.Model):\n account = models.ForeignKey(Account)\n answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ')\n question = models.ForeignKey(QuestionFaq)\n date = models.DateField(auto_now_add=True)\n\n\n class Meta:\n verbose_name = u'Ответ на вопрос в FAQ'\n verbose_name_plural = u'Ответы на вопросы в FAQ'\n\n def __unicode__(self):\n return u'%s - вопрос: \"%s\"' % (self.account.get_full_name(), self.\n question.title)\n", "step-5": "#-*- coding: utf-8 -*-\nfrom django.db import models\nfrom authentication.models import Account\n\n\nclass QuestionFaq(models.Model):\n title = models.CharField(max_length=50, verbose_name=u'Тема вопроса')\n question = models.TextField(verbose_name=u'Задайте вопрос')\n date = models.DateField(auto_now_add=True)\n checked = models.BooleanField(default=False)\n\n class Meta:\n verbose_name = u'Вопрос в FAQ'\n verbose_name_plural = u'Вопросы в FAQ'\n\n def __unicode__(self):\n return self.title\n\n\nclass AnswerFaq(models.Model):\n account = models.ForeignKey(Account)\n answer = models.TextField(verbose_name=u'Ответ на вопрос в FAQ')\n question = models.ForeignKey(QuestionFaq)\n date = models.DateField(auto_now_add=True)\n\n class Meta:\n verbose_name = u'Ответ на вопрос в FAQ'\n verbose_name_plural = u'Ответы на вопросы в FAQ'\n\n def __unicode__(self):\n return u'%s - вопрос: \"%s\"' % (\n self.account.get_full_name(),\n self.question.title)\n", "step-ids": [ 3, 4, 6, 7, 8 ] }
[ 3, 4, 6, 7, 8 ]
# coding=utf-8 # http://rate.tmall.com/list_detail_rate.htm?itemId=41464129793&sellerId=1652490016&currentPage=1 import requests, re from Tkinter import * import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import random import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 def worker(): goods_url = L_entry.get() pages = P_entry.get() detail_list = [] detail_dict = {} for i in range(int(pages)): page = i + 1 goods_url = re.sub(r"currentPage=\d", "currentPage=%s" % page, goods_url) rsp = requests.get(goods_url, headers=header) data = rsp.text data = eval(re.search(r"\{.*", data).group().strip(')').replace("false", "0").replace("true", "1")) for detail in data['rateDetail']['rateList']: #for detail in data['rateList']: try: size = detail["auctionSku"] except Exception as e: print e continue size = size.split(";") s1 = size[0].split(":")[1] if size else '' s2 = size[1].split(":")[1] if len(size)>1 else '' s = str(s1) + str(s2) if s in detail_list: detail_dict[s] = detail_dict[s] + 1 else: detail_list.append(s) detail_dict[s] = 1 root.wm_title("page%d" % page) root.wm_title("下载完成") make_image(detail_list,detail_dict) def make_image(detail_list,detail_dict,goods_name): print detail_list print detail_dict colors = ['#ff0000', '#eb4310', '#f6941d', '#fbb417', '#ffff00', '#cdd541', '#99cc33', '#3f9337', '#219167', '#239676', '#24998d', '#1f9baa', '#0080ff', '#3366cc', '#333399', '#003366', '#800080', '#a1488e', '#c71585', '#bd2158'] people = [detail.decode('utf8') for detail in detail_list] colors = colors[0:len(people)] #y轴元素数量 y_pos = np.arange(len(people)) #每个元素对应的值,array performance = [detail_dict[x] for x in detail_list] bars = plt.barh(y_pos, performance, align='center')#这里是产生横向柱状图 barh h--horizontal #设置颜色 for bar,colors in zip(bars,colors): bar.set_color(colors) #y轴每个元素标签 plt.yticks(y_pos, people) plt.yticks(fontsize=7) #x轴标题 plt.xlabel('count') #x轴范围 plt.xlim(0,max(performance)) plt.title('size and colors count about taobao') plt.show() if __name__ == '__main__': # goods_url = "https://rate.tmall.com/list_detail_rate.htm?itemId=527956695986&spuId=517713513&sellerId=2615125783&order=3&currentPage=1&append=0&content=1&tagId=&posi=&picture=&ua=146UW5TcyMNYQwiAiwZTXFIdUh1SHJOe0BuOG4%3D%7CUm5Ockt%2FRH1IdUB%2BRXpOdiA%3D%7CU2xMHDJ7G2AHYg8hAS8XLwEhD0ghSmQyZA%3D%3D%7CVGhXd1llXGhTal9iV2lSbVlhVmtJfUN4QHpAf0ZyT3JPekB0TGI0%7CVWldfS0SMg01ACAcIAAuE2JbZlInGiYcIAUrfSs%3D%7CVmhIGCcZOQQkGCccJAQ6ADwHJxskESwMOQQ5GSUaLxIyCDcCVAI%3D%7CV25Tbk5zU2xMcEl1VWtTaUlwJg%3D%3D&isg=Ar29SH8guO4XdhyBmwNtPy2rzB938vDSpl9fGH8C9JRDtt3oR6oBfItkFN0K&needFold=0&_ksTS=1496480841428_649&callback=jsonp650" header = { "authority": "rate.tmall.com", "method": "GET", "scheme": "https", "accept": "*/*", "accept-encoding": "gzip, deflate, sdch, br", "accept-language": "zh-CN,zh;q=0.8", "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/537.36", } root = Tk() root.wm_title("淘宝牛统计") L_label = Label(root, text="链接").grid(row=0, sticky=W) L_entry = Entry(root,width = 240) L_entry.grid(row=0, column=1, stick=E) P_label = Label(root, text="页数").grid(row=1, sticky=W) P_entry = Entry(root, width = 240) P_entry.grid(row=1, column=1, stick=E) start_btn = Button(root, text="开始",anchor = 'center', command=worker).grid(row=3) width = 300 height = 100 screenwidth = root.winfo_screenwidth() screenheight = root.winfo_screenheight() size = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2) print(size) root.geometry(size) root.mainloop()
normal
{ "blob_id": "123d3906ce040a4daa5309eae555bad5509f805e", "index": 671, "step-1": "# coding=utf-8\n# http://rate.tmall.com/list_detail_rate.htm?itemId=41464129793&sellerId=1652490016&currentPage=1\nimport requests, re\nfrom Tkinter import *\nimport numpy as np\nimport matplotlib as mpl\nimport matplotlib.pyplot as plt\nimport random\nimport matplotlib.pyplot as plt\nplt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签\nplt.rcParams['axes.unicode_minus']=False #用来正常显示负号\n\ndef worker():\n goods_url = L_entry.get()\n pages = P_entry.get()\n\n detail_list = []\n detail_dict = {}\n for i in range(int(pages)):\n page = i + 1\n goods_url = re.sub(r\"currentPage=\\d\", \"currentPage=%s\" % page, goods_url)\n rsp = requests.get(goods_url, headers=header)\n\n data = rsp.text\n data = eval(re.search(r\"\\{.*\", data).group().strip(')').replace(\"false\", \"0\").replace(\"true\", \"1\"))\n\n for detail in data['rateDetail']['rateList']:\n #for detail in data['rateList']:\n try:\n size = detail[\"auctionSku\"]\n except Exception as e:\n print e\n continue\n size = size.split(\";\")\n\n s1 = size[0].split(\":\")[1] if size else ''\n s2 = size[1].split(\":\")[1] if len(size)>1 else ''\n\n s = str(s1) + str(s2)\n if s in detail_list:\n detail_dict[s] = detail_dict[s] + 1\n else:\n detail_list.append(s)\n detail_dict[s] = 1\n\n root.wm_title(\"page%d\" % page)\n root.wm_title(\"下载完成\")\n make_image(detail_list,detail_dict)\n\ndef make_image(detail_list,detail_dict,goods_name):\n print detail_list\n print detail_dict\n colors = ['#ff0000', '#eb4310', '#f6941d', '#fbb417', '#ffff00', '#cdd541', '#99cc33', '#3f9337', '#219167',\n '#239676', '#24998d', '#1f9baa', '#0080ff', '#3366cc', '#333399', '#003366', '#800080', '#a1488e',\n '#c71585', '#bd2158']\n people = [detail.decode('utf8') for detail in detail_list]\n colors = colors[0:len(people)]\n #y轴元素数量\n y_pos = np.arange(len(people))\n #每个元素对应的值,array\n performance = [detail_dict[x] for x in detail_list]\n \n bars = plt.barh(y_pos, performance, align='center')#这里是产生横向柱状图 barh h--horizontal\n #设置颜色\n for bar,colors in zip(bars,colors):\n bar.set_color(colors)\n #y轴每个元素标签\n\n plt.yticks(y_pos, people)\n plt.yticks(fontsize=7)\n\n #x轴标题\n plt.xlabel('count')\n #x轴范围\n plt.xlim(0,max(performance))\n plt.title('size and colors count about taobao')\n plt.show()\nif __name__ == '__main__':\n # goods_url = \"https://rate.tmall.com/list_detail_rate.htm?itemId=527956695986&spuId=517713513&sellerId=2615125783&order=3&currentPage=1&append=0&content=1&tagId=&posi=&picture=&ua=146UW5TcyMNYQwiAiwZTXFIdUh1SHJOe0BuOG4%3D%7CUm5Ockt%2FRH1IdUB%2BRXpOdiA%3D%7CU2xMHDJ7G2AHYg8hAS8XLwEhD0ghSmQyZA%3D%3D%7CVGhXd1llXGhTal9iV2lSbVlhVmtJfUN4QHpAf0ZyT3JPekB0TGI0%7CVWldfS0SMg01ACAcIAAuE2JbZlInGiYcIAUrfSs%3D%7CVmhIGCcZOQQkGCccJAQ6ADwHJxskESwMOQQ5GSUaLxIyCDcCVAI%3D%7CV25Tbk5zU2xMcEl1VWtTaUlwJg%3D%3D&isg=Ar29SH8guO4XdhyBmwNtPy2rzB938vDSpl9fGH8C9JRDtt3oR6oBfItkFN0K&needFold=0&_ksTS=1496480841428_649&callback=jsonp650\"\n header = {\n \"authority\": \"rate.tmall.com\",\n \"method\": \"GET\",\n \"scheme\": \"https\",\n \"accept\": \"*/*\",\n \"accept-encoding\": \"gzip, deflate, sdch, br\",\n \"accept-language\": \"zh-CN,zh;q=0.8\",\n \"user-agent\": \"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.95 Safari/537.36\",\n }\n root = Tk()\n root.wm_title(\"淘宝牛统计\")\n L_label = Label(root, text=\"链接\").grid(row=0, sticky=W)\n L_entry = Entry(root,width = 240)\n L_entry.grid(row=0, column=1, stick=E)\n P_label = Label(root, text=\"页数\").grid(row=1, sticky=W)\n P_entry = Entry(root, width = 240)\n P_entry.grid(row=1, column=1, stick=E)\n start_btn = Button(root, text=\"开始\",anchor = 'center', command=worker).grid(row=3)\n width = 300\n height = 100\n screenwidth = root.winfo_screenwidth()\n screenheight = root.winfo_screenheight()\n size = '%dx%d+%d+%d' % (width, height, (screenwidth - width) / 2, (screenheight - height) / 2)\n print(size)\n root.geometry(size)\n root.mainloop()\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._inputs import * __all__ = ['DashboardArgs', 'Dashboard'] @pulumi.input_type class DashboardArgs: def __init__(__self__, *, dashboard_definition: pulumi.Input[str], dashboard_description: pulumi.Input[str], dashboard_name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]] = None): """ The set of arguments for constructing a Dashboard resource. :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal. :param pulumi.Input[str] dashboard_description: A description for the dashboard. :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard. :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard. :param pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]] tags: A list of key-value pairs that contain metadata for the dashboard. """ pulumi.set(__self__, "dashboard_definition", dashboard_definition) pulumi.set(__self__, "dashboard_description", dashboard_description) if dashboard_name is not None: pulumi.set(__self__, "dashboard_name", dashboard_name) if project_id is not None: pulumi.set(__self__, "project_id", project_id) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter(name="dashboardDefinition") def dashboard_definition(self) -> pulumi.Input[str]: """ The dashboard definition specified in a JSON literal. """ return pulumi.get(self, "dashboard_definition") @dashboard_definition.setter def dashboard_definition(self, value: pulumi.Input[str]): pulumi.set(self, "dashboard_definition", value) @property @pulumi.getter(name="dashboardDescription") def dashboard_description(self) -> pulumi.Input[str]: """ A description for the dashboard. """ return pulumi.get(self, "dashboard_description") @dashboard_description.setter def dashboard_description(self, value: pulumi.Input[str]): pulumi.set(self, "dashboard_description", value) @property @pulumi.getter(name="dashboardName") def dashboard_name(self) -> Optional[pulumi.Input[str]]: """ A friendly name for the dashboard. """ return pulumi.get(self, "dashboard_name") @dashboard_name.setter def dashboard_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "dashboard_name", value) @property @pulumi.getter(name="projectId") def project_id(self) -> Optional[pulumi.Input[str]]: """ The ID of the project in which to create the dashboard. """ return pulumi.get(self, "project_id") @project_id.setter def project_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "project_id", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]]: """ A list of key-value pairs that contain metadata for the dashboard. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]]): pulumi.set(self, "tags", value) class Dashboard(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, dashboard_definition: Optional[pulumi.Input[str]] = None, dashboard_description: Optional[pulumi.Input[str]] = None, dashboard_name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]] = None, __props__=None): """ Resource schema for AWS::IoTSiteWise::Dashboard :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal. :param pulumi.Input[str] dashboard_description: A description for the dashboard. :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard. :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard. """ ... @overload def __init__(__self__, resource_name: str, args: DashboardArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Resource schema for AWS::IoTSiteWise::Dashboard :param str resource_name: The name of the resource. :param DashboardArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, dashboard_definition: Optional[pulumi.Input[str]] = None, dashboard_description: Optional[pulumi.Input[str]] = None, dashboard_name: Optional[pulumi.Input[str]] = None, project_id: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]] = None, __props__=None): opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts) if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DashboardArgs.__new__(DashboardArgs) if dashboard_definition is None and not opts.urn: raise TypeError("Missing required property 'dashboard_definition'") __props__.__dict__["dashboard_definition"] = dashboard_definition if dashboard_description is None and not opts.urn: raise TypeError("Missing required property 'dashboard_description'") __props__.__dict__["dashboard_description"] = dashboard_description __props__.__dict__["dashboard_name"] = dashboard_name __props__.__dict__["project_id"] = project_id __props__.__dict__["tags"] = tags __props__.__dict__["dashboard_arn"] = None __props__.__dict__["dashboard_id"] = None super(Dashboard, __self__).__init__( 'aws-native:iotsitewise:Dashboard', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Dashboard': """ Get an existing Dashboard resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DashboardArgs.__new__(DashboardArgs) __props__.__dict__["dashboard_arn"] = None __props__.__dict__["dashboard_definition"] = None __props__.__dict__["dashboard_description"] = None __props__.__dict__["dashboard_id"] = None __props__.__dict__["dashboard_name"] = None __props__.__dict__["project_id"] = None __props__.__dict__["tags"] = None return Dashboard(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dashboardArn") def dashboard_arn(self) -> pulumi.Output[str]: """ The ARN of the dashboard. """ return pulumi.get(self, "dashboard_arn") @property @pulumi.getter(name="dashboardDefinition") def dashboard_definition(self) -> pulumi.Output[str]: """ The dashboard definition specified in a JSON literal. """ return pulumi.get(self, "dashboard_definition") @property @pulumi.getter(name="dashboardDescription") def dashboard_description(self) -> pulumi.Output[str]: """ A description for the dashboard. """ return pulumi.get(self, "dashboard_description") @property @pulumi.getter(name="dashboardId") def dashboard_id(self) -> pulumi.Output[str]: """ The ID of the dashboard. """ return pulumi.get(self, "dashboard_id") @property @pulumi.getter(name="dashboardName") def dashboard_name(self) -> pulumi.Output[str]: """ A friendly name for the dashboard. """ return pulumi.get(self, "dashboard_name") @property @pulumi.getter(name="projectId") def project_id(self) -> pulumi.Output[Optional[str]]: """ The ID of the project in which to create the dashboard. """ return pulumi.get(self, "project_id") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]: """ A list of key-value pairs that contain metadata for the dashboard. """ return pulumi.get(self, "tags")
normal
{ "blob_id": "2332783c96b24caa383bf47d82384e1c40a48e94", "index": 8566, "step-1": "<mask token>\n\n\[email protected]_type\nclass DashboardArgs:\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass Dashboard(pulumi.CustomResource):\n\n @overload\n def __init__(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n ...\n\n @overload\n def __init__(__self__, resource_name: str, args: DashboardArgs, opts:\n Optional[pulumi.ResourceOptions]=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param DashboardArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n ...\n\n def __init__(__self__, resource_name: str, *args, **kwargs):\n resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs,\n pulumi.ResourceOptions, *args, **kwargs)\n if resource_args is not None:\n __self__._internal_init(resource_name, opts, **resource_args.\n __dict__)\n else:\n __self__._internal_init(resource_name, *args, **kwargs)\n\n def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n opts = pulumi.ResourceOptions.merge(_utilities.\n get_resource_opts_defaults(), opts)\n if not isinstance(opts, pulumi.ResourceOptions):\n raise TypeError(\n 'Expected resource options to be a ResourceOptions instance')\n if opts.id is None:\n if __props__ is not None:\n raise TypeError(\n '__props__ is only valid when passed in combination with a valid opts.id to get an existing resource'\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n if dashboard_definition is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_definition'\")\n __props__.__dict__['dashboard_definition'] = dashboard_definition\n if dashboard_description is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_description'\")\n __props__.__dict__['dashboard_description'] = dashboard_description\n __props__.__dict__['dashboard_name'] = dashboard_name\n __props__.__dict__['project_id'] = project_id\n __props__.__dict__['tags'] = tags\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_id'] = None\n super(Dashboard, __self__).__init__('aws-native:iotsitewise:Dashboard',\n resource_name, __props__, opts)\n\n @staticmethod\n def get(resource_name: str, id: pulumi.Input[str], opts: Optional[\n pulumi.ResourceOptions]=None) ->'Dashboard':\n \"\"\"\n Get an existing Dashboard resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_definition'] = None\n __props__.__dict__['dashboard_description'] = None\n __props__.__dict__['dashboard_id'] = None\n __props__.__dict__['dashboard_name'] = None\n __props__.__dict__['project_id'] = None\n __props__.__dict__['tags'] = None\n return Dashboard(resource_name, opts=opts, __props__=__props__)\n\n @property\n @pulumi.getter(name='dashboardArn')\n def dashboard_arn(self) ->pulumi.Output[str]:\n \"\"\"\n The ARN of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_arn')\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Output[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @property\n @pulumi.getter(name='dashboardDescription')\n def dashboard_description(self) ->pulumi.Output[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_description')\n\n @property\n @pulumi.getter(name='dashboardId')\n def dashboard_id(self) ->pulumi.Output[str]:\n \"\"\"\n The ID of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_id')\n\n @property\n @pulumi.getter(name='dashboardName')\n def dashboard_name(self) ->pulumi.Output[str]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_name')\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->pulumi.Output[Optional[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @property\n @pulumi.getter\n def tags(self) ->pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n", "step-2": "<mask token>\n\n\[email protected]_type\nclass DashboardArgs:\n\n def __init__(__self__, *, dashboard_definition: pulumi.Input[str],\n dashboard_description: pulumi.Input[str], dashboard_name: Optional[\n pulumi.Input[str]]=None, project_id: Optional[pulumi.Input[str]]=\n None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]=None):\n \"\"\"\n The set of arguments for constructing a Dashboard resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n pulumi.set(__self__, 'dashboard_definition', dashboard_definition)\n pulumi.set(__self__, 'dashboard_description', dashboard_description)\n if dashboard_name is not None:\n pulumi.set(__self__, 'dashboard_name', dashboard_name)\n if project_id is not None:\n pulumi.set(__self__, 'project_id', project_id)\n if tags is not None:\n pulumi.set(__self__, 'tags', tags)\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Input[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @dashboard_definition.setter\n def dashboard_definition(self, value: pulumi.Input[str]):\n pulumi.set(self, 'dashboard_definition', value)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->Optional[pulumi.Input[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @project_id.setter\n def project_id(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, 'project_id', value)\n\n @property\n @pulumi.getter\n def tags(self) ->Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n\n @tags.setter\n def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]):\n pulumi.set(self, 'tags', value)\n\n\nclass Dashboard(pulumi.CustomResource):\n\n @overload\n def __init__(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n ...\n\n @overload\n def __init__(__self__, resource_name: str, args: DashboardArgs, opts:\n Optional[pulumi.ResourceOptions]=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param DashboardArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n ...\n\n def __init__(__self__, resource_name: str, *args, **kwargs):\n resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs,\n pulumi.ResourceOptions, *args, **kwargs)\n if resource_args is not None:\n __self__._internal_init(resource_name, opts, **resource_args.\n __dict__)\n else:\n __self__._internal_init(resource_name, *args, **kwargs)\n\n def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n opts = pulumi.ResourceOptions.merge(_utilities.\n get_resource_opts_defaults(), opts)\n if not isinstance(opts, pulumi.ResourceOptions):\n raise TypeError(\n 'Expected resource options to be a ResourceOptions instance')\n if opts.id is None:\n if __props__ is not None:\n raise TypeError(\n '__props__ is only valid when passed in combination with a valid opts.id to get an existing resource'\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n if dashboard_definition is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_definition'\")\n __props__.__dict__['dashboard_definition'] = dashboard_definition\n if dashboard_description is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_description'\")\n __props__.__dict__['dashboard_description'] = dashboard_description\n __props__.__dict__['dashboard_name'] = dashboard_name\n __props__.__dict__['project_id'] = project_id\n __props__.__dict__['tags'] = tags\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_id'] = None\n super(Dashboard, __self__).__init__('aws-native:iotsitewise:Dashboard',\n resource_name, __props__, opts)\n\n @staticmethod\n def get(resource_name: str, id: pulumi.Input[str], opts: Optional[\n pulumi.ResourceOptions]=None) ->'Dashboard':\n \"\"\"\n Get an existing Dashboard resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_definition'] = None\n __props__.__dict__['dashboard_description'] = None\n __props__.__dict__['dashboard_id'] = None\n __props__.__dict__['dashboard_name'] = None\n __props__.__dict__['project_id'] = None\n __props__.__dict__['tags'] = None\n return Dashboard(resource_name, opts=opts, __props__=__props__)\n\n @property\n @pulumi.getter(name='dashboardArn')\n def dashboard_arn(self) ->pulumi.Output[str]:\n \"\"\"\n The ARN of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_arn')\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Output[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @property\n @pulumi.getter(name='dashboardDescription')\n def dashboard_description(self) ->pulumi.Output[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_description')\n\n @property\n @pulumi.getter(name='dashboardId')\n def dashboard_id(self) ->pulumi.Output[str]:\n \"\"\"\n The ID of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_id')\n\n @property\n @pulumi.getter(name='dashboardName')\n def dashboard_name(self) ->pulumi.Output[str]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_name')\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->pulumi.Output[Optional[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @property\n @pulumi.getter\n def tags(self) ->pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n", "step-3": "<mask token>\n\n\[email protected]_type\nclass DashboardArgs:\n\n def __init__(__self__, *, dashboard_definition: pulumi.Input[str],\n dashboard_description: pulumi.Input[str], dashboard_name: Optional[\n pulumi.Input[str]]=None, project_id: Optional[pulumi.Input[str]]=\n None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]=None):\n \"\"\"\n The set of arguments for constructing a Dashboard resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n pulumi.set(__self__, 'dashboard_definition', dashboard_definition)\n pulumi.set(__self__, 'dashboard_description', dashboard_description)\n if dashboard_name is not None:\n pulumi.set(__self__, 'dashboard_name', dashboard_name)\n if project_id is not None:\n pulumi.set(__self__, 'project_id', project_id)\n if tags is not None:\n pulumi.set(__self__, 'tags', tags)\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Input[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @dashboard_definition.setter\n def dashboard_definition(self, value: pulumi.Input[str]):\n pulumi.set(self, 'dashboard_definition', value)\n <mask token>\n <mask token>\n <mask token>\n\n @dashboard_name.setter\n def dashboard_name(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, 'dashboard_name', value)\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->Optional[pulumi.Input[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @project_id.setter\n def project_id(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, 'project_id', value)\n\n @property\n @pulumi.getter\n def tags(self) ->Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n\n @tags.setter\n def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]):\n pulumi.set(self, 'tags', value)\n\n\nclass Dashboard(pulumi.CustomResource):\n\n @overload\n def __init__(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n ...\n\n @overload\n def __init__(__self__, resource_name: str, args: DashboardArgs, opts:\n Optional[pulumi.ResourceOptions]=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param DashboardArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n ...\n\n def __init__(__self__, resource_name: str, *args, **kwargs):\n resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs,\n pulumi.ResourceOptions, *args, **kwargs)\n if resource_args is not None:\n __self__._internal_init(resource_name, opts, **resource_args.\n __dict__)\n else:\n __self__._internal_init(resource_name, *args, **kwargs)\n\n def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n opts = pulumi.ResourceOptions.merge(_utilities.\n get_resource_opts_defaults(), opts)\n if not isinstance(opts, pulumi.ResourceOptions):\n raise TypeError(\n 'Expected resource options to be a ResourceOptions instance')\n if opts.id is None:\n if __props__ is not None:\n raise TypeError(\n '__props__ is only valid when passed in combination with a valid opts.id to get an existing resource'\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n if dashboard_definition is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_definition'\")\n __props__.__dict__['dashboard_definition'] = dashboard_definition\n if dashboard_description is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_description'\")\n __props__.__dict__['dashboard_description'] = dashboard_description\n __props__.__dict__['dashboard_name'] = dashboard_name\n __props__.__dict__['project_id'] = project_id\n __props__.__dict__['tags'] = tags\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_id'] = None\n super(Dashboard, __self__).__init__('aws-native:iotsitewise:Dashboard',\n resource_name, __props__, opts)\n\n @staticmethod\n def get(resource_name: str, id: pulumi.Input[str], opts: Optional[\n pulumi.ResourceOptions]=None) ->'Dashboard':\n \"\"\"\n Get an existing Dashboard resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_definition'] = None\n __props__.__dict__['dashboard_description'] = None\n __props__.__dict__['dashboard_id'] = None\n __props__.__dict__['dashboard_name'] = None\n __props__.__dict__['project_id'] = None\n __props__.__dict__['tags'] = None\n return Dashboard(resource_name, opts=opts, __props__=__props__)\n\n @property\n @pulumi.getter(name='dashboardArn')\n def dashboard_arn(self) ->pulumi.Output[str]:\n \"\"\"\n The ARN of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_arn')\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Output[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @property\n @pulumi.getter(name='dashboardDescription')\n def dashboard_description(self) ->pulumi.Output[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_description')\n\n @property\n @pulumi.getter(name='dashboardId')\n def dashboard_id(self) ->pulumi.Output[str]:\n \"\"\"\n The ID of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_id')\n\n @property\n @pulumi.getter(name='dashboardName')\n def dashboard_name(self) ->pulumi.Output[str]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_name')\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->pulumi.Output[Optional[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @property\n @pulumi.getter\n def tags(self) ->pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n", "step-4": "<mask token>\n\n\[email protected]_type\nclass DashboardArgs:\n\n def __init__(__self__, *, dashboard_definition: pulumi.Input[str],\n dashboard_description: pulumi.Input[str], dashboard_name: Optional[\n pulumi.Input[str]]=None, project_id: Optional[pulumi.Input[str]]=\n None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]=None):\n \"\"\"\n The set of arguments for constructing a Dashboard resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n pulumi.set(__self__, 'dashboard_definition', dashboard_definition)\n pulumi.set(__self__, 'dashboard_description', dashboard_description)\n if dashboard_name is not None:\n pulumi.set(__self__, 'dashboard_name', dashboard_name)\n if project_id is not None:\n pulumi.set(__self__, 'project_id', project_id)\n if tags is not None:\n pulumi.set(__self__, 'tags', tags)\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Input[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @dashboard_definition.setter\n def dashboard_definition(self, value: pulumi.Input[str]):\n pulumi.set(self, 'dashboard_definition', value)\n <mask token>\n <mask token>\n\n @property\n @pulumi.getter(name='dashboardName')\n def dashboard_name(self) ->Optional[pulumi.Input[str]]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_name')\n\n @dashboard_name.setter\n def dashboard_name(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, 'dashboard_name', value)\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->Optional[pulumi.Input[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @project_id.setter\n def project_id(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, 'project_id', value)\n\n @property\n @pulumi.getter\n def tags(self) ->Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n\n @tags.setter\n def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[\n 'DashboardTagArgs']]]]):\n pulumi.set(self, 'tags', value)\n\n\nclass Dashboard(pulumi.CustomResource):\n\n @overload\n def __init__(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n ...\n\n @overload\n def __init__(__self__, resource_name: str, args: DashboardArgs, opts:\n Optional[pulumi.ResourceOptions]=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param DashboardArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n ...\n\n def __init__(__self__, resource_name: str, *args, **kwargs):\n resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs,\n pulumi.ResourceOptions, *args, **kwargs)\n if resource_args is not None:\n __self__._internal_init(resource_name, opts, **resource_args.\n __dict__)\n else:\n __self__._internal_init(resource_name, *args, **kwargs)\n\n def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.\n ResourceOptions]=None, dashboard_definition: Optional[pulumi.Input[\n str]]=None, dashboard_description: Optional[pulumi.Input[str]]=None,\n dashboard_name: Optional[pulumi.Input[str]]=None, project_id:\n Optional[pulumi.Input[str]]=None, tags: Optional[pulumi.Input[\n Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]]=None,\n __props__=None):\n opts = pulumi.ResourceOptions.merge(_utilities.\n get_resource_opts_defaults(), opts)\n if not isinstance(opts, pulumi.ResourceOptions):\n raise TypeError(\n 'Expected resource options to be a ResourceOptions instance')\n if opts.id is None:\n if __props__ is not None:\n raise TypeError(\n '__props__ is only valid when passed in combination with a valid opts.id to get an existing resource'\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n if dashboard_definition is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_definition'\")\n __props__.__dict__['dashboard_definition'] = dashboard_definition\n if dashboard_description is None and not opts.urn:\n raise TypeError(\n \"Missing required property 'dashboard_description'\")\n __props__.__dict__['dashboard_description'] = dashboard_description\n __props__.__dict__['dashboard_name'] = dashboard_name\n __props__.__dict__['project_id'] = project_id\n __props__.__dict__['tags'] = tags\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_id'] = None\n super(Dashboard, __self__).__init__('aws-native:iotsitewise:Dashboard',\n resource_name, __props__, opts)\n\n @staticmethod\n def get(resource_name: str, id: pulumi.Input[str], opts: Optional[\n pulumi.ResourceOptions]=None) ->'Dashboard':\n \"\"\"\n Get an existing Dashboard resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)\n )\n __props__ = DashboardArgs.__new__(DashboardArgs)\n __props__.__dict__['dashboard_arn'] = None\n __props__.__dict__['dashboard_definition'] = None\n __props__.__dict__['dashboard_description'] = None\n __props__.__dict__['dashboard_id'] = None\n __props__.__dict__['dashboard_name'] = None\n __props__.__dict__['project_id'] = None\n __props__.__dict__['tags'] = None\n return Dashboard(resource_name, opts=opts, __props__=__props__)\n\n @property\n @pulumi.getter(name='dashboardArn')\n def dashboard_arn(self) ->pulumi.Output[str]:\n \"\"\"\n The ARN of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_arn')\n\n @property\n @pulumi.getter(name='dashboardDefinition')\n def dashboard_definition(self) ->pulumi.Output[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, 'dashboard_definition')\n\n @property\n @pulumi.getter(name='dashboardDescription')\n def dashboard_description(self) ->pulumi.Output[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_description')\n\n @property\n @pulumi.getter(name='dashboardId')\n def dashboard_id(self) ->pulumi.Output[str]:\n \"\"\"\n The ID of the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_id')\n\n @property\n @pulumi.getter(name='dashboardName')\n def dashboard_name(self) ->pulumi.Output[str]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, 'dashboard_name')\n\n @property\n @pulumi.getter(name='projectId')\n def project_id(self) ->pulumi.Output[Optional[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, 'project_id')\n\n @property\n @pulumi.getter\n def tags(self) ->pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, 'tags')\n", "step-5": "# coding=utf-8\n# *** WARNING: this file was generated by the Pulumi SDK Generator. ***\n# *** Do not edit by hand unless you're certain you know what you are doing! ***\n\nimport copy\nimport warnings\nimport pulumi\nimport pulumi.runtime\nfrom typing import Any, Mapping, Optional, Sequence, Union, overload\nfrom .. import _utilities\nfrom . import outputs\nfrom ._inputs import *\n\n__all__ = ['DashboardArgs', 'Dashboard']\n\[email protected]_type\nclass DashboardArgs:\n def __init__(__self__, *,\n dashboard_definition: pulumi.Input[str],\n dashboard_description: pulumi.Input[str],\n dashboard_name: Optional[pulumi.Input[str]] = None,\n project_id: Optional[pulumi.Input[str]] = None,\n tags: Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]] = None):\n \"\"\"\n The set of arguments for constructing a Dashboard resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n pulumi.set(__self__, \"dashboard_definition\", dashboard_definition)\n pulumi.set(__self__, \"dashboard_description\", dashboard_description)\n if dashboard_name is not None:\n pulumi.set(__self__, \"dashboard_name\", dashboard_name)\n if project_id is not None:\n pulumi.set(__self__, \"project_id\", project_id)\n if tags is not None:\n pulumi.set(__self__, \"tags\", tags)\n\n @property\n @pulumi.getter(name=\"dashboardDefinition\")\n def dashboard_definition(self) -> pulumi.Input[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, \"dashboard_definition\")\n\n @dashboard_definition.setter\n def dashboard_definition(self, value: pulumi.Input[str]):\n pulumi.set(self, \"dashboard_definition\", value)\n\n @property\n @pulumi.getter(name=\"dashboardDescription\")\n def dashboard_description(self) -> pulumi.Input[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_description\")\n\n @dashboard_description.setter\n def dashboard_description(self, value: pulumi.Input[str]):\n pulumi.set(self, \"dashboard_description\", value)\n\n @property\n @pulumi.getter(name=\"dashboardName\")\n def dashboard_name(self) -> Optional[pulumi.Input[str]]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_name\")\n\n @dashboard_name.setter\n def dashboard_name(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, \"dashboard_name\", value)\n\n @property\n @pulumi.getter(name=\"projectId\")\n def project_id(self) -> Optional[pulumi.Input[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, \"project_id\")\n\n @project_id.setter\n def project_id(self, value: Optional[pulumi.Input[str]]):\n pulumi.set(self, \"project_id\", value)\n\n @property\n @pulumi.getter\n def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, \"tags\")\n\n @tags.setter\n def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['DashboardTagArgs']]]]):\n pulumi.set(self, \"tags\", value)\n\n\nclass Dashboard(pulumi.CustomResource):\n @overload\n def __init__(__self__,\n resource_name: str,\n opts: Optional[pulumi.ResourceOptions] = None,\n dashboard_definition: Optional[pulumi.Input[str]] = None,\n dashboard_description: Optional[pulumi.Input[str]] = None,\n dashboard_name: Optional[pulumi.Input[str]] = None,\n project_id: Optional[pulumi.Input[str]] = None,\n tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]] = None,\n __props__=None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param pulumi.ResourceOptions opts: Options for the resource.\n :param pulumi.Input[str] dashboard_definition: The dashboard definition specified in a JSON literal.\n :param pulumi.Input[str] dashboard_description: A description for the dashboard.\n :param pulumi.Input[str] dashboard_name: A friendly name for the dashboard.\n :param pulumi.Input[str] project_id: The ID of the project in which to create the dashboard.\n :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]] tags: A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n ...\n @overload\n def __init__(__self__,\n resource_name: str,\n args: DashboardArgs,\n opts: Optional[pulumi.ResourceOptions] = None):\n \"\"\"\n Resource schema for AWS::IoTSiteWise::Dashboard\n\n :param str resource_name: The name of the resource.\n :param DashboardArgs args: The arguments to use to populate this resource's properties.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n ...\n def __init__(__self__, resource_name: str, *args, **kwargs):\n resource_args, opts = _utilities.get_resource_args_opts(DashboardArgs, pulumi.ResourceOptions, *args, **kwargs)\n if resource_args is not None:\n __self__._internal_init(resource_name, opts, **resource_args.__dict__)\n else:\n __self__._internal_init(resource_name, *args, **kwargs)\n\n def _internal_init(__self__,\n resource_name: str,\n opts: Optional[pulumi.ResourceOptions] = None,\n dashboard_definition: Optional[pulumi.Input[str]] = None,\n dashboard_description: Optional[pulumi.Input[str]] = None,\n dashboard_name: Optional[pulumi.Input[str]] = None,\n project_id: Optional[pulumi.Input[str]] = None,\n tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DashboardTagArgs']]]]] = None,\n __props__=None):\n opts = pulumi.ResourceOptions.merge(_utilities.get_resource_opts_defaults(), opts)\n if not isinstance(opts, pulumi.ResourceOptions):\n raise TypeError('Expected resource options to be a ResourceOptions instance')\n if opts.id is None:\n if __props__ is not None:\n raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource')\n __props__ = DashboardArgs.__new__(DashboardArgs)\n\n if dashboard_definition is None and not opts.urn:\n raise TypeError(\"Missing required property 'dashboard_definition'\")\n __props__.__dict__[\"dashboard_definition\"] = dashboard_definition\n if dashboard_description is None and not opts.urn:\n raise TypeError(\"Missing required property 'dashboard_description'\")\n __props__.__dict__[\"dashboard_description\"] = dashboard_description\n __props__.__dict__[\"dashboard_name\"] = dashboard_name\n __props__.__dict__[\"project_id\"] = project_id\n __props__.__dict__[\"tags\"] = tags\n __props__.__dict__[\"dashboard_arn\"] = None\n __props__.__dict__[\"dashboard_id\"] = None\n super(Dashboard, __self__).__init__(\n 'aws-native:iotsitewise:Dashboard',\n resource_name,\n __props__,\n opts)\n\n @staticmethod\n def get(resource_name: str,\n id: pulumi.Input[str],\n opts: Optional[pulumi.ResourceOptions] = None) -> 'Dashboard':\n \"\"\"\n Get an existing Dashboard resource's state with the given name, id, and optional extra\n properties used to qualify the lookup.\n\n :param str resource_name: The unique name of the resulting resource.\n :param pulumi.Input[str] id: The unique provider ID of the resource to lookup.\n :param pulumi.ResourceOptions opts: Options for the resource.\n \"\"\"\n opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id))\n\n __props__ = DashboardArgs.__new__(DashboardArgs)\n\n __props__.__dict__[\"dashboard_arn\"] = None\n __props__.__dict__[\"dashboard_definition\"] = None\n __props__.__dict__[\"dashboard_description\"] = None\n __props__.__dict__[\"dashboard_id\"] = None\n __props__.__dict__[\"dashboard_name\"] = None\n __props__.__dict__[\"project_id\"] = None\n __props__.__dict__[\"tags\"] = None\n return Dashboard(resource_name, opts=opts, __props__=__props__)\n\n @property\n @pulumi.getter(name=\"dashboardArn\")\n def dashboard_arn(self) -> pulumi.Output[str]:\n \"\"\"\n The ARN of the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_arn\")\n\n @property\n @pulumi.getter(name=\"dashboardDefinition\")\n def dashboard_definition(self) -> pulumi.Output[str]:\n \"\"\"\n The dashboard definition specified in a JSON literal.\n \"\"\"\n return pulumi.get(self, \"dashboard_definition\")\n\n @property\n @pulumi.getter(name=\"dashboardDescription\")\n def dashboard_description(self) -> pulumi.Output[str]:\n \"\"\"\n A description for the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_description\")\n\n @property\n @pulumi.getter(name=\"dashboardId\")\n def dashboard_id(self) -> pulumi.Output[str]:\n \"\"\"\n The ID of the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_id\")\n\n @property\n @pulumi.getter(name=\"dashboardName\")\n def dashboard_name(self) -> pulumi.Output[str]:\n \"\"\"\n A friendly name for the dashboard.\n \"\"\"\n return pulumi.get(self, \"dashboard_name\")\n\n @property\n @pulumi.getter(name=\"projectId\")\n def project_id(self) -> pulumi.Output[Optional[str]]:\n \"\"\"\n The ID of the project in which to create the dashboard.\n \"\"\"\n return pulumi.get(self, \"project_id\")\n\n @property\n @pulumi.getter\n def tags(self) -> pulumi.Output[Optional[Sequence['outputs.DashboardTag']]]:\n \"\"\"\n A list of key-value pairs that contain metadata for the dashboard.\n \"\"\"\n return pulumi.get(self, \"tags\")\n\n", "step-ids": [ 14, 21, 22, 23, 28 ] }
[ 14, 21, 22, 23, 28 ]
def tobin(n): bin = ""; while(n/2!=0): if n%2==0: bin = bin + "0" else: bin = bin + "1" if n%2==1: bin = bin + "1" return bin n = int(input()) bin = tobin(5) print(bin)
normal
{ "blob_id": "1c5ca920fe1f116a5bc52c9e5c53c13b1e1c925f", "index": 2412, "step-1": "<mask token>\n", "step-2": "def tobin(n):\n bin = ''\n while n / 2 != 0:\n if n % 2 == 0:\n bin = bin + '0'\n else:\n bin = bin + '1'\n if n % 2 == 1:\n bin = bin + '1'\n return bin\n\n\n<mask token>\n", "step-3": "def tobin(n):\n bin = ''\n while n / 2 != 0:\n if n % 2 == 0:\n bin = bin + '0'\n else:\n bin = bin + '1'\n if n % 2 == 1:\n bin = bin + '1'\n return bin\n\n\n<mask token>\nprint(bin)\n", "step-4": "def tobin(n):\n bin = ''\n while n / 2 != 0:\n if n % 2 == 0:\n bin = bin + '0'\n else:\n bin = bin + '1'\n if n % 2 == 1:\n bin = bin + '1'\n return bin\n\n\nn = int(input())\nbin = tobin(5)\nprint(bin)\n", "step-5": "def tobin(n):\r\n bin = \"\";\r\n while(n/2!=0):\r\n if n%2==0:\r\n bin = bin + \"0\"\r\n else:\r\n bin = bin + \"1\"\r\n if n%2==1:\r\n bin = bin + \"1\"\r\n return bin\r\n\r\nn = int(input())\r\nbin = tobin(5)\r\nprint(bin)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# cook your dish here t=int(input()) while t: n=int(input()) a=list(map(int,input().split())) a.sort(reverse=True) s=0 for i in range(n): k=a[i]-i if k>=0: s+=k print(s%1000000007) t-=1
normal
{ "blob_id": "44bf409d627a6029ab4c4f1fff99f102b8d57279", "index": 3954, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile t:\n n = int(input())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n s = 0\n for i in range(n):\n k = a[i] - i\n if k >= 0:\n s += k\n print(s % 1000000007)\n t -= 1\n", "step-3": "t = int(input())\nwhile t:\n n = int(input())\n a = list(map(int, input().split()))\n a.sort(reverse=True)\n s = 0\n for i in range(n):\n k = a[i] - i\n if k >= 0:\n s += k\n print(s % 1000000007)\n t -= 1\n", "step-4": "# cook your dish here\nt=int(input())\nwhile t:\n n=int(input())\n a=list(map(int,input().split()))\n a.sort(reverse=True)\n s=0\n for i in range(n):\n k=a[i]-i\n if k>=0:\n s+=k\n print(s%1000000007)\n t-=1\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import mysql.connector from mysql.connector import errorcode DB_NAME = 'PieDB' TABLES = {} # TABLES['pietweets'] = ( # "CREATE TABLE `pietweets` (" # " `id` int NOT NULL AUTO_INCREMENT," # " `tweet_id` bigint NOT NULL," # " `username` varchar(32) NOT NULL," # " `geo_lat` float(53) NOT NULL," # " `geo_long` float(53) NOT NULL," # " `text` varchar(255) NOT NULL," # " `timestamp` datetime NOT NULL," # " PRIMARY KEY (`id`)" # ") ENGINE=InnoDB") TABLES['lemonpie'] = ( "CREATE TABLE `lemonpie` (" " `id` int NOT NULL AUTO_INCREMENT," " `tweet_id` bigint NOT NULL," " `username` varchar(32) NOT NULL," " `geo_lat` float(53) NOT NULL," " `geo_long` float(53) NOT NULL," " `text` varchar(255) NOT NULL," " `timestamp` datetime NOT NULL," " PRIMARY KEY (`id`)" ") ENGINE=InnoDB") # DB credentials config = { 'user': 'piemaster', 'password': 'piemaster123', 'host': 'piedb.chhtgdmxqekc.us-east-1.rds.amazonaws.com', 'database': 'PieDB', 'raise_on_warnings': True, } # establish connection with DB config credentials cnx = mysql.connector.connect(**config) cursor = cnx.cursor() def create_database(cursor): try: cursor.execute( "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(DB_NAME)) except mysql.connector.Error as err: print("Failed creating database: {}".format(err)) exit(1) # try connecting to designated DB, if not exist - create this DB try: cnx.database = DB_NAME except mysql.connector.Error as err: if err.errno == errorcode.ER_BAD_DB_ERROR: create_database(cursor) cnx.database = DB_NAME else: print(err) exit(1) # iterate through TABLES and create each table for name, ddl in TABLES.iteritems(): try: print("Creating table {}: ".format(name)) cursor.execute(ddl) except mysql.connector.Error as err: if err.errno == errorcode.ER_TABLE_EXISTS_ERROR: print("already exists.") else: print(err.msg) else: print("OK") # closing db connection cursor.close() cnx.close()
normal
{ "blob_id": "38abc4bc99f3b15b416c77481818464a6c7f11ef", "index": 3844, "step-1": "<mask token>\n\n\ndef create_database(cursor):\n try:\n cursor.execute(\"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'\".\n format(DB_NAME))\n except mysql.connector.Error as err:\n print('Failed creating database: {}'.format(err))\n exit(1)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef create_database(cursor):\n try:\n cursor.execute(\"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'\".\n format(DB_NAME))\n except mysql.connector.Error as err:\n print('Failed creating database: {}'.format(err))\n exit(1)\n\n\ntry:\n cnx.database = DB_NAME\nexcept mysql.connector.Error as err:\n if err.errno == errorcode.ER_BAD_DB_ERROR:\n create_database(cursor)\n cnx.database = DB_NAME\n else:\n print(err)\n exit(1)\nfor name, ddl in TABLES.iteritems():\n try:\n print('Creating table {}: '.format(name))\n cursor.execute(ddl)\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:\n print('already exists.')\n else:\n print(err.msg)\n else:\n print('OK')\ncursor.close()\ncnx.close()\n", "step-3": "<mask token>\nDB_NAME = 'PieDB'\nTABLES = {}\nTABLES['lemonpie'] = (\n 'CREATE TABLE `lemonpie` ( `id` int NOT NULL AUTO_INCREMENT, `tweet_id` bigint NOT NULL, `username` varchar(32) NOT NULL, `geo_lat` float(53) NOT NULL, `geo_long` float(53) NOT NULL, `text` varchar(255) NOT NULL, `timestamp` datetime NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB'\n )\nconfig = {'user': 'piemaster', 'password': 'piemaster123', 'host':\n 'piedb.chhtgdmxqekc.us-east-1.rds.amazonaws.com', 'database': 'PieDB',\n 'raise_on_warnings': True}\ncnx = mysql.connector.connect(**config)\ncursor = cnx.cursor()\n\n\ndef create_database(cursor):\n try:\n cursor.execute(\"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'\".\n format(DB_NAME))\n except mysql.connector.Error as err:\n print('Failed creating database: {}'.format(err))\n exit(1)\n\n\ntry:\n cnx.database = DB_NAME\nexcept mysql.connector.Error as err:\n if err.errno == errorcode.ER_BAD_DB_ERROR:\n create_database(cursor)\n cnx.database = DB_NAME\n else:\n print(err)\n exit(1)\nfor name, ddl in TABLES.iteritems():\n try:\n print('Creating table {}: '.format(name))\n cursor.execute(ddl)\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:\n print('already exists.')\n else:\n print(err.msg)\n else:\n print('OK')\ncursor.close()\ncnx.close()\n", "step-4": "import mysql.connector\nfrom mysql.connector import errorcode\nDB_NAME = 'PieDB'\nTABLES = {}\nTABLES['lemonpie'] = (\n 'CREATE TABLE `lemonpie` ( `id` int NOT NULL AUTO_INCREMENT, `tweet_id` bigint NOT NULL, `username` varchar(32) NOT NULL, `geo_lat` float(53) NOT NULL, `geo_long` float(53) NOT NULL, `text` varchar(255) NOT NULL, `timestamp` datetime NOT NULL, PRIMARY KEY (`id`)) ENGINE=InnoDB'\n )\nconfig = {'user': 'piemaster', 'password': 'piemaster123', 'host':\n 'piedb.chhtgdmxqekc.us-east-1.rds.amazonaws.com', 'database': 'PieDB',\n 'raise_on_warnings': True}\ncnx = mysql.connector.connect(**config)\ncursor = cnx.cursor()\n\n\ndef create_database(cursor):\n try:\n cursor.execute(\"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'\".\n format(DB_NAME))\n except mysql.connector.Error as err:\n print('Failed creating database: {}'.format(err))\n exit(1)\n\n\ntry:\n cnx.database = DB_NAME\nexcept mysql.connector.Error as err:\n if err.errno == errorcode.ER_BAD_DB_ERROR:\n create_database(cursor)\n cnx.database = DB_NAME\n else:\n print(err)\n exit(1)\nfor name, ddl in TABLES.iteritems():\n try:\n print('Creating table {}: '.format(name))\n cursor.execute(ddl)\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:\n print('already exists.')\n else:\n print(err.msg)\n else:\n print('OK')\ncursor.close()\ncnx.close()\n", "step-5": "import mysql.connector\nfrom mysql.connector import errorcode\n\nDB_NAME = 'PieDB'\n\nTABLES = {}\n# TABLES['pietweets'] = (\n# \t\"CREATE TABLE `pietweets` (\"\n# \t\" `id` int NOT NULL AUTO_INCREMENT,\"\t\t\n# \t\" `tweet_id` bigint NOT NULL,\"\n# \t\" `username` varchar(32) NOT NULL,\"\n# \t\" `geo_lat` float(53) NOT NULL,\"\n# \t\" `geo_long` float(53) NOT NULL,\"\n# \t\" `text` varchar(255) NOT NULL,\"\n# \t\" `timestamp` datetime NOT NULL,\"\n# \t\" PRIMARY KEY (`id`)\"\n# \t\") ENGINE=InnoDB\")\nTABLES['lemonpie'] = (\n \"CREATE TABLE `lemonpie` (\"\n \" `id` int NOT NULL AUTO_INCREMENT,\" \n \" `tweet_id` bigint NOT NULL,\"\n \" `username` varchar(32) NOT NULL,\"\n \" `geo_lat` float(53) NOT NULL,\"\n \" `geo_long` float(53) NOT NULL,\"\n \" `text` varchar(255) NOT NULL,\"\n \" `timestamp` datetime NOT NULL,\"\n \" PRIMARY KEY (`id`)\"\n \") ENGINE=InnoDB\")\n\n# DB credentials\nconfig = {\n 'user': 'piemaster',\n 'password': 'piemaster123',\n 'host': 'piedb.chhtgdmxqekc.us-east-1.rds.amazonaws.com',\n 'database': 'PieDB',\n 'raise_on_warnings': True,\n}\n\n# establish connection with DB config credentials\ncnx = mysql.connector.connect(**config)\ncursor = cnx.cursor()\n\ndef create_database(cursor):\n try:\n cursor.execute(\n \"CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'\".format(DB_NAME))\n except mysql.connector.Error as err:\n print(\"Failed creating database: {}\".format(err))\n exit(1)\n\n# try connecting to designated DB, if not exist - create this DB\ntry:\n cnx.database = DB_NAME \nexcept mysql.connector.Error as err:\n if err.errno == errorcode.ER_BAD_DB_ERROR:\n create_database(cursor)\n cnx.database = DB_NAME\n else:\n print(err)\n exit(1)\n\n# iterate through TABLES and create each table\nfor name, ddl in TABLES.iteritems():\n try:\n print(\"Creating table {}: \".format(name))\n cursor.execute(ddl)\n except mysql.connector.Error as err:\n if err.errno == errorcode.ER_TABLE_EXISTS_ERROR:\n print(\"already exists.\")\n else:\n print(err.msg)\n else:\n print(\"OK\")\n\n# closing db connection\ncursor.close()\ncnx.close()\n\n\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import tkinter as tk import random root = tk.Tk() main_frame = tk.Frame(root) var = tk.StringVar() ch = [ "hello world" , "HI Pyton", "Mar Java", "Mit Java", "Lut Java" ] var.set("Hello world I am a Label") label = tk.Label(main_frame,textvariable=var, bg="black",fg="white",font=("Times New Roman",24,"bold")) label.pack() def change_label(): var.set(random.choice(ch)) b1 = tk.Button(main_frame,text="click",command=change_label, font=("Arial",15,'bold'),bg="pink",fg="red") b1.pack() expr = tk.StringVar() e1 = tk.Entry(root,textvariable=expr,font=("Arial",20,'bold'), bg='gray',fg='white') main_frame.pack() button = tk.Button(root,text="!!EXIT!!",command=root.destroy, font=("Arial",15,'bold'),bg="pink",fg="red") button.pack() def slove(): expr.set(eval(expr.get())) result_button= tk.Button(root,text="!!Result!!",command=slove, font=("Arial",15,'bold'),bg="pink",fg="red") def clear(): expr.set("") clr_button= tk.Button(root,text="!!clear!!",command=clear, font=("Arial",15,'bold'),bg="pink",fg="red") e1.pack() result_button.pack() clr_button.pack(anchor='sw') root.title("My Appliction") root.wm_minsize(400,400) root.wm_maxsize(500,500) root.geometry("+500+200") root.mainloop()
normal
{ "blob_id": "33938a28aad29e996255827825a0cdb1db6b70b7", "index": 5842, "step-1": "<mask token>\n\n\ndef change_label():\n var.set(random.choice(ch))\n\n\n<mask token>\n\n\ndef slove():\n expr.set(eval(expr.get()))\n\n\n<mask token>\n\n\ndef clear():\n expr.set('')\n\n\n<mask token>\n", "step-2": "<mask token>\nvar.set('Hello world I am a Label')\n<mask token>\nlabel.pack()\n\n\ndef change_label():\n var.set(random.choice(ch))\n\n\n<mask token>\nb1.pack()\n<mask token>\nmain_frame.pack()\n<mask token>\nbutton.pack()\n\n\ndef slove():\n expr.set(eval(expr.get()))\n\n\n<mask token>\n\n\ndef clear():\n expr.set('')\n\n\n<mask token>\ne1.pack()\nresult_button.pack()\nclr_button.pack(anchor='sw')\nroot.title('My Appliction')\nroot.wm_minsize(400, 400)\nroot.wm_maxsize(500, 500)\nroot.geometry('+500+200')\nroot.mainloop()\n", "step-3": "<mask token>\nroot = tk.Tk()\nmain_frame = tk.Frame(root)\nvar = tk.StringVar()\nch = ['hello world', 'HI Pyton', 'Mar Java', 'Mit Java', 'Lut Java']\nvar.set('Hello world I am a Label')\nlabel = tk.Label(main_frame, textvariable=var, bg='black', fg='white', font\n =('Times New Roman', 24, 'bold'))\nlabel.pack()\n\n\ndef change_label():\n var.set(random.choice(ch))\n\n\nb1 = tk.Button(main_frame, text='click', command=change_label, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\nb1.pack()\nexpr = tk.StringVar()\ne1 = tk.Entry(root, textvariable=expr, font=('Arial', 20, 'bold'), bg=\n 'gray', fg='white')\nmain_frame.pack()\nbutton = tk.Button(root, text='!!EXIT!!', command=root.destroy, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\nbutton.pack()\n\n\ndef slove():\n expr.set(eval(expr.get()))\n\n\nresult_button = tk.Button(root, text='!!Result!!', command=slove, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\n\n\ndef clear():\n expr.set('')\n\n\nclr_button = tk.Button(root, text='!!clear!!', command=clear, font=('Arial',\n 15, 'bold'), bg='pink', fg='red')\ne1.pack()\nresult_button.pack()\nclr_button.pack(anchor='sw')\nroot.title('My Appliction')\nroot.wm_minsize(400, 400)\nroot.wm_maxsize(500, 500)\nroot.geometry('+500+200')\nroot.mainloop()\n", "step-4": "import tkinter as tk\nimport random\nroot = tk.Tk()\nmain_frame = tk.Frame(root)\nvar = tk.StringVar()\nch = ['hello world', 'HI Pyton', 'Mar Java', 'Mit Java', 'Lut Java']\nvar.set('Hello world I am a Label')\nlabel = tk.Label(main_frame, textvariable=var, bg='black', fg='white', font\n =('Times New Roman', 24, 'bold'))\nlabel.pack()\n\n\ndef change_label():\n var.set(random.choice(ch))\n\n\nb1 = tk.Button(main_frame, text='click', command=change_label, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\nb1.pack()\nexpr = tk.StringVar()\ne1 = tk.Entry(root, textvariable=expr, font=('Arial', 20, 'bold'), bg=\n 'gray', fg='white')\nmain_frame.pack()\nbutton = tk.Button(root, text='!!EXIT!!', command=root.destroy, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\nbutton.pack()\n\n\ndef slove():\n expr.set(eval(expr.get()))\n\n\nresult_button = tk.Button(root, text='!!Result!!', command=slove, font=(\n 'Arial', 15, 'bold'), bg='pink', fg='red')\n\n\ndef clear():\n expr.set('')\n\n\nclr_button = tk.Button(root, text='!!clear!!', command=clear, font=('Arial',\n 15, 'bold'), bg='pink', fg='red')\ne1.pack()\nresult_button.pack()\nclr_button.pack(anchor='sw')\nroot.title('My Appliction')\nroot.wm_minsize(400, 400)\nroot.wm_maxsize(500, 500)\nroot.geometry('+500+200')\nroot.mainloop()\n", "step-5": "import tkinter as tk \nimport random\nroot = tk.Tk()\nmain_frame = tk.Frame(root)\nvar = tk.StringVar()\nch = [ \"hello world\" , \"HI Pyton\", \"Mar Java\", \"Mit Java\", \"Lut Java\" ]\nvar.set(\"Hello world I am a Label\")\nlabel = tk.Label(main_frame,textvariable=var,\n bg=\"black\",fg=\"white\",font=(\"Times New Roman\",24,\"bold\"))\nlabel.pack()\ndef change_label():\n var.set(random.choice(ch))\nb1 = tk.Button(main_frame,text=\"click\",command=change_label,\n font=(\"Arial\",15,'bold'),bg=\"pink\",fg=\"red\")\n\nb1.pack()\n\nexpr = tk.StringVar()\ne1 = tk.Entry(root,textvariable=expr,font=(\"Arial\",20,'bold'),\n bg='gray',fg='white')\n\nmain_frame.pack()\n\nbutton = tk.Button(root,text=\"!!EXIT!!\",command=root.destroy,\n font=(\"Arial\",15,'bold'),bg=\"pink\",fg=\"red\")\nbutton.pack()\ndef slove():\n expr.set(eval(expr.get()))\nresult_button= tk.Button(root,text=\"!!Result!!\",command=slove,\n font=(\"Arial\",15,'bold'),bg=\"pink\",fg=\"red\")\ndef clear():\n expr.set(\"\")\nclr_button= tk.Button(root,text=\"!!clear!!\",command=clear,\n font=(\"Arial\",15,'bold'),bg=\"pink\",fg=\"red\")\ne1.pack()\nresult_button.pack()\nclr_button.pack(anchor='sw')\nroot.title(\"My Appliction\")\nroot.wm_minsize(400,400)\nroot.wm_maxsize(500,500)\nroot.geometry(\"+500+200\")\nroot.mainloop()\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
################################################################################ # # # This file is part of the Potato Engine (PE). # # # # Copyright (C) 2007-2010 ElectroMagnetic Potatoes (EMP). # # See the AUTHORS file for more information. # # # # This library is free software; you can redistribute it and/or # # modify it under the terms of the GNU Lesser General Public # # License as published by the Free Software Foundation; either # # version 2.1 of the License, or (at your option) any later version. # # # # This library is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # # Lesser General Public License for more details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ################################################################################ import os import build ################################################################ # Default options (will be overriden by command line switches) # ################################################################ # Parallel build SetOption('num_jobs', 4) # include cache SetOption('implicit_cache', 1) ########################################################## # Command-line parameters (overriden by localconfig.py) # ########################################################## buildVariables = Variables("localconfig.py") buildVariables.Add(PathVariable("QTDIR", "Qt4 root directory", "/usr/share/qt4", PathVariable.PathIsDir)) buildVariables.Add(PathVariable("OGRE_HOME", "Ogre1.6 root directory (windows only)", None, PathVariable.PathIsDir)) buildVariables.Add(PathVariable("PTHREADWIN32_HOME", "PthreadWin32 root directory (windows only)", None, PathVariable.PathIsDir)) buildVariables.Add(PathVariable("ODE_HOME", "ODE 0.11 root directory", None, PathVariable.PathIsDir)) buildVariables.Add(BoolVariable("DEBUG", "If true, build in debug configuration", False)) buildVariables.Add(BoolVariable("FORCE_MINGW", "When both MinGW and VC++ are installed, force the use of the MinGW compiler instead of the default (windows only)", False)) buildVariables.Add(BoolVariable("DISABLE_GRAPH", "Disable dependency graph generation", False)) ############################################################################## # Variable value extraction (nasty, should be updated when the API evolves) # # The reason for having this here is that we have to access variables before # # we can create the real construction environment (for tools selection) # ############################################################################## currentVariables = Environment(variables = buildVariables).Dictionary() #################### # Base environment # #################### baseTools = ["qt"] if os.name == "nt": if currentVariables["FORCE_MINGW"]: baseTools.append("mingw") else: baseTools.append("default") else: baseTools.append("default") baseEnvironment = Environment(tools = baseTools, variables = buildVariables) # additional variables baseEnvironment["OSNAME"] = os.name baseEnvironment["SYSPATH"] = os.environ["PATH"].split(os.pathsep) if baseEnvironment["CC"] == "cl": baseEnvironment.AppendUnique(CPPFLAGS = ["/EHsc"]) # debug symbols vs. optimization if baseEnvironment["DEBUG"]: if baseEnvironment["CC"] == "cl": baseEnvironment.AppendUnique(CPPFLAGS = ["/Z7"]) else: baseEnvironment.AppendUnique(CPPFLAGS = ["-g"]) else: if baseEnvironment["CC"] == "cl": baseEnvironment.AppendUnique(CPPFLAGS = ["/Ox"]) else: baseEnvironment.AppendUnique(CPPFLAGS = ["-O2"]) # Qt tool workaround baseEnvironment.Replace(LIBS = []) baseEnvironment.Replace(LIBPATH = []) baseEnvironment.Replace(CPPPATH = []) # Qt UI builder uiBuilder = Builder(action = '$QT_UIC $QT_UICDECLFLAGS -o ${TARGETS[0]} $SOURCE') baseEnvironment.Append(BUILDERS = {'Ui' : uiBuilder}) # Qt RC builder rcBuilder = Builder(action = '$QT_BINPATH/rcc $QT_RCCDECLFLAGS -o ${TARGETS[0]} $SOURCE') baseEnvironment.Append(BUILDERS = {'Rc' : rcBuilder}) # Under windows, add the platform SDK if os.name == "nt" and baseEnvironment["CC"] == "cl": import _winreg key = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER, "Software\\Microsoft\\Microsoft SDKs\\Windows") winSdkHome = _winreg.QueryValueEx(key, "CurrentInstallFolder")[0] _winreg.CloseKey(key) baseEnvironment["WINSDK_HOME"] = winSdkHome baseEnvironment.AppendUnique(CPPPATH = ["$WINSDK_HOME/Include"]) baseEnvironment.AppendUnique(LIBPATH = ["$WINSDK_HOME/Lib"]) # Do not rely on VC++ runtime library if os.name == "nt" and baseEnvironment["CC"] == "cl": baseEnvironment.AppendUnique(CPPFLAGS = ["/MD"]) # Speed up change analysis baseEnvironment.Decider('MD5-timestamp') ##################### # Command-line help # ##################### Help(buildVariables.GenerateHelpText(baseEnvironment)) ################################## # SCons environment declarations # ################################## walker = build.DependencyWalker() # external component database for script in Glob("components.*.py"): SConscript(script, exports = "walker", variant_dir = "build", duplicate = 0) walker.makeEnvironments(baseEnvironment) if not baseEnvironment["DISABLE_GRAPH"]: walker.makeDependencyGraph("dependencies.png")
normal
{ "blob_id": "595912753d778a0fa8332f0df00e06a9da5cde93", "index": 447, "step-1": "<mask token>\n", "step-2": "<mask token>\nSetOption('num_jobs', 4)\nSetOption('implicit_cache', 1)\n<mask token>\nbuildVariables.Add(PathVariable('QTDIR', 'Qt4 root directory',\n '/usr/share/qt4', PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('OGRE_HOME',\n 'Ogre1.6 root directory (windows only)', None, PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('PTHREADWIN32_HOME',\n 'PthreadWin32 root directory (windows only)', None, PathVariable.PathIsDir)\n )\nbuildVariables.Add(PathVariable('ODE_HOME', 'ODE 0.11 root directory', None,\n PathVariable.PathIsDir))\nbuildVariables.Add(BoolVariable('DEBUG',\n 'If true, build in debug configuration', False))\nbuildVariables.Add(BoolVariable('FORCE_MINGW',\n 'When both MinGW and VC++ are installed, force the use of the MinGW compiler instead of the default (windows only)'\n , False))\nbuildVariables.Add(BoolVariable('DISABLE_GRAPH',\n 'Disable dependency graph generation', False))\n<mask token>\nif os.name == 'nt':\n if currentVariables['FORCE_MINGW']:\n baseTools.append('mingw')\n else:\n baseTools.append('default')\nelse:\n baseTools.append('default')\n<mask token>\nif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/EHsc'])\nif baseEnvironment['DEBUG']:\n if baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Z7'])\n else:\n baseEnvironment.AppendUnique(CPPFLAGS=['-g'])\nelif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Ox'])\nelse:\n baseEnvironment.AppendUnique(CPPFLAGS=['-O2'])\nbaseEnvironment.Replace(LIBS=[])\nbaseEnvironment.Replace(LIBPATH=[])\nbaseEnvironment.Replace(CPPPATH=[])\n<mask token>\nbaseEnvironment.Append(BUILDERS={'Ui': uiBuilder})\n<mask token>\nbaseEnvironment.Append(BUILDERS={'Rc': rcBuilder})\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n import _winreg\n key = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER,\n 'Software\\\\Microsoft\\\\Microsoft SDKs\\\\Windows')\n winSdkHome = _winreg.QueryValueEx(key, 'CurrentInstallFolder')[0]\n _winreg.CloseKey(key)\n baseEnvironment['WINSDK_HOME'] = winSdkHome\n baseEnvironment.AppendUnique(CPPPATH=['$WINSDK_HOME/Include'])\n baseEnvironment.AppendUnique(LIBPATH=['$WINSDK_HOME/Lib'])\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/MD'])\nbaseEnvironment.Decider('MD5-timestamp')\nHelp(buildVariables.GenerateHelpText(baseEnvironment))\n<mask token>\nfor script in Glob('components.*.py'):\n SConscript(script, exports='walker', variant_dir='build', duplicate=0)\nwalker.makeEnvironments(baseEnvironment)\nif not baseEnvironment['DISABLE_GRAPH']:\n walker.makeDependencyGraph('dependencies.png')\n", "step-3": "<mask token>\nSetOption('num_jobs', 4)\nSetOption('implicit_cache', 1)\nbuildVariables = Variables('localconfig.py')\nbuildVariables.Add(PathVariable('QTDIR', 'Qt4 root directory',\n '/usr/share/qt4', PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('OGRE_HOME',\n 'Ogre1.6 root directory (windows only)', None, PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('PTHREADWIN32_HOME',\n 'PthreadWin32 root directory (windows only)', None, PathVariable.PathIsDir)\n )\nbuildVariables.Add(PathVariable('ODE_HOME', 'ODE 0.11 root directory', None,\n PathVariable.PathIsDir))\nbuildVariables.Add(BoolVariable('DEBUG',\n 'If true, build in debug configuration', False))\nbuildVariables.Add(BoolVariable('FORCE_MINGW',\n 'When both MinGW and VC++ are installed, force the use of the MinGW compiler instead of the default (windows only)'\n , False))\nbuildVariables.Add(BoolVariable('DISABLE_GRAPH',\n 'Disable dependency graph generation', False))\ncurrentVariables = Environment(variables=buildVariables).Dictionary()\nbaseTools = ['qt']\nif os.name == 'nt':\n if currentVariables['FORCE_MINGW']:\n baseTools.append('mingw')\n else:\n baseTools.append('default')\nelse:\n baseTools.append('default')\nbaseEnvironment = Environment(tools=baseTools, variables=buildVariables)\nbaseEnvironment['OSNAME'] = os.name\nbaseEnvironment['SYSPATH'] = os.environ['PATH'].split(os.pathsep)\nif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/EHsc'])\nif baseEnvironment['DEBUG']:\n if baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Z7'])\n else:\n baseEnvironment.AppendUnique(CPPFLAGS=['-g'])\nelif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Ox'])\nelse:\n baseEnvironment.AppendUnique(CPPFLAGS=['-O2'])\nbaseEnvironment.Replace(LIBS=[])\nbaseEnvironment.Replace(LIBPATH=[])\nbaseEnvironment.Replace(CPPPATH=[])\nuiBuilder = Builder(action='$QT_UIC $QT_UICDECLFLAGS -o ${TARGETS[0]} $SOURCE')\nbaseEnvironment.Append(BUILDERS={'Ui': uiBuilder})\nrcBuilder = Builder(action=\n '$QT_BINPATH/rcc $QT_RCCDECLFLAGS -o ${TARGETS[0]} $SOURCE')\nbaseEnvironment.Append(BUILDERS={'Rc': rcBuilder})\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n import _winreg\n key = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER,\n 'Software\\\\Microsoft\\\\Microsoft SDKs\\\\Windows')\n winSdkHome = _winreg.QueryValueEx(key, 'CurrentInstallFolder')[0]\n _winreg.CloseKey(key)\n baseEnvironment['WINSDK_HOME'] = winSdkHome\n baseEnvironment.AppendUnique(CPPPATH=['$WINSDK_HOME/Include'])\n baseEnvironment.AppendUnique(LIBPATH=['$WINSDK_HOME/Lib'])\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/MD'])\nbaseEnvironment.Decider('MD5-timestamp')\nHelp(buildVariables.GenerateHelpText(baseEnvironment))\nwalker = build.DependencyWalker()\nfor script in Glob('components.*.py'):\n SConscript(script, exports='walker', variant_dir='build', duplicate=0)\nwalker.makeEnvironments(baseEnvironment)\nif not baseEnvironment['DISABLE_GRAPH']:\n walker.makeDependencyGraph('dependencies.png')\n", "step-4": "import os\nimport build\nSetOption('num_jobs', 4)\nSetOption('implicit_cache', 1)\nbuildVariables = Variables('localconfig.py')\nbuildVariables.Add(PathVariable('QTDIR', 'Qt4 root directory',\n '/usr/share/qt4', PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('OGRE_HOME',\n 'Ogre1.6 root directory (windows only)', None, PathVariable.PathIsDir))\nbuildVariables.Add(PathVariable('PTHREADWIN32_HOME',\n 'PthreadWin32 root directory (windows only)', None, PathVariable.PathIsDir)\n )\nbuildVariables.Add(PathVariable('ODE_HOME', 'ODE 0.11 root directory', None,\n PathVariable.PathIsDir))\nbuildVariables.Add(BoolVariable('DEBUG',\n 'If true, build in debug configuration', False))\nbuildVariables.Add(BoolVariable('FORCE_MINGW',\n 'When both MinGW and VC++ are installed, force the use of the MinGW compiler instead of the default (windows only)'\n , False))\nbuildVariables.Add(BoolVariable('DISABLE_GRAPH',\n 'Disable dependency graph generation', False))\ncurrentVariables = Environment(variables=buildVariables).Dictionary()\nbaseTools = ['qt']\nif os.name == 'nt':\n if currentVariables['FORCE_MINGW']:\n baseTools.append('mingw')\n else:\n baseTools.append('default')\nelse:\n baseTools.append('default')\nbaseEnvironment = Environment(tools=baseTools, variables=buildVariables)\nbaseEnvironment['OSNAME'] = os.name\nbaseEnvironment['SYSPATH'] = os.environ['PATH'].split(os.pathsep)\nif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/EHsc'])\nif baseEnvironment['DEBUG']:\n if baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Z7'])\n else:\n baseEnvironment.AppendUnique(CPPFLAGS=['-g'])\nelif baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/Ox'])\nelse:\n baseEnvironment.AppendUnique(CPPFLAGS=['-O2'])\nbaseEnvironment.Replace(LIBS=[])\nbaseEnvironment.Replace(LIBPATH=[])\nbaseEnvironment.Replace(CPPPATH=[])\nuiBuilder = Builder(action='$QT_UIC $QT_UICDECLFLAGS -o ${TARGETS[0]} $SOURCE')\nbaseEnvironment.Append(BUILDERS={'Ui': uiBuilder})\nrcBuilder = Builder(action=\n '$QT_BINPATH/rcc $QT_RCCDECLFLAGS -o ${TARGETS[0]} $SOURCE')\nbaseEnvironment.Append(BUILDERS={'Rc': rcBuilder})\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n import _winreg\n key = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER,\n 'Software\\\\Microsoft\\\\Microsoft SDKs\\\\Windows')\n winSdkHome = _winreg.QueryValueEx(key, 'CurrentInstallFolder')[0]\n _winreg.CloseKey(key)\n baseEnvironment['WINSDK_HOME'] = winSdkHome\n baseEnvironment.AppendUnique(CPPPATH=['$WINSDK_HOME/Include'])\n baseEnvironment.AppendUnique(LIBPATH=['$WINSDK_HOME/Lib'])\nif os.name == 'nt' and baseEnvironment['CC'] == 'cl':\n baseEnvironment.AppendUnique(CPPFLAGS=['/MD'])\nbaseEnvironment.Decider('MD5-timestamp')\nHelp(buildVariables.GenerateHelpText(baseEnvironment))\nwalker = build.DependencyWalker()\nfor script in Glob('components.*.py'):\n SConscript(script, exports='walker', variant_dir='build', duplicate=0)\nwalker.makeEnvironments(baseEnvironment)\nif not baseEnvironment['DISABLE_GRAPH']:\n walker.makeDependencyGraph('dependencies.png')\n", "step-5": "################################################################################\r\n# #\r\n# This file is part of the Potato Engine (PE). #\r\n# #\r\n# Copyright (C) 2007-2010 ElectroMagnetic Potatoes (EMP). #\r\n# See the AUTHORS file for more information. #\r\n# #\r\n# This library is free software; you can redistribute it and/or #\r\n# modify it under the terms of the GNU Lesser General Public #\r\n# License as published by the Free Software Foundation; either #\r\n# version 2.1 of the License, or (at your option) any later version. #\r\n# #\r\n# This library is distributed in the hope that it will be useful, #\r\n# but WITHOUT ANY WARRANTY; without even the implied warranty of #\r\n# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU #\r\n# Lesser General Public License for more details. #\r\n# #\r\n# You should have received a copy of the GNU Lesser General Public License #\r\n# along with this program. If not, see <http://www.gnu.org/licenses/>. #\r\n# #\r\n################################################################################\r\n\r\nimport os\r\nimport build\r\n\r\n################################################################\r\n# Default options (will be overriden by command line switches) #\r\n################################################################\r\n\r\n# Parallel build\r\nSetOption('num_jobs', 4)\r\n\r\n# include cache\r\nSetOption('implicit_cache', 1)\r\n\r\n##########################################################\r\n# Command-line parameters (overriden by localconfig.py) #\r\n##########################################################\r\n\r\nbuildVariables = Variables(\"localconfig.py\")\r\nbuildVariables.Add(PathVariable(\"QTDIR\", \"Qt4 root directory\", \"/usr/share/qt4\", PathVariable.PathIsDir))\r\nbuildVariables.Add(PathVariable(\"OGRE_HOME\", \"Ogre1.6 root directory (windows only)\", None, PathVariable.PathIsDir))\r\nbuildVariables.Add(PathVariable(\"PTHREADWIN32_HOME\", \"PthreadWin32 root directory (windows only)\", None, PathVariable.PathIsDir))\r\nbuildVariables.Add(PathVariable(\"ODE_HOME\", \"ODE 0.11 root directory\", None, PathVariable.PathIsDir))\r\nbuildVariables.Add(BoolVariable(\"DEBUG\", \"If true, build in debug configuration\", False))\r\nbuildVariables.Add(BoolVariable(\"FORCE_MINGW\", \"When both MinGW and VC++ are installed, force the use of the MinGW compiler instead of the default (windows only)\", False))\r\nbuildVariables.Add(BoolVariable(\"DISABLE_GRAPH\", \"Disable dependency graph generation\", False))\r\n\r\n##############################################################################\r\n# Variable value extraction (nasty, should be updated when the API evolves) #\r\n# The reason for having this here is that we have to access variables before #\r\n# we can create the real construction environment (for tools selection) #\r\n##############################################################################\r\n\r\ncurrentVariables = Environment(variables = buildVariables).Dictionary()\r\n\r\n####################\r\n# Base environment #\r\n####################\r\n\r\nbaseTools = [\"qt\"]\r\nif os.name == \"nt\":\r\n\tif currentVariables[\"FORCE_MINGW\"]:\r\n\t\tbaseTools.append(\"mingw\")\r\n\telse:\r\n\t\tbaseTools.append(\"default\")\r\nelse:\r\n\tbaseTools.append(\"default\")\r\n\r\nbaseEnvironment = Environment(tools = baseTools, variables = buildVariables)\r\n\r\n# additional variables\r\nbaseEnvironment[\"OSNAME\"] = os.name\r\nbaseEnvironment[\"SYSPATH\"] = os.environ[\"PATH\"].split(os.pathsep)\r\n\r\nif baseEnvironment[\"CC\"] == \"cl\":\r\n\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"/EHsc\"])\r\n\r\n# debug symbols vs. optimization\r\nif baseEnvironment[\"DEBUG\"]:\r\n\tif baseEnvironment[\"CC\"] == \"cl\":\r\n\t\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"/Z7\"])\r\n\telse:\r\n\t\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"-g\"])\r\nelse:\r\n\tif baseEnvironment[\"CC\"] == \"cl\":\r\n\t\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"/Ox\"])\r\n\telse:\r\n\t\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"-O2\"])\r\n\r\n# Qt tool workaround\r\nbaseEnvironment.Replace(LIBS = [])\r\nbaseEnvironment.Replace(LIBPATH = [])\r\nbaseEnvironment.Replace(CPPPATH = [])\r\n\r\n# Qt UI builder\r\nuiBuilder = Builder(action = '$QT_UIC $QT_UICDECLFLAGS -o ${TARGETS[0]} $SOURCE')\r\nbaseEnvironment.Append(BUILDERS = {'Ui' : uiBuilder})\r\n\r\n# Qt RC builder\r\nrcBuilder = Builder(action = '$QT_BINPATH/rcc $QT_RCCDECLFLAGS -o ${TARGETS[0]} $SOURCE')\r\nbaseEnvironment.Append(BUILDERS = {'Rc' : rcBuilder})\r\n\r\n# Under windows, add the platform SDK\r\nif os.name == \"nt\" and baseEnvironment[\"CC\"] == \"cl\":\r\n\timport _winreg\r\n\tkey = _winreg.OpenKey(_winreg.HKEY_CURRENT_USER, \"Software\\\\Microsoft\\\\Microsoft SDKs\\\\Windows\")\r\n\twinSdkHome = _winreg.QueryValueEx(key, \"CurrentInstallFolder\")[0]\r\n\t_winreg.CloseKey(key)\r\n\tbaseEnvironment[\"WINSDK_HOME\"] = winSdkHome\r\n\tbaseEnvironment.AppendUnique(CPPPATH = [\"$WINSDK_HOME/Include\"])\r\n\tbaseEnvironment.AppendUnique(LIBPATH = [\"$WINSDK_HOME/Lib\"])\r\n\r\n# Do not rely on VC++ runtime library\r\nif os.name == \"nt\" and baseEnvironment[\"CC\"] == \"cl\":\r\n\tbaseEnvironment.AppendUnique(CPPFLAGS = [\"/MD\"])\r\n\r\n# Speed up change analysis\r\nbaseEnvironment.Decider('MD5-timestamp')\r\n\r\n#####################\r\n# Command-line help #\r\n#####################\r\n\r\nHelp(buildVariables.GenerateHelpText(baseEnvironment))\r\n\r\n##################################\r\n# SCons environment declarations #\r\n##################################\r\n\r\nwalker = build.DependencyWalker()\r\n\r\n# external component database\r\nfor script in Glob(\"components.*.py\"):\r\n\tSConscript(script, exports = \"walker\", variant_dir = \"build\", duplicate = 0)\r\n\r\nwalker.makeEnvironments(baseEnvironment)\r\nif not baseEnvironment[\"DISABLE_GRAPH\"]:\r\n\twalker.makeDependencyGraph(\"dependencies.png\")\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pygame as pg screen = pg.display.set_mode((640, 380))
normal
{ "blob_id": "c1374a048187807deac5d28dda4fbc7beeccf8f5", "index": 5221, "step-1": "<mask token>\n", "step-2": "<mask token>\nscreen = pg.display.set_mode((640, 380))\n", "step-3": "import pygame as pg\nscreen = pg.display.set_mode((640, 380))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- """ =================================== Demo of DBSCAN clustering algorithm =================================== Finds core samples of high density and expands clusters from them. """ import scipy as sp import numpy as np from scipy import spatial print(__doc__) from sklearn.cluster import DBSCAN from sklearn import metrics from sklearn.datasets.samples_generator import make_blobs from sklearn.preprocessing import StandardScaler ############################################################################## # Calcule Distance Haversine Methods EARTHRADIUS = 6371.0 def getDistanceByHaversine(loc1, loc2): '''Haversine formula - give coordinates as a 2D numpy array of (lat_denter link description hereecimal,lon_decimal) pairs''' # # "unpack" our numpy array, this extracts column wise arrays lat1 = loc1[1] lon1 = loc1[0] lat2 = loc2[1] lon2 = loc2[0] # # convert to radians ##### Completely identical lon1 = lon1 * sp.pi / 180.0 lon2 = lon2 * sp.pi / 180.0 lat1 = lat1 * sp.pi / 180.0 lat2 = lat2 * sp.pi / 180.0 # # haversine formula #### Same, but atan2 named arctan2 in numpy dlon = lon2 - lon1 dlat = lat2 - lat1 a = (np.sin(dlat/2))**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon/2.0))**2 c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0-a)) km = EARTHRADIUS * c return km ############################################################################## # Create a Matrix with longitude and latitude import csv import re with open('users_bcn.csv', 'rb') as csvfile: data = csv.reader(csvfile, delimiter=',', quotechar='|') row_count = sum(1 for row in data) gps_matrix = [[0 for i in range(row_count)] for j in range(2)] with open('users_bcn.csv', 'rb') as csvfile: data = csv.reader(csvfile, delimiter=',', quotechar='|') for key, row in enumerate(data): if key != 0: try: gps_matrix[0][key] = float(row[2].replace('"','')) gps_matrix[1][key] = float(row[1].replace('"','')) except: a = float(row[1].replace(',','')) print('problem string to float') ############################################################################## # Calculate the Distance matrix D = spatial.distance.pdist(gps_matrix, lambda u, v: getDistanceByHaversine(u,v)) ############################################################################## # Generate sample data centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4, random_state=0) X = StandardScaler().fit_transform(X) ############################################################################## # Compute DBSCAN db = DBSCAN(eps=0.3, min_samples=10).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) print('Estimated number of clusters: %d' % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels)) print("Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score(labels_true, labels)) print("Silhouette Coefficient: %0.3f" % metrics.silhouette_score(X, labels)) ############################################################################## # Plot result import matplotlib.pyplot as plt # Black removed and is used for noise instead. unique_labels = set(labels) colors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels))) for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = 'k' class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.show()
normal
{ "blob_id": "d2e3ac490ce5fdc20976567fa320a9e6a53cbe34", "index": 1037, "step-1": "<mask token>\n\n\ndef getDistanceByHaversine(loc1, loc2):\n \"\"\"Haversine formula - give coordinates as a 2D numpy array of\n (lat_denter link description hereecimal,lon_decimal) pairs\"\"\"\n lat1 = loc1[1]\n lon1 = loc1[0]\n lat2 = loc2[1]\n lon2 = loc2[0]\n lon1 = lon1 * sp.pi / 180.0\n lon2 = lon2 * sp.pi / 180.0\n lat1 = lat1 * sp.pi / 180.0\n lat2 = lat2 * sp.pi / 180.0\n dlon = lon2 - lon1\n dlat = lat2 - lat1\n a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2.0\n ) ** 2\n c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a))\n km = EARTHRADIUS * c\n return km\n\n\n<mask token>\n", "step-2": "<mask token>\nprint(__doc__)\n<mask token>\n\n\ndef getDistanceByHaversine(loc1, loc2):\n \"\"\"Haversine formula - give coordinates as a 2D numpy array of\n (lat_denter link description hereecimal,lon_decimal) pairs\"\"\"\n lat1 = loc1[1]\n lon1 = loc1[0]\n lat2 = loc2[1]\n lon2 = loc2[0]\n lon1 = lon1 * sp.pi / 180.0\n lon2 = lon2 * sp.pi / 180.0\n lat1 = lat1 * sp.pi / 180.0\n lat2 = lat2 * sp.pi / 180.0\n dlon = lon2 - lon1\n dlat = lat2 - lat1\n a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2.0\n ) ** 2\n c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a))\n km = EARTHRADIUS * c\n return km\n\n\n<mask token>\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n row_count = sum(1 for row in data)\n gps_matrix = [[(0) for i in range(row_count)] for j in range(2)]\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n for key, row in enumerate(data):\n if key != 0:\n try:\n gps_matrix[0][key] = float(row[2].replace('\"', ''))\n gps_matrix[1][key] = float(row[1].replace('\"', ''))\n except:\n a = float(row[1].replace(',', ''))\n print('problem string to float')\n<mask token>\nprint('Estimated number of clusters: %d' % n_clusters_)\nprint('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, labels))\nprint('Completeness: %0.3f' % metrics.completeness_score(labels_true, labels))\nprint('V-measure: %0.3f' % metrics.v_measure_score(labels_true, labels))\nprint('Adjusted Rand Index: %0.3f' % metrics.adjusted_rand_score(\n labels_true, labels))\nprint('Adjusted Mutual Information: %0.3f' % metrics.\n adjusted_mutual_info_score(labels_true, labels))\nprint('Silhouette Coefficient: %0.3f' % metrics.silhouette_score(X, labels))\n<mask token>\nfor k, col in zip(unique_labels, colors):\n if k == -1:\n col = 'k'\n class_member_mask = labels == k\n xy = X[class_member_mask & core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=14)\n xy = X[class_member_mask & ~core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=6)\nplt.title('Estimated number of clusters: %d' % n_clusters_)\nplt.show()\n", "step-3": "<mask token>\nprint(__doc__)\n<mask token>\nEARTHRADIUS = 6371.0\n\n\ndef getDistanceByHaversine(loc1, loc2):\n \"\"\"Haversine formula - give coordinates as a 2D numpy array of\n (lat_denter link description hereecimal,lon_decimal) pairs\"\"\"\n lat1 = loc1[1]\n lon1 = loc1[0]\n lat2 = loc2[1]\n lon2 = loc2[0]\n lon1 = lon1 * sp.pi / 180.0\n lon2 = lon2 * sp.pi / 180.0\n lat1 = lat1 * sp.pi / 180.0\n lat2 = lat2 * sp.pi / 180.0\n dlon = lon2 - lon1\n dlat = lat2 - lat1\n a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2.0\n ) ** 2\n c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a))\n km = EARTHRADIUS * c\n return km\n\n\n<mask token>\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n row_count = sum(1 for row in data)\n gps_matrix = [[(0) for i in range(row_count)] for j in range(2)]\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n for key, row in enumerate(data):\n if key != 0:\n try:\n gps_matrix[0][key] = float(row[2].replace('\"', ''))\n gps_matrix[1][key] = float(row[1].replace('\"', ''))\n except:\n a = float(row[1].replace(',', ''))\n print('problem string to float')\nD = spatial.distance.pdist(gps_matrix, lambda u, v: getDistanceByHaversine(\n u, v))\ncenters = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,\n random_state=0)\nX = StandardScaler().fit_transform(X)\ndb = DBSCAN(eps=0.3, min_samples=10).fit(X)\ncore_samples_mask = np.zeros_like(db.labels_, dtype=bool)\ncore_samples_mask[db.core_sample_indices_] = True\nlabels = db.labels_\nn_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)\nprint('Estimated number of clusters: %d' % n_clusters_)\nprint('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, labels))\nprint('Completeness: %0.3f' % metrics.completeness_score(labels_true, labels))\nprint('V-measure: %0.3f' % metrics.v_measure_score(labels_true, labels))\nprint('Adjusted Rand Index: %0.3f' % metrics.adjusted_rand_score(\n labels_true, labels))\nprint('Adjusted Mutual Information: %0.3f' % metrics.\n adjusted_mutual_info_score(labels_true, labels))\nprint('Silhouette Coefficient: %0.3f' % metrics.silhouette_score(X, labels))\n<mask token>\nunique_labels = set(labels)\ncolors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))\nfor k, col in zip(unique_labels, colors):\n if k == -1:\n col = 'k'\n class_member_mask = labels == k\n xy = X[class_member_mask & core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=14)\n xy = X[class_member_mask & ~core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=6)\nplt.title('Estimated number of clusters: %d' % n_clusters_)\nplt.show()\n", "step-4": "<mask token>\nimport scipy as sp\nimport numpy as np\nfrom scipy import spatial\nprint(__doc__)\nfrom sklearn.cluster import DBSCAN\nfrom sklearn import metrics\nfrom sklearn.datasets.samples_generator import make_blobs\nfrom sklearn.preprocessing import StandardScaler\nEARTHRADIUS = 6371.0\n\n\ndef getDistanceByHaversine(loc1, loc2):\n \"\"\"Haversine formula - give coordinates as a 2D numpy array of\n (lat_denter link description hereecimal,lon_decimal) pairs\"\"\"\n lat1 = loc1[1]\n lon1 = loc1[0]\n lat2 = loc2[1]\n lon2 = loc2[0]\n lon1 = lon1 * sp.pi / 180.0\n lon2 = lon2 * sp.pi / 180.0\n lat1 = lat1 * sp.pi / 180.0\n lat2 = lat2 * sp.pi / 180.0\n dlon = lon2 - lon1\n dlat = lat2 - lat1\n a = np.sin(dlat / 2) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon / 2.0\n ) ** 2\n c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0 - a))\n km = EARTHRADIUS * c\n return km\n\n\nimport csv\nimport re\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n row_count = sum(1 for row in data)\n gps_matrix = [[(0) for i in range(row_count)] for j in range(2)]\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n for key, row in enumerate(data):\n if key != 0:\n try:\n gps_matrix[0][key] = float(row[2].replace('\"', ''))\n gps_matrix[1][key] = float(row[1].replace('\"', ''))\n except:\n a = float(row[1].replace(',', ''))\n print('problem string to float')\nD = spatial.distance.pdist(gps_matrix, lambda u, v: getDistanceByHaversine(\n u, v))\ncenters = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,\n random_state=0)\nX = StandardScaler().fit_transform(X)\ndb = DBSCAN(eps=0.3, min_samples=10).fit(X)\ncore_samples_mask = np.zeros_like(db.labels_, dtype=bool)\ncore_samples_mask[db.core_sample_indices_] = True\nlabels = db.labels_\nn_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)\nprint('Estimated number of clusters: %d' % n_clusters_)\nprint('Homogeneity: %0.3f' % metrics.homogeneity_score(labels_true, labels))\nprint('Completeness: %0.3f' % metrics.completeness_score(labels_true, labels))\nprint('V-measure: %0.3f' % metrics.v_measure_score(labels_true, labels))\nprint('Adjusted Rand Index: %0.3f' % metrics.adjusted_rand_score(\n labels_true, labels))\nprint('Adjusted Mutual Information: %0.3f' % metrics.\n adjusted_mutual_info_score(labels_true, labels))\nprint('Silhouette Coefficient: %0.3f' % metrics.silhouette_score(X, labels))\nimport matplotlib.pyplot as plt\nunique_labels = set(labels)\ncolors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))\nfor k, col in zip(unique_labels, colors):\n if k == -1:\n col = 'k'\n class_member_mask = labels == k\n xy = X[class_member_mask & core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=14)\n xy = X[class_member_mask & ~core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col, markeredgecolor=\n 'k', markersize=6)\nplt.title('Estimated number of clusters: %d' % n_clusters_)\nplt.show()\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\n===================================\nDemo of DBSCAN clustering algorithm\n===================================\n\nFinds core samples of high density and expands clusters from them.\n\n\"\"\"\nimport scipy as sp\nimport numpy as np\n\nfrom scipy import spatial\nprint(__doc__)\n\n\nfrom sklearn.cluster import DBSCAN\nfrom sklearn import metrics\nfrom sklearn.datasets.samples_generator import make_blobs\nfrom sklearn.preprocessing import StandardScaler\n\n##############################################################################\n# Calcule Distance Haversine Methods\n\nEARTHRADIUS = 6371.0\n\ndef getDistanceByHaversine(loc1, loc2):\n '''Haversine formula - give coordinates as a 2D numpy array of\n (lat_denter link description hereecimal,lon_decimal) pairs'''\n #\n # \"unpack\" our numpy array, this extracts column wise arrays\n lat1 = loc1[1]\n lon1 = loc1[0]\n lat2 = loc2[1]\n lon2 = loc2[0]\n #\n # convert to radians ##### Completely identical\n lon1 = lon1 * sp.pi / 180.0\n lon2 = lon2 * sp.pi / 180.0\n lat1 = lat1 * sp.pi / 180.0\n lat2 = lat2 * sp.pi / 180.0\n #\n # haversine formula #### Same, but atan2 named arctan2 in numpy\n dlon = lon2 - lon1\n dlat = lat2 - lat1\n a = (np.sin(dlat/2))**2 + np.cos(lat1) * np.cos(lat2) * (np.sin(dlon/2.0))**2\n c = 2.0 * np.arctan2(np.sqrt(a), np.sqrt(1.0-a))\n km = EARTHRADIUS * c\n return km\n\n\n##############################################################################\n# Create a Matrix with longitude and latitude\n\nimport csv\nimport re\n\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n\n row_count = sum(1 for row in data)\n gps_matrix = [[0 for i in range(row_count)] for j in range(2)]\n\nwith open('users_bcn.csv', 'rb') as csvfile:\n data = csv.reader(csvfile, delimiter=',', quotechar='|')\n\n for key, row in enumerate(data):\n if key != 0:\n try:\n gps_matrix[0][key] = float(row[2].replace('\"',''))\n gps_matrix[1][key] = float(row[1].replace('\"',''))\n except:\n a = float(row[1].replace(',',''))\n print('problem string to float')\n\n##############################################################################\n# Calculate the Distance matrix\n\nD = spatial.distance.pdist(gps_matrix, lambda u, v: getDistanceByHaversine(u,v))\n\n\n##############################################################################\n# Generate sample data\ncenters = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,\n random_state=0)\n\nX = StandardScaler().fit_transform(X)\n\n##############################################################################\n# Compute DBSCAN\ndb = DBSCAN(eps=0.3, min_samples=10).fit(X)\ncore_samples_mask = np.zeros_like(db.labels_, dtype=bool)\ncore_samples_mask[db.core_sample_indices_] = True\nlabels = db.labels_\n\n# Number of clusters in labels, ignoring noise if present.\nn_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)\n\nprint('Estimated number of clusters: %d' % n_clusters_)\nprint(\"Homogeneity: %0.3f\" % metrics.homogeneity_score(labels_true, labels))\nprint(\"Completeness: %0.3f\" % metrics.completeness_score(labels_true, labels))\nprint(\"V-measure: %0.3f\" % metrics.v_measure_score(labels_true, labels))\nprint(\"Adjusted Rand Index: %0.3f\"\n % metrics.adjusted_rand_score(labels_true, labels))\nprint(\"Adjusted Mutual Information: %0.3f\"\n % metrics.adjusted_mutual_info_score(labels_true, labels))\nprint(\"Silhouette Coefficient: %0.3f\"\n % metrics.silhouette_score(X, labels))\n\n##############################################################################\n# Plot result\nimport matplotlib.pyplot as plt\n\n# Black removed and is used for noise instead.\nunique_labels = set(labels)\ncolors = plt.cm.Spectral(np.linspace(0, 1, len(unique_labels)))\nfor k, col in zip(unique_labels, colors):\n if k == -1:\n # Black used for noise.\n col = 'k'\n\n class_member_mask = (labels == k)\n\n xy = X[class_member_mask & core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=14)\n\n xy = X[class_member_mask & ~core_samples_mask]\n plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=col,\n markeredgecolor='k', markersize=6)\n\nplt.title('Estimated number of clusters: %d' % n_clusters_)\nplt.show()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import copy import datetime from sacred import Experiment from tqdm import tqdm from mms_msg.databases.classical.full_overlap import WSJ2Mix import paderbox as pb import padertorch as pt ex = Experiment('mixture_generator_create_json') @ex.config def defaults(): json_path = 'database.json' database = { 'factory': WSJ2Mix, } pt.Configurable.get_config(database) @ex.automain def main(json_path, database, _log): database_config = database database = pt.configurable.config_to_instance(database) database_dict = { 'datasets': { dataset_name: dict(tqdm( database.get_dataset(dataset_name).items(), desc=dataset_name, )) for dataset_name in database.dataset_names }, 'meta': { 'config': pt.configurable.recursive_class_to_str( copy.deepcopy(database_config) ), 'generated': datetime.datetime.now(), } } pb.io.dump(database_dict, json_path) _log.info(f'Wrote file: {json_path}')
normal
{ "blob_id": "f39130099ccf467623d65ac328fd02538044d36a", "index": 6476, "step-1": "<mask token>\n\n\[email protected]\ndef main(json_path, database, _log):\n database_config = database\n database = pt.configurable.config_to_instance(database)\n database_dict = {'datasets': {dataset_name: dict(tqdm(database.\n get_dataset(dataset_name).items(), desc=dataset_name)) for\n dataset_name in database.dataset_names}, 'meta': {'config': pt.\n configurable.recursive_class_to_str(copy.deepcopy(database_config)),\n 'generated': datetime.datetime.now()}}\n pb.io.dump(database_dict, json_path)\n _log.info(f'Wrote file: {json_path}')\n", "step-2": "<mask token>\n\n\[email protected]\ndef defaults():\n json_path = 'database.json'\n database = {'factory': WSJ2Mix}\n pt.Configurable.get_config(database)\n\n\[email protected]\ndef main(json_path, database, _log):\n database_config = database\n database = pt.configurable.config_to_instance(database)\n database_dict = {'datasets': {dataset_name: dict(tqdm(database.\n get_dataset(dataset_name).items(), desc=dataset_name)) for\n dataset_name in database.dataset_names}, 'meta': {'config': pt.\n configurable.recursive_class_to_str(copy.deepcopy(database_config)),\n 'generated': datetime.datetime.now()}}\n pb.io.dump(database_dict, json_path)\n _log.info(f'Wrote file: {json_path}')\n", "step-3": "<mask token>\nex = Experiment('mixture_generator_create_json')\n\n\[email protected]\ndef defaults():\n json_path = 'database.json'\n database = {'factory': WSJ2Mix}\n pt.Configurable.get_config(database)\n\n\[email protected]\ndef main(json_path, database, _log):\n database_config = database\n database = pt.configurable.config_to_instance(database)\n database_dict = {'datasets': {dataset_name: dict(tqdm(database.\n get_dataset(dataset_name).items(), desc=dataset_name)) for\n dataset_name in database.dataset_names}, 'meta': {'config': pt.\n configurable.recursive_class_to_str(copy.deepcopy(database_config)),\n 'generated': datetime.datetime.now()}}\n pb.io.dump(database_dict, json_path)\n _log.info(f'Wrote file: {json_path}')\n", "step-4": "import copy\nimport datetime\nfrom sacred import Experiment\nfrom tqdm import tqdm\nfrom mms_msg.databases.classical.full_overlap import WSJ2Mix\nimport paderbox as pb\nimport padertorch as pt\nex = Experiment('mixture_generator_create_json')\n\n\[email protected]\ndef defaults():\n json_path = 'database.json'\n database = {'factory': WSJ2Mix}\n pt.Configurable.get_config(database)\n\n\[email protected]\ndef main(json_path, database, _log):\n database_config = database\n database = pt.configurable.config_to_instance(database)\n database_dict = {'datasets': {dataset_name: dict(tqdm(database.\n get_dataset(dataset_name).items(), desc=dataset_name)) for\n dataset_name in database.dataset_names}, 'meta': {'config': pt.\n configurable.recursive_class_to_str(copy.deepcopy(database_config)),\n 'generated': datetime.datetime.now()}}\n pb.io.dump(database_dict, json_path)\n _log.info(f'Wrote file: {json_path}')\n", "step-5": "import copy\nimport datetime\n\nfrom sacred import Experiment\nfrom tqdm import tqdm\n\nfrom mms_msg.databases.classical.full_overlap import WSJ2Mix\nimport paderbox as pb\nimport padertorch as pt\n\nex = Experiment('mixture_generator_create_json')\n\n\[email protected]\ndef defaults():\n json_path = 'database.json'\n database = {\n 'factory': WSJ2Mix,\n }\n pt.Configurable.get_config(database)\n\n\[email protected]\ndef main(json_path, database, _log):\n database_config = database\n database = pt.configurable.config_to_instance(database)\n database_dict = {\n 'datasets': {\n dataset_name: dict(tqdm(\n database.get_dataset(dataset_name).items(),\n desc=dataset_name,\n )) for dataset_name in database.dataset_names\n },\n 'meta': {\n 'config': pt.configurable.recursive_class_to_str(\n copy.deepcopy(database_config)\n ),\n 'generated': datetime.datetime.now(),\n }\n }\n pb.io.dump(database_dict, json_path)\n _log.info(f'Wrote file: {json_path}')\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding: utf-8 -*- import random import gym import numpy as np from collections import deque from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam from simulation_utils import box, simulation from kinematics import pose3D a = np.log(2)/25 apdataX = np.random.random((5, 35)) quarter_way_arr = [False, False, False] quarter_way_arr[0] = True quarter_way_arr[1] = True quarter_way_arr[2] = True mat = np.eye(3) print(np.linalg.norm(mat))
normal
{ "blob_id": "7e7e96fb9377e4dc59a46a46951f5057ecae419a", "index": 201, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(np.linalg.norm(mat))\n", "step-3": "<mask token>\na = np.log(2) / 25\napdataX = np.random.random((5, 35))\nquarter_way_arr = [False, False, False]\nquarter_way_arr[0] = True\nquarter_way_arr[1] = True\nquarter_way_arr[2] = True\nmat = np.eye(3)\nprint(np.linalg.norm(mat))\n", "step-4": "import random\nimport gym\nimport numpy as np\nfrom collections import deque\nfrom keras.models import Sequential\nfrom keras.layers import Dense\nfrom keras.optimizers import Adam\nfrom simulation_utils import box, simulation\nfrom kinematics import pose3D\na = np.log(2) / 25\napdataX = np.random.random((5, 35))\nquarter_way_arr = [False, False, False]\nquarter_way_arr[0] = True\nquarter_way_arr[1] = True\nquarter_way_arr[2] = True\nmat = np.eye(3)\nprint(np.linalg.norm(mat))\n", "step-5": "# -*- coding: utf-8 -*-\nimport random\nimport gym\nimport numpy as np\nfrom collections import deque\nfrom keras.models import Sequential\nfrom keras.layers import Dense\nfrom keras.optimizers import Adam\nfrom simulation_utils import box, simulation\nfrom kinematics import pose3D\n\na = np.log(2)/25\n\napdataX = np.random.random((5, 35))\nquarter_way_arr = [False, False, False]\n\nquarter_way_arr[0] = True\nquarter_way_arr[1] = True\nquarter_way_arr[2] = True\n\nmat = np.eye(3)\nprint(np.linalg.norm(mat))\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from database_setup import Base, Country, TouristPlaces, Users # Create database and create a shortcut for easier to update database engine = create_engine('sqlite:///country_catalog.db') Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() # Creating an user user_1 = Users(name="admin", email="[email protected]") session.add(user_1) session.commit() # India country_1 = Country(user_id=1, name="India") session.add(country_1) session.commit() # Australia country_2 = Country(user_id=1, name="Australia") session.add(country_2) session.commit() # England country_3 = Country(user_id=1, name="England") session.add(country_3) session.commit() # Paris country_4 = Country(user_id=1, name="Paris") session.add(country_4) session.commit() # USA country_5 = Country(user_id=1, name="USA") session.add(country_5) session.commit() # Mexico country_6 = Country(user_id=1, name="Mexico") session.add(country_6) session.commit() # SriLanka country_7 = Country(user_id=1, name="Srilanka") session.add(country_7) session.commit() # MAldives country_8 = Country(user_id=1, name="Maldives") session.add(country_8) session.commit() # Adding touristAttractions to Countries places = TouristPlaces(user_id=1, name="Taj Mahal", description="Taj Mahal is mausolem by Mughal ruler Shah Jahan for his Wife Mumtaz Mahal " "It is bultby using white marbel", country=country_1) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Red Fort", description="Red fort is the histroric fort in the city of Delhi,India." "It is the main residence of the emperors of mughal Dynasty.", country=country_1) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Canberra", description="It is the home for National GAllery of Australia" "and a wide varierty of cultural and historic sites", country=country_2) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Perth", description="The west side ofAustralia is home to the city of Perth" "It is bordered by Indian Ocean", country=country_2) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Tower Of London", description="It is one of the world Heritage site" "Other highlights are Crown Jewels Exhibition", country=country_3) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="British Museum", description="It contains the collection of worlds finest antiquites" "The famous artifacts are Eglin marbles", country=country_3) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Eiffel Tower", description="The Eiffel-tower is wrought iron lattice" "It is named after the Engineer Gustav Eiffel", country=country_4) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="places of Versallies", description="The Palce of Versallies is the Principle Royal" "residence.", country=country_4) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Grand Canyon Village", description="Grand Canyon is located in south Rim of Grand Canyon" "It is focussed on accomadating tourists visiting Grand Canyon", country=country_5) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Statue if Liberty", description="Statue of Liberty is Colossal neo-classical sculpture" "In New-york Hourbor Newyork", country=country_5) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Mexico City", description="Mexico city is densely populated and high altitude capital Of Mexico" "It is the home for zoo,Muesuem of modern Art.", country=country_6) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Tulum", description="Tulum is a town in the Carribean coatline of Mexico" "It is well-known for beaches and ruins of Ancient Mayan port city", country=country_6) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Colombo", description="It is the Capital city of Srilanka" "It sheritage is reflected in its Architecture", country=country_7) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Kandy", description="Kandy is the largest city of central Sri Lanka." "It is surrounded by mountains which is home to tea Plantations.", country=country_7) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Male", description="It is among the tooped tourist Attractions of Maldives" "It has considerably moderate tempaerature through out the year", country=country_8) session.add(places) session.commit() places = TouristPlaces(user_id=1, name="Sun Island", description="It is adorned with some sparkling beaches" "beuatigul flowers and lavish greenary that pulls a great number of tourists", country=country_8) session.add(places) session.commit() print("added countries and Tourist Places added")
normal
{ "blob_id": "21b9844fce10d16a14050a782ce7e15e3f6fb657", "index": 5737, "step-1": "<mask token>\n", "step-2": "<mask token>\nsession.add(user_1)\nsession.commit()\n<mask token>\nsession.add(country_1)\nsession.commit()\n<mask token>\nsession.add(country_2)\nsession.commit()\n<mask token>\nsession.add(country_3)\nsession.commit()\n<mask token>\nsession.add(country_4)\nsession.commit()\n<mask token>\nsession.add(country_5)\nsession.commit()\n<mask token>\nsession.add(country_6)\nsession.commit()\n<mask token>\nsession.add(country_7)\nsession.commit()\n<mask token>\nsession.add(country_8)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\n<mask token>\nsession.add(places)\nsession.commit()\nprint('added countries and Tourist Places added')\n", "step-3": "<mask token>\nengine = create_engine('sqlite:///country_catalog.db')\nBase.metadata.bind = engine\nDBSession = sessionmaker(bind=engine)\nsession = DBSession()\nuser_1 = Users(name='admin', email='[email protected]')\nsession.add(user_1)\nsession.commit()\ncountry_1 = Country(user_id=1, name='India')\nsession.add(country_1)\nsession.commit()\ncountry_2 = Country(user_id=1, name='Australia')\nsession.add(country_2)\nsession.commit()\ncountry_3 = Country(user_id=1, name='England')\nsession.add(country_3)\nsession.commit()\ncountry_4 = Country(user_id=1, name='Paris')\nsession.add(country_4)\nsession.commit()\ncountry_5 = Country(user_id=1, name='USA')\nsession.add(country_5)\nsession.commit()\ncountry_6 = Country(user_id=1, name='Mexico')\nsession.add(country_6)\nsession.commit()\ncountry_7 = Country(user_id=1, name='Srilanka')\nsession.add(country_7)\nsession.commit()\ncountry_8 = Country(user_id=1, name='Maldives')\nsession.add(country_8)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Taj Mahal', description=\n 'Taj Mahal is mausolem by Mughal ruler Shah Jahan for his Wife Mumtaz Mahal It is bultby using white marbel'\n , country=country_1)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Red Fort', description=\n 'Red fort is the histroric fort in the city of Delhi,India.It is the main residence of the emperors of mughal Dynasty.'\n , country=country_1)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Canberra', description=\n 'It is the home for National GAllery of Australiaand a wide varierty of cultural and historic sites'\n , country=country_2)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Perth', description=\n 'The west side ofAustralia is home to the city of PerthIt is bordered by Indian Ocean'\n , country=country_2)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Tower Of London', description=\n 'It is one of the world Heritage siteOther highlights are Crown Jewels Exhibition'\n , country=country_3)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='British Museum', description=\n 'It contains the collection of worlds finest antiquitesThe famous artifacts are Eglin marbles'\n , country=country_3)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Eiffel Tower', description=\n 'The Eiffel-tower is wrought iron latticeIt is named after the Engineer Gustav Eiffel'\n , country=country_4)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='places of Versallies', description=\n 'The Palce of Versallies is the Principle Royalresidence.', country=\n country_4)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Grand Canyon Village', description=\n 'Grand Canyon is located in south Rim of Grand CanyonIt is focussed on accomadating tourists visiting Grand Canyon'\n , country=country_5)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Statue if Liberty', description=\n 'Statue of Liberty is Colossal neo-classical sculptureIn New-york Hourbor Newyork'\n , country=country_5)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Mexico City', description=\n 'Mexico city is densely populated and high altitude capital Of MexicoIt is the home for zoo,Muesuem of modern Art.'\n , country=country_6)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Tulum', description=\n 'Tulum is a town in the Carribean coatline of MexicoIt is well-known for beaches and ruins of Ancient Mayan port city'\n , country=country_6)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Colombo', description=\n 'It is the Capital city of SrilankaIt sheritage is reflected in its Architecture'\n , country=country_7)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Kandy', description=\n 'Kandy is the largest city of central Sri Lanka.It is surrounded by mountains which is home to tea Plantations.'\n , country=country_7)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Male', description=\n 'It is among the tooped tourist Attractions of MaldivesIt has considerably moderate tempaerature through out the year'\n , country=country_8)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Sun Island', description=\n 'It is adorned with some sparkling beachesbeuatigul flowers and lavish greenary that pulls a great number of tourists'\n , country=country_8)\nsession.add(places)\nsession.commit()\nprint('added countries and Tourist Places added')\n", "step-4": "from sqlalchemy import create_engine\nfrom sqlalchemy.orm import sessionmaker\nfrom database_setup import Base, Country, TouristPlaces, Users\nengine = create_engine('sqlite:///country_catalog.db')\nBase.metadata.bind = engine\nDBSession = sessionmaker(bind=engine)\nsession = DBSession()\nuser_1 = Users(name='admin', email='[email protected]')\nsession.add(user_1)\nsession.commit()\ncountry_1 = Country(user_id=1, name='India')\nsession.add(country_1)\nsession.commit()\ncountry_2 = Country(user_id=1, name='Australia')\nsession.add(country_2)\nsession.commit()\ncountry_3 = Country(user_id=1, name='England')\nsession.add(country_3)\nsession.commit()\ncountry_4 = Country(user_id=1, name='Paris')\nsession.add(country_4)\nsession.commit()\ncountry_5 = Country(user_id=1, name='USA')\nsession.add(country_5)\nsession.commit()\ncountry_6 = Country(user_id=1, name='Mexico')\nsession.add(country_6)\nsession.commit()\ncountry_7 = Country(user_id=1, name='Srilanka')\nsession.add(country_7)\nsession.commit()\ncountry_8 = Country(user_id=1, name='Maldives')\nsession.add(country_8)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Taj Mahal', description=\n 'Taj Mahal is mausolem by Mughal ruler Shah Jahan for his Wife Mumtaz Mahal It is bultby using white marbel'\n , country=country_1)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Red Fort', description=\n 'Red fort is the histroric fort in the city of Delhi,India.It is the main residence of the emperors of mughal Dynasty.'\n , country=country_1)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Canberra', description=\n 'It is the home for National GAllery of Australiaand a wide varierty of cultural and historic sites'\n , country=country_2)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Perth', description=\n 'The west side ofAustralia is home to the city of PerthIt is bordered by Indian Ocean'\n , country=country_2)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Tower Of London', description=\n 'It is one of the world Heritage siteOther highlights are Crown Jewels Exhibition'\n , country=country_3)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='British Museum', description=\n 'It contains the collection of worlds finest antiquitesThe famous artifacts are Eglin marbles'\n , country=country_3)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Eiffel Tower', description=\n 'The Eiffel-tower is wrought iron latticeIt is named after the Engineer Gustav Eiffel'\n , country=country_4)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='places of Versallies', description=\n 'The Palce of Versallies is the Principle Royalresidence.', country=\n country_4)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Grand Canyon Village', description=\n 'Grand Canyon is located in south Rim of Grand CanyonIt is focussed on accomadating tourists visiting Grand Canyon'\n , country=country_5)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Statue if Liberty', description=\n 'Statue of Liberty is Colossal neo-classical sculptureIn New-york Hourbor Newyork'\n , country=country_5)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Mexico City', description=\n 'Mexico city is densely populated and high altitude capital Of MexicoIt is the home for zoo,Muesuem of modern Art.'\n , country=country_6)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Tulum', description=\n 'Tulum is a town in the Carribean coatline of MexicoIt is well-known for beaches and ruins of Ancient Mayan port city'\n , country=country_6)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Colombo', description=\n 'It is the Capital city of SrilankaIt sheritage is reflected in its Architecture'\n , country=country_7)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Kandy', description=\n 'Kandy is the largest city of central Sri Lanka.It is surrounded by mountains which is home to tea Plantations.'\n , country=country_7)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Male', description=\n 'It is among the tooped tourist Attractions of MaldivesIt has considerably moderate tempaerature through out the year'\n , country=country_8)\nsession.add(places)\nsession.commit()\nplaces = TouristPlaces(user_id=1, name='Sun Island', description=\n 'It is adorned with some sparkling beachesbeuatigul flowers and lavish greenary that pulls a great number of tourists'\n , country=country_8)\nsession.add(places)\nsession.commit()\nprint('added countries and Tourist Places added')\n", "step-5": "from sqlalchemy import create_engine\nfrom sqlalchemy.orm import sessionmaker\nfrom database_setup import Base, Country, TouristPlaces, Users\n\n# Create database and create a shortcut for easier to update database\nengine = create_engine('sqlite:///country_catalog.db')\nBase.metadata.bind = engine\nDBSession = sessionmaker(bind=engine)\nsession = DBSession()\n\n# Creating an user\nuser_1 = Users(name=\"admin\", email=\"[email protected]\")\nsession.add(user_1)\nsession.commit()\n\n# India\ncountry_1 = Country(user_id=1, name=\"India\")\nsession.add(country_1)\nsession.commit()\n\n\n# Australia\ncountry_2 = Country(user_id=1, name=\"Australia\")\nsession.add(country_2)\nsession.commit()\n\n# England\ncountry_3 = Country(user_id=1, name=\"England\")\nsession.add(country_3)\nsession.commit()\n\n# Paris\ncountry_4 = Country(user_id=1, name=\"Paris\")\nsession.add(country_4)\nsession.commit()\n\n# USA\ncountry_5 = Country(user_id=1, name=\"USA\")\nsession.add(country_5)\nsession.commit()\n\n# Mexico\ncountry_6 = Country(user_id=1, name=\"Mexico\")\nsession.add(country_6)\nsession.commit()\n\n# SriLanka\ncountry_7 = Country(user_id=1, name=\"Srilanka\")\nsession.add(country_7)\nsession.commit()\n\n# MAldives\ncountry_8 = Country(user_id=1, name=\"Maldives\")\nsession.add(country_8)\nsession.commit()\n\n# Adding touristAttractions to Countries\nplaces = TouristPlaces(user_id=1, name=\"Taj Mahal\",\n description=\"Taj Mahal is mausolem by Mughal ruler Shah Jahan for his Wife Mumtaz Mahal \"\n \"It is bultby using white marbel\",\n country=country_1)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Red Fort\",\n description=\"Red fort is the histroric fort in the city of Delhi,India.\"\n \"It is the main residence of the emperors of mughal Dynasty.\",\n country=country_1)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Canberra\",\n description=\"It is the home for National GAllery of Australia\"\n \"and a wide varierty of cultural and historic sites\",\n country=country_2)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Perth\",\n description=\"The west side ofAustralia is home to the city of Perth\"\n \"It is bordered by Indian Ocean\",\n country=country_2)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Tower Of London\",\n description=\"It is one of the world Heritage site\"\n \"Other highlights are Crown Jewels Exhibition\",\n country=country_3)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"British Museum\",\n description=\"It contains the collection of worlds finest antiquites\"\n \"The famous artifacts are Eglin marbles\",\n country=country_3)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Eiffel Tower\",\n description=\"The Eiffel-tower is wrought iron lattice\"\n \"It is named after the Engineer Gustav Eiffel\",\n country=country_4)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"places of Versallies\",\n description=\"The Palce of Versallies is the Principle Royal\"\n \"residence.\",\n country=country_4)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Grand Canyon Village\",\n description=\"Grand Canyon is located in south Rim of Grand Canyon\"\n \"It is focussed on accomadating tourists visiting Grand Canyon\",\n country=country_5)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Statue if Liberty\",\n description=\"Statue of Liberty is Colossal neo-classical sculpture\"\n \"In New-york Hourbor Newyork\",\n country=country_5)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Mexico City\",\n description=\"Mexico city is densely populated and high altitude capital Of Mexico\"\n \"It is the home for zoo,Muesuem of modern Art.\",\n country=country_6)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Tulum\",\n description=\"Tulum is a town in the Carribean coatline of Mexico\"\n \"It is well-known for beaches and ruins of Ancient Mayan port city\",\n country=country_6)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Colombo\",\n description=\"It is the Capital city of Srilanka\"\n \"It sheritage is reflected in its Architecture\",\n country=country_7)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Kandy\",\n description=\"Kandy is the largest city of central Sri Lanka.\"\n \"It is surrounded by mountains which is home to tea Plantations.\",\n country=country_7)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Male\",\n description=\"It is among the tooped tourist Attractions of Maldives\"\n \"It has considerably moderate tempaerature through out the year\",\n country=country_8)\nsession.add(places)\nsession.commit()\n\nplaces = TouristPlaces(user_id=1, name=\"Sun Island\",\n description=\"It is adorned with some sparkling beaches\"\n \"beuatigul flowers and lavish greenary that pulls a great number of tourists\",\n country=country_8)\nsession.add(places)\nsession.commit()\n\nprint(\"added countries and Tourist Places added\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from flask import Flask, request, render_template from utils import get_result app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route("/result", methods=["POST"]) def result(): form_data = request.form sentence = form_data['sentence'] output = get_result(sentence) return render_template('result.html', result=output) if __name__ == '__main__': app.run(debug=True)
normal
{ "blob_id": "264da5a2ab7d5c311d8a59b06c81ea2156cefd76", "index": 9627, "step-1": "<mask token>\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\[email protected]('/result', methods=['POST'])\ndef result():\n form_data = request.form\n sentence = form_data['sentence']\n output = get_result(sentence)\n return render_template('result.html', result=output)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\[email protected]('/result', methods=['POST'])\ndef result():\n form_data = request.form\n sentence = form_data['sentence']\n output = get_result(sentence)\n return render_template('result.html', result=output)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-3": "<mask token>\napp = Flask(__name__)\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\[email protected]('/result', methods=['POST'])\ndef result():\n form_data = request.form\n sentence = form_data['sentence']\n output = get_result(sentence)\n return render_template('result.html', result=output)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-4": "from flask import Flask, request, render_template\nfrom utils import get_result\napp = Flask(__name__)\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\[email protected]('/result', methods=['POST'])\ndef result():\n form_data = request.form\n sentence = form_data['sentence']\n output = get_result(sentence)\n return render_template('result.html', result=output)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-5": "from flask import Flask, request, render_template\n\nfrom utils import get_result\n\napp = Flask(__name__)\n\n\[email protected]('/')\ndef index():\n return render_template('index.html')\n\n\[email protected](\"/result\", methods=[\"POST\"])\ndef result():\n form_data = request.form\n sentence = form_data['sentence']\n output = get_result(sentence)\n return render_template('result.html', result=output)\n\n\nif __name__ == '__main__':\n app.run(debug=True)\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# -*- coding: utf-8 -*- ''' * EAFS * Copyright (C) 2009-2011 Adam Etienne <[email protected]> * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 3. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import math,uuid,sys,os,time,operator,xmlrpclib,random,argparse from eafslib import EAFSChunkServerRpc class EAFSClient: def __init__(self, master_host): self.master = xmlrpclib.ServerProxy(master_host) self.chunkservers = {} def write(self, filename, data): if self.exists(filename): self.delete(filename) num_chunks = self.num_chunks(len(data)) attributes = {"mode":"file", "atime":"", "ctime":"", "mtime":"", "attrs":""} chunkuuids = self.master.alloc(filename, num_chunks, attributes) self.write_chunks(chunkuuids, data) def update_chunkservers(self): chunkservers = self.master.get_chunkservers() #print "CHUNKSERVERS[RAW]: ", chunkservers for chunkserver in chunkservers: #print chunkserver if chunkserver['uuid'] not in self.chunkservers: self.chunkservers[chunkserver['uuid']] = EAFSChunkServerRpc( chunkserver['uuid'], chunkserver['address'] ) def write_chunks(self, chunkuuids, data): chunks = [ data[x:x+self.master.get_chunksize()] \ for x in range(0, len(data), self.master.get_chunksize()) ] #chunkservers = self.master.get_chunkservers() self.update_chunkservers() #print "CHUNKSERVERS: ", self.chunkservers for i in range(0, len(chunkuuids)): # write to each chunkserver chunkuuid = chunkuuids[i] chunklocs = self.master.get_chunklocs(chunkuuid) for chunkloc in chunklocs: #print "chunkloc: ", chunkloc self.chunkservers[chunkloc].rpc.write(chunkuuid, chunks[i]) def num_chunks(self, size): return (size // self.master.get_chunksize()) \ + (1 if size % self.master.get_chunksize() > 0 else 0) def write_append(self, filename, data): if not self.exists(filename): raise Exception("append error, file does not exist: " + filename) num_append_chunks = self.num_chunks(len(data)) append_chunkuuids = self.master.alloc_append(filename, \ num_append_chunks) self.write_chunks(append_chunkuuids, data) def exists(self, filename): return self.master.exists(filename) def read(self, filename): # get metadata, then read chunks direct if not self.exists(filename): raise Exception("read error, file does not exist: " + filename) chunks = [] chunkuuids = self.master.get_chunkuuids(filename) #chunkservers = self.master.get_chunkservers() self.update_chunkservers() for chunkuuid in chunkuuids: chunklocs = self.master.get_chunklocs(chunkuuid) done_chunkserver = [] chunk = None chunk_read = False while not (chunk_read or len(done_chunkserver)==len(chunklocs)): chunkidrnd = random.randint(0, len(chunklocs)-1) while chunkidrnd not in done_chunkserver and len(done_chunkserver)>0: chunkidrnd = random.randint(0, len(chunklocs)-1) chunkloc = chunklocs[chunkidrnd] print "Select chunkloc %s from %d choices" % (chunkloc, len(chunklocs)) try: chunk = self.chunkservers[chunkloc].rpc.read(chunkuuid) chunk_read = True done_chunkserver.append(chunkidrnd) except: print "Chunkserver %d failed" % chunkidrnd if not chunk_read: raise Exception("read error, chunkserver unavailable: " + filename) chunks.append(chunk) data = reduce(lambda x, y: x + y, chunks) # reassemble in order return data def delete(self, filename): self.master.delete(filename) def main(): parser = argparse.ArgumentParser(description='EAFS Simple Client') parser.add_argument('--master', dest='master', default='localhost:6799', help='Master server address') args = parser.parse_args() master = 'http://' + args.master client = EAFSClient(master) # test write, exist, read print "\nWriting..." #try: if False: client.write("/usr/python/readme.txt", """ This file tells you all about python that you ever wanted to know. Not every README is as informative as this one, but we aim to please. Never yet has there been so much information in so little space. """) #except: # print client.master.dump_metadata() print "File exists? ", client.exists("/usr/python/readme.txt") print client.read("/usr/python/readme.txt") # show structure of the filesystem print "\nMetadata Dump..." print client.master.dump_metadata() if __name__ == "__main__": main() """ # test append, read after append #print "\nAppending..." #client.write_append("/usr/python/readme.txt", \ # "I'm a little sentence that just snuck in at the end.\n") #print client.read("/usr/python/readme.txt") # test delete #print "\nDeleting..." #client.delete("/usr/python/readme.txt") #print "File exists? ", client.exists("/usr/python/readme.txt") # test exceptions #print "\nTesting Exceptions..." #try: # client.read("/usr/python/readme.txt") #except Exception as e: # print "This exception should be thrown:", e #try: # client.write_append("/usr/python/readme.txt", "foo") #except Exception as e: # print "This exception should be thrown:", e """
normal
{ "blob_id": "2f5244c6144f5aafce29e5aba32bd7e3fc7ecf5b", "index": 3632, "step-1": "# -*- coding: utf-8 -*-\n'''\n * EAFS\n * Copyright (C) 2009-2011 Adam Etienne <[email protected]>\n *\n * This program is free software: you can redistribute it and/or modify\n * it under the terms of the GNU General Public License as published by\n * the Free Software Foundation version 3.\n *\n * This program is distributed in the hope that it will be useful,\n * but WITHOUT ANY WARRANTY; without even the implied warranty of\n * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n * GNU General Public License for more details.\n *\n * You should have received a copy of the GNU General Public License\n * along with this program. If not, see <http://www.gnu.org/licenses/>.\n'''\n\nimport math,uuid,sys,os,time,operator,xmlrpclib,random,argparse\nfrom eafslib import EAFSChunkServerRpc\n\n\nclass EAFSClient:\n\tdef __init__(self, master_host):\n\t\tself.master = xmlrpclib.ServerProxy(master_host)\n\t\tself.chunkservers = {}\n\n\tdef write(self, filename, data):\n\t\tif self.exists(filename):\n\t\t\tself.delete(filename)\n\t\tnum_chunks = self.num_chunks(len(data))\n\t\tattributes = {\"mode\":\"file\", \"atime\":\"\", \"ctime\":\"\", \"mtime\":\"\", \"attrs\":\"\"}\n\t\tchunkuuids = self.master.alloc(filename, num_chunks, attributes)\n\t\tself.write_chunks(chunkuuids, data)\n\t\n\tdef update_chunkservers(self):\n\t\tchunkservers = self.master.get_chunkservers()\n\t\t#print \"CHUNKSERVERS[RAW]: \", chunkservers\n\t\tfor chunkserver in chunkservers:\n\t\t\t#print chunkserver\n\t\t\tif chunkserver['uuid'] not in self.chunkservers:\n\t\t\t\tself.chunkservers[chunkserver['uuid']] = EAFSChunkServerRpc( chunkserver['uuid'], chunkserver['address'] )\n\t\t\n\tdef write_chunks(self, chunkuuids, data):\n\t\tchunks = [ data[x:x+self.master.get_chunksize()] \\\n\t\t\tfor x in range(0, len(data), self.master.get_chunksize()) ]\n\t\t#chunkservers = self.master.get_chunkservers()\n\t\tself.update_chunkservers()\n\t\t#print \"CHUNKSERVERS: \", self.chunkservers\n\t\tfor i in range(0, len(chunkuuids)): # write to each chunkserver\n\t\t\tchunkuuid = chunkuuids[i]\n\t\t\tchunklocs = self.master.get_chunklocs(chunkuuid)\n\t\t\tfor chunkloc in chunklocs:\n\t\t\t\t#print \"chunkloc: \", chunkloc\n\t\t\t\tself.chunkservers[chunkloc].rpc.write(chunkuuid, chunks[i])\n\n\tdef num_chunks(self, size):\n\t\treturn (size // self.master.get_chunksize()) \\\n\t\t\t+ (1 if size % self.master.get_chunksize() > 0 else 0)\n\n\tdef write_append(self, filename, data):\n\t\tif not self.exists(filename):\n\t\t\traise Exception(\"append error, file does not exist: \" + filename)\n\t\tnum_append_chunks = self.num_chunks(len(data))\n\t\tappend_chunkuuids = self.master.alloc_append(filename, \\\n\t\t\tnum_append_chunks)\n\t\tself.write_chunks(append_chunkuuids, data) \n\n\tdef exists(self, filename):\n\t\treturn self.master.exists(filename)\n\t\t\n\tdef read(self, filename): # get metadata, then read chunks direct\n\t\tif not self.exists(filename):\n\t\t\traise Exception(\"read error, file does not exist: \" + filename)\n\t\tchunks = []\n\t\tchunkuuids = self.master.get_chunkuuids(filename)\n\t\t#chunkservers = self.master.get_chunkservers()\n\t\tself.update_chunkservers()\n\t\tfor chunkuuid in chunkuuids:\n\t\t\tchunklocs = self.master.get_chunklocs(chunkuuid)\n\t\t\tdone_chunkserver = []\n\t\t\tchunk = None\n\t\t\tchunk_read = False\n\t\t\twhile not (chunk_read or len(done_chunkserver)==len(chunklocs)):\n\t\t\t\tchunkidrnd = random.randint(0, len(chunklocs)-1)\n\t\t\t\twhile chunkidrnd not in done_chunkserver and len(done_chunkserver)>0:\n\t\t\t\t\tchunkidrnd = random.randint(0, len(chunklocs)-1)\n\t\t\t\tchunkloc = chunklocs[chunkidrnd]\n\t\t\t\tprint \"Select chunkloc %s from %d choices\" % (chunkloc, len(chunklocs))\n\t\t\t\ttry:\n\t\t\t\t\tchunk = self.chunkservers[chunkloc].rpc.read(chunkuuid)\n\t\t\t\t\tchunk_read = True\n\t\t\t\t\tdone_chunkserver.append(chunkidrnd)\n\t\t\t\texcept:\n\t\t\t\t\tprint \"Chunkserver %d failed\" % chunkidrnd\n\t\t\tif not chunk_read:\n\t\t\t\traise Exception(\"read error, chunkserver unavailable: \" + filename)\n\t\t\tchunks.append(chunk)\n\t\tdata = reduce(lambda x, y: x + y, chunks) # reassemble in order\n\t\treturn data\n\n\tdef delete(self, filename):\n\t\tself.master.delete(filename)\n\ndef main():\n\tparser = argparse.ArgumentParser(description='EAFS Simple Client')\n\tparser.add_argument('--master', dest='master', default='localhost:6799', help='Master server address')\n\targs = parser.parse_args()\n\tmaster = 'http://' + args.master\n\t\n\tclient = EAFSClient(master)\n\t\n\t# test write, exist, read\n\tprint \"\\nWriting...\"\n\t#try:\n\tif False:\n\t\tclient.write(\"/usr/python/readme.txt\", \"\"\"\n\t\tThis file tells you all about python that you ever wanted to know.\n\t\tNot every README is as informative as this one, but we aim to please.\n\t\tNever yet has there been so much information in so little space.\n\t\t\"\"\")\n\t#except:\n\t# print client.master.dump_metadata()\n\tprint \"File exists? \", client.exists(\"/usr/python/readme.txt\")\n\tprint client.read(\"/usr/python/readme.txt\")\n\t# show structure of the filesystem\n\tprint \"\\nMetadata Dump...\" \n\tprint client.master.dump_metadata()\n\nif __name__ == \"__main__\":\n\tmain()\n\n\"\"\"\n\t# test append, read after append\n\t#print \"\\nAppending...\"\n\t#client.write_append(\"/usr/python/readme.txt\", \\\n\t# \"I'm a little sentence that just snuck in at the end.\\n\")\n\t#print client.read(\"/usr/python/readme.txt\")\n\n\t# test delete\n\t#print \"\\nDeleting...\"\n\t#client.delete(\"/usr/python/readme.txt\")\n\t#print \"File exists? \", client.exists(\"/usr/python/readme.txt\")\n\t\n\t# test exceptions\n\t#print \"\\nTesting Exceptions...\"\n\t#try:\n\t# client.read(\"/usr/python/readme.txt\")\n\t#except Exception as e:\n\t# print \"This exception should be thrown:\", e\n\t#try:\n\t# client.write_append(\"/usr/python/readme.txt\", \"foo\")\n\t#except Exception as e:\n\t# print \"This exception should be thrown:\", e\n\"\"\"\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import numpy as np import matplotlib.pyplot as plt from scipy import stats def fit(x, iters=1000, eps=1e-6): """ Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation. :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0. :param iters: Maximum number of iterations :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps. :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible. Impossible fits may be due to 0-values in x. """ # fit k via MLE ln_x = np.log(x) k = 1. k_t_1 = k for t in range(iters): x_k = x ** k x_k_ln_x = x_k * ln_x ff = np.sum(x_k_ln_x) fg = np.sum(x_k) f = ff / fg - np.mean(ln_x) - (1. / k) # Calculate second derivative d^2f/dk^2 ff_prime = np.sum(x_k_ln_x * ln_x) fg_prime = ff f_prime = (ff_prime / fg - (ff / fg * fg_prime / fg)) + ( 1. / (k * k)) # Newton-Raphson method k = k - f(k;x)/f'(k;x) k -= f / f_prime if np.isnan(f): return np.nan, np.nan if abs(k - k_t_1) < eps: break k_t_1 = k lam = np.mean(x ** k) ** (1.0 / k) return k, lam def my_test(): weibull = np.random.weibull(2.0, 100000) x = 2 * weibull mle_shape, mle_scale = fit(x) x.sort() print(mle_shape) print(mle_scale) # p0, p1, p2 = stats.weibull_min.fit(x, floc=0) # print(p0, p1, p2) ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0, mle_scale) plt.plot(np.linspace(0, x.max(), 10), ydata, '-') plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5) plt.show() if __name__ == '__main__': my_test()
normal
{ "blob_id": "b10d3d8d0ded0d2055c1abdaf40a97abd4cb2cb8", "index": 1631, "step-1": "<mask token>\n\n\ndef fit(x, iters=1000, eps=1e-06):\n \"\"\"\n Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation.\n :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0.\n :param iters: Maximum number of iterations\n :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps.\n :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible.\n Impossible fits may be due to 0-values in x.\n \"\"\"\n ln_x = np.log(x)\n k = 1.0\n k_t_1 = k\n for t in range(iters):\n x_k = x ** k\n x_k_ln_x = x_k * ln_x\n ff = np.sum(x_k_ln_x)\n fg = np.sum(x_k)\n f = ff / fg - np.mean(ln_x) - 1.0 / k\n ff_prime = np.sum(x_k_ln_x * ln_x)\n fg_prime = ff\n f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k)\n k -= f / f_prime\n if np.isnan(f):\n return np.nan, np.nan\n if abs(k - k_t_1) < eps:\n break\n k_t_1 = k\n lam = np.mean(x ** k) ** (1.0 / k)\n return k, lam\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef fit(x, iters=1000, eps=1e-06):\n \"\"\"\n Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation.\n :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0.\n :param iters: Maximum number of iterations\n :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps.\n :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible.\n Impossible fits may be due to 0-values in x.\n \"\"\"\n ln_x = np.log(x)\n k = 1.0\n k_t_1 = k\n for t in range(iters):\n x_k = x ** k\n x_k_ln_x = x_k * ln_x\n ff = np.sum(x_k_ln_x)\n fg = np.sum(x_k)\n f = ff / fg - np.mean(ln_x) - 1.0 / k\n ff_prime = np.sum(x_k_ln_x * ln_x)\n fg_prime = ff\n f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k)\n k -= f / f_prime\n if np.isnan(f):\n return np.nan, np.nan\n if abs(k - k_t_1) < eps:\n break\n k_t_1 = k\n lam = np.mean(x ** k) ** (1.0 / k)\n return k, lam\n\n\ndef my_test():\n weibull = np.random.weibull(2.0, 100000)\n x = 2 * weibull\n mle_shape, mle_scale = fit(x)\n x.sort()\n print(mle_shape)\n print(mle_scale)\n ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0,\n mle_scale)\n plt.plot(np.linspace(0, x.max(), 10), ydata, '-')\n plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5)\n plt.show()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef fit(x, iters=1000, eps=1e-06):\n \"\"\"\n Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation.\n :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0.\n :param iters: Maximum number of iterations\n :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps.\n :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible.\n Impossible fits may be due to 0-values in x.\n \"\"\"\n ln_x = np.log(x)\n k = 1.0\n k_t_1 = k\n for t in range(iters):\n x_k = x ** k\n x_k_ln_x = x_k * ln_x\n ff = np.sum(x_k_ln_x)\n fg = np.sum(x_k)\n f = ff / fg - np.mean(ln_x) - 1.0 / k\n ff_prime = np.sum(x_k_ln_x * ln_x)\n fg_prime = ff\n f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k)\n k -= f / f_prime\n if np.isnan(f):\n return np.nan, np.nan\n if abs(k - k_t_1) < eps:\n break\n k_t_1 = k\n lam = np.mean(x ** k) ** (1.0 / k)\n return k, lam\n\n\ndef my_test():\n weibull = np.random.weibull(2.0, 100000)\n x = 2 * weibull\n mle_shape, mle_scale = fit(x)\n x.sort()\n print(mle_shape)\n print(mle_scale)\n ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0,\n mle_scale)\n plt.plot(np.linspace(0, x.max(), 10), ydata, '-')\n plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5)\n plt.show()\n\n\nif __name__ == '__main__':\n my_test()\n", "step-4": "import numpy as np\nimport matplotlib.pyplot as plt\nfrom scipy import stats\n\n\ndef fit(x, iters=1000, eps=1e-06):\n \"\"\"\n Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation.\n :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0.\n :param iters: Maximum number of iterations\n :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps.\n :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible.\n Impossible fits may be due to 0-values in x.\n \"\"\"\n ln_x = np.log(x)\n k = 1.0\n k_t_1 = k\n for t in range(iters):\n x_k = x ** k\n x_k_ln_x = x_k * ln_x\n ff = np.sum(x_k_ln_x)\n fg = np.sum(x_k)\n f = ff / fg - np.mean(ln_x) - 1.0 / k\n ff_prime = np.sum(x_k_ln_x * ln_x)\n fg_prime = ff\n f_prime = ff_prime / fg - ff / fg * fg_prime / fg + 1.0 / (k * k)\n k -= f / f_prime\n if np.isnan(f):\n return np.nan, np.nan\n if abs(k - k_t_1) < eps:\n break\n k_t_1 = k\n lam = np.mean(x ** k) ** (1.0 / k)\n return k, lam\n\n\ndef my_test():\n weibull = np.random.weibull(2.0, 100000)\n x = 2 * weibull\n mle_shape, mle_scale = fit(x)\n x.sort()\n print(mle_shape)\n print(mle_scale)\n ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0,\n mle_scale)\n plt.plot(np.linspace(0, x.max(), 10), ydata, '-')\n plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5)\n plt.show()\n\n\nif __name__ == '__main__':\n my_test()\n", "step-5": "import numpy as np\r\nimport matplotlib.pyplot as plt\r\nfrom scipy import stats\r\n\r\n\r\ndef fit(x, iters=1000, eps=1e-6):\r\n \"\"\"\r\n Fits a 2-parameter Weibull distribution to the given data using maximum-likelihood estimation.\r\n :param x: 1d-ndarray of samples from an (unknown) distribution. Each value must satisfy x > 0.\r\n :param iters: Maximum number of iterations\r\n :param eps: Stopping criterion. Fit is stopped ff the change within two iterations is smaller than eps.\r\n :return: Tuple (Shape, Scale) which can be (NaN, NaN) if a fit is impossible.\r\n Impossible fits may be due to 0-values in x.\r\n \"\"\"\r\n # fit k via MLE\r\n ln_x = np.log(x)\r\n k = 1.\r\n k_t_1 = k\r\n\r\n for t in range(iters):\r\n x_k = x ** k\r\n x_k_ln_x = x_k * ln_x\r\n ff = np.sum(x_k_ln_x)\r\n fg = np.sum(x_k)\r\n f = ff / fg - np.mean(ln_x) - (1. / k)\r\n\r\n # Calculate second derivative d^2f/dk^2\r\n ff_prime = np.sum(x_k_ln_x * ln_x)\r\n fg_prime = ff\r\n f_prime = (ff_prime / fg - (ff / fg * fg_prime / fg)) + (\r\n 1. / (k * k))\r\n\r\n # Newton-Raphson method k = k - f(k;x)/f'(k;x)\r\n k -= f / f_prime\r\n\r\n if np.isnan(f):\r\n return np.nan, np.nan\r\n if abs(k - k_t_1) < eps:\r\n break\r\n\r\n k_t_1 = k\r\n\r\n lam = np.mean(x ** k) ** (1.0 / k)\r\n\r\n return k, lam\r\n\r\n\r\ndef my_test():\r\n weibull = np.random.weibull(2.0, 100000)\r\n x = 2 * weibull\r\n mle_shape, mle_scale = fit(x)\r\n x.sort()\r\n print(mle_shape)\r\n print(mle_scale)\r\n # p0, p1, p2 = stats.weibull_min.fit(x, floc=0)\r\n # print(p0, p1, p2)\r\n ydata = stats.weibull_min.pdf(np.linspace(0, x.max(), 10), mle_shape, 0,\r\n mle_scale)\r\n plt.plot(np.linspace(0, x.max(), 10), ydata, '-')\r\n plt.hist(x, bins=np.linspace(0, x.max(), 10), normed=True, alpha=0.5)\r\n plt.show()\r\n\r\n\r\nif __name__ == '__main__':\r\n my_test()\r\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import json import os import numpy as np import pandas as pd import py4design.py2radiance as py2radiance import py4design.py3dmodel.calculate as calculate from py4design import py3dmodel __author__ = "Jimeno A. Fonseca" __copyright__ = "Copyright 2017, Architecture and Building Systems - ETH Zurich" __credits__ = ["Jimeno A. Fonseca", "Kian Wee Chen"] __license__ = "MIT" __version__ = "0.1" __maintainer__ = "Daren Thomas" __email__ = "[email protected]" __status__ = "Production" from cea.constants import HOURS_IN_YEAR from cea.resources.radiation_daysim.geometry_generator import BuildingGeometry from cea import suppress_3rd_party_debug_loggers suppress_3rd_party_debug_loggers() def create_sensor_input_file(rad, chunk_n): sensor_file_path = os.path.join(rad.data_folder_path, "points_" + str(chunk_n) + ".pts") sensor_file = open(sensor_file_path, "w") sensor_pts_data = py2radiance.write_rad.sensor_file(rad.sensor_positions, rad.sensor_normals) sensor_file.write(sensor_pts_data) sensor_file.close() rad.sensor_file_path = sensor_file_path def generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection): mid_pt = py3dmodel.calculate.face_midpt(occface) location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01) moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(mid_pt, location_pt, occface)) if srf_type == 'roofs': xdim = ydim = roof_dim else: xdim = ydim = wall_dim # put it into occ and subdivide surfaces sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim) # calculate list of properties per surface sensor_intersection = [intersection for x in sensor_surfaces] sensor_dir = [normal for x in sensor_surfaces] sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces] sensor_type = [srf_type for x in sensor_surfaces] sensor_orientation = [orientation for x in sensor_surfaces] sensor_area = [calculate.face_area(x) * (1.0 - scalar) for x, scalar in zip(sensor_surfaces, sensor_intersection)] return sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection def calc_sensors_building(building_geometry, grid_size): sensor_dir_list = [] sensor_cord_list = [] sensor_type_list = [] sensor_area_list = [] sensor_orientation_list = [] sensor_intersection_list = [] surfaces_types = ['walls', 'windows', 'roofs'] sensor_vertical_grid_dim = grid_size["walls_grid"] sensor_horizontal_grid_dim = grid_size["roof_grid"] for srf_type in surfaces_types: occface_list = getattr(building_geometry, srf_type) if srf_type == 'roofs': orientation_list = ['top'] * len(occface_list) normals_list = [(0.0, 0.0, 1.0)] * len(occface_list) interesection_list = [0] * len(occface_list) elif srf_type == 'windows': orientation_list = getattr(building_geometry, "orientation_{srf_type}".format(srf_type=srf_type)) normals_list = getattr(building_geometry, "normals_{srf_type}".format(srf_type=srf_type)) interesection_list = [0] * len(occface_list) else: orientation_list = getattr(building_geometry, "orientation_{srf_type}".format(srf_type=srf_type)) normals_list = getattr(building_geometry, "normals_{srf_type}".format(srf_type=srf_type)) interesection_list = getattr(building_geometry, "intersect_{srf_type}".format(srf_type=srf_type)) for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list, interesection_list): sensor_dir, \ sensor_cord, \ sensor_type, \ sensor_area, \ sensor_orientation, \ sensor_intersection = generate_sensor_surfaces(face, sensor_vertical_grid_dim, sensor_horizontal_grid_dim, srf_type, orientation, normal, intersection) sensor_intersection_list.extend(sensor_intersection) sensor_dir_list.extend(sensor_dir) sensor_cord_list.extend(sensor_cord) sensor_type_list.extend(sensor_type) sensor_area_list.extend(sensor_area) sensor_orientation_list.extend(sensor_orientation) return sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list def calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir): sensors_coords_zone = [] sensors_dir_zone = [] sensors_total_number_list = [] names_zone = [] sensors_code_zone = [] sensor_intersection_zone = [] for building_name in building_names: building_geometry = BuildingGeometry.load(os.path.join(geometry_pickle_dir, 'zone', building_name)) # get sensors in the building sensors_dir_building, \ sensors_coords_building, \ sensors_type_building, \ sensors_area_building, \ sensor_orientation_building, \ sensor_intersection_building = calc_sensors_building(building_geometry, grid_size) # get the total number of sensors and store in lst sensors_number = len(sensors_coords_building) sensors_total_number_list.append(sensors_number) sensors_code = ['srf' + str(x) for x in range(sensors_number)] sensors_code_zone.append(sensors_code) # get the total list of coordinates and directions to send to daysim sensors_coords_zone.extend(sensors_coords_building) sensors_dir_zone.extend(sensors_dir_building) # get total list of intersections sensor_intersection_zone.append(sensor_intersection_building) # get the name of all buildings names_zone.append(building_name) # save sensors geometry result to disk pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code, 'orientation': sensor_orientation_building, 'intersection': sensor_intersection_building, 'Xcoor': [x[0] for x in sensors_coords_building], 'Ycoor': [x[1] for x in sensors_coords_building], 'Zcoor': [x[2] for x in sensors_coords_building], 'Xdir': [x[0] for x in sensors_dir_building], 'Ydir': [x[1] for x in sensors_dir_building], 'Zdir': [x[2] for x in sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata(building_name), index=None) return sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone def isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size, max_global, weatherfile, geometry_pickle_dir): # initialize daysim project daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.format(n=chunk_n)) print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=daysim_project.project_path)) # calculate sensors print("Calculating and sending sensor points") sensors_coords_zone, \ sensors_dir_zone, \ sensors_number_zone, \ names_zone, \ sensors_code_zone, \ sensor_intersection_zone = calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir) num_sensors = sum(sensors_number_zone) daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, "w/m2") print("Starting Daysim simulation for buildings: {buildings}".format(buildings=names_zone)) print("Total number of sensors: {num_sensors}".format(num_sensors=num_sensors)) print('Writing radiance parameters') daysim_project.write_radiance_parameters(radiance_parameters["rad_ab"], radiance_parameters["rad_ad"], radiance_parameters["rad_as"], radiance_parameters["rad_ar"], radiance_parameters["rad_aa"], radiance_parameters["rad_lr"], radiance_parameters["rad_st"], radiance_parameters["rad_sj"], radiance_parameters["rad_lw"], radiance_parameters["rad_dj"], radiance_parameters["rad_ds"], radiance_parameters["rad_dr"], radiance_parameters["rad_dp"]) print('Executing hourly solar isolation calculation') daysim_project.execute_gen_dc() daysim_project.execute_ds_illum() print('Reading results...') solar_res = daysim_project.eval_ill() # check inconsistencies and replace by max value of weather file print('Fixing inconsistencies, if any') solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global) # Check if leap year and remove extra day if solar_res.shape[1] == HOURS_IN_YEAR + 24: print('Removing leap day') leap_day_hours = range(1416, 1440) solar_res = np.delete(solar_res, leap_day_hours, axis=1) print("Writing results to disk") index = 0 for building_name, \ sensors_number_building, \ sensor_code_building, \ sensor_intersection_building in zip(names_zone, sensors_number_zone, sensors_code_zone, sensor_intersection_zone): # select sensors data selection_of_results = solar_res[index:index + sensors_number_building] selection_of_results[np.array(sensor_intersection_building) == 1] = 0 items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist())) index = index + sensors_number_building # create summary and save to disk write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile) if write_sensor_data: write_sensor_results(building_name, items_sensor_name_and_result, locator) # erase daysim folder to avoid conflicts after every iteration print('Removing results folder') daysim_project.cleanup_project() def write_sensor_results(building_name, items_sensor_name_and_result, locator): with open(locator.get_radiation_building_sensors(building_name), 'w') as outfile: json.dump(items_sensor_name_and_result, outfile) def write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile): geometry = pd.read_csv(locator.get_radiation_metadata(building_name)) geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW' solar_analysis_fields = ['windows_east_kW', 'windows_west_kW', 'windows_south_kW', 'windows_north_kW', 'walls_east_kW', 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW'] solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2', 'windows_south_m2', 'windows_north_m2', 'walls_east_m2', 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2'] dict_not_aggregated = {} for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area): select_sensors = geometry.loc[geometry['code'] == field].set_index('SURFACE') area_m2 = select_sensors['AREA_m2'].sum() array_field = np.array([select_sensors.loc[surface, 'AREA_m2'] * np.array(items_sensor_name_and_result[surface]) for surface in select_sensors.index]).sum(axis=0) dict_not_aggregated[field] = array_field / 1000 # in kWh dict_not_aggregated[field_area] = area_m2 data_aggregated_kW = (pd.DataFrame(dict_not_aggregated)).round(2) data_aggregated_kW["Date"] = weatherfile["date"] data_aggregated_kW.set_index('Date', inplace=True) data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))
normal
{ "blob_id": "164b0afde225119a8fbd4ccfccbbbc3550aa75fe", "index": 2634, "step-1": "<mask token>\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\n<mask token>\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-2": "<mask token>\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-3": "<mask token>\n__author__ = 'Jimeno A. Fonseca'\n__copyright__ = (\n 'Copyright 2017, Architecture and Building Systems - ETH Zurich')\n__credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen']\n__license__ = 'MIT'\n__version__ = '0.1'\n__maintainer__ = 'Daren Thomas'\n__email__ = '[email protected]'\n__status__ = 'Production'\n<mask token>\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-4": "import json\nimport os\nimport numpy as np\nimport pandas as pd\nimport py4design.py2radiance as py2radiance\nimport py4design.py3dmodel.calculate as calculate\nfrom py4design import py3dmodel\n__author__ = 'Jimeno A. Fonseca'\n__copyright__ = (\n 'Copyright 2017, Architecture and Building Systems - ETH Zurich')\n__credits__ = ['Jimeno A. Fonseca', 'Kian Wee Chen']\n__license__ = 'MIT'\n__version__ = '0.1'\n__maintainer__ = 'Daren Thomas'\n__email__ = '[email protected]'\n__status__ = 'Production'\nfrom cea.constants import HOURS_IN_YEAR\nfrom cea.resources.radiation_daysim.geometry_generator import BuildingGeometry\nfrom cea import suppress_3rd_party_debug_loggers\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, 'points_' + str(\n chunk_n) + '.pts')\n sensor_file = open(sensor_file_path, 'w')\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.\n sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type,\n orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(\n mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [(calculate.face_area(x) * (1.0 - scalar)) for x, scalar in\n zip(sensor_surfaces, sensor_intersection)]\n return (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection)\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size['walls_grid']\n sensor_horizontal_grid_dim = grid_size['roof_grid']\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry,\n 'orientation_{srf_type}'.format(srf_type=srf_type))\n normals_list = getattr(building_geometry, 'normals_{srf_type}'.\n format(srf_type=srf_type))\n interesection_list = getattr(building_geometry,\n 'intersect_{srf_type}'.format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list,\n normals_list, occface_list, interesection_list):\n (sensor_dir, sensor_cord, sensor_type, sensor_area,\n sensor_orientation, sensor_intersection) = (\n generate_sensor_surfaces(face, sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim, srf_type, orientation, normal,\n intersection))\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n return (sensor_dir_list, sensor_cord_list, sensor_type_list,\n sensor_area_list, sensor_orientation_list, sensor_intersection_list)\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(\n geometry_pickle_dir, 'zone', building_name))\n (sensors_dir_building, sensors_coords_building,\n sensors_type_building, sensors_area_building,\n sensor_orientation_building, sensor_intersection_building\n ) = calc_sensors_building(building_geometry, grid_size)\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n sensors_code = [('srf' + str(x)) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n sensor_intersection_zone.append(sensor_intersection_building)\n names_zone.append(building_name)\n pd.DataFrame({'BUILDING': building_name, 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building, 'intersection':\n sensor_intersection_building, 'Xcoor': [x[0] for x in\n sensors_coords_building], 'Ycoor': [x[1] for x in\n sensors_coords_building], 'Zcoor': [x[2] for x in\n sensors_coords_building], 'Xdir': [x[0] for x in\n sensors_dir_building], 'Ydir': [x[1] for x in\n sensors_dir_building], 'Zdir': [x[2] for x in\n sensors_dir_building], 'AREA_m2': sensors_area_building, 'TYPE':\n sensors_type_building}).to_csv(locator.get_radiation_metadata(\n building_name), index=None)\n return (sensors_coords_zone, sensors_dir_zone,\n sensors_total_number_list, names_zone, sensors_code_zone,\n sensor_intersection_zone)\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator,\n radiance_parameters, write_sensor_data, grid_size, max_global,\n weatherfile, geometry_pickle_dir):\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.\n format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=\n daysim_project.project_path))\n print('Calculating and sending sensor points')\n (sensors_coords_zone, sensors_dir_zone, sensors_number_zone, names_zone,\n sensors_code_zone, sensor_intersection_zone) = (calc_sensors_zone(\n building_names, locator, grid_size, geometry_pickle_dir))\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone,\n sensors_dir_zone, num_sensors, 'w/m2')\n print('Starting Daysim simulation for buildings: {buildings}'.format(\n buildings=names_zone))\n print('Total number of sensors: {num_sensors}'.format(num_sensors=\n num_sensors))\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters['rad_ab'],\n radiance_parameters['rad_ad'], radiance_parameters['rad_as'],\n radiance_parameters['rad_ar'], radiance_parameters['rad_aa'],\n radiance_parameters['rad_lr'], radiance_parameters['rad_st'],\n radiance_parameters['rad_sj'], radiance_parameters['rad_lw'],\n radiance_parameters['rad_dj'], radiance_parameters['rad_ds'],\n radiance_parameters['rad_dr'], radiance_parameters['rad_dp'])\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n print('Writing results to disk')\n index = 0\n for building_name, sensors_number_building, sensor_code_building, sensor_intersection_building in zip(\n names_zone, sensors_number_zone, sensors_code_zone,\n sensor_intersection_zone):\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building,\n selection_of_results.tolist()))\n index = index + sensors_number_building\n write_aggregated_results(building_name,\n items_sensor_name_and_result, locator, weatherfile)\n if write_sensor_data:\n write_sensor_results(building_name,\n items_sensor_name_and_result, locator)\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w'\n ) as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result,\n locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW', 'windows_west_kW',\n 'windows_south_kW', 'windows_north_kW', 'walls_east_kW',\n 'walls_west_kW', 'walls_south_kW', 'walls_north_kW', 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2', 'windows_west_m2',\n 'windows_south_m2', 'windows_north_m2', 'walls_east_m2',\n 'walls_west_m2', 'walls_south_m2', 'walls_north_m2', 'roofs_top_m2']\n dict_not_aggregated = {}\n for field, field_area in zip(solar_analysis_fields,\n solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index(\n 'SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([(select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])) for surface in\n select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000\n dict_not_aggregated[field_area] = area_m2\n data_aggregated_kW = pd.DataFrame(dict_not_aggregated).round(2)\n data_aggregated_kW['Date'] = weatherfile['date']\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-5": "import json\nimport os\n\nimport numpy as np\nimport pandas as pd\nimport py4design.py2radiance as py2radiance\nimport py4design.py3dmodel.calculate as calculate\nfrom py4design import py3dmodel\n\n__author__ = \"Jimeno A. Fonseca\"\n__copyright__ = \"Copyright 2017, Architecture and Building Systems - ETH Zurich\"\n__credits__ = [\"Jimeno A. Fonseca\", \"Kian Wee Chen\"]\n__license__ = \"MIT\"\n__version__ = \"0.1\"\n__maintainer__ = \"Daren Thomas\"\n__email__ = \"[email protected]\"\n__status__ = \"Production\"\n\nfrom cea.constants import HOURS_IN_YEAR\nfrom cea.resources.radiation_daysim.geometry_generator import BuildingGeometry\nfrom cea import suppress_3rd_party_debug_loggers\n\nsuppress_3rd_party_debug_loggers()\n\n\ndef create_sensor_input_file(rad, chunk_n):\n sensor_file_path = os.path.join(rad.data_folder_path, \"points_\" + str(chunk_n) + \".pts\")\n sensor_file = open(sensor_file_path, \"w\")\n sensor_pts_data = py2radiance.write_rad.sensor_file(rad.sensor_positions, rad.sensor_normals)\n sensor_file.write(sensor_pts_data)\n sensor_file.close()\n rad.sensor_file_path = sensor_file_path\n\n\ndef generate_sensor_surfaces(occface, wall_dim, roof_dim, srf_type, orientation, normal, intersection):\n mid_pt = py3dmodel.calculate.face_midpt(occface)\n location_pt = py3dmodel.modify.move_pt(mid_pt, normal, 0.01)\n moved_oface = py3dmodel.fetch.topo2topotype(py3dmodel.modify.move(mid_pt, location_pt, occface))\n if srf_type == 'roofs':\n xdim = ydim = roof_dim\n else:\n xdim = ydim = wall_dim\n # put it into occ and subdivide surfaces\n sensor_surfaces = py3dmodel.construct.grid_face(moved_oface, xdim, ydim)\n\n # calculate list of properties per surface\n sensor_intersection = [intersection for x in sensor_surfaces]\n sensor_dir = [normal for x in sensor_surfaces]\n sensor_cord = [py3dmodel.calculate.face_midpt(x) for x in sensor_surfaces]\n sensor_type = [srf_type for x in sensor_surfaces]\n sensor_orientation = [orientation for x in sensor_surfaces]\n sensor_area = [calculate.face_area(x) * (1.0 - scalar) for x, scalar in zip(sensor_surfaces, sensor_intersection)]\n\n return sensor_dir, sensor_cord, sensor_type, sensor_area, sensor_orientation, sensor_intersection\n\n\ndef calc_sensors_building(building_geometry, grid_size):\n sensor_dir_list = []\n sensor_cord_list = []\n sensor_type_list = []\n sensor_area_list = []\n sensor_orientation_list = []\n sensor_intersection_list = []\n surfaces_types = ['walls', 'windows', 'roofs']\n sensor_vertical_grid_dim = grid_size[\"walls_grid\"]\n sensor_horizontal_grid_dim = grid_size[\"roof_grid\"]\n for srf_type in surfaces_types:\n occface_list = getattr(building_geometry, srf_type)\n if srf_type == 'roofs':\n orientation_list = ['top'] * len(occface_list)\n normals_list = [(0.0, 0.0, 1.0)] * len(occface_list)\n interesection_list = [0] * len(occface_list)\n elif srf_type == 'windows':\n orientation_list = getattr(building_geometry, \"orientation_{srf_type}\".format(srf_type=srf_type))\n normals_list = getattr(building_geometry, \"normals_{srf_type}\".format(srf_type=srf_type))\n interesection_list = [0] * len(occface_list)\n else:\n orientation_list = getattr(building_geometry, \"orientation_{srf_type}\".format(srf_type=srf_type))\n normals_list = getattr(building_geometry, \"normals_{srf_type}\".format(srf_type=srf_type))\n interesection_list = getattr(building_geometry, \"intersect_{srf_type}\".format(srf_type=srf_type))\n for orientation, normal, face, intersection in zip(orientation_list, normals_list, occface_list,\n interesection_list):\n sensor_dir, \\\n sensor_cord, \\\n sensor_type, \\\n sensor_area, \\\n sensor_orientation, \\\n sensor_intersection = generate_sensor_surfaces(face,\n sensor_vertical_grid_dim,\n sensor_horizontal_grid_dim,\n srf_type,\n orientation,\n normal,\n intersection)\n sensor_intersection_list.extend(sensor_intersection)\n sensor_dir_list.extend(sensor_dir)\n sensor_cord_list.extend(sensor_cord)\n sensor_type_list.extend(sensor_type)\n sensor_area_list.extend(sensor_area)\n sensor_orientation_list.extend(sensor_orientation)\n\n return sensor_dir_list, sensor_cord_list, sensor_type_list, sensor_area_list, sensor_orientation_list, sensor_intersection_list\n\n\ndef calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir):\n sensors_coords_zone = []\n sensors_dir_zone = []\n sensors_total_number_list = []\n names_zone = []\n sensors_code_zone = []\n sensor_intersection_zone = []\n for building_name in building_names:\n building_geometry = BuildingGeometry.load(os.path.join(geometry_pickle_dir, 'zone', building_name))\n # get sensors in the building\n sensors_dir_building, \\\n sensors_coords_building, \\\n sensors_type_building, \\\n sensors_area_building, \\\n sensor_orientation_building, \\\n sensor_intersection_building = calc_sensors_building(building_geometry, grid_size)\n\n # get the total number of sensors and store in lst\n sensors_number = len(sensors_coords_building)\n sensors_total_number_list.append(sensors_number)\n\n sensors_code = ['srf' + str(x) for x in range(sensors_number)]\n sensors_code_zone.append(sensors_code)\n\n # get the total list of coordinates and directions to send to daysim\n sensors_coords_zone.extend(sensors_coords_building)\n sensors_dir_zone.extend(sensors_dir_building)\n\n # get total list of intersections\n sensor_intersection_zone.append(sensor_intersection_building)\n\n # get the name of all buildings\n names_zone.append(building_name)\n\n # save sensors geometry result to disk\n pd.DataFrame({'BUILDING': building_name,\n 'SURFACE': sensors_code,\n 'orientation': sensor_orientation_building,\n 'intersection': sensor_intersection_building,\n 'Xcoor': [x[0] for x in sensors_coords_building],\n 'Ycoor': [x[1] for x in sensors_coords_building],\n 'Zcoor': [x[2] for x in sensors_coords_building],\n 'Xdir': [x[0] for x in sensors_dir_building],\n 'Ydir': [x[1] for x in sensors_dir_building],\n 'Zdir': [x[2] for x in sensors_dir_building],\n 'AREA_m2': sensors_area_building,\n 'TYPE': sensors_type_building}).to_csv(locator.get_radiation_metadata(building_name), index=None)\n\n return sensors_coords_zone, sensors_dir_zone, sensors_total_number_list, names_zone, sensors_code_zone, sensor_intersection_zone\n\n\ndef isolation_daysim(chunk_n, cea_daysim, building_names, locator, radiance_parameters, write_sensor_data, grid_size,\n max_global, weatherfile, geometry_pickle_dir):\n # initialize daysim project\n daysim_project = cea_daysim.initialize_daysim_project('chunk_{n}'.format(n=chunk_n))\n print('Creating daysim project in: {daysim_dir}'.format(daysim_dir=daysim_project.project_path))\n\n # calculate sensors\n print(\"Calculating and sending sensor points\")\n sensors_coords_zone, \\\n sensors_dir_zone, \\\n sensors_number_zone, \\\n names_zone, \\\n sensors_code_zone, \\\n sensor_intersection_zone = calc_sensors_zone(building_names, locator, grid_size, geometry_pickle_dir)\n\n num_sensors = sum(sensors_number_zone)\n daysim_project.create_sensor_input_file(sensors_coords_zone, sensors_dir_zone, num_sensors, \"w/m2\")\n\n print(\"Starting Daysim simulation for buildings: {buildings}\".format(buildings=names_zone))\n print(\"Total number of sensors: {num_sensors}\".format(num_sensors=num_sensors))\n\n print('Writing radiance parameters')\n daysim_project.write_radiance_parameters(radiance_parameters[\"rad_ab\"], radiance_parameters[\"rad_ad\"],\n radiance_parameters[\"rad_as\"], radiance_parameters[\"rad_ar\"],\n radiance_parameters[\"rad_aa\"], radiance_parameters[\"rad_lr\"],\n radiance_parameters[\"rad_st\"], radiance_parameters[\"rad_sj\"],\n radiance_parameters[\"rad_lw\"], radiance_parameters[\"rad_dj\"],\n radiance_parameters[\"rad_ds\"], radiance_parameters[\"rad_dr\"],\n radiance_parameters[\"rad_dp\"])\n\n print('Executing hourly solar isolation calculation')\n daysim_project.execute_gen_dc()\n daysim_project.execute_ds_illum()\n\n print('Reading results...')\n solar_res = daysim_project.eval_ill()\n\n # check inconsistencies and replace by max value of weather file\n print('Fixing inconsistencies, if any')\n solar_res = np.clip(solar_res, a_min=0.0, a_max=max_global)\n\n # Check if leap year and remove extra day\n if solar_res.shape[1] == HOURS_IN_YEAR + 24:\n print('Removing leap day')\n leap_day_hours = range(1416, 1440)\n solar_res = np.delete(solar_res, leap_day_hours, axis=1)\n\n print(\"Writing results to disk\")\n index = 0\n for building_name, \\\n sensors_number_building, \\\n sensor_code_building, \\\n sensor_intersection_building in zip(names_zone,\n sensors_number_zone,\n sensors_code_zone,\n sensor_intersection_zone):\n # select sensors data\n selection_of_results = solar_res[index:index + sensors_number_building]\n selection_of_results[np.array(sensor_intersection_building) == 1] = 0\n items_sensor_name_and_result = dict(zip(sensor_code_building, selection_of_results.tolist()))\n index = index + sensors_number_building\n\n # create summary and save to disk\n write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile)\n\n if write_sensor_data:\n write_sensor_results(building_name, items_sensor_name_and_result, locator)\n\n # erase daysim folder to avoid conflicts after every iteration\n print('Removing results folder')\n daysim_project.cleanup_project()\n\n\ndef write_sensor_results(building_name, items_sensor_name_and_result, locator):\n with open(locator.get_radiation_building_sensors(building_name), 'w') as outfile:\n json.dump(items_sensor_name_and_result, outfile)\n\n\ndef write_aggregated_results(building_name, items_sensor_name_and_result, locator, weatherfile):\n geometry = pd.read_csv(locator.get_radiation_metadata(building_name))\n geometry['code'] = geometry['TYPE'] + '_' + geometry['orientation'] + '_kW'\n solar_analysis_fields = ['windows_east_kW',\n 'windows_west_kW',\n 'windows_south_kW',\n 'windows_north_kW',\n 'walls_east_kW',\n 'walls_west_kW',\n 'walls_south_kW',\n 'walls_north_kW',\n 'roofs_top_kW']\n solar_analysis_fields_area = ['windows_east_m2',\n 'windows_west_m2',\n 'windows_south_m2',\n 'windows_north_m2',\n 'walls_east_m2',\n 'walls_west_m2',\n 'walls_south_m2',\n 'walls_north_m2',\n 'roofs_top_m2']\n dict_not_aggregated = {}\n\n for field, field_area in zip(solar_analysis_fields, solar_analysis_fields_area):\n select_sensors = geometry.loc[geometry['code'] == field].set_index('SURFACE')\n area_m2 = select_sensors['AREA_m2'].sum()\n array_field = np.array([select_sensors.loc[surface, 'AREA_m2'] *\n np.array(items_sensor_name_and_result[surface])\n for surface in select_sensors.index]).sum(axis=0)\n dict_not_aggregated[field] = array_field / 1000 # in kWh\n dict_not_aggregated[field_area] = area_m2\n\n data_aggregated_kW = (pd.DataFrame(dict_not_aggregated)).round(2)\n data_aggregated_kW[\"Date\"] = weatherfile[\"date\"]\n data_aggregated_kW.set_index('Date', inplace=True)\n data_aggregated_kW.to_csv(locator.get_radiation_building(building_name))\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
# # @lc app=leetcode.cn id=15 lang=python3 # # [15] 三数之和 # # https://leetcode-cn.com/problems/3sum/description/ # # algorithms # Medium (25.76%) # Likes: 1904 # Dislikes: 0 # Total Accepted: 176.6K # Total Submissions: 679K # Testcase Example: '[-1,0,1,2,-1,-4]' # # 给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 # ?请你找出所有满足条件且不重复的三元组。 # # 注意:答案中不可以包含重复的三元组。 # # # # 示例: # # 给定数组 nums = [-1, 0, 1, 2, -1, -4], # # 满足要求的三元组集合为: # [ # ⁠ [-1, 0, 1], # ⁠ [-1, -1, 2] # ] # # 1. 三层循环暴力求解 # 2. 双指针求解 # 3. hashmap 求解 # @lc code=start class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: res = [] nums.sort() for k in range(len(nums) - 2): if k > 0 and nums[k] == nums[k-1]: continuere if nums[k] > 0: break L, R = k+1, len(nums) - 1 while L < R: s = nums[k] + nums[L] + nums[R] if s < 0: L += 1 elif s > 0: R -= 1 else: res.append((nums[k], nums[L], nums[R])) while L < R and nums[L] == nums[L+1]: L += 1 while L < R and nums[R] == nums[R-1]: R -= 1 L += 1 R -= 1 return res # @lc code=end
normal
{ "blob_id": "ccf3ada9a2bedf29820170f2e8184fc16f1b7aea", "index": 9580, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def threeSum(self, nums: List[int]) ->List[List[int]]:\n res = []\n nums.sort()\n for k in range(len(nums) - 2):\n if k > 0 and nums[k] == nums[k - 1]:\n continuere\n if nums[k] > 0:\n break\n L, R = k + 1, len(nums) - 1\n while L < R:\n s = nums[k] + nums[L] + nums[R]\n if s < 0:\n L += 1\n elif s > 0:\n R -= 1\n else:\n res.append((nums[k], nums[L], nums[R]))\n while L < R and nums[L] == nums[L + 1]:\n L += 1\n while L < R and nums[R] == nums[R - 1]:\n R -= 1\n L += 1\n R -= 1\n return res\n", "step-4": "#\n# @lc app=leetcode.cn id=15 lang=python3\n#\n# [15] 三数之和\n#\n# https://leetcode-cn.com/problems/3sum/description/\n#\n# algorithms\n# Medium (25.76%)\n# Likes: 1904\n# Dislikes: 0\n# Total Accepted: 176.6K\n# Total Submissions: 679K\n# Testcase Example: '[-1,0,1,2,-1,-4]'\n#\n# 给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0\n# ?请你找出所有满足条件且不重复的三元组。\n#\n# 注意:答案中不可以包含重复的三元组。\n#\n#\n#\n# 示例:\n#\n# 给定数组 nums = [-1, 0, 1, 2, -1, -4],\n#\n# 满足要求的三元组集合为:\n# [\n# ⁠ [-1, 0, 1],\n# ⁠ [-1, -1, 2]\n# ]\n#\n# 1. 三层循环暴力求解\n# 2. 双指针求解\n# 3. hashmap 求解\n\n# @lc code=start\n\n\nclass Solution:\n def threeSum(self, nums: List[int]) -> List[List[int]]:\n res = []\n nums.sort()\n for k in range(len(nums) - 2):\n if k > 0 and nums[k] == nums[k-1]:\n continuere\n if nums[k] > 0:\n break\n L, R = k+1, len(nums) - 1\n while L < R:\n s = nums[k] + nums[L] + nums[R]\n if s < 0:\n L += 1\n elif s > 0:\n R -= 1\n else:\n res.append((nums[k], nums[L], nums[R]))\n while L < R and nums[L] == nums[L+1]:\n L += 1\n while L < R and nums[R] == nums[R-1]:\n R -= 1\n L += 1\n R -= 1\n return res\n# @lc code=end\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import pyaudio import numpy as np from collections import OrderedDict import utils class MasterPlayer(object): def __init__(self, volume=1., samplesPerSecond=44100): self.p = pyaudio.PyAudio() self.volume = volume self.samplesPerSecond = samplesPerSecond self.individual_callbacks = OrderedDict() self.volumes = {} def __del__(self): self.p.terminate() def play(self): self.offset = 0 def callback(in_data, frame_count, time_info, status): total_stereo = np.zeros((frame_count*2)) time = self.offset / float(self.samplesPerSecond) for ic in self.individual_callbacks: left, right = ic(self.offset, time, frame_count) if left is None: # dead voice continue stereo = utils.to_stereo(left, right) # Accumulate total_stereo += stereo * self.volumes[ic] self.offset += frame_count output = utils.np_to_frames(total_stereo * self.volume) return (output, pyaudio.paContinue) self.stream = self.p.open(format=self.p.get_format_from_width(2), channels=2, rate=self.samplesPerSecond, output=True, stream_callback=callback) self.stream.start_stream() def stop(self): self.stream.stop_stream() def register(self, callback): self.individual_callbacks[callback] = {} self.volumes[callback] = 1. def unregister(self, callback): if callback in self.individual_callbacks: del self.individual_callbacks[callback] del self.volumes[callback] def set_volume(self, callback, volume): self.volumes[callback] = volume MAXVOLUME = 32767. def sawtooth(x): return np.mod(x / (2*np.pi), 1.) class ADSR(object): def __init__(self, a=0.01, d=0.1, s=0.8, r=0.5, mode='linear'): self.a = a self.d = d self.s = s self.r = r assert mode == 'linear' def get_envelope_pressed(self, delta): ''' :param delta: time after pressed :return: envelope (between 0 and 1) ''' delta = delta.astype(float) #assert delta>0. envelope = np.zeros(len(delta)) # attack attack = delta < self.a envelope[attack] = delta[attack] / self.a # decay decay = (delta < self.a + self.d) & (delta >= self.a) envelope[decay] = 1 - (1 - self.s) * (delta[decay] - self.a) / self.d # sustain sustain = (delta >= self.a + self.d) envelope[sustain] = self.s return envelope def get_envelope_released(self, delta): ''' :param delta: time after released :return: envelope (between 0 and 1) ''' delta = delta.astype(float) envelope = np.zeros(len(delta)) # release release = delta < self.r envelope[release] = self.s * (self.r - delta[release]) / self.r # dead dead = delta >= self.r all_dead = np.all(dead) return envelope, all_dead class SineWavePlayer(object): def __init__(self, freq, samplerate, adsr, motherwave=None): self.freq = freq self.samplerate = samplerate self.pressed = False self.volume = 0.3 #self.wave = np.sin if motherwave is None: motherwave = sawtooth() self.wave = motherwave self.adsr = adsr self.dead = True def __call__(self, offset, time, frame_count): # Find out which state we are in # Dead/NewPress/Pressed/NewRelease/Released/Dead if self.pressed: if self.new_press: # Initialize phase to prevent clicking self.onset = time self.new_press = False # Relative time after press time_after_press = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.onset) left = self.volume * MAXVOLUME * self.wave(time_after_press * 2*np.pi * self.freq) envelope = self.adsr.get_envelope_pressed(time_after_press) left *= envelope right = left elif not self.dead: if self.new_release: self.new_release = False self.release_time = time # Relative time after release time_after_press = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.onset) time_after_release = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.release_time) left = self.volume * MAXVOLUME * self.wave(time_after_press * 2*np.pi * self.freq) envelope, self.dead = self.adsr.get_envelope_released(time_after_release) left *= envelope right = left else: left = right = None return left, right def press(self): self.pressed = True self.new_press = True self.dead = False def release(self): self.pressed = False self.new_release = True def note_to_freq(note): reference_a = 45 return np.exp(np.log(440) + (note - reference_a) / 12. * np.log(2)) class NaivePoly(object): def __init__(self, octaves, samplerate, adsr, motherwave): self.voices = [] self.octaves = octaves for note in xrange(self.octaves*12): # Compute frequency -> 440hz is note 45 freq = note_to_freq(note) # Initialize voice self.voices.append(SineWavePlayer(freq, samplerate, adsr, motherwave)) print 'note {} freq {}'.format(note, freq) def register(self, master): for voice in self.voices: master.register(voice) def unregister(self, master): for voice in self.voices: master.unregister(voice) def press(self, key): self.voices[key].press() def release(self, key): self.voices[key].release()
normal
{ "blob_id": "c4e4e54ac93c2acdbd3a1cd22b200341a6e45688", "index": 224, "step-1": "import pyaudio\nimport numpy as np\nfrom collections import OrderedDict\nimport utils\n\n\nclass MasterPlayer(object):\n def __init__(self, volume=1., samplesPerSecond=44100):\n self.p = pyaudio.PyAudio()\n self.volume = volume\n self.samplesPerSecond = samplesPerSecond\n self.individual_callbacks = OrderedDict()\n self.volumes = {}\n\n def __del__(self):\n self.p.terminate()\n\n def play(self):\n\n self.offset = 0\n def callback(in_data, frame_count, time_info, status):\n total_stereo = np.zeros((frame_count*2))\n time = self.offset / float(self.samplesPerSecond)\n\n for ic in self.individual_callbacks:\n left, right = ic(self.offset, time, frame_count)\n if left is None: # dead voice\n continue\n stereo = utils.to_stereo(left, right)\n # Accumulate\n total_stereo += stereo * self.volumes[ic]\n\n self.offset += frame_count\n output = utils.np_to_frames(total_stereo * self.volume)\n return (output, pyaudio.paContinue)\n\n self.stream = self.p.open(format=self.p.get_format_from_width(2),\n channels=2,\n rate=self.samplesPerSecond,\n output=True,\n stream_callback=callback)\n self.stream.start_stream()\n\n def stop(self):\n self.stream.stop_stream()\n\n def register(self, callback):\n self.individual_callbacks[callback] = {}\n self.volumes[callback] = 1.\n\n def unregister(self, callback):\n if callback in self.individual_callbacks:\n del self.individual_callbacks[callback]\n del self.volumes[callback]\n\n def set_volume(self, callback, volume):\n self.volumes[callback] = volume\n\nMAXVOLUME = 32767.\n\n\ndef sawtooth(x):\n return np.mod(x / (2*np.pi), 1.)\n\nclass ADSR(object):\n def __init__(self, a=0.01, d=0.1, s=0.8, r=0.5, mode='linear'):\n self.a = a\n self.d = d\n self.s = s\n self.r = r\n assert mode == 'linear'\n\n def get_envelope_pressed(self, delta):\n '''\n :param delta: time after pressed\n :return: envelope (between 0 and 1)\n '''\n delta = delta.astype(float)\n #assert delta>0.\n envelope = np.zeros(len(delta))\n # attack\n attack = delta < self.a\n envelope[attack] = delta[attack] / self.a\n # decay\n decay = (delta < self.a + self.d) & (delta >= self.a)\n envelope[decay] = 1 - (1 - self.s) * (delta[decay] - self.a) / self.d\n # sustain\n sustain = (delta >= self.a + self.d)\n envelope[sustain] = self.s\n\n return envelope\n\n def get_envelope_released(self, delta):\n '''\n :param delta: time after released\n :return: envelope (between 0 and 1)\n '''\n delta = delta.astype(float)\n envelope = np.zeros(len(delta))\n\n # release\n release = delta < self.r\n envelope[release] = self.s * (self.r - delta[release]) / self.r\n\n # dead\n dead = delta >= self.r\n all_dead = np.all(dead)\n\n return envelope, all_dead\n\n\nclass SineWavePlayer(object):\n def __init__(self, freq, samplerate, adsr, motherwave=None):\n self.freq = freq\n self.samplerate = samplerate\n self.pressed = False\n self.volume = 0.3\n #self.wave = np.sin\n if motherwave is None:\n motherwave = sawtooth()\n self.wave = motherwave\n self.adsr = adsr\n self.dead = True\n\n def __call__(self, offset, time, frame_count):\n\n # Find out which state we are in\n # Dead/NewPress/Pressed/NewRelease/Released/Dead\n if self.pressed:\n if self.new_press:\n # Initialize phase to prevent clicking\n self.onset = time\n self.new_press = False\n # Relative time after press\n time_after_press = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.onset)\n\n left = self.volume * MAXVOLUME * self.wave(time_after_press * 2*np.pi * self.freq)\n envelope = self.adsr.get_envelope_pressed(time_after_press)\n left *= envelope\n right = left\n elif not self.dead:\n if self.new_release:\n self.new_release = False\n self.release_time = time\n # Relative time after release\n time_after_press = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.onset)\n time_after_release = (time + np.arange(frame_count, dtype=float) / self.samplerate - self.release_time)\n\n left = self.volume * MAXVOLUME * self.wave(time_after_press * 2*np.pi * self.freq)\n envelope, self.dead = self.adsr.get_envelope_released(time_after_release)\n left *= envelope\n right = left\n else:\n left = right = None\n return left, right\n\n def press(self):\n self.pressed = True\n self.new_press = True\n self.dead = False\n\n def release(self):\n self.pressed = False\n self.new_release = True\n\n\ndef note_to_freq(note):\n reference_a = 45\n return np.exp(np.log(440) + (note - reference_a) / 12. * np.log(2))\n\n\nclass NaivePoly(object):\n def __init__(self, octaves, samplerate, adsr, motherwave):\n self.voices = []\n self.octaves = octaves\n for note in xrange(self.octaves*12):\n # Compute frequency -> 440hz is note 45\n freq = note_to_freq(note)\n # Initialize voice\n self.voices.append(SineWavePlayer(freq, samplerate, adsr, motherwave))\n print 'note {} freq {}'.format(note, freq)\n\n def register(self, master):\n for voice in self.voices:\n master.register(voice)\n\n def unregister(self, master):\n for voice in self.voices:\n master.unregister(voice)\n\n def press(self, key):\n self.voices[key].press()\n\n def release(self, key):\n self.voices[key].release()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# -*- coding: utf-8 -*- """ Created on Tue Mar 12 20:29:49 2019 @author: kzx789 """ from PIL import Image import os, glob, numpy as np import pandas as pd import matplotlib.pyplot as plt import math import cv2 import pymysql import MySQLdb as mysql """ #csv를 읽어서 영양정보 출력 def get_Nutrition(str) : nutrition = pd.read_csv('C:/식품영양정보/영양정보.csv') print(nutrition[nutrition['음식명'] == str]) """ #사용된 전체 이미지 출력 def drawing_plt(): thisImg = os.listdir(caltech_dir) row = 4 cols = int(math.ceil(len(thisImg)/4)) #반올림 fig = plt.figure() i = 1 for image in glob.glob("C:/cnnTest/*.jpg"): #glob를 사용해서 Test로 사용된 파일 가져오기 img = cv2.imread(image) subplot = fig.add_subplot(row, cols, i) subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) #기본컬러 subplot.set_title(thisImg[i-1]) #타이틀 붙이기 subplot.axis("off") i += 1 print('\t',"전체 이미지 리스트 ") plt.show() #조건에 맞는 개별 이미지 출력 def get_Image(str): imgPath = 'C:/cnnTest/' image = cv2.imread(imgPath+str) image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) plt.imshow(image) plt.xticks([]) plt.yticks([]) plt.show() #데이터베이스에서 영양소 정보 가지고 오기 def get_DB_Nutrition(str): db = pymysql.connect(host="localhost", user = "yeha", password="", db="nutrition") cur = db.cursor() #Connection에서 Cursor생성 sql = "SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s" cur.execute(sql,(str)) data = cur.fetchall() #정보 전부 가져오기 df = pd.Series(data[0],data[1]) print(df) db.close() caltech_dir = "C:/cnnTest" #테스트할 데이터들을 128*128로 지정 image_w = 128 image_h = 128 pixels = image_h * image_w * 3 #픽셀 지정 X = [] #filenames = [] files = os.listdir(caltech_dir) #하위 디렉터리 파일 리스트 구하기 #print(files) #이미지 목록 확인 for i in range(len(files)): files[i]=caltech_dir+'/'+ files[i] #print(files) for f in files: img = Image.open(f) img = img.convert("RGB") img = img.resize((image_w, image_h)) data = np.asarray(img) # filenames.append(f) X.append(data) X = np.array(X) #print(X) #모델 불러오기 from keras.models import load_model model = load_model("C:/image/train/model/multi_img_classification.model") prediction = model.predict(X) #print(prediction) np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) print('프로그램을 실행합니다..') print('\n') thisImg = os.listdir(caltech_dir) cnt = 0 for i in prediction: pre_ans = i.argmax() # 예측 레이블//가장 큰 번째 수 #print(i) #print(pre_ans) pre_ans_str = '' if pre_ans == 0: pre_ans_str = "연어회" elif pre_ans == 1: pre_ans_str = "쌀국수" elif pre_ans == 2: pre_ans_str = "샌드위치" else: pre_ans_str = "새우튀김" if i[0] >= 0.8 : get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[1] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[2] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) if i[3] >= 0.8: get_Image(thisImg[cnt]) print(thisImg[cnt]+" 이미지는 "+pre_ans_str+"(으)로 추정됩니다.") #get_Nutrition(pre_ans_str) get_DB_Nutrition(pre_ans_str) cnt += 1 drawing_plt()
normal
{ "blob_id": "1255a9df2fbe11d92991f3f0f7054b92cb017628", "index": 2941, "step-1": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\n<mask token>\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\n<mask token>\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\n<mask token>\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-3": "<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = 'C:/cnnTest'\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3\nX = []\nfiles = os.listdir(caltech_dir)\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\nX = np.array(X)\n<mask token>\nmodel = load_model('C:/image/train/model/multi_img_classification.model')\nprediction = model.predict(X)\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-4": "<mask token>\nfrom PIL import Image\nimport os, glob, numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport math\nimport cv2\nimport pymysql\nimport MySQLdb as mysql\n<mask token>\n\n\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg) / 4))\n fig = plt.figure()\n i = 1\n for image in glob.glob('C:/cnnTest/*.jpg'):\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))\n subplot.set_title(thisImg[i - 1])\n subplot.axis('off')\n i += 1\n print('\\t', '전체 이미지 리스트 ')\n plt.show()\n\n\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath + str)\n image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host='localhost', user='yeha', password='', db=\n 'nutrition')\n cur = db.cursor()\n sql = (\n \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n )\n cur.execute(sql, str)\n data = cur.fetchall()\n df = pd.Series(data[0], data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = 'C:/cnnTest'\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3\nX = []\nfiles = os.listdir(caltech_dir)\nfor i in range(len(files)):\n files[i] = caltech_dir + '/' + files[i]\nfor f in files:\n img = Image.open(f)\n img = img.convert('RGB')\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n X.append(data)\nX = np.array(X)\nfrom keras.models import load_model\nmodel = load_model('C:/image/train/model/multi_img_classification.model')\nprediction = model.predict(X)\nnp.set_printoptions(formatter={'float': lambda x: '{0:0.3f}'.format(x)})\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\nfor i in prediction:\n pre_ans = i.argmax()\n pre_ans_str = ''\n if pre_ans == 0:\n pre_ans_str = '연어회'\n elif pre_ans == 1:\n pre_ans_str = '쌀국수'\n elif pre_ans == 2:\n pre_ans_str = '샌드위치'\n else:\n pre_ans_str = '새우튀김'\n if i[0] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[1] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[2] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n if i[3] >= 0.8:\n get_Image(thisImg[cnt])\n print(thisImg[cnt] + ' 이미지는 ' + pre_ans_str + '(으)로 추정됩니다.')\n get_DB_Nutrition(pre_ans_str)\n cnt += 1\ndrawing_plt()\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Tue Mar 12 20:29:49 2019\n\n@author: kzx789\n\"\"\"\n\nfrom PIL import Image\nimport os, glob, numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\nimport math\nimport cv2\nimport pymysql\nimport MySQLdb as mysql\n\n\"\"\"\n#csv를 읽어서 영양정보 출력\ndef get_Nutrition(str) :\n nutrition = pd.read_csv('C:/식품영양정보/영양정보.csv') \n print(nutrition[nutrition['음식명'] == str])\n\"\"\" \n#사용된 전체 이미지 출력\ndef drawing_plt():\n thisImg = os.listdir(caltech_dir)\n row = 4\n cols = int(math.ceil(len(thisImg)/4)) #반올림\n fig = plt.figure()\n i = 1\n \n for image in glob.glob(\"C:/cnnTest/*.jpg\"): #glob를 사용해서 Test로 사용된 파일 가져오기\n img = cv2.imread(image)\n subplot = fig.add_subplot(row, cols, i)\n subplot.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) #기본컬러\n subplot.set_title(thisImg[i-1]) #타이틀 붙이기\n subplot.axis(\"off\") \n i += 1\n print('\\t',\"전체 이미지 리스트 \")\n plt.show()\n\n#조건에 맞는 개별 이미지 출력\ndef get_Image(str):\n imgPath = 'C:/cnnTest/'\n image = cv2.imread(imgPath+str)\n image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB)\n plt.imshow(image)\n plt.xticks([])\n plt.yticks([])\n plt.show()\n\n#데이터베이스에서 영양소 정보 가지고 오기\ndef get_DB_Nutrition(str):\n db = pymysql.connect(host=\"localhost\", user = \"yeha\", password=\"\", db=\"nutrition\")\n cur = db.cursor() #Connection에서 Cursor생성\n sql = \"SELECT * FROM NUTRITION_INFO WHERE FOODNAME LIKE '음식명' OR FOODNAME LIKE %s\"\n cur.execute(sql,(str))\n data = cur.fetchall() #정보 전부 가져오기\n df = pd.Series(data[0],data[1])\n print(df)\n db.close()\n\n\ncaltech_dir = \"C:/cnnTest\"\n\n#테스트할 데이터들을 128*128로 지정\nimage_w = 128\nimage_h = 128\npixels = image_h * image_w * 3 #픽셀 지정\n\nX = []\n#filenames = []\n\nfiles = os.listdir(caltech_dir) #하위 디렉터리 파일 리스트 구하기\n\n#print(files) #이미지 목록 확인 \n\nfor i in range(len(files)):\n files[i]=caltech_dir+'/'+ files[i]\n#print(files) \n\nfor f in files:\n img = Image.open(f)\n img = img.convert(\"RGB\")\n img = img.resize((image_w, image_h))\n data = np.asarray(img)\n # filenames.append(f)\n X.append(data)\n\nX = np.array(X)\n#print(X)\n\n#모델 불러오기\nfrom keras.models import load_model\n\nmodel = load_model(\"C:/image/train/model/multi_img_classification.model\")\nprediction = model.predict(X)\n#print(prediction)\n\nnp.set_printoptions(formatter={'float': lambda x: \"{0:0.3f}\".format(x)})\n\n\nprint('프로그램을 실행합니다..')\nprint('\\n')\nthisImg = os.listdir(caltech_dir)\ncnt = 0\n\nfor i in prediction:\n pre_ans = i.argmax() # 예측 레이블//가장 큰 번째 수\n #print(i)\n #print(pre_ans)\n pre_ans_str = ''\n if pre_ans == 0: pre_ans_str = \"연어회\"\n elif pre_ans == 1: pre_ans_str = \"쌀국수\"\n elif pre_ans == 2: pre_ans_str = \"샌드위치\"\n else: pre_ans_str = \"새우튀김\"\n\n if i[0] >= 0.8 : \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n if i[1] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n\n if i[2] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n\n if i[3] >= 0.8: \n get_Image(thisImg[cnt])\n print(thisImg[cnt]+\" 이미지는 \"+pre_ans_str+\"(으)로 추정됩니다.\")\n #get_Nutrition(pre_ans_str) \n get_DB_Nutrition(pre_ans_str)\n cnt += 1\n \ndrawing_plt()\n\n ", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from app import create_app from app.config import Config app = create_app(Config) if __name__ == "__main__": app.run(host="0.0.0.0", port=5000, debug=True)
normal
{ "blob_id": "bea90bbcd4d34b64c21f022b6f3af2bee2d978e4", "index": 1123, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=5000, debug=True)\n", "step-3": "<mask token>\napp = create_app(Config)\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=5000, debug=True)\n", "step-4": "from app import create_app\nfrom app.config import Config\napp = create_app(Config)\nif __name__ == '__main__':\n app.run(host='0.0.0.0', port=5000, debug=True)\n", "step-5": "from app import create_app\nfrom app.config import Config\n\n\napp = create_app(Config)\n\n\nif __name__ == \"__main__\":\n app.run(host=\"0.0.0.0\", port=5000, debug=True)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from more_itertools import ilen from my.body import weight, shower, food, water def test_body() ->None: for func in (weight, shower, food, water): assert ilen(func()) >= 1
normal
{ "blob_id": "e06b740f27e41b9f120c962fd76a38a29d54af3c", "index": 973, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test_body() ->None:\n for func in (weight, shower, food, water):\n assert ilen(func()) >= 1\n", "step-3": "from more_itertools import ilen\nfrom my.body import weight, shower, food, water\n\n\ndef test_body() ->None:\n for func in (weight, shower, food, water):\n assert ilen(func()) >= 1\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import numpy as np import random with open("./roc.txt", "r") as fin: with open("./roc_shuffle.txt", "w") as fout: tmp = [] for k, line in enumerate(fin): i = k + 1 if i % 6 == 0: idx = [0] + np.random.permutation(range(1,5)).tolist() for sen in np.take(tmp, idx).tolist(): fout.write(sen+"\n") tmp = [] fout.write(line.strip()+"\n") else: tmp.append(line.strip()) with open("./roc.txt", "r") as fin: with open("./roc_repeat.txt", "w") as fout: tmp = [] for k, line in enumerate(fin): i = k + 1 if i % 6 == 0: idx = random.randint(1,4) tmp[idx] = tmp[idx][:-1] + tmp[idx] for sen in tmp: fout.write(sen+"\n") tmp = [] fout.write(line.strip()+"\n") else: tmp.append(line.strip()) with open("./roc.txt", "r") as fin: with open("./roc_replace.txt", "w") as fout: post, tmp = [], [] for k, line in enumerate(fin): i = k + 1 if i % 6 == 0: post.append(tmp) tmp = [] else: tmp.append(line.strip().split()) data = {"1":[], "2":[], "3":[], "4":[], "5":[]} for p in post: for i in range(5): data["%d"%(i+1)].append(p[i]) random_data = data.copy() for i in range(5): random_data["%d"%(i+1)] = np.random.permutation(random_data["%d"%(i+1)]) for k in range(len(post)): idx = np.random.permutation(range(1,5))[0] for i in range(5): if i == idx: fout.write(' '.join(random_data["%d"%(i+1)][k])+"\n") else: fout.write(' '.join(data["%d"%(i+1)][k])+"\n") fout.write("------\n")
normal
{ "blob_id": "2aec0581413d4fb0ffb4090231fde0fed974bf18", "index": 27, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_shuffle.txt', 'w') as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = [0] + np.random.permutation(range(1, 5)).tolist()\n for sen in np.take(tmp, idx).tolist():\n fout.write(sen + '\\n')\n tmp = []\n fout.write(line.strip() + '\\n')\n else:\n tmp.append(line.strip())\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_repeat.txt', 'w') as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = random.randint(1, 4)\n tmp[idx] = tmp[idx][:-1] + tmp[idx]\n for sen in tmp:\n fout.write(sen + '\\n')\n tmp = []\n fout.write(line.strip() + '\\n')\n else:\n tmp.append(line.strip())\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_replace.txt', 'w') as fout:\n post, tmp = [], []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n post.append(tmp)\n tmp = []\n else:\n tmp.append(line.strip().split())\n data = {'1': [], '2': [], '3': [], '4': [], '5': []}\n for p in post:\n for i in range(5):\n data['%d' % (i + 1)].append(p[i])\n random_data = data.copy()\n for i in range(5):\n random_data['%d' % (i + 1)] = np.random.permutation(random_data\n ['%d' % (i + 1)])\n for k in range(len(post)):\n idx = np.random.permutation(range(1, 5))[0]\n for i in range(5):\n if i == idx:\n fout.write(' '.join(random_data['%d' % (i + 1)][k]) + '\\n')\n else:\n fout.write(' '.join(data['%d' % (i + 1)][k]) + '\\n')\n fout.write('------\\n')\n", "step-3": "import numpy as np\nimport random\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_shuffle.txt', 'w') as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = [0] + np.random.permutation(range(1, 5)).tolist()\n for sen in np.take(tmp, idx).tolist():\n fout.write(sen + '\\n')\n tmp = []\n fout.write(line.strip() + '\\n')\n else:\n tmp.append(line.strip())\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_repeat.txt', 'w') as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = random.randint(1, 4)\n tmp[idx] = tmp[idx][:-1] + tmp[idx]\n for sen in tmp:\n fout.write(sen + '\\n')\n tmp = []\n fout.write(line.strip() + '\\n')\n else:\n tmp.append(line.strip())\nwith open('./roc.txt', 'r') as fin:\n with open('./roc_replace.txt', 'w') as fout:\n post, tmp = [], []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n post.append(tmp)\n tmp = []\n else:\n tmp.append(line.strip().split())\n data = {'1': [], '2': [], '3': [], '4': [], '5': []}\n for p in post:\n for i in range(5):\n data['%d' % (i + 1)].append(p[i])\n random_data = data.copy()\n for i in range(5):\n random_data['%d' % (i + 1)] = np.random.permutation(random_data\n ['%d' % (i + 1)])\n for k in range(len(post)):\n idx = np.random.permutation(range(1, 5))[0]\n for i in range(5):\n if i == idx:\n fout.write(' '.join(random_data['%d' % (i + 1)][k]) + '\\n')\n else:\n fout.write(' '.join(data['%d' % (i + 1)][k]) + '\\n')\n fout.write('------\\n')\n", "step-4": "import numpy as np\nimport random\n\nwith open(\"./roc.txt\", \"r\") as fin:\n with open(\"./roc_shuffle.txt\", \"w\") as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = [0] + np.random.permutation(range(1,5)).tolist()\n for sen in np.take(tmp, idx).tolist():\n fout.write(sen+\"\\n\")\n tmp = []\n fout.write(line.strip()+\"\\n\")\n else:\n tmp.append(line.strip())\nwith open(\"./roc.txt\", \"r\") as fin:\n with open(\"./roc_repeat.txt\", \"w\") as fout:\n tmp = []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n idx = random.randint(1,4)\n tmp[idx] = tmp[idx][:-1] + tmp[idx]\n for sen in tmp:\n fout.write(sen+\"\\n\")\n tmp = []\n fout.write(line.strip()+\"\\n\")\n else:\n tmp.append(line.strip())\nwith open(\"./roc.txt\", \"r\") as fin:\n with open(\"./roc_replace.txt\", \"w\") as fout:\n post, tmp = [], []\n for k, line in enumerate(fin):\n i = k + 1\n if i % 6 == 0:\n post.append(tmp)\n tmp = []\n else:\n tmp.append(line.strip().split())\n data = {\"1\":[], \"2\":[], \"3\":[], \"4\":[], \"5\":[]}\n for p in post:\n for i in range(5):\n data[\"%d\"%(i+1)].append(p[i])\n random_data = data.copy()\n for i in range(5):\n random_data[\"%d\"%(i+1)] = np.random.permutation(random_data[\"%d\"%(i+1)])\n\n for k in range(len(post)):\n idx = np.random.permutation(range(1,5))[0]\n for i in range(5):\n if i == idx:\n fout.write(' '.join(random_data[\"%d\"%(i+1)][k])+\"\\n\")\n else:\n fout.write(' '.join(data[\"%d\"%(i+1)][k])+\"\\n\")\n fout.write(\"------\\n\")", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python3 import asyncio import bs4 import itertools import logging import sys import os import zipfile from asyncio import TimeoutError from aiohttp import ClientSession, ClientConnectionError from aiohttp.client_exceptions import ContentTypeError, ServerDisconnectedError from bs4 import BeautifulSoup ROOT_URL = 'https://ulrichsweb.serialssolutions.com/titleDetails/{}' DEFAULT_START_ID = 12515 DEFAULT_END_ID = 835018 DEFAULT_RANGE_1 = range(DEFAULT_START_ID, DEFAULT_END_ID) DEFAULT_RANGE_2 = range(15793473, 15798807) DEFAULT_RANGE_IDS = itertools.chain(DEFAULT_RANGE_1, DEFAULT_RANGE_2) DEFAULT_DIR_HTML = 'data/ulrich/html/' DEFAULT_MAX_ATTEMPTS = 5 DEFAULT_MODE = 'collect' DEFAULT_NUM_THREADS = 4 DEFAULT_SEMAPHORE_LIMIT = 2 DEFAULT_ATTRS = {'bd_Title', 'bd_ISSN', 'bd_Format', 'bd_Frequency', 'bd_Country'} def _find_all_tr_pairs(key: str, title_details, profile_id): try: return title_details.find('div', {'id': key}).find('table', {'class': 'resultsTable'}).find_all('tr') except AttributeError: logging.warning('ID %s (KEY) %s doest not have resultsTable' % (profile_id, key)) def _split_journal_attrs(attrs): if attrs: return [t.text.replace(':', '').strip().split('\n') for t in [k for k in attrs if isinstance(k, bs4.element.Tag)]] return [] def _get_title_history(history_attrs): all_td = [] if history_attrs: for h in history_attrs: all_td.extend(h.find_all('td')) if len(all_td) > 0: return '#'.join([''.join([a.strip() for a in k.text.split('\n')]) for k in all_td if isinstance(k, bs4.element.Tag)]) return '' def _get_pair_key_values(splitted_attrs, prefix: str): tmp_dict = {} for j in splitted_attrs: tmp_dict[prefix + j[0].replace('\t', ' ')] = '#'.join( [k.strip().replace('\t', ' ').replace('#', ' ') for k in j[1:] if k.strip() != '']) return tmp_dict def html2dict(path_zip_file: str): """ Open, reads and converts a zipped html into a dict. :param path_zip_file: path of the zip file :return: a dict where each key is the profile id and the value is its key-value pairs (attrs) """ profile_id = path_zip_file.split('/')[-1].split('.')[0] inner_html_path = 'data/ulrich/html/' + profile_id + '.html' html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read() parsed_data = [profile_id] soupped_html = BeautifulSoup(html_content, 'html.parser') title_details = soupped_html.find('div', {'id': 'resultPane'}) basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer', title_details, profile_id) title_history_attrs = _find_all_tr_pairs('titleHistoryContainer', title_details, profile_id) bd_splitted = _split_journal_attrs(basic_description_attrs) dict_bd = _get_pair_key_values(bd_splitted, 'bd_') title_history = _get_title_history(title_history_attrs) for k in sorted(DEFAULT_ATTRS): parsed_data.append(dict_bd.get(k, '')) parsed_data.append(title_history) return parsed_data def save_tsv_file(parsed_data): """ Save a parsed journal to a tsv file :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes """ result_file.write('\t'.join(parsed_data) + '\n') def save_into_html_file(path_html_file: str, response): """ Receives a response (in text format). Saves the document into a html file. """ html_file = open(path_html_file, 'w') html_file.writelines(response) html_file.close() with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf: zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED) zf.close() os.remove(path_html_file) async def fetch(url, session): """ Fetches the url. Calls the method save_into_html_file with the response as a parameter (in text format). """ try: async with session.get(url) as response: profile_id = url.split('/')[-1] print('COLLECTING %s' % profile_id) for attempt in range(DEFAULT_MAX_ATTEMPTS): try: if response.status == 200: response = await response.text(errors='ignore') save_into_html_file(DEFAULT_DIR_HTML + profile_id + '.html', response) logging.info('COLLECTED: %s' % profile_id) break elif response.status == 500 and attempt == DEFAULT_MAX_ATTEMPTS: logging.info('RESPONSE_ERROR_500: %s' % profile_id) elif response.status == 404: logging.info('RESPONSE_ERROR_404: %s' % profile_id) except ServerDisconnectedError: logging.info('SERVER_DISCONNECTED_ERROR: %s' % profile_id) except TimeoutError: logging.info('TIMEOUT_ERROR: %s' % profile_id) except ContentTypeError: logging.info('CONTENT_TYPE_ERROR: %s' % profile_id) except TimeoutError: logging.info('GENERALIZED_TIMEOUT_ERROR') except ClientConnectionError: logging.info('GENERALIZED_CLIENT_CONNECTION_ERROR') except ServerDisconnectedError: logging.info('GENERALIZED_SERVER_DISCONNECTED_ERROR') except ContentTypeError: logging.info('GENERALIZED_CONTENT_TYPE_ERROR') async def bound_fetch(sem, url, session): """ Limits the collecting task to a semaphore. """ async with sem: await fetch(url, session) async def run(): """ Creates tasks to get the html file with respect to a list composed by htmls. """ sem = asyncio.Semaphore(DEFAULT_SEMAPHORE_LIMIT) tasks = [] async with ClientSession() as session: for u in [ROOT_URL.format(jid) for jid in DEFAULT_RANGE_IDS]: task = asyncio.ensure_future(bound_fetch(sem, u, session)) tasks.append(task) responses = asyncio.gather(*tasks) await responses if __name__ == "__main__": logging.basicConfig(filename='ulrich.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') MODE = sys.argv[1] DIR_HTML = sys.argv[2] if MODE == 'collect': DEFAULT_DIR_HTML = DIR_HTML os.makedirs(DEFAULT_DIR_HTML, exist_ok=True) if len(sys.argv) == 4: start_id = int(sys.argv[3]) DEFAULT_RANGE_IDS = itertools.chain(range(start_id, DEFAULT_END_ID), DEFAULT_RANGE_2) loop = asyncio.get_event_loop() future = asyncio.ensure_future(run()) loop.run_until_complete(future) elif MODE == 'parse': DEFAULT_DIR_HTML = DIR_HTML START = int(sys.argv[3]) END = int(sys.argv[4]) if END > len(os.listdir(DEFAULT_DIR_HTML)): END = len(os.listdir(DEFAULT_DIR_HTML)) htmls = sorted([DEFAULT_DIR_HTML + h for h in os.listdir(DIR_HTML)])[START:END] result_file = open(DEFAULT_DIR_HTML + '../' + str(START) + '.tsv', 'w') result_file.write('\t'.join(['Profile Identifier'] + sorted(DEFAULT_ATTRS) + ['title_history']) + '\n') for i, h in enumerate(sorted(htmls)): print('\r%d / %d' % (i + 1 + START, START + len(htmls)), end='') parsed = html2dict(h) save_tsv_file(parsed) result_file.close()
normal
{ "blob_id": "002f65fd77ce5043d1a0495ed13c15e3b4d2fb76", "index": 7244, "step-1": "<mask token>\n\n\ndef _split_journal_attrs(attrs):\n if attrs:\n return [t.text.replace(':', '').strip().split('\\n') for t in [k for\n k in attrs if isinstance(k, bs4.element.Tag)]]\n return []\n\n\ndef _get_title_history(history_attrs):\n all_td = []\n if history_attrs:\n for h in history_attrs:\n all_td.extend(h.find_all('td'))\n if len(all_td) > 0:\n return '#'.join([''.join([a.strip() for a in k.text.split('\\n')]) for\n k in all_td if isinstance(k, bs4.element.Tag)])\n return ''\n\n\ndef _get_pair_key_values(splitted_attrs, prefix: str):\n tmp_dict = {}\n for j in splitted_attrs:\n tmp_dict[prefix + j[0].replace('\\t', ' ')] = '#'.join([k.strip().\n replace('\\t', ' ').replace('#', ' ') for k in j[1:] if k.strip(\n ) != ''])\n return tmp_dict\n\n\ndef html2dict(path_zip_file: str):\n \"\"\"\n Open, reads and converts a zipped html into a dict.\n :param path_zip_file: path of the zip file\n :return: a dict where each key is the profile id and the value is its key-value pairs (attrs)\n \"\"\"\n profile_id = path_zip_file.split('/')[-1].split('.')[0]\n inner_html_path = 'data/ulrich/html/' + profile_id + '.html'\n html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read()\n parsed_data = [profile_id]\n soupped_html = BeautifulSoup(html_content, 'html.parser')\n title_details = soupped_html.find('div', {'id': 'resultPane'})\n basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer',\n title_details, profile_id)\n title_history_attrs = _find_all_tr_pairs('titleHistoryContainer',\n title_details, profile_id)\n bd_splitted = _split_journal_attrs(basic_description_attrs)\n dict_bd = _get_pair_key_values(bd_splitted, 'bd_')\n title_history = _get_title_history(title_history_attrs)\n for k in sorted(DEFAULT_ATTRS):\n parsed_data.append(dict_bd.get(k, ''))\n parsed_data.append(title_history)\n return parsed_data\n\n\ndef save_tsv_file(parsed_data):\n \"\"\"\n Save a parsed journal to a tsv file\n :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes\n \"\"\"\n result_file.write('\\t'.join(parsed_data) + '\\n')\n\n\ndef save_into_html_file(path_html_file: str, response):\n \"\"\"\n Receives a response (in text format).\n Saves the document into a html file.\n \"\"\"\n html_file = open(path_html_file, 'w')\n html_file.writelines(response)\n html_file.close()\n with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf:\n zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED)\n zf.close()\n os.remove(path_html_file)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef _find_all_tr_pairs(key: str, title_details, profile_id):\n try:\n return title_details.find('div', {'id': key}).find('table', {\n 'class': 'resultsTable'}).find_all('tr')\n except AttributeError:\n logging.warning('ID %s (KEY) %s doest not have resultsTable' % (\n profile_id, key))\n\n\ndef _split_journal_attrs(attrs):\n if attrs:\n return [t.text.replace(':', '').strip().split('\\n') for t in [k for\n k in attrs if isinstance(k, bs4.element.Tag)]]\n return []\n\n\ndef _get_title_history(history_attrs):\n all_td = []\n if history_attrs:\n for h in history_attrs:\n all_td.extend(h.find_all('td'))\n if len(all_td) > 0:\n return '#'.join([''.join([a.strip() for a in k.text.split('\\n')]) for\n k in all_td if isinstance(k, bs4.element.Tag)])\n return ''\n\n\ndef _get_pair_key_values(splitted_attrs, prefix: str):\n tmp_dict = {}\n for j in splitted_attrs:\n tmp_dict[prefix + j[0].replace('\\t', ' ')] = '#'.join([k.strip().\n replace('\\t', ' ').replace('#', ' ') for k in j[1:] if k.strip(\n ) != ''])\n return tmp_dict\n\n\ndef html2dict(path_zip_file: str):\n \"\"\"\n Open, reads and converts a zipped html into a dict.\n :param path_zip_file: path of the zip file\n :return: a dict where each key is the profile id and the value is its key-value pairs (attrs)\n \"\"\"\n profile_id = path_zip_file.split('/')[-1].split('.')[0]\n inner_html_path = 'data/ulrich/html/' + profile_id + '.html'\n html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read()\n parsed_data = [profile_id]\n soupped_html = BeautifulSoup(html_content, 'html.parser')\n title_details = soupped_html.find('div', {'id': 'resultPane'})\n basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer',\n title_details, profile_id)\n title_history_attrs = _find_all_tr_pairs('titleHistoryContainer',\n title_details, profile_id)\n bd_splitted = _split_journal_attrs(basic_description_attrs)\n dict_bd = _get_pair_key_values(bd_splitted, 'bd_')\n title_history = _get_title_history(title_history_attrs)\n for k in sorted(DEFAULT_ATTRS):\n parsed_data.append(dict_bd.get(k, ''))\n parsed_data.append(title_history)\n return parsed_data\n\n\ndef save_tsv_file(parsed_data):\n \"\"\"\n Save a parsed journal to a tsv file\n :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes\n \"\"\"\n result_file.write('\\t'.join(parsed_data) + '\\n')\n\n\ndef save_into_html_file(path_html_file: str, response):\n \"\"\"\n Receives a response (in text format).\n Saves the document into a html file.\n \"\"\"\n html_file = open(path_html_file, 'w')\n html_file.writelines(response)\n html_file.close()\n with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf:\n zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED)\n zf.close()\n os.remove(path_html_file)\n\n\nasync def fetch(url, session):\n \"\"\"\n Fetches the url.\n Calls the method save_into_html_file with the response as a parameter (in text format).\n \"\"\"\n try:\n async with session.get(url) as response:\n profile_id = url.split('/')[-1]\n print('COLLECTING %s' % profile_id)\n for attempt in range(DEFAULT_MAX_ATTEMPTS):\n try:\n if response.status == 200:\n response = await response.text(errors='ignore')\n save_into_html_file(DEFAULT_DIR_HTML + profile_id +\n '.html', response)\n logging.info('COLLECTED: %s' % profile_id)\n break\n elif response.status == 500 and attempt == DEFAULT_MAX_ATTEMPTS:\n logging.info('RESPONSE_ERROR_500: %s' % profile_id)\n elif response.status == 404:\n logging.info('RESPONSE_ERROR_404: %s' % profile_id)\n except ServerDisconnectedError:\n logging.info('SERVER_DISCONNECTED_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('TIMEOUT_ERROR: %s' % profile_id)\n except ContentTypeError:\n logging.info('CONTENT_TYPE_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('GENERALIZED_TIMEOUT_ERROR')\n except ClientConnectionError:\n logging.info('GENERALIZED_CLIENT_CONNECTION_ERROR')\n except ServerDisconnectedError:\n logging.info('GENERALIZED_SERVER_DISCONNECTED_ERROR')\n except ContentTypeError:\n logging.info('GENERALIZED_CONTENT_TYPE_ERROR')\n\n\nasync def bound_fetch(sem, url, session):\n \"\"\"\n Limits the collecting task to a semaphore.\n \"\"\"\n async with sem:\n await fetch(url, session)\n\n\nasync def run():\n \"\"\"\n Creates tasks to get the html file with respect to a list composed by htmls.\n \"\"\"\n sem = asyncio.Semaphore(DEFAULT_SEMAPHORE_LIMIT)\n tasks = []\n async with ClientSession() as session:\n for u in [ROOT_URL.format(jid) for jid in DEFAULT_RANGE_IDS]:\n task = asyncio.ensure_future(bound_fetch(sem, u, session))\n tasks.append(task)\n responses = asyncio.gather(*tasks)\n await responses\n\n\nif __name__ == '__main__':\n logging.basicConfig(filename='ulrich.log', level=logging.INFO, format=\n '%(asctime)s - %(levelname)s - %(message)s')\n MODE = sys.argv[1]\n DIR_HTML = sys.argv[2]\n if MODE == 'collect':\n DEFAULT_DIR_HTML = DIR_HTML\n os.makedirs(DEFAULT_DIR_HTML, exist_ok=True)\n if len(sys.argv) == 4:\n start_id = int(sys.argv[3])\n DEFAULT_RANGE_IDS = itertools.chain(range(start_id,\n DEFAULT_END_ID), DEFAULT_RANGE_2)\n loop = asyncio.get_event_loop()\n future = asyncio.ensure_future(run())\n loop.run_until_complete(future)\n elif MODE == 'parse':\n DEFAULT_DIR_HTML = DIR_HTML\n START = int(sys.argv[3])\n END = int(sys.argv[4])\n if END > len(os.listdir(DEFAULT_DIR_HTML)):\n END = len(os.listdir(DEFAULT_DIR_HTML))\n htmls = sorted([(DEFAULT_DIR_HTML + h) for h in os.listdir(DIR_HTML)])[\n START:END]\n result_file = open(DEFAULT_DIR_HTML + '../' + str(START) + '.tsv', 'w')\n result_file.write('\\t'.join(['Profile Identifier'] + sorted(\n DEFAULT_ATTRS) + ['title_history']) + '\\n')\n for i, h in enumerate(sorted(htmls)):\n print('\\r%d / %d' % (i + 1 + START, START + len(htmls)), end='')\n parsed = html2dict(h)\n save_tsv_file(parsed)\n result_file.close()\n", "step-3": "<mask token>\nROOT_URL = 'https://ulrichsweb.serialssolutions.com/titleDetails/{}'\nDEFAULT_START_ID = 12515\nDEFAULT_END_ID = 835018\nDEFAULT_RANGE_1 = range(DEFAULT_START_ID, DEFAULT_END_ID)\nDEFAULT_RANGE_2 = range(15793473, 15798807)\nDEFAULT_RANGE_IDS = itertools.chain(DEFAULT_RANGE_1, DEFAULT_RANGE_2)\nDEFAULT_DIR_HTML = 'data/ulrich/html/'\nDEFAULT_MAX_ATTEMPTS = 5\nDEFAULT_MODE = 'collect'\nDEFAULT_NUM_THREADS = 4\nDEFAULT_SEMAPHORE_LIMIT = 2\nDEFAULT_ATTRS = {'bd_Title', 'bd_ISSN', 'bd_Format', 'bd_Frequency',\n 'bd_Country'}\n\n\ndef _find_all_tr_pairs(key: str, title_details, profile_id):\n try:\n return title_details.find('div', {'id': key}).find('table', {\n 'class': 'resultsTable'}).find_all('tr')\n except AttributeError:\n logging.warning('ID %s (KEY) %s doest not have resultsTable' % (\n profile_id, key))\n\n\ndef _split_journal_attrs(attrs):\n if attrs:\n return [t.text.replace(':', '').strip().split('\\n') for t in [k for\n k in attrs if isinstance(k, bs4.element.Tag)]]\n return []\n\n\ndef _get_title_history(history_attrs):\n all_td = []\n if history_attrs:\n for h in history_attrs:\n all_td.extend(h.find_all('td'))\n if len(all_td) > 0:\n return '#'.join([''.join([a.strip() for a in k.text.split('\\n')]) for\n k in all_td if isinstance(k, bs4.element.Tag)])\n return ''\n\n\ndef _get_pair_key_values(splitted_attrs, prefix: str):\n tmp_dict = {}\n for j in splitted_attrs:\n tmp_dict[prefix + j[0].replace('\\t', ' ')] = '#'.join([k.strip().\n replace('\\t', ' ').replace('#', ' ') for k in j[1:] if k.strip(\n ) != ''])\n return tmp_dict\n\n\ndef html2dict(path_zip_file: str):\n \"\"\"\n Open, reads and converts a zipped html into a dict.\n :param path_zip_file: path of the zip file\n :return: a dict where each key is the profile id and the value is its key-value pairs (attrs)\n \"\"\"\n profile_id = path_zip_file.split('/')[-1].split('.')[0]\n inner_html_path = 'data/ulrich/html/' + profile_id + '.html'\n html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read()\n parsed_data = [profile_id]\n soupped_html = BeautifulSoup(html_content, 'html.parser')\n title_details = soupped_html.find('div', {'id': 'resultPane'})\n basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer',\n title_details, profile_id)\n title_history_attrs = _find_all_tr_pairs('titleHistoryContainer',\n title_details, profile_id)\n bd_splitted = _split_journal_attrs(basic_description_attrs)\n dict_bd = _get_pair_key_values(bd_splitted, 'bd_')\n title_history = _get_title_history(title_history_attrs)\n for k in sorted(DEFAULT_ATTRS):\n parsed_data.append(dict_bd.get(k, ''))\n parsed_data.append(title_history)\n return parsed_data\n\n\ndef save_tsv_file(parsed_data):\n \"\"\"\n Save a parsed journal to a tsv file\n :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes\n \"\"\"\n result_file.write('\\t'.join(parsed_data) + '\\n')\n\n\ndef save_into_html_file(path_html_file: str, response):\n \"\"\"\n Receives a response (in text format).\n Saves the document into a html file.\n \"\"\"\n html_file = open(path_html_file, 'w')\n html_file.writelines(response)\n html_file.close()\n with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf:\n zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED)\n zf.close()\n os.remove(path_html_file)\n\n\nasync def fetch(url, session):\n \"\"\"\n Fetches the url.\n Calls the method save_into_html_file with the response as a parameter (in text format).\n \"\"\"\n try:\n async with session.get(url) as response:\n profile_id = url.split('/')[-1]\n print('COLLECTING %s' % profile_id)\n for attempt in range(DEFAULT_MAX_ATTEMPTS):\n try:\n if response.status == 200:\n response = await response.text(errors='ignore')\n save_into_html_file(DEFAULT_DIR_HTML + profile_id +\n '.html', response)\n logging.info('COLLECTED: %s' % profile_id)\n break\n elif response.status == 500 and attempt == DEFAULT_MAX_ATTEMPTS:\n logging.info('RESPONSE_ERROR_500: %s' % profile_id)\n elif response.status == 404:\n logging.info('RESPONSE_ERROR_404: %s' % profile_id)\n except ServerDisconnectedError:\n logging.info('SERVER_DISCONNECTED_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('TIMEOUT_ERROR: %s' % profile_id)\n except ContentTypeError:\n logging.info('CONTENT_TYPE_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('GENERALIZED_TIMEOUT_ERROR')\n except ClientConnectionError:\n logging.info('GENERALIZED_CLIENT_CONNECTION_ERROR')\n except ServerDisconnectedError:\n logging.info('GENERALIZED_SERVER_DISCONNECTED_ERROR')\n except ContentTypeError:\n logging.info('GENERALIZED_CONTENT_TYPE_ERROR')\n\n\nasync def bound_fetch(sem, url, session):\n \"\"\"\n Limits the collecting task to a semaphore.\n \"\"\"\n async with sem:\n await fetch(url, session)\n\n\nasync def run():\n \"\"\"\n Creates tasks to get the html file with respect to a list composed by htmls.\n \"\"\"\n sem = asyncio.Semaphore(DEFAULT_SEMAPHORE_LIMIT)\n tasks = []\n async with ClientSession() as session:\n for u in [ROOT_URL.format(jid) for jid in DEFAULT_RANGE_IDS]:\n task = asyncio.ensure_future(bound_fetch(sem, u, session))\n tasks.append(task)\n responses = asyncio.gather(*tasks)\n await responses\n\n\nif __name__ == '__main__':\n logging.basicConfig(filename='ulrich.log', level=logging.INFO, format=\n '%(asctime)s - %(levelname)s - %(message)s')\n MODE = sys.argv[1]\n DIR_HTML = sys.argv[2]\n if MODE == 'collect':\n DEFAULT_DIR_HTML = DIR_HTML\n os.makedirs(DEFAULT_DIR_HTML, exist_ok=True)\n if len(sys.argv) == 4:\n start_id = int(sys.argv[3])\n DEFAULT_RANGE_IDS = itertools.chain(range(start_id,\n DEFAULT_END_ID), DEFAULT_RANGE_2)\n loop = asyncio.get_event_loop()\n future = asyncio.ensure_future(run())\n loop.run_until_complete(future)\n elif MODE == 'parse':\n DEFAULT_DIR_HTML = DIR_HTML\n START = int(sys.argv[3])\n END = int(sys.argv[4])\n if END > len(os.listdir(DEFAULT_DIR_HTML)):\n END = len(os.listdir(DEFAULT_DIR_HTML))\n htmls = sorted([(DEFAULT_DIR_HTML + h) for h in os.listdir(DIR_HTML)])[\n START:END]\n result_file = open(DEFAULT_DIR_HTML + '../' + str(START) + '.tsv', 'w')\n result_file.write('\\t'.join(['Profile Identifier'] + sorted(\n DEFAULT_ATTRS) + ['title_history']) + '\\n')\n for i, h in enumerate(sorted(htmls)):\n print('\\r%d / %d' % (i + 1 + START, START + len(htmls)), end='')\n parsed = html2dict(h)\n save_tsv_file(parsed)\n result_file.close()\n", "step-4": "import asyncio\nimport bs4\nimport itertools\nimport logging\nimport sys\nimport os\nimport zipfile\nfrom asyncio import TimeoutError\nfrom aiohttp import ClientSession, ClientConnectionError\nfrom aiohttp.client_exceptions import ContentTypeError, ServerDisconnectedError\nfrom bs4 import BeautifulSoup\nROOT_URL = 'https://ulrichsweb.serialssolutions.com/titleDetails/{}'\nDEFAULT_START_ID = 12515\nDEFAULT_END_ID = 835018\nDEFAULT_RANGE_1 = range(DEFAULT_START_ID, DEFAULT_END_ID)\nDEFAULT_RANGE_2 = range(15793473, 15798807)\nDEFAULT_RANGE_IDS = itertools.chain(DEFAULT_RANGE_1, DEFAULT_RANGE_2)\nDEFAULT_DIR_HTML = 'data/ulrich/html/'\nDEFAULT_MAX_ATTEMPTS = 5\nDEFAULT_MODE = 'collect'\nDEFAULT_NUM_THREADS = 4\nDEFAULT_SEMAPHORE_LIMIT = 2\nDEFAULT_ATTRS = {'bd_Title', 'bd_ISSN', 'bd_Format', 'bd_Frequency',\n 'bd_Country'}\n\n\ndef _find_all_tr_pairs(key: str, title_details, profile_id):\n try:\n return title_details.find('div', {'id': key}).find('table', {\n 'class': 'resultsTable'}).find_all('tr')\n except AttributeError:\n logging.warning('ID %s (KEY) %s doest not have resultsTable' % (\n profile_id, key))\n\n\ndef _split_journal_attrs(attrs):\n if attrs:\n return [t.text.replace(':', '').strip().split('\\n') for t in [k for\n k in attrs if isinstance(k, bs4.element.Tag)]]\n return []\n\n\ndef _get_title_history(history_attrs):\n all_td = []\n if history_attrs:\n for h in history_attrs:\n all_td.extend(h.find_all('td'))\n if len(all_td) > 0:\n return '#'.join([''.join([a.strip() for a in k.text.split('\\n')]) for\n k in all_td if isinstance(k, bs4.element.Tag)])\n return ''\n\n\ndef _get_pair_key_values(splitted_attrs, prefix: str):\n tmp_dict = {}\n for j in splitted_attrs:\n tmp_dict[prefix + j[0].replace('\\t', ' ')] = '#'.join([k.strip().\n replace('\\t', ' ').replace('#', ' ') for k in j[1:] if k.strip(\n ) != ''])\n return tmp_dict\n\n\ndef html2dict(path_zip_file: str):\n \"\"\"\n Open, reads and converts a zipped html into a dict.\n :param path_zip_file: path of the zip file\n :return: a dict where each key is the profile id and the value is its key-value pairs (attrs)\n \"\"\"\n profile_id = path_zip_file.split('/')[-1].split('.')[0]\n inner_html_path = 'data/ulrich/html/' + profile_id + '.html'\n html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read()\n parsed_data = [profile_id]\n soupped_html = BeautifulSoup(html_content, 'html.parser')\n title_details = soupped_html.find('div', {'id': 'resultPane'})\n basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer',\n title_details, profile_id)\n title_history_attrs = _find_all_tr_pairs('titleHistoryContainer',\n title_details, profile_id)\n bd_splitted = _split_journal_attrs(basic_description_attrs)\n dict_bd = _get_pair_key_values(bd_splitted, 'bd_')\n title_history = _get_title_history(title_history_attrs)\n for k in sorted(DEFAULT_ATTRS):\n parsed_data.append(dict_bd.get(k, ''))\n parsed_data.append(title_history)\n return parsed_data\n\n\ndef save_tsv_file(parsed_data):\n \"\"\"\n Save a parsed journal to a tsv file\n :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes\n \"\"\"\n result_file.write('\\t'.join(parsed_data) + '\\n')\n\n\ndef save_into_html_file(path_html_file: str, response):\n \"\"\"\n Receives a response (in text format).\n Saves the document into a html file.\n \"\"\"\n html_file = open(path_html_file, 'w')\n html_file.writelines(response)\n html_file.close()\n with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf:\n zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED)\n zf.close()\n os.remove(path_html_file)\n\n\nasync def fetch(url, session):\n \"\"\"\n Fetches the url.\n Calls the method save_into_html_file with the response as a parameter (in text format).\n \"\"\"\n try:\n async with session.get(url) as response:\n profile_id = url.split('/')[-1]\n print('COLLECTING %s' % profile_id)\n for attempt in range(DEFAULT_MAX_ATTEMPTS):\n try:\n if response.status == 200:\n response = await response.text(errors='ignore')\n save_into_html_file(DEFAULT_DIR_HTML + profile_id +\n '.html', response)\n logging.info('COLLECTED: %s' % profile_id)\n break\n elif response.status == 500 and attempt == DEFAULT_MAX_ATTEMPTS:\n logging.info('RESPONSE_ERROR_500: %s' % profile_id)\n elif response.status == 404:\n logging.info('RESPONSE_ERROR_404: %s' % profile_id)\n except ServerDisconnectedError:\n logging.info('SERVER_DISCONNECTED_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('TIMEOUT_ERROR: %s' % profile_id)\n except ContentTypeError:\n logging.info('CONTENT_TYPE_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('GENERALIZED_TIMEOUT_ERROR')\n except ClientConnectionError:\n logging.info('GENERALIZED_CLIENT_CONNECTION_ERROR')\n except ServerDisconnectedError:\n logging.info('GENERALIZED_SERVER_DISCONNECTED_ERROR')\n except ContentTypeError:\n logging.info('GENERALIZED_CONTENT_TYPE_ERROR')\n\n\nasync def bound_fetch(sem, url, session):\n \"\"\"\n Limits the collecting task to a semaphore.\n \"\"\"\n async with sem:\n await fetch(url, session)\n\n\nasync def run():\n \"\"\"\n Creates tasks to get the html file with respect to a list composed by htmls.\n \"\"\"\n sem = asyncio.Semaphore(DEFAULT_SEMAPHORE_LIMIT)\n tasks = []\n async with ClientSession() as session:\n for u in [ROOT_URL.format(jid) for jid in DEFAULT_RANGE_IDS]:\n task = asyncio.ensure_future(bound_fetch(sem, u, session))\n tasks.append(task)\n responses = asyncio.gather(*tasks)\n await responses\n\n\nif __name__ == '__main__':\n logging.basicConfig(filename='ulrich.log', level=logging.INFO, format=\n '%(asctime)s - %(levelname)s - %(message)s')\n MODE = sys.argv[1]\n DIR_HTML = sys.argv[2]\n if MODE == 'collect':\n DEFAULT_DIR_HTML = DIR_HTML\n os.makedirs(DEFAULT_DIR_HTML, exist_ok=True)\n if len(sys.argv) == 4:\n start_id = int(sys.argv[3])\n DEFAULT_RANGE_IDS = itertools.chain(range(start_id,\n DEFAULT_END_ID), DEFAULT_RANGE_2)\n loop = asyncio.get_event_loop()\n future = asyncio.ensure_future(run())\n loop.run_until_complete(future)\n elif MODE == 'parse':\n DEFAULT_DIR_HTML = DIR_HTML\n START = int(sys.argv[3])\n END = int(sys.argv[4])\n if END > len(os.listdir(DEFAULT_DIR_HTML)):\n END = len(os.listdir(DEFAULT_DIR_HTML))\n htmls = sorted([(DEFAULT_DIR_HTML + h) for h in os.listdir(DIR_HTML)])[\n START:END]\n result_file = open(DEFAULT_DIR_HTML + '../' + str(START) + '.tsv', 'w')\n result_file.write('\\t'.join(['Profile Identifier'] + sorted(\n DEFAULT_ATTRS) + ['title_history']) + '\\n')\n for i, h in enumerate(sorted(htmls)):\n print('\\r%d / %d' % (i + 1 + START, START + len(htmls)), end='')\n parsed = html2dict(h)\n save_tsv_file(parsed)\n result_file.close()\n", "step-5": "#!/usr/bin/env python3\nimport asyncio\n\nimport bs4\nimport itertools\nimport logging\nimport sys\nimport os\nimport zipfile\n\nfrom asyncio import TimeoutError\nfrom aiohttp import ClientSession, ClientConnectionError\nfrom aiohttp.client_exceptions import ContentTypeError, ServerDisconnectedError\nfrom bs4 import BeautifulSoup\n\nROOT_URL = 'https://ulrichsweb.serialssolutions.com/titleDetails/{}'\n\nDEFAULT_START_ID = 12515\nDEFAULT_END_ID = 835018\nDEFAULT_RANGE_1 = range(DEFAULT_START_ID, DEFAULT_END_ID)\nDEFAULT_RANGE_2 = range(15793473, 15798807)\nDEFAULT_RANGE_IDS = itertools.chain(DEFAULT_RANGE_1, DEFAULT_RANGE_2)\n\nDEFAULT_DIR_HTML = 'data/ulrich/html/'\n\nDEFAULT_MAX_ATTEMPTS = 5\nDEFAULT_MODE = 'collect'\nDEFAULT_NUM_THREADS = 4\nDEFAULT_SEMAPHORE_LIMIT = 2\n\nDEFAULT_ATTRS = {'bd_Title', 'bd_ISSN', 'bd_Format', 'bd_Frequency', 'bd_Country'}\n\n\ndef _find_all_tr_pairs(key: str, title_details, profile_id):\n try:\n return title_details.find('div', {'id': key}).find('table', {'class': 'resultsTable'}).find_all('tr')\n except AttributeError:\n logging.warning('ID %s (KEY) %s doest not have resultsTable' % (profile_id, key))\n\n\ndef _split_journal_attrs(attrs):\n if attrs:\n return [t.text.replace(':', '').strip().split('\\n') for t in\n [k for k in attrs if isinstance(k, bs4.element.Tag)]]\n return []\n\n\ndef _get_title_history(history_attrs):\n all_td = []\n if history_attrs:\n for h in history_attrs:\n all_td.extend(h.find_all('td'))\n if len(all_td) > 0:\n return '#'.join([''.join([a.strip() for a in k.text.split('\\n')]) for k in all_td if isinstance(k, bs4.element.Tag)])\n return ''\n\n\ndef _get_pair_key_values(splitted_attrs, prefix: str):\n tmp_dict = {}\n for j in splitted_attrs:\n tmp_dict[prefix + j[0].replace('\\t', ' ')] = '#'.join(\n [k.strip().replace('\\t', ' ').replace('#', ' ') for k in j[1:] if k.strip() != ''])\n return tmp_dict\n\n\ndef html2dict(path_zip_file: str):\n \"\"\"\n Open, reads and converts a zipped html into a dict.\n :param path_zip_file: path of the zip file\n :return: a dict where each key is the profile id and the value is its key-value pairs (attrs)\n \"\"\"\n profile_id = path_zip_file.split('/')[-1].split('.')[0]\n inner_html_path = 'data/ulrich/html/' + profile_id + '.html'\n html_content = zipfile.ZipFile(path_zip_file).open(inner_html_path).read()\n\n parsed_data = [profile_id]\n\n soupped_html = BeautifulSoup(html_content, 'html.parser')\n\n title_details = soupped_html.find('div', {'id': 'resultPane'})\n basic_description_attrs = _find_all_tr_pairs('basicDescriptionContainer', title_details, profile_id)\n title_history_attrs = _find_all_tr_pairs('titleHistoryContainer', title_details, profile_id)\n bd_splitted = _split_journal_attrs(basic_description_attrs)\n dict_bd = _get_pair_key_values(bd_splitted, 'bd_')\n title_history = _get_title_history(title_history_attrs)\n\n for k in sorted(DEFAULT_ATTRS):\n parsed_data.append(dict_bd.get(k, ''))\n\n parsed_data.append(title_history)\n\n return parsed_data\n\n\ndef save_tsv_file(parsed_data):\n \"\"\"\n Save a parsed journal to a tsv file\n :param parsed_data: a list of dictionaries where the only main key is a profile_id and its value is the pairs of journal's attributes\n \"\"\"\n result_file.write('\\t'.join(parsed_data) + '\\n')\n\n\ndef save_into_html_file(path_html_file: str, response):\n \"\"\"\n Receives a response (in text format).\n Saves the document into a html file.\n \"\"\"\n html_file = open(path_html_file, 'w')\n html_file.writelines(response)\n html_file.close()\n\n with zipfile.ZipFile(path_html_file.replace('.html', '.zip'), 'w') as zf:\n zf.write(path_html_file, compress_type=zipfile.ZIP_DEFLATED)\n zf.close()\n os.remove(path_html_file)\n\n\nasync def fetch(url, session):\n \"\"\"\n Fetches the url.\n Calls the method save_into_html_file with the response as a parameter (in text format).\n \"\"\"\n try:\n async with session.get(url) as response:\n profile_id = url.split('/')[-1]\n print('COLLECTING %s' % profile_id)\n for attempt in range(DEFAULT_MAX_ATTEMPTS):\n try:\n if response.status == 200:\n response = await response.text(errors='ignore')\n save_into_html_file(DEFAULT_DIR_HTML + profile_id + '.html', response)\n logging.info('COLLECTED: %s' % profile_id)\n break\n elif response.status == 500 and attempt == DEFAULT_MAX_ATTEMPTS:\n logging.info('RESPONSE_ERROR_500: %s' % profile_id)\n elif response.status == 404:\n logging.info('RESPONSE_ERROR_404: %s' % profile_id)\n except ServerDisconnectedError:\n logging.info('SERVER_DISCONNECTED_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('TIMEOUT_ERROR: %s' % profile_id)\n except ContentTypeError:\n logging.info('CONTENT_TYPE_ERROR: %s' % profile_id)\n except TimeoutError:\n logging.info('GENERALIZED_TIMEOUT_ERROR')\n except ClientConnectionError:\n logging.info('GENERALIZED_CLIENT_CONNECTION_ERROR')\n except ServerDisconnectedError:\n logging.info('GENERALIZED_SERVER_DISCONNECTED_ERROR')\n except ContentTypeError:\n logging.info('GENERALIZED_CONTENT_TYPE_ERROR')\n\n\nasync def bound_fetch(sem, url, session):\n \"\"\"\n Limits the collecting task to a semaphore.\n \"\"\"\n async with sem:\n await fetch(url, session)\n\n\nasync def run():\n \"\"\"\n Creates tasks to get the html file with respect to a list composed by htmls.\n \"\"\"\n sem = asyncio.Semaphore(DEFAULT_SEMAPHORE_LIMIT)\n tasks = []\n\n async with ClientSession() as session:\n for u in [ROOT_URL.format(jid) for jid in DEFAULT_RANGE_IDS]:\n task = asyncio.ensure_future(bound_fetch(sem, u, session))\n tasks.append(task)\n responses = asyncio.gather(*tasks)\n await responses\n\n\nif __name__ == \"__main__\":\n logging.basicConfig(filename='ulrich.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')\n\n MODE = sys.argv[1]\n DIR_HTML = sys.argv[2]\n\n if MODE == 'collect':\n DEFAULT_DIR_HTML = DIR_HTML\n os.makedirs(DEFAULT_DIR_HTML, exist_ok=True)\n\n if len(sys.argv) == 4:\n start_id = int(sys.argv[3])\n DEFAULT_RANGE_IDS = itertools.chain(range(start_id, DEFAULT_END_ID), DEFAULT_RANGE_2)\n\n loop = asyncio.get_event_loop()\n future = asyncio.ensure_future(run())\n loop.run_until_complete(future)\n elif MODE == 'parse':\n DEFAULT_DIR_HTML = DIR_HTML\n\n START = int(sys.argv[3])\n END = int(sys.argv[4])\n\n if END > len(os.listdir(DEFAULT_DIR_HTML)):\n END = len(os.listdir(DEFAULT_DIR_HTML))\n\n htmls = sorted([DEFAULT_DIR_HTML + h for h in os.listdir(DIR_HTML)])[START:END]\n\n result_file = open(DEFAULT_DIR_HTML + '../' + str(START) + '.tsv', 'w')\n result_file.write('\\t'.join(['Profile Identifier'] + sorted(DEFAULT_ATTRS) + ['title_history']) + '\\n')\n\n for i, h in enumerate(sorted(htmls)):\n print('\\r%d / %d' % (i + 1 + START, START + len(htmls)), end='')\n parsed = html2dict(h)\n save_tsv_file(parsed)\n result_file.close()\n", "step-ids": [ 6, 8, 9, 10, 11 ] }
[ 6, 8, 9, 10, 11 ]
from rest_framework import permissions class AdminUrlUserPermission(permissions.BasePermission): def has_permission(self, request, view): return (request.user.is_authenticated and (request.user.role == 'admin' or request.user.is_superuser)) def has_object_permission(self, request, view, obj): return (request.user.role == 'admin' or request.user.is_superuser) class ReadOnly(permissions.BasePermission): def has_permission(self, request, view): return request.method in permissions.SAFE_METHODS class AuthorModeratorAdminOrReadOnly(permissions.BasePermission): def has_permission(self, request, view): is_safe = request.method in permissions.SAFE_METHODS is_auth = request.user.is_authenticated return is_safe or is_auth def has_object_permission(self, request, view, obj): is_safe = request.method in permissions.SAFE_METHODS is_author = obj.author == request.user is_privileged = None if request.user.is_authenticated: is_privileged = request.user.role in ('moderator', 'admin') return is_author or is_safe or is_privileged
normal
{ "blob_id": "4549f26cf8051535f9d3486d111fc7afe7514dea", "index": 5674, "step-1": "<mask token>\n\n\nclass AdminUrlUserPermission(permissions.BasePermission):\n <mask token>\n <mask token>\n\n\nclass ReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.method in permissions.SAFE_METHODS\n\n\nclass AuthorModeratorAdminOrReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n is_safe = request.method in permissions.SAFE_METHODS\n is_auth = request.user.is_authenticated\n return is_safe or is_auth\n\n def has_object_permission(self, request, view, obj):\n is_safe = request.method in permissions.SAFE_METHODS\n is_author = obj.author == request.user\n is_privileged = None\n if request.user.is_authenticated:\n is_privileged = request.user.role in ('moderator', 'admin')\n return is_author or is_safe or is_privileged\n", "step-2": "<mask token>\n\n\nclass AdminUrlUserPermission(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.user.is_authenticated and (request.user.role ==\n 'admin' or request.user.is_superuser)\n <mask token>\n\n\nclass ReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.method in permissions.SAFE_METHODS\n\n\nclass AuthorModeratorAdminOrReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n is_safe = request.method in permissions.SAFE_METHODS\n is_auth = request.user.is_authenticated\n return is_safe or is_auth\n\n def has_object_permission(self, request, view, obj):\n is_safe = request.method in permissions.SAFE_METHODS\n is_author = obj.author == request.user\n is_privileged = None\n if request.user.is_authenticated:\n is_privileged = request.user.role in ('moderator', 'admin')\n return is_author or is_safe or is_privileged\n", "step-3": "<mask token>\n\n\nclass AdminUrlUserPermission(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.user.is_authenticated and (request.user.role ==\n 'admin' or request.user.is_superuser)\n\n def has_object_permission(self, request, view, obj):\n return request.user.role == 'admin' or request.user.is_superuser\n\n\nclass ReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.method in permissions.SAFE_METHODS\n\n\nclass AuthorModeratorAdminOrReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n is_safe = request.method in permissions.SAFE_METHODS\n is_auth = request.user.is_authenticated\n return is_safe or is_auth\n\n def has_object_permission(self, request, view, obj):\n is_safe = request.method in permissions.SAFE_METHODS\n is_author = obj.author == request.user\n is_privileged = None\n if request.user.is_authenticated:\n is_privileged = request.user.role in ('moderator', 'admin')\n return is_author or is_safe or is_privileged\n", "step-4": "from rest_framework import permissions\n\n\nclass AdminUrlUserPermission(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.user.is_authenticated and (request.user.role ==\n 'admin' or request.user.is_superuser)\n\n def has_object_permission(self, request, view, obj):\n return request.user.role == 'admin' or request.user.is_superuser\n\n\nclass ReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n return request.method in permissions.SAFE_METHODS\n\n\nclass AuthorModeratorAdminOrReadOnly(permissions.BasePermission):\n\n def has_permission(self, request, view):\n is_safe = request.method in permissions.SAFE_METHODS\n is_auth = request.user.is_authenticated\n return is_safe or is_auth\n\n def has_object_permission(self, request, view, obj):\n is_safe = request.method in permissions.SAFE_METHODS\n is_author = obj.author == request.user\n is_privileged = None\n if request.user.is_authenticated:\n is_privileged = request.user.role in ('moderator', 'admin')\n return is_author or is_safe or is_privileged\n", "step-5": "from rest_framework import permissions\n\n\nclass AdminUrlUserPermission(permissions.BasePermission):\n def has_permission(self, request, view):\n return (request.user.is_authenticated\n and (request.user.role == 'admin'\n or request.user.is_superuser))\n\n def has_object_permission(self, request, view, obj):\n return (request.user.role == 'admin'\n or request.user.is_superuser)\n\n\nclass ReadOnly(permissions.BasePermission):\n def has_permission(self, request, view):\n return request.method in permissions.SAFE_METHODS\n\n\nclass AuthorModeratorAdminOrReadOnly(permissions.BasePermission):\n def has_permission(self, request, view):\n is_safe = request.method in permissions.SAFE_METHODS\n is_auth = request.user.is_authenticated\n return is_safe or is_auth\n\n def has_object_permission(self, request, view, obj):\n is_safe = request.method in permissions.SAFE_METHODS\n is_author = obj.author == request.user\n is_privileged = None\n if request.user.is_authenticated:\n is_privileged = request.user.role in ('moderator', 'admin')\n return is_author or is_safe or is_privileged\n", "step-ids": [ 6, 7, 8, 9, 10 ] }
[ 6, 7, 8, 9, 10 ]
import pandas as pd import matplotlib.pyplot as plt from netCDF4 import Dataset from cftime import num2date import os import numpy as np from datetime import datetime, timedelta, date def plot_temperatures_by_country(values, country, start, end): """ Returns a plot for temperature values for a country from a start point to an end point """ filtered = values.loc[(values['Country'] == country) & (values['dt'] >= start) & (values['dt'] <= end)] # x axis values x1 = filtered['dt'] # corresponding y axis values y1 = filtered['AverageTemperature'] # plotting the points plt.plot(x1, y1, label = "line 1") filtered = values.loc[(values['Country'] == country) & (values['dt'] >= '1973-01-01') & (values['dt'] <= '1974-01-01')] # x axis values x2 = filtered['dt'] # corresponding y axis values y2 = filtered['AverageTemperature'] # plotting the points plt.plot(x2, y2, label="line 2") # naming the x axis plt.xlabel('x - axis - date') # naming the y axis plt.ylabel('y - axis - temperature') plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country) # function to show the plot plt.show() def temperatures_by_city_till2013(): """ Info for dataset, temperatures by city part 1 - from 1743 to 2013 """ # Columns: dt,AverageTemperature,AverageTemperatureUncertainty,City,Country,Latitude,Longitude temperatures = pd.read_csv("GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv") # 8 599 212 rows print(len(temperatures)) countries = temperatures['Country'].unique() print(len(countries)) print(sorted(countries)) def temperatures_by_country_till2013(): """ Info for dataset, temperatures by country part 1 - from 1743 to 2013 """ # Columns: dt, AverageTemperature, AverageTemperatureUncertainty, Country temperatures = pd.read_csv("GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv") # 577 462 rows print(len(temperatures)) countries = temperatures['Country'].unique() print(len(countries)) print(sorted(countries)) def plot_co2_by_country(values, country, start, end): """ Returns a plot for co2 values for a country from a start point to an end point """ filtered = values.loc[(values['Country'] == country) & (values['Year'] >= start) & (values['Year'] <= end)] # x axis values x1 = filtered['Year'] # corresponding y axis values y1 = filtered['CO2'] # plotting the points plt.plot(x1, y1, label = "line 1") # naming the x axis plt.xlabel('x - axis - year') # naming the y axis plt.ylabel('y - axis - co2') # giving a title to my graph plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country) # function to show the plot plt.show() def co2_by_country_till2019(): """ Info for dataset, co2 by country part 1 - from 1751 to 2017 """ co2_messy = pd.read_csv("CO2/emission data.csv") co2 = pd.melt(co2_messy, id_vars=["Country"], var_name="Year", value_name="CO2") df = pd.DataFrame() df['Country'] = co2['Country'] df['Year'] = co2['Year'] df['CO2'] = co2['CO2'] df.to_csv(r'C:\Users\stoja\Desktop\EmissionCO2.csv', index=False) def get_lat_lon(): """ Returns arrays for latitudes, longitudes, cities and countries from dataset, temperatures by country part 1, from 1743 to 2013 """ # Columns: dt,AverageTemperature,AverageTemperatureUncertainty,City,Country,Latitude,Longitude temperatures = pd.read_csv("GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv") Latitude = temperatures['Latitude'] Longitude = temperatures['Longitude'] City = temperatures['City'] Country = temperatures['Country'] lat_array = [] long_array = [] cities_array = [] countries_array = [] tuples = [] for i, j, city, country in zip(Latitude, Longitude, City, Country): if (i, j) not in tuples: tuples.append((i, j)) lat_array.append(float(i[:-1])) long_array.append(float(j[:-1])) cities_array.append(city) countries_array.append(country) return lat_array, long_array, cities_array, countries_array def make_dataset_temperatures(filename, points): """ From netCDF4 file to CSV file """ ds = Dataset(filename) lats, lons, cities, countries = get_lat_lon() # total lat,lon pairs: 1366 print('The number of rows is ' + str(len(lats)*points)) lon = ds.variables['longitude'] lat = ds.variables['latitude'] time = ds.variables['date_number'] lon_array = lon[:] lat_array = lat[:] time_array = time[:] temperature = ds.variables['temperature'] dates = [] for time in time_array[:]: year = int(time) rem = time - year base = datetime(year, 1, 1) dates.append((base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)).date()) # second approach # for t in time_array[:]: # dates.append(num2date(t, units=time.units)) dateResult = [] temperatureResult = [] latitudeResult = [] longitudeResult = [] cityResult = [] countryResult = [] for latitude, longitude, city, country in zip(lats, lons, cities, countries): # We want to find data for latitude, longitude # We first need to find the indexes i = np.abs(lon_array - longitude).argmin() j = np.abs(lat_array - latitude).argmin() for d in dates: dateResult.append(d) resultTemperature = temperature[:, j, i] for t in resultTemperature: temperatureResult.append(t) resultLatitues = np.full( shape=points, fill_value=latitude, dtype=np.float ) for l in resultLatitues: latitudeResult.append(l) resultLongitudes = np.full( shape=points, fill_value=longitude, dtype=np.float ) for l in resultLongitudes: longitudeResult.append(l) resultCities = np.full( shape=points, fill_value=city ) for c in resultCities: cityResult.append(c) resultCountries = np.full( shape=points, fill_value=country ) for c in resultCountries: countryResult.append(c) print('iteration no:' + str(i)) df = pd.DataFrame() df['date'] = dateResult df['temperature'] = temperatureResult df['latitude'] = latitudeResult df['longitude'] = longitudeResult df['city'] = cityResult df['country'] = countryResult df.to_csv(r'C:\Users\stoja\Desktop\Temperatures.csv', index=False) return df def model(): # Info for netCDF4 file # 1416 ds = Dataset('air.mon.mean.v501.nc') print(ds) time = ds.variables['time'] print(time.units) time_array = time[:] for t in time_array[:]: print(num2date(t, units=time.units)) if __name__ == '__main__': print('Start') # Making the CO2 dataset co2_by_country_till2019() # Making the temperatures dataset df1 = make_dataset_temperatures('air.mon.mean.v501.nc', 1416) print(df1.head()) # Making the temperatures anomalies dataset df2 = make_dataset_temperatures('Complete_TAVG_Daily_LatLong1_2010.nc', 3652) print(df2.head())
normal
{ "blob_id": "2b579c3def4c2d02d365f019518e8e0b25664460", "index": 7436, "step-1": "<mask token>\n\n\ndef plot_temperatures_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for temperature values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n start) & (values['dt'] <= end)]\n x1 = filtered['dt']\n y1 = filtered['AverageTemperature']\n plt.plot(x1, y1, label='line 1')\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n '1973-01-01') & (values['dt'] <= '1974-01-01')]\n x2 = filtered['dt']\n y2 = filtered['AverageTemperature']\n plt.plot(x2, y2, label='line 2')\n plt.xlabel('x - axis - date')\n plt.ylabel('y - axis - temperature')\n plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef temperatures_by_city_till2013():\n \"\"\"\n Info for dataset, temperatures by city part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef temperatures_by_country_till2013():\n \"\"\"\n Info for dataset, temperatures by country part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef plot_co2_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for co2 values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['Year'] >=\n start) & (values['Year'] <= end)]\n x1 = filtered['Year']\n y1 = filtered['CO2']\n plt.plot(x1, y1, label='line 1')\n plt.xlabel('x - axis - year')\n plt.ylabel('y - axis - co2')\n plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\n<mask token>\n\n\ndef get_lat_lon():\n \"\"\"\n Returns arrays for latitudes, longitudes, cities and countries\n from dataset, temperatures by country part 1, from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n Latitude = temperatures['Latitude']\n Longitude = temperatures['Longitude']\n City = temperatures['City']\n Country = temperatures['Country']\n lat_array = []\n long_array = []\n cities_array = []\n countries_array = []\n tuples = []\n for i, j, city, country in zip(Latitude, Longitude, City, Country):\n if (i, j) not in tuples:\n tuples.append((i, j))\n lat_array.append(float(i[:-1]))\n long_array.append(float(j[:-1]))\n cities_array.append(city)\n countries_array.append(country)\n return lat_array, long_array, cities_array, countries_array\n\n\ndef make_dataset_temperatures(filename, points):\n \"\"\"\n From netCDF4 file to CSV file\n \"\"\"\n ds = Dataset(filename)\n lats, lons, cities, countries = get_lat_lon()\n print('The number of rows is ' + str(len(lats) * points))\n lon = ds.variables['longitude']\n lat = ds.variables['latitude']\n time = ds.variables['date_number']\n lon_array = lon[:]\n lat_array = lat[:]\n time_array = time[:]\n temperature = ds.variables['temperature']\n dates = []\n for time in time_array[:]:\n year = int(time)\n rem = time - year\n base = datetime(year, 1, 1)\n dates.append((base + timedelta(seconds=(base.replace(year=base.year +\n 1) - base).total_seconds() * rem)).date())\n dateResult = []\n temperatureResult = []\n latitudeResult = []\n longitudeResult = []\n cityResult = []\n countryResult = []\n for latitude, longitude, city, country in zip(lats, lons, cities, countries\n ):\n i = np.abs(lon_array - longitude).argmin()\n j = np.abs(lat_array - latitude).argmin()\n for d in dates:\n dateResult.append(d)\n resultTemperature = temperature[:, j, i]\n for t in resultTemperature:\n temperatureResult.append(t)\n resultLatitues = np.full(shape=points, fill_value=latitude, dtype=\n np.float)\n for l in resultLatitues:\n latitudeResult.append(l)\n resultLongitudes = np.full(shape=points, fill_value=longitude,\n dtype=np.float)\n for l in resultLongitudes:\n longitudeResult.append(l)\n resultCities = np.full(shape=points, fill_value=city)\n for c in resultCities:\n cityResult.append(c)\n resultCountries = np.full(shape=points, fill_value=country)\n for c in resultCountries:\n countryResult.append(c)\n print('iteration no:' + str(i))\n df = pd.DataFrame()\n df['date'] = dateResult\n df['temperature'] = temperatureResult\n df['latitude'] = latitudeResult\n df['longitude'] = longitudeResult\n df['city'] = cityResult\n df['country'] = countryResult\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\Temperatures.csv', index=False)\n return df\n\n\ndef model():\n ds = Dataset('air.mon.mean.v501.nc')\n print(ds)\n time = ds.variables['time']\n print(time.units)\n time_array = time[:]\n for t in time_array[:]:\n print(num2date(t, units=time.units))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef plot_temperatures_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for temperature values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n start) & (values['dt'] <= end)]\n x1 = filtered['dt']\n y1 = filtered['AverageTemperature']\n plt.plot(x1, y1, label='line 1')\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n '1973-01-01') & (values['dt'] <= '1974-01-01')]\n x2 = filtered['dt']\n y2 = filtered['AverageTemperature']\n plt.plot(x2, y2, label='line 2')\n plt.xlabel('x - axis - date')\n plt.ylabel('y - axis - temperature')\n plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef temperatures_by_city_till2013():\n \"\"\"\n Info for dataset, temperatures by city part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef temperatures_by_country_till2013():\n \"\"\"\n Info for dataset, temperatures by country part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef plot_co2_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for co2 values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['Year'] >=\n start) & (values['Year'] <= end)]\n x1 = filtered['Year']\n y1 = filtered['CO2']\n plt.plot(x1, y1, label='line 1')\n plt.xlabel('x - axis - year')\n plt.ylabel('y - axis - co2')\n plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef co2_by_country_till2019():\n \"\"\"\n Info for dataset, co2 by country part 1 - from 1751 to 2017\n \"\"\"\n co2_messy = pd.read_csv('CO2/emission data.csv')\n co2 = pd.melt(co2_messy, id_vars=['Country'], var_name='Year',\n value_name='CO2')\n df = pd.DataFrame()\n df['Country'] = co2['Country']\n df['Year'] = co2['Year']\n df['CO2'] = co2['CO2']\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\EmissionCO2.csv', index=False)\n\n\ndef get_lat_lon():\n \"\"\"\n Returns arrays for latitudes, longitudes, cities and countries\n from dataset, temperatures by country part 1, from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n Latitude = temperatures['Latitude']\n Longitude = temperatures['Longitude']\n City = temperatures['City']\n Country = temperatures['Country']\n lat_array = []\n long_array = []\n cities_array = []\n countries_array = []\n tuples = []\n for i, j, city, country in zip(Latitude, Longitude, City, Country):\n if (i, j) not in tuples:\n tuples.append((i, j))\n lat_array.append(float(i[:-1]))\n long_array.append(float(j[:-1]))\n cities_array.append(city)\n countries_array.append(country)\n return lat_array, long_array, cities_array, countries_array\n\n\ndef make_dataset_temperatures(filename, points):\n \"\"\"\n From netCDF4 file to CSV file\n \"\"\"\n ds = Dataset(filename)\n lats, lons, cities, countries = get_lat_lon()\n print('The number of rows is ' + str(len(lats) * points))\n lon = ds.variables['longitude']\n lat = ds.variables['latitude']\n time = ds.variables['date_number']\n lon_array = lon[:]\n lat_array = lat[:]\n time_array = time[:]\n temperature = ds.variables['temperature']\n dates = []\n for time in time_array[:]:\n year = int(time)\n rem = time - year\n base = datetime(year, 1, 1)\n dates.append((base + timedelta(seconds=(base.replace(year=base.year +\n 1) - base).total_seconds() * rem)).date())\n dateResult = []\n temperatureResult = []\n latitudeResult = []\n longitudeResult = []\n cityResult = []\n countryResult = []\n for latitude, longitude, city, country in zip(lats, lons, cities, countries\n ):\n i = np.abs(lon_array - longitude).argmin()\n j = np.abs(lat_array - latitude).argmin()\n for d in dates:\n dateResult.append(d)\n resultTemperature = temperature[:, j, i]\n for t in resultTemperature:\n temperatureResult.append(t)\n resultLatitues = np.full(shape=points, fill_value=latitude, dtype=\n np.float)\n for l in resultLatitues:\n latitudeResult.append(l)\n resultLongitudes = np.full(shape=points, fill_value=longitude,\n dtype=np.float)\n for l in resultLongitudes:\n longitudeResult.append(l)\n resultCities = np.full(shape=points, fill_value=city)\n for c in resultCities:\n cityResult.append(c)\n resultCountries = np.full(shape=points, fill_value=country)\n for c in resultCountries:\n countryResult.append(c)\n print('iteration no:' + str(i))\n df = pd.DataFrame()\n df['date'] = dateResult\n df['temperature'] = temperatureResult\n df['latitude'] = latitudeResult\n df['longitude'] = longitudeResult\n df['city'] = cityResult\n df['country'] = countryResult\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\Temperatures.csv', index=False)\n return df\n\n\ndef model():\n ds = Dataset('air.mon.mean.v501.nc')\n print(ds)\n time = ds.variables['time']\n print(time.units)\n time_array = time[:]\n for t in time_array[:]:\n print(num2date(t, units=time.units))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef plot_temperatures_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for temperature values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n start) & (values['dt'] <= end)]\n x1 = filtered['dt']\n y1 = filtered['AverageTemperature']\n plt.plot(x1, y1, label='line 1')\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n '1973-01-01') & (values['dt'] <= '1974-01-01')]\n x2 = filtered['dt']\n y2 = filtered['AverageTemperature']\n plt.plot(x2, y2, label='line 2')\n plt.xlabel('x - axis - date')\n plt.ylabel('y - axis - temperature')\n plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef temperatures_by_city_till2013():\n \"\"\"\n Info for dataset, temperatures by city part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef temperatures_by_country_till2013():\n \"\"\"\n Info for dataset, temperatures by country part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef plot_co2_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for co2 values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['Year'] >=\n start) & (values['Year'] <= end)]\n x1 = filtered['Year']\n y1 = filtered['CO2']\n plt.plot(x1, y1, label='line 1')\n plt.xlabel('x - axis - year')\n plt.ylabel('y - axis - co2')\n plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef co2_by_country_till2019():\n \"\"\"\n Info for dataset, co2 by country part 1 - from 1751 to 2017\n \"\"\"\n co2_messy = pd.read_csv('CO2/emission data.csv')\n co2 = pd.melt(co2_messy, id_vars=['Country'], var_name='Year',\n value_name='CO2')\n df = pd.DataFrame()\n df['Country'] = co2['Country']\n df['Year'] = co2['Year']\n df['CO2'] = co2['CO2']\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\EmissionCO2.csv', index=False)\n\n\ndef get_lat_lon():\n \"\"\"\n Returns arrays for latitudes, longitudes, cities and countries\n from dataset, temperatures by country part 1, from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n Latitude = temperatures['Latitude']\n Longitude = temperatures['Longitude']\n City = temperatures['City']\n Country = temperatures['Country']\n lat_array = []\n long_array = []\n cities_array = []\n countries_array = []\n tuples = []\n for i, j, city, country in zip(Latitude, Longitude, City, Country):\n if (i, j) not in tuples:\n tuples.append((i, j))\n lat_array.append(float(i[:-1]))\n long_array.append(float(j[:-1]))\n cities_array.append(city)\n countries_array.append(country)\n return lat_array, long_array, cities_array, countries_array\n\n\ndef make_dataset_temperatures(filename, points):\n \"\"\"\n From netCDF4 file to CSV file\n \"\"\"\n ds = Dataset(filename)\n lats, lons, cities, countries = get_lat_lon()\n print('The number of rows is ' + str(len(lats) * points))\n lon = ds.variables['longitude']\n lat = ds.variables['latitude']\n time = ds.variables['date_number']\n lon_array = lon[:]\n lat_array = lat[:]\n time_array = time[:]\n temperature = ds.variables['temperature']\n dates = []\n for time in time_array[:]:\n year = int(time)\n rem = time - year\n base = datetime(year, 1, 1)\n dates.append((base + timedelta(seconds=(base.replace(year=base.year +\n 1) - base).total_seconds() * rem)).date())\n dateResult = []\n temperatureResult = []\n latitudeResult = []\n longitudeResult = []\n cityResult = []\n countryResult = []\n for latitude, longitude, city, country in zip(lats, lons, cities, countries\n ):\n i = np.abs(lon_array - longitude).argmin()\n j = np.abs(lat_array - latitude).argmin()\n for d in dates:\n dateResult.append(d)\n resultTemperature = temperature[:, j, i]\n for t in resultTemperature:\n temperatureResult.append(t)\n resultLatitues = np.full(shape=points, fill_value=latitude, dtype=\n np.float)\n for l in resultLatitues:\n latitudeResult.append(l)\n resultLongitudes = np.full(shape=points, fill_value=longitude,\n dtype=np.float)\n for l in resultLongitudes:\n longitudeResult.append(l)\n resultCities = np.full(shape=points, fill_value=city)\n for c in resultCities:\n cityResult.append(c)\n resultCountries = np.full(shape=points, fill_value=country)\n for c in resultCountries:\n countryResult.append(c)\n print('iteration no:' + str(i))\n df = pd.DataFrame()\n df['date'] = dateResult\n df['temperature'] = temperatureResult\n df['latitude'] = latitudeResult\n df['longitude'] = longitudeResult\n df['city'] = cityResult\n df['country'] = countryResult\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\Temperatures.csv', index=False)\n return df\n\n\ndef model():\n ds = Dataset('air.mon.mean.v501.nc')\n print(ds)\n time = ds.variables['time']\n print(time.units)\n time_array = time[:]\n for t in time_array[:]:\n print(num2date(t, units=time.units))\n\n\nif __name__ == '__main__':\n print('Start')\n co2_by_country_till2019()\n df1 = make_dataset_temperatures('air.mon.mean.v501.nc', 1416)\n print(df1.head())\n df2 = make_dataset_temperatures('Complete_TAVG_Daily_LatLong1_2010.nc',\n 3652)\n print(df2.head())\n", "step-4": "import pandas as pd\nimport matplotlib.pyplot as plt\nfrom netCDF4 import Dataset\nfrom cftime import num2date\nimport os\nimport numpy as np\nfrom datetime import datetime, timedelta, date\n\n\ndef plot_temperatures_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for temperature values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n start) & (values['dt'] <= end)]\n x1 = filtered['dt']\n y1 = filtered['AverageTemperature']\n plt.plot(x1, y1, label='line 1')\n filtered = values.loc[(values['Country'] == country) & (values['dt'] >=\n '1973-01-01') & (values['dt'] <= '1974-01-01')]\n x2 = filtered['dt']\n y2 = filtered['AverageTemperature']\n plt.plot(x2, y2, label='line 2')\n plt.xlabel('x - axis - date')\n plt.ylabel('y - axis - temperature')\n plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef temperatures_by_city_till2013():\n \"\"\"\n Info for dataset, temperatures by city part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef temperatures_by_country_till2013():\n \"\"\"\n Info for dataset, temperatures by country part 1 - from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv')\n print(len(temperatures))\n countries = temperatures['Country'].unique()\n print(len(countries))\n print(sorted(countries))\n\n\ndef plot_co2_by_country(values, country, start, end):\n \"\"\"\n Returns a plot for co2 values for a country\n from a start point to an end point\n \"\"\"\n filtered = values.loc[(values['Country'] == country) & (values['Year'] >=\n start) & (values['Year'] <= end)]\n x1 = filtered['Year']\n y1 = filtered['CO2']\n plt.plot(x1, y1, label='line 1')\n plt.xlabel('x - axis - year')\n plt.ylabel('y - axis - co2')\n plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country)\n plt.show()\n\n\ndef co2_by_country_till2019():\n \"\"\"\n Info for dataset, co2 by country part 1 - from 1751 to 2017\n \"\"\"\n co2_messy = pd.read_csv('CO2/emission data.csv')\n co2 = pd.melt(co2_messy, id_vars=['Country'], var_name='Year',\n value_name='CO2')\n df = pd.DataFrame()\n df['Country'] = co2['Country']\n df['Year'] = co2['Year']\n df['CO2'] = co2['CO2']\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\EmissionCO2.csv', index=False)\n\n\ndef get_lat_lon():\n \"\"\"\n Returns arrays for latitudes, longitudes, cities and countries\n from dataset, temperatures by country part 1, from 1743 to 2013\n \"\"\"\n temperatures = pd.read_csv(\n 'GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv')\n Latitude = temperatures['Latitude']\n Longitude = temperatures['Longitude']\n City = temperatures['City']\n Country = temperatures['Country']\n lat_array = []\n long_array = []\n cities_array = []\n countries_array = []\n tuples = []\n for i, j, city, country in zip(Latitude, Longitude, City, Country):\n if (i, j) not in tuples:\n tuples.append((i, j))\n lat_array.append(float(i[:-1]))\n long_array.append(float(j[:-1]))\n cities_array.append(city)\n countries_array.append(country)\n return lat_array, long_array, cities_array, countries_array\n\n\ndef make_dataset_temperatures(filename, points):\n \"\"\"\n From netCDF4 file to CSV file\n \"\"\"\n ds = Dataset(filename)\n lats, lons, cities, countries = get_lat_lon()\n print('The number of rows is ' + str(len(lats) * points))\n lon = ds.variables['longitude']\n lat = ds.variables['latitude']\n time = ds.variables['date_number']\n lon_array = lon[:]\n lat_array = lat[:]\n time_array = time[:]\n temperature = ds.variables['temperature']\n dates = []\n for time in time_array[:]:\n year = int(time)\n rem = time - year\n base = datetime(year, 1, 1)\n dates.append((base + timedelta(seconds=(base.replace(year=base.year +\n 1) - base).total_seconds() * rem)).date())\n dateResult = []\n temperatureResult = []\n latitudeResult = []\n longitudeResult = []\n cityResult = []\n countryResult = []\n for latitude, longitude, city, country in zip(lats, lons, cities, countries\n ):\n i = np.abs(lon_array - longitude).argmin()\n j = np.abs(lat_array - latitude).argmin()\n for d in dates:\n dateResult.append(d)\n resultTemperature = temperature[:, j, i]\n for t in resultTemperature:\n temperatureResult.append(t)\n resultLatitues = np.full(shape=points, fill_value=latitude, dtype=\n np.float)\n for l in resultLatitues:\n latitudeResult.append(l)\n resultLongitudes = np.full(shape=points, fill_value=longitude,\n dtype=np.float)\n for l in resultLongitudes:\n longitudeResult.append(l)\n resultCities = np.full(shape=points, fill_value=city)\n for c in resultCities:\n cityResult.append(c)\n resultCountries = np.full(shape=points, fill_value=country)\n for c in resultCountries:\n countryResult.append(c)\n print('iteration no:' + str(i))\n df = pd.DataFrame()\n df['date'] = dateResult\n df['temperature'] = temperatureResult\n df['latitude'] = latitudeResult\n df['longitude'] = longitudeResult\n df['city'] = cityResult\n df['country'] = countryResult\n df.to_csv('C:\\\\Users\\\\stoja\\\\Desktop\\\\Temperatures.csv', index=False)\n return df\n\n\ndef model():\n ds = Dataset('air.mon.mean.v501.nc')\n print(ds)\n time = ds.variables['time']\n print(time.units)\n time_array = time[:]\n for t in time_array[:]:\n print(num2date(t, units=time.units))\n\n\nif __name__ == '__main__':\n print('Start')\n co2_by_country_till2019()\n df1 = make_dataset_temperatures('air.mon.mean.v501.nc', 1416)\n print(df1.head())\n df2 = make_dataset_temperatures('Complete_TAVG_Daily_LatLong1_2010.nc',\n 3652)\n print(df2.head())\n", "step-5": "import pandas as pd\r\nimport matplotlib.pyplot as plt\r\nfrom netCDF4 import Dataset\r\nfrom cftime import num2date\r\nimport os\r\nimport numpy as np\r\nfrom datetime import datetime, timedelta, date\r\n\r\n\r\ndef plot_temperatures_by_country(values, country, start, end):\r\n \"\"\"\r\n Returns a plot for temperature values for a country\r\n from a start point to an end point\r\n \"\"\"\r\n\r\n filtered = values.loc[(values['Country'] == country) &\r\n (values['dt'] >= start) &\r\n (values['dt'] <= end)]\r\n\r\n # x axis values\r\n x1 = filtered['dt']\r\n # corresponding y axis values\r\n y1 = filtered['AverageTemperature']\r\n\r\n # plotting the points\r\n plt.plot(x1, y1, label = \"line 1\")\r\n\r\n filtered = values.loc[(values['Country'] == country) &\r\n (values['dt'] >= '1973-01-01') &\r\n (values['dt'] <= '1974-01-01')]\r\n\r\n # x axis values\r\n x2 = filtered['dt']\r\n # corresponding y axis values\r\n y2 = filtered['AverageTemperature']\r\n\r\n # plotting the points\r\n plt.plot(x2, y2, label=\"line 2\")\r\n\r\n # naming the x axis\r\n plt.xlabel('x - axis - date')\r\n # naming the y axis\r\n plt.ylabel('y - axis - temperature')\r\n\r\n plt.title('Temperatures from ' + start + ' to ' + end + ' for ' + country)\r\n\r\n # function to show the plot\r\n plt.show()\r\n\r\n\r\ndef temperatures_by_city_till2013():\r\n \"\"\"\r\n Info for dataset, temperatures by city part 1 - from 1743 to 2013\r\n \"\"\"\r\n\r\n # Columns: dt,AverageTemperature,AverageTemperatureUncertainty,City,Country,Latitude,Longitude\r\n temperatures = pd.read_csv(\"GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv\")\r\n\r\n # 8 599 212 rows\r\n print(len(temperatures))\r\n\r\n countries = temperatures['Country'].unique()\r\n print(len(countries))\r\n print(sorted(countries))\r\n\r\n\r\ndef temperatures_by_country_till2013():\r\n \"\"\"\r\n Info for dataset, temperatures by country part 1 - from 1743 to 2013\r\n \"\"\"\r\n\r\n # Columns: dt, AverageTemperature, AverageTemperatureUncertainty, Country\r\n temperatures = pd.read_csv(\"GlobalLandTemperatures/GlobalLandTemperaturesByCountry.csv\")\r\n\r\n # 577 462 rows\r\n print(len(temperatures))\r\n\r\n countries = temperatures['Country'].unique()\r\n print(len(countries))\r\n print(sorted(countries))\r\n\r\n\r\ndef plot_co2_by_country(values, country, start, end):\r\n \"\"\"\r\n Returns a plot for co2 values for a country\r\n from a start point to an end point\r\n \"\"\"\r\n\r\n filtered = values.loc[(values['Country'] == country) &\r\n (values['Year'] >= start) &\r\n (values['Year'] <= end)]\r\n\r\n # x axis values\r\n x1 = filtered['Year']\r\n # corresponding y axis values\r\n y1 = filtered['CO2']\r\n\r\n # plotting the points\r\n plt.plot(x1, y1, label = \"line 1\")\r\n\r\n # naming the x axis\r\n plt.xlabel('x - axis - year')\r\n # naming the y axis\r\n plt.ylabel('y - axis - co2')\r\n\r\n # giving a title to my graph\r\n plt.title('CO2 from ' + start + ' to ' + end + ' for ' + country)\r\n\r\n # function to show the plot\r\n plt.show()\r\n\r\n\r\ndef co2_by_country_till2019():\r\n \"\"\"\r\n Info for dataset, co2 by country part 1 - from 1751 to 2017\r\n \"\"\"\r\n co2_messy = pd.read_csv(\"CO2/emission data.csv\")\r\n\r\n co2 = pd.melt(co2_messy, id_vars=[\"Country\"], var_name=\"Year\", value_name=\"CO2\")\r\n\r\n df = pd.DataFrame()\r\n df['Country'] = co2['Country']\r\n df['Year'] = co2['Year']\r\n df['CO2'] = co2['CO2']\r\n\r\n df.to_csv(r'C:\\Users\\stoja\\Desktop\\EmissionCO2.csv', index=False)\r\n\r\n\r\ndef get_lat_lon():\r\n \"\"\"\r\n Returns arrays for latitudes, longitudes, cities and countries\r\n from dataset, temperatures by country part 1, from 1743 to 2013\r\n \"\"\"\r\n\r\n # Columns: dt,AverageTemperature,AverageTemperatureUncertainty,City,Country,Latitude,Longitude\r\n temperatures = pd.read_csv(\"GlobalLandTemperatures/GlobalLandTemperaturesByCity.csv\")\r\n\r\n Latitude = temperatures['Latitude']\r\n Longitude = temperatures['Longitude']\r\n City = temperatures['City']\r\n Country = temperatures['Country']\r\n\r\n lat_array = []\r\n long_array = []\r\n cities_array = []\r\n countries_array = []\r\n tuples = []\r\n for i, j, city, country in zip(Latitude, Longitude, City, Country):\r\n if (i, j) not in tuples:\r\n tuples.append((i, j))\r\n lat_array.append(float(i[:-1]))\r\n long_array.append(float(j[:-1]))\r\n cities_array.append(city)\r\n countries_array.append(country)\r\n\r\n return lat_array, long_array, cities_array, countries_array\r\n\r\n\r\ndef make_dataset_temperatures(filename, points):\r\n \"\"\"\r\n From netCDF4 file to CSV file\r\n \"\"\"\r\n\r\n ds = Dataset(filename)\r\n\r\n lats, lons, cities, countries = get_lat_lon()\r\n\r\n # total lat,lon pairs: 1366\r\n print('The number of rows is ' + str(len(lats)*points))\r\n lon = ds.variables['longitude']\r\n lat = ds.variables['latitude']\r\n time = ds.variables['date_number']\r\n\r\n lon_array = lon[:]\r\n lat_array = lat[:]\r\n time_array = time[:]\r\n\r\n temperature = ds.variables['temperature']\r\n\r\n dates = []\r\n for time in time_array[:]:\r\n year = int(time)\r\n rem = time - year\r\n base = datetime(year, 1, 1)\r\n dates.append((base + timedelta(seconds=(base.replace(year=base.year + 1) - base).total_seconds() * rem)).date())\r\n\r\n # second approach\r\n # for t in time_array[:]:\r\n # dates.append(num2date(t, units=time.units))\r\n\r\n dateResult = []\r\n temperatureResult = []\r\n latitudeResult = []\r\n longitudeResult = []\r\n cityResult = []\r\n countryResult = []\r\n\r\n for latitude, longitude, city, country in zip(lats, lons, cities, countries):\r\n\r\n # We want to find data for latitude, longitude\r\n # We first need to find the indexes\r\n i = np.abs(lon_array - longitude).argmin()\r\n j = np.abs(lat_array - latitude).argmin()\r\n\r\n for d in dates:\r\n dateResult.append(d)\r\n\r\n resultTemperature = temperature[:, j, i]\r\n for t in resultTemperature:\r\n temperatureResult.append(t)\r\n\r\n resultLatitues = np.full(\r\n shape=points,\r\n fill_value=latitude,\r\n dtype=np.float\r\n )\r\n for l in resultLatitues:\r\n latitudeResult.append(l)\r\n\r\n resultLongitudes = np.full(\r\n shape=points,\r\n fill_value=longitude,\r\n dtype=np.float\r\n )\r\n for l in resultLongitudes:\r\n longitudeResult.append(l)\r\n\r\n resultCities = np.full(\r\n shape=points,\r\n fill_value=city\r\n )\r\n for c in resultCities:\r\n cityResult.append(c)\r\n\r\n resultCountries = np.full(\r\n shape=points,\r\n fill_value=country\r\n )\r\n for c in resultCountries:\r\n countryResult.append(c)\r\n\r\n print('iteration no:' + str(i))\r\n\r\n df = pd.DataFrame()\r\n df['date'] = dateResult\r\n df['temperature'] = temperatureResult\r\n df['latitude'] = latitudeResult\r\n df['longitude'] = longitudeResult\r\n df['city'] = cityResult\r\n df['country'] = countryResult\r\n\r\n df.to_csv(r'C:\\Users\\stoja\\Desktop\\Temperatures.csv', index=False)\r\n return df\r\n\r\n\r\ndef model():\r\n\r\n # Info for netCDF4 file\r\n # 1416\r\n ds = Dataset('air.mon.mean.v501.nc')\r\n print(ds)\r\n time = ds.variables['time']\r\n print(time.units)\r\n time_array = time[:]\r\n for t in time_array[:]:\r\n print(num2date(t, units=time.units))\r\n\r\n\r\nif __name__ == '__main__':\r\n print('Start')\r\n\r\n # Making the CO2 dataset\r\n co2_by_country_till2019()\r\n\r\n # Making the temperatures dataset\r\n df1 = make_dataset_temperatures('air.mon.mean.v501.nc', 1416)\r\n print(df1.head())\r\n\r\n # Making the temperatures anomalies dataset\r\n df2 = make_dataset_temperatures('Complete_TAVG_Daily_LatLong1_2010.nc', 3652)\r\n print(df2.head())\r\n", "step-ids": [ 7, 8, 9, 10, 11 ] }
[ 7, 8, 9, 10, 11 ]
from datapackage_pipelines.wrapper import ingest, spew params, datapackage, res_iter = ingest() columns = params['columns'] for resource in datapackage['resources']: fields = resource.get('schema', {}).get('fields') if fields is not None: fields = [field for field in fields if field['name'] not in columns] resource['schema']['fields'] = fields def process_resources(_res_iter): for rows in _res_iter: def process_rows(_rows): for row in _rows: for column in columns: if column in row: del row[column] yield row yield process_rows(rows) spew(datapackage, process_resources(res_iter))
normal
{ "blob_id": "17b3fb44d9e7a09fe3b807b47bdc0248b6960634", "index": 4022, "step-1": "<mask token>\n\n\ndef process_resources(_res_iter):\n for rows in _res_iter:\n\n def process_rows(_rows):\n for row in _rows:\n for column in columns:\n if column in row:\n del row[column]\n yield row\n yield process_rows(rows)\n\n\n<mask token>\n", "step-2": "<mask token>\nfor resource in datapackage['resources']:\n fields = resource.get('schema', {}).get('fields')\n if fields is not None:\n fields = [field for field in fields if field['name'] not in columns]\n resource['schema']['fields'] = fields\n\n\ndef process_resources(_res_iter):\n for rows in _res_iter:\n\n def process_rows(_rows):\n for row in _rows:\n for column in columns:\n if column in row:\n del row[column]\n yield row\n yield process_rows(rows)\n\n\nspew(datapackage, process_resources(res_iter))\n", "step-3": "<mask token>\nparams, datapackage, res_iter = ingest()\ncolumns = params['columns']\nfor resource in datapackage['resources']:\n fields = resource.get('schema', {}).get('fields')\n if fields is not None:\n fields = [field for field in fields if field['name'] not in columns]\n resource['schema']['fields'] = fields\n\n\ndef process_resources(_res_iter):\n for rows in _res_iter:\n\n def process_rows(_rows):\n for row in _rows:\n for column in columns:\n if column in row:\n del row[column]\n yield row\n yield process_rows(rows)\n\n\nspew(datapackage, process_resources(res_iter))\n", "step-4": "from datapackage_pipelines.wrapper import ingest, spew\nparams, datapackage, res_iter = ingest()\ncolumns = params['columns']\nfor resource in datapackage['resources']:\n fields = resource.get('schema', {}).get('fields')\n if fields is not None:\n fields = [field for field in fields if field['name'] not in columns]\n resource['schema']['fields'] = fields\n\n\ndef process_resources(_res_iter):\n for rows in _res_iter:\n\n def process_rows(_rows):\n for row in _rows:\n for column in columns:\n if column in row:\n del row[column]\n yield row\n yield process_rows(rows)\n\n\nspew(datapackage, process_resources(res_iter))\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]
from import_.Import import Import from classifier.Classifier import Classifier from export.Export import Export from preprocessing.PreProcess import PreProcess def main(): date_column = "date of last vet visit" target = "age at death" export_file_dir = "./output/" export_model_dir = "./model/xgb_model.dat" # IMPORT import_ = Import() print(""" To predict how long cats will live (in years) please enter the file path for the cats csv file for example: ./input/cats_pred.csv """) cats = import_.import_df("predict") cats_copy = cats.copy() # PRE-PROCESSING pre_process = PreProcess() print("Pre-processing Imported Data..") # process date to keep year only print("Processing date column to keep year only") pre_process.strip_year(cats, date_column) # Storing numerical columns in the background pre_process.get_numerical_cols(cats) # Convert all columns to float data type print("Convert all columns to float data type") pre_process.convert_to_float(cats) # Replace NaN values with Median print("Replacing all NaN values with median") cats = pre_process.replace_nan(cats) # Normalise dataset print("Normalising dataset") cats = pre_process.normalise(cats) print(""" Cats dataset {0} """.format(cats.head())) # PREDICTION print("Prediction Starting") cats_pred = Classifier.predict(export_model_dir, cats) # EXPORTING print("Prediction Finished") Export.export_pred_file(cats_copy, cats_pred, target, export_file_dir) if __name__ == "__main__": main()
normal
{ "blob_id": "696b9db78cc7f6002eb39b640e0e5b2b53e52e91", "index": 8448, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n date_column = 'date of last vet visit'\n target = 'age at death'\n export_file_dir = './output/'\n export_model_dir = './model/xgb_model.dat'\n import_ = Import()\n print(\n \"\"\"\nTo predict how long cats will live (in years) please enter the file path\nfor the cats csv file for example: ./input/cats_pred.csv\n \"\"\"\n )\n cats = import_.import_df('predict')\n cats_copy = cats.copy()\n pre_process = PreProcess()\n print('Pre-processing Imported Data..')\n print('Processing date column to keep year only')\n pre_process.strip_year(cats, date_column)\n pre_process.get_numerical_cols(cats)\n print('Convert all columns to float data type')\n pre_process.convert_to_float(cats)\n print('Replacing all NaN values with median')\n cats = pre_process.replace_nan(cats)\n print('Normalising dataset')\n cats = pre_process.normalise(cats)\n print(\"\"\"\n Cats dataset \n {0} \n \"\"\".format(cats.head()))\n print('Prediction Starting')\n cats_pred = Classifier.predict(export_model_dir, cats)\n print('Prediction Finished')\n Export.export_pred_file(cats_copy, cats_pred, target, export_file_dir)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n date_column = 'date of last vet visit'\n target = 'age at death'\n export_file_dir = './output/'\n export_model_dir = './model/xgb_model.dat'\n import_ = Import()\n print(\n \"\"\"\nTo predict how long cats will live (in years) please enter the file path\nfor the cats csv file for example: ./input/cats_pred.csv\n \"\"\"\n )\n cats = import_.import_df('predict')\n cats_copy = cats.copy()\n pre_process = PreProcess()\n print('Pre-processing Imported Data..')\n print('Processing date column to keep year only')\n pre_process.strip_year(cats, date_column)\n pre_process.get_numerical_cols(cats)\n print('Convert all columns to float data type')\n pre_process.convert_to_float(cats)\n print('Replacing all NaN values with median')\n cats = pre_process.replace_nan(cats)\n print('Normalising dataset')\n cats = pre_process.normalise(cats)\n print(\"\"\"\n Cats dataset \n {0} \n \"\"\".format(cats.head()))\n print('Prediction Starting')\n cats_pred = Classifier.predict(export_model_dir, cats)\n print('Prediction Finished')\n Export.export_pred_file(cats_copy, cats_pred, target, export_file_dir)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from import_.Import import Import\nfrom classifier.Classifier import Classifier\nfrom export.Export import Export\nfrom preprocessing.PreProcess import PreProcess\n\n\ndef main():\n date_column = 'date of last vet visit'\n target = 'age at death'\n export_file_dir = './output/'\n export_model_dir = './model/xgb_model.dat'\n import_ = Import()\n print(\n \"\"\"\nTo predict how long cats will live (in years) please enter the file path\nfor the cats csv file for example: ./input/cats_pred.csv\n \"\"\"\n )\n cats = import_.import_df('predict')\n cats_copy = cats.copy()\n pre_process = PreProcess()\n print('Pre-processing Imported Data..')\n print('Processing date column to keep year only')\n pre_process.strip_year(cats, date_column)\n pre_process.get_numerical_cols(cats)\n print('Convert all columns to float data type')\n pre_process.convert_to_float(cats)\n print('Replacing all NaN values with median')\n cats = pre_process.replace_nan(cats)\n print('Normalising dataset')\n cats = pre_process.normalise(cats)\n print(\"\"\"\n Cats dataset \n {0} \n \"\"\".format(cats.head()))\n print('Prediction Starting')\n cats_pred = Classifier.predict(export_model_dir, cats)\n print('Prediction Finished')\n Export.export_pred_file(cats_copy, cats_pred, target, export_file_dir)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from import_.Import import Import\nfrom classifier.Classifier import Classifier\nfrom export.Export import Export\nfrom preprocessing.PreProcess import PreProcess\n\n\ndef main():\n\n date_column = \"date of last vet visit\"\n target = \"age at death\"\n export_file_dir = \"./output/\"\n export_model_dir = \"./model/xgb_model.dat\"\n\n # IMPORT\n import_ = Import()\n print(\"\"\"\nTo predict how long cats will live (in years) please enter the file path\nfor the cats csv file for example: ./input/cats_pred.csv\n \"\"\")\n cats = import_.import_df(\"predict\")\n cats_copy = cats.copy()\n\n # PRE-PROCESSING\n pre_process = PreProcess()\n print(\"Pre-processing Imported Data..\")\n\n # process date to keep year only\n print(\"Processing date column to keep year only\")\n pre_process.strip_year(cats, date_column)\n\n # Storing numerical columns in the background\n pre_process.get_numerical_cols(cats)\n\n # Convert all columns to float data type\n print(\"Convert all columns to float data type\")\n pre_process.convert_to_float(cats)\n\n # Replace NaN values with Median\n print(\"Replacing all NaN values with median\")\n cats = pre_process.replace_nan(cats)\n\n # Normalise dataset\n print(\"Normalising dataset\")\n cats = pre_process.normalise(cats)\n print(\"\"\"\n Cats dataset \n {0} \n \"\"\".format(cats.head()))\n\n # PREDICTION\n print(\"Prediction Starting\")\n cats_pred = Classifier.predict(export_model_dir, cats)\n\n # EXPORTING\n print(\"Prediction Finished\")\n Export.export_pred_file(cats_copy, cats_pred, target, export_file_dir)\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
/home/runner/.cache/pip/pool/9b/88/a0/f20a7b2f367cd365add3353eba0cf34569d5f62a33587f96cebe6d4360
normal
{ "blob_id": "12f05f42c9ed56d6a2c95fb56a8619fae47a2f1a", "index": 6035, "step-1": "/home/runner/.cache/pip/pool/9b/88/a0/f20a7b2f367cd365add3353eba0cf34569d5f62a33587f96cebe6d4360", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
'''Turning on or off, toggling and checking the status' of a specific relay''' #!/bin/env python3 from time import sleep from gpiozero import LED RELAYS = [ LED(23), LED(24), LED(25), LED(8), LED(7), LED(1), LED(12), LED(16) ] def on_action(relay_option, number): '''To turn on the chosen relay''' relay_option.on() print(f"relay {number} is turning on") def off_action(relay_option, number): '''To turn off the chosen relay''' relay_option.off() print(f"relay {number} is turning off") def toggle_action(relay_option, number): '''To toggle the chosen relay''' print(f"relay {number} is toggling") relay_option.on() sleep(0.5) relay_option.off() sleep(0.5) def print_help(): '''Print/show help for informations of the required parameter''' print(''' Description Arguments: number number of relay 1 to 8 action on, off, or toggle optional arguments: h show this help message and exit ''') def options(): '''Input the relay number or show help and check the input''' input_str = input("Which relay? ") while True: if input_str == 'h': print_help() return index = int(input_str) - 1 if 0 <= index <= 7: relay_status(RELAYS[index], input_str) relay_action(RELAYS[index], input_str) relay_status(RELAYS[index], input_str) return else: print("index out of range") return def relay_action(relay_number, num): '''Do the given order(turn on, turn off, toggle) or raise error''' action = input("Which action? ") while True: try: return { 'on': on_action, 'off': off_action, 'toggle': toggle_action }[action](relay_number, num) except KeyError: print("Try again") return relay_action(relay_number, num) def relay_status(relay_number, number): '''Check initial relay's status''' if relay_number.value == 1: print(f"relay {number} is on") else: print(f"relay {number} is off") while True: options() sleep(1)
normal
{ "blob_id": "d82412055affc96d634957c953a35ea69b7e702f", "index": 403, "step-1": "<mask token>\n\n\ndef on_action(relay_option, number):\n \"\"\"To turn on the chosen relay\"\"\"\n relay_option.on()\n print(f'relay {number} is turning on')\n\n\n<mask token>\n\n\ndef toggle_action(relay_option, number):\n \"\"\"To toggle the chosen relay\"\"\"\n print(f'relay {number} is toggling')\n relay_option.on()\n sleep(0.5)\n relay_option.off()\n sleep(0.5)\n\n\ndef print_help():\n \"\"\"Print/show help for informations of the required parameter\"\"\"\n print(\n \"\"\"\nDescription\n\nArguments:\n number number of relay 1 to 8\n action on, off, or toggle\n\noptional arguments:\n h show this help message and exit\n \"\"\"\n )\n\n\ndef options():\n \"\"\"Input the relay number or show help and check the input\"\"\"\n input_str = input('Which relay? ')\n while True:\n if input_str == 'h':\n print_help()\n return\n index = int(input_str) - 1\n if 0 <= index <= 7:\n relay_status(RELAYS[index], input_str)\n relay_action(RELAYS[index], input_str)\n relay_status(RELAYS[index], input_str)\n return\n else:\n print('index out of range')\n return\n\n\ndef relay_action(relay_number, num):\n \"\"\"Do the given order(turn on, turn off, toggle) or raise error\"\"\"\n action = input('Which action? ')\n while True:\n try:\n return {'on': on_action, 'off': off_action, 'toggle': toggle_action\n }[action](relay_number, num)\n except KeyError:\n print('Try again')\n return relay_action(relay_number, num)\n\n\ndef relay_status(relay_number, number):\n \"\"\"Check initial relay's status\"\"\"\n if relay_number.value == 1:\n print(f'relay {number} is on')\n else:\n print(f'relay {number} is off')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef on_action(relay_option, number):\n \"\"\"To turn on the chosen relay\"\"\"\n relay_option.on()\n print(f'relay {number} is turning on')\n\n\ndef off_action(relay_option, number):\n \"\"\"To turn off the chosen relay\"\"\"\n relay_option.off()\n print(f'relay {number} is turning off')\n\n\ndef toggle_action(relay_option, number):\n \"\"\"To toggle the chosen relay\"\"\"\n print(f'relay {number} is toggling')\n relay_option.on()\n sleep(0.5)\n relay_option.off()\n sleep(0.5)\n\n\ndef print_help():\n \"\"\"Print/show help for informations of the required parameter\"\"\"\n print(\n \"\"\"\nDescription\n\nArguments:\n number number of relay 1 to 8\n action on, off, or toggle\n\noptional arguments:\n h show this help message and exit\n \"\"\"\n )\n\n\ndef options():\n \"\"\"Input the relay number or show help and check the input\"\"\"\n input_str = input('Which relay? ')\n while True:\n if input_str == 'h':\n print_help()\n return\n index = int(input_str) - 1\n if 0 <= index <= 7:\n relay_status(RELAYS[index], input_str)\n relay_action(RELAYS[index], input_str)\n relay_status(RELAYS[index], input_str)\n return\n else:\n print('index out of range')\n return\n\n\ndef relay_action(relay_number, num):\n \"\"\"Do the given order(turn on, turn off, toggle) or raise error\"\"\"\n action = input('Which action? ')\n while True:\n try:\n return {'on': on_action, 'off': off_action, 'toggle': toggle_action\n }[action](relay_number, num)\n except KeyError:\n print('Try again')\n return relay_action(relay_number, num)\n\n\ndef relay_status(relay_number, number):\n \"\"\"Check initial relay's status\"\"\"\n if relay_number.value == 1:\n print(f'relay {number} is on')\n else:\n print(f'relay {number} is off')\n\n\n<mask token>\n", "step-3": "<mask token>\nRELAYS = [LED(23), LED(24), LED(25), LED(8), LED(7), LED(1), LED(12), LED(16)]\n\n\ndef on_action(relay_option, number):\n \"\"\"To turn on the chosen relay\"\"\"\n relay_option.on()\n print(f'relay {number} is turning on')\n\n\ndef off_action(relay_option, number):\n \"\"\"To turn off the chosen relay\"\"\"\n relay_option.off()\n print(f'relay {number} is turning off')\n\n\ndef toggle_action(relay_option, number):\n \"\"\"To toggle the chosen relay\"\"\"\n print(f'relay {number} is toggling')\n relay_option.on()\n sleep(0.5)\n relay_option.off()\n sleep(0.5)\n\n\ndef print_help():\n \"\"\"Print/show help for informations of the required parameter\"\"\"\n print(\n \"\"\"\nDescription\n\nArguments:\n number number of relay 1 to 8\n action on, off, or toggle\n\noptional arguments:\n h show this help message and exit\n \"\"\"\n )\n\n\ndef options():\n \"\"\"Input the relay number or show help and check the input\"\"\"\n input_str = input('Which relay? ')\n while True:\n if input_str == 'h':\n print_help()\n return\n index = int(input_str) - 1\n if 0 <= index <= 7:\n relay_status(RELAYS[index], input_str)\n relay_action(RELAYS[index], input_str)\n relay_status(RELAYS[index], input_str)\n return\n else:\n print('index out of range')\n return\n\n\ndef relay_action(relay_number, num):\n \"\"\"Do the given order(turn on, turn off, toggle) or raise error\"\"\"\n action = input('Which action? ')\n while True:\n try:\n return {'on': on_action, 'off': off_action, 'toggle': toggle_action\n }[action](relay_number, num)\n except KeyError:\n print('Try again')\n return relay_action(relay_number, num)\n\n\ndef relay_status(relay_number, number):\n \"\"\"Check initial relay's status\"\"\"\n if relay_number.value == 1:\n print(f'relay {number} is on')\n else:\n print(f'relay {number} is off')\n\n\nwhile True:\n options()\n sleep(1)\n", "step-4": "<mask token>\nfrom time import sleep\nfrom gpiozero import LED\nRELAYS = [LED(23), LED(24), LED(25), LED(8), LED(7), LED(1), LED(12), LED(16)]\n\n\ndef on_action(relay_option, number):\n \"\"\"To turn on the chosen relay\"\"\"\n relay_option.on()\n print(f'relay {number} is turning on')\n\n\ndef off_action(relay_option, number):\n \"\"\"To turn off the chosen relay\"\"\"\n relay_option.off()\n print(f'relay {number} is turning off')\n\n\ndef toggle_action(relay_option, number):\n \"\"\"To toggle the chosen relay\"\"\"\n print(f'relay {number} is toggling')\n relay_option.on()\n sleep(0.5)\n relay_option.off()\n sleep(0.5)\n\n\ndef print_help():\n \"\"\"Print/show help for informations of the required parameter\"\"\"\n print(\n \"\"\"\nDescription\n\nArguments:\n number number of relay 1 to 8\n action on, off, or toggle\n\noptional arguments:\n h show this help message and exit\n \"\"\"\n )\n\n\ndef options():\n \"\"\"Input the relay number or show help and check the input\"\"\"\n input_str = input('Which relay? ')\n while True:\n if input_str == 'h':\n print_help()\n return\n index = int(input_str) - 1\n if 0 <= index <= 7:\n relay_status(RELAYS[index], input_str)\n relay_action(RELAYS[index], input_str)\n relay_status(RELAYS[index], input_str)\n return\n else:\n print('index out of range')\n return\n\n\ndef relay_action(relay_number, num):\n \"\"\"Do the given order(turn on, turn off, toggle) or raise error\"\"\"\n action = input('Which action? ')\n while True:\n try:\n return {'on': on_action, 'off': off_action, 'toggle': toggle_action\n }[action](relay_number, num)\n except KeyError:\n print('Try again')\n return relay_action(relay_number, num)\n\n\ndef relay_status(relay_number, number):\n \"\"\"Check initial relay's status\"\"\"\n if relay_number.value == 1:\n print(f'relay {number} is on')\n else:\n print(f'relay {number} is off')\n\n\nwhile True:\n options()\n sleep(1)\n", "step-5": "'''Turning on or off, toggling and checking the status' of a specific relay'''\n\n#!/bin/env python3\n\nfrom time import sleep\nfrom gpiozero import LED\n\nRELAYS = [\n LED(23),\n LED(24),\n LED(25),\n LED(8),\n LED(7),\n LED(1),\n LED(12),\n LED(16)\n]\n\n\ndef on_action(relay_option, number):\n '''To turn on the chosen relay'''\n relay_option.on()\n print(f\"relay {number} is turning on\")\n\n\ndef off_action(relay_option, number):\n '''To turn off the chosen relay'''\n relay_option.off()\n print(f\"relay {number} is turning off\")\n\n\ndef toggle_action(relay_option, number):\n '''To toggle the chosen relay'''\n print(f\"relay {number} is toggling\")\n relay_option.on()\n sleep(0.5)\n relay_option.off()\n sleep(0.5)\n\n\ndef print_help():\n '''Print/show help for informations of the required parameter'''\n print('''\nDescription\n\nArguments:\n number number of relay 1 to 8\n action on, off, or toggle\n\noptional arguments:\n h show this help message and exit\n ''')\n\n\ndef options():\n '''Input the relay number or show help and check the input'''\n input_str = input(\"Which relay? \")\n while True:\n if input_str == 'h':\n print_help()\n return\n\n index = int(input_str) - 1\n if 0 <= index <= 7:\n relay_status(RELAYS[index], input_str)\n relay_action(RELAYS[index], input_str)\n relay_status(RELAYS[index], input_str)\n return\n else:\n print(\"index out of range\")\n return\n\n\ndef relay_action(relay_number, num):\n '''Do the given order(turn on, turn off, toggle) or raise error'''\n action = input(\"Which action? \")\n while True:\n\n try:\n return {\n 'on': on_action,\n 'off': off_action,\n 'toggle': toggle_action\n }[action](relay_number, num)\n except KeyError:\n print(\"Try again\")\n return relay_action(relay_number, num)\n\n\ndef relay_status(relay_number, number):\n '''Check initial relay's status'''\n if relay_number.value == 1:\n print(f\"relay {number} is on\")\n else:\n print(f\"relay {number} is off\")\n\n\nwhile True:\n options()\n sleep(1)\n", "step-ids": [ 6, 7, 9, 10, 11 ] }
[ 6, 7, 9, 10, 11 ]
''' check if word appear in file ''' # easier solution : def findKeyInFile(word, filepath): with open(filepath) as f: for line in f.readlines(): if line.count(word) > 0: return line return None
normal
{ "blob_id": "97fb2388777bcb459b9818495121fdf8318095ca", "index": 8881, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef findKeyInFile(word, filepath):\n with open(filepath) as f:\n for line in f.readlines():\n if line.count(word) > 0:\n return line\n return None\n", "step-3": "'''\ncheck if word appear in file\n'''\n# easier solution :\ndef findKeyInFile(word, filepath):\n with open(filepath) as f:\n for line in f.readlines():\n if line.count(word) > 0:\n return line\n return None\n\n\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from django.contrib import admin from django.urls import path from django.conf.urls import url from . import views urlpatterns = [ path('admin/', admin.site.urls), path(r'', views.index, name='index'), ]
normal
{ "blob_id": "b0fad3847519bb18365a8cd4226d06e9d96a8308", "index": 1258, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('admin/', admin.site.urls), path('', views.index, name=\n 'index')]\n", "step-3": "from django.contrib import admin\nfrom django.urls import path\nfrom django.conf.urls import url\nfrom . import views\nurlpatterns = [path('admin/', admin.site.urls), path('', views.index, name=\n 'index')]\n", "step-4": "from django.contrib import admin\nfrom django.urls import path\nfrom django.conf.urls import url\nfrom . import views\nurlpatterns = [\n path('admin/', admin.site.urls),\n path(r'', views.index, name='index'),\n]\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 3.0.8 on 2021-03-25 13:47 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('Asha', '0005_baby'), ] operations = [ migrations.AlterField( model_name='baby', name='Auth_Id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Asha.BasicDetails'), ), ]
normal
{ "blob_id": "e14b8d0f85042ceda955022bee08b3b3b4c2361d", "index": 7367, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Asha', '0005_baby')]\n operations = [migrations.AlterField(model_name='baby', name='Auth_Id',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n to='Asha.BasicDetails'))]\n", "step-4": "from django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n dependencies = [('Asha', '0005_baby')]\n operations = [migrations.AlterField(model_name='baby', name='Auth_Id',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE,\n to='Asha.BasicDetails'))]\n", "step-5": "# Generated by Django 3.0.8 on 2021-03-25 13:47\r\n\r\nfrom django.db import migrations, models\r\nimport django.db.models.deletion\r\n\r\n\r\nclass Migration(migrations.Migration):\r\n\r\n dependencies = [\r\n ('Asha', '0005_baby'),\r\n ]\r\n\r\n operations = [\r\n migrations.AlterField(\r\n model_name='baby',\r\n name='Auth_Id',\r\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Asha.BasicDetails'),\r\n ),\r\n ]\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
___author__ = 'acmASCIS' ''' by ahani at {9/24/2016} ''' import time class Freq(object): def __init__(self, array): self.__array = array self.__frequency_dict = {} self.__array_length = len(array) self.__running_time = round(time.time() * 1000) def get_original_array(self): return self.__array def get_array_length(self): return self.__array_length def get_frequency_array(self): if self.__frequency_dict is None: raise Exception("The frequency array is empty, check your function implementation!") return self.__frequency_dict def get_running_time(self): return self.__running_time def get_frequency(self): """ Implement your elements frequency algorithm :return: (dictionary) that contains key: element in array, value: frequency. Note that your dictionary should be sorted by key! """ #TODO self.__running_time = round(time.time() * 1000) - self.__running_time return self.__frequency_dict
normal
{ "blob_id": "b569f0a0dda048d6337e1028a240caabf188a174", "index": 9420, "step-1": "<mask token>\n\n\nclass Freq(object):\n\n def __init__(self, array):\n self.__array = array\n self.__frequency_dict = {}\n self.__array_length = len(array)\n self.__running_time = round(time.time() * 1000)\n\n def get_original_array(self):\n return self.__array\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Freq(object):\n\n def __init__(self, array):\n self.__array = array\n self.__frequency_dict = {}\n self.__array_length = len(array)\n self.__running_time = round(time.time() * 1000)\n\n def get_original_array(self):\n return self.__array\n\n def get_array_length(self):\n return self.__array_length\n\n def get_frequency_array(self):\n if self.__frequency_dict is None:\n raise Exception(\n 'The frequency array is empty, check your function implementation!'\n )\n return self.__frequency_dict\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Freq(object):\n\n def __init__(self, array):\n self.__array = array\n self.__frequency_dict = {}\n self.__array_length = len(array)\n self.__running_time = round(time.time() * 1000)\n\n def get_original_array(self):\n return self.__array\n\n def get_array_length(self):\n return self.__array_length\n\n def get_frequency_array(self):\n if self.__frequency_dict is None:\n raise Exception(\n 'The frequency array is empty, check your function implementation!'\n )\n return self.__frequency_dict\n\n def get_running_time(self):\n return self.__running_time\n <mask token>\n", "step-4": "<mask token>\n\n\nclass Freq(object):\n\n def __init__(self, array):\n self.__array = array\n self.__frequency_dict = {}\n self.__array_length = len(array)\n self.__running_time = round(time.time() * 1000)\n\n def get_original_array(self):\n return self.__array\n\n def get_array_length(self):\n return self.__array_length\n\n def get_frequency_array(self):\n if self.__frequency_dict is None:\n raise Exception(\n 'The frequency array is empty, check your function implementation!'\n )\n return self.__frequency_dict\n\n def get_running_time(self):\n return self.__running_time\n\n def get_frequency(self):\n \"\"\"\n Implement your elements frequency algorithm\n :return: (dictionary) that contains key: element in array, value: frequency. Note that your dictionary should be sorted by key!\n \"\"\"\n self.__running_time = round(time.time() * 1000) - self.__running_time\n return self.__frequency_dict\n", "step-5": "___author__ = 'acmASCIS'\n\n'''\n by ahani at {9/24/2016}\n'''\n\nimport time\n\n\nclass Freq(object):\n def __init__(self, array):\n self.__array = array\n self.__frequency_dict = {}\n self.__array_length = len(array)\n self.__running_time = round(time.time() * 1000)\n\n def get_original_array(self):\n return self.__array\n\n def get_array_length(self):\n return self.__array_length\n\n def get_frequency_array(self):\n if self.__frequency_dict is None:\n raise Exception(\"The frequency array is empty, check your function implementation!\")\n\n return self.__frequency_dict\n\n def get_running_time(self):\n return self.__running_time\n\n def get_frequency(self):\n \"\"\"\n Implement your elements frequency algorithm\n :return: (dictionary) that contains key: element in array, value: frequency. Note that your dictionary should be sorted by key!\n \"\"\"\n\n #TODO\n\n\n self.__running_time = round(time.time() * 1000) - self.__running_time\n\n return self.__frequency_dict\n", "step-ids": [ 3, 5, 6, 7, 10 ] }
[ 3, 5, 6, 7, 10 ]
#import fungsi_saya as fs # from fungsi_saya import kalkulator as k # hasil = k(10,5,'+') # print(hasil) from kelas import Siswa siswa_1 = Siswa('Afif', "A.I.", 17, 'XII IPA') siswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') siswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS') #print(Siswa.jum_siswa)
normal
{ "blob_id": "bd2c327915c1e133a6e7b7a46290369440d50347", "index": 3876, "step-1": "<mask token>\n", "step-2": "<mask token>\nsiswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n", "step-3": "from kelas import Siswa\nsiswa_1 = Siswa('Afif', 'A.I.', 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n", "step-4": "#import fungsi_saya as fs\n# from fungsi_saya import kalkulator as k\n\n# hasil = k(10,5,'+')\n# print(hasil)\n\nfrom kelas import Siswa\n\nsiswa_1 = Siswa('Afif', \"A.I.\", 17, 'XII IPA')\nsiswa_2 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_3 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_4 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_5 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_6 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\nsiswa_7 = Siswa('Bayu', 'Sudrajat', 20, 'XII IPS')\n#print(Siswa.jum_siswa)\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import pytest from homeworks.homework6.oop_2 import ( DeadLineError, Homework, HomeworkResult, Student, Teacher, ) def test_creating_objects(): teacher = Teacher("Daniil", "Shadrin") student = Student("Roman", "Petrov") homework = teacher.create_homework("Learn OOP", 1) homework_result = student.do_homework(homework, "I have done this hw") assert isinstance(teacher, Teacher) assert isinstance(student, Student) assert isinstance(homework, Homework) assert isinstance(homework_result, HomeworkResult) def test_do_homework_exception(): teacher = Teacher("Daniil", "Shadrin") student = Student("Lev", "Sokolov") homework = teacher.create_homework("Learn OOP", 0) with pytest.raises(DeadLineError, match=r"You are late"): student.do_homework(homework, "I have done this hw") def test_creating_and_resetting_homework_results_by_teacher(): teacher = Teacher("Daniil", "Shadrin") student = Student("Roman", "Petrov") homework_1 = teacher.create_homework("Learn OOP", 1) homework_1_result = student.do_homework(homework_1, "I have done this hw") assert teacher.check_homework(homework_1_result) is True assert homework_1_result in teacher.homework_done[homework_1] homework_2 = teacher.create_homework("homework 2", 1) homework_2_result = student.do_homework(homework_2, "zero") assert teacher.check_homework(homework_2_result) is False assert teacher.homework_done.get(homework_2) is None homework_3 = teacher.create_homework("homework 3", 1) homework_3_result = student.do_homework(homework_3, "I have done this hw") assert teacher.check_homework(homework_3_result) is True assert homework_3_result in teacher.homework_done.get(homework_3) assert len(teacher.homework_done) == 2 Teacher.reset_results(homework_3) assert len(teacher.homework_done) == 1 Teacher.reset_results() assert len(teacher.homework_done) == 0
normal
{ "blob_id": "8f971ee3b98691a887ee0632afd613bbf4f19aa0", "index": 3505, "step-1": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\n<mask token>\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-3": "<mask token>\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Lev', 'Sokolov')\n homework = teacher.create_homework('Learn OOP', 0)\n with pytest.raises(DeadLineError, match='You are late'):\n student.do_homework(homework, 'I have done this hw')\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-4": "import pytest\nfrom homeworks.homework6.oop_2 import DeadLineError, Homework, HomeworkResult, Student, Teacher\n\n\ndef test_creating_objects():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework = teacher.create_homework('Learn OOP', 1)\n homework_result = student.do_homework(homework, 'I have done this hw')\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Lev', 'Sokolov')\n homework = teacher.create_homework('Learn OOP', 0)\n with pytest.raises(DeadLineError, match='You are late'):\n student.do_homework(homework, 'I have done this hw')\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher('Daniil', 'Shadrin')\n student = Student('Roman', 'Petrov')\n homework_1 = teacher.create_homework('Learn OOP', 1)\n homework_1_result = student.do_homework(homework_1, 'I have done this hw')\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n homework_2 = teacher.create_homework('homework 2', 1)\n homework_2_result = student.do_homework(homework_2, 'zero')\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n homework_3 = teacher.create_homework('homework 3', 1)\n homework_3_result = student.do_homework(homework_3, 'I have done this hw')\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-5": "import pytest\n\nfrom homeworks.homework6.oop_2 import (\n DeadLineError,\n Homework,\n HomeworkResult,\n Student,\n Teacher,\n)\n\n\ndef test_creating_objects():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Roman\", \"Petrov\")\n homework = teacher.create_homework(\"Learn OOP\", 1)\n homework_result = student.do_homework(homework, \"I have done this hw\")\n assert isinstance(teacher, Teacher)\n assert isinstance(student, Student)\n assert isinstance(homework, Homework)\n assert isinstance(homework_result, HomeworkResult)\n\n\ndef test_do_homework_exception():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Lev\", \"Sokolov\")\n homework = teacher.create_homework(\"Learn OOP\", 0)\n with pytest.raises(DeadLineError, match=r\"You are late\"):\n student.do_homework(homework, \"I have done this hw\")\n\n\ndef test_creating_and_resetting_homework_results_by_teacher():\n teacher = Teacher(\"Daniil\", \"Shadrin\")\n student = Student(\"Roman\", \"Petrov\")\n homework_1 = teacher.create_homework(\"Learn OOP\", 1)\n homework_1_result = student.do_homework(homework_1, \"I have done this hw\")\n assert teacher.check_homework(homework_1_result) is True\n assert homework_1_result in teacher.homework_done[homework_1]\n\n homework_2 = teacher.create_homework(\"homework 2\", 1)\n homework_2_result = student.do_homework(homework_2, \"zero\")\n assert teacher.check_homework(homework_2_result) is False\n assert teacher.homework_done.get(homework_2) is None\n\n homework_3 = teacher.create_homework(\"homework 3\", 1)\n homework_3_result = student.do_homework(homework_3, \"I have done this hw\")\n assert teacher.check_homework(homework_3_result) is True\n assert homework_3_result in teacher.homework_done.get(homework_3)\n\n assert len(teacher.homework_done) == 2\n Teacher.reset_results(homework_3)\n assert len(teacher.homework_done) == 1\n Teacher.reset_results()\n assert len(teacher.homework_done) == 0\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import pandas as pd import numpy as np #import data df = pd.read_csv('../.gitignore/PPP_data_to_150k.csv') counties = pd.read_csv('../data/zip_code_database.csv') demographics = pd.read_csv('../data/counties.csv') #filter out all unanswered ethnicities df2 = df[~df.RaceEthnicity.str.contains("Unanswered")] #drop nonprofit column df2.drop('NonProfit', axis=1,inplace=True) #drop row with Nebraska Zip code df2.drop([71479],axis=0, inplace=True) #filter zip code database for Colorado, drop unnecessary columns co_counties = counties[counties['state']=='CO'] co_counties_1 = co_counties.drop(['decommissioned', 'acceptable_cities', 'unacceptable_cities','timezone','area_codes','world_region','country','irs_estimated_population_2015','primary_city','state'],axis=1) #merge counties onto dataframe df_with_counties = pd.merge(df2,co_counties_1, left_on='Zip', right_on='zip') #only include 2018 demographic data demographics_18 = demographics[demographics['YEAR']==2018] demographics_18 = demographics_18.iloc[:,:11] #drop NAN Jobs Retained values for scatter comparison of Jobs Retained to Loan Amount by ethnicity ethnicity_dfs_job_comparison = [x.dropna(subset=['JobsRetained']) for x in ethnicity_dfs] if __name__ == '__main__':
normal
{ "blob_id": "732478fd826e09cf304760dfcc30cd077f74d83e", "index": 2250, "step-1": "import pandas as pd\nimport numpy as np\n\n#import data\ndf = pd.read_csv('../.gitignore/PPP_data_to_150k.csv')\ncounties = pd.read_csv('../data/zip_code_database.csv')\ndemographics = pd.read_csv('../data/counties.csv')\n\n#filter out all unanswered ethnicities\ndf2 = df[~df.RaceEthnicity.str.contains(\"Unanswered\")]\n\n#drop nonprofit column\ndf2.drop('NonProfit', axis=1,inplace=True)\n\n#drop row with Nebraska Zip code\ndf2.drop([71479],axis=0, inplace=True)\n\n#filter zip code database for Colorado, drop unnecessary columns\nco_counties = counties[counties['state']=='CO']\nco_counties_1 = co_counties.drop(['decommissioned', 'acceptable_cities', 'unacceptable_cities','timezone','area_codes','world_region','country','irs_estimated_population_2015','primary_city','state'],axis=1)\n\n#merge counties onto dataframe \ndf_with_counties = pd.merge(df2,co_counties_1, left_on='Zip', right_on='zip')\n\n#only include 2018 demographic data\ndemographics_18 = demographics[demographics['YEAR']==2018]\ndemographics_18 = demographics_18.iloc[:,:11]\n\n#drop NAN Jobs Retained values for scatter comparison of Jobs Retained to Loan Amount by ethnicity\nethnicity_dfs_job_comparison = [x.dropna(subset=['JobsRetained']) for x in ethnicity_dfs]\n\nif __name__ == '__main__':\n\n ", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from typing import List from re import match from utility import ButtonGroup import rumps class RepeatWorkBreak(rumps.App): def __init__(self): rumps.debug_mode(True) self.config = { "app_title": "Repeat Work and Break", "start": "Start", "pause": "Pause Timer", "continue": "Continue Timer", "stop": "Stop Timer", "timeout_message": "Time is up! Take a break :)", "shift_time_in_seconds": 60 * 60 * 1, # 60 seconds * 60 = 1 hour "break_time_in_seconds": 60 * 5, 'shift_setting_buttons': [ { 'title': '1 hour', }, { 'title': '4 hour', }, { 'title': '8 hour', } ], 'break_setting_buttons': [ { 'title': '5 minutes', }, { 'title': '10 minutes', }, { 'title': '15 minutes', } ], } self.app = rumps.App(self.config['app_title']) self.timer = rumps.Timer(self.on_tick, 1) self.shift_setting_button_group = ButtonGroup( self.config['shift_setting_buttons'], callback=self.handle_shift_setting_button) self.break_setting_button_group = ButtonGroup( self.config['break_setting_buttons'], callback=self.handle_shift_setting_button) self.shift_time_in_seconds = self.config["shift_time_in_seconds"] self.break_time_in_seconds = self.config["break_time_in_seconds"] self.elapsed_shift_time_in_hours = 0 self.progress_box = '◻︎' * (self.shift_time_in_seconds // 3600) self.start_pause_button = rumps.MenuItem( title=self.config["start"], callback=self.start_timer) self.stop_button = rumps.MenuItem( title=self.config["stop"], callback=None) self.app.menu = [ { 'Preferences': { "Setting Shift": self.shift_setting_button_group.buttons, "Setting Break / hr": self.break_setting_button_group.buttons, } }, None, self.start_pause_button, self.stop_button, ] def set_up_menu(self): self.timer.stop() self.timer.count = 0 self.app.title = self.config['app_title'] def convert_seconds_to_time_string(self, seconds) -> str: seconds = seconds % (24 * 3600) hours, seconds = divmod(seconds, 3600) minutes, seconds = divmod(seconds, 60) return "%d:%02d:%02d" % (hours, minutes, seconds) def on_tick(self, sender): time_left_in_seconds = sender.end - sender.count time_left_in_string = self.convert_seconds_to_time_string( time_left_in_seconds) if sender.count != 0 and sender.count % 3600 == 0: self.elapsed_shift_time_in_hours += 1 self.update_progress_box() if time_left_in_seconds == 0: rumps.notification( title=self.config["app_title"], subtitle=self.config["timeout_message"], message='') self.stop_timer() self.stop_button.set_callback(None) else: self.stop_button.set_callback(self.stop_timer) self.app.title = self.progress_box + ' | ' + time_left_in_string sender.count += 1 def update_progress_box(self): self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self.shift_time_in_seconds // 3600 - self.elapsed_shift_time_in_hours) * '◻︎' def start_timer(self, sender): if sender.title.lower().startswith(("start", "continue")): if sender.title == self.config["start"]: self.timer.count = 0 self.timer.end = self.shift_time_in_seconds sender.title = self.config["pause"] self.timer.start() else: sender.title = self.config["continue"] self.timer.stop() def stop_timer(self, sender=None): self.set_up_menu() self.stop_button.set_callback(None) self.start_pause_button.title = self.config["start"] def handle_shift_setting_button(self, sender): self.shift_setting_button_group.toggle(sender) selected_hours = int(match(r'^\d+\s{1}', sender.title)[0]) self.progress_box = "◻︎" * selected_hours # update empty progress box self.shift_time_in_seconds = selected_hours * 3600 # hours in seconds def handle_break_setting_button(self, sender): self.break_setting_button_group.toggle(sender) selected_minutes = int(match(r'^\d+\s{1}', sender.title)[0]) self.break_time_in_seconds = selected_minutes * 60 def run(self): self.app.run() if __name__ == "__main__": app = RepeatWorkBreak() app.run()
normal
{ "blob_id": "2ca91c410b8c8d6306d5ed918783a4d77a091ba8", "index": 360, "step-1": "<mask token>\n\n\nclass RepeatWorkBreak(rumps.App):\n <mask token>\n\n def set_up_menu(self):\n self.timer.stop()\n self.timer.count = 0\n self.app.title = self.config['app_title']\n\n def convert_seconds_to_time_string(self, seconds) ->str:\n seconds = seconds % (24 * 3600)\n hours, seconds = divmod(seconds, 3600)\n minutes, seconds = divmod(seconds, 60)\n return '%d:%02d:%02d' % (hours, minutes, seconds)\n\n def on_tick(self, sender):\n time_left_in_seconds = sender.end - sender.count\n time_left_in_string = self.convert_seconds_to_time_string(\n time_left_in_seconds)\n if sender.count != 0 and sender.count % 3600 == 0:\n self.elapsed_shift_time_in_hours += 1\n self.update_progress_box()\n if time_left_in_seconds == 0:\n rumps.notification(title=self.config['app_title'], subtitle=\n self.config['timeout_message'], message='')\n self.stop_timer()\n self.stop_button.set_callback(None)\n else:\n self.stop_button.set_callback(self.stop_timer)\n self.app.title = self.progress_box + ' | ' + time_left_in_string\n sender.count += 1\n\n def update_progress_box(self):\n self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self\n .shift_time_in_seconds // 3600 - self.elapsed_shift_time_in_hours\n ) * '◻︎'\n <mask token>\n <mask token>\n <mask token>\n\n def handle_break_setting_button(self, sender):\n self.break_setting_button_group.toggle(sender)\n selected_minutes = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.break_time_in_seconds = selected_minutes * 60\n\n def run(self):\n self.app.run()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass RepeatWorkBreak(rumps.App):\n\n def __init__(self):\n rumps.debug_mode(True)\n self.config = {'app_title': 'Repeat Work and Break', 'start':\n 'Start', 'pause': 'Pause Timer', 'continue': 'Continue Timer',\n 'stop': 'Stop Timer', 'timeout_message':\n 'Time is up! Take a break :)', 'shift_time_in_seconds': 60 * 60 *\n 1, 'break_time_in_seconds': 60 * 5, 'shift_setting_buttons': [{\n 'title': '1 hour'}, {'title': '4 hour'}, {'title': '8 hour'}],\n 'break_setting_buttons': [{'title': '5 minutes'}, {'title':\n '10 minutes'}, {'title': '15 minutes'}]}\n self.app = rumps.App(self.config['app_title'])\n self.timer = rumps.Timer(self.on_tick, 1)\n self.shift_setting_button_group = ButtonGroup(self.config[\n 'shift_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.break_setting_button_group = ButtonGroup(self.config[\n 'break_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.shift_time_in_seconds = self.config['shift_time_in_seconds']\n self.break_time_in_seconds = self.config['break_time_in_seconds']\n self.elapsed_shift_time_in_hours = 0\n self.progress_box = '◻︎' * (self.shift_time_in_seconds // 3600)\n self.start_pause_button = rumps.MenuItem(title=self.config['start'],\n callback=self.start_timer)\n self.stop_button = rumps.MenuItem(title=self.config['stop'],\n callback=None)\n self.app.menu = [{'Preferences': {'Setting Shift': self.\n shift_setting_button_group.buttons, 'Setting Break / hr': self.\n break_setting_button_group.buttons}}, None, self.\n start_pause_button, self.stop_button]\n\n def set_up_menu(self):\n self.timer.stop()\n self.timer.count = 0\n self.app.title = self.config['app_title']\n\n def convert_seconds_to_time_string(self, seconds) ->str:\n seconds = seconds % (24 * 3600)\n hours, seconds = divmod(seconds, 3600)\n minutes, seconds = divmod(seconds, 60)\n return '%d:%02d:%02d' % (hours, minutes, seconds)\n\n def on_tick(self, sender):\n time_left_in_seconds = sender.end - sender.count\n time_left_in_string = self.convert_seconds_to_time_string(\n time_left_in_seconds)\n if sender.count != 0 and sender.count % 3600 == 0:\n self.elapsed_shift_time_in_hours += 1\n self.update_progress_box()\n if time_left_in_seconds == 0:\n rumps.notification(title=self.config['app_title'], subtitle=\n self.config['timeout_message'], message='')\n self.stop_timer()\n self.stop_button.set_callback(None)\n else:\n self.stop_button.set_callback(self.stop_timer)\n self.app.title = self.progress_box + ' | ' + time_left_in_string\n sender.count += 1\n\n def update_progress_box(self):\n self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self\n .shift_time_in_seconds // 3600 - self.elapsed_shift_time_in_hours\n ) * '◻︎'\n\n def start_timer(self, sender):\n if sender.title.lower().startswith(('start', 'continue')):\n if sender.title == self.config['start']:\n self.timer.count = 0\n self.timer.end = self.shift_time_in_seconds\n sender.title = self.config['pause']\n self.timer.start()\n else:\n sender.title = self.config['continue']\n self.timer.stop()\n <mask token>\n\n def handle_shift_setting_button(self, sender):\n self.shift_setting_button_group.toggle(sender)\n selected_hours = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.progress_box = '◻︎' * selected_hours\n self.shift_time_in_seconds = selected_hours * 3600\n\n def handle_break_setting_button(self, sender):\n self.break_setting_button_group.toggle(sender)\n selected_minutes = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.break_time_in_seconds = selected_minutes * 60\n\n def run(self):\n self.app.run()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass RepeatWorkBreak(rumps.App):\n\n def __init__(self):\n rumps.debug_mode(True)\n self.config = {'app_title': 'Repeat Work and Break', 'start':\n 'Start', 'pause': 'Pause Timer', 'continue': 'Continue Timer',\n 'stop': 'Stop Timer', 'timeout_message':\n 'Time is up! Take a break :)', 'shift_time_in_seconds': 60 * 60 *\n 1, 'break_time_in_seconds': 60 * 5, 'shift_setting_buttons': [{\n 'title': '1 hour'}, {'title': '4 hour'}, {'title': '8 hour'}],\n 'break_setting_buttons': [{'title': '5 minutes'}, {'title':\n '10 minutes'}, {'title': '15 minutes'}]}\n self.app = rumps.App(self.config['app_title'])\n self.timer = rumps.Timer(self.on_tick, 1)\n self.shift_setting_button_group = ButtonGroup(self.config[\n 'shift_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.break_setting_button_group = ButtonGroup(self.config[\n 'break_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.shift_time_in_seconds = self.config['shift_time_in_seconds']\n self.break_time_in_seconds = self.config['break_time_in_seconds']\n self.elapsed_shift_time_in_hours = 0\n self.progress_box = '◻︎' * (self.shift_time_in_seconds // 3600)\n self.start_pause_button = rumps.MenuItem(title=self.config['start'],\n callback=self.start_timer)\n self.stop_button = rumps.MenuItem(title=self.config['stop'],\n callback=None)\n self.app.menu = [{'Preferences': {'Setting Shift': self.\n shift_setting_button_group.buttons, 'Setting Break / hr': self.\n break_setting_button_group.buttons}}, None, self.\n start_pause_button, self.stop_button]\n\n def set_up_menu(self):\n self.timer.stop()\n self.timer.count = 0\n self.app.title = self.config['app_title']\n\n def convert_seconds_to_time_string(self, seconds) ->str:\n seconds = seconds % (24 * 3600)\n hours, seconds = divmod(seconds, 3600)\n minutes, seconds = divmod(seconds, 60)\n return '%d:%02d:%02d' % (hours, minutes, seconds)\n\n def on_tick(self, sender):\n time_left_in_seconds = sender.end - sender.count\n time_left_in_string = self.convert_seconds_to_time_string(\n time_left_in_seconds)\n if sender.count != 0 and sender.count % 3600 == 0:\n self.elapsed_shift_time_in_hours += 1\n self.update_progress_box()\n if time_left_in_seconds == 0:\n rumps.notification(title=self.config['app_title'], subtitle=\n self.config['timeout_message'], message='')\n self.stop_timer()\n self.stop_button.set_callback(None)\n else:\n self.stop_button.set_callback(self.stop_timer)\n self.app.title = self.progress_box + ' | ' + time_left_in_string\n sender.count += 1\n\n def update_progress_box(self):\n self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self\n .shift_time_in_seconds // 3600 - self.elapsed_shift_time_in_hours\n ) * '◻︎'\n\n def start_timer(self, sender):\n if sender.title.lower().startswith(('start', 'continue')):\n if sender.title == self.config['start']:\n self.timer.count = 0\n self.timer.end = self.shift_time_in_seconds\n sender.title = self.config['pause']\n self.timer.start()\n else:\n sender.title = self.config['continue']\n self.timer.stop()\n\n def stop_timer(self, sender=None):\n self.set_up_menu()\n self.stop_button.set_callback(None)\n self.start_pause_button.title = self.config['start']\n\n def handle_shift_setting_button(self, sender):\n self.shift_setting_button_group.toggle(sender)\n selected_hours = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.progress_box = '◻︎' * selected_hours\n self.shift_time_in_seconds = selected_hours * 3600\n\n def handle_break_setting_button(self, sender):\n self.break_setting_button_group.toggle(sender)\n selected_minutes = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.break_time_in_seconds = selected_minutes * 60\n\n def run(self):\n self.app.run()\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass RepeatWorkBreak(rumps.App):\n\n def __init__(self):\n rumps.debug_mode(True)\n self.config = {'app_title': 'Repeat Work and Break', 'start':\n 'Start', 'pause': 'Pause Timer', 'continue': 'Continue Timer',\n 'stop': 'Stop Timer', 'timeout_message':\n 'Time is up! Take a break :)', 'shift_time_in_seconds': 60 * 60 *\n 1, 'break_time_in_seconds': 60 * 5, 'shift_setting_buttons': [{\n 'title': '1 hour'}, {'title': '4 hour'}, {'title': '8 hour'}],\n 'break_setting_buttons': [{'title': '5 minutes'}, {'title':\n '10 minutes'}, {'title': '15 minutes'}]}\n self.app = rumps.App(self.config['app_title'])\n self.timer = rumps.Timer(self.on_tick, 1)\n self.shift_setting_button_group = ButtonGroup(self.config[\n 'shift_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.break_setting_button_group = ButtonGroup(self.config[\n 'break_setting_buttons'], callback=self.handle_shift_setting_button\n )\n self.shift_time_in_seconds = self.config['shift_time_in_seconds']\n self.break_time_in_seconds = self.config['break_time_in_seconds']\n self.elapsed_shift_time_in_hours = 0\n self.progress_box = '◻︎' * (self.shift_time_in_seconds // 3600)\n self.start_pause_button = rumps.MenuItem(title=self.config['start'],\n callback=self.start_timer)\n self.stop_button = rumps.MenuItem(title=self.config['stop'],\n callback=None)\n self.app.menu = [{'Preferences': {'Setting Shift': self.\n shift_setting_button_group.buttons, 'Setting Break / hr': self.\n break_setting_button_group.buttons}}, None, self.\n start_pause_button, self.stop_button]\n\n def set_up_menu(self):\n self.timer.stop()\n self.timer.count = 0\n self.app.title = self.config['app_title']\n\n def convert_seconds_to_time_string(self, seconds) ->str:\n seconds = seconds % (24 * 3600)\n hours, seconds = divmod(seconds, 3600)\n minutes, seconds = divmod(seconds, 60)\n return '%d:%02d:%02d' % (hours, minutes, seconds)\n\n def on_tick(self, sender):\n time_left_in_seconds = sender.end - sender.count\n time_left_in_string = self.convert_seconds_to_time_string(\n time_left_in_seconds)\n if sender.count != 0 and sender.count % 3600 == 0:\n self.elapsed_shift_time_in_hours += 1\n self.update_progress_box()\n if time_left_in_seconds == 0:\n rumps.notification(title=self.config['app_title'], subtitle=\n self.config['timeout_message'], message='')\n self.stop_timer()\n self.stop_button.set_callback(None)\n else:\n self.stop_button.set_callback(self.stop_timer)\n self.app.title = self.progress_box + ' | ' + time_left_in_string\n sender.count += 1\n\n def update_progress_box(self):\n self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self\n .shift_time_in_seconds // 3600 - self.elapsed_shift_time_in_hours\n ) * '◻︎'\n\n def start_timer(self, sender):\n if sender.title.lower().startswith(('start', 'continue')):\n if sender.title == self.config['start']:\n self.timer.count = 0\n self.timer.end = self.shift_time_in_seconds\n sender.title = self.config['pause']\n self.timer.start()\n else:\n sender.title = self.config['continue']\n self.timer.stop()\n\n def stop_timer(self, sender=None):\n self.set_up_menu()\n self.stop_button.set_callback(None)\n self.start_pause_button.title = self.config['start']\n\n def handle_shift_setting_button(self, sender):\n self.shift_setting_button_group.toggle(sender)\n selected_hours = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.progress_box = '◻︎' * selected_hours\n self.shift_time_in_seconds = selected_hours * 3600\n\n def handle_break_setting_button(self, sender):\n self.break_setting_button_group.toggle(sender)\n selected_minutes = int(match('^\\\\d+\\\\s{1}', sender.title)[0])\n self.break_time_in_seconds = selected_minutes * 60\n\n def run(self):\n self.app.run()\n\n\nif __name__ == '__main__':\n app = RepeatWorkBreak()\n app.run()\n", "step-5": "from typing import List\nfrom re import match\nfrom utility import ButtonGroup\nimport rumps\n\n\nclass RepeatWorkBreak(rumps.App):\n def __init__(self):\n rumps.debug_mode(True)\n\n self.config = {\n \"app_title\": \"Repeat Work and Break\",\n \"start\": \"Start\",\n \"pause\": \"Pause Timer\",\n \"continue\": \"Continue Timer\",\n \"stop\": \"Stop Timer\",\n \"timeout_message\": \"Time is up! Take a break :)\",\n \"shift_time_in_seconds\": 60 * 60 * 1, # 60 seconds * 60 = 1 hour\n \"break_time_in_seconds\": 60 * 5,\n 'shift_setting_buttons': [\n {\n 'title': '1 hour',\n },\n {\n 'title': '4 hour',\n },\n {\n 'title': '8 hour',\n }\n ],\n 'break_setting_buttons': [\n {\n 'title': '5 minutes',\n },\n {\n 'title': '10 minutes',\n },\n {\n 'title': '15 minutes',\n }\n ],\n }\n self.app = rumps.App(self.config['app_title'])\n self.timer = rumps.Timer(self.on_tick, 1)\n self.shift_setting_button_group = ButtonGroup(\n self.config['shift_setting_buttons'], callback=self.handle_shift_setting_button)\n self.break_setting_button_group = ButtonGroup(\n self.config['break_setting_buttons'], callback=self.handle_shift_setting_button)\n self.shift_time_in_seconds = self.config[\"shift_time_in_seconds\"]\n self.break_time_in_seconds = self.config[\"break_time_in_seconds\"]\n self.elapsed_shift_time_in_hours = 0\n self.progress_box = '◻︎' * (self.shift_time_in_seconds // 3600)\n self.start_pause_button = rumps.MenuItem(\n title=self.config[\"start\"], callback=self.start_timer)\n self.stop_button = rumps.MenuItem(\n title=self.config[\"stop\"], callback=None)\n self.app.menu = [\n {\n 'Preferences':\n {\n \"Setting Shift\": self.shift_setting_button_group.buttons,\n \"Setting Break / hr\": self.break_setting_button_group.buttons,\n }\n },\n None,\n self.start_pause_button,\n self.stop_button,\n ]\n\n def set_up_menu(self):\n self.timer.stop()\n self.timer.count = 0\n self.app.title = self.config['app_title']\n\n def convert_seconds_to_time_string(self, seconds) -> str:\n seconds = seconds % (24 * 3600)\n hours, seconds = divmod(seconds, 3600)\n minutes, seconds = divmod(seconds, 60)\n\n return \"%d:%02d:%02d\" % (hours, minutes, seconds)\n\n def on_tick(self, sender):\n time_left_in_seconds = sender.end - sender.count\n\n time_left_in_string = self.convert_seconds_to_time_string(\n time_left_in_seconds)\n if sender.count != 0 and sender.count % 3600 == 0:\n self.elapsed_shift_time_in_hours += 1\n self.update_progress_box()\n if time_left_in_seconds == 0:\n rumps.notification(\n title=self.config[\"app_title\"], subtitle=self.config[\"timeout_message\"], message='')\n self.stop_timer()\n self.stop_button.set_callback(None)\n else:\n self.stop_button.set_callback(self.stop_timer)\n\n self.app.title = self.progress_box + ' | ' + time_left_in_string\n sender.count += 1\n\n def update_progress_box(self):\n self.progress_box = self.elapsed_shift_time_in_hours * '☑︎' + (self.shift_time_in_seconds // 3600 -\n self.elapsed_shift_time_in_hours) * '◻︎'\n\n def start_timer(self, sender):\n if sender.title.lower().startswith((\"start\", \"continue\")):\n if sender.title == self.config[\"start\"]:\n self.timer.count = 0\n self.timer.end = self.shift_time_in_seconds\n sender.title = self.config[\"pause\"]\n self.timer.start()\n else:\n sender.title = self.config[\"continue\"]\n self.timer.stop()\n\n def stop_timer(self, sender=None):\n self.set_up_menu()\n self.stop_button.set_callback(None)\n self.start_pause_button.title = self.config[\"start\"]\n\n def handle_shift_setting_button(self, sender):\n self.shift_setting_button_group.toggle(sender)\n selected_hours = int(match(r'^\\d+\\s{1}', sender.title)[0])\n self.progress_box = \"◻︎\" * selected_hours # update empty progress box\n self.shift_time_in_seconds = selected_hours * 3600 # hours in seconds\n\n def handle_break_setting_button(self, sender):\n self.break_setting_button_group.toggle(sender)\n selected_minutes = int(match(r'^\\d+\\s{1}', sender.title)[0])\n self.break_time_in_seconds = selected_minutes * 60\n\n def run(self):\n self.app.run()\n\n\nif __name__ == \"__main__\":\n app = RepeatWorkBreak()\n app.run()\n", "step-ids": [ 7, 10, 11, 12, 14 ] }
[ 7, 10, 11, 12, 14 ]
from yapsy.IPlugin import IPlugin import wolframalpha import yaml keys_file = open("friday/plugins/KEYS") keys = yaml.load(keys_file) keys_file.close() class Wolfram(IPlugin): def can_perform(self, friday, request): return 'result' in request and 'resolvedQuery' in request['result']\ and 'action' in request['result'] and request['result']['action'] == 'wisdom.unknown' # result = request['result'] # Assumes we're using gTTS # # Get the text that is supposed to be spoken aloud # reply = result['fulfillment']['speech'] # # Get what the service thought you said # question = result['resolvedQuery'] def perform(self, friday, request): question = request['result']['resolvedQuery'] client = wolframalpha.Client(keys['WOLFRAM']) res = client.query(question) answer = str(list(res)) """if len(res): results = list(res.results) if len(results): answer = results[0].text[0] else: answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods if each_answer.subpods[0].text]) else: # answer = "Sorry, Wolfram doesn't know the answer." answer = "" """ """# Replace some of its notation so it's more easily read. answer = answer.replace('\n', '. ').replace('~~', ' or about ') # Get the result to a computation and don't bother reading the original question. if '=' in answer: answer = answer[answer.index('=') + 1:].strip() """ return answer # # def wolfram_query(question): # # Every service should have a general set of requirements under which # # it is activated, this would be one of the ones that Wolfram Alpha # # uses, it does have others as well. Consider having a single method # # in the plugin system that returns a boolean determining whether # # a plugin should be activated. # if question: # # # def wolfram_query_old(question): # import wolframalpha # # Every service should have a general set of requirements under which # # it is activated, this would be one of the ones that Wolfram Alpha # # uses, it does have others as well. Consider having a single method # # in the plugin system that returns a boolean determining whether # # a plugin should be activated. # if question.lower().startswith('wolfram'): # question = question[8:] # client = wolframalpha.Client(user_info.WOLFRAM_KEY) # res = client.query(question) # try: # return next(res.results).text # This really needs to be changed. # # I shouldn't have to rely upon error catching for my flow control. # except StopIteration: # pass # try: # answer = ' '.join([each_answer.text for each_answer in res.pods if each_answer]) # except TypeError: # answer = None # if not answer: # answer = "Sorry, Wolfram doesn't know the answer." # # # Replace some of its notation so it's more easily read. # answer = answer.replace('\n', '; ').replace('~~', ' or about ') # # Get the result to a computation and don't bother reading the original question. # if '=' in answer: # answer = answer[answer.index('=')+1:] # return [answer, None] # Follows answer format of [text, action] #
normal
{ "blob_id": "57564c2e94a65187bf5e033ee06926fb593e11a7", "index": 7733, "step-1": "<mask token>\n\n\nclass Wolfram(IPlugin):\n\n def can_perform(self, friday, request):\n return 'result' in request and 'resolvedQuery' in request['result'\n ] and 'action' in request['result'] and request['result']['action'\n ] == 'wisdom.unknown'\n\n def perform(self, friday, request):\n question = request['result']['resolvedQuery']\n client = wolframalpha.Client(keys['WOLFRAM'])\n res = client.query(question)\n answer = str(list(res))\n \"\"\"if len(res):\n results = list(res.results)\n if len(results):\n answer = results[0].text[0]\n else:\n answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods\n if each_answer.subpods[0].text])\n else:\n # answer = \"Sorry, Wolfram doesn't know the answer.\"\n answer = \"\"\n \"\"\"\n \"\"\"# Replace some of its notation so it's more easily read.\n answer = answer.replace('\n', '. ').replace('~~', ' or about ')\n # Get the result to a computation and don't bother reading the original question.\n if '=' in answer:\n answer = answer[answer.index('=') + 1:].strip()\n \"\"\"\n return answer\n", "step-2": "<mask token>\nkeys_file.close()\n\n\nclass Wolfram(IPlugin):\n\n def can_perform(self, friday, request):\n return 'result' in request and 'resolvedQuery' in request['result'\n ] and 'action' in request['result'] and request['result']['action'\n ] == 'wisdom.unknown'\n\n def perform(self, friday, request):\n question = request['result']['resolvedQuery']\n client = wolframalpha.Client(keys['WOLFRAM'])\n res = client.query(question)\n answer = str(list(res))\n \"\"\"if len(res):\n results = list(res.results)\n if len(results):\n answer = results[0].text[0]\n else:\n answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods\n if each_answer.subpods[0].text])\n else:\n # answer = \"Sorry, Wolfram doesn't know the answer.\"\n answer = \"\"\n \"\"\"\n \"\"\"# Replace some of its notation so it's more easily read.\n answer = answer.replace('\n', '. ').replace('~~', ' or about ')\n # Get the result to a computation and don't bother reading the original question.\n if '=' in answer:\n answer = answer[answer.index('=') + 1:].strip()\n \"\"\"\n return answer\n", "step-3": "<mask token>\nkeys_file = open('friday/plugins/KEYS')\nkeys = yaml.load(keys_file)\nkeys_file.close()\n\n\nclass Wolfram(IPlugin):\n\n def can_perform(self, friday, request):\n return 'result' in request and 'resolvedQuery' in request['result'\n ] and 'action' in request['result'] and request['result']['action'\n ] == 'wisdom.unknown'\n\n def perform(self, friday, request):\n question = request['result']['resolvedQuery']\n client = wolframalpha.Client(keys['WOLFRAM'])\n res = client.query(question)\n answer = str(list(res))\n \"\"\"if len(res):\n results = list(res.results)\n if len(results):\n answer = results[0].text[0]\n else:\n answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods\n if each_answer.subpods[0].text])\n else:\n # answer = \"Sorry, Wolfram doesn't know the answer.\"\n answer = \"\"\n \"\"\"\n \"\"\"# Replace some of its notation so it's more easily read.\n answer = answer.replace('\n', '. ').replace('~~', ' or about ')\n # Get the result to a computation and don't bother reading the original question.\n if '=' in answer:\n answer = answer[answer.index('=') + 1:].strip()\n \"\"\"\n return answer\n", "step-4": "from yapsy.IPlugin import IPlugin\nimport wolframalpha\nimport yaml\nkeys_file = open('friday/plugins/KEYS')\nkeys = yaml.load(keys_file)\nkeys_file.close()\n\n\nclass Wolfram(IPlugin):\n\n def can_perform(self, friday, request):\n return 'result' in request and 'resolvedQuery' in request['result'\n ] and 'action' in request['result'] and request['result']['action'\n ] == 'wisdom.unknown'\n\n def perform(self, friday, request):\n question = request['result']['resolvedQuery']\n client = wolframalpha.Client(keys['WOLFRAM'])\n res = client.query(question)\n answer = str(list(res))\n \"\"\"if len(res):\n results = list(res.results)\n if len(results):\n answer = results[0].text[0]\n else:\n answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods\n if each_answer.subpods[0].text])\n else:\n # answer = \"Sorry, Wolfram doesn't know the answer.\"\n answer = \"\"\n \"\"\"\n \"\"\"# Replace some of its notation so it's more easily read.\n answer = answer.replace('\n', '. ').replace('~~', ' or about ')\n # Get the result to a computation and don't bother reading the original question.\n if '=' in answer:\n answer = answer[answer.index('=') + 1:].strip()\n \"\"\"\n return answer\n", "step-5": "from yapsy.IPlugin import IPlugin\nimport wolframalpha\nimport yaml\n\nkeys_file = open(\"friday/plugins/KEYS\")\nkeys = yaml.load(keys_file)\nkeys_file.close()\n\n\nclass Wolfram(IPlugin):\n def can_perform(self, friday, request):\n return 'result' in request and 'resolvedQuery' in request['result']\\\n and 'action' in request['result'] and request['result']['action'] == 'wisdom.unknown'\n # result = request['result'] # Assumes we're using gTTS\n # # Get the text that is supposed to be spoken aloud\n # reply = result['fulfillment']['speech']\n # # Get what the service thought you said\n # question = result['resolvedQuery']\n\n\n def perform(self, friday, request):\n question = request['result']['resolvedQuery']\n client = wolframalpha.Client(keys['WOLFRAM'])\n res = client.query(question)\n answer = str(list(res))\n \"\"\"if len(res):\n results = list(res.results)\n if len(results):\n answer = results[0].text[0]\n else:\n answer = ' '.join([each_answer.subpods[0].text for each_answer in res.pods\n if each_answer.subpods[0].text])\n else:\n # answer = \"Sorry, Wolfram doesn't know the answer.\"\n answer = \"\"\n \"\"\"\n \"\"\"# Replace some of its notation so it's more easily read.\n answer = answer.replace('\\n', '. ').replace('~~', ' or about ')\n # Get the result to a computation and don't bother reading the original question.\n if '=' in answer:\n answer = answer[answer.index('=') + 1:].strip()\n \"\"\"\n return answer\n\n#\n# def wolfram_query(question):\n# # Every service should have a general set of requirements under which\n# # it is activated, this would be one of the ones that Wolfram Alpha\n# # uses, it does have others as well. Consider having a single method\n# # in the plugin system that returns a boolean determining whether\n# # a plugin should be activated.\n# if question:\n#\n#\n# def wolfram_query_old(question):\n# import wolframalpha\n# # Every service should have a general set of requirements under which\n# # it is activated, this would be one of the ones that Wolfram Alpha\n# # uses, it does have others as well. Consider having a single method\n# # in the plugin system that returns a boolean determining whether\n# # a plugin should be activated.\n# if question.lower().startswith('wolfram'):\n# question = question[8:]\n# client = wolframalpha.Client(user_info.WOLFRAM_KEY)\n# res = client.query(question)\n# try:\n# return next(res.results).text # This really needs to be changed.\n# # I shouldn't have to rely upon error catching for my flow control.\n# except StopIteration:\n# pass\n# try:\n# answer = ' '.join([each_answer.text for each_answer in res.pods if each_answer])\n# except TypeError:\n# answer = None\n# if not answer:\n# answer = \"Sorry, Wolfram doesn't know the answer.\"\n#\n# # Replace some of its notation so it's more easily read.\n# answer = answer.replace('\\n', '; ').replace('~~', ' or about ')\n# # Get the result to a computation and don't bother reading the original question.\n# if '=' in answer:\n# answer = answer[answer.index('=')+1:]\n# return [answer, None] # Follows answer format of [text, action]\n#\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import database import nltk def pop(i): # pupulate the words table loc = i sentencesTrial = [] File = open('words.txt') lines = File.read() sentences = nltk.sent_tokenize(lines) locations = ["Castle","Beach","Beach","Ghost Town","Ghost Town","Haunted House","Jungle","Carnival", "Ghost Town", "Highway", "Castle", "Pyramid","Beach","Beach","Carnival", "Highway", "Castle" ,"Jungle" ] for sentence in sentences: for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))): if(pos == 'NN'): database.nouns.append(word.lower()) sentencesTrial.append("NN") elif (pos == 'NNS'): database.nounsplural.append(word.lower()) sentencesTrial.append("NNS") elif (pos == 'NNP'): database.propernounS.append(word.lower()) sentencesTrial.append("NNP") elif (pos == 'NNPS'): database.propernounP.append(word.lower()) sentencesTrial.append("NNPS") elif (pos == 'JJ'): database.adjective.append(word.lower()) sentencesTrial.append("JJ") elif (pos == 'VB' or pos == 'VBG' or pos == 'VBN'): database.verbs.append(word.lower()) sentencesTrial.append("VB") elif (pos == 'VBD'): database.verbpast.append(word.lower()) sentencesTrial.append("VBD") elif (pos == 'VBZ' or pos == 'VBP'): database.verb3person.append(word.lower()) sentencesTrial.append("VBZ") elif (pos == 'RB' or pos == 'RBR' or pos == 'RBS'): database.adverb.append(word) sentencesTrial.append("RB".lower()) else: if(word == ","): database.useless.append(word) sentencesTrial.append(",") break elif(word == "."): database.useless.append(word) sentencesTrial.append(".") break else: database.unUsedWords.append(word.lower()) break nounCount = [] trueNouns = [] for x in database.nouns: if x in trueNouns: a = trueNouns.index(x) nounCount[a] +=1 else: trueNouns.append(x) a = trueNouns.index(x) nounCount.append(1) for x in trueNouns: i = trueNouns.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x,'NN',locations[loc],nounCount[i])) nounpCount = [] trueNounsp = [] for x in database.nounsplural: if x in trueNounsp: a = trueNounsp.index(x) nounpCount[a] += 1 else: trueNounsp.append(x) a = trueNounsp.index(x) nounpCount.append(1) for x in trueNounsp: i = trueNounsp.index(x) database.cursor.execute( "INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'NNS', locations[loc], nounpCount[i])) pnounCount = [] truepNouns = [] for x in database.propernounS: if x in truepNouns: a = truepNouns.index(x) pnounCount[a] += 1 else: truepNouns.append(x) a = truepNouns.index(x) pnounCount.append(1) for x in truepNouns: i = truepNouns.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'NNP', locations[loc], pnounCount[i])) pnounpCount = [] truepNounsp = [] for x in database.propernounP: if x in truepNounsp: a = truepNounsp.index(x) pnounpCount[a] += 1 else: truepNounsp.append(x) a = truepNounsp.index(x) pnounpCount.append(1) for x in truepNounsp: i = truepNounsp.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'NNPS', locations[loc], pnounpCount[i])) adjectCount = [] trueadject = [] for x in database.adjective: if x in trueadject: a = trueadject.index(x) adjectCount[a] += 1 else: trueadject.append(x) a = trueadject.index(x) adjectCount.append(1) for x in trueadject: i = trueadject.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'JJ', locations[loc], adjectCount[i])) verbCount = [] trueVerb = [] for x in database.verbs: if x in trueVerb: a = trueVerb.index(x) verbCount[a] += 1 else: trueVerb.append(x) a = trueVerb.index(x) verbCount.append(1) for x in trueVerb: i = trueVerb.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'VB', locations[loc], verbCount[i])) verbpCount = [] trueVerbp = [] for x in database.verbpast: if x in trueVerbp: a = trueVerbp.index(x) verbpCount[a] += 1 else: trueVerbp.append(x) a = trueVerbp.index(x) verbpCount.append(1) for x in trueVerbp: i = trueVerbp.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'VBD', locations[loc], verbpCount[i])) verb3pCount = [] trueVerb3p = [] for x in database.verb3person: if x in trueVerb3p: a = trueVerb3p.index(x) verb3pCount[a] += 1 else: trueVerb3p.append(x) a = trueVerb3p.index(x) verb3pCount.append(1) for x in trueVerb3p: i = trueVerb3p.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'VBZ', locations[loc], verb3pCount[i])) adverbCount = [] trueAdverb = [] for x in database.adverb: if x in trueAdverb: a = trueAdverb.index(x) adverbCount[a] += 1 else: trueAdverb.append(x) a = trueAdverb.index(x) adverbCount.append(1) for x in trueAdverb: i = trueAdverb.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'RB', locations[loc], adverbCount[i])) uselessCount = [] trueUseless = [] for x in database.useless: if x in trueUseless: a = trueUseless.index(x) uselessCount[a] += 1 else: trueUseless.append(x) a = trueUseless.index(x) uselessCount.append(1) for x in trueUseless: i = trueUseless.index(x) database.cursor.execute( "INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'PU', locations[loc], uselessCount[i])) uuWCount = [] trueuuW = [] for x in database.unUsedWords: if x in trueuuW: a = trueuuW.index(x) uuWCount[a] += 1 else: trueuuW.append(x) a = trueuuW.index(x) uuWCount.append(1) for x in trueuuW: i = trueuuW.index(x) database.cursor.execute("INSERT INTO words VALUES (?, ?, ?, ?)", (x, 'US', locations[loc], uuWCount[i])) def pop2(): #populate the monster and characters table ####populating the monsters database.cursor.execute("INSERT INTO monsters VALUES ('Knight','Castle','Old Man Jenkins','Picture')") database.cursor.execute("INSERT INTO monsters VALUES ('Vampire' , 'Castle' , 'Andrew the Tour', 'Vampire Make Up and fake blood')") database.cursor.execute("INSERT INTO monsters VALUES ('Shadow' , 'Castle' , 'Frank the Janitor' , 'Black paint')") database.cursor.execute("INSERT INTO monsters VALUES ('Ghost Pirate','Beach','Bill the Lifeguard','Pirate Costume')") database.cursor.execute("INSERT INTO monsters VALUES ('Seaweed Monster','Beach','Old Fisherman Joe','Seaweed')") database.cursor.execute("INSERT INTO monsters VALUES ('Shark','Beach','The Mayor','Shark fins')") database.cursor.execute("INSERT INTO monsters VALUES ('Cowboy Ghost','Ghost Town','Jerry the Businessman ','Cowboy hat')") database.cursor.execute("INSERT INTO monsters VALUES ('Miner Ghost','Ghost Town','Gold Hunter Phil','Dusty shoes')") database.cursor.execute("INSERT INTO monsters VALUES ('Headless Horse Man','Ghost Town','Envirnmentalist Paddy','Drawing of rig to appear headless')") database.cursor.execute("INSERT INTO monsters VALUES ('Francinstein','Haunted House','Sir Godfree','Green paint')") database.cursor.execute("INSERT INTO monsters VALUES ('Zombie','Haunted House','The Waiter','Zombie Make Up and fake boy parts')") database.cursor.execute("INSERT INTO monsters VALUES ('Ghost','Haunted House','Jimmy','Glow in the dark paint on cloths')") database.cursor.execute("INSERT INTO monsters VALUES ('Ape Man','Jungle','Explorer Fred','Ape Costume')") database.cursor.execute("INSERT INTO monsters VALUES ('Animal Ghosts','Jungle','Environmentalist Jennie','Scratch Marks')") database.cursor.execute("INSERT INTO monsters VALUES ('Pterodactyl','Jungle','Tour Guide Bill','Book on flight')") database.cursor.execute("INSERT INTO monsters VALUES ('Clown Ghost','Carnival','Ring Master','Old Clown Costumes')") database.cursor.execute("INSERT INTO monsters VALUES ('Zombie','Carnival','Blind Knife Thrower','Eye tests saying he is not blind')") database.cursor.execute("INSERT INTO monsters VALUES ('Animals','Carnival','Worlds Strongest Man','Scratch marks')") database.cursor.execute("INSERT INTO monsters VALUES ('Ghost Car','Highway','Old Town Mayor','Car ownership documents')") database.cursor.execute("INSERT INTO monsters VALUES ('White Lady Ghost','Highway','Miss Anderson','White Dress')") database.cursor.execute("INSERT INTO monsters VALUES ('Aliens','Highway','Conspiracy Tom','Fake Space ship blueprint')") database.cursor.execute("INSERT INTO monsters VALUES ('Mummy','Pyramid','Museum Curator Petterson ','Bandages')") database.cursor.execute("INSERT INTO monsters VALUES ('Sand Man','Pyramid','Ramesh the Tour Guide','Sand')") database.cursor.execute("INSERT INTO monsters VALUES ('Sphynx','Pyramid','Tour Guide Bob','scratch marks')") ####populating the characters database.cursor.execute("INSERT INTO characters VALUES ('Scooby Doo','Scooby Dooby Doo')") database.cursor.execute("INSERT INTO characters VALUES ('Shaggy','Zoinks!')") database.cursor.execute("INSERT INTO characters VALUES ('Fred','Lets Split up and look for clues')") database.cursor.execute("INSERT INTO characters VALUES ('Velma','My glasses. I cant find my glasses')") database.cursor.execute("INSERT INTO characters VALUES ('Daphne','Do you want a Scooby Snack')") database.cursor.execute("INSERT INTO location VALUES ('Castle','Stormy')") database.cursor.execute("INSERT INTO location VALUES ('Castle','Raining')") database.cursor.execute("INSERT INTO location VALUES ('Castle','Misty')") database.cursor.execute("INSERT INTO location VALUES ('Castle','Dark')") database.cursor.execute("INSERT INTO location VALUES ('Beach','Sunny')") database.cursor.execute("INSERT INTO location VALUES ('Beach','Misty')") database.cursor.execute("INSERT INTO location VALUES ('Ghost Town','Cloudy')") database.cursor.execute("INSERT INTO location VALUES ('Ghost TOwn','Foggy')") database.cursor.execute("INSERT INTO location VALUES ('Haunted House','Stormy')") database.cursor.execute("INSERT INTO location VALUES ('Haunted House','Misty')") database.cursor.execute("INSERT INTO location VALUES ('Jungle','Sunny')") database.cursor.execute("INSERT INTO location VALUES ('Jungle','Raining')") database.cursor.execute("INSERT INTO location VALUES ('Carnival','Dark')") database.cursor.execute("INSERT INTO location VALUES ('Carnival','Cloudy')") database.cursor.execute("INSERT INTO location VALUES ('Carnival','Overcast')") database.cursor.execute("INSERT INTO location VALUES ('Highway','Overcast')") database.cursor.execute("INSERT INTO location VALUES ('Highway','Sunny')") database.cursor.execute("INSERT INTO location VALUES ('Pyramid','Overcast')") database.cursor.execute("INSERT INTO location VALUES ('Pyramid','Sunny')") database.cursor.execute("INSERT INTO location VALUES ('Pyramid','Raining')")
normal
{ "blob_id": "e7ac5c1010330aec81ce505fd7f52ccdeddb76de", "index": 8923, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef pop(i):\n loc = i\n sentencesTrial = []\n File = open('words.txt')\n lines = File.read()\n sentences = nltk.sent_tokenize(lines)\n locations = ['Castle', 'Beach', 'Beach', 'Ghost Town', 'Ghost Town',\n 'Haunted House', 'Jungle', 'Carnival', 'Ghost Town', 'Highway',\n 'Castle', 'Pyramid', 'Beach', 'Beach', 'Carnival', 'Highway',\n 'Castle', 'Jungle']\n for sentence in sentences:\n for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):\n if pos == 'NN':\n database.nouns.append(word.lower())\n sentencesTrial.append('NN')\n elif pos == 'NNS':\n database.nounsplural.append(word.lower())\n sentencesTrial.append('NNS')\n elif pos == 'NNP':\n database.propernounS.append(word.lower())\n sentencesTrial.append('NNP')\n elif pos == 'NNPS':\n database.propernounP.append(word.lower())\n sentencesTrial.append('NNPS')\n elif pos == 'JJ':\n database.adjective.append(word.lower())\n sentencesTrial.append('JJ')\n elif pos == 'VB' or pos == 'VBG' or pos == 'VBN':\n database.verbs.append(word.lower())\n sentencesTrial.append('VB')\n elif pos == 'VBD':\n database.verbpast.append(word.lower())\n sentencesTrial.append('VBD')\n elif pos == 'VBZ' or pos == 'VBP':\n database.verb3person.append(word.lower())\n sentencesTrial.append('VBZ')\n elif pos == 'RB' or pos == 'RBR' or pos == 'RBS':\n database.adverb.append(word)\n sentencesTrial.append('RB'.lower())\n elif word == ',':\n database.useless.append(word)\n sentencesTrial.append(',')\n break\n elif word == '.':\n database.useless.append(word)\n sentencesTrial.append('.')\n break\n else:\n database.unUsedWords.append(word.lower())\n break\n nounCount = []\n trueNouns = []\n for x in database.nouns:\n if x in trueNouns:\n a = trueNouns.index(x)\n nounCount[a] += 1\n else:\n trueNouns.append(x)\n a = trueNouns.index(x)\n nounCount.append(1)\n for x in trueNouns:\n i = trueNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NN', locations[loc], nounCount[i]))\n nounpCount = []\n trueNounsp = []\n for x in database.nounsplural:\n if x in trueNounsp:\n a = trueNounsp.index(x)\n nounpCount[a] += 1\n else:\n trueNounsp.append(x)\n a = trueNounsp.index(x)\n nounpCount.append(1)\n for x in trueNounsp:\n i = trueNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNS', locations[loc], nounpCount[i]))\n pnounCount = []\n truepNouns = []\n for x in database.propernounS:\n if x in truepNouns:\n a = truepNouns.index(x)\n pnounCount[a] += 1\n else:\n truepNouns.append(x)\n a = truepNouns.index(x)\n pnounCount.append(1)\n for x in truepNouns:\n i = truepNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNP', locations[loc], pnounCount[i]))\n pnounpCount = []\n truepNounsp = []\n for x in database.propernounP:\n if x in truepNounsp:\n a = truepNounsp.index(x)\n pnounpCount[a] += 1\n else:\n truepNounsp.append(x)\n a = truepNounsp.index(x)\n pnounpCount.append(1)\n for x in truepNounsp:\n i = truepNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNPS', locations[loc], pnounpCount[i]))\n adjectCount = []\n trueadject = []\n for x in database.adjective:\n if x in trueadject:\n a = trueadject.index(x)\n adjectCount[a] += 1\n else:\n trueadject.append(x)\n a = trueadject.index(x)\n adjectCount.append(1)\n for x in trueadject:\n i = trueadject.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'JJ', locations[loc], adjectCount[i]))\n verbCount = []\n trueVerb = []\n for x in database.verbs:\n if x in trueVerb:\n a = trueVerb.index(x)\n verbCount[a] += 1\n else:\n trueVerb.append(x)\n a = trueVerb.index(x)\n verbCount.append(1)\n for x in trueVerb:\n i = trueVerb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VB', locations[loc], verbCount[i]))\n verbpCount = []\n trueVerbp = []\n for x in database.verbpast:\n if x in trueVerbp:\n a = trueVerbp.index(x)\n verbpCount[a] += 1\n else:\n trueVerbp.append(x)\n a = trueVerbp.index(x)\n verbpCount.append(1)\n for x in trueVerbp:\n i = trueVerbp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBD', locations[loc], verbpCount[i]))\n verb3pCount = []\n trueVerb3p = []\n for x in database.verb3person:\n if x in trueVerb3p:\n a = trueVerb3p.index(x)\n verb3pCount[a] += 1\n else:\n trueVerb3p.append(x)\n a = trueVerb3p.index(x)\n verb3pCount.append(1)\n for x in trueVerb3p:\n i = trueVerb3p.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBZ', locations[loc], verb3pCount[i]))\n adverbCount = []\n trueAdverb = []\n for x in database.adverb:\n if x in trueAdverb:\n a = trueAdverb.index(x)\n adverbCount[a] += 1\n else:\n trueAdverb.append(x)\n a = trueAdverb.index(x)\n adverbCount.append(1)\n for x in trueAdverb:\n i = trueAdverb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'RB', locations[loc], adverbCount[i]))\n uselessCount = []\n trueUseless = []\n for x in database.useless:\n if x in trueUseless:\n a = trueUseless.index(x)\n uselessCount[a] += 1\n else:\n trueUseless.append(x)\n a = trueUseless.index(x)\n uselessCount.append(1)\n for x in trueUseless:\n i = trueUseless.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'PU', locations[loc], uselessCount[i]))\n uuWCount = []\n trueuuW = []\n for x in database.unUsedWords:\n if x in trueuuW:\n a = trueuuW.index(x)\n uuWCount[a] += 1\n else:\n trueuuW.append(x)\n a = trueuuW.index(x)\n uuWCount.append(1)\n for x in trueuuW:\n i = trueuuW.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'US', locations[loc], uuWCount[i]))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef pop(i):\n loc = i\n sentencesTrial = []\n File = open('words.txt')\n lines = File.read()\n sentences = nltk.sent_tokenize(lines)\n locations = ['Castle', 'Beach', 'Beach', 'Ghost Town', 'Ghost Town',\n 'Haunted House', 'Jungle', 'Carnival', 'Ghost Town', 'Highway',\n 'Castle', 'Pyramid', 'Beach', 'Beach', 'Carnival', 'Highway',\n 'Castle', 'Jungle']\n for sentence in sentences:\n for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):\n if pos == 'NN':\n database.nouns.append(word.lower())\n sentencesTrial.append('NN')\n elif pos == 'NNS':\n database.nounsplural.append(word.lower())\n sentencesTrial.append('NNS')\n elif pos == 'NNP':\n database.propernounS.append(word.lower())\n sentencesTrial.append('NNP')\n elif pos == 'NNPS':\n database.propernounP.append(word.lower())\n sentencesTrial.append('NNPS')\n elif pos == 'JJ':\n database.adjective.append(word.lower())\n sentencesTrial.append('JJ')\n elif pos == 'VB' or pos == 'VBG' or pos == 'VBN':\n database.verbs.append(word.lower())\n sentencesTrial.append('VB')\n elif pos == 'VBD':\n database.verbpast.append(word.lower())\n sentencesTrial.append('VBD')\n elif pos == 'VBZ' or pos == 'VBP':\n database.verb3person.append(word.lower())\n sentencesTrial.append('VBZ')\n elif pos == 'RB' or pos == 'RBR' or pos == 'RBS':\n database.adverb.append(word)\n sentencesTrial.append('RB'.lower())\n elif word == ',':\n database.useless.append(word)\n sentencesTrial.append(',')\n break\n elif word == '.':\n database.useless.append(word)\n sentencesTrial.append('.')\n break\n else:\n database.unUsedWords.append(word.lower())\n break\n nounCount = []\n trueNouns = []\n for x in database.nouns:\n if x in trueNouns:\n a = trueNouns.index(x)\n nounCount[a] += 1\n else:\n trueNouns.append(x)\n a = trueNouns.index(x)\n nounCount.append(1)\n for x in trueNouns:\n i = trueNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NN', locations[loc], nounCount[i]))\n nounpCount = []\n trueNounsp = []\n for x in database.nounsplural:\n if x in trueNounsp:\n a = trueNounsp.index(x)\n nounpCount[a] += 1\n else:\n trueNounsp.append(x)\n a = trueNounsp.index(x)\n nounpCount.append(1)\n for x in trueNounsp:\n i = trueNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNS', locations[loc], nounpCount[i]))\n pnounCount = []\n truepNouns = []\n for x in database.propernounS:\n if x in truepNouns:\n a = truepNouns.index(x)\n pnounCount[a] += 1\n else:\n truepNouns.append(x)\n a = truepNouns.index(x)\n pnounCount.append(1)\n for x in truepNouns:\n i = truepNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNP', locations[loc], pnounCount[i]))\n pnounpCount = []\n truepNounsp = []\n for x in database.propernounP:\n if x in truepNounsp:\n a = truepNounsp.index(x)\n pnounpCount[a] += 1\n else:\n truepNounsp.append(x)\n a = truepNounsp.index(x)\n pnounpCount.append(1)\n for x in truepNounsp:\n i = truepNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNPS', locations[loc], pnounpCount[i]))\n adjectCount = []\n trueadject = []\n for x in database.adjective:\n if x in trueadject:\n a = trueadject.index(x)\n adjectCount[a] += 1\n else:\n trueadject.append(x)\n a = trueadject.index(x)\n adjectCount.append(1)\n for x in trueadject:\n i = trueadject.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'JJ', locations[loc], adjectCount[i]))\n verbCount = []\n trueVerb = []\n for x in database.verbs:\n if x in trueVerb:\n a = trueVerb.index(x)\n verbCount[a] += 1\n else:\n trueVerb.append(x)\n a = trueVerb.index(x)\n verbCount.append(1)\n for x in trueVerb:\n i = trueVerb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VB', locations[loc], verbCount[i]))\n verbpCount = []\n trueVerbp = []\n for x in database.verbpast:\n if x in trueVerbp:\n a = trueVerbp.index(x)\n verbpCount[a] += 1\n else:\n trueVerbp.append(x)\n a = trueVerbp.index(x)\n verbpCount.append(1)\n for x in trueVerbp:\n i = trueVerbp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBD', locations[loc], verbpCount[i]))\n verb3pCount = []\n trueVerb3p = []\n for x in database.verb3person:\n if x in trueVerb3p:\n a = trueVerb3p.index(x)\n verb3pCount[a] += 1\n else:\n trueVerb3p.append(x)\n a = trueVerb3p.index(x)\n verb3pCount.append(1)\n for x in trueVerb3p:\n i = trueVerb3p.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBZ', locations[loc], verb3pCount[i]))\n adverbCount = []\n trueAdverb = []\n for x in database.adverb:\n if x in trueAdverb:\n a = trueAdverb.index(x)\n adverbCount[a] += 1\n else:\n trueAdverb.append(x)\n a = trueAdverb.index(x)\n adverbCount.append(1)\n for x in trueAdverb:\n i = trueAdverb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'RB', locations[loc], adverbCount[i]))\n uselessCount = []\n trueUseless = []\n for x in database.useless:\n if x in trueUseless:\n a = trueUseless.index(x)\n uselessCount[a] += 1\n else:\n trueUseless.append(x)\n a = trueUseless.index(x)\n uselessCount.append(1)\n for x in trueUseless:\n i = trueUseless.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'PU', locations[loc], uselessCount[i]))\n uuWCount = []\n trueuuW = []\n for x in database.unUsedWords:\n if x in trueuuW:\n a = trueuuW.index(x)\n uuWCount[a] += 1\n else:\n trueuuW.append(x)\n a = trueuuW.index(x)\n uuWCount.append(1)\n for x in trueuuW:\n i = trueuuW.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'US', locations[loc], uuWCount[i]))\n\n\ndef pop2():\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Knight','Castle','Old Man Jenkins','Picture')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Vampire' , 'Castle' , 'Andrew the Tour', 'Vampire Make Up and fake blood')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Shadow' , 'Castle' , 'Frank the Janitor' , 'Black paint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost Pirate','Beach','Bill the Lifeguard','Pirate Costume')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Seaweed Monster','Beach','Old Fisherman Joe','Seaweed')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Shark','Beach','The Mayor','Shark fins')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Cowboy Ghost','Ghost Town','Jerry the Businessman ','Cowboy hat')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Miner Ghost','Ghost Town','Gold Hunter Phil','Dusty shoes')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Headless Horse Man','Ghost Town','Envirnmentalist Paddy','Drawing of rig to appear headless')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Francinstein','Haunted House','Sir Godfree','Green paint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Zombie','Haunted House','The Waiter','Zombie Make Up and fake boy parts')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost','Haunted House','Jimmy','Glow in the dark paint on cloths')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ape Man','Jungle','Explorer Fred','Ape Costume')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Animal Ghosts','Jungle','Environmentalist Jennie','Scratch Marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Pterodactyl','Jungle','Tour Guide Bill','Book on flight')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Clown Ghost','Carnival','Ring Master','Old Clown Costumes')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Zombie','Carnival','Blind Knife Thrower','Eye tests saying he is not blind')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Animals','Carnival','Worlds Strongest Man','Scratch marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost Car','Highway','Old Town Mayor','Car ownership documents')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('White Lady Ghost','Highway','Miss Anderson','White Dress')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Aliens','Highway','Conspiracy Tom','Fake Space ship blueprint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Mummy','Pyramid','Museum Curator Petterson ','Bandages')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Sand Man','Pyramid','Ramesh the Tour Guide','Sand')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Sphynx','Pyramid','Tour Guide Bob','scratch marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Scooby Doo','Scooby Dooby Doo')\")\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Shaggy','Zoinks!')\")\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Fred','Lets Split up and look for clues')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Velma','My glasses. I cant find my glasses')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Daphne','Do you want a Scooby Snack')\"\n )\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Stormy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Misty')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Ghost Town','Cloudy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Ghost TOwn','Foggy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Haunted House','Stormy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Haunted House','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Cloudy')\"\n )\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Carnival','Overcast')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Highway','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Highway','Sunny')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Pyramid','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Raining')\"\n )\n", "step-4": "import database\nimport nltk\n\n\ndef pop(i):\n loc = i\n sentencesTrial = []\n File = open('words.txt')\n lines = File.read()\n sentences = nltk.sent_tokenize(lines)\n locations = ['Castle', 'Beach', 'Beach', 'Ghost Town', 'Ghost Town',\n 'Haunted House', 'Jungle', 'Carnival', 'Ghost Town', 'Highway',\n 'Castle', 'Pyramid', 'Beach', 'Beach', 'Carnival', 'Highway',\n 'Castle', 'Jungle']\n for sentence in sentences:\n for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):\n if pos == 'NN':\n database.nouns.append(word.lower())\n sentencesTrial.append('NN')\n elif pos == 'NNS':\n database.nounsplural.append(word.lower())\n sentencesTrial.append('NNS')\n elif pos == 'NNP':\n database.propernounS.append(word.lower())\n sentencesTrial.append('NNP')\n elif pos == 'NNPS':\n database.propernounP.append(word.lower())\n sentencesTrial.append('NNPS')\n elif pos == 'JJ':\n database.adjective.append(word.lower())\n sentencesTrial.append('JJ')\n elif pos == 'VB' or pos == 'VBG' or pos == 'VBN':\n database.verbs.append(word.lower())\n sentencesTrial.append('VB')\n elif pos == 'VBD':\n database.verbpast.append(word.lower())\n sentencesTrial.append('VBD')\n elif pos == 'VBZ' or pos == 'VBP':\n database.verb3person.append(word.lower())\n sentencesTrial.append('VBZ')\n elif pos == 'RB' or pos == 'RBR' or pos == 'RBS':\n database.adverb.append(word)\n sentencesTrial.append('RB'.lower())\n elif word == ',':\n database.useless.append(word)\n sentencesTrial.append(',')\n break\n elif word == '.':\n database.useless.append(word)\n sentencesTrial.append('.')\n break\n else:\n database.unUsedWords.append(word.lower())\n break\n nounCount = []\n trueNouns = []\n for x in database.nouns:\n if x in trueNouns:\n a = trueNouns.index(x)\n nounCount[a] += 1\n else:\n trueNouns.append(x)\n a = trueNouns.index(x)\n nounCount.append(1)\n for x in trueNouns:\n i = trueNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NN', locations[loc], nounCount[i]))\n nounpCount = []\n trueNounsp = []\n for x in database.nounsplural:\n if x in trueNounsp:\n a = trueNounsp.index(x)\n nounpCount[a] += 1\n else:\n trueNounsp.append(x)\n a = trueNounsp.index(x)\n nounpCount.append(1)\n for x in trueNounsp:\n i = trueNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNS', locations[loc], nounpCount[i]))\n pnounCount = []\n truepNouns = []\n for x in database.propernounS:\n if x in truepNouns:\n a = truepNouns.index(x)\n pnounCount[a] += 1\n else:\n truepNouns.append(x)\n a = truepNouns.index(x)\n pnounCount.append(1)\n for x in truepNouns:\n i = truepNouns.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNP', locations[loc], pnounCount[i]))\n pnounpCount = []\n truepNounsp = []\n for x in database.propernounP:\n if x in truepNounsp:\n a = truepNounsp.index(x)\n pnounpCount[a] += 1\n else:\n truepNounsp.append(x)\n a = truepNounsp.index(x)\n pnounpCount.append(1)\n for x in truepNounsp:\n i = truepNounsp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'NNPS', locations[loc], pnounpCount[i]))\n adjectCount = []\n trueadject = []\n for x in database.adjective:\n if x in trueadject:\n a = trueadject.index(x)\n adjectCount[a] += 1\n else:\n trueadject.append(x)\n a = trueadject.index(x)\n adjectCount.append(1)\n for x in trueadject:\n i = trueadject.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'JJ', locations[loc], adjectCount[i]))\n verbCount = []\n trueVerb = []\n for x in database.verbs:\n if x in trueVerb:\n a = trueVerb.index(x)\n verbCount[a] += 1\n else:\n trueVerb.append(x)\n a = trueVerb.index(x)\n verbCount.append(1)\n for x in trueVerb:\n i = trueVerb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VB', locations[loc], verbCount[i]))\n verbpCount = []\n trueVerbp = []\n for x in database.verbpast:\n if x in trueVerbp:\n a = trueVerbp.index(x)\n verbpCount[a] += 1\n else:\n trueVerbp.append(x)\n a = trueVerbp.index(x)\n verbpCount.append(1)\n for x in trueVerbp:\n i = trueVerbp.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBD', locations[loc], verbpCount[i]))\n verb3pCount = []\n trueVerb3p = []\n for x in database.verb3person:\n if x in trueVerb3p:\n a = trueVerb3p.index(x)\n verb3pCount[a] += 1\n else:\n trueVerb3p.append(x)\n a = trueVerb3p.index(x)\n verb3pCount.append(1)\n for x in trueVerb3p:\n i = trueVerb3p.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'VBZ', locations[loc], verb3pCount[i]))\n adverbCount = []\n trueAdverb = []\n for x in database.adverb:\n if x in trueAdverb:\n a = trueAdverb.index(x)\n adverbCount[a] += 1\n else:\n trueAdverb.append(x)\n a = trueAdverb.index(x)\n adverbCount.append(1)\n for x in trueAdverb:\n i = trueAdverb.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'RB', locations[loc], adverbCount[i]))\n uselessCount = []\n trueUseless = []\n for x in database.useless:\n if x in trueUseless:\n a = trueUseless.index(x)\n uselessCount[a] += 1\n else:\n trueUseless.append(x)\n a = trueUseless.index(x)\n uselessCount.append(1)\n for x in trueUseless:\n i = trueUseless.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'PU', locations[loc], uselessCount[i]))\n uuWCount = []\n trueuuW = []\n for x in database.unUsedWords:\n if x in trueuuW:\n a = trueuuW.index(x)\n uuWCount[a] += 1\n else:\n trueuuW.append(x)\n a = trueuuW.index(x)\n uuWCount.append(1)\n for x in trueuuW:\n i = trueuuW.index(x)\n database.cursor.execute('INSERT INTO words VALUES (?, ?, ?, ?)', (x,\n 'US', locations[loc], uuWCount[i]))\n\n\ndef pop2():\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Knight','Castle','Old Man Jenkins','Picture')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Vampire' , 'Castle' , 'Andrew the Tour', 'Vampire Make Up and fake blood')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Shadow' , 'Castle' , 'Frank the Janitor' , 'Black paint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost Pirate','Beach','Bill the Lifeguard','Pirate Costume')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Seaweed Monster','Beach','Old Fisherman Joe','Seaweed')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Shark','Beach','The Mayor','Shark fins')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Cowboy Ghost','Ghost Town','Jerry the Businessman ','Cowboy hat')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Miner Ghost','Ghost Town','Gold Hunter Phil','Dusty shoes')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Headless Horse Man','Ghost Town','Envirnmentalist Paddy','Drawing of rig to appear headless')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Francinstein','Haunted House','Sir Godfree','Green paint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Zombie','Haunted House','The Waiter','Zombie Make Up and fake boy parts')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost','Haunted House','Jimmy','Glow in the dark paint on cloths')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ape Man','Jungle','Explorer Fred','Ape Costume')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Animal Ghosts','Jungle','Environmentalist Jennie','Scratch Marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Pterodactyl','Jungle','Tour Guide Bill','Book on flight')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Clown Ghost','Carnival','Ring Master','Old Clown Costumes')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Zombie','Carnival','Blind Knife Thrower','Eye tests saying he is not blind')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Animals','Carnival','Worlds Strongest Man','Scratch marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Ghost Car','Highway','Old Town Mayor','Car ownership documents')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('White Lady Ghost','Highway','Miss Anderson','White Dress')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Aliens','Highway','Conspiracy Tom','Fake Space ship blueprint')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Mummy','Pyramid','Museum Curator Petterson ','Bandages')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Sand Man','Pyramid','Ramesh the Tour Guide','Sand')\"\n )\n database.cursor.execute(\n \"INSERT INTO monsters VALUES ('Sphynx','Pyramid','Tour Guide Bob','scratch marks')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Scooby Doo','Scooby Dooby Doo')\")\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Shaggy','Zoinks!')\")\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Fred','Lets Split up and look for clues')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Velma','My glasses. I cant find my glasses')\"\n )\n database.cursor.execute(\n \"INSERT INTO characters VALUES ('Daphne','Do you want a Scooby Snack')\"\n )\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Stormy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Misty')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Ghost Town','Cloudy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Ghost TOwn','Foggy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Haunted House','Stormy')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Haunted House','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Cloudy')\"\n )\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Carnival','Overcast')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Highway','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Highway','Sunny')\")\n database.cursor.execute(\n \"INSERT INTO location VALUES ('Pyramid','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Raining')\"\n )\n", "step-5": "import database\nimport nltk\ndef pop(i): # pupulate the words table\n loc = i\n sentencesTrial = []\n File = open('words.txt')\n lines = File.read()\n sentences = nltk.sent_tokenize(lines)\n locations = [\"Castle\",\"Beach\",\"Beach\",\"Ghost Town\",\"Ghost Town\",\"Haunted House\",\"Jungle\",\"Carnival\", \"Ghost Town\", \"Highway\", \"Castle\", \"Pyramid\",\"Beach\",\"Beach\",\"Carnival\", \"Highway\", \"Castle\" ,\"Jungle\" ]\n\n for sentence in sentences:\n for word, pos in nltk.pos_tag(nltk.word_tokenize(str(sentence))):\n if(pos == 'NN'):\n database.nouns.append(word.lower())\n sentencesTrial.append(\"NN\")\n elif (pos == 'NNS'):\n database.nounsplural.append(word.lower())\n sentencesTrial.append(\"NNS\")\n elif (pos == 'NNP'):\n database.propernounS.append(word.lower())\n sentencesTrial.append(\"NNP\")\n elif (pos == 'NNPS'):\n database.propernounP.append(word.lower())\n sentencesTrial.append(\"NNPS\")\n elif (pos == 'JJ'):\n database.adjective.append(word.lower())\n sentencesTrial.append(\"JJ\")\n elif (pos == 'VB' or pos == 'VBG' or pos == 'VBN'):\n database.verbs.append(word.lower())\n sentencesTrial.append(\"VB\")\n elif (pos == 'VBD'):\n database.verbpast.append(word.lower())\n sentencesTrial.append(\"VBD\")\n elif (pos == 'VBZ' or pos == 'VBP'):\n database.verb3person.append(word.lower())\n sentencesTrial.append(\"VBZ\")\n elif (pos == 'RB' or pos == 'RBR' or pos == 'RBS'):\n database.adverb.append(word)\n sentencesTrial.append(\"RB\".lower())\n else:\n if(word == \",\"):\n database.useless.append(word)\n sentencesTrial.append(\",\")\n break\n elif(word == \".\"):\n database.useless.append(word)\n sentencesTrial.append(\".\")\n break\n else:\n database.unUsedWords.append(word.lower())\n break\n\n nounCount = []\n trueNouns = []\n\n for x in database.nouns:\n if x in trueNouns:\n a = trueNouns.index(x)\n nounCount[a] +=1\n else:\n trueNouns.append(x)\n a = trueNouns.index(x)\n nounCount.append(1)\n\n for x in trueNouns:\n i = trueNouns.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x,'NN',locations[loc],nounCount[i]))\n\n nounpCount = []\n trueNounsp = []\n\n for x in database.nounsplural:\n if x in trueNounsp:\n a = trueNounsp.index(x)\n nounpCount[a] += 1\n else:\n trueNounsp.append(x)\n a = trueNounsp.index(x)\n nounpCount.append(1)\n\n for x in trueNounsp:\n i = trueNounsp.index(x)\n database.cursor.execute(\n \"INSERT INTO words VALUES (?, ?, ?, ?)\",\n (x, 'NNS', locations[loc], nounpCount[i]))\n\n pnounCount = []\n truepNouns = []\n\n for x in database.propernounS:\n if x in truepNouns:\n a = truepNouns.index(x)\n pnounCount[a] += 1\n else:\n truepNouns.append(x)\n a = truepNouns.index(x)\n pnounCount.append(1)\n\n for x in truepNouns:\n i = truepNouns.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'NNP', locations[loc], pnounCount[i]))\n\n pnounpCount = []\n truepNounsp = []\n\n for x in database.propernounP:\n if x in truepNounsp:\n a = truepNounsp.index(x)\n pnounpCount[a] += 1\n else:\n truepNounsp.append(x)\n a = truepNounsp.index(x)\n pnounpCount.append(1)\n\n for x in truepNounsp:\n i = truepNounsp.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'NNPS', locations[loc], pnounpCount[i]))\n\n adjectCount = []\n trueadject = []\n\n for x in database.adjective:\n if x in trueadject:\n a = trueadject.index(x)\n adjectCount[a] += 1\n else:\n trueadject.append(x)\n a = trueadject.index(x)\n adjectCount.append(1)\n\n for x in trueadject:\n i = trueadject.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'JJ', locations[loc], adjectCount[i]))\n\n verbCount = []\n trueVerb = []\n\n for x in database.verbs:\n if x in trueVerb:\n a = trueVerb.index(x)\n verbCount[a] += 1\n else:\n trueVerb.append(x)\n a = trueVerb.index(x)\n verbCount.append(1)\n\n for x in trueVerb:\n i = trueVerb.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'VB', locations[loc], verbCount[i]))\n\n verbpCount = []\n trueVerbp = []\n\n for x in database.verbpast:\n if x in trueVerbp:\n a = trueVerbp.index(x)\n verbpCount[a] += 1\n else:\n trueVerbp.append(x)\n a = trueVerbp.index(x)\n verbpCount.append(1)\n\n for x in trueVerbp:\n i = trueVerbp.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'VBD', locations[loc], verbpCount[i]))\n\n verb3pCount = []\n trueVerb3p = []\n\n for x in database.verb3person:\n if x in trueVerb3p:\n a = trueVerb3p.index(x)\n verb3pCount[a] += 1\n else:\n trueVerb3p.append(x)\n a = trueVerb3p.index(x)\n verb3pCount.append(1)\n\n for x in trueVerb3p:\n i = trueVerb3p.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'VBZ', locations[loc], verb3pCount[i]))\n\n adverbCount = []\n trueAdverb = []\n\n for x in database.adverb:\n if x in trueAdverb:\n a = trueAdverb.index(x)\n adverbCount[a] += 1\n else:\n trueAdverb.append(x)\n a = trueAdverb.index(x)\n adverbCount.append(1)\n\n for x in trueAdverb:\n i = trueAdverb.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'RB', locations[loc], adverbCount[i]))\n\n uselessCount = []\n trueUseless = []\n\n for x in database.useless:\n if x in trueUseless:\n a = trueUseless.index(x)\n uselessCount[a] += 1\n else:\n trueUseless.append(x)\n a = trueUseless.index(x)\n uselessCount.append(1)\n\n for x in trueUseless:\n i = trueUseless.index(x)\n database.cursor.execute(\n \"INSERT INTO words VALUES (?, ?, ?, ?)\",\n (x, 'PU', locations[loc], uselessCount[i]))\n\n uuWCount = []\n trueuuW = []\n\n for x in database.unUsedWords:\n if x in trueuuW:\n a = trueuuW.index(x)\n uuWCount[a] += 1\n else:\n trueuuW.append(x)\n a = trueuuW.index(x)\n uuWCount.append(1)\n\n for x in trueuuW:\n i = trueuuW.index(x)\n database.cursor.execute(\"INSERT INTO words VALUES (?, ?, ?, ?)\", (x, 'US', locations[loc], uuWCount[i]))\n\n\ndef pop2(): #populate the monster and characters table\n\n####populating the monsters\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Knight','Castle','Old Man Jenkins','Picture')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Vampire' , 'Castle' , 'Andrew the Tour', 'Vampire Make Up and fake blood')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Shadow' , 'Castle' , 'Frank the Janitor' , 'Black paint')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Ghost Pirate','Beach','Bill the Lifeguard','Pirate Costume')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Seaweed Monster','Beach','Old Fisherman Joe','Seaweed')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Shark','Beach','The Mayor','Shark fins')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Cowboy Ghost','Ghost Town','Jerry the Businessman ','Cowboy hat')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Miner Ghost','Ghost Town','Gold Hunter Phil','Dusty shoes')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Headless Horse Man','Ghost Town','Envirnmentalist Paddy','Drawing of rig to appear headless')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Francinstein','Haunted House','Sir Godfree','Green paint')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Zombie','Haunted House','The Waiter','Zombie Make Up and fake boy parts')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Ghost','Haunted House','Jimmy','Glow in the dark paint on cloths')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Ape Man','Jungle','Explorer Fred','Ape Costume')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Animal Ghosts','Jungle','Environmentalist Jennie','Scratch Marks')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Pterodactyl','Jungle','Tour Guide Bill','Book on flight')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Clown Ghost','Carnival','Ring Master','Old Clown Costumes')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Zombie','Carnival','Blind Knife Thrower','Eye tests saying he is not blind')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Animals','Carnival','Worlds Strongest Man','Scratch marks')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Ghost Car','Highway','Old Town Mayor','Car ownership documents')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('White Lady Ghost','Highway','Miss Anderson','White Dress')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Aliens','Highway','Conspiracy Tom','Fake Space ship blueprint')\")\n\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Mummy','Pyramid','Museum Curator Petterson ','Bandages')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Sand Man','Pyramid','Ramesh the Tour Guide','Sand')\")\n database.cursor.execute(\"INSERT INTO monsters VALUES ('Sphynx','Pyramid','Tour Guide Bob','scratch marks')\")\n\n####populating the characters\n\n\n database.cursor.execute(\"INSERT INTO characters VALUES ('Scooby Doo','Scooby Dooby Doo')\")\n database.cursor.execute(\"INSERT INTO characters VALUES ('Shaggy','Zoinks!')\")\n database.cursor.execute(\"INSERT INTO characters VALUES ('Fred','Lets Split up and look for clues')\")\n database.cursor.execute(\"INSERT INTO characters VALUES ('Velma','My glasses. I cant find my glasses')\")\n database.cursor.execute(\"INSERT INTO characters VALUES ('Daphne','Do you want a Scooby Snack')\")\n\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Stormy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Castle','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Beach','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Ghost Town','Cloudy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Ghost TOwn','Foggy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Haunted House','Stormy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Haunted House','Misty')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Jungle','Raining')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Dark')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Cloudy')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Carnival','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Highway','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Highway','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Overcast')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Sunny')\")\n database.cursor.execute(\"INSERT INTO location VALUES ('Pyramid','Raining')\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
print "test" print "moreing" print " a nnnnn"
normal
{ "blob_id": "551e9c696eaad6c78f2eae66e50cca34c153d9dd", "index": 4636, "step-1": "print \"test\"\n\nprint \"moreing\"\n\nprint \" a nnnnn\"", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import math r = float(input()) p = int(input()) obim = 2 * r * math.pi ukupanPut = p * obim # centimetre pretvaramo u metre ukupanPut = ukupanPut * 0.01 print("%.2f" % ukupanPut)
normal
{ "blob_id": "1f27b697985c7417e6d8d978703175a415c6c57d", "index": 327, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint('%.2f' % ukupanPut)\n", "step-3": "<mask token>\nr = float(input())\np = int(input())\nobim = 2 * r * math.pi\nukupanPut = p * obim\nukupanPut = ukupanPut * 0.01\nprint('%.2f' % ukupanPut)\n", "step-4": "import math\nr = float(input())\np = int(input())\nobim = 2 * r * math.pi\nukupanPut = p * obim\nukupanPut = ukupanPut * 0.01\nprint('%.2f' % ukupanPut)\n", "step-5": "import math\n\nr = float(input())\np = int(input())\nobim = 2 * r * math.pi\nukupanPut = p * obim\n# centimetre pretvaramo u metre\nukupanPut = ukupanPut * 0.01\nprint(\"%.2f\" % ukupanPut)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys def saludar(saludo): print saludo def iniciales(nombre,ape1,ape2): iniciales=nombre[0]+'.'+ape1[0]+'.'+ape2[0]+'.' return "Tus iniciales son:"+iniciales.upper() def iniciales1(nombre,ape1,*apellidos): iniciales=nombre[0]+'.'+ape1[0] for ape in apellidos: iniciales=iniciales+'.'+ape[0] return iniciales.upper()
normal
{ "blob_id": "01b615f8282d4d42c5e83181fffc2d7cb612c096", "index": 704, "step-1": "import sys \n\n\ndef saludar(saludo):\n\tprint saludo\n\ndef iniciales(nombre,ape1,ape2):\n\tiniciales=nombre[0]+'.'+ape1[0]+'.'+ape2[0]+'.'\n\treturn \"Tus iniciales son:\"+iniciales.upper()\n\n\ndef iniciales1(nombre,ape1,*apellidos):\n\tiniciales=nombre[0]+'.'+ape1[0]\n\tfor ape in apellidos:\n\t\tiniciales=iniciales+'.'+ape[0]\n\treturn iniciales.upper()\n\n\n\n\n\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# 5. Усовершенствовать программу «Банковский депозит». Третьим аргументом в функцию должна # передаваться фиксированная ежемесячная сумма пополнения вклада. Необходимо в главной # функции реализовать вложенную функцию подсчета процентов для пополняемой суммы. # Примем, что клиент вносит средства в последний день каждого месяца, кроме первого и # последнего. Например, при сроке вклада в 6 месяцев пополнение происходит в течение 4 # месяцев. Вложенная функция возвращает сумму дополнительно внесенных средств (с # процентами), а главная функция — общую сумму по вкладу на конец периода. from task_1_4 import get_percent def chargeable_deposit(amount, months, charge=0): percent = get_percent(amount, months) if not percent: print('Нет подходящего тарифа') total = amount for month in range(months): profit = total * percent / 100 / 12 total += profit if month != 0 and month != months - 1: total += charge + charge * percent / 100 / 12 print(round(total, 2)) chargeable_deposit(10000, 24, 100)
normal
{ "blob_id": "bf9e83591f737caec3060b72d86d56faec9bb23b", "index": 8079, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef chargeable_deposit(amount, months, charge=0):\n percent = get_percent(amount, months)\n if not percent:\n print('Нет подходящего тарифа')\n total = amount\n for month in range(months):\n profit = total * percent / 100 / 12\n total += profit\n if month != 0 and month != months - 1:\n total += charge + charge * percent / 100 / 12\n print(round(total, 2))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef chargeable_deposit(amount, months, charge=0):\n percent = get_percent(amount, months)\n if not percent:\n print('Нет подходящего тарифа')\n total = amount\n for month in range(months):\n profit = total * percent / 100 / 12\n total += profit\n if month != 0 and month != months - 1:\n total += charge + charge * percent / 100 / 12\n print(round(total, 2))\n\n\nchargeable_deposit(10000, 24, 100)\n", "step-4": "from task_1_4 import get_percent\n\n\ndef chargeable_deposit(amount, months, charge=0):\n percent = get_percent(amount, months)\n if not percent:\n print('Нет подходящего тарифа')\n total = amount\n for month in range(months):\n profit = total * percent / 100 / 12\n total += profit\n if month != 0 and month != months - 1:\n total += charge + charge * percent / 100 / 12\n print(round(total, 2))\n\n\nchargeable_deposit(10000, 24, 100)\n", "step-5": "# 5. Усовершенствовать программу «Банковский депозит». Третьим аргументом в функцию должна\r\n# передаваться фиксированная ежемесячная сумма пополнения вклада. Необходимо в главной\r\n# функции реализовать вложенную функцию подсчета процентов для пополняемой суммы.\r\n# Примем, что клиент вносит средства в последний день каждого месяца, кроме первого и\r\n# последнего. Например, при сроке вклада в 6 месяцев пополнение происходит в течение 4\r\n# месяцев. Вложенная функция возвращает сумму дополнительно внесенных средств (с\r\n# процентами), а главная функция — общую сумму по вкладу на конец периода.\r\n\r\nfrom task_1_4 import get_percent\r\n\r\n\r\ndef chargeable_deposit(amount, months, charge=0):\r\n percent = get_percent(amount, months)\r\n if not percent:\r\n print('Нет подходящего тарифа')\r\n\r\n total = amount\r\n for month in range(months):\r\n profit = total * percent / 100 / 12\r\n total += profit\r\n if month != 0 and month != months - 1:\r\n total += charge + charge * percent / 100 / 12\r\n\r\n print(round(total, 2))\r\n\r\n\r\nchargeable_deposit(10000, 24, 100)\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import logging from bson import ObjectId from typing import Union from app.helper import parseControllerResponse from models.members import Member from schema.members import ( CreateMemberSchema, MemberInDBSchema, UpdateMemberSchema, memberHelper, ) def getAllMembersFromDB(**kwargs): """Finds and returns all the registered members""" isResponseParsed = kwargs.get("isParsed", False) logging.info("Trying to find all the users") try: rawMembersData = Member.objects() parsedMembers = [ MemberInDBSchema(**memberHelper(rawMember)) for rawMember in rawMembersData ] logging.info("Found all the users") if not isResponseParsed: return parsedMembers resp = [ parsedMember.dict(exclude={"mongoDocument"}) for parsedMember in parsedMembers ] return parseControllerResponse( data=resp, statuscode=200, message="Successfully found the users" ) except Exception as e: helpfulErrorMessage = "Couldn't find all the users due to " + e logging.error(helpfulErrorMessage) if isResponseParsed: return parseControllerResponse( statuscode=500, message="Something went wrong, try again later", error=helpfulErrorMessage, ) raise helpfulErrorMessage def getMemberFromDiscordHandle(discordHandle: str): """Finds and returns the user with the given discord handle, if such a user doesn't exist, return None""" try: member_ = Member.objects(discordHandle=discordHandle).first() assert member_ member = MemberInDBSchema(**memberHelper(member_)) return member except AssertionError as _: # if the member is not found, raise a ValueError return None except Exception as e: raise Exception( "Couldn't find a user with the discord handle \ {}, due to {}".format( discordHandle, e ) ) def getMemberFromRollNumber(rollNumber: int, **kwargs): """Finds and returns the user with the given roll number, if such a user doesn't exist, return None""" isResponseParsed = kwargs.get("isParsed", False) rawData = kwargs.get("rawData", False) try: user = Member.objects(rollno=rollNumber).first() assert user user = Member.objects(id=id).first() assert user logging.debug( "Found a user {}, with the rollno={}".format(memberHelper(user), rollNumber) ) logging.info("Found the user with rollNumber =" + rollNumber) if not isResponseParsed: return user if rawData else MemberInDBSchema(**memberHelper(user)) return parseControllerResponse( data=(MemberInDBSchema(**memberHelper(user))).dict( exclude={"mongoDocument"} ), statuscode=200, message="Successfully found the user", ) except AssertionError as _: # user was not found, return none or parsed response # ! its the person who called this func's responsibility to create an error logging.info("A user with roll numer={} does not exist".format(rollNumber)) if isResponseParsed: return parseControllerResponse( data=None, statuscode=404, message="User not found", error="A user with rollnumber={} does not exist".format(rollNumber), ) return None except Exception as e: helpfulErrorMsg = f"Couldn't find a user with the {rollNumber = }, due to {e}" logging.error(helpfulErrorMsg) if isResponseParsed: return parseControllerResponse( data=None, statuscode=500, message="Something went wrong, try again later.", error=helpfulErrorMsg, ) raise helpfulErrorMsg def getMemberWithGivenId(id: Union[str, ObjectId], **kwargs): """Finds and returns the user with the given id, if such a user doesn't exist, return None""" isResponseParsed = kwargs.get("isParsed", False) rawData = kwargs.get("rawData", False) logging.info("Trying to find the user with the id=" + id) try: user = Member.objects(id=id).first() assert user logging.debug("Found a user {}, with the id={}".format(memberHelper(user), id)) logging.info("Found the user with id=" + id) if not isResponseParsed: return user if rawData else MemberInDBSchema(**memberHelper(user)) return parseControllerResponse( data=(MemberInDBSchema(**memberHelper(user))).dict( exclude={"mongoDocument"} ), statuscode=200, message="Successfully found the user", ) except AssertionError as _: # user was not found, return none or parsed response logging.info("A user with id={} does not exist".format(id)) if isResponseParsed: return parseControllerResponse( data=None, statuscode=404, message="User not found", error="A user with id={} does not exist".format(id), ) return None except Exception as e: helpfulErrorMsg = "Couldn't find a user with the userId {}, due to {}".format( id, e ) logging.error(helpfulErrorMsg) if isResponseParsed: return parseControllerResponse( data=None, statuscode=500, message="Something went wrong, try again later.", error=helpfulErrorMsg, ) raise helpfulErrorMsg def updateMemberWithGivenDetails( data: UpdateMemberSchema, userId: Union[ObjectId, str], **kwargs ): """Finds the user with the given data, and updates their details, raises an error if the roll number is different""" isResponseParsed = kwargs.get("isParsed", False) try: user: Member = getMemberWithGivenId(id=userId, rawData=True) assert user, "Not Found" # A user cannot change roll number after creating a doc assert user.rollno == data.rollno, "Roll Number Mismatch" user.name = data.name if data.name else user.name user.discordHandle = ( data.discordHandle if data.discordHandle else user.discordHandle ) user.batch = data.batch if data.batch else user.batch if data.password: user.password = CreateMemberSchema.hashGivenText(data.password) user.save() logging.info("successfully updated user data") if isResponseParsed: return parseControllerResponse( data=(MemberInDBSchema(**memberHelper(user))).dict( exclude={"mongoDocument"} ), statuscode=200, message="Successfully updated user details", ) return True except AssertionError as err: if err == "Not Found": helpfulErrorMsg = f"A user with {userId = } doesn't exist" logging.warn(helpfulErrorMsg) if not isResponseParsed: return None return parseControllerResponse( data=None, statuscode=400, message=helpfulErrorMsg, error=helpfulErrorMsg, ) if err == "Roll Number Mismatch": helpfulErrorMsg = ( f"You cannot change a user's roll number after creating it." ) if not isResponseParsed: return None return parseControllerResponse( data=None, statuscode=400, message=helpfulErrorMsg, error=helpfulErrorMsg, ) except Exception as e: helpfulErrorMsg = f"Couldn't update user={data.dict()} data, because {e=}" logging.error(helpfulErrorMsg) if isResponseParsed: return parseControllerResponse( data=None, statuscode=500, message="Something went wrong, try again later.", error=helpfulErrorMsg, ) raise helpfulErrorMsg
normal
{ "blob_id": "95f9e9a8f681679f56c3755199fba7d654af85e8", "index": 1937, "step-1": "<mask token>\n\n\ndef getAllMembersFromDB(**kwargs):\n \"\"\"Finds and returns all the registered members\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n logging.info('Trying to find all the users')\n try:\n rawMembersData = Member.objects()\n parsedMembers = [MemberInDBSchema(**memberHelper(rawMember)) for\n rawMember in rawMembersData]\n logging.info('Found all the users')\n if not isResponseParsed:\n return parsedMembers\n resp = [parsedMember.dict(exclude={'mongoDocument'}) for\n parsedMember in parsedMembers]\n return parseControllerResponse(data=resp, statuscode=200, message=\n 'Successfully found the users')\n except Exception as e:\n helpfulErrorMessage = \"Couldn't find all the users due to \" + e\n logging.error(helpfulErrorMessage)\n if isResponseParsed:\n return parseControllerResponse(statuscode=500, message=\n 'Something went wrong, try again later', error=\n helpfulErrorMessage)\n raise helpfulErrorMessage\n\n\ndef getMemberFromDiscordHandle(discordHandle: str):\n \"\"\"Finds and returns the user with the given discord handle, if\n such a user doesn't exist, return None\"\"\"\n try:\n member_ = Member.objects(discordHandle=discordHandle).first()\n assert member_\n member = MemberInDBSchema(**memberHelper(member_))\n return member\n except AssertionError as _:\n return None\n except Exception as e:\n raise Exception(\n \"Couldn't find a user with the discord handle {}, due to {}\"\n .format(discordHandle, e))\n\n\n<mask token>\n\n\ndef getMemberWithGivenId(id: Union[str, ObjectId], **kwargs):\n \"\"\"Finds and returns the user with the given id, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n logging.info('Trying to find the user with the id=' + id)\n try:\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the id={}'.format(memberHelper\n (user), id))\n logging.info('Found the user with id=' + id)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with id={} does not exist'.format(id))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with id={} does not exist'.format(id))\n return None\n except Exception as e:\n helpfulErrorMsg = (\"Couldn't find a user with the userId {}, due to {}\"\n .format(id, e))\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef getAllMembersFromDB(**kwargs):\n \"\"\"Finds and returns all the registered members\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n logging.info('Trying to find all the users')\n try:\n rawMembersData = Member.objects()\n parsedMembers = [MemberInDBSchema(**memberHelper(rawMember)) for\n rawMember in rawMembersData]\n logging.info('Found all the users')\n if not isResponseParsed:\n return parsedMembers\n resp = [parsedMember.dict(exclude={'mongoDocument'}) for\n parsedMember in parsedMembers]\n return parseControllerResponse(data=resp, statuscode=200, message=\n 'Successfully found the users')\n except Exception as e:\n helpfulErrorMessage = \"Couldn't find all the users due to \" + e\n logging.error(helpfulErrorMessage)\n if isResponseParsed:\n return parseControllerResponse(statuscode=500, message=\n 'Something went wrong, try again later', error=\n helpfulErrorMessage)\n raise helpfulErrorMessage\n\n\ndef getMemberFromDiscordHandle(discordHandle: str):\n \"\"\"Finds and returns the user with the given discord handle, if\n such a user doesn't exist, return None\"\"\"\n try:\n member_ = Member.objects(discordHandle=discordHandle).first()\n assert member_\n member = MemberInDBSchema(**memberHelper(member_))\n return member\n except AssertionError as _:\n return None\n except Exception as e:\n raise Exception(\n \"Couldn't find a user with the discord handle {}, due to {}\"\n .format(discordHandle, e))\n\n\ndef getMemberFromRollNumber(rollNumber: int, **kwargs):\n \"\"\"Finds and returns the user with the given roll number, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n try:\n user = Member.objects(rollno=rollNumber).first()\n assert user\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the rollno={}'.format(\n memberHelper(user), rollNumber))\n logging.info('Found the user with rollNumber =' + rollNumber)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with roll numer={} does not exist'.format(\n rollNumber))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with rollnumber={} does not exist'.format(rollNumber))\n return None\n except Exception as e:\n helpfulErrorMsg = (\n f\"Couldn't find a user with the rollNumber = {rollNumber!r}, due to {e}\"\n )\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\ndef getMemberWithGivenId(id: Union[str, ObjectId], **kwargs):\n \"\"\"Finds and returns the user with the given id, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n logging.info('Trying to find the user with the id=' + id)\n try:\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the id={}'.format(memberHelper\n (user), id))\n logging.info('Found the user with id=' + id)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with id={} does not exist'.format(id))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with id={} does not exist'.format(id))\n return None\n except Exception as e:\n helpfulErrorMsg = (\"Couldn't find a user with the userId {}, due to {}\"\n .format(id, e))\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef getAllMembersFromDB(**kwargs):\n \"\"\"Finds and returns all the registered members\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n logging.info('Trying to find all the users')\n try:\n rawMembersData = Member.objects()\n parsedMembers = [MemberInDBSchema(**memberHelper(rawMember)) for\n rawMember in rawMembersData]\n logging.info('Found all the users')\n if not isResponseParsed:\n return parsedMembers\n resp = [parsedMember.dict(exclude={'mongoDocument'}) for\n parsedMember in parsedMembers]\n return parseControllerResponse(data=resp, statuscode=200, message=\n 'Successfully found the users')\n except Exception as e:\n helpfulErrorMessage = \"Couldn't find all the users due to \" + e\n logging.error(helpfulErrorMessage)\n if isResponseParsed:\n return parseControllerResponse(statuscode=500, message=\n 'Something went wrong, try again later', error=\n helpfulErrorMessage)\n raise helpfulErrorMessage\n\n\ndef getMemberFromDiscordHandle(discordHandle: str):\n \"\"\"Finds and returns the user with the given discord handle, if\n such a user doesn't exist, return None\"\"\"\n try:\n member_ = Member.objects(discordHandle=discordHandle).first()\n assert member_\n member = MemberInDBSchema(**memberHelper(member_))\n return member\n except AssertionError as _:\n return None\n except Exception as e:\n raise Exception(\n \"Couldn't find a user with the discord handle {}, due to {}\"\n .format(discordHandle, e))\n\n\ndef getMemberFromRollNumber(rollNumber: int, **kwargs):\n \"\"\"Finds and returns the user with the given roll number, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n try:\n user = Member.objects(rollno=rollNumber).first()\n assert user\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the rollno={}'.format(\n memberHelper(user), rollNumber))\n logging.info('Found the user with rollNumber =' + rollNumber)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with roll numer={} does not exist'.format(\n rollNumber))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with rollnumber={} does not exist'.format(rollNumber))\n return None\n except Exception as e:\n helpfulErrorMsg = (\n f\"Couldn't find a user with the rollNumber = {rollNumber!r}, due to {e}\"\n )\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\ndef getMemberWithGivenId(id: Union[str, ObjectId], **kwargs):\n \"\"\"Finds and returns the user with the given id, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n logging.info('Trying to find the user with the id=' + id)\n try:\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the id={}'.format(memberHelper\n (user), id))\n logging.info('Found the user with id=' + id)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with id={} does not exist'.format(id))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with id={} does not exist'.format(id))\n return None\n except Exception as e:\n helpfulErrorMsg = (\"Couldn't find a user with the userId {}, due to {}\"\n .format(id, e))\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\ndef updateMemberWithGivenDetails(data: UpdateMemberSchema, userId: Union[\n ObjectId, str], **kwargs):\n \"\"\"Finds the user with the given data, and updates their details,\n raises an error if the roll number is different\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n try:\n user: Member = getMemberWithGivenId(id=userId, rawData=True)\n assert user, 'Not Found'\n assert user.rollno == data.rollno, 'Roll Number Mismatch'\n user.name = data.name if data.name else user.name\n user.discordHandle = (data.discordHandle if data.discordHandle else\n user.discordHandle)\n user.batch = data.batch if data.batch else user.batch\n if data.password:\n user.password = CreateMemberSchema.hashGivenText(data.password)\n user.save()\n logging.info('successfully updated user data')\n if isResponseParsed:\n return parseControllerResponse(data=MemberInDBSchema(**\n memberHelper(user)).dict(exclude={'mongoDocument'}),\n statuscode=200, message='Successfully updated user details')\n return True\n except AssertionError as err:\n if err == 'Not Found':\n helpfulErrorMsg = f\"A user with userId = {userId!r} doesn't exist\"\n logging.warn(helpfulErrorMsg)\n if not isResponseParsed:\n return None\n return parseControllerResponse(data=None, statuscode=400,\n message=helpfulErrorMsg, error=helpfulErrorMsg)\n if err == 'Roll Number Mismatch':\n helpfulErrorMsg = (\n f\"You cannot change a user's roll number after creating it.\")\n if not isResponseParsed:\n return None\n return parseControllerResponse(data=None, statuscode=400,\n message=helpfulErrorMsg, error=helpfulErrorMsg)\n except Exception as e:\n helpfulErrorMsg = (\n f\"Couldn't update user={data.dict()} data, because e={e!r}\")\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n", "step-4": "import logging\nfrom bson import ObjectId\nfrom typing import Union\nfrom app.helper import parseControllerResponse\nfrom models.members import Member\nfrom schema.members import CreateMemberSchema, MemberInDBSchema, UpdateMemberSchema, memberHelper\n\n\ndef getAllMembersFromDB(**kwargs):\n \"\"\"Finds and returns all the registered members\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n logging.info('Trying to find all the users')\n try:\n rawMembersData = Member.objects()\n parsedMembers = [MemberInDBSchema(**memberHelper(rawMember)) for\n rawMember in rawMembersData]\n logging.info('Found all the users')\n if not isResponseParsed:\n return parsedMembers\n resp = [parsedMember.dict(exclude={'mongoDocument'}) for\n parsedMember in parsedMembers]\n return parseControllerResponse(data=resp, statuscode=200, message=\n 'Successfully found the users')\n except Exception as e:\n helpfulErrorMessage = \"Couldn't find all the users due to \" + e\n logging.error(helpfulErrorMessage)\n if isResponseParsed:\n return parseControllerResponse(statuscode=500, message=\n 'Something went wrong, try again later', error=\n helpfulErrorMessage)\n raise helpfulErrorMessage\n\n\ndef getMemberFromDiscordHandle(discordHandle: str):\n \"\"\"Finds and returns the user with the given discord handle, if\n such a user doesn't exist, return None\"\"\"\n try:\n member_ = Member.objects(discordHandle=discordHandle).first()\n assert member_\n member = MemberInDBSchema(**memberHelper(member_))\n return member\n except AssertionError as _:\n return None\n except Exception as e:\n raise Exception(\n \"Couldn't find a user with the discord handle {}, due to {}\"\n .format(discordHandle, e))\n\n\ndef getMemberFromRollNumber(rollNumber: int, **kwargs):\n \"\"\"Finds and returns the user with the given roll number, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n try:\n user = Member.objects(rollno=rollNumber).first()\n assert user\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the rollno={}'.format(\n memberHelper(user), rollNumber))\n logging.info('Found the user with rollNumber =' + rollNumber)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with roll numer={} does not exist'.format(\n rollNumber))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with rollnumber={} does not exist'.format(rollNumber))\n return None\n except Exception as e:\n helpfulErrorMsg = (\n f\"Couldn't find a user with the rollNumber = {rollNumber!r}, due to {e}\"\n )\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\ndef getMemberWithGivenId(id: Union[str, ObjectId], **kwargs):\n \"\"\"Finds and returns the user with the given id, if\n such a user doesn't exist, return None\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n rawData = kwargs.get('rawData', False)\n logging.info('Trying to find the user with the id=' + id)\n try:\n user = Member.objects(id=id).first()\n assert user\n logging.debug('Found a user {}, with the id={}'.format(memberHelper\n (user), id))\n logging.info('Found the user with id=' + id)\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n return parseControllerResponse(data=MemberInDBSchema(**memberHelper\n (user)).dict(exclude={'mongoDocument'}), statuscode=200,\n message='Successfully found the user')\n except AssertionError as _:\n logging.info('A user with id={} does not exist'.format(id))\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=404,\n message='User not found', error=\n 'A user with id={} does not exist'.format(id))\n return None\n except Exception as e:\n helpfulErrorMsg = (\"Couldn't find a user with the userId {}, due to {}\"\n .format(id, e))\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n\n\ndef updateMemberWithGivenDetails(data: UpdateMemberSchema, userId: Union[\n ObjectId, str], **kwargs):\n \"\"\"Finds the user with the given data, and updates their details,\n raises an error if the roll number is different\"\"\"\n isResponseParsed = kwargs.get('isParsed', False)\n try:\n user: Member = getMemberWithGivenId(id=userId, rawData=True)\n assert user, 'Not Found'\n assert user.rollno == data.rollno, 'Roll Number Mismatch'\n user.name = data.name if data.name else user.name\n user.discordHandle = (data.discordHandle if data.discordHandle else\n user.discordHandle)\n user.batch = data.batch if data.batch else user.batch\n if data.password:\n user.password = CreateMemberSchema.hashGivenText(data.password)\n user.save()\n logging.info('successfully updated user data')\n if isResponseParsed:\n return parseControllerResponse(data=MemberInDBSchema(**\n memberHelper(user)).dict(exclude={'mongoDocument'}),\n statuscode=200, message='Successfully updated user details')\n return True\n except AssertionError as err:\n if err == 'Not Found':\n helpfulErrorMsg = f\"A user with userId = {userId!r} doesn't exist\"\n logging.warn(helpfulErrorMsg)\n if not isResponseParsed:\n return None\n return parseControllerResponse(data=None, statuscode=400,\n message=helpfulErrorMsg, error=helpfulErrorMsg)\n if err == 'Roll Number Mismatch':\n helpfulErrorMsg = (\n f\"You cannot change a user's roll number after creating it.\")\n if not isResponseParsed:\n return None\n return parseControllerResponse(data=None, statuscode=400,\n message=helpfulErrorMsg, error=helpfulErrorMsg)\n except Exception as e:\n helpfulErrorMsg = (\n f\"Couldn't update user={data.dict()} data, because e={e!r}\")\n logging.error(helpfulErrorMsg)\n if isResponseParsed:\n return parseControllerResponse(data=None, statuscode=500,\n message='Something went wrong, try again later.', error=\n helpfulErrorMsg)\n raise helpfulErrorMsg\n", "step-5": "import logging\nfrom bson import ObjectId\nfrom typing import Union\n\nfrom app.helper import parseControllerResponse\n\nfrom models.members import Member\nfrom schema.members import (\n CreateMemberSchema,\n MemberInDBSchema,\n UpdateMemberSchema,\n memberHelper,\n)\n\n\ndef getAllMembersFromDB(**kwargs):\n \"\"\"Finds and returns all the registered members\"\"\"\n\n isResponseParsed = kwargs.get(\"isParsed\", False)\n logging.info(\"Trying to find all the users\")\n\n try:\n rawMembersData = Member.objects()\n\n parsedMembers = [\n MemberInDBSchema(**memberHelper(rawMember)) for rawMember in rawMembersData\n ]\n\n logging.info(\"Found all the users\")\n if not isResponseParsed:\n return parsedMembers\n\n resp = [\n parsedMember.dict(exclude={\"mongoDocument\"})\n for parsedMember in parsedMembers\n ]\n return parseControllerResponse(\n data=resp, statuscode=200, message=\"Successfully found the users\"\n )\n\n except Exception as e:\n helpfulErrorMessage = \"Couldn't find all the users due to \" + e\n\n logging.error(helpfulErrorMessage)\n if isResponseParsed:\n return parseControllerResponse(\n statuscode=500,\n message=\"Something went wrong, try again later\",\n error=helpfulErrorMessage,\n )\n raise helpfulErrorMessage\n\n\ndef getMemberFromDiscordHandle(discordHandle: str):\n \"\"\"Finds and returns the user with the given discord handle, if\n such a user doesn't exist, return None\"\"\"\n try:\n member_ = Member.objects(discordHandle=discordHandle).first()\n assert member_\n member = MemberInDBSchema(**memberHelper(member_))\n return member\n except AssertionError as _:\n # if the member is not found, raise a ValueError\n return None\n except Exception as e:\n raise Exception(\n \"Couldn't find a user with the discord handle \\\n {}, due to {}\".format(\n discordHandle, e\n )\n )\n\n\ndef getMemberFromRollNumber(rollNumber: int, **kwargs):\n \"\"\"Finds and returns the user with the given roll number, if\n such a user doesn't exist, return None\"\"\"\n\n isResponseParsed = kwargs.get(\"isParsed\", False)\n rawData = kwargs.get(\"rawData\", False)\n\n try:\n user = Member.objects(rollno=rollNumber).first()\n assert user\n\n user = Member.objects(id=id).first()\n\n assert user\n\n logging.debug(\n \"Found a user {}, with the rollno={}\".format(memberHelper(user), rollNumber)\n )\n logging.info(\"Found the user with rollNumber =\" + rollNumber)\n\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n\n return parseControllerResponse(\n data=(MemberInDBSchema(**memberHelper(user))).dict(\n exclude={\"mongoDocument\"}\n ),\n statuscode=200,\n message=\"Successfully found the user\",\n )\n\n except AssertionError as _:\n # user was not found, return none or parsed response\n # ! its the person who called this func's responsibility to create an error\n logging.info(\"A user with roll numer={} does not exist\".format(rollNumber))\n\n if isResponseParsed:\n return parseControllerResponse(\n data=None,\n statuscode=404,\n message=\"User not found\",\n error=\"A user with rollnumber={} does not exist\".format(rollNumber),\n )\n return None\n except Exception as e:\n helpfulErrorMsg = f\"Couldn't find a user with the {rollNumber = }, due to {e}\"\n\n logging.error(helpfulErrorMsg)\n\n if isResponseParsed:\n return parseControllerResponse(\n data=None,\n statuscode=500,\n message=\"Something went wrong, try again later.\",\n error=helpfulErrorMsg,\n )\n raise helpfulErrorMsg\n\n\ndef getMemberWithGivenId(id: Union[str, ObjectId], **kwargs):\n \"\"\"Finds and returns the user with the given id, if\n such a user doesn't exist, return None\"\"\"\n\n isResponseParsed = kwargs.get(\"isParsed\", False)\n rawData = kwargs.get(\"rawData\", False)\n\n logging.info(\"Trying to find the user with the id=\" + id)\n try:\n\n user = Member.objects(id=id).first()\n\n assert user\n\n logging.debug(\"Found a user {}, with the id={}\".format(memberHelper(user), id))\n logging.info(\"Found the user with id=\" + id)\n\n if not isResponseParsed:\n return user if rawData else MemberInDBSchema(**memberHelper(user))\n\n return parseControllerResponse(\n data=(MemberInDBSchema(**memberHelper(user))).dict(\n exclude={\"mongoDocument\"}\n ),\n statuscode=200,\n message=\"Successfully found the user\",\n )\n\n except AssertionError as _:\n # user was not found, return none or parsed response\n logging.info(\"A user with id={} does not exist\".format(id))\n\n if isResponseParsed:\n return parseControllerResponse(\n data=None,\n statuscode=404,\n message=\"User not found\",\n error=\"A user with id={} does not exist\".format(id),\n )\n return None\n\n except Exception as e:\n helpfulErrorMsg = \"Couldn't find a user with the userId {}, due to {}\".format(\n id, e\n )\n logging.error(helpfulErrorMsg)\n\n if isResponseParsed:\n return parseControllerResponse(\n data=None,\n statuscode=500,\n message=\"Something went wrong, try again later.\",\n error=helpfulErrorMsg,\n )\n raise helpfulErrorMsg\n\n\ndef updateMemberWithGivenDetails(\n data: UpdateMemberSchema, userId: Union[ObjectId, str], **kwargs\n):\n \"\"\"Finds the user with the given data, and updates their details,\n raises an error if the roll number is different\"\"\"\n\n isResponseParsed = kwargs.get(\"isParsed\", False)\n\n try:\n user: Member = getMemberWithGivenId(id=userId, rawData=True)\n\n assert user, \"Not Found\"\n\n # A user cannot change roll number after creating a doc\n assert user.rollno == data.rollno, \"Roll Number Mismatch\"\n\n user.name = data.name if data.name else user.name\n user.discordHandle = (\n data.discordHandle if data.discordHandle else user.discordHandle\n )\n user.batch = data.batch if data.batch else user.batch\n\n if data.password:\n user.password = CreateMemberSchema.hashGivenText(data.password)\n\n user.save()\n\n logging.info(\"successfully updated user data\")\n\n if isResponseParsed:\n return parseControllerResponse(\n data=(MemberInDBSchema(**memberHelper(user))).dict(\n exclude={\"mongoDocument\"}\n ),\n statuscode=200,\n message=\"Successfully updated user details\",\n )\n\n return True\n\n except AssertionError as err:\n if err == \"Not Found\":\n helpfulErrorMsg = f\"A user with {userId = } doesn't exist\"\n logging.warn(helpfulErrorMsg)\n if not isResponseParsed:\n return None\n return parseControllerResponse(\n data=None,\n statuscode=400,\n message=helpfulErrorMsg,\n error=helpfulErrorMsg,\n )\n if err == \"Roll Number Mismatch\":\n helpfulErrorMsg = (\n f\"You cannot change a user's roll number after creating it.\"\n )\n if not isResponseParsed:\n return None\n return parseControllerResponse(\n data=None,\n statuscode=400,\n message=helpfulErrorMsg,\n error=helpfulErrorMsg,\n )\n\n except Exception as e:\n helpfulErrorMsg = f\"Couldn't update user={data.dict()} data, because {e=}\"\n\n logging.error(helpfulErrorMsg)\n\n if isResponseParsed:\n return parseControllerResponse(\n data=None,\n statuscode=500,\n message=\"Something went wrong, try again later.\",\n error=helpfulErrorMsg,\n )\n raise helpfulErrorMsg\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import caffe import numpy as np class PyLayer(caffe.Layer): def setup(self, bottom, top): if len(bottom) != 2: raise Exception("Need two inputs to compute distance") def reshape(self, bottom, top): if bottom[0].count != bottom[1].count: raise Exception("Inputs must have the same dimension") self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32) top[0].reshape(1) def forward(self, bottom, top): self.diff[...] = bottom[0].data - bottom[1].data top[0].data[...] = np.sum(self.diff ** 2) * (0.5 / bottom[0].num) def backward(self, top, propagate_down, bottom): for i in range(2): if not propagate_down[i]: continue if i == 0: bottom[i].diff[...] = self.diff * (1 / bottom[i].num) else: bottom[i].diff[...] = self.diff * (-1 / bottom[i].num)
normal
{ "blob_id": "8040b47dc3fd6b03432f64d7fb8a4267cc94ac9a", "index": 2698, "step-1": "<mask token>\n\n\nclass PyLayer(caffe.Layer):\n\n def setup(self, bottom, top):\n if len(bottom) != 2:\n raise Exception('Need two inputs to compute distance')\n\n def reshape(self, bottom, top):\n if bottom[0].count != bottom[1].count:\n raise Exception('Inputs must have the same dimension')\n self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32)\n top[0].reshape(1)\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass PyLayer(caffe.Layer):\n\n def setup(self, bottom, top):\n if len(bottom) != 2:\n raise Exception('Need two inputs to compute distance')\n\n def reshape(self, bottom, top):\n if bottom[0].count != bottom[1].count:\n raise Exception('Inputs must have the same dimension')\n self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32)\n top[0].reshape(1)\n <mask token>\n\n def backward(self, top, propagate_down, bottom):\n for i in range(2):\n if not propagate_down[i]:\n continue\n if i == 0:\n bottom[i].diff[...] = self.diff * (1 / bottom[i].num)\n else:\n bottom[i].diff[...] = self.diff * (-1 / bottom[i].num)\n", "step-3": "<mask token>\n\n\nclass PyLayer(caffe.Layer):\n\n def setup(self, bottom, top):\n if len(bottom) != 2:\n raise Exception('Need two inputs to compute distance')\n\n def reshape(self, bottom, top):\n if bottom[0].count != bottom[1].count:\n raise Exception('Inputs must have the same dimension')\n self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32)\n top[0].reshape(1)\n\n def forward(self, bottom, top):\n self.diff[...] = bottom[0].data - bottom[1].data\n top[0].data[...] = np.sum(self.diff ** 2) * (0.5 / bottom[0].num)\n\n def backward(self, top, propagate_down, bottom):\n for i in range(2):\n if not propagate_down[i]:\n continue\n if i == 0:\n bottom[i].diff[...] = self.diff * (1 / bottom[i].num)\n else:\n bottom[i].diff[...] = self.diff * (-1 / bottom[i].num)\n", "step-4": "import caffe\nimport numpy as np\n\n\nclass PyLayer(caffe.Layer):\n\n def setup(self, bottom, top):\n if len(bottom) != 2:\n raise Exception('Need two inputs to compute distance')\n\n def reshape(self, bottom, top):\n if bottom[0].count != bottom[1].count:\n raise Exception('Inputs must have the same dimension')\n self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32)\n top[0].reshape(1)\n\n def forward(self, bottom, top):\n self.diff[...] = bottom[0].data - bottom[1].data\n top[0].data[...] = np.sum(self.diff ** 2) * (0.5 / bottom[0].num)\n\n def backward(self, top, propagate_down, bottom):\n for i in range(2):\n if not propagate_down[i]:\n continue\n if i == 0:\n bottom[i].diff[...] = self.diff * (1 / bottom[i].num)\n else:\n bottom[i].diff[...] = self.diff * (-1 / bottom[i].num)\n", "step-5": "import caffe\nimport numpy as np\n\nclass PyLayer(caffe.Layer):\n def setup(self, bottom, top):\n if len(bottom) != 2:\n raise Exception(\"Need two inputs to compute distance\")\n\n def reshape(self, bottom, top):\n if bottom[0].count != bottom[1].count:\n raise Exception(\"Inputs must have the same dimension\")\n self.diff = np.zeros(bottom[0].data.shape, dtype=np.float32)\n top[0].reshape(1)\n\n def forward(self, bottom, top):\n self.diff[...] = bottom[0].data - bottom[1].data\n top[0].data[...] = np.sum(self.diff ** 2) * (0.5 / bottom[0].num)\n\n def backward(self, top, propagate_down, bottom):\n for i in range(2):\n if not propagate_down[i]:\n continue\n if i == 0:\n bottom[i].diff[...] = self.diff * (1 / bottom[i].num)\n else:\n bottom[i].diff[...] = self.diff * (-1 / bottom[i].num)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
from __future__ import annotations import logging import os import sys from argparse import Namespace from pathlib import Path from uuid import uuid4 import pytest from virtualenv.discovery.builtin import Builtin, get_interpreter from virtualenv.discovery.py_info import PythonInfo from virtualenv.info import fs_supports_symlink @pytest.mark.skipif(not fs_supports_symlink(), reason="symlink not supported") @pytest.mark.parametrize("case", ["mixed", "lower", "upper"]) def test_discovery_via_path(monkeypatch, case, tmp_path, caplog, session_app_data): caplog.set_level(logging.DEBUG) current = PythonInfo.current_system(session_app_data) core = f"somethingVeryCryptic{'.'.join(str(i) for i in current.version_info[0:3])}" name = "somethingVeryCryptic" if case == "lower": name = name.lower() elif case == "upper": name = name.upper() exe_name = f"{name}{current.version_info.major}{'.exe' if sys.platform == 'win32' else ''}" target = tmp_path / current.install_path("scripts") target.mkdir(parents=True) executable = target / exe_name os.symlink(sys.executable, str(executable)) pyvenv_cfg = Path(sys.executable).parents[1] / "pyvenv.cfg" if pyvenv_cfg.exists(): (target / pyvenv_cfg.name).write_bytes(pyvenv_cfg.read_bytes()) new_path = os.pathsep.join([str(target), *os.environ.get("PATH", "").split(os.pathsep)]) monkeypatch.setenv("PATH", new_path) interpreter = get_interpreter(core, []) assert interpreter is not None def test_discovery_via_path_not_found(tmp_path, monkeypatch): monkeypatch.setenv("PATH", str(tmp_path)) interpreter = get_interpreter(uuid4().hex, []) assert interpreter is None def test_relative_path(session_app_data, monkeypatch): sys_executable = Path(PythonInfo.current_system(app_data=session_app_data).system_executable) cwd = sys_executable.parents[1] monkeypatch.chdir(str(cwd)) relative = str(sys_executable.relative_to(cwd)) result = get_interpreter(relative, [], session_app_data) assert result is not None def test_discovery_fallback_fail(session_app_data, caplog): caplog.set_level(logging.DEBUG) builtin = Builtin( Namespace(app_data=session_app_data, try_first_with=[], python=["magic-one", "magic-two"], env=os.environ), ) result = builtin.run() assert result is None assert "accepted" not in caplog.text def test_discovery_fallback_ok(session_app_data, caplog): caplog.set_level(logging.DEBUG) builtin = Builtin( Namespace(app_data=session_app_data, try_first_with=[], python=["magic-one", sys.executable], env=os.environ), ) result = builtin.run() assert result is not None, caplog.text assert result.executable == sys.executable, caplog.text assert "accepted" in caplog.text
normal
{ "blob_id": "55d4f4bba2b72ec93cb883527d2a9c2ebe8ec337", "index": 4910, "step-1": "<mask token>\n\n\ndef test_relative_path(session_app_data, monkeypatch):\n sys_executable = Path(PythonInfo.current_system(app_data=\n session_app_data).system_executable)\n cwd = sys_executable.parents[1]\n monkeypatch.chdir(str(cwd))\n relative = str(sys_executable.relative_to(cwd))\n result = get_interpreter(relative, [], session_app_data)\n assert result is not None\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\[email protected](not fs_supports_symlink(), reason='symlink not supported')\[email protected]('case', ['mixed', 'lower', 'upper'])\ndef test_discovery_via_path(monkeypatch, case, tmp_path, caplog,\n session_app_data):\n caplog.set_level(logging.DEBUG)\n current = PythonInfo.current_system(session_app_data)\n core = (\n f\"somethingVeryCryptic{'.'.join(str(i) for i in current.version_info[0:3])}\"\n )\n name = 'somethingVeryCryptic'\n if case == 'lower':\n name = name.lower()\n elif case == 'upper':\n name = name.upper()\n exe_name = (\n f\"{name}{current.version_info.major}{'.exe' if sys.platform == 'win32' else ''}\"\n )\n target = tmp_path / current.install_path('scripts')\n target.mkdir(parents=True)\n executable = target / exe_name\n os.symlink(sys.executable, str(executable))\n pyvenv_cfg = Path(sys.executable).parents[1] / 'pyvenv.cfg'\n if pyvenv_cfg.exists():\n (target / pyvenv_cfg.name).write_bytes(pyvenv_cfg.read_bytes())\n new_path = os.pathsep.join([str(target), *os.environ.get('PATH', '').\n split(os.pathsep)])\n monkeypatch.setenv('PATH', new_path)\n interpreter = get_interpreter(core, [])\n assert interpreter is not None\n\n\ndef test_discovery_via_path_not_found(tmp_path, monkeypatch):\n monkeypatch.setenv('PATH', str(tmp_path))\n interpreter = get_interpreter(uuid4().hex, [])\n assert interpreter is None\n\n\ndef test_relative_path(session_app_data, monkeypatch):\n sys_executable = Path(PythonInfo.current_system(app_data=\n session_app_data).system_executable)\n cwd = sys_executable.parents[1]\n monkeypatch.chdir(str(cwd))\n relative = str(sys_executable.relative_to(cwd))\n result = get_interpreter(relative, [], session_app_data)\n assert result is not None\n\n\n<mask token>\n\n\ndef test_discovery_fallback_ok(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(Namespace(app_data=session_app_data, try_first_with=[\n ], python=['magic-one', sys.executable], env=os.environ))\n result = builtin.run()\n assert result is not None, caplog.text\n assert result.executable == sys.executable, caplog.text\n assert 'accepted' in caplog.text\n", "step-3": "<mask token>\n\n\[email protected](not fs_supports_symlink(), reason='symlink not supported')\[email protected]('case', ['mixed', 'lower', 'upper'])\ndef test_discovery_via_path(monkeypatch, case, tmp_path, caplog,\n session_app_data):\n caplog.set_level(logging.DEBUG)\n current = PythonInfo.current_system(session_app_data)\n core = (\n f\"somethingVeryCryptic{'.'.join(str(i) for i in current.version_info[0:3])}\"\n )\n name = 'somethingVeryCryptic'\n if case == 'lower':\n name = name.lower()\n elif case == 'upper':\n name = name.upper()\n exe_name = (\n f\"{name}{current.version_info.major}{'.exe' if sys.platform == 'win32' else ''}\"\n )\n target = tmp_path / current.install_path('scripts')\n target.mkdir(parents=True)\n executable = target / exe_name\n os.symlink(sys.executable, str(executable))\n pyvenv_cfg = Path(sys.executable).parents[1] / 'pyvenv.cfg'\n if pyvenv_cfg.exists():\n (target / pyvenv_cfg.name).write_bytes(pyvenv_cfg.read_bytes())\n new_path = os.pathsep.join([str(target), *os.environ.get('PATH', '').\n split(os.pathsep)])\n monkeypatch.setenv('PATH', new_path)\n interpreter = get_interpreter(core, [])\n assert interpreter is not None\n\n\ndef test_discovery_via_path_not_found(tmp_path, monkeypatch):\n monkeypatch.setenv('PATH', str(tmp_path))\n interpreter = get_interpreter(uuid4().hex, [])\n assert interpreter is None\n\n\ndef test_relative_path(session_app_data, monkeypatch):\n sys_executable = Path(PythonInfo.current_system(app_data=\n session_app_data).system_executable)\n cwd = sys_executable.parents[1]\n monkeypatch.chdir(str(cwd))\n relative = str(sys_executable.relative_to(cwd))\n result = get_interpreter(relative, [], session_app_data)\n assert result is not None\n\n\ndef test_discovery_fallback_fail(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(Namespace(app_data=session_app_data, try_first_with=[\n ], python=['magic-one', 'magic-two'], env=os.environ))\n result = builtin.run()\n assert result is None\n assert 'accepted' not in caplog.text\n\n\ndef test_discovery_fallback_ok(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(Namespace(app_data=session_app_data, try_first_with=[\n ], python=['magic-one', sys.executable], env=os.environ))\n result = builtin.run()\n assert result is not None, caplog.text\n assert result.executable == sys.executable, caplog.text\n assert 'accepted' in caplog.text\n", "step-4": "from __future__ import annotations\nimport logging\nimport os\nimport sys\nfrom argparse import Namespace\nfrom pathlib import Path\nfrom uuid import uuid4\nimport pytest\nfrom virtualenv.discovery.builtin import Builtin, get_interpreter\nfrom virtualenv.discovery.py_info import PythonInfo\nfrom virtualenv.info import fs_supports_symlink\n\n\[email protected](not fs_supports_symlink(), reason='symlink not supported')\[email protected]('case', ['mixed', 'lower', 'upper'])\ndef test_discovery_via_path(monkeypatch, case, tmp_path, caplog,\n session_app_data):\n caplog.set_level(logging.DEBUG)\n current = PythonInfo.current_system(session_app_data)\n core = (\n f\"somethingVeryCryptic{'.'.join(str(i) for i in current.version_info[0:3])}\"\n )\n name = 'somethingVeryCryptic'\n if case == 'lower':\n name = name.lower()\n elif case == 'upper':\n name = name.upper()\n exe_name = (\n f\"{name}{current.version_info.major}{'.exe' if sys.platform == 'win32' else ''}\"\n )\n target = tmp_path / current.install_path('scripts')\n target.mkdir(parents=True)\n executable = target / exe_name\n os.symlink(sys.executable, str(executable))\n pyvenv_cfg = Path(sys.executable).parents[1] / 'pyvenv.cfg'\n if pyvenv_cfg.exists():\n (target / pyvenv_cfg.name).write_bytes(pyvenv_cfg.read_bytes())\n new_path = os.pathsep.join([str(target), *os.environ.get('PATH', '').\n split(os.pathsep)])\n monkeypatch.setenv('PATH', new_path)\n interpreter = get_interpreter(core, [])\n assert interpreter is not None\n\n\ndef test_discovery_via_path_not_found(tmp_path, monkeypatch):\n monkeypatch.setenv('PATH', str(tmp_path))\n interpreter = get_interpreter(uuid4().hex, [])\n assert interpreter is None\n\n\ndef test_relative_path(session_app_data, monkeypatch):\n sys_executable = Path(PythonInfo.current_system(app_data=\n session_app_data).system_executable)\n cwd = sys_executable.parents[1]\n monkeypatch.chdir(str(cwd))\n relative = str(sys_executable.relative_to(cwd))\n result = get_interpreter(relative, [], session_app_data)\n assert result is not None\n\n\ndef test_discovery_fallback_fail(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(Namespace(app_data=session_app_data, try_first_with=[\n ], python=['magic-one', 'magic-two'], env=os.environ))\n result = builtin.run()\n assert result is None\n assert 'accepted' not in caplog.text\n\n\ndef test_discovery_fallback_ok(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(Namespace(app_data=session_app_data, try_first_with=[\n ], python=['magic-one', sys.executable], env=os.environ))\n result = builtin.run()\n assert result is not None, caplog.text\n assert result.executable == sys.executable, caplog.text\n assert 'accepted' in caplog.text\n", "step-5": "from __future__ import annotations\n\nimport logging\nimport os\nimport sys\nfrom argparse import Namespace\nfrom pathlib import Path\nfrom uuid import uuid4\n\nimport pytest\n\nfrom virtualenv.discovery.builtin import Builtin, get_interpreter\nfrom virtualenv.discovery.py_info import PythonInfo\nfrom virtualenv.info import fs_supports_symlink\n\n\[email protected](not fs_supports_symlink(), reason=\"symlink not supported\")\[email protected](\"case\", [\"mixed\", \"lower\", \"upper\"])\ndef test_discovery_via_path(monkeypatch, case, tmp_path, caplog, session_app_data):\n caplog.set_level(logging.DEBUG)\n current = PythonInfo.current_system(session_app_data)\n core = f\"somethingVeryCryptic{'.'.join(str(i) for i in current.version_info[0:3])}\"\n name = \"somethingVeryCryptic\"\n if case == \"lower\":\n name = name.lower()\n elif case == \"upper\":\n name = name.upper()\n exe_name = f\"{name}{current.version_info.major}{'.exe' if sys.platform == 'win32' else ''}\"\n target = tmp_path / current.install_path(\"scripts\")\n target.mkdir(parents=True)\n executable = target / exe_name\n os.symlink(sys.executable, str(executable))\n pyvenv_cfg = Path(sys.executable).parents[1] / \"pyvenv.cfg\"\n if pyvenv_cfg.exists():\n (target / pyvenv_cfg.name).write_bytes(pyvenv_cfg.read_bytes())\n new_path = os.pathsep.join([str(target), *os.environ.get(\"PATH\", \"\").split(os.pathsep)])\n monkeypatch.setenv(\"PATH\", new_path)\n interpreter = get_interpreter(core, [])\n\n assert interpreter is not None\n\n\ndef test_discovery_via_path_not_found(tmp_path, monkeypatch):\n monkeypatch.setenv(\"PATH\", str(tmp_path))\n interpreter = get_interpreter(uuid4().hex, [])\n assert interpreter is None\n\n\ndef test_relative_path(session_app_data, monkeypatch):\n sys_executable = Path(PythonInfo.current_system(app_data=session_app_data).system_executable)\n cwd = sys_executable.parents[1]\n monkeypatch.chdir(str(cwd))\n relative = str(sys_executable.relative_to(cwd))\n result = get_interpreter(relative, [], session_app_data)\n assert result is not None\n\n\ndef test_discovery_fallback_fail(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(\n Namespace(app_data=session_app_data, try_first_with=[], python=[\"magic-one\", \"magic-two\"], env=os.environ),\n )\n\n result = builtin.run()\n assert result is None\n\n assert \"accepted\" not in caplog.text\n\n\ndef test_discovery_fallback_ok(session_app_data, caplog):\n caplog.set_level(logging.DEBUG)\n builtin = Builtin(\n Namespace(app_data=session_app_data, try_first_with=[], python=[\"magic-one\", sys.executable], env=os.environ),\n )\n\n result = builtin.run()\n assert result is not None, caplog.text\n assert result.executable == sys.executable, caplog.text\n\n assert \"accepted\" in caplog.text\n", "step-ids": [ 1, 4, 5, 6, 7 ] }
[ 1, 4, 5, 6, 7 ]
# template for "Stopwatch: The Game" import math import simplegui # define global variables successcount = 0; totalstopcount = 0; count = 0; T = True; F = True; # define helper function format that converts time # in tenths of seconds into formatted string A:BC.D def format(t): A = str(t // 600); tem = (t // 10); tem = (tem) % 60; B = str(tem // 10); C = str(tem % 10); D = str(t % 10); return A + ":" + B + C + "." + D; # define event handlers for buttons; "Start", "Stop", "Reset" def stop(): global successcount, totalstopcount, T; timer.stop(); if (T == True): if (F == False): totalstopcount = totalstopcount + 1; T = False; if ((count % 10 == 0) and (count != 0)): successcount = successcount + 1; def start(): global T, F; T = True; F = False; timer.start(); def reset(): global successcount, totalstopcount, count, F; count = 0; successcount = 0; totalstopcount = 0; F = True; # define event handler for timer with 0.1 sec interval def tick(): global count; count = count + 1; # define draw handler def draw(canvas): global count; canvas.draw_text(format(count), [250, 250], 40, "red"); canvas.draw_text(str(successcount) + "/" + str(totalstopcount), [400, 100], 30, "orange"); # create frame frame = simplegui.create_frame("Stopwatch", 500, 500); frame.add_button("START", start); frame.add_button("STOP", stop); frame.add_button("RESET", reset); # register event handlers frame.set_draw_handler(draw); timer = simplegui.create_timer(100, tick) # start frame frame.start(); # Please remember to review the grading rubric
normal
{ "blob_id": "bb198978ffc799bb43acf870467496e1dcc54d4b", "index": 3710, "step-1": "<mask token>\n\n\ndef format(t):\n A = str(t // 600)\n tem = t // 10\n tem = tem % 60\n B = str(tem // 10)\n C = str(tem % 10)\n D = str(t % 10)\n return A + ':' + B + C + '.' + D\n\n\n<mask token>\n\n\ndef reset():\n global successcount, totalstopcount, count, F\n count = 0\n successcount = 0\n totalstopcount = 0\n F = True\n\n\ndef tick():\n global count\n count = count + 1\n\n\ndef draw(canvas):\n global count\n canvas.draw_text(format(count), [250, 250], 40, 'red')\n canvas.draw_text(str(successcount) + '/' + str(totalstopcount), [400, \n 100], 30, 'orange')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef format(t):\n A = str(t // 600)\n tem = t // 10\n tem = tem % 60\n B = str(tem // 10)\n C = str(tem % 10)\n D = str(t % 10)\n return A + ':' + B + C + '.' + D\n\n\ndef stop():\n global successcount, totalstopcount, T\n timer.stop()\n if T == True:\n if F == False:\n totalstopcount = totalstopcount + 1\n T = False\n if count % 10 == 0 and count != 0:\n successcount = successcount + 1\n\n\n<mask token>\n\n\ndef reset():\n global successcount, totalstopcount, count, F\n count = 0\n successcount = 0\n totalstopcount = 0\n F = True\n\n\ndef tick():\n global count\n count = count + 1\n\n\ndef draw(canvas):\n global count\n canvas.draw_text(format(count), [250, 250], 40, 'red')\n canvas.draw_text(str(successcount) + '/' + str(totalstopcount), [400, \n 100], 30, 'orange')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef format(t):\n A = str(t // 600)\n tem = t // 10\n tem = tem % 60\n B = str(tem // 10)\n C = str(tem % 10)\n D = str(t % 10)\n return A + ':' + B + C + '.' + D\n\n\ndef stop():\n global successcount, totalstopcount, T\n timer.stop()\n if T == True:\n if F == False:\n totalstopcount = totalstopcount + 1\n T = False\n if count % 10 == 0 and count != 0:\n successcount = successcount + 1\n\n\ndef start():\n global T, F\n T = True\n F = False\n timer.start()\n\n\ndef reset():\n global successcount, totalstopcount, count, F\n count = 0\n successcount = 0\n totalstopcount = 0\n F = True\n\n\ndef tick():\n global count\n count = count + 1\n\n\ndef draw(canvas):\n global count\n canvas.draw_text(format(count), [250, 250], 40, 'red')\n canvas.draw_text(str(successcount) + '/' + str(totalstopcount), [400, \n 100], 30, 'orange')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef format(t):\n A = str(t // 600)\n tem = t // 10\n tem = tem % 60\n B = str(tem // 10)\n C = str(tem % 10)\n D = str(t % 10)\n return A + ':' + B + C + '.' + D\n\n\ndef stop():\n global successcount, totalstopcount, T\n timer.stop()\n if T == True:\n if F == False:\n totalstopcount = totalstopcount + 1\n T = False\n if count % 10 == 0 and count != 0:\n successcount = successcount + 1\n\n\ndef start():\n global T, F\n T = True\n F = False\n timer.start()\n\n\ndef reset():\n global successcount, totalstopcount, count, F\n count = 0\n successcount = 0\n totalstopcount = 0\n F = True\n\n\ndef tick():\n global count\n count = count + 1\n\n\ndef draw(canvas):\n global count\n canvas.draw_text(format(count), [250, 250], 40, 'red')\n canvas.draw_text(str(successcount) + '/' + str(totalstopcount), [400, \n 100], 30, 'orange')\n\n\n<mask token>\nframe.add_button('START', start)\nframe.add_button('STOP', stop)\nframe.add_button('RESET', reset)\nframe.set_draw_handler(draw)\n<mask token>\nframe.start()\n", "step-5": "# template for \"Stopwatch: The Game\"\nimport math\nimport simplegui\n\n\n# define global variables\nsuccesscount = 0;\ntotalstopcount = 0;\ncount = 0;\nT = True;\nF = True;\n\n\n# define helper function format that converts time\n# in tenths of seconds into formatted string A:BC.D\ndef format(t):\n A = str(t // 600);\n tem = (t // 10);\n tem = (tem) % 60;\n B = str(tem // 10);\n C = str(tem % 10);\n D = str(t % 10);\n return A + \":\" + B + C + \".\" + D;\n\n\n# define event handlers for buttons; \"Start\", \"Stop\", \"Reset\"\ndef stop():\n global successcount, totalstopcount, T;\n timer.stop();\n if (T == True):\n if (F == False):\n totalstopcount = totalstopcount + 1;\n T = False;\n if ((count % 10 == 0) and (count != 0)):\n successcount = successcount + 1;\n\n\ndef start():\n global T, F;\n T = True;\n F = False;\n timer.start();\n\n\ndef reset():\n global successcount, totalstopcount, count, F;\n count = 0;\n successcount = 0;\n totalstopcount = 0;\n F = True;\n\n\n# define event handler for timer with 0.1 sec interval\ndef tick():\n global count;\n count = count + 1;\n\n\n# define draw handler\ndef draw(canvas):\n global count;\n canvas.draw_text(format(count), [250, 250], 40, \"red\");\n canvas.draw_text(str(successcount) + \"/\" + str(totalstopcount), [400, 100], 30, \"orange\");\n\n\n# create frame\nframe = simplegui.create_frame(\"Stopwatch\", 500, 500);\nframe.add_button(\"START\", start);\nframe.add_button(\"STOP\", stop);\nframe.add_button(\"RESET\", reset);\n\n# register event handlers\nframe.set_draw_handler(draw);\ntimer = simplegui.create_timer(100, tick)\n\n# start frame\nframe.start();\n\n# Please remember to review the grading rubric\n\n", "step-ids": [ 4, 5, 6, 7, 10 ] }
[ 4, 5, 6, 7, 10 ]
from datetime import datetime as dt YEAR = dt.today().year BINARY_LOCATION = {'binary_location': 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe'} CHROME_DRIVER_PATH = r'C:\Users\pavithra\Downloads\chromedriver_win32\chromedriver.exe' EXTRACTED_DIR = r'C:\Users\pavithra\Documents\fintuple-automation-projects\BseBhavCopy\dailybhavcopy\dailybhavcopy' \ r'\csv_files' ZIP_DIR = r'C:\Users\pavithra\Documents\fintuple-automation-projects\BseBhavCopy\dailybhavcopy\dailybhavcopy\zip_files' HEADLESS_OPTIONS = {'headless': '--headless', 'window_size': '--window-size=1920x1080'} DOWNLOAD_PREFERENCES = {'download.default_directory': EXTRACTED_DIR, 'download.prompt_for_download': False} def enable_download(driver, directory): """ :param driver: Selenium web driver :param directory: Directory to store the file This function allows the Selenium web driver to store the file in the given directory. """ driver.command_executor._commands["send_command"] = ("POST", '/session/$sessionId/chromium/send_command') params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior': 'allow', 'downloadPath': directory}} driver.execute("send_command", params)
normal
{ "blob_id": "95422348c8db9753830cc0a7c8785c05b44886b1", "index": 842, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef enable_download(driver, directory):\n \"\"\"\n\n :param driver: Selenium web driver\n :param directory: Directory to store the file\n\n This function allows the Selenium web driver to store the file in the given directory.\n \"\"\"\n driver.command_executor._commands['send_command'\n ] = 'POST', '/session/$sessionId/chromium/send_command'\n params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior':\n 'allow', 'downloadPath': directory}}\n driver.execute('send_command', params)\n", "step-3": "<mask token>\nYEAR = dt.today().year\nBINARY_LOCATION = {'binary_location':\n 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe'}\nCHROME_DRIVER_PATH = (\n 'C:\\\\Users\\\\pavithra\\\\Downloads\\\\chromedriver_win32\\\\chromedriver.exe')\nEXTRACTED_DIR = (\n 'C:\\\\Users\\\\pavithra\\\\Documents\\\\fintuple-automation-projects\\\\BseBhavCopy\\\\dailybhavcopy\\\\dailybhavcopy\\\\csv_files'\n )\nZIP_DIR = (\n 'C:\\\\Users\\\\pavithra\\\\Documents\\\\fintuple-automation-projects\\\\BseBhavCopy\\\\dailybhavcopy\\\\dailybhavcopy\\\\zip_files'\n )\nHEADLESS_OPTIONS = {'headless': '--headless', 'window_size':\n '--window-size=1920x1080'}\nDOWNLOAD_PREFERENCES = {'download.default_directory': EXTRACTED_DIR,\n 'download.prompt_for_download': False}\n\n\ndef enable_download(driver, directory):\n \"\"\"\n\n :param driver: Selenium web driver\n :param directory: Directory to store the file\n\n This function allows the Selenium web driver to store the file in the given directory.\n \"\"\"\n driver.command_executor._commands['send_command'\n ] = 'POST', '/session/$sessionId/chromium/send_command'\n params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior':\n 'allow', 'downloadPath': directory}}\n driver.execute('send_command', params)\n", "step-4": "from datetime import datetime as dt\nYEAR = dt.today().year\nBINARY_LOCATION = {'binary_location':\n 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe'}\nCHROME_DRIVER_PATH = (\n 'C:\\\\Users\\\\pavithra\\\\Downloads\\\\chromedriver_win32\\\\chromedriver.exe')\nEXTRACTED_DIR = (\n 'C:\\\\Users\\\\pavithra\\\\Documents\\\\fintuple-automation-projects\\\\BseBhavCopy\\\\dailybhavcopy\\\\dailybhavcopy\\\\csv_files'\n )\nZIP_DIR = (\n 'C:\\\\Users\\\\pavithra\\\\Documents\\\\fintuple-automation-projects\\\\BseBhavCopy\\\\dailybhavcopy\\\\dailybhavcopy\\\\zip_files'\n )\nHEADLESS_OPTIONS = {'headless': '--headless', 'window_size':\n '--window-size=1920x1080'}\nDOWNLOAD_PREFERENCES = {'download.default_directory': EXTRACTED_DIR,\n 'download.prompt_for_download': False}\n\n\ndef enable_download(driver, directory):\n \"\"\"\n\n :param driver: Selenium web driver\n :param directory: Directory to store the file\n\n This function allows the Selenium web driver to store the file in the given directory.\n \"\"\"\n driver.command_executor._commands['send_command'\n ] = 'POST', '/session/$sessionId/chromium/send_command'\n params = {'cmd': 'Page.setDownloadBehavior', 'params': {'behavior':\n 'allow', 'downloadPath': directory}}\n driver.execute('send_command', params)\n", "step-5": "from datetime import datetime as dt\n\nYEAR = dt.today().year\nBINARY_LOCATION = {'binary_location': 'C:/Program Files (x86)/Google/Chrome/Application/chrome.exe'}\nCHROME_DRIVER_PATH = r'C:\\Users\\pavithra\\Downloads\\chromedriver_win32\\chromedriver.exe'\nEXTRACTED_DIR = r'C:\\Users\\pavithra\\Documents\\fintuple-automation-projects\\BseBhavCopy\\dailybhavcopy\\dailybhavcopy' \\\n r'\\csv_files'\nZIP_DIR = r'C:\\Users\\pavithra\\Documents\\fintuple-automation-projects\\BseBhavCopy\\dailybhavcopy\\dailybhavcopy\\zip_files'\nHEADLESS_OPTIONS = {'headless': '--headless',\n 'window_size': '--window-size=1920x1080'}\nDOWNLOAD_PREFERENCES = {'download.default_directory': EXTRACTED_DIR,\n 'download.prompt_for_download': False}\n\n\ndef enable_download(driver, directory):\n \"\"\"\n\n :param driver: Selenium web driver\n :param directory: Directory to store the file\n\n This function allows the Selenium web driver to store the file in the given directory.\n \"\"\"\n driver.command_executor._commands[\"send_command\"] = (\"POST\", '/session/$sessionId/chromium/send_command')\n params = {'cmd': 'Page.setDownloadBehavior',\n 'params': {'behavior': 'allow',\n 'downloadPath': directory}}\n driver.execute(\"send_command\", params)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/python3 # -*- coding: UTF-8 -*- import RPi.GPIO as gpio # 导入Rpi.GPIO库函数命名为GPIO import time gpio.setmode(gpio.BOARD) #将GPIO编程方式设置为BOARD模式 pin = 40 gpio.setup(pin, gpio.OUT) #控制pin号引脚 gpio.output(pin, gpio.HIGH) #11号引脚输出高电平 time.sleep(5) #计时0.5秒 gpio.output(pin, gpio.LOW) #11号引脚输出低电平 time.sleep(1) #计时1秒 gpio.cleanup() #释放使用的GPIO引脚
normal
{ "blob_id": "cfdfc490396546b7af732417b506100357cd9a1f", "index": 6762, "step-1": "<mask token>\n", "step-2": "<mask token>\ngpio.setmode(gpio.BOARD)\n<mask token>\ngpio.setup(pin, gpio.OUT)\ngpio.output(pin, gpio.HIGH)\ntime.sleep(5)\ngpio.output(pin, gpio.LOW)\ntime.sleep(1)\ngpio.cleanup()\n", "step-3": "<mask token>\ngpio.setmode(gpio.BOARD)\npin = 40\ngpio.setup(pin, gpio.OUT)\ngpio.output(pin, gpio.HIGH)\ntime.sleep(5)\ngpio.output(pin, gpio.LOW)\ntime.sleep(1)\ngpio.cleanup()\n", "step-4": "import RPi.GPIO as gpio\nimport time\ngpio.setmode(gpio.BOARD)\npin = 40\ngpio.setup(pin, gpio.OUT)\ngpio.output(pin, gpio.HIGH)\ntime.sleep(5)\ngpio.output(pin, gpio.LOW)\ntime.sleep(1)\ngpio.cleanup()\n", "step-5": "#!/usr/bin/python3\n# -*- coding: UTF-8 -*-\n\nimport RPi.GPIO as gpio # 导入Rpi.GPIO库函数命名为GPIO\nimport time\n\ngpio.setmode(gpio.BOARD) #将GPIO编程方式设置为BOARD模式\n\npin = 40\n\ngpio.setup(pin, gpio.OUT) #控制pin号引脚\n\ngpio.output(pin, gpio.HIGH) #11号引脚输出高电平\ntime.sleep(5) #计时0.5秒\ngpio.output(pin, gpio.LOW) #11号引脚输出低电平\ntime.sleep(1) #计时1秒\n\ngpio.cleanup() #释放使用的GPIO引脚", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from .core import S3FileSystem, S3File from .mapping import S3Map from ._version import get_versions __version__ = get_versions()['version'] del get_versions
normal
{ "blob_id": "32e60c672d6e73600d442c4344743deccaed6796", "index": 8819, "step-1": "<mask token>\n", "step-2": "<mask token>\ndel get_versions\n", "step-3": "<mask token>\n__version__ = get_versions()['version']\ndel get_versions\n", "step-4": "from .core import S3FileSystem, S3File\nfrom .mapping import S3Map\nfrom ._version import get_versions\n__version__ = get_versions()['version']\ndel get_versions\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python # -*- coding:utf-8 -*- # # Author : cold # E-mail : [email protected] # Date : 13/09/05 11:16:58 # Desc : # import twqq from setuptools import setup requires = ["tornado", "pycurl", "tornadohttpclient"] packages = ["twqq"] entry_points = { } setup( name = "twqq", version = twqq.__version__, description = 'An asynchronous webqq client library based on tornado', long_description = open("README.rst").read(), author = 'cold', author_email = '[email protected]', url = 'http://www.linuxzen.com', license = 'Apache 2.0', platforms = 'any', packages = packages, package_data = { }, entry_points = entry_points, install_requires = requires, classifiers=['Development Status :: 3 - Alpha', 'Environment :: Console', "Intended Audience :: Developers", 'License :: OSI Approved :: Apache Software License', 'Topic :: Internet :: WWW/HTTP', 'Programming Language :: Python :: 2.7', ], )
normal
{ "blob_id": "9492142a569da1d21b1927e79d97f9cf6276efdc", "index": 2800, "step-1": "<mask token>\n", "step-2": "<mask token>\nsetup(name='twqq', version=twqq.__version__, description=\n 'An asynchronous webqq client library based on tornado',\n long_description=open('README.rst').read(), author='cold', author_email\n ='[email protected]', url='http://www.linuxzen.com', license=\n 'Apache 2.0', platforms='any', packages=packages, package_data={},\n entry_points=entry_points, install_requires=requires, classifiers=[\n 'Development Status :: 3 - Alpha', 'Environment :: Console',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: Apache Software License',\n 'Topic :: Internet :: WWW/HTTP', 'Programming Language :: Python :: 2.7'])\n", "step-3": "<mask token>\nrequires = ['tornado', 'pycurl', 'tornadohttpclient']\npackages = ['twqq']\nentry_points = {}\nsetup(name='twqq', version=twqq.__version__, description=\n 'An asynchronous webqq client library based on tornado',\n long_description=open('README.rst').read(), author='cold', author_email\n ='[email protected]', url='http://www.linuxzen.com', license=\n 'Apache 2.0', platforms='any', packages=packages, package_data={},\n entry_points=entry_points, install_requires=requires, classifiers=[\n 'Development Status :: 3 - Alpha', 'Environment :: Console',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: Apache Software License',\n 'Topic :: Internet :: WWW/HTTP', 'Programming Language :: Python :: 2.7'])\n", "step-4": "import twqq\nfrom setuptools import setup\nrequires = ['tornado', 'pycurl', 'tornadohttpclient']\npackages = ['twqq']\nentry_points = {}\nsetup(name='twqq', version=twqq.__version__, description=\n 'An asynchronous webqq client library based on tornado',\n long_description=open('README.rst').read(), author='cold', author_email\n ='[email protected]', url='http://www.linuxzen.com', license=\n 'Apache 2.0', platforms='any', packages=packages, package_data={},\n entry_points=entry_points, install_requires=requires, classifiers=[\n 'Development Status :: 3 - Alpha', 'Environment :: Console',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: Apache Software License',\n 'Topic :: Internet :: WWW/HTTP', 'Programming Language :: Python :: 2.7'])\n", "step-5": "#!/usr/bin/env python\n# -*- coding:utf-8 -*-\n#\n# Author : cold\n# E-mail : [email protected]\n# Date : 13/09/05 11:16:58\n# Desc :\n#\nimport twqq\nfrom setuptools import setup\n\nrequires = [\"tornado\", \"pycurl\", \"tornadohttpclient\"]\n\npackages = [\"twqq\"]\n\nentry_points = {\n}\n\n\nsetup(\n name = \"twqq\",\n version = twqq.__version__,\n description = 'An asynchronous webqq client library based on tornado',\n long_description = open(\"README.rst\").read(),\n author = 'cold',\n author_email = '[email protected]',\n url = 'http://www.linuxzen.com',\n license = 'Apache 2.0',\n platforms = 'any',\n packages = packages,\n package_data = {\n },\n entry_points = entry_points,\n install_requires = requires,\n classifiers=['Development Status :: 3 - Alpha',\n 'Environment :: Console',\n \"Intended Audience :: Developers\",\n 'License :: OSI Approved :: Apache Software License',\n 'Topic :: Internet :: WWW/HTTP',\n 'Programming Language :: Python :: 2.7',\n ],\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import pandas as pd from tabulate import tabulate if __name__ == '__main__': bestPrecision = [0,0,0,0,0,0] bestPrecisionFile = ['','','','','',''] bestRecall = [0,0,0,0,0,0] bestRecallFile = ['','','','','',''] bestSupport = [0,0,0,0,0,0] bestSupportFile = ['','','','','',''] bestF1_Score = [0,0,0,0,0,0] bestF1_ScoreFile = ['','','','','',''] bestPrecisionOverall = 0 bestPrecisionOverallFile = '' bestRecallOverall = 0 bestRecallOverallFile = '' bestSupportOverall = 0 bestSupportOverallFile = '' bestF1_ScoreOverall = 0 bestF1_ScoreOverallFile = '' for file in os.listdir("results"): # (0.359*a)+(0.256*b)+(0.205*c)+(0.087*d)+(0.073*e)+(0.016*f) df = pd.read_csv("results/"+file) for i in range(0,6): if bestF1_Score[i] < df["f1_score"][i]: bestF1_Score[i] = df["f1_score"][i] bestF1_ScoreFile[i]=file if bestPrecision[i] < df["precision"][i]: bestPrecision[i] = df["precision"][i] bestPrecisionFile[i] = file if bestRecall[i] < df["recall"][i]: bestRecall[i] = df["recall"][i] bestRecallFile[i] = file if bestSupport[i] < df["support"][i]: bestSupport[i] = df["support"][i] bestSupportFile[i] = file currPrecision = 0 currRecall = 0 currSupport = 0 currF1_Score = 0 for idx,value in enumerate([0.359,0.256,0.205,0.087,0.073,0.016]): currF1_Score += (value * df["f1_score"][idx]) currPrecision += (value * df["precision"][idx]) currRecall += (value * df["recall"][idx]) currSupport += (value * df["support"][idx]) if currPrecision > bestPrecisionOverall: bestPrecisionOverall=currPrecision bestPrecisionOverallFile = file print(file) print(bestPrecisionOverall) if currRecall > bestRecallOverall: bestRecallOverall=currRecall bestRecallOverallFile = file if currSupport > bestSupportOverall: bestSupportOverall=currSupport bestSupportOverallFile = file if currF1_Score > bestF1_ScoreOverall: bestF1_ScoreOverall=currF1_Score bestF1_ScoreOverallFile = file bestPrecision.insert(0,"Precision") bestPrecisionFile.insert(0, "Precision") bestRecall.insert(0, "Recall") bestRecallFile.insert(0, "Recall") bestSupport.insert(0, "Support") bestSupportFile.insert(0, "Support") bestF1_Score.insert(0, "F1_SCORE") bestF1_ScoreFile.insert(0, "F1_SCORE") tableSpecific = [["","Class0","Class1","Class2","Class3","Class4","Class5"], bestPrecision,bestPrecisionFile,bestRecall,bestRecallFile, bestSupport,bestSupportFile,bestF1_Score,bestF1_ScoreFile] tableGeneral = [ ["Precision Best","Recall Best","Support Best","F1_Score Best"], [bestPrecisionOverall,bestRecallOverall,bestSupportOverall,bestF1_ScoreOverall], [bestPrecisionOverallFile,bestRecallOverallFile,bestSupportOverallFile,bestF1_ScoreOverallFile]] print(tabulate(tableSpecific)) print(tabulate(tableGeneral))
normal
{ "blob_id": "22c498d84f40455d89ed32ccf3bf8778cb159579", "index": 79, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n bestPrecision = [0, 0, 0, 0, 0, 0]\n bestPrecisionFile = ['', '', '', '', '', '']\n bestRecall = [0, 0, 0, 0, 0, 0]\n bestRecallFile = ['', '', '', '', '', '']\n bestSupport = [0, 0, 0, 0, 0, 0]\n bestSupportFile = ['', '', '', '', '', '']\n bestF1_Score = [0, 0, 0, 0, 0, 0]\n bestF1_ScoreFile = ['', '', '', '', '', '']\n bestPrecisionOverall = 0\n bestPrecisionOverallFile = ''\n bestRecallOverall = 0\n bestRecallOverallFile = ''\n bestSupportOverall = 0\n bestSupportOverallFile = ''\n bestF1_ScoreOverall = 0\n bestF1_ScoreOverallFile = ''\n for file in os.listdir('results'):\n df = pd.read_csv('results/' + file)\n for i in range(0, 6):\n if bestF1_Score[i] < df['f1_score'][i]:\n bestF1_Score[i] = df['f1_score'][i]\n bestF1_ScoreFile[i] = file\n if bestPrecision[i] < df['precision'][i]:\n bestPrecision[i] = df['precision'][i]\n bestPrecisionFile[i] = file\n if bestRecall[i] < df['recall'][i]:\n bestRecall[i] = df['recall'][i]\n bestRecallFile[i] = file\n if bestSupport[i] < df['support'][i]:\n bestSupport[i] = df['support'][i]\n bestSupportFile[i] = file\n currPrecision = 0\n currRecall = 0\n currSupport = 0\n currF1_Score = 0\n for idx, value in enumerate([0.359, 0.256, 0.205, 0.087, 0.073, 0.016]\n ):\n currF1_Score += value * df['f1_score'][idx]\n currPrecision += value * df['precision'][idx]\n currRecall += value * df['recall'][idx]\n currSupport += value * df['support'][idx]\n if currPrecision > bestPrecisionOverall:\n bestPrecisionOverall = currPrecision\n bestPrecisionOverallFile = file\n print(file)\n print(bestPrecisionOverall)\n if currRecall > bestRecallOverall:\n bestRecallOverall = currRecall\n bestRecallOverallFile = file\n if currSupport > bestSupportOverall:\n bestSupportOverall = currSupport\n bestSupportOverallFile = file\n if currF1_Score > bestF1_ScoreOverall:\n bestF1_ScoreOverall = currF1_Score\n bestF1_ScoreOverallFile = file\n bestPrecision.insert(0, 'Precision')\n bestPrecisionFile.insert(0, 'Precision')\n bestRecall.insert(0, 'Recall')\n bestRecallFile.insert(0, 'Recall')\n bestSupport.insert(0, 'Support')\n bestSupportFile.insert(0, 'Support')\n bestF1_Score.insert(0, 'F1_SCORE')\n bestF1_ScoreFile.insert(0, 'F1_SCORE')\n tableSpecific = [['', 'Class0', 'Class1', 'Class2', 'Class3', 'Class4',\n 'Class5'], bestPrecision, bestPrecisionFile, bestRecall,\n bestRecallFile, bestSupport, bestSupportFile, bestF1_Score,\n bestF1_ScoreFile]\n tableGeneral = [['Precision Best', 'Recall Best', 'Support Best',\n 'F1_Score Best'], [bestPrecisionOverall, bestRecallOverall,\n bestSupportOverall, bestF1_ScoreOverall], [bestPrecisionOverallFile,\n bestRecallOverallFile, bestSupportOverallFile, bestF1_ScoreOverallFile]\n ]\n print(tabulate(tableSpecific))\n print(tabulate(tableGeneral))\n", "step-3": "import os\nimport pandas as pd\nfrom tabulate import tabulate\nif __name__ == '__main__':\n bestPrecision = [0, 0, 0, 0, 0, 0]\n bestPrecisionFile = ['', '', '', '', '', '']\n bestRecall = [0, 0, 0, 0, 0, 0]\n bestRecallFile = ['', '', '', '', '', '']\n bestSupport = [0, 0, 0, 0, 0, 0]\n bestSupportFile = ['', '', '', '', '', '']\n bestF1_Score = [0, 0, 0, 0, 0, 0]\n bestF1_ScoreFile = ['', '', '', '', '', '']\n bestPrecisionOverall = 0\n bestPrecisionOverallFile = ''\n bestRecallOverall = 0\n bestRecallOverallFile = ''\n bestSupportOverall = 0\n bestSupportOverallFile = ''\n bestF1_ScoreOverall = 0\n bestF1_ScoreOverallFile = ''\n for file in os.listdir('results'):\n df = pd.read_csv('results/' + file)\n for i in range(0, 6):\n if bestF1_Score[i] < df['f1_score'][i]:\n bestF1_Score[i] = df['f1_score'][i]\n bestF1_ScoreFile[i] = file\n if bestPrecision[i] < df['precision'][i]:\n bestPrecision[i] = df['precision'][i]\n bestPrecisionFile[i] = file\n if bestRecall[i] < df['recall'][i]:\n bestRecall[i] = df['recall'][i]\n bestRecallFile[i] = file\n if bestSupport[i] < df['support'][i]:\n bestSupport[i] = df['support'][i]\n bestSupportFile[i] = file\n currPrecision = 0\n currRecall = 0\n currSupport = 0\n currF1_Score = 0\n for idx, value in enumerate([0.359, 0.256, 0.205, 0.087, 0.073, 0.016]\n ):\n currF1_Score += value * df['f1_score'][idx]\n currPrecision += value * df['precision'][idx]\n currRecall += value * df['recall'][idx]\n currSupport += value * df['support'][idx]\n if currPrecision > bestPrecisionOverall:\n bestPrecisionOverall = currPrecision\n bestPrecisionOverallFile = file\n print(file)\n print(bestPrecisionOverall)\n if currRecall > bestRecallOverall:\n bestRecallOverall = currRecall\n bestRecallOverallFile = file\n if currSupport > bestSupportOverall:\n bestSupportOverall = currSupport\n bestSupportOverallFile = file\n if currF1_Score > bestF1_ScoreOverall:\n bestF1_ScoreOverall = currF1_Score\n bestF1_ScoreOverallFile = file\n bestPrecision.insert(0, 'Precision')\n bestPrecisionFile.insert(0, 'Precision')\n bestRecall.insert(0, 'Recall')\n bestRecallFile.insert(0, 'Recall')\n bestSupport.insert(0, 'Support')\n bestSupportFile.insert(0, 'Support')\n bestF1_Score.insert(0, 'F1_SCORE')\n bestF1_ScoreFile.insert(0, 'F1_SCORE')\n tableSpecific = [['', 'Class0', 'Class1', 'Class2', 'Class3', 'Class4',\n 'Class5'], bestPrecision, bestPrecisionFile, bestRecall,\n bestRecallFile, bestSupport, bestSupportFile, bestF1_Score,\n bestF1_ScoreFile]\n tableGeneral = [['Precision Best', 'Recall Best', 'Support Best',\n 'F1_Score Best'], [bestPrecisionOverall, bestRecallOverall,\n bestSupportOverall, bestF1_ScoreOverall], [bestPrecisionOverallFile,\n bestRecallOverallFile, bestSupportOverallFile, bestF1_ScoreOverallFile]\n ]\n print(tabulate(tableSpecific))\n print(tabulate(tableGeneral))\n", "step-4": "import os\nimport pandas as pd\nfrom tabulate import tabulate\n\nif __name__ == '__main__':\n\n bestPrecision = [0,0,0,0,0,0]\n bestPrecisionFile = ['','','','','','']\n bestRecall = [0,0,0,0,0,0]\n bestRecallFile = ['','','','','','']\n bestSupport = [0,0,0,0,0,0]\n bestSupportFile = ['','','','','','']\n bestF1_Score = [0,0,0,0,0,0]\n bestF1_ScoreFile = ['','','','','','']\n\n bestPrecisionOverall = 0\n bestPrecisionOverallFile = ''\n bestRecallOverall = 0\n bestRecallOverallFile = ''\n bestSupportOverall = 0\n bestSupportOverallFile = ''\n bestF1_ScoreOverall = 0\n bestF1_ScoreOverallFile = ''\n\n for file in os.listdir(\"results\"):\n\n # (0.359*a)+(0.256*b)+(0.205*c)+(0.087*d)+(0.073*e)+(0.016*f)\n df = pd.read_csv(\"results/\"+file)\n\n for i in range(0,6):\n if bestF1_Score[i] < df[\"f1_score\"][i]:\n bestF1_Score[i] = df[\"f1_score\"][i]\n bestF1_ScoreFile[i]=file\n if bestPrecision[i] < df[\"precision\"][i]:\n bestPrecision[i] = df[\"precision\"][i]\n bestPrecisionFile[i] = file\n if bestRecall[i] < df[\"recall\"][i]:\n bestRecall[i] = df[\"recall\"][i]\n bestRecallFile[i] = file\n if bestSupport[i] < df[\"support\"][i]:\n bestSupport[i] = df[\"support\"][i]\n bestSupportFile[i] = file\n\n currPrecision = 0\n currRecall = 0\n currSupport = 0\n currF1_Score = 0\n\n for idx,value in enumerate([0.359,0.256,0.205,0.087,0.073,0.016]):\n currF1_Score += (value * df[\"f1_score\"][idx])\n currPrecision += (value * df[\"precision\"][idx])\n currRecall += (value * df[\"recall\"][idx])\n currSupport += (value * df[\"support\"][idx])\n\n if currPrecision > bestPrecisionOverall:\n bestPrecisionOverall=currPrecision\n bestPrecisionOverallFile = file\n print(file)\n print(bestPrecisionOverall)\n if currRecall > bestRecallOverall:\n bestRecallOverall=currRecall\n bestRecallOverallFile = file\n if currSupport > bestSupportOverall:\n bestSupportOverall=currSupport\n bestSupportOverallFile = file\n if currF1_Score > bestF1_ScoreOverall:\n bestF1_ScoreOverall=currF1_Score\n bestF1_ScoreOverallFile = file\n\n bestPrecision.insert(0,\"Precision\")\n bestPrecisionFile.insert(0, \"Precision\")\n bestRecall.insert(0, \"Recall\")\n bestRecallFile.insert(0, \"Recall\")\n bestSupport.insert(0, \"Support\")\n bestSupportFile.insert(0, \"Support\")\n bestF1_Score.insert(0, \"F1_SCORE\")\n bestF1_ScoreFile.insert(0, \"F1_SCORE\")\n\n tableSpecific = [[\"\",\"Class0\",\"Class1\",\"Class2\",\"Class3\",\"Class4\",\"Class5\"],\n bestPrecision,bestPrecisionFile,bestRecall,bestRecallFile,\n bestSupport,bestSupportFile,bestF1_Score,bestF1_ScoreFile]\n\n tableGeneral = [ [\"Precision Best\",\"Recall Best\",\"Support Best\",\"F1_Score Best\"],\n [bestPrecisionOverall,bestRecallOverall,bestSupportOverall,bestF1_ScoreOverall],\n [bestPrecisionOverallFile,bestRecallOverallFile,bestSupportOverallFile,bestF1_ScoreOverallFile]]\n\n print(tabulate(tableSpecific))\n print(tabulate(tableGeneral))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" This file is part of GALE, Copyright Joe Krall, 2014. GALE is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. GALE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with GALE. If not, see <http://www.gnu.org/licenses/>. """ from Fastmap.Slurp import * from Fastmap.Moo import * from jmoo_individual import * def gale_64_WHERE(problem, population, configuration, values_to_be_passed): "The Core method behind GALE" # Compile population into table form used by WHERE t = slurp([[x for x in row.decisionValues] + ["?" for y in problem.objectives] for row in population], problem.buildHeader().split(",")) # Initialize some parameters for WHERE The.allowDomination = True The.alpha = 1 for i, row in enumerate(t.rows): row.evaluated = False # Run WHERE m = Moo(problem, t, len(t.rows), N=1).divide(minnie=rstop(t)) # Organizing NDLeafs = m.nonPrunedLeaves() # The surviving non-dominated leafs allLeafs = m.nonPrunedLeaves() + m.prunedLeaves() # All of the leafs # After mutation: Check how many rows were actually evaluated numEval = 0 for leaf in allLeafs: for row in leaf.table.rows: if row.evaluated: numEval += 1 return NDLeafs, numEval def polynomial_mutation(problem, individual, configuration): from numpy.random import random eta_m_ = configuration["NSGAIII"]["ETA_M_DEFAULT_"] distributionIndex_ = eta_m_ output = jmoo_individual(problem, individual.decisionValues) probability = 1/len(problem.decisions) for var in xrange(len(problem.decisions)): if random() <= probability: y = individual.decisionValues[var] yU = problem.decisions[var].up yL = problem.decisions[var].low delta1 = (y - yL)/(yU - yL) delta2 = (yU - y)/(yU - yL) rnd = random() mut_pow = 1.0/(eta_m_ + 1.0) if rnd < 0.5: xy = 1.0 - delta1 val = 2.0 * rnd + (1 - 2 * rnd) * (xy ** (distributionIndex_ + 1.0)) deltaq = val ** mut_pow - 1 else: xy = 1.0 - delta2 val = 2.0 * (1.0-rnd) + 2.0 * (rnd-0.5) * (xy ** (distributionIndex_+1.0)) deltaq = 1.0 - (val ** mut_pow) y += deltaq * (yU - yL) if y < yL: y = yL if y > yU: y = yU output.decisionValues[var] = y return output def sbxcrossover(problem, parent1, parent2, configuration): EPS = 1.0e-14 distribution_index = configuration["NSGAIII"]["ETA_C_DEFAULT_"] probability = configuration["NSGAIII"]["SBX_Probability"] from numpy.random import random offspring1 = jmoo_individual(problem, parent1.decisionValues) offspring2 = jmoo_individual(problem, parent2.decisionValues) number_of_variables = len(problem.decisions) if random() <= probability: for i in xrange(number_of_variables): valuex1 = offspring1.decisionValues[i] valuex2 = offspring2.decisionValues[i] if random() <= 0.5: if abs(valuex1 - valuex2) > EPS: if valuex1 < valuex2: y1 = valuex1 y2 = valuex2 else: y1 = valuex2 y2 = valuex1 yL = problem.decisions[i].low yU = problem.decisions[i].up rand = random() beta = 1.0 + (2.0 * (y1 - yL) / (y2 - y1)) alpha = 2.0 - beta ** (-1 * (distribution_index + 1.0)) if rand <= 1/alpha: betaq = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0)) else: betaq = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0)) c1 = 0.5 * ((y1 + y2) - betaq * (y2 - y1)) beta = 1.0 + (2.0 * (yU - y2) / (y2 - y1)) alpha = 2.0 - beta ** -(distribution_index + 1.0) if rand <= (1.0 / alpha): betaq = (rand * alpha) ** (1.0 / (distribution_index + 1.0)) else: betaq = ((1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0))) c2 = 0.5 * ((y1 + y2) + betaq * (y2 - y1)) if c1 < yL: c1 = yL if c2 < yL: c2 = yL if c1 > yU: c1 = yU if c2 > yU: c2 = yU if random() <= 0.5: offspring1.decisionValues[i] = c2 offspring2.decisionValues[i] = c1 else: offspring1.decisionValues[i] = c1 offspring2.decisionValues[i] = c2 else: offspring1.decisionValues[i] = valuex1 offspring2.decisionValues[i] = valuex2 else: offspring1.decisionValues[i] = valuex2 offspring2.decisionValues[i] = valuex1 return offspring1, offspring2 def variation(problem, individual_index, population, configuration): """ SBX regeneration Technique """ from random import randint another_parent = individual_index while another_parent == individual_index: another_parent = randint(0, len(population)-1) from copy import deepcopy parent1 = deepcopy(population[individual_index]) parent2 = deepcopy(population[another_parent]) child1, _ = sbxcrossover(problem, parent1, parent2, configuration) mchild1 = polynomial_mutation(problem, child1, configuration) return mchild1 def gale_64_Mutate(problem, NDLeafs, configuration): ################# # Mutation Phase ################# # Keep track of evals numEval = 0 population = [] for leaf in NDLeafs: initial_size = len(leaf.table.rows) # print "Number of mutants: ", len(leaf.table.rows) # Pull out the Poles east = leaf.table.rows[0] west = leaf.table.rows[-1] # Evaluate those poles if needed if not east.evaluated: for o, objScore in enumerate(problem.evaluate(east.cells)): east.cells[-(len(problem.objectives) - o)] = objScore east.evaluated = True numEval += 1 if not west.evaluated: for o, objScore in enumerate(problem.evaluate(west.cells)): west.cells[-(len(problem.objectives) - o)] = objScore west.evaluated = True numEval += 1 # Score the poles n = len(problem.decisions) weights = [] for obj in problem.objectives: # w is negative when we are maximizing that objective if obj.lismore: weights.append(+1) else: weights.append(-1) weightedWest = [c * w for c, w in zip(west.cells[n:], weights)] weightedEast = [c * w for c, w in zip(east.cells[n:], weights)] westLoss = loss(weightedWest, weightedEast, mins=[obj.low for obj in problem.objectives], maxs=[obj.up for obj in problem.objectives]) eastLoss = loss(weightedEast, weightedWest, mins=[obj.low for obj in problem.objectives], maxs=[obj.up for obj in problem.objectives]) # Determine better Pole if eastLoss < westLoss: to_be_mutated = leaf.table.rows[:int(len(leaf.table.rows)/2)] else: to_be_mutated = leaf.table.rows[:int(len(leaf.table.rows)/2)] to_be_mutated_jmoo = [] for row in to_be_mutated: if row.evaluated: to_be_mutated_jmoo.append(jmoo_individual(problem, [x for x in row.cells[:len(problem.decisions)]], [x for x in row.cells[len(problem.decisions):]])) else: to_be_mutated_jmoo.append(jmoo_individual(problem, [x for x in row.cells[:len(problem.decisions)]], None)) for i in xrange(initial_size - len(to_be_mutated)): index = i%len(to_be_mutated_jmoo) mutant = variation(problem, index, to_be_mutated_jmoo, configuration) to_be_mutated_jmoo.append(mutant) members_evaluated = sum([1 for i in to_be_mutated_jmoo if i.valid]) while members_evaluated <= 2: from random import randint index = randint(0, len(to_be_mutated_jmoo)-1) to_be_mutated_jmoo[index].evaluate() numEval += 1 members_evaluated += 1 print "> ", members_evaluated population += to_be_mutated_jmoo return population, numEval def gale_64_Regen(problem, unusedslot, mutants, configuration): howMany = configuration["Universal"]["Population_Size"] - len(mutants) # Generate random individuals population = [] for i in range(howMany): population.append(jmoo_individual(problem, problem.generateInput(), None)) return mutants+population, 0
normal
{ "blob_id": "957545649e9bf1eaabe42a1caa627d544e68f108", "index": 5490, "step-1": "\"\"\"\n This file is part of GALE,\n Copyright Joe Krall, 2014.\n\n GALE is free software: you can redistribute it and/or modify\n it under the terms of the GNU Lesser General Public License as published by\n the Free Software Foundation, either version 3 of the License, or\n (at your option) any later version.\n\n GALE is distributed in the hope that it will be useful,\n but WITHOUT ANY WARRANTY; without even the implied warranty of\n MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n GNU Lesser General Public License for more details.\n\n You should have received a copy of the GNU Lesser General Public License\n along with GALE. If not, see <http://www.gnu.org/licenses/>.\n\"\"\"\n\nfrom Fastmap.Slurp import *\nfrom Fastmap.Moo import *\nfrom jmoo_individual import *\n\n\ndef gale_64_WHERE(problem, population, configuration, values_to_be_passed):\n \"The Core method behind GALE\"\n\n # Compile population into table form used by WHERE\n t = slurp([[x for x in row.decisionValues] + [\"?\" for y in problem.objectives] for row in population],\n problem.buildHeader().split(\",\"))\n\n # Initialize some parameters for WHERE\n The.allowDomination = True\n The.alpha = 1\n for i, row in enumerate(t.rows):\n row.evaluated = False\n\n # Run WHERE\n m = Moo(problem, t, len(t.rows), N=1).divide(minnie=rstop(t))\n\n # Organizing\n NDLeafs = m.nonPrunedLeaves() # The surviving non-dominated leafs\n allLeafs = m.nonPrunedLeaves() + m.prunedLeaves() # All of the leafs\n\n # After mutation: Check how many rows were actually evaluated\n numEval = 0\n for leaf in allLeafs:\n for row in leaf.table.rows:\n if row.evaluated:\n numEval += 1\n\n return NDLeafs, numEval\n\n\ndef polynomial_mutation(problem, individual, configuration):\n from numpy.random import random\n eta_m_ = configuration[\"NSGAIII\"][\"ETA_M_DEFAULT_\"]\n distributionIndex_ = eta_m_\n output = jmoo_individual(problem, individual.decisionValues)\n\n probability = 1/len(problem.decisions)\n for var in xrange(len(problem.decisions)):\n if random() <= probability:\n y = individual.decisionValues[var]\n yU = problem.decisions[var].up\n yL = problem.decisions[var].low\n delta1 = (y - yL)/(yU - yL)\n delta2 = (yU - y)/(yU - yL)\n rnd = random()\n\n mut_pow = 1.0/(eta_m_ + 1.0)\n if rnd < 0.5:\n xy = 1.0 - delta1\n val = 2.0 * rnd + (1 - 2 * rnd) * (xy ** (distributionIndex_ + 1.0))\n deltaq = val ** mut_pow - 1\n else:\n xy = 1.0 - delta2\n val = 2.0 * (1.0-rnd) + 2.0 * (rnd-0.5) * (xy ** (distributionIndex_+1.0))\n deltaq = 1.0 - (val ** mut_pow)\n\n\n y += deltaq * (yU - yL)\n if y < yL: y = yL\n if y > yU: y = yU\n\n output.decisionValues[var] = y\n\n return output\n\n\ndef sbxcrossover(problem, parent1, parent2, configuration):\n\n EPS = 1.0e-14\n distribution_index = configuration[\"NSGAIII\"][\"ETA_C_DEFAULT_\"]\n probability = configuration[\"NSGAIII\"][\"SBX_Probability\"]\n from numpy.random import random\n offspring1 = jmoo_individual(problem, parent1.decisionValues)\n offspring2 = jmoo_individual(problem, parent2.decisionValues)\n\n number_of_variables = len(problem.decisions)\n if random() <= probability:\n for i in xrange(number_of_variables):\n valuex1 = offspring1.decisionValues[i]\n valuex2 = offspring2.decisionValues[i]\n if random() <= 0.5:\n if abs(valuex1 - valuex2) > EPS:\n if valuex1 < valuex2:\n y1 = valuex1\n y2 = valuex2\n else:\n y1 = valuex2\n y2 = valuex1\n\n yL = problem.decisions[i].low\n yU = problem.decisions[i].up\n rand = random()\n beta = 1.0 + (2.0 * (y1 - yL) / (y2 - y1))\n alpha = 2.0 - beta ** (-1 * (distribution_index + 1.0))\n\n if rand <= 1/alpha:\n betaq = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0))\n else:\n betaq = (1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0))\n\n c1 = 0.5 * ((y1 + y2) - betaq * (y2 - y1))\n beta = 1.0 + (2.0 * (yU - y2) / (y2 - y1))\n alpha = 2.0 - beta ** -(distribution_index + 1.0)\n\n if rand <= (1.0 / alpha):\n betaq = (rand * alpha) ** (1.0 / (distribution_index + 1.0))\n else:\n betaq = ((1.0 / (2.0 - rand * alpha)) ** (1.0 / (distribution_index + 1.0)))\n\n c2 = 0.5 * ((y1 + y2) + betaq * (y2 - y1))\n\n if c1 < yL: c1 = yL\n if c2 < yL: c2 = yL\n if c1 > yU: c1 = yU\n if c2 > yU: c2 = yU\n\n if random() <= 0.5:\n offspring1.decisionValues[i] = c2\n offspring2.decisionValues[i] = c1\n else:\n offspring1.decisionValues[i] = c1\n offspring2.decisionValues[i] = c2\n else:\n offspring1.decisionValues[i] = valuex1\n offspring2.decisionValues[i] = valuex2\n else:\n offspring1.decisionValues[i] = valuex2\n offspring2.decisionValues[i] = valuex1\n\n return offspring1, offspring2\n\n\ndef variation(problem, individual_index, population, configuration):\n \"\"\" SBX regeneration Technique \"\"\"\n\n from random import randint\n another_parent = individual_index\n while another_parent == individual_index: another_parent = randint(0, len(population)-1)\n\n from copy import deepcopy\n parent1 = deepcopy(population[individual_index])\n parent2 = deepcopy(population[another_parent])\n\n child1, _ = sbxcrossover(problem, parent1, parent2, configuration)\n mchild1 = polynomial_mutation(problem, child1, configuration)\n\n return mchild1\n\ndef gale_64_Mutate(problem, NDLeafs, configuration):\n #################\n # Mutation Phase\n #################\n # Keep track of evals\n numEval = 0\n\n population = []\n for leaf in NDLeafs:\n\n initial_size = len(leaf.table.rows)\n\n # print \"Number of mutants: \", len(leaf.table.rows)\n # Pull out the Poles\n east = leaf.table.rows[0]\n west = leaf.table.rows[-1]\n\n # Evaluate those poles if needed\n if not east.evaluated:\n for o, objScore in enumerate(problem.evaluate(east.cells)):\n east.cells[-(len(problem.objectives) - o)] = objScore\n east.evaluated = True\n numEval += 1\n if not west.evaluated:\n for o, objScore in enumerate(problem.evaluate(west.cells)):\n west.cells[-(len(problem.objectives) - o)] = objScore\n west.evaluated = True\n numEval += 1\n\n # Score the poles\n n = len(problem.decisions)\n weights = []\n for obj in problem.objectives:\n # w is negative when we are maximizing that objective\n if obj.lismore:\n weights.append(+1)\n else:\n weights.append(-1)\n weightedWest = [c * w for c, w in zip(west.cells[n:], weights)]\n weightedEast = [c * w for c, w in zip(east.cells[n:], weights)]\n westLoss = loss(weightedWest, weightedEast, mins=[obj.low for obj in problem.objectives],\n maxs=[obj.up for obj in problem.objectives])\n eastLoss = loss(weightedEast, weightedWest, mins=[obj.low for obj in problem.objectives],\n maxs=[obj.up for obj in problem.objectives])\n\n # Determine better Pole\n if eastLoss < westLoss:\n to_be_mutated = leaf.table.rows[:int(len(leaf.table.rows)/2)]\n else:\n to_be_mutated = leaf.table.rows[:int(len(leaf.table.rows)/2)]\n\n to_be_mutated_jmoo = []\n for row in to_be_mutated:\n if row.evaluated:\n to_be_mutated_jmoo.append(jmoo_individual(problem, [x for x in row.cells[:len(problem.decisions)]],\n [x for x in row.cells[len(problem.decisions):]]))\n else:\n to_be_mutated_jmoo.append(jmoo_individual(problem, [x for x in row.cells[:len(problem.decisions)]], None))\n\n for i in xrange(initial_size - len(to_be_mutated)):\n index = i%len(to_be_mutated_jmoo)\n mutant = variation(problem, index, to_be_mutated_jmoo, configuration)\n to_be_mutated_jmoo.append(mutant)\n\n members_evaluated = sum([1 for i in to_be_mutated_jmoo if i.valid])\n while members_evaluated <= 2:\n from random import randint\n index = randint(0, len(to_be_mutated_jmoo)-1)\n to_be_mutated_jmoo[index].evaluate()\n numEval += 1\n members_evaluated += 1\n print \"> \", members_evaluated\n\n population += to_be_mutated_jmoo\n\n return population, numEval\n\n\ndef gale_64_Regen(problem, unusedslot, mutants, configuration):\n howMany = configuration[\"Universal\"][\"Population_Size\"] - len(mutants)\n # Generate random individuals\n population = []\n for i in range(howMany):\n population.append(jmoo_individual(problem, problem.generateInput(), None))\n \n return mutants+population, 0\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # python/motorcycle.py Author "Nathan Wycoff <[email protected]>" Date 06.23.2019 # Run a CGAN on the motorcycle data. import keras import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt np.random.seed(123) import tensorflow as tf from scipy.optimize import line_search tf.enable_eager_execution() tf.set_random_seed(123) P = 1 # Dim of X data (to be conditioned on) R = 1 # Dim of latent error variable Q = 1 # Dim of y data (to be generated) H = 20# Number of hidden units epochs = 1000 doubleback_const = 1 # Load and pre-process data mcycle = np.genfromtxt('./data/mcycle.csv', delimiter=',', skip_header = 1) N = mcycle.shape[0] x = mcycle[:,0].reshape([N,P]) y = mcycle[:,1].reshape([N,Q]) #x /= max(x) #y = (y-min(y)) / (max(y) - min(y)) x = (x - np.mean(x)) / np.std(x) y = (y - np.mean(y)) / np.std(y) # Build the generator, accepts X and Z as inputs gen = tf.keras.Sequential() gen.add(tf.keras.layers.Dense(H, input_dim = P + R, activation = tf.keras.activations.elu)) gen.add(tf.keras.layers.Dense(H, activation = tf.keras.activations.elu)) gen.add(tf.keras.layers.Dense(Q)) # Build the discriminator, accepts an X and a Y as inputs. disc = tf.keras.Sequential() disc.add(tf.keras.layers.Dense(H, input_dim = P + Q, activation = tf.keras.activations.elu)) disc.add(tf.keras.layers.Dense(H, activation = tf.keras.activations.elu)) disc.add(tf.keras.layers.Dense(1, activation = tf.keras.activations.sigmoid)) gen.summary() disc.summary() # NOTE: Compilation of discriminator needs to occur BEFORE we set its weights untrainable below, as these changes will not be reflected until disc is compiled again. So also be wary of compiling disc later, as its weights may not change. #TODO: the above is a mess, find a better way. #disc.compile(tf.keras.optimizers.Adam(), 'binary_crossentropy') disc.compile(tf.train.GradientDescentOptimizer(learning_rate = 1.0), 'binary_crossentropy') noise = tf.keras.layers.Input(shape = (R,)) xdat = tf.keras.layers.Input(shape = (P,)) genin = tf.keras.layers.concatenate([xdat, noise]) genout = gen(genin) discin = tf.keras.layers.concatenate([xdat, genout]) validity = disc(discin) #NOTE: Next lin possible issue in ordering of inputs? both_mod = tf.keras.models.Model([xdat, noise], validity) both_mod.layers[5].trainable = False #both_mod.compile(tf.keras.optimizers.Adam(), 'binary_crossentropy') #both_mod.compile(tf.train.AdamOptimizer(), 'binary_crossentropy') both_mod.compile(tf.train.GradientDescentOptimizer(learning_rate = 1.0), 'binary_crossentropy') ## Custom training with double backprop #genloss = lambda: both_mod.output #genopt = tf.keras.optimizers.Adam(genloss, both_mod.trainable_variables) # Do the training! for epoch in tqdm(range(epochs)): # Sample some noise #TODO: Batch size some_noise = np.random.normal(size=[N,R]) gen_dat = gen.predict(np.hstack([x, some_noise])) # Train discriminator #NOTE: Minor discrepency in losses from the manual loop below and from keras's built in: follow up if there appears to be bugs. #disc_rl = disc.train_on_batch(np.hstack([x, y]), np.ones(N)) #disc_fl = disc.train_on_batch(np.hstack([x, gen_dat]), np.zeros(N)) #disc_loss = 0.5 * np.add(disc_rl, disc_fl) disc.trainable = True with tf.GradientTape() as td: with tf.GradientTape() as t: #preds_real = disc(tf.cast(np.concatenate([x, y]).reshape([N,P+Q]), tf.float32)) #preds_fake = disc(tf.cast(np.concatenate([x, gen_dat]).reshape([N,P+Q]), tf.float32)) preds_real = disc(tf.cast(np.hstack([x, y.reshape([N,Q])]), tf.float32)) preds_fake = disc(tf.cast(np.hstack([x, gen_dat]), tf.float32)) dl_real = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N).reshape([N,1]), tf.cast(preds_real, tf.float64))) dl_fake = tf.reduce_mean(keras.losses.binary_crossentropy(np.zeros(N).reshape([N,1]), tf.cast(preds_fake, tf.float64))) dl = 0.5*tf.add(dl_real, dl_fake) grads = t.gradient(dl, disc.trainable_variables) grads_norm = 0 for i in range(len(grads)): #grads_norm += tf.reduce_sum(tf.square(grads[i])) grads_norm += tf.reduce_mean(tf.square(grads[i])) grads_norm /= float(len(grads)) double_grads = td.gradient(grads_norm, disc.trainable_variables) grads_n_vars = [(grads[i] + doubleback_const * double_grads[i], disc.trainable_variables[i]) for i in range(len(grads))] disc.optimizer.apply_gradients(grads_n_vars) disc.trainable = False # Train generator #both_mod.train_on_batch([x, some_noise], np.ones(N)) # Manually compute and apply gradient with tf.GradientTape() as td: with tf.GradientTape() as t: preds = both_mod([tf.cast(x, tf.float32), tf.cast(some_noise, tf.float32)]) bl = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N).reshape([N,1]), tf.cast(preds, tf.float64))) #bl = tf.losses.sigmoid_cross_entropy(preds, np.ones(N).reshape([N,1])) grads = t.gradient(bl, both_mod.trainable_variables) grads_norm = 0 for i in range(len(grads)): #grads_norm += tf.reduce_sum(tf.square(grads[i])) grads_norm += tf.reduce_mean(tf.square(grads[i])) grads_norm /= float(len(grads)) double_grads = td.gradient(grads_norm, both_mod.trainable_variables) grads_n_vars = [(grads[i] + doubleback_const*double_grads[i], both_mod.trainable_variables[i]) for i in range(len(grads))] both_mod.optimizer.apply_gradients(grads_n_vars) # Plot the results fig = plt.figure() plt.scatter(x, y) some_noise = np.random.normal(size=[N,P]) preds = gen.predict(np.hstack([x, some_noise])) plt.scatter(x, preds) #plt.savefig("images/motor_scatter.pdf") plt.savefig("temp.pdf")
normal
{ "blob_id": "aba3e0907e59bc5125759e90d3c784ceb97fca80", "index": 9941, "step-1": "<mask token>\n", "step-2": "<mask token>\nnp.random.seed(123)\n<mask token>\ntf.enable_eager_execution()\ntf.set_random_seed(123)\n<mask token>\ngen.add(tf.keras.layers.Dense(H, input_dim=P + R, activation=tf.keras.\n activations.elu))\ngen.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ngen.add(tf.keras.layers.Dense(Q))\n<mask token>\ndisc.add(tf.keras.layers.Dense(H, input_dim=P + Q, activation=tf.keras.\n activations.elu))\ndisc.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ndisc.add(tf.keras.layers.Dense(1, activation=tf.keras.activations.sigmoid))\ngen.summary()\ndisc.summary()\ndisc.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\n<mask token>\nboth_mod.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\nfor epoch in tqdm(range(epochs)):\n some_noise = np.random.normal(size=[N, R])\n gen_dat = gen.predict(np.hstack([x, some_noise]))\n disc.trainable = True\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds_real = disc(tf.cast(np.hstack([x, y.reshape([N, Q])]), tf\n .float32))\n preds_fake = disc(tf.cast(np.hstack([x, gen_dat]), tf.float32))\n dl_real = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n ones(N).reshape([N, 1]), tf.cast(preds_real, tf.float64)))\n dl_fake = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n zeros(N).reshape([N, 1]), tf.cast(preds_fake, tf.float64)))\n dl = 0.5 * tf.add(dl_real, dl_fake)\n grads = t.gradient(dl, disc.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, disc.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i], disc.\n trainable_variables[i]) for i in range(len(grads))]\n disc.optimizer.apply_gradients(grads_n_vars)\n disc.trainable = False\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds = both_mod([tf.cast(x, tf.float32), tf.cast(some_noise,\n tf.float32)])\n bl = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N)\n .reshape([N, 1]), tf.cast(preds, tf.float64)))\n grads = t.gradient(bl, both_mod.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, both_mod.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i],\n both_mod.trainable_variables[i]) for i in range(len(grads))]\n both_mod.optimizer.apply_gradients(grads_n_vars)\n<mask token>\nplt.scatter(x, y)\n<mask token>\nplt.scatter(x, preds)\nplt.savefig('temp.pdf')\n", "step-3": "<mask token>\nnp.random.seed(123)\n<mask token>\ntf.enable_eager_execution()\ntf.set_random_seed(123)\nP = 1\nR = 1\nQ = 1\nH = 20\nepochs = 1000\ndoubleback_const = 1\nmcycle = np.genfromtxt('./data/mcycle.csv', delimiter=',', skip_header=1)\nN = mcycle.shape[0]\nx = mcycle[:, 0].reshape([N, P])\ny = mcycle[:, 1].reshape([N, Q])\nx = (x - np.mean(x)) / np.std(x)\ny = (y - np.mean(y)) / np.std(y)\ngen = tf.keras.Sequential()\ngen.add(tf.keras.layers.Dense(H, input_dim=P + R, activation=tf.keras.\n activations.elu))\ngen.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ngen.add(tf.keras.layers.Dense(Q))\ndisc = tf.keras.Sequential()\ndisc.add(tf.keras.layers.Dense(H, input_dim=P + Q, activation=tf.keras.\n activations.elu))\ndisc.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ndisc.add(tf.keras.layers.Dense(1, activation=tf.keras.activations.sigmoid))\ngen.summary()\ndisc.summary()\ndisc.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\nnoise = tf.keras.layers.Input(shape=(R,))\nxdat = tf.keras.layers.Input(shape=(P,))\ngenin = tf.keras.layers.concatenate([xdat, noise])\ngenout = gen(genin)\ndiscin = tf.keras.layers.concatenate([xdat, genout])\nvalidity = disc(discin)\nboth_mod = tf.keras.models.Model([xdat, noise], validity)\nboth_mod.layers[5].trainable = False\nboth_mod.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\nfor epoch in tqdm(range(epochs)):\n some_noise = np.random.normal(size=[N, R])\n gen_dat = gen.predict(np.hstack([x, some_noise]))\n disc.trainable = True\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds_real = disc(tf.cast(np.hstack([x, y.reshape([N, Q])]), tf\n .float32))\n preds_fake = disc(tf.cast(np.hstack([x, gen_dat]), tf.float32))\n dl_real = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n ones(N).reshape([N, 1]), tf.cast(preds_real, tf.float64)))\n dl_fake = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n zeros(N).reshape([N, 1]), tf.cast(preds_fake, tf.float64)))\n dl = 0.5 * tf.add(dl_real, dl_fake)\n grads = t.gradient(dl, disc.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, disc.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i], disc.\n trainable_variables[i]) for i in range(len(grads))]\n disc.optimizer.apply_gradients(grads_n_vars)\n disc.trainable = False\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds = both_mod([tf.cast(x, tf.float32), tf.cast(some_noise,\n tf.float32)])\n bl = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N)\n .reshape([N, 1]), tf.cast(preds, tf.float64)))\n grads = t.gradient(bl, both_mod.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, both_mod.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i],\n both_mod.trainable_variables[i]) for i in range(len(grads))]\n both_mod.optimizer.apply_gradients(grads_n_vars)\nfig = plt.figure()\nplt.scatter(x, y)\nsome_noise = np.random.normal(size=[N, P])\npreds = gen.predict(np.hstack([x, some_noise]))\nplt.scatter(x, preds)\nplt.savefig('temp.pdf')\n", "step-4": "import keras\nimport numpy as np\nfrom tqdm import tqdm\nimport matplotlib.pyplot as plt\nnp.random.seed(123)\nimport tensorflow as tf\nfrom scipy.optimize import line_search\ntf.enable_eager_execution()\ntf.set_random_seed(123)\nP = 1\nR = 1\nQ = 1\nH = 20\nepochs = 1000\ndoubleback_const = 1\nmcycle = np.genfromtxt('./data/mcycle.csv', delimiter=',', skip_header=1)\nN = mcycle.shape[0]\nx = mcycle[:, 0].reshape([N, P])\ny = mcycle[:, 1].reshape([N, Q])\nx = (x - np.mean(x)) / np.std(x)\ny = (y - np.mean(y)) / np.std(y)\ngen = tf.keras.Sequential()\ngen.add(tf.keras.layers.Dense(H, input_dim=P + R, activation=tf.keras.\n activations.elu))\ngen.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ngen.add(tf.keras.layers.Dense(Q))\ndisc = tf.keras.Sequential()\ndisc.add(tf.keras.layers.Dense(H, input_dim=P + Q, activation=tf.keras.\n activations.elu))\ndisc.add(tf.keras.layers.Dense(H, activation=tf.keras.activations.elu))\ndisc.add(tf.keras.layers.Dense(1, activation=tf.keras.activations.sigmoid))\ngen.summary()\ndisc.summary()\ndisc.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\nnoise = tf.keras.layers.Input(shape=(R,))\nxdat = tf.keras.layers.Input(shape=(P,))\ngenin = tf.keras.layers.concatenate([xdat, noise])\ngenout = gen(genin)\ndiscin = tf.keras.layers.concatenate([xdat, genout])\nvalidity = disc(discin)\nboth_mod = tf.keras.models.Model([xdat, noise], validity)\nboth_mod.layers[5].trainable = False\nboth_mod.compile(tf.train.GradientDescentOptimizer(learning_rate=1.0),\n 'binary_crossentropy')\nfor epoch in tqdm(range(epochs)):\n some_noise = np.random.normal(size=[N, R])\n gen_dat = gen.predict(np.hstack([x, some_noise]))\n disc.trainable = True\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds_real = disc(tf.cast(np.hstack([x, y.reshape([N, Q])]), tf\n .float32))\n preds_fake = disc(tf.cast(np.hstack([x, gen_dat]), tf.float32))\n dl_real = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n ones(N).reshape([N, 1]), tf.cast(preds_real, tf.float64)))\n dl_fake = tf.reduce_mean(keras.losses.binary_crossentropy(np.\n zeros(N).reshape([N, 1]), tf.cast(preds_fake, tf.float64)))\n dl = 0.5 * tf.add(dl_real, dl_fake)\n grads = t.gradient(dl, disc.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, disc.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i], disc.\n trainable_variables[i]) for i in range(len(grads))]\n disc.optimizer.apply_gradients(grads_n_vars)\n disc.trainable = False\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds = both_mod([tf.cast(x, tf.float32), tf.cast(some_noise,\n tf.float32)])\n bl = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N)\n .reshape([N, 1]), tf.cast(preds, tf.float64)))\n grads = t.gradient(bl, both_mod.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n double_grads = td.gradient(grads_norm, both_mod.trainable_variables)\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i],\n both_mod.trainable_variables[i]) for i in range(len(grads))]\n both_mod.optimizer.apply_gradients(grads_n_vars)\nfig = plt.figure()\nplt.scatter(x, y)\nsome_noise = np.random.normal(size=[N, P])\npreds = gen.predict(np.hstack([x, some_noise]))\nplt.scatter(x, preds)\nplt.savefig('temp.pdf')\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n# python/motorcycle.py Author \"Nathan Wycoff <[email protected]>\" Date 06.23.2019\n\n# Run a CGAN on the motorcycle data.\nimport keras\nimport numpy as np\nfrom tqdm import tqdm\nimport matplotlib.pyplot as plt\n\nnp.random.seed(123)\nimport tensorflow as tf\nfrom scipy.optimize import line_search\ntf.enable_eager_execution()\ntf.set_random_seed(123)\n\nP = 1 # Dim of X data (to be conditioned on)\nR = 1 # Dim of latent error variable\nQ = 1 # Dim of y data (to be generated)\nH = 20# Number of hidden units\nepochs = 1000\ndoubleback_const = 1\n\n# Load and pre-process data\nmcycle = np.genfromtxt('./data/mcycle.csv', delimiter=',', skip_header = 1)\nN = mcycle.shape[0]\nx = mcycle[:,0].reshape([N,P])\ny = mcycle[:,1].reshape([N,Q])\n#x /= max(x)\n#y = (y-min(y)) / (max(y) - min(y))\nx = (x - np.mean(x)) / np.std(x)\ny = (y - np.mean(y)) / np.std(y)\n\n# Build the generator, accepts X and Z as inputs\ngen = tf.keras.Sequential()\ngen.add(tf.keras.layers.Dense(H, input_dim = P + R, activation = tf.keras.activations.elu))\ngen.add(tf.keras.layers.Dense(H, activation = tf.keras.activations.elu))\ngen.add(tf.keras.layers.Dense(Q))\n\n# Build the discriminator, accepts an X and a Y as inputs.\ndisc = tf.keras.Sequential()\ndisc.add(tf.keras.layers.Dense(H, input_dim = P + Q, activation = tf.keras.activations.elu))\ndisc.add(tf.keras.layers.Dense(H, activation = tf.keras.activations.elu))\ndisc.add(tf.keras.layers.Dense(1, activation = tf.keras.activations.sigmoid))\n\ngen.summary()\ndisc.summary()\n\n# NOTE: Compilation of discriminator needs to occur BEFORE we set its weights untrainable below, as these changes will not be reflected until disc is compiled again. So also be wary of compiling disc later, as its weights may not change.\n#TODO: the above is a mess, find a better way.\n#disc.compile(tf.keras.optimizers.Adam(), 'binary_crossentropy')\ndisc.compile(tf.train.GradientDescentOptimizer(learning_rate = 1.0), 'binary_crossentropy')\n\nnoise = tf.keras.layers.Input(shape = (R,))\nxdat = tf.keras.layers.Input(shape = (P,))\n\ngenin = tf.keras.layers.concatenate([xdat, noise])\ngenout = gen(genin)\n\ndiscin = tf.keras.layers.concatenate([xdat, genout])\nvalidity = disc(discin)\n\n#NOTE: Next lin possible issue in ordering of inputs?\nboth_mod = tf.keras.models.Model([xdat, noise], validity)\nboth_mod.layers[5].trainable = False\n\n#both_mod.compile(tf.keras.optimizers.Adam(), 'binary_crossentropy')\n#both_mod.compile(tf.train.AdamOptimizer(), 'binary_crossentropy')\nboth_mod.compile(tf.train.GradientDescentOptimizer(learning_rate = 1.0), 'binary_crossentropy')\n\n## Custom training with double backprop\n#genloss = lambda: both_mod.output\n#genopt = tf.keras.optimizers.Adam(genloss, both_mod.trainable_variables)\n\n# Do the training!\nfor epoch in tqdm(range(epochs)):\n # Sample some noise\n #TODO: Batch size\n some_noise = np.random.normal(size=[N,R])\n\n gen_dat = gen.predict(np.hstack([x, some_noise]))\n\n # Train discriminator\n #NOTE: Minor discrepency in losses from the manual loop below and from keras's built in: follow up if there appears to be bugs.\n #disc_rl = disc.train_on_batch(np.hstack([x, y]), np.ones(N))\n #disc_fl = disc.train_on_batch(np.hstack([x, gen_dat]), np.zeros(N))\n #disc_loss = 0.5 * np.add(disc_rl, disc_fl)\n\n disc.trainable = True\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n #preds_real = disc(tf.cast(np.concatenate([x, y]).reshape([N,P+Q]), tf.float32))\n #preds_fake = disc(tf.cast(np.concatenate([x, gen_dat]).reshape([N,P+Q]), tf.float32))\n preds_real = disc(tf.cast(np.hstack([x, y.reshape([N,Q])]), tf.float32))\n preds_fake = disc(tf.cast(np.hstack([x, gen_dat]), tf.float32))\n dl_real = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N).reshape([N,1]), tf.cast(preds_real, tf.float64)))\n dl_fake = tf.reduce_mean(keras.losses.binary_crossentropy(np.zeros(N).reshape([N,1]), tf.cast(preds_fake, tf.float64)))\n dl = 0.5*tf.add(dl_real, dl_fake)\n\n grads = t.gradient(dl, disc.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n #grads_norm += tf.reduce_sum(tf.square(grads[i]))\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n\n double_grads = td.gradient(grads_norm, disc.trainable_variables)\n\n grads_n_vars = [(grads[i] + doubleback_const * double_grads[i], disc.trainable_variables[i]) for i in range(len(grads))]\n disc.optimizer.apply_gradients(grads_n_vars)\n disc.trainable = False\n\n # Train generator\n #both_mod.train_on_batch([x, some_noise], np.ones(N))\n # Manually compute and apply gradient\n with tf.GradientTape() as td:\n with tf.GradientTape() as t:\n preds = both_mod([tf.cast(x, tf.float32), tf.cast(some_noise, tf.float32)])\n bl = tf.reduce_mean(keras.losses.binary_crossentropy(np.ones(N).reshape([N,1]), tf.cast(preds, tf.float64)))\n #bl = tf.losses.sigmoid_cross_entropy(preds, np.ones(N).reshape([N,1]))\n\n grads = t.gradient(bl, both_mod.trainable_variables)\n grads_norm = 0\n for i in range(len(grads)):\n #grads_norm += tf.reduce_sum(tf.square(grads[i]))\n grads_norm += tf.reduce_mean(tf.square(grads[i]))\n grads_norm /= float(len(grads))\n\n double_grads = td.gradient(grads_norm, both_mod.trainable_variables)\n\n grads_n_vars = [(grads[i] + doubleback_const*double_grads[i], both_mod.trainable_variables[i]) for i in range(len(grads))]\n both_mod.optimizer.apply_gradients(grads_n_vars)\n\n# Plot the results\nfig = plt.figure()\nplt.scatter(x, y)\nsome_noise = np.random.normal(size=[N,P])\npreds = gen.predict(np.hstack([x, some_noise]))\nplt.scatter(x, preds)\n#plt.savefig(\"images/motor_scatter.pdf\")\nplt.savefig(\"temp.pdf\")\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- { 'name': 'Islamic Datepicker', 'category': 'Extra Tools', 'author': 'Mostafa Mohamed', 'website': 'https://eg.linkedin.com/in/mostafa-mohammed-449a8786', 'price': 25.00, 'currency': 'EUR', 'version': '9.0.1.0.1', 'depends': ['base','web'], 'data': [ 'views/islamic_template.xml', ], 'qweb': [ "static/src/xml/islamice_date_widget.xml", ], 'auto_install': False, 'installable': True }
normal
{ "blob_id": "51a4d8f1be7009b69f0b69bdd51a0077256304a9", "index": 7222, "step-1": "<mask token>\n", "step-2": "{'name': 'Islamic Datepicker', 'category': 'Extra Tools', 'author':\n 'Mostafa Mohamed', 'website':\n 'https://eg.linkedin.com/in/mostafa-mohammed-449a8786', 'price': 25.0,\n 'currency': 'EUR', 'version': '9.0.1.0.1', 'depends': ['base', 'web'],\n 'data': ['views/islamic_template.xml'], 'qweb': [\n 'static/src/xml/islamice_date_widget.xml'], 'auto_install': False,\n 'installable': True}\n", "step-3": "# -*- coding: utf-8 -*-\n{\n 'name': 'Islamic Datepicker',\n 'category': 'Extra Tools',\n 'author': 'Mostafa Mohamed',\n 'website': 'https://eg.linkedin.com/in/mostafa-mohammed-449a8786',\n 'price': 25.00,\n 'currency': 'EUR',\n 'version': '9.0.1.0.1',\n 'depends': ['base','web'],\n 'data': [\n 'views/islamic_template.xml',\n ],\n 'qweb': [\n \"static/src/xml/islamice_date_widget.xml\",\n ],\n 'auto_install': False,\n 'installable': True\n}\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#!/bin/env python from boincvm_common.stomp.StompProtocol import StompProtocolFactory from stomp.HostStompEngine import HostStompEngine from boincvm_host.xmlrpc.HostXMLRPCService import HostXMLRPCService from twisted.internet import reactor from ConfigParser import SafeConfigParser import coilmq.start import logging import multiprocessing import time import pdb logging.basicConfig(level=logging.DEBUG, \ format='%(asctime)s - %(name)s - %(levelname)s: %(message)s', ) logger = logging.getLogger(__name__) def startSTOMPBroker(config, serverUpEvent, tries=-1, delay=1, backoff=1.5): """ @param tries number of times to retry starting the broker. < 0 means infinitely many. @param delay number of seconds to wait after the first failed attempt @param backoff factor by which the delay will be incremented after a failure. """ #stomp broker mtries = tries mdelay = delay coilserver = None from coilmq.config import config as coilconfig if config.has_section('coilmq'): for k,v in config.items('coilmq'): coilconfig.set('coilmq', k, v) logger.debug("Set %s to %s for coilmq config." % (k,v)) while True: try: coilserver = coilmq.start.server_from_config(coilconfig) logger.info("Stomp server listening on %s:%s" % \ coilserver.server_address) serverUpEvent.set() coilserver.serve_forever() except IOError as ex: logger.error("Exception while starting coilmq broker: '%s'", ex) if mtries != 0: logger.debug("Retrying coilmq startup in %.1f seconds...", mdelay) time.sleep(mdelay) mdelay *= backoff mtries -= 1 else: logger.debug("Ran out of trials (tried %d times) for coilmq startup. Giving up.", tries) break finally: if coilserver: coilserver.server_close() def start(config, brokerTimeout = 60.0): """ Start twisted event loop and the fun should begin... @param brokerTimeout how long to wait for a broker @return a negative number upon failure. Otherwise, it never returns. """ manager = multiprocessing.Manager() serverUpEvent = manager.Event() broker = multiprocessing.Process(target=startSTOMPBroker, args=(config,serverUpEvent)) broker.daemon = True broker.name = 'STOMP-Broker' broker.start() serverUpEvent.wait(brokerTimeout) if not serverUpEvent.is_set(): logger.fatal("Broker not available after %.1f seconds. Giving up", brokerTimeout) return -1 #host side logic host = config.get('Broker', 'host') port = int(config.get('Broker', 'port')) username = config.get('Broker', 'username') password = config.get('Broker', 'password') hostEngine = HostStompEngine(config) stompProtocolFactory = StompProtocolFactory(hostEngine, username, password) HostXMLRPCService(config).makeEngineAccesible(hostEngine) reactor.connectTCP(host, port, stompProtocolFactory) reactor.run() if __name__ == '__main__': from sys import argv, exit if len(argv) < 2: print "Usage: %s <config-file>" % argv[0] exit(-1) else: configFile = argv[1] config = SafeConfigParser() config.read(configFile) exit(start(config))
normal
{ "blob_id": "e533b7aadd1cd7137301af8862dd2987622e499e", "index": 3357, "step-1": "#!/bin/env python\n\nfrom boincvm_common.stomp.StompProtocol import StompProtocolFactory\nfrom stomp.HostStompEngine import HostStompEngine\n\nfrom boincvm_host.xmlrpc.HostXMLRPCService import HostXMLRPCService\n\nfrom twisted.internet import reactor\nfrom ConfigParser import SafeConfigParser\n\nimport coilmq.start\n\nimport logging\nimport multiprocessing\nimport time \nimport pdb\n\nlogging.basicConfig(level=logging.DEBUG, \\\n format='%(asctime)s - %(name)s - %(levelname)s: %(message)s', )\n\nlogger = logging.getLogger(__name__)\n\ndef startSTOMPBroker(config, serverUpEvent, tries=-1, delay=1, backoff=1.5):\n \"\"\"\n\n @param tries number of times to retry starting the broker. < 0 means infinitely many.\n @param delay number of seconds to wait after the first failed attempt\n @param backoff factor by which the delay will be incremented after a failure.\n \"\"\"\n #stomp broker\n mtries = tries\n mdelay = delay\n coilserver = None\n from coilmq.config import config as coilconfig\n if config.has_section('coilmq'):\n for k,v in config.items('coilmq'):\n coilconfig.set('coilmq', k, v)\n logger.debug(\"Set %s to %s for coilmq config.\" % (k,v))\n while True:\n try:\n coilserver = coilmq.start.server_from_config(coilconfig)\n logger.info(\"Stomp server listening on %s:%s\" % \\\n coilserver.server_address)\n serverUpEvent.set()\n coilserver.serve_forever()\n except IOError as ex:\n logger.error(\"Exception while starting coilmq broker: '%s'\", ex)\n if mtries != 0: \n logger.debug(\"Retrying coilmq startup in %.1f seconds...\", mdelay)\n time.sleep(mdelay)\n mdelay *= backoff\n mtries -= 1\n else:\n logger.debug(\"Ran out of trials (tried %d times) for coilmq startup. Giving up.\", tries)\n break\n finally:\n if coilserver: coilserver.server_close()\n\n\ndef start(config, brokerTimeout = 60.0):\n \"\"\"\n Start twisted event loop and the fun should begin...\n\n @param brokerTimeout how long to wait for a broker \n \n @return a negative number upon failure. Otherwise, it never returns.\n \"\"\"\n \n manager = multiprocessing.Manager()\n serverUpEvent = manager.Event()\n broker = multiprocessing.Process(target=startSTOMPBroker, args=(config,serverUpEvent))\n broker.daemon = True\n broker.name = 'STOMP-Broker'\n broker.start()\n\n serverUpEvent.wait(brokerTimeout)\n if not serverUpEvent.is_set():\n logger.fatal(\"Broker not available after %.1f seconds. Giving up\", brokerTimeout)\n return -1\n #host side logic\n host = config.get('Broker', 'host') \n port = int(config.get('Broker', 'port'))\n username = config.get('Broker', 'username')\n password = config.get('Broker', 'password')\n\n hostEngine = HostStompEngine(config)\n stompProtocolFactory = StompProtocolFactory(hostEngine, username, password)\n \n HostXMLRPCService(config).makeEngineAccesible(hostEngine)\n\n\n reactor.connectTCP(host, port, stompProtocolFactory)\n reactor.run()\n\n\n\nif __name__ == '__main__':\n from sys import argv, exit\n if len(argv) < 2:\n print \"Usage: %s <config-file>\" % argv[0]\n exit(-1)\n else:\n configFile = argv[1]\n\n config = SafeConfigParser()\n config.read(configFile)\n\n exit(start(config))\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def ddm_dd_convert(coord, direction): """Converts GPS reading from DDM to DD str coord - the ddm coordinate from $GPGGA str direction - the direction of the coord (N,S,W,E) returns - string representation of dd coordinate """ value = '' if (direction == 'S' or direction == 'W'): value += '-' value += coord[0:-7] minute = float(coord[-7:]) decimal = round(minute / 60, 8) result = str(decimal)[1:] value += result return value def gprmc_convert(line): """Translates $GPRMC line into documented array str line - the GPRMC line returns - the data documented into array """ gps = line.strip().split(',') #check data if gps[2] == 'V': return raw_date = gps[9] time = '' date = raw_date[0:2] month = raw_date[2:4] year = raw_date[4:] #modify year if reaches year 2100 time += date + '/' + month + '/20' + year return [time] def gpvtg_convert(line): """Translates $GPVTG line into documented array Data only used for measuring ground speed str line - the GPVTG line returns - the data documented into array """ gps = line.strip().split(',') #check data if gps[1] == '0.00': return #jsondata = {'Horizontal speed': gps[7] + ' kmph or ' + gps[5] + 'knots'} return [] def gpgga_convert(line): """Translates $GPGGPA line into documented array str line - the GPGGA line returns - the data documented into array """ gps = line.strip().split(',') #check data if gps[6] == '0' : return fix = '' if gps[6] == '1': fix = 'GPS fix' elif gps[6] == '2': fix = 'DGPS fix' elif gps[6] == '4': fix = 'RTK Fix coordinate (centimeter precision)' elif gps[6] == '5': fix = 'RTK Float (decimeter precision)' #utc = gps[1][0:2] + ':' + gps[1][2:4] + ':' + gps[1][4:6] lat = ddm_dd_convert(gps[2], gps[3]) long = ddm_dd_convert(gps[4], gps[5]) return [lat, long, fix] def gpgsa_convert(line): """Translates $GPGSA line into documented array str line - the GPGSA line returns - the data documented into array """ gps = line.strip().split(',') #check data if gps[2] == '1': return if gps[2] == '2': fix = '2D fix' else: fix = '3D fix' return [fix]
normal
{ "blob_id": "dc5630e17bb6ed85157b06108250427be41416d1", "index": 7766, "step-1": "<mask token>\n\n\ndef gprmc_convert(line):\n \"\"\"Translates $GPRMC line into documented array\n str line - the GPRMC line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[2] == 'V':\n return\n raw_date = gps[9]\n time = ''\n date = raw_date[0:2]\n month = raw_date[2:4]\n year = raw_date[4:]\n time += date + '/' + month + '/20' + year\n return [time]\n\n\n<mask token>\n\n\ndef gpgga_convert(line):\n \"\"\"Translates $GPGGPA line into documented array\n str line - the GPGGA line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[6] == '0':\n return\n fix = ''\n if gps[6] == '1':\n fix = 'GPS fix'\n elif gps[6] == '2':\n fix = 'DGPS fix'\n elif gps[6] == '4':\n fix = 'RTK Fix coordinate (centimeter precision)'\n elif gps[6] == '5':\n fix = 'RTK Float (decimeter precision)'\n lat = ddm_dd_convert(gps[2], gps[3])\n long = ddm_dd_convert(gps[4], gps[5])\n return [lat, long, fix]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef gprmc_convert(line):\n \"\"\"Translates $GPRMC line into documented array\n str line - the GPRMC line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[2] == 'V':\n return\n raw_date = gps[9]\n time = ''\n date = raw_date[0:2]\n month = raw_date[2:4]\n year = raw_date[4:]\n time += date + '/' + month + '/20' + year\n return [time]\n\n\ndef gpvtg_convert(line):\n \"\"\"Translates $GPVTG line into documented array\n Data only used for measuring ground speed\n str line - the GPVTG line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[1] == '0.00':\n return\n return []\n\n\ndef gpgga_convert(line):\n \"\"\"Translates $GPGGPA line into documented array\n str line - the GPGGA line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[6] == '0':\n return\n fix = ''\n if gps[6] == '1':\n fix = 'GPS fix'\n elif gps[6] == '2':\n fix = 'DGPS fix'\n elif gps[6] == '4':\n fix = 'RTK Fix coordinate (centimeter precision)'\n elif gps[6] == '5':\n fix = 'RTK Float (decimeter precision)'\n lat = ddm_dd_convert(gps[2], gps[3])\n long = ddm_dd_convert(gps[4], gps[5])\n return [lat, long, fix]\n\n\n<mask token>\n", "step-3": "def ddm_dd_convert(coord, direction):\n \"\"\"Converts GPS reading from DDM to DD\n str coord - the ddm coordinate from $GPGGA\n str direction - the direction of the coord (N,S,W,E)\n returns - string representation of dd coordinate\n \"\"\"\n value = ''\n if direction == 'S' or direction == 'W':\n value += '-'\n value += coord[0:-7]\n minute = float(coord[-7:])\n decimal = round(minute / 60, 8)\n result = str(decimal)[1:]\n value += result\n return value\n\n\ndef gprmc_convert(line):\n \"\"\"Translates $GPRMC line into documented array\n str line - the GPRMC line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[2] == 'V':\n return\n raw_date = gps[9]\n time = ''\n date = raw_date[0:2]\n month = raw_date[2:4]\n year = raw_date[4:]\n time += date + '/' + month + '/20' + year\n return [time]\n\n\ndef gpvtg_convert(line):\n \"\"\"Translates $GPVTG line into documented array\n Data only used for measuring ground speed\n str line - the GPVTG line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[1] == '0.00':\n return\n return []\n\n\ndef gpgga_convert(line):\n \"\"\"Translates $GPGGPA line into documented array\n str line - the GPGGA line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[6] == '0':\n return\n fix = ''\n if gps[6] == '1':\n fix = 'GPS fix'\n elif gps[6] == '2':\n fix = 'DGPS fix'\n elif gps[6] == '4':\n fix = 'RTK Fix coordinate (centimeter precision)'\n elif gps[6] == '5':\n fix = 'RTK Float (decimeter precision)'\n lat = ddm_dd_convert(gps[2], gps[3])\n long = ddm_dd_convert(gps[4], gps[5])\n return [lat, long, fix]\n\n\n<mask token>\n", "step-4": "def ddm_dd_convert(coord, direction):\n \"\"\"Converts GPS reading from DDM to DD\n str coord - the ddm coordinate from $GPGGA\n str direction - the direction of the coord (N,S,W,E)\n returns - string representation of dd coordinate\n \"\"\"\n value = ''\n if direction == 'S' or direction == 'W':\n value += '-'\n value += coord[0:-7]\n minute = float(coord[-7:])\n decimal = round(minute / 60, 8)\n result = str(decimal)[1:]\n value += result\n return value\n\n\ndef gprmc_convert(line):\n \"\"\"Translates $GPRMC line into documented array\n str line - the GPRMC line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[2] == 'V':\n return\n raw_date = gps[9]\n time = ''\n date = raw_date[0:2]\n month = raw_date[2:4]\n year = raw_date[4:]\n time += date + '/' + month + '/20' + year\n return [time]\n\n\ndef gpvtg_convert(line):\n \"\"\"Translates $GPVTG line into documented array\n Data only used for measuring ground speed\n str line - the GPVTG line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[1] == '0.00':\n return\n return []\n\n\ndef gpgga_convert(line):\n \"\"\"Translates $GPGGPA line into documented array\n str line - the GPGGA line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[6] == '0':\n return\n fix = ''\n if gps[6] == '1':\n fix = 'GPS fix'\n elif gps[6] == '2':\n fix = 'DGPS fix'\n elif gps[6] == '4':\n fix = 'RTK Fix coordinate (centimeter precision)'\n elif gps[6] == '5':\n fix = 'RTK Float (decimeter precision)'\n lat = ddm_dd_convert(gps[2], gps[3])\n long = ddm_dd_convert(gps[4], gps[5])\n return [lat, long, fix]\n\n\ndef gpgsa_convert(line):\n \"\"\"Translates $GPGSA line into documented array\n str line - the GPGSA line\n returns - the data documented into array\n \"\"\"\n gps = line.strip().split(',')\n if gps[2] == '1':\n return\n if gps[2] == '2':\n fix = '2D fix'\n else:\n fix = '3D fix'\n return [fix]\n", "step-5": "\r\n\r\ndef ddm_dd_convert(coord, direction):\r\n \"\"\"Converts GPS reading from DDM to DD\r\n str coord - the ddm coordinate from $GPGGA\r\n str direction - the direction of the coord (N,S,W,E)\r\n returns - string representation of dd coordinate\r\n \"\"\"\r\n value = ''\r\n if (direction == 'S' or direction == 'W'):\r\n value += '-'\r\n value += coord[0:-7] \r\n minute = float(coord[-7:])\r\n decimal = round(minute / 60, 8)\r\n result = str(decimal)[1:]\r\n value += result\r\n return value\r\n\r\ndef gprmc_convert(line):\r\n \"\"\"Translates $GPRMC line into documented array\r\n str line - the GPRMC line\r\n returns - the data documented into array\r\n \"\"\"\r\n gps = line.strip().split(',')\r\n #check data\r\n if gps[2] == 'V':\r\n return\r\n raw_date = gps[9]\r\n time = ''\r\n date = raw_date[0:2]\r\n month = raw_date[2:4]\r\n year = raw_date[4:]\r\n #modify year if reaches year 2100\r\n time += date + '/' + month + '/20' + year\r\n return [time]\r\n\r\n\r\ndef gpvtg_convert(line):\r\n \"\"\"Translates $GPVTG line into documented array\r\n Data only used for measuring ground speed\r\n str line - the GPVTG line\r\n returns - the data documented into array\r\n \"\"\"\r\n gps = line.strip().split(',')\r\n #check data\r\n if gps[1] == '0.00': \r\n return\r\n #jsondata = {'Horizontal speed': gps[7] + ' kmph or ' + gps[5] + 'knots'}\r\n return []\r\n\r\n\r\ndef gpgga_convert(line):\r\n \"\"\"Translates $GPGGPA line into documented array\r\n str line - the GPGGA line\r\n returns - the data documented into array\r\n \"\"\"\r\n gps = line.strip().split(',')\r\n #check data\r\n if gps[6] == '0' :\r\n return\r\n fix = ''\r\n if gps[6] == '1':\r\n fix = 'GPS fix'\r\n elif gps[6] == '2':\r\n fix = 'DGPS fix'\r\n elif gps[6] == '4':\r\n fix = 'RTK Fix coordinate (centimeter precision)'\r\n elif gps[6] == '5':\r\n fix = 'RTK Float (decimeter precision)'\r\n #utc = gps[1][0:2] + ':' + gps[1][2:4] + ':' + gps[1][4:6]\r\n lat = ddm_dd_convert(gps[2], gps[3])\r\n long = ddm_dd_convert(gps[4], gps[5]) \r\n return [lat, long, fix]\r\n\r\n \r\ndef gpgsa_convert(line):\r\n \"\"\"Translates $GPGSA line into documented array\r\n str line - the GPGSA line\r\n returns - the data documented into array\r\n \"\"\"\r\n gps = line.strip().split(',')\r\n #check data\r\n if gps[2] == '1':\r\n return\r\n if gps[2] == '2':\r\n fix = '2D fix'\r\n else:\r\n fix = '3D fix'\r\n return [fix]", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
import os import sys import string from array import * from datetime import datetime #f = open('input_test.txt', 'r') f = open('input_task.txt', 'r') width = 60 height = 5000 sleepingMinutes = [[0 for x in range(width)] for y in range(height)] infos = [] # Change lines to tuples and store to array for sorting for line in f: line = line.rstrip('\n') line = line.replace('[','') splitted = line.split(']') stringTime = splitted[0] stringTask = splitted[1] datetimeTime = datetime.strptime(stringTime, '%Y-%m-%d %H:%M') lineTuple = (datetimeTime, stringTask) infos.append(lineTuple) #print(datetimeTime.minute) # sort the info we have infosSorted = sorted(infos, key=lambda time: time[0]) #print(infos) #print(infosSorted) sleeping = False for dataPoint in infosSorted: splitted = dataPoint[1].split(' ') #print(splitted) if splitted[1] == 'Guard': #print('Vartija vaihtui, vuorossa: ' + splitted[2]) guard = splitted[2].replace('#','') if splitted[1] == 'falls': sleeping = True sleepingTimeStart = dataPoint[0] #print('vartija ' + guard + ' nukahti hetkellä ' + str(sleepingTimeStart)) if splitted[1] == 'wakes': sleeping = False sleepingTimeStop = dataPoint[0] sleepingTime = sleepingTimeStop - sleepingTimeStart #print('vartija ' + guard + ' heräsi hetkellä ' + str(sleepingTimeStop) + ' nukkuen ' + str(sleepingTime)) for x in range(sleepingTimeStart.minute, sleepingTimeStop.minute): sleepingMinutes[int(guard)][x] += 1 maxVartija = 0 maxMinuutti = 0 maxMinuutit = 0 vartija = 0 for x in sleepingMinutes: summa = sum(x) minuutti = x.index(max(x)) #print(x) #print('yhteensä ' + str(summa) + ' nukkui eniten minuutilla ' + str(maxMinuutti)) if maxVartija < summa: maxVartija = vartija maxMinuutti = minuutti maxMinuutit = summa vartija += 1 print('Eniten nukkui vartija #' + str(maxVartija) + ' nukkuen yhteensä ' + str(maxMinuutit) + ' minuuttia ja eniten minuutilla ' + str(maxMinuutti)) print('Vastaus on siis ' + str(maxVartija*maxMinuutti))
normal
{ "blob_id": "293533d07b530be9e8f97f1720619bf6c3113cca", "index": 9447, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor line in f:\n line = line.rstrip('\\n')\n line = line.replace('[', '')\n splitted = line.split(']')\n stringTime = splitted[0]\n stringTask = splitted[1]\n datetimeTime = datetime.strptime(stringTime, '%Y-%m-%d %H:%M')\n lineTuple = datetimeTime, stringTask\n infos.append(lineTuple)\n<mask token>\nfor dataPoint in infosSorted:\n splitted = dataPoint[1].split(' ')\n if splitted[1] == 'Guard':\n guard = splitted[2].replace('#', '')\n if splitted[1] == 'falls':\n sleeping = True\n sleepingTimeStart = dataPoint[0]\n if splitted[1] == 'wakes':\n sleeping = False\n sleepingTimeStop = dataPoint[0]\n sleepingTime = sleepingTimeStop - sleepingTimeStart\n for x in range(sleepingTimeStart.minute, sleepingTimeStop.minute):\n sleepingMinutes[int(guard)][x] += 1\n<mask token>\nfor x in sleepingMinutes:\n summa = sum(x)\n minuutti = x.index(max(x))\n if maxVartija < summa:\n maxVartija = vartija\n maxMinuutti = minuutti\n maxMinuutit = summa\n vartija += 1\nprint('Eniten nukkui vartija #' + str(maxVartija) + ' nukkuen yhteensä ' +\n str(maxMinuutit) + ' minuuttia ja eniten minuutilla ' + str(maxMinuutti))\nprint('Vastaus on siis ' + str(maxVartija * maxMinuutti))\n", "step-3": "<mask token>\nf = open('input_task.txt', 'r')\nwidth = 60\nheight = 5000\nsleepingMinutes = [[(0) for x in range(width)] for y in range(height)]\ninfos = []\nfor line in f:\n line = line.rstrip('\\n')\n line = line.replace('[', '')\n splitted = line.split(']')\n stringTime = splitted[0]\n stringTask = splitted[1]\n datetimeTime = datetime.strptime(stringTime, '%Y-%m-%d %H:%M')\n lineTuple = datetimeTime, stringTask\n infos.append(lineTuple)\ninfosSorted = sorted(infos, key=lambda time: time[0])\nsleeping = False\nfor dataPoint in infosSorted:\n splitted = dataPoint[1].split(' ')\n if splitted[1] == 'Guard':\n guard = splitted[2].replace('#', '')\n if splitted[1] == 'falls':\n sleeping = True\n sleepingTimeStart = dataPoint[0]\n if splitted[1] == 'wakes':\n sleeping = False\n sleepingTimeStop = dataPoint[0]\n sleepingTime = sleepingTimeStop - sleepingTimeStart\n for x in range(sleepingTimeStart.minute, sleepingTimeStop.minute):\n sleepingMinutes[int(guard)][x] += 1\nmaxVartija = 0\nmaxMinuutti = 0\nmaxMinuutit = 0\nvartija = 0\nfor x in sleepingMinutes:\n summa = sum(x)\n minuutti = x.index(max(x))\n if maxVartija < summa:\n maxVartija = vartija\n maxMinuutti = minuutti\n maxMinuutit = summa\n vartija += 1\nprint('Eniten nukkui vartija #' + str(maxVartija) + ' nukkuen yhteensä ' +\n str(maxMinuutit) + ' minuuttia ja eniten minuutilla ' + str(maxMinuutti))\nprint('Vastaus on siis ' + str(maxVartija * maxMinuutti))\n", "step-4": "import os\nimport sys\nimport string\nfrom array import *\nfrom datetime import datetime\nf = open('input_task.txt', 'r')\nwidth = 60\nheight = 5000\nsleepingMinutes = [[(0) for x in range(width)] for y in range(height)]\ninfos = []\nfor line in f:\n line = line.rstrip('\\n')\n line = line.replace('[', '')\n splitted = line.split(']')\n stringTime = splitted[0]\n stringTask = splitted[1]\n datetimeTime = datetime.strptime(stringTime, '%Y-%m-%d %H:%M')\n lineTuple = datetimeTime, stringTask\n infos.append(lineTuple)\ninfosSorted = sorted(infos, key=lambda time: time[0])\nsleeping = False\nfor dataPoint in infosSorted:\n splitted = dataPoint[1].split(' ')\n if splitted[1] == 'Guard':\n guard = splitted[2].replace('#', '')\n if splitted[1] == 'falls':\n sleeping = True\n sleepingTimeStart = dataPoint[0]\n if splitted[1] == 'wakes':\n sleeping = False\n sleepingTimeStop = dataPoint[0]\n sleepingTime = sleepingTimeStop - sleepingTimeStart\n for x in range(sleepingTimeStart.minute, sleepingTimeStop.minute):\n sleepingMinutes[int(guard)][x] += 1\nmaxVartija = 0\nmaxMinuutti = 0\nmaxMinuutit = 0\nvartija = 0\nfor x in sleepingMinutes:\n summa = sum(x)\n minuutti = x.index(max(x))\n if maxVartija < summa:\n maxVartija = vartija\n maxMinuutti = minuutti\n maxMinuutit = summa\n vartija += 1\nprint('Eniten nukkui vartija #' + str(maxVartija) + ' nukkuen yhteensä ' +\n str(maxMinuutit) + ' minuuttia ja eniten minuutilla ' + str(maxMinuutti))\nprint('Vastaus on siis ' + str(maxVartija * maxMinuutti))\n", "step-5": "import os\nimport sys\nimport string\nfrom array import *\nfrom datetime import datetime\n\n#f = open('input_test.txt', 'r')\nf = open('input_task.txt', 'r')\n\nwidth = 60\nheight = 5000\nsleepingMinutes = [[0 for x in range(width)] for y in range(height)]\n\ninfos = []\n\n# Change lines to tuples and store to array for sorting\nfor line in f:\n line = line.rstrip('\\n')\n line = line.replace('[','')\n splitted = line.split(']')\n stringTime = splitted[0]\n stringTask = splitted[1]\n datetimeTime = datetime.strptime(stringTime, '%Y-%m-%d %H:%M')\n lineTuple = (datetimeTime, stringTask)\n infos.append(lineTuple)\n #print(datetimeTime.minute)\n\n# sort the info we have\ninfosSorted = sorted(infos, key=lambda time: time[0])\n#print(infos)\n#print(infosSorted)\n\nsleeping = False\n\nfor dataPoint in infosSorted:\n splitted = dataPoint[1].split(' ')\n #print(splitted)\n if splitted[1] == 'Guard':\n #print('Vartija vaihtui, vuorossa: ' + splitted[2])\n guard = splitted[2].replace('#','')\n if splitted[1] == 'falls':\n sleeping = True\n sleepingTimeStart = dataPoint[0]\n #print('vartija ' + guard + ' nukahti hetkellä ' + str(sleepingTimeStart))\n if splitted[1] == 'wakes':\n sleeping = False\n sleepingTimeStop = dataPoint[0]\n sleepingTime = sleepingTimeStop - sleepingTimeStart\n #print('vartija ' + guard + ' heräsi hetkellä ' + str(sleepingTimeStop) + ' nukkuen ' + str(sleepingTime))\n for x in range(sleepingTimeStart.minute, sleepingTimeStop.minute):\n sleepingMinutes[int(guard)][x] += 1\n\nmaxVartija = 0\nmaxMinuutti = 0\nmaxMinuutit = 0\nvartija = 0\n\nfor x in sleepingMinutes:\n summa = sum(x)\n minuutti = x.index(max(x))\n #print(x)\n #print('yhteensä ' + str(summa) + ' nukkui eniten minuutilla ' + str(maxMinuutti))\n if maxVartija < summa:\n maxVartija = vartija\n maxMinuutti = minuutti\n maxMinuutit = summa\n vartija += 1\n\nprint('Eniten nukkui vartija #' + str(maxVartija) + ' nukkuen yhteensä ' + str(maxMinuutit) + ' minuuttia ja eniten minuutilla ' + str(maxMinuutti))\nprint('Vastaus on siis ' + str(maxVartija*maxMinuutti))", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from odoo import models,fields, api class director(models.Model): #Clasica _inherit = 'base.entidad' _name = 'cinemateca.director' name = fields.Char(string="name", required=True, help="Nombre del director") apellidos = fields.Char(string="apellidos", required=True, help="Apellidos del director") pelicula_ids = fields.One2many("cinemateca.pelicula", "director_id", string="sesion")
normal
{ "blob_id": "006f499eed7cd5d73bb0cb9b242c90726fff35c1", "index": 3185, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass director(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass director(models.Model):\n _inherit = 'base.entidad'\n _name = 'cinemateca.director'\n name = fields.Char(string='name', required=True, help='Nombre del director'\n )\n apellidos = fields.Char(string='apellidos', required=True, help=\n 'Apellidos del director')\n pelicula_ids = fields.One2many('cinemateca.pelicula', 'director_id',\n string='sesion')\n", "step-4": "from odoo import models, fields, api\n\n\nclass director(models.Model):\n _inherit = 'base.entidad'\n _name = 'cinemateca.director'\n name = fields.Char(string='name', required=True, help='Nombre del director'\n )\n apellidos = fields.Char(string='apellidos', required=True, help=\n 'Apellidos del director')\n pelicula_ids = fields.One2many('cinemateca.pelicula', 'director_id',\n string='sesion')\n", "step-5": "from odoo import models,fields, api\n\nclass director(models.Model):\n #Clasica\n _inherit = 'base.entidad'\n _name = 'cinemateca.director'\n name = fields.Char(string=\"name\", required=True, help=\"Nombre del director\")\n apellidos = fields.Char(string=\"apellidos\", required=True, help=\"Apellidos del director\")\n pelicula_ids = fields.One2many(\"cinemateca.pelicula\", \"director_id\", string=\"sesion\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
'''Lab01 ex4 E/16/319 Rathnayake R.P.V.N''' from dataclasses import asdict from json import dumps from dataclasses import dataclass from typing import List, Dict import json import ex1 #import the ex1 to get the lord_course_registraion function s1=ex1.load_course_registrations("data.txt") #lord the list of Student object in to the s1 s1=(map(asdict,s1)) #aply asdict() to s1 my useng the map function e=json.dumps(list(s1)) #convert into jsom=n string #print(e) with open("student_registrations.json","w") as f: #open json file and write on it f.write(e)
normal
{ "blob_id": "8a5ade450485f9114fa91c00c7588535ccbaf0e6", "index": 1923, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('student_registrations.json', 'w') as f:\n f.write(e)\n", "step-3": "<mask token>\ns1 = ex1.load_course_registrations('data.txt')\ns1 = map(asdict, s1)\ne = json.dumps(list(s1))\nwith open('student_registrations.json', 'w') as f:\n f.write(e)\n", "step-4": "<mask token>\nfrom dataclasses import asdict\nfrom json import dumps\nfrom dataclasses import dataclass\nfrom typing import List, Dict\nimport json\nimport ex1\ns1 = ex1.load_course_registrations('data.txt')\ns1 = map(asdict, s1)\ne = json.dumps(list(s1))\nwith open('student_registrations.json', 'w') as f:\n f.write(e)\n", "step-5": "'''Lab01 ex4\n\tE/16/319 Rathnayake R.P.V.N'''\nfrom dataclasses import asdict\nfrom json import dumps\nfrom dataclasses import dataclass\nfrom typing import List, Dict\nimport json\nimport ex1\t\t#import the ex1 to get the lord_course_registraion function\n\n\ns1=ex1.load_course_registrations(\"data.txt\")\t#lord the list of Student object in to the s1\ns1=(map(asdict,s1))\t\t\t\t\t\t\t\t#aply asdict() to s1 my useng the map function\n\ne=json.dumps(list(s1))\t\t\t\t\t\t\t#convert into jsom=n string\n#print(e)\nwith open(\"student_registrations.json\",\"w\") as f:\t\t#open json file and write on it\n\tf.write(e)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os from src.model_manager import ModelManager dir_path = os.path.dirname(os.path.realpath(__file__)) config_file = '{}/data/config/config_1.json'.format(dir_path) model_dir = '{}/data/models'.format(dir_path) def test_init(): mm = ModelManager(config_file, model_dir) def test_predict(): pass
normal
{ "blob_id": "5da61b4cd8e4faf135b49396d3b346a219bf73f6", "index": 3851, "step-1": "<mask token>\n\n\ndef test_predict():\n pass\n", "step-2": "<mask token>\n\n\ndef test_init():\n mm = ModelManager(config_file, model_dir)\n\n\ndef test_predict():\n pass\n", "step-3": "<mask token>\ndir_path = os.path.dirname(os.path.realpath(__file__))\nconfig_file = '{}/data/config/config_1.json'.format(dir_path)\nmodel_dir = '{}/data/models'.format(dir_path)\n\n\ndef test_init():\n mm = ModelManager(config_file, model_dir)\n\n\ndef test_predict():\n pass\n", "step-4": "import os\nfrom src.model_manager import ModelManager\ndir_path = os.path.dirname(os.path.realpath(__file__))\nconfig_file = '{}/data/config/config_1.json'.format(dir_path)\nmodel_dir = '{}/data/models'.format(dir_path)\n\n\ndef test_init():\n mm = ModelManager(config_file, model_dir)\n\n\ndef test_predict():\n pass\n", "step-5": null, "step-ids": [ 1, 2, 3, 4 ] }
[ 1, 2, 3, 4 ]